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BIRATIONALLY ISOTRIVIAL FIBER SPACES

FEDOR BOGOMOLOV1, CHRISTIAN BÖHNING2,
AND HANS-CHRISTIAN GRAF VON BOTHMER

Abstract. We prove that a family of varieties is birationally isotrivial
if all the fibers are birational to each other.

1. Statement of the theorem

Let k be an arbitrary algebraically closed field. We will have to assume that k
has infinite transcendence degree over the prime field, hence is uncountable.
All varieties, morphisms and rational maps are defined over k. We want to
prove the following theorem.

Theorem 1.1. Let B be an irreducible algebraic variety and let

X

f

��

�

� ι
// B × Pt

pr1
{{✇✇
✇✇
✇✇
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✇

B

be a projective flat family of irreducible varieties Xb, b ∈ B. Assume that
all fibers Xb (b a closed point of B) are birational to each other. Let X0 be
a projective model of the fibers, contained in some Ps. Then the family is
birationally isotrivial, by which we mean that, equivalently,

• there exists a dense open subset B0 ⊂ B, a finite cover B′ //B0

and a commutative diagram

X ×B B′ =: XB′

fB′

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆

Φ
//❴❴❴❴❴❴❴ B′ ×X0
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✈✈
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✈

B′

with Φ birational;

1991 Mathematics Subject Classification. 14E05, 14E07.
Key words and phrases. fiber spaces, birational automorphism groups, Cremona

groups, rational varieties.
1 Supported by NSF grant DMS- 1001662; the financial support from the Government

of the Russian Federation within the framework of the implementation of the 5-100 Pro-
gramme Roadmap of the National Research University Higher School of Economics, AG
Laboratory is acknowledged.

2 Supported by Heisenberg-Stipendium BO 3699/1-1 and BO 3699/1-2 of the DFG
(German Research Foundation).

1

http://arxiv.org/abs/1405.1389v2
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• or, in other words, denoting by K = k(B) the function field of B, the
geometric generic fiber X ×B K is birational, over K, to X0 ×k K.
Here K is the separable closure.

Remark 1.2. Note that Theorem 1.1 does not claim that for any given
b ∈ B we can find a Φ which is defined in a neighborhood of the generic
point of the fiber Xb. It just says that this is true for a general point of B.

The projectivity of the family in Theorem 1.1 is not essential:

Corollary 1.3. Let g : U //B be a family of algebraic varieties such that all
the fibers are birational to each other and B is integral. Then g is birationally
isotrivial.

Proof. One can assume g proper, and then use Chow’s lemma: g is domi-
nated by a projective morphism g′ : U ′ //B of B-schemes, and the total
spaces are isomorphic on open dense subsets. Since B is integral, g′ is gener-
ically flat and we can use Theorem 1.1. �

Theorem 1.1 may be seen as the birational analogue of the local triviality
theorem of Fischer and Grauert [FG65], or, in the algebraic case, the state-
ment that a family of projective schemes is locally isotrivial if all fibers are
isomorphic (see [Sernesi], Prop. 2.6.10). Also, it points to another impor-
tant aspect of the classification of finite subgroups of the Cremona groups as
birational monodromy groups of fibrations with rational fibres. It is possible
that Theorem 1.1 is well known to some experts, but the ones we consulted
could not tell us the proof nor say if it was a valid statement, and we could
not find a proof in the literature.
We will give two proofs of Theorem 1.1: the first in Section 2 gives ad-
ditional insight into the structure of certain parameter spaces of rational
maps. Moreover, working over C, it also yields the result under the weaker
hypothesis that B is just an analytic space provided one imposes certain
extra conditions on the family, e.g. if the loci in B over which Xb remains
constant as a subvariety of Pt, are equidimensional; see Remark 2.8.
The second proof, in Section 3, works only for an algebraic base.
Though the second proof is much shorter, it is less illuminating, less geomet-
ric and does not develop structural results about spaces of rational maps as
the first one does, which are very useful elsewhere. So we felt that it would
be good to include both. We end with some remarks and open problems.
We would like to thank the very helpful referee who suggested a way of
removing the dependency on the Eisenbud-Goto conjecture of our first proof
of Theorem 1.1. Lemma 2.3 and its application in the proof of Proposition
2.4 is due to her or him.

