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Abstract

For locally finite infinite graphs the notion of Hamilton cycles can be
extended to Hamilton circles, homeomorphic images of S* in the Freuden-
thal compactification. In this paper we prove of a sufficient condition for
the existence of Hamilton circles in locally finite Cayley graphs.

1 Introduction

In 1969, Lovész, see [1], conjectured that every finite connected vertex-transitive
graph contains a Hamilton cycle except five known counterexamples. As the
Lovéasz conjecture is still open, one might instead try to solve the, possibly
easier, Lovasz conjecture for finite Cayley graphs which states: Every finite
Cayley graph with at least three vertices contains a Hamilton cycle. Doing so
enables the use of group theoretic tools and more over one can ask for what
generating sets a particular group contains a Hamilton cycle. There are a vast
number of papers regarding the study of Hamilton cycles in finite Cayley graphs,
see [8, @, 14 20, 21], for a survey of the field see [22].

As cycles are always finite, we need a generalization of Hamilton cycles for
infinite graphs. We follow the topological approach of [4, [5l [7], which extends
Hamilton cycles in a sensible way by using the circles in the Freudenthal com-
pactification |T'| of a T’ graph as infinite cycles. There are already results on
Hamilton circles in general infinite locally finite graphs, see [10} 1T, 12} 13].

It is worth remarking that the weaker version of the Lovasz’s conjecture does
not hold true for infinite groups. For example it is straight forward to check
that the Cayley graph of any free group with the standard generating set does
not contain Hamilton circles, as they are trees.

It is a known fact that every locally finite graph needs to be 1-tough to
contain a Hamilton circle, see [I0]. Thus a way to obtain infinitely many Cayley
graphs with no Hamilton circle is to amalgamate more than k groups over a
subgroup of order k. In 2009, Georgakopoulos [I0] asked if avoiding this might
be enough to force the existence of Hamilton circles in locally finite graphs and
proposed the following problem:
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Problem 1. [I0, Problem 2] Let T’ be a connected Cayley graph of a finitely
generated group. Then I" has a Hamilton circle unless there is a k € N such that
the Cayley graph of I is the amalgamated product of more than k groups over a
subgroup of order k.

In Section 1] we show that Problem [l is false.

For a one-ended graph I' it suffices to find a spanning two-way infinite path,
a double ray, to find a Hamilton circle of |T'|. In 1959 Nash-Williams [16] showed
that any Cayley graph of any infinite finitely generated abelian group admits
a spanning double ray. So we can say that Nash-Williams [I6] was one of the
first who proved the existence of Hamilton circles in an infinite class of Cayley
graphs even though at the time this notion of Hamilton circles was not yet
properly defined. We extend this result by showing that any Cayley graph of
any finitely generated abelian group, besides Z generated by {£1}, contains a
Hamilton circle in Section We extend this result also to an even larger class
of infinite groups, see Section for the details.

2 Preliminaries

2.1 Groups

Throughout this paper G will be reserved for groups. For a group G with respect
to the generating set S, i.e. G = (S), we denote the Cayley graph of G with
respect to S by I'(G, S) unless explicitly stated otherwise. For a set T C G we
set T+ :=T UT~'. Through out this paper we assume that all generating sets
are symmetric, i.e. whenever s € S then s~ € S. Thus if we add an element s
to a generating set S, we always also add the inverse of s to S as well.

Suppose that G is an abelian group. A finite set of elements {g;}?; of G
is called linear dependent if there exist integers \; for ¢ = 1,...,n, not all zero,
such that " | A;g; = 0. A system of elements that does not have this property
is called linear independent. It is an easy observation that a set containing
elements of finite order is linear dependent. The rank of an abelian group is
the size of a maximal independent set. This is exactly the rank the torsion free
part, i.e if G = Z™ & G then rank of GG is n, where G is the torsion part of G.

Let G; and G5 be two groups with subgroups H; and Hj respectively such
that there is an isomorphism ¢: H; — Hs. The free product with amalgamation
is defined as

Gy *HlGQ Z:<Sl U Sy | RiURyU H1¢71(H1)>.

A way to present elements of a free product with amalgamation is the Britton’s
Lemma:

Lemma 2.1.1. [2, Theorem 11.3] Let Gi and Gy be two groups with sub-
groups Hy = Hy respectively. Let T; be a left tmnsversaa of H; for i=1,2.
Any element © € Gy xg G2 can be uniquely written in the form x = xoxy - Ty
with the following:

(1) xo € Hy.

