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Abstract. An important question in extremal graph theory raised by Vera T. Sós asks to
determine for a given integer t ě 3 and a given positive real number δ the asymptotically
supremal edge density ftpδq that an n-vertex graph can have provided it contains neither
a complete graph Kt nor an independent set of size δn.

Building upon recent work of Fox, Loh, and Zhao [The critical window for the classical
Ramsey-Turán problem, Combinatorica 35 (2015), 435–476], we prove that if δ is sufficiently
small (in a sense depending on t), then

ftpδq “

$

&

%

3t´10
3t´4 ` δ ´ δ

2 if t is even,
t´3
t´1 ` δ if t is odd.

§1. Introduction

P. Turán [15] established a new subarea of extremal combinatorics nowadays bearing his
name. In the context of graphs, the fundamental question he proposed is to determine,
for a given positive number n and a given graph F , the maximum number expn, F q of
edges that a graph of order n can have provided that it does not contain F as a subgraph.
Turán himself gave the complete answer if F is a clique, and an asymptotically satisfactory
solution for all graphs F has been obtained by the work of Erdős, Stone, and Simonovits
(see [4,6]). Curiously, the corresponding problem for hypergraphs is wide open, even in the
3-uniform case.

Another branch of combinatorics related to our discussion, called Ramsey theory, was
initiated by F. P. Ramsey [11] and since then it has been developed into a coherent and
successful body of results. A somewhat special yet typical case of Ramsey’s original theorem
asserts that if n is large enough depending on k, then no matter how one colours the edges
of a complete graph of order n using two colours, there will always be a monochromatic
complete subgraph of order k.

Vera T. Sós discovered a beautiful way of combining Ramsey theory with Turán theory
by asking and investigating the following question: Given a positive integer n, a positive
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real number m, and a graph F , what is the maximum number RTpn,m, F q of edges that a
graph G of order n can have if it does not contain F as a subgraph and αpGq ă m, i.e., if
any X Ď V pGq with |X| ě m spans at least one edge?

For example, if m “ n and F has at least one edge, then the condition on inde-
pendent sets becomes vacuous and one recovers Turán’s original problem, i.e., one has
RTpn, n, F q “ expn, F q. On the other hand, if m is very small, then by Ramsey’s theorem
each graph of order n contains either a clique of order vpF q (and hence, in particular, a
subgraph isomorphic to F ) or an independent set of order rms, meaning that the definition
of RTpn,m, F q degenerates to the “maximum of the empty set.” Using a quantitative
version of Ramsey’s theorem, this can be seen to happen, e.g., if m ă n1{vpF q and n is
large. So for fixed n and F the problem of determining RTpn,m, F q is mostly dominated
by Ramsey theoretic phenomena for very small m and by Turán theory for very large m.
If m is of medium size, however, the problem intriguingly combines the flavours of both
areas. For further information on Ramsey-Turán theory the reader is referred to the
comprehensive survey [12] by Simonovits and Sós.

In this article we restrict our attention to the perhaps most classical case that m “ δn

for some small δ ą 0 and F “ Kt is a clique. To eliminate minor fluctuations arising from
small values of n one usually focuses on the Ramsey-Turán density function ft : p0, 1q ÝÑ R

defined by

ftpδq “ lim
nÑ8

RTpn, δn,Ktq

n2{2 .

It is well known and easy to confirm that this limit does indeed exist. Since ft is evidently
a nondecreasing function of δ, a further simplification may be achieved by passing to the
Ramsey-Turán density %pKtq defined by

%pKtq “ lim
δÑ0

ftpδq .