2. First proof

We start by proving that certain parameter spaces for birational maps carry
natural structures of algebraic varieties. Note that there are some subtleties
here.
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Remark 2.1. We recall several facts from [B-F13]. We can introduce the
Zariski topology in the set Bir≤d(P

n) of birational self-maps of Pn of degree
≤ d as follows: let

Hd ⊂ P

(

(

Symd(kn+1)∨
)n+1

)

be the locally closed subset of tuples (h0, . . . , hn) of homogeneous polynomi-
als hi of degree d on Pn that give a birational self-map. Then there exists a
natural surjection Hd

// //Bir≤d(P
n), and the quotient topology of the Zariski

topology on Hd is called the Zariski topology on Bir≤d(P
n). This has good

functorial properties, e.g. a set F ⊂ Bir≤d(P
n) is closed if and only if for

any family of birational self-maps of Pn parametrized by a variety A, the
preimage of F under the induced map A //Bir≤d(P

n) is closed. But, due
to the funny ways birational maps can degenerate to ones of lower degree,
Bir≤d(P

n) cannot even be homeomorphic to an algebraic variety; more pre-
cisely, every point p ∈ Bir≤d(P

n) is an attractive point for a suitable closed
irreducible subset T ∋ p, by which we mean that p is contained in every
infinite closed subset F ⊂ T , and T is such that it contains infinite proper
closed subsets.
The following example of §3 of [B-F13] is useful to keep in mind (it is the
reason for all these phenomena): define a 2-parameter family in Bir≤2(P

n)
by the formula

(X0(aX2 + cX0) : X1(aX2 + bX0) : X2(aX2 + cX0) : · · · : Xn(aX2 + cX0))

or, in affine coordinates xi = Xi/X0

(x1, . . . , xn)
✤ //

(

x1 ·
ax2 + b

ax2 + c
, x2, . . . , xn

)

where (a : b : c) ∈ P2\{(0 : 1 : 0), (0 : 0 : 1)} =: V̂ . The image V of V̂ in

Bir≤2(P
n) is closed, but the line L ⊂ V̂ given by b = c is contracted to the

identity. The topology on V is the quotient topology of the Zariski topology
on V̂ , so the identity is attractive for V .

Definition 2.2. Let S ⊂ Ps = P(ks+1) be an irreducible projective variety
(the “source”). Let x0, . . . , xs be homogeneous coordinates in Ps. We will
always assume that S is not contained in any coordinate hyperplane. Let Pt

be another projective space (the “target”) with homogeneous coordinates
y0, . . . , yt.

(1) We write

Pd(x) = P

(

(

Symd(ks+1)∨
)t+1

)

for the projective space of all (t+1)-tuples p = (p0, . . . , pt) of homo-
geneous polynomials pi of degree d in the x0, . . . , xs. Similarly, we
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denote by

Pd′(y) = P

(

(

Symd′(kt+1)∨
)s+1

)

the set of (s+1)-tuples q = (q0, . . . , qs) of homogeneous polynomials

qj of degree d′ in the y0, . . . , yt.
(2) Define the subset

Ratd(S,P
t) ⊂ Pd(x)

to be the set of those p which have the following properties:
(a) not all the pi are simultaneously contained in the homogeneous

ideal I(S) ⊂ k[x0, . . . , xs].
(b) the rational map (well-defined by (a))

ϕp :S 99K Pt

(x0 : · · · : xs)
✤ // (p0(x0, . . . , xs) : · · · : pt(x0, . . . , xs))

maps S dominantly to an image T := ϕp(S) ⊂ Pt of dimension
dimT = dimS.

(3) Fix moreover a positive integer d′. We denote by

Bird,d′(S,P
t) ⊂ Ratd(S,P

t) ⊂ Pd(x)

the subset of those p which have the following additional property:
(c) there exists q ∈ Pd′(y) such that

ϕq :T 99K Ps

(y0 : · · · : yt)
✤ // (q0(y0, . . . , yt) : · · · : qs(y0, . . . , yt))

is a well-defined rational map on T and inverse to ϕp.

In other words, ϕp is birational with inverse given by degree d′ poly-

nomials. Let Bird(S,P
t) be the union, over d′, of all Bird,d′(S,P

t).