LA transversal is a system of representatives of left cosets of H; in G; and we always assume
that 1 belongs to it.



(i) ; € Ti\1 oraz; € To\ 1 for j > 1 and the consecutive terms x; and xj41
lie in distinct transversals.

Let G = (S | R) be a group with subgroups H; and Hs in such a way that
there is an isomorphism ¢: H; — Hs. We now insert a new symbol ¢ not in G
and we define the HNN-extension of Gxp, as follows:

Grp, =(S,t | RUt™ Hitg(H1)™1).

Throughout this paper we assume that any generating set S = {s1,...,s,}
is minimal in the following sense: Each s; € S cannot be generated by S\ {s;},
i.e. we have that s; & (s;)je(1,....n}\{i}- We may do so because say S’ C S is a
minimal generating set of G. If we can find a Hamilton circle C in I'(G, S”), then
this circle C' will still be a Hamilton circle in I'(G, S). For this it is important
to note that the number of ends of G and thus of I'(G, S’) does not change with
changing the generating set to S by [15, Theorem 11.23], as long as S is finite,
which will always be true in this paper.

We now cite a structure for finitely generated groups with two ends.

Theorem 2.1.2. [I7, Theorem 5.12] Let G be a finitely generated group. Then
the following statements are equivalent.

(i) The number of ends of G is 2.
(ii) G has an infinite cyclic subgroup of finite indez.

(ili) G = A+ B and C is finite and [A: C] =[B: C] =2 or G = C #¢ with C
is finite.

2.2 Graphs

Throughout this paper I' will be reserved for graphs. In addition to the no-
tation of paths and cycles as sequences of vertices such that there are edges
between successive vertices we use the notation of [I4, 22] for constructing
Hamilton paths and Hamilton cycles and circles which uses edges rather than
vertices. We give some basic examples of this definition here: For that let g
and s;, i € Z, be elements of some group. In this notation g[s;]* denotes the
concatenation of k copies of s; from the right starting from ¢ which translates
to the path g, (gs1),..., (gs¥) in the usual notation. Analogously [s;]¥g denotes
the concatenation of k copies of s; starting again from ¢ from the left. In
addition g[s1, s2,...] translates to be the ray g, (gs1), (9s152), ... and

[...,8-2,5_1]g[s1, 82, -]

translates to be the double ray

RRE (95—28—1)’ (gs_l),g, (gs), (95152)7 s

When discussing rays we extend the notation of g[sy, ..., s,]¥ to k being count-
ably infinite and write g[si,...,s2] and the analogue for double rays. Some-
times we will use this notation also for cycles. Stating that g[ci,...,cx] is a
cycle means that g[ci,...,cx—1] is a path and that the edge ¢ joins the ver-
tices gcq - - - cp—1 and g.



For a graph T let the induced subgraph on the vertex set X be called T'[X].
Throughout this paper we use Theorem to characterize the structure of
two ended groups, see Section [3| for more details. It is still important to pay
close attention to the generating sets for those groups though, as the following
example shows. Take two copies of Zo, with generating sets {a} and {b}, respec-
tively. Now consider the free product of them. It is obvious that this Cayley
graph with generating set {a,b} does not contain a Hamilton circle. The free
product of Zs with itself, on the other hand, is isomorphic to D, which can
represented by Do, = {a,b | a? = 1,aba = b~1). It is easy to see that the Cayley
graph of D, with this generating set contains a Hamilton circle.

For a graph I" we denote the Freudenthal compactification of T by |T'|. A
homeomorphic image of [0, 1] in the topological space |T'| is called arc. A Hamil-
ton arc in I is an arc including all vertices of I'. So a Hamilton arc in a graph
always contains all ends of the graph. By a Hamilton circle in T', we mean a
homeomorphic image of the unit circle in |I'| containing all vertices of I'. A
Hamilton arc whose image in a graph is connected is a Hamilton double ray.
It is worth mentioning that an uncountable graph cannot contain a Hamilton
circle. To illustrate, let C be a Hamilton circle of graph I'. Since C' is homeo-
morphic to S', we can assign to every edge of C' a rational number. Thus we can
conclude that V(C) is countable and so T is countable. Hence in this paper, we
assume that all groups are countable. In addition we will only consider groups
with locally finite Cayley graphs in this paper so we assume that all generating
sets S will be finite ]