Perhaps surprisingly at first, the difficulty of determining the quantities just introduced
depends significantly on the parity of t. The first case where something happens is t “ 3.
One has RTpn, δn,K3q ď δn2{2 because if a graph G of order n has a vertex x whose degree
is at least δn, then either the neighbourhood of x is independent, which gives αpGq ě δn,
or this neighbourhood spans an edge yz, in which case xyz is a triangle. This simple
observation implies f3pδq ď δ for all δ ą 0. Explicit examples described by Brandt [2] show
that for δ ă 1

3 this bound is optimal (see Proposition 2.1 and also Corollary 2.2 below),
i.e., that we have f3pδq “ δ for all δ P

`

0, 1
3

˘

; in particular, %pK3q “ 0. Concerning larger
odd cliques, Erdős and Sós [5] proved %pK2r`1q “

r´1
r

for all positive integers r, and a
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quantitative version of their argument yields
r ´ 1
r

ď f2r`1pδq ď
r ´ 1
r

` 2δ

for all positive δ.
The first result addressing an even clique was obtained by Szemerédi [13], who proved that

%pK4q ď
1
4 . At that moment it still seemed conceivable that the truth might be %pK4q “ 0.

But a few years later Bollobás and Erdős [1] ruled out this possibility by exhibiting a
remarkable geometric construction demonstrating the optimality of Szemerédi’s bound;
that is they completed the proof of %pK4q “

1
4 . Still later the Ramsey-Turán densities of all

even cliques were determined by Erdős, Hajnal, Sós, and Szemerédi [3], the answer being

%pK2rq “
3r´5
3r´2 for all r ě 2 . (1.1)

The understanding as to how fast f4pδq converges to 1
4 developed as follows. Szemerédi’s

original argument yields

f4pδq ď
1
4 `O

´

`

log log 1
δ

˘´1{2`op1q
¯

.

Conlon and Schacht observed independently in unpublished work that the Frieze-Kannan
regularity lemma from [7] can be used to improve this to

f4pδq ď
1
4 `O

´

`

log 1
δ

˘´1{2
¯

.

Significant further progress is due to Fox, Loh, and Zhao [8], who obtained
1
4 ` δ ´ δ

2
ď f4pδq ď

1
4 ` 3δ (1.2)

for sufficiently small δ and asked
(1 ) how this gap can be narrowed down further
(2 ) and whether comparable results could be proved for larger even cliques and, in

particular, whether f2rpδq “ %pK2rq `Θpδq holds for all r ě 2.
Our main result addresses both questions. Much to our own surprise, it turned out that

at least for δ ! r´1 there is a precise formula for the values of the Ramsey-Turán density
function.

Theorem 1.1. If r ě 2 and δ ! r´1, then f2rpδq “
3r´5
3r´2 ` δ ´ δ

2.

The hard part of this result is the upper bound and we would like to restate it here in
an elementary form, i.e., without talking about the function f2r.

Theorem 1.2. For every integer r ě 2 there exists a real number δ˚ ą 0 such that if δ ď δ˚,
then every graph G on n vertices with

αpGq ă δn and epGq ą
`3r´5

3r´2 ` δ ´ δ
2˘n2

2

contains a K2r.
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Incidentally, such an exact formula does also hold for odd cliques.

Theorem 1.3. If r ě 1 and δ ! r´1, then f2r`1pδq “
r´1
r
` δ.

Organisation. The lower bound constructions establishing that ftpδq has at least the value
claimed in Theorem 1.1 and Theorem 1.3 are given in Section 2. The proof of Theorem 1.2
constitutes the main part of this article and occupies the Sections 3–6. A brief outline of
its main steps becomes more informative as soon as one knows the corresponding extremal
construction, and thus we defer such an overview to the end of Section 2. We conclude by
giving in Section 7 a brief sketch of the proof of the upper bound in Theorem 1.3.

§2. The lower bound

The goal of this section is to verify the lower bounds on ftpδq from Theorem 1.1 and
Theorem 1.3 by means of explicit constructions. To this end, we just need to combine some
results from [2] and [8].

We begin by recapitulating [2, Theorem 2.1]. This statement deals with the set Ω of all
pairs pd, nq of natural numbers for which there exists a triangle-free, d-regular graph on n
vertices with independence number d. Of course, if pd, nq P Ω, then RTpn, d` 1, K3q “

1
2dn

is as large as possible.
A standard blow-up argument shows that if pd, nq P Ω, then all multiples of this pair

belong to Ω as well, that is we have pad, anq P Ω for all a P N. This suggest that rather
than studying Ω itself one may want to focus on the set of quotients

S “
!

d
n

: pd, nq P Ω
)

.