The following Lemma, its proof and its application in the proof of Proposi-
tion 2.4 were kindly suggested by the referee. Our initial proof was condi-
tional on the Eisenbud-Goto conjecture.

Lemma 2.3. Let p : Z //Ω be a morphism of varieties over an algebraically
closed field k and let W ⊂ Z be a constructible subset. Then there is a finite
collection of locally closed subsets Ωi ⊂ Ω, 1 ≤ i ≤ N , and closed subsets
Yi ⊂ p−1(Ωi) such that Ω =

⋃N
i=1 Ωi and for any i, 1 ≤ i ≤ N , and any

point ω ∈ Ωi, the fiber (Yi)ω is equal to the closure of Wω in Zω.

Proof. Using the fact that taking the closure of sets commutes with finite
unions, one reduces the Lemma to the case when Z and Ω are irreducible, p
is dominant, and W is an open dense subset in Z. Moreover, by Noetherian
induction, it is enough to show that there is a non-empty open subset U ⊂ Ω
such that for any point ω ∈ U , the fiber Wω is dense in Zω.
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First assume that the geometric generic fiber of p is irreducible. Then there
is a non-empty open subset U ⊂ Ω such that for any point ω ∈ U , both fibers
Zω and Wω are irreducible and have the same dimension dim(Z)− dim(Ω).
Hence Wω is dense in Zω (actually, this is the only case that appears in the
application below).
Secondly assume that p is finite (and surjective). Then the closed comple-
ment C := Z\W does not dominate Ω, otherwise Z would not be irreducible.
Therefore we can put U := Ω\p(C).
Finally, for an arbitrary p as above, changing Ω by a non-empty open subset,
we can decompose p into a composition Z

q
− // Ω′ r− // Ω, where q has an

irreducible geometric generic fiber and r is finite. With this aim, consider a
separable closure K of k(Ω) in k(Z). Since K is finitely generated over k(Ω),
changing Ω by a non-empty open subset, we can achieve that K is generated
by functions that are regular on Z. The sheaf of OΩ-algebras generated by
them gives us Ω′. �

Proposition 2.4. There are countably many locally closed subvarieties

Ratd,i(S,P
t) ⊂ Pd(x), i ∈ I,

and flat projective families

Td,i(S,P
t) ⊂ Pt × Ratd,i(S,P

t) //Ratd,i(S,P
t)

with

Ratd(S,P
t) =

⋃

i∈I

Ratd,i(S,P
t)

such that the closure of the fiber (Td,i(S,P
t))p over p ∈ Ratd(S,P

t) is equal
to the image T of ϕp.

Proof. The condition that not all of the pi in p are contained in I(S) defines
an open subset Ω1 ⊂ Pd(x). Moreover, we can ensure a priori that the
dimension of the image of ϕp is equal to dimS by requiring the (equivalent

to dimS = dimT ) condition that the Jacobian matrix of the pi’s is of
maximal rank generically on S, so that S 99K T is generically a covering
map. This defines another open set Ω ⊂ Ω1.
Now apply Lemma 2.3 to this Ω, Z = Pt×Ω, andW equal to the image of the
natural morphism representing the rational S ×Ω 99K Pt ×Ω on its domain
of definition. Applying the Lemma and taking a flattening stratification of
all arising morphisms to locally closed subsets of Ω, we obtain locally closed
subsets Ratd,i(S,P

t) and families Td,i(S,P
t) //Ratd,i(S,P

t) as required. �

We recall the following result of Mumford [Mum66], Chapter 14.

Theorem 2.5. Fix h = h(n) ∈ Q[n] with h(Z) ⊂ Z. Then there exists a
uniform dh such that for each variety T ⊂ Pt with Hilbert polynomial h,
the Hilbert function of T agrees with the Hilbert polynomial of T at places
d ≥ dh and I(T ) is generated by polynomials of degree ≤ dh.
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Proposition 2.6. The subset

Bird,d′,i(S,P
t) := Bird,d′(S,P

t) ∩ Ratd,i(S,P
t)

is closed in Ratd,i(S,P
t), provided d′ = d′(i) ≥ dh for the common Hilbert

polynomial h of the fibers. Hence there are countably many flat projective
families

Td,d′,i(S,P
t) ⊂ Pt × Bird,d′,i(S,P

t) //Bird,d′,i(S,P
t)

with

Bird(S,P
t) =

⋃

i∈I

Bird,d′(i),i(S,P
t)

such that the closure of the fiber (Td,d′,i(S,P
t))p over p ∈ Bird,d′(S,P

t) is
equal to the image T of ϕp.