3 Hamilton circle

In this section we prove sufficient conditions for the existence of Hamilton circles
in Cayley graphs. In Section we take a look at abelian groups. Section [3.2
contains basic lemmas and structure theorems used to prove our main results
which we prove in the Section [3.3

3.1 Abelian Groups

In the following we will examine abelian groups as a simple starting point for
studying Hamilton circles in infinite Cayley graphs. Our main goal in this
section is to extend a well-known theorem of Nash-Williams from one-ended
abelian groups to two ended abelian groups by a simple combinatorial argument.
First, we cite a known result for finite abelian groups.

Lemma 3.1.1. [19, Corollary 3.2] Let G be a finite abelian group with at least
three elements. Then any Cayley graph of G has a Hamilton cycle.

In the following we extend the previously mentioned theorem of Nash-Williams
from finitely one-ended abelian groups to the maximal set of finitely generated
abelian groups. For that we first state the theorem of Nash-Williams.

2For not locally finite graphs the Freudenthal compactification, also called Vrop, of a
graph I is less useful as the space |I'| might not be Hausdorf, which would be nice property
to have. One might consider different topologies like ETOP or MTOP for instead of VTOP for
non locally finite I'.



Theorem 3.1.2. [16, Theorem 1] Let G be a finitely generated abelian group
with exactly one end. Then any Cayley graph of G has a Hamilton circle.

It is obvious that the maximal class of groups to extend Theorem [3.1.2
to cannot contain I'(Z,{£1}), as this it cannot contain a Hamilton circle. In
Theorem we prove that this is the only exception.

Theorem 3.1.3. Let G be an infinite finitely generated abelian group. Then
any Cayley graph of G has a Hamilton circle except T'(Z,{1}).

Proof. By the fundamental theorem of finitely generated abelian groups [I8
5.4.2], one can see that G = Z"® Gy where Gy is the torsion part of G and n € N.
It follows from [I7] lemma 5.6] that the number of ends of Z™ and G are equal.
We know that the number of ends of Z" is one if n > 2 and two if n = 1. By
Theorem we are done if n > 2. So we can assume that G has exactly two
ends.

Now suppose that S = {s1,...,ss} generates G. Without loss generality
assume that the order of s; is infinite. Let 7 be the smallest natural number
such that s5™ € (s1). Since the rank of G is one, we can conclude that {s, s2}
are dependent and thus such an i exists. In the following we define a sequence
of double rays. We start with the double ray Ry = [s7*]V1[s1]N. Now we replace
every other edge of R; by a path to obtain a double ray spanning (si, s2). The
edge 1s; will be replaced by the path [sa]*[s1][s5']°. We obtain the following
double ray:

Ry = -+ [so] ~"[s7 " [s2) [s7 ]1[s2) [s1][s5 ] [s1] - - -

Note that Ry spans (s1, s2). We will now repeat this kind of construction for
additional generators. For simplicity we denote Ro by [...,y—2,y—1]1[y1,¥2,- -]
with yx € {s1,s2}% for every k € Z\ {0}. As above let j € N be minimal such
that 57" € (s1,52). We now define the double ray

Ry = -+~ [s5 'V [y-al[s]ly—1]1[s3][yals5 'V [y - -
We now repeat the process until we have defined the double ray R,_1, say
Rg_l = [ .. ,x_g,x_l]l[xl,x2, .. ]

with @y, € {s1,...,50_1}F for every k € Z\ {0}. Now let u be the smallest

natural number such that s}‘“ € (s1,...,8¢-1). Now, put

(RN P U PN P P [ U P P E P O

and
Pr=[..,x 2,z 1]sy[x1,22,.. ]
It is not hard to see that P; U Py is a Hamilton circle of I'(G, S). O

Remark 3.1.4. One can prove Theorem by same the arguments used in
the above proof of Theorem [3.1.3]



3.2 Structure Tools

In this section we assemble all the most basic tools to prove our main results.
The our most important tools are Lemma and Lemma [3.2.2 In both
Lemmas we prove that a given graph I' contains a Hamilton circle if it admits
a partition of its vertex set into infinitely many finite sets X;,i € Z, all of the
same size which contain some special cycle and such that I' connects these cycles

in a useful way, see Lemma and for details.