Brandt [2] discovered constructions which show the following.

Proposition 2.1. The set SX
`

0, 1
3

˘

is dense in
`

0, 1
3

˘

. Moreover,
`

0, 7
30

˘

XQ and
`1

4 ,
1
3

˘

XQ

are subsets of S.

The “moreover”-part is not going to be used in the sequel and has been included here
for the readers information only.

Corollary 2.2. For fixed r ě 1 and δ ă 1
3r we have

RTpn, δn,K2r`1q ě
`

r´1
r
` δ ´ op1q

˘

n2

2 .

Proof. Let η ą 0 be given. We need to show that RTpn, δn,K2r`1q ě
`

r´1
r
` δ´ η

˘

n2

2 holds
for all sufficiently large integers n. By Proposition 2.1 there exists a pair pd˚, n˚q P Ω such
that d˚

n˚
P
`

rpδ ´ ηq, rδ
˘

. Now it suffices to show that

RTparn˚, ad˚ ` 1, K2r`1q ě

ˆ

r ´ 1
r

`
d˚
rn˚

˙

parn˚q
2

2 (2.1)
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holds for every a P N. This is because for sufficiently large n we can add at most rn˚
isolated vertices to a graph establishing (2.1), thus obtaining the desired lower bound on
RTpn, δn,K2r`1q.

To prove (2.1) we use pad˚, an˚q P Ω and take a triangle-free, pad˚q-regular graph H

on an˚ vertices with αpHq “ ad˚. Now let V “ V1 Ÿ . . . ŸVr be a disjoint union of r vertex
classes each of which has size an˚, and construct a graph G on V

‚ inducing on each vertex class Vi a graph isomorphic to H,
‚ in which any two vertices from different classes are adjacent.

From K3 Ę H and the box principle it follows that K2r`1 Ę G. Every subset of V which
is independent in G needs to be contained in a single vertex class, whence

αpGq “ αpHq ă ad˚ ` 1 .

Finally, we have

epGq “

ˆ

r

2

˙

pan˚q
2
` repHq “

ˆ

r ´ 1
r

`
d˚
rn˚

˙

parn˚q
2

2 .

Therefore, G has all the properties necessary for witnessing (2.1). �

Let us proceed with essentially extremal examples for even cliques. As mentioned in
the introduction, Bollobás and Erdős [1] found a geometric construction showing that
RTpn, opnq, K4q ě

`1
4 ` op1q

˘

n2

2 . The vertex set of their graph splits into two subsets of
size n

2 inducing triangle-free graphs with opn2q edges. Between those sets, called A and B
from now on, there is a very special quasirandom bipartite graph of density 1

2 ´ op1q.
To aid the readers orientation we remark that the graphs induced by A and B are not

only triangle-free. As a matter of fact, they are “locally bipartite” in the sense of having
rather large odd-girth. In particular, they do not contain cycles of length 5 or 7. Such
properties will also play an important rôle in our proof of the upper bound (see Fact 5.7.2
below).

It is not entirely straightforward to make the asymptotic expressions in the result of
Bollobás and Erdős explicit. The best quantitative analysis we are aware of has been
conducted by Fox, Loh, and Zhao [8, Corollary 8.9], who obtained the following.

Theorem 2.3. If n is sufficiently large and ξ “ 4plog log nq3{2{plog nq1{2, then

RTpn, ξn,K4q ě
`1

8 ´ ξ
˘

n2 .

Let us proceed with a discussion of [8, Theorem 1.7] and the remark thereafter. Suppose
that δ P

`

0, 1
2

˘

is fixed and that n is a sufficiently large and (just for transparency) even
natural number. Let G be a graph on n vertices as obtained by Theorem 2.3. Recall that
there is a partition V pGq “ A ŸB with |A| “ |B| “ n

2 of its vertex set into two subsets not



6 CLARA M. LÜDERS AND CHRISTIAN REIHER

inducing triangles. Let X Ď A and Y Ď B be two random sets of size |X| “ |Y | “ pδ´ ξqn,
and let G˚ be the graph obtained from G by removing all edges incident with X Y Y and
then adding all edges from X to B as well as all edges from Y to A. Surely, G˚ is K4-free
and all its independent sets have size less than δn. Moreover, a short calculation displayed
in the proof of [8, Lemma 9.1] shows that the expected number of edges of G˚ is at least
`1