Proof. Consider the set

Pd,d′,i :=
{

(p, [q]) | p ∈ Ratd,i(S,P
t), [q] ∈ P((Symd′(kt+1)∨/I(T )d′)

s+1), T = ϕp(S)
}

which is a projective bundle over Ratd,i(S,P
t) with fiber over a point p the

projective space of (s + 1)-tuples of homogeneous polynomials of degree d′

modulo those vanishing on the image of the rational map induced by p. Here

we use the constancy of dim I(T )d′ , i.e. we use the condition d′ ≥ dh. We
define a closed subvariety Sd,d′,i of Pd,d′,i by the requirement that for the
pair (p, q) the two by two minors of the matrix

(

q0(p0(x), . . . , pt(x)) . . . qs(p0(x), . . . , pt(x))
x0 . . . xs

)

are all zero modulo the ideal I(S). Clearly this condition is independent
of the lift q of [q] to Pd′(y). If all the polynomials in the first row of the
preceding matrix are nonzero modulo I(S), then p defines a birational map
from S unto its image with inverse induced by q.
In the opposite case, ϕp would contract S into a proper subvariety of T ,

the one defined by {qj = 0}. Here we are using the assumption that S is
contained in no coordinate hyperplane xj = 0 and that the ideal I(S) is
prime. Now contraction is impossible because the dimension of the image
of S is equal to the dimension of S.
The projection

Sd,d′,i
//Ratd,i(S,P

t)

is proper because the projection

Pd,d′,i
//Ratd,i(S,P

t)

is proper. By construction, the set Bird,d′,i(S,P
t) is equal to the image, a

closed subvariety of Ratd,i(S,P
t). �
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Proposition 2.7. Let Hilb0h,Pt be the open subset of the Hilbert scheme

of subschemes Z of Pt with Hilbert polynomial h which are reduced and
irreducible (hence varieties). Let

(Bir −X0)h,Pt ⊂ Hilb0h,Pt

be the subset consisting of those Z which are birational to some fixed model
variety X0 ⊂ Ps. Then there are countably many locally closed subvarieties
Hi ⊂ Hilb0h,Pt such that

(Bir −X0)h,Pt =
⋃

i

Hi.

Proof. This follows immediately from Proposition 2.6. �

Proof. (of Theorem 1.1) We get a morphism

α : B //Hilb0h,Pt

and its image α(B) contains an open subset U of its closure α(B) in Hilb0h,Pt.
Then U is covered by the countable union of the locally closed subvarieties
Hi. The intersection U ∩ Hi is either contained in a proper subvariety
or contains a Zariski dense open subset of U . Hence there is some Hi0

containing an open dense subset U ′ of U . This is the point where we use
that k is uncountable! We also have a natural morphism

β : Bird,d′,i0(X0,P
t) //Hilb0h,Pt

such that the closure of the image of β contains the closure of Hi0 as an
irreducible component. Let

B♯ = α−1(U ′) ⊂ B, β−1(U ′) ⊂ Bird,d′,i0(X0,P
t)

be the indicated open preimages. Shrinking U ′ a little more and passing to
a subvariety, we can assume that there is a B̃ ⊂ β−1(U ′) such that β maps

B̃ unto U ′ and is finite. We get a commutative diagram

B′ := B♯ ×U ′ B̃
α′

//

β′

��

B̃

β

��

B♯ α
// U ′ ⊂ Hilb0h,Pt

Here β′ is finite, and the pull-back of the universal family on Hilb0h,Pt under

β to B̃ is birationally trivial: this is so because by construction the family
over Bird,d′,i0(X0,P

t) is birationally trivial. Pulling this family back via α′

to B′ gives the same thing as pulling back the restriction of the original
family f : XB♯

//B♯ to B′: hence β′ : B′ //B has the properties claimed
in Theorem 1.1. �
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Remark 2.8. Working over C, the preceding proof goes through without
change if the family f : X //B is only over an analytic base B, provided
one imposes the condition that the image α : B //Hilb0h,Pt is analytic (it is
always constructible in the algebraic case, but may be wilder in the analytic
case). For example, it will again be an analytic set if the fibers α−1(α(b))
over points in the image all have the same dimension, and in several other
cases, see the introduction in [Huck71].