Lemma 3.2.1. Let I be a graph that admits a partition of its vertex set into
finite sets X;, i € Z, fulfilling the following conditions:

(i) T[X;] contains a Hamilton cycle C; or T'[X;] is isomorphic to K.
(ii) For each i € Z there is a perfect matching between X; and X;41.

(ili) There is a k € N such that for alli,j € Z with |i — j| > k there is no edge
in I' between X; and X;.

Then I' has a Hamilton circle.

Proof. By (i) we know that each X; is connected and so we conclude from the
structure given by (ii) and (iii) that T has exactly two ends. In addition note
that |X;| = |Xj| for all 4,5 € Z. First we assume that I'[X;] is just a K. It
follows directly that I' is spanned by the double ladder, which is well-known to
contain a Hamilton circle. As this double ladder shares its ends with I', this
Hamilton circle is also a Hamilton circle of T'.

Now we assume that |X;| > 3. Fix an orientation of each C;. The goal is to
find two disjoint spanning doubles rays in I'. We first define two disjoint rays
belonging to same end, say for all the X; with ¢ > 1. Pick two vertices u; and w;
in X;. For Ry we start with u; and move along C; in the fixed orientation of Cy
till the next vertex on C; would be w;, we then instead of moving along we
move by the given matching edge to X5. We take this to be a the initial part
of R;. We do the analog for Ry by starting with w; and moving also along C;
in the fixed orientation till the next vertex would be uy, then move to X5. We
repeat the process of starting with some X; in two vertices u; and w;, where u;
is the first vertex of R; on X; and w; the analog for Rs. We follow along the
fixed orientation on Cj till the next vertex would be wu; or w;, respectively. Then
we move to X;y1 by the giving matching edges. One can easily see that each
vertex of X; for ¢« > 1 is contained exactly either in R; or Ry. By moving
from u; and w; to Xy by the matching edges and then using the same process
but moving from X; to X;_; extents the rays R; and Ry into two double rays.
Obviously those double rays are spanning and disjoint. As I' has exactly two
ends it remains to show that R; and Rs have a tail in each end. By (ii) there
is a k such that there is no edge between any X; and X; with |i — j| > k. The
union Ufif X;, £ € Z, separates I" into two components such that R; has a tail
in each component, which is sufficient. O

Next we prove a slightly different version of Lemma In this version we
split each X; into any upper and lower part, X?‘ and X, , and assume that we
only find a perfect matching between upper and lower parts of adjacent partition
classes, see Lemma for details.



Lemma 3.2.2. Let I be a graph that admits a partition of its vertex set into
finite sets X;,i € Z with | X;| > 4 fulfilling the following conditions:

() Xi=X}UX;, such that X; N X, =0 and |X;| = | X |

(ii) T[X;] contains an Hamilton cycle C; which is alternating between X,
and X"

(iii) For each i € Z there is a perfect matching between X;r and X .

(iv) There is a k € N such that for all i,j € Z with |i — j| > k there is no edge
in I' between X; and X;.

Then I' has a Hamilton circle.

The proof of Lemma[3.2.2]is very closely related to the proof of Lemma|3.2.1
We still give the complete proof for completeness.

Proof. By (i) we know that each X; is connected and so we conclude from the
structure given by (ii) and (iii) that T' has exactly two ends. In addition note
that |X;| = |X;| for all 4, j € Z.

Fix an orientation of each C;. The goal is to find two disjoint spanning
doubles rays in I'. We first define two disjoint rays belonging to the same end,
say for all the X; with ¢ > 0. Pick two vertices u; and w; in X; . For Ry we
start with u; and move along C; in the fixed orientation of C; till the next
vertex on C, then instead of moving along C; we move to X5 by the given
matching edge. Note that as w; is in X; and because each C; is alternating
between X;” and X;r this is possible. We take this to be a the initial part of R;.
We do the analog for Ry by starting with w; and moving also along C in the
fixed orientation till the next vertex would be uy, then move to X5. We repeat
the process of starting with some X; in two vertices u; and w;, where u; is the
first vertex of R; on X; and w; the analog for Ry. We follow along the fixed
orientation on Cj; till the next vertex would be w; or w;, respectively. Then
we move to X;y1 by the giving matching edges. One can easily see that each
vertex of X; for ¢« > 1 is contained exactly either in R; or Ry. By moving
from w; and w; to XS' by the matching edges and then using the same process
but moving from X, to X;r_ , extents the rays R; and Ry into two double rays.
Obviously those double rays are spanning and disjoint. As I' has exactly two
ends it remains to show that R; and Ry have a tail in each end. By (ii) there