4 ` δ ´ δ
2 ´ op1q

˘

n2

2 . Therefore, we have indeed f4pδq ě
1
4 ` δ ´ δ

2.
This construction combines with [3, Theorem 5.4] in the following way.

Proposition 2.4. If r ě 2 and δ P
`

0, 1
3r´2

˘

are fixed, then

RTpn, δn,K2rq ě
`3r´5

3r´2 ` δ ´ δ
2
´ op1q

˘

n2

2 .

Proof. Let n be sufficiently large and, without loss of generality, divisible by 3r ´ 2. Take
a set V of n vertices as well as a partition

V “ V1 Ÿ V2 Ÿ . . . Ÿ Vr (2.2)

with |Vi| “ 2
3r´2n for i “ 1, 2 and |Vi| “ 3

3r´2n for i “ 3, . . . , r. Construct a graph G on V
whose edges are as follows.

‚ The subgraph of G induced by V1 Ÿ V2 is the graph described above exemplifying
the lower bound

RT
` 4

3r´2n, δn,K4
˘

ě 2
p3r´2q2n

2
` 2

3r´2δn
2
´ 1

2δ
2n2

´ opn2
q ,

the sets V1 and V2 here playing the rôles of A and B there.
‚ For i P r3, rs the graph that G induces on Vi is obtained by Corollary 2.2 and
demonstrates

RT
` 3

3r´2n, δn,K3
˘

ě 3
2p3r´2qδn

2
´ opn2

q .

‚ If 1 ď i ă j ď r and pi, jq ‰ p1, 2q, then all pairs uv with u P Vi and v P Vj are
edges of G.

Evidently, every clique in G can have at most three vertices in V1 Ÿ V2 and at most
two vertices in each Vi with i P r3, rs, which proves that G is K2r-free. Moreover, each
independent subset of V is either contained in V1 ŸV2 or in one of the sets Vi with i P r3, rs.
Consequently, we have αpGq ă δn. Finally, a quick computation shows

2epGq “
“` 4
p3r´2q2 `

4
3r´2δ ´ δ

2˘
`

3pr´2q
3r´2 δ `

9pr´2qpr´3q`24pr´2q
p3r´2q2 ´ op1q

‰

n2

“
`3r´5

3r´2 ` δ ´ δ
2
´ op1q

˘

n2 .

So altogether G has all required properties. �
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We conclude this section with a brief discussion of the strategy we use for proving
Theorem 1.2 in the next four sections.

The first observation is that the process of repeatedly removing vertices of small degree
allows us to focus on the case that δpGq ě 3r´5

3r´2n. Besides, by making further sacrifices as
to the eventual value of δ˚, we can always assume that n is sufficiently large. For these
reasons, it suffices to prove Proposition 6.1 below and large parts of Section 6 deal with
the implication from Proposition 6.1 to Theorem 1.2.

So let us suppose we have a sufficiently large K2r-free graph G with δpGq ě 3r´5
3r´2n

and αpGq ă δn, where δ is extremely small. Our task is to prove the upper bound
epGq ď

`3r´5
3r´2 ` δ ´ δ

2˘n2

2 on the number of its edges.
The argument starts similar to the proof of (1.1) given in [3]. That is we apply Szemerédi’s

regularity lemma and try to find one of several configurations in the regular partition,
each of which would allow us to embed a K2r. In [3] this is done by applying some Turán
theoretic result to the reduced graph (see [3, Lemma 3.3]) and the assumed absence of
these configurations leads to an upper bound of the form epGq ď

`3r´5
3r´2 ` δ

1
˘

n2

2 with δ1 Ñ 0
as δ Ñ 0.