3. Second proof

We continue assuming that k has infinite transcendence degree over the
prime field K (and is algebraically closed). The diagram f : X //B (i.e.
all of X, B, f) are defined over a finitely generated extension k0 of K which
is contained in k. Then B has a k0-generic point in the sense of van der
Waerden, i.e. a closed point ξ ∈ B with coordinates in k such that any
polynomial with coefficients in k0 which vanishes at ξ vanishes identically
on B, and such that the residue field κξ is the field k0(B) of rational functions
with coefficients in k0 on B.
Now Xξ is, by hypothesis, birational to X0 over k, which means that, possi-
bly after enlarging k0 by adjoining finitely many elements from k which are
algebraically independent over k0(B), Xξ is birational toX0 over k0(B). But
then the geometric generic fiber of the family f : X //B is also birational,
over k(B), to X0.

4. Open questions

Question 4.1. We finally want to expand on Remark 1.2. Note that Theo-
rem 1.1 says that a family X //B all of whose fibers are birational is bira-
tionally isotrivial, but the trivialization Φ need not be defined in the generic
point of a fiber Xb for a particular b ∈ B. In that respect, it is not the exact
birational analogue of the local triviality theorem of Fischer-Grauert [FG65]
(in the holomorphic setting) asserting that a family of compact complex
manifolds is locally analytically trivial if and only if all the fibers are biholo-
morphic: here the family is locally trivial around every point of the base.
In the algebraic case, the statement is that a family of projective schemes is
locally isotrivial if all fibers are isomorphic (see [Sernesi], Prop. 2.6.10).
On the other hand, if one drops the compactness hypothesis, the Fischer-
Grauert theorem becomes false: for example, if one takes

C := P1 × P1 −
(

{(x, x)|x ∈ P1} ∪ {(x, y) ∈ P1 × P1 | y = a} ∪ {(a, b}
)

for a 6= b in P1 fixed, with projection pr1 : C //P1, then every fiber is
C∗ ≃ P1−(two points), but C is not even topologically locally trivial around
a ∈ P1: a small circle in Ca around (a, b) is homologically trivial in pr−1

1 (U)
for any neighborhood U ∋ a in P1.
In this last example, the family is locally holomorphically trivial around a
general point of the base, but not even topologically locally trivial in points
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of a proper analytic subset. It is thus an interesting open question how the
situation is in the birational set-up: given a family f : X //B with all
fibers birational to each other, could it happen that for some bad points
b ∈ B there is no birational trivialization Φ defined in the generic point of
Xb (analogue of the last example with open fibers), or does such a Φ always
exist (birational analogue of Fischer-Grauert)?

Question 4.2. It seems an interesting question to investigate if Theorem
1.1 remains true if we only assume k algebraically closed. We may also ask:
given a family f : X //B over C which is defined over Q̄ and such that all
fibers over algebraic points in B, i.e. Q̄-valued points, are birational to a
fixed model, is it true that the fibers in a Zariski dense open subset of B(C)
are birational to each other?

Remark 4.3. Concerning Question 4.2, we would like to remark that there
are families of unirational varieties where the birational type is expected to
change on a countable union of subvarieties of the base: e.g. this is expected
to happen for the family of cubic fourfolds where the very general one should
be irrational whereas in a countable union of subvarieties of the parameter
space one can get rational ones. But possibly these are not dense in a way
that would yield a negative answer to Question 4.2.
Let us also remark that if one considers strongly rational varieties, i.e.
smooth varieties X which contain an open subset U isomorphic to an open
subset V ⊂ Pn such that Pn − V has codimension at least 2 in Pn, then
their deformation properties are much better: smooth small deformations of
strongly rational varieties are again strongly rational, [IN03] Thm. 4.5.
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