is a k such that there is no edge between any X; and X; with |i — j| > k the
union Ufizk X;, | € Z separates a I' into two components such that R; has a

tail in each component, which is sufficient. O

Remark 3.2.3. It is easy to see that one can find a Hamilton double ray instead
of a Hamilton circle in Lemma [3:2.1] and Lemma[3:2.2] Instead of starting with
two wvertices and following in the given orientation to define the two double rays,
one just starts in a single vertex and follows the same orientation.

The following lemma is one of our main tools in proving the existence of
Hamilton circles in Cayley graphs. It is important to note that the restriction,
that SN H = ), which looks very harsh at first glance, will not be as restrictive

3Exactly every other element of C; is contained in X, .



in the later parts of this paper. In most cases we can turn the case SN H # ()
into the case SN H = () by taking an appropriate quotient.

Lemma 3.2.4. Let G = (S) and G = (S) be finite groups with non-trivial
subgroups H = H of indices two such that SN H = () and such that T'(G,S)
contains a Hamilton cycle. Then the following statements are true.

(i) D(G #5 G, S U S) has a Hamilton circle.

(i) T(G #5 G, S U S) has a Hamilton double ray.

To prove Lemma we start by finding some general structure given by
our assumptions. This structure will make it possible to use Lemma and
Remark to prove the statements (i) and (ii).

Proof. First we define I':='(G sz G, SUS). Let s € S\ H and let §bein S\ H.
By our assumptions I'(G, S) contains a Hamilton cycle, say Co = 1[cq, ..., cg]. It
follows from S N H = () that Cj is alternating between H and the right coset Hs.
For each ¢ € Z we now define the graph I';.

For i > 0 we define T; :=T[H (s3 iy H(s3 is]
and for i < —1 we define T; :=T[H3(s3) "' U H(3s) ]

By our assumptions we know that Cy is a Hamilton cycle of I'y. We now define
Hamilton cycles of I'; for all i # 0.

For i > 1we define C; :=(s3)%[cy, ..., ci]
and for i < —1 we define C; :=(55) “[c1, . .., cx].

To show that C; is a Hamilton cycle of I'; it is enough to show that C; is a cycle
and that C; contains no vertex outside of I';, because all cosets of H have the
same size and because Cy is a Hamilton cycle of I'y = I'(G, 5).

For ¢ > 1 we first show that C; is a cycle. It follows directly from the
fact that Cy is a cycle that in I" each C; is closedﬁ Assume for a contraction
that (s3)%co - e = (ss ico---co for some j < £. This contracts that Cy is a
cycle as it is equivalent to 1 = cjq1 -+ - cq.

It remains to show that every vertex of Cj; is contained in I';. Since H is
a normal subgroup of both G and G, the elements s and s commute with H.
As each vertex v:=cg...c; is contained in either H or Hs we can conclude
that (s3)'v € (s5)°H = H(s5)" or (s5)'v € (s3)"Hs = H(s5)'s.

In the following we give some easy observations on the structure of the C;’s.
First note that C; N C; = 0 for i # j and also that the union of all C;’s contains
all the vertices of I'. In addition note that each C; is alternating between two
copies of H as Cy was alternating between cosets of I'y. Finally note that by
the structure of I" there is no edge between any I'; and I'; with |i —j| > 2in T.

By the structure of T for i > 0 we get a perfect matching between C;NH (s5)%s
and C;41 N H(s3)™™! by 3.

By an analog argument one can show that for i < 0 we get a similar structure
and the desired perfect matchings.

The statement (i) now follows by Lemma[3.2.2} Analog statement (ii) follows

by Remark [3:2.3] O

4T contains the edge between the image of ¢; and ¢, for each C;.




We now recall two known statements about Hamilton cycles on finite groups,
which we then will first combine and finally generalize to infinite groups. For
that let us first recall some definitions. A group G is called Dedekind, if every
subgroup of G is normal in G. If a Dedekind groups G is also non-abelian, it is
called a Hamilton group.