However, since for a given δ we are aiming at a somewhat better estimate on epGq

than [3] does, it may happen to us that this argument does not lead to immediate success.
Yet there is still something we can do in order to proceed. Namely, we can prove a stability
version of [3, Lemma 3.3], apply it to the reduced graph, and transfer the information
thus obtained back to the original graph. In this manner, it can be shown that, in an
approximate sense, our graph G does almost look like the extremal graph described in the
proof of Proposition 2.4. Specifically, we find a partition

V pGq “ A1 Ÿ . . . Ÿ Ar (2.3)

such that each partition class spans at most opn2q edges and the edge density between A1

and A2 is, in a hereditary sense, at most 1
2 ` op1q (see Proposition 3.1 below for a precise

statement). Utilising the lower bound epGq ě 3r´5
3r´2 ¨

n2

2 , which follows from the minimum
degree condition, one can prove that these two conditions imply that the partition classes
A1, . . . , Ar have roughly the expected sizes and that, as long as ti, ju ‰ t1, 2u, almost all
possible edges between Ai and Aj are present in G (see Fact 4.2 below).

When one applies Proposition 3.1 to the essentially extremal graph constructed above,
one ends up getting a partition which is to some extent similar to (2.2), but it does not
necessarily agree with it. More precisely, one could show that, perhaps after an appropriate
permutation of the indices, one has

řr
i“1 |Ai 4 Vi| “ opnq. But the constant implied in the

o-notation here could be extremely large in comparison to δ and thus it seems desirable



8 CLARA M. LÜDERS AND CHRISTIAN REIHER

to produce a better partition before one starts deriving the asymptotically optimal upper
bound on epGq.

Constructing such an improved partition is the subject of Subsection 4.2. Its main
result, Proposition 4.4, tells us that the graph G under consideration admits a so-called
exact partition V pGq “ B1 Ÿ . . . Ÿ Br satisfying a long list of properties enumerated in
Definition 4.3. These conditions are rather restrictive and it might be helpful to imagine
that, up to a relabeling of the indices, (2.2) is the only exact partition of the extremal
graph. The proof of Proposition 4.4 starts from the partition (2.3) and is based on an
iterative procedure that moves vertices around that do not properly fit into the partition
class they currently belong to.

Finally, in Section 5 we address the question how the knowledge of an exact partition
allows us to prove an upper bound on epGq (see Proposition 5.2). The starting point there
is the equation

2epGq “
r
ÿ

i“1
epBi, V q .

It turns out that one can separately show upper bounds for each of these terms, namely

epBi, V q ď |Bi|pn´ |B1| ´ |B2|q `
1
2 |B1||B2| `

1
2δnp|B1| ` |B2|q ´

1
2δ

2n2 (2.4)

for i “ 1, 2 (see Claim 5.7 below) and

epBi, V q ď |Bi|pn´ |Bi|q ` δn|Bi| (2.5)

for i “ 3, . . . , r (see Claim 5.5). By adding these estimates and optimising over
řr
i“1 |Bi| “ n

one obtains the desired bound epGq ď
`3r´5

3r´2 ` δ ´ δ
2˘n2

2 .
Notice that there are two cases in which (2.5) is rather easy. First, if Bi happens to

be triangle-free, we get epBiq ď
1
2δn|Bi| from αpGq ă δn and by adding the trivial upper

bound epBi, V rBiq ď |Bi|pn´|Bi|q the claim follows. Second, if it happens that Bi misses
at least 2εn2 edges to V rBi for an appropriate (absolute) constant ε ą 0, then the weaker
bound epBiq ď εn2, which exact partitions always satisfy, is enough to deduce (2.5). The
general argument is a superposition of these two cases. That is, we will define a partition
of Bi into a triangle-free part B`i to which the first argument applies and another part B´i
that misses sufficiently many edges to V rBi to make the second approach useful.