Lemma 3.2.5. [B] Any Cayley graph of a Hamilton group G has a Hamilton
cycle.

In addition we know that all finite abelian groups also contain Hamilton
cycles by Lemma In the following remark we combine these two facts.

Remark 3.2.6. Any Cayley graph of a finite Dedekind group of order at least
three contains a Hamilton cycle.

3.3 Main Results

In this section we prove our main results. For that let us recall that by Theo-
rem we know that there every two ended group either a free product with
amalgamation over a finite subgroup of index two or an HNN-extension over
a finite subgroup. Now we prove our first main result, Thereom which
deals with the first type of groups. To be more precise we use Remark
to prove that the free product of a Dedekind group with a second group with
amalgamation over the subgroup of index two in both of those groups contains
a Hamilton circle.

Theorem 3.3.1. Let G = (S) and G = (S) be two finite groups with non-
trivial subgroups H = H of indices two and such that G is a Dedekind group.
Then T'(G g G, S U S) has a Hamilton circle.

Proof. First, it follows from Remark that T'(G, S) has a Hamilton cycle.
If all generators of S = {s1,...,s,} lie outside H, then Lemma completes
the proof. So let s, € S\ H and let s € §\ H. Suppose that S":={s1,...,8;}
is a maximal set of generators of S contained in H and set L := (S’). First
note that L is a normal subgroup of G. We now have two cases, either H = L
or L # H. We may assume that H # L _as otherwise we can find a Hamil-
ton circle of I'(G g G, S U S) by Lemma as H is a Dedekind group and
thus T'(H, S’) contains a Hamilton cycle. Because L C H and H = H we con-
clude that there is a subgroup of H that is corresponding to L, call this L.
Let A be the Cayley graph of the group G/L *g,G/L with the generating

set SUS, where S and S the corresponding generating sets of G /L and G / E,
respectively. Note that every generator of the quotient group G/L lies outside
of H/L. Hence it follows from Lemma that we can find a Hamilton double
ray in A, say R. Now we are going to use R and construct a Hamilton circle
for T:=T(G *yg G, S US). Since L is a subgroup of H, we can find a Hamilton
cycle in the induced subgroup of L, i.e. I'(L, S"). We denote this Hamilton cycle
in I'(L,8") by C = [z1,...,2,]. We claim that the induced subgraph of any
coset of L of G +7G contains a Hamilton cycle. Let Lx be an arbitrary coset
of G xgG. If we start with  and move along the edges given by C, then we
obtain a cycle. We will show that this cycle lies in Lz. Since L is a normal sub-
group of both G and G it implies that L is a normal subgroup of Gy G. Since L



is normal, the element 2 commutates with the elements of L and so z[C] lies
in Lz and the claim is proved. It is important to notice that R gives a prefect
mating between each two successive cosets. Thus we are ready to invoke the
Lemma and this completes the proof. O

The following Theorem proves that the second type of two ended groups
also contains a Hamilton circle, given some conditions.

Remark 3.3.2. Let us have a closer look at an HNN extension of a finite
group C. Let C = (S| R) be a finite group. It is important to notice that every
automorphism ¢: C' — C gives us an HNN eztension G = C xc. In particular
every such HNN extension comes from an automorphism ¢: C — C. There-
fore C is a normal subgroup of G with the quotient Z, as the presentation of
HNN extension G = C x¢ s

(S,t| R, t tct = p(c) Ve € O).

Hence G can be expressed by a semidirect product C' x Z which is induced by ¢.
To summarize; every two ended group with a structure of HNN extension is a
semidirect product of a finite group with the infinite cyclic group.

Theorem 3.3.3. Let G = (HxF,XUY) with F =Z = (Y) and H = (X) and
such that H is finite and H contains a Hamilton cycle. Then G has a Hamilton
circle.

Proof. Let C = [eq,...,¢:] be a Hamilton cycle in I'(H, X). We now make a
case study about the size of Y.

Case I : If |Y| = 1, then FF = Z = (y). Since H is a normal subgroup of G,
it follows that gH = Hg for each g € GG. Thus the vertices of the set C'g form
a cycle for every g € G. Let C, be the cycle of Hg for all g € Z, and let C be
the set of all those cycles. We show that for every pair of g,h € Z we either
have Cj, NC, = 0 or C}, = C,y. Suppose that C, N Cj, # 0. This means that

iy’ = ¢y
& c}lci =y,
The order of the left hand side is finite while the order of the right hand side
is infinite. Thus we conclude that y"~9 = 1 which in turn yields that g = h
thus we get Cy = C),. We claim that every vertex is contained in C. Suppose
that g € G. Since G = H x Z, we deduce that G = HZ. In other words, there is
a natural number ¢ and an h € Z such that g = ¢;h and so g lies in the cycle Cf,.
These conditions now allow the application of Lemma [3.2.1] which concludes
this case.

Case II : Assume that [Y'| > 2. By Theorem [3.1.3]there are two disjoint double
rays

Ri=[..,z_0,x_1]1l[z1,22,...]
and

Ra=[..,y-2,y-1z[y1, 92, .. ]

where x;,y;,x € Y+ such that the vertices of Ry U Ro cover all elements Z.
Since H is a normal subgroup of G, we can conclude that gH = Hg. Thus the

10



vertices of the set gC form a cycle for every g € GG. Now consider the double
rays

P1 E [CE_QHCl, e ,ct_ﬂ[s_l]l[cl, N ,ct_l][:nl]][cl, .. .,Ct_l] e

and

P2 = [yfg][cl, ey thl][yfl],’b[ch e ,Ct,ﬂ[ylﬂ[cl, ey thl] s

For easier notation we define a:=c; ---c;—1. We claim that P, N P, = (. There
are 4 possible cases such intersections. We only consider this one case, as the
others are analog. So assume to the contrary

l'.ayl...ayel.cl...ce/l:axl...a’x£2.cl...cel2'

Since H is a normal subgroup of G, for every ¢ € G we have ag = gh for
some h € H. It follows that
TaYL Qe CLe ey = ATL ATy O Oy
Sxoyryghoeey :x1~~x52h'~cl-~0% for some h,h' ¢ H
Sy -y h=x1--x4,h for some h,h' € H
o= (xl...xb)*lm.yl...wl =hhp1

The left side of this equation again has finite order, but the right side has infinite
order. It follows that

xyp -y =1

xy1~~yj::£1...xi

(x1...24)

But this contradicts our assumption that R, and R, were disjoint. Therefore,
as V(P1UP2) =V(I'(G,X UY)), the double rays P; and P, form the desired
Hamilton circle. O

4 Multiended groups

In this section we give a few insights into the problem of finding Hamilton circles
in groups with more than two ends, as well as showing a counter example for
Problem [I} We call a group to be a multiended group if is has more than two
ends. In 1993 Diestel, Jung and Moller [6] proved that any transitive graph
with more than two ends has infinitely many endaﬂ and as all Cayley graphs are
transitive it follows that the number of ends of any group is either zero, one,
two or infinite. This yields completely new challenges for finding a Hamilton
circle in groups with more than two ends. One famous example to illustrate
the problems of finding a Hamilton circles in an infinite graph with infinitely
many ends is the Wild Circle [, Figure 8.5.1]. Thus studying graph with more
than two ends to find Hamilton circles is more complicated than just restricting
one-self to two-ended groups.

5In this case the number of ends is uncountably infinite.
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4.1 Disprove Problem 1

We now give an example of an infinite Cayley graph that disproves Prob-
lem Define Gl = G2 = Z3 X ZQ. Let T':= F(Gl *Z2G2)- Let G1 = <CL, b>
and G2 = (a,c¢) where the order of a is two and the orders of b and ¢, re-
spectively, are three. In the following we show that the assertion of Problem
holds for T" and we show that |I'| does not contain a Hamilton circle.

In the following we will show that I" does not contain a Hamilton circle. For
that we use the following well-known lemma and theorem.

Lemma 4.1.1. [4, Lemma 8.5.5] IfT" is a locally finite connected graph, then a
standard subspacelﬂ of [T is topologically connected (equivalently: arc-connected)
if and only if it contains an edge from every finite cut of I' of which it meets
both sides.

Theorem 4.1.2. [5, Theorem 2.5] The following statements are equivalent for
sets D C E(T):

(i) D is a sum of circuits in |T|.
(ii) Ewery vertex and every end has even degree in D.

(iii) D meets every finite cut in an even number of edges.

Applying Theorem it is enough to show that there is no set D C E(T")
that meets every finite cut in an even number and every vertex twice. By using
Lemma, we can further conclude that, because circles are arc-connected,
that such a D would have to meet every finite cut in at least one edge.