The estimate (2.4) is much harder. Let us focus here on the case r “ 2 and i “ 1, in
which many of the difficulties are already visible. To keep this overview simple we will
also assume that every vertex in B1 sends at least 1

2 |B2| ´
1
60n edges to B2. Recall that

in the extremal example there is a set S Ď B1 of size close to δn whose members are
complete to B2, whilst each vertex in B1 r S sends a little bit less than 1

2p|B2| ` δnq edges
to B2. Moreover, there is only a negligible number of edges within B1. To prove (2.4), we
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can define S to be set of all v P B1 that send at least, say, 7
16n edges to B2 (recall that

|B2| «
1
2n). But even if we knew that |S| « δn and were able to deal with epB1, B2q, it

would still be hard to control epB1q. The key to this problem is to prove that, as in the
extremal example, there are piq no edges at all from S to B1 (see Fact 5.7.3 below) and
piiq no short odd cycles in B1 (see Fact 5.7.1). The latter fact helps us in the light of
Lemma 5.1 below.

Needless to say, many arguments occurring in this proof are inspired by [8]. On the
other hand, even for r “ 2 several new ideas are needed for going beyond (1.2).

§3. Coarse structure

Now we start to analyse the structure of K2r-free graphs with huge minimum degree but
without linear independent sets. The main result we shall obtain in this section reads as
follows.

Proposition 3.1. Given an integer r ě 2 and a real η ą 0 there exist n0 P N and δ ą 0
such that for every K2r-free graph G on n ě n0 vertices with αpGq ă δn and δpGq ě 3r´5

3r´2n

there is a partition
V pGq “ A1 Ÿ A2 Ÿ . . . Ÿ Ar

with the following properties:

(i ) epAiq ď ηn2 for all i P rrs;
(ii ) if X1 Ď A1 and X2 Ď A2, then epX1, X2q ď

1
2 |X1||X2| ` ηn

2.

This will be shown by means of Szemerédi’s famous regularity lemma [14] and we
commence by introducing some terminology. Given a graph G and two nonempty disjoint
sets A,B Ď V pGq we say for two real numbers δ ą 0 and d P r0, 1s that the pair pA,Bq is
pδ, dq-quasirandom if for all X Ď A and Y Ď B the estimate

ˇ

ˇepX, Y q ´ d|X||Y |
ˇ

ˇ ď δ|A||B|

holds. If we just say that the pair pA,Bq is δ-quasirandom we mean that it happens to be
pδ, dq-quasirandom for d “ epA,Bq{|A||B|.

Theorem 3.2 (Szemerédi’s regularity lemma). Given ξ ą 0 and t0 P N there exists an
integer T0 such that every graph G on n ě t0 vertices admits a partition

V pGq “ V0 Ÿ V1 Ÿ . . . Ÿ Vt (3.1)

of its vertex set such that

‚ t P rt0, T0s, |V0| ď ξ|V pGq|, and |V1| “ . . . “ |Vt| ą 0,
‚ and for every i P rts the set

 

j P rtsr tiu : pVi, Vjq is not ξ-quasirandom
(

has size at most ξt.
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In the literature one often finds other versions of the regularity lemma, where instead of
the second bullet above it is just demanded that at most ξt2 pairs pVi, Vjq with distinct
i, j P rts fail to be ξ-quasirandom. Applying such a regularity lemma to appropriate
constants ξ1 ! ξ and t10 " maxpt0, ξ´1q and relocating partition classes with many irregular
partners to V0 one can obtain the version stated here; this argument has been used before
by Łuczak [9], who explains it in more detail.

Next we deal with certain configurations in regular partitions of graphs with small
independence number which allow us to build cliques. The lemma that follows is implicit
in [3, Section 4] but for reasons of self-containment we shall supply its short proof. In its
formulation we work with a one-sided version of quasirandomness that is enough for our
purposes: If G is a graph, a pair pA,Bq of disjoint subsets of V pGq is said to be pδ, dq-dense
for δ ą 0 and d P r0, 1s, if for all X Ď A and Y Ď B we have epX, Y q ě d|X||Y | ´ δ|A||B|.

Lemma 3.3. Suppose that integers a ě b ě 1 as well as a real number ϑ P p0, 1s are given
and set ξ “

`

ϑ2

4

˘a´1, δ “
`

ϑ
2

˘a´1. Let H be a graph possessing a vertex partition

H “ V1 Ÿ . . . Ÿ Va

into nonempty classes satisfying

(a ) if 1 ď i ă j ď a, then pVi, Vjq is pξ, dijq-dense for some dij P rϑ