We now assume for a contraction that there is a Hamilton circle in I, so we
assume that there is a D C F(I") that meets every finite cut in even and at least
one edge, and induces degree two at every vertex. In the following we will now
study two cases. In each case we will consider a few finite cuts in I" that show
that such a D cannot exist.

Figures [1| and [2| display induced subgraphs of I'. The relevant cuts in those
figures are the edges that cross the thick lines. The cases we study are that D
contains the dashed edges of the appropriate figure corresponding to the case,
see Figures [1] and For easier reference we call the two larger vertices the
central vertices.

Case 1: We now consider Figure [T} so we assume that the edges from the
central vertices into the ‘upper’ side are one going to the left and the other to
the right. First we note that the cut F' ensures that the curvy edge between
the central vertices is not contained in D. Also note that F' ensures that the
remaining two edges leaving the central vertices must go to the ‘lower’ side of
Figure [II As the cuts B and C' have to meet an even number of edges of D
we may, due to symmetry, assume that the dotted edge is also contained in D.
This yields the contraction that the cut A now cannot meet any edge of D.

Case 2: This case is very analog to Case 1. Again we may assume that
the there are two edges leaving the central into the ‘upper’ and the ‘lower’ side,
each. The cut C ensures that D must contain both dotted edges. But this again
yields the contraction that A cannot meet any edge in D.

6 A standard subspace of |I'| is a subspace of |T'| that is a closure of a subgraph of T.
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Figure 2: Case 2

It remains to show that G #z, G2 cannot be obtained as a free product with
amalgamation over subgroups of size k of more than k groups. If Gy *z,G2
were fulfilling the premise of Problem I] then there would be a finite W C V/(I'),
say |W| = k, such that T' \ W has more than k components.

We will now use induction on the size of W. For a contraction we assume
that such a set W exists. For that we now introduce some notation to make the
following arguments easier. In the following we will consider each group element
as its corresponding vertex in I'. As I is transitive we may assume that 1 is
contained in W. Furthermore we may even assume that no vertex which starts
with ¢ is contained in W. Let X; be the set of vertices in I' that have distance
exactly ¢ from {0,a}. We set W, : =X, NW. For x; € W, let z; be its neighbor
in X;_1, note that this is unique. For a vertex = € X, let T be the neighbor of x
in X; which is not za, note this will always be either xb or zc. For a set Y of
vertices of I" let C'y be the number of components of I' \ Y.

As T' is obviously 2-connected the induction basis for [W| =0 or [W| =1
holds trivially.
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We now assume that |W| = k and that for each W’ with [W’| < |W| -1 we
know that Cy» < [W/|. In our argument we will remove sets of vertices of size [
from W while decreasing Cyy by at most .

Let z € W be a vertex with the maximum distance to {1,a} inT'. Say z € X,
and define W; :=W N X;.

First we suppose that xa ¢ W. It is easy to see that removing x from W
does not change Cyy. So we may assume that for every x € W; the vertex xa is
also in W.

We will now study all the possible cases for x~ and z~a.

Case 1: 27,27 a ¢ W: When we remove x and za from W change Cy by at most 1
but reduced W by two elements, so we can assume this never happens.

Case 2: z7,x~a € W: When we remove = and xa from W we again decreased Cy,
by at most one while reducing |W| by two, so we again assume that this
never happens.

Case 3: 2= € W,xz"a ¢ W: By removing z,za from W may reduce that Cy is
reduced by one or two. But as we have just decreased |W| by two both of
these cases are fine and we are done.

4.2 Closing Words

We still believe that it should be possible to find a condition on the size of
the subgroup H to amalgamate over relative to the index of H in G; and G4
such that the free product with amalgamation of G; and G5 over H contains
a Hamilton circle for the standard generating set. In addition it might be
necessary to require some condition on the group Gi/H. We conjecture the
following:

Conjecture 1. There exists a function f : N — N such that if Gy = (S1)
and Go = (Sa) are finite groups with following properties:

(i) [Gh:H]| =k and [Gy: H| =2.
(i) [H[ = f(k).
(iii) Fach subgroup of H is normal in G1 and Gs.
(iv) I(G1/H,S/H) contains a Hamilton cycle.

Then T'(G1 #*gGa, S1 U S3) contains a Hamilton circle.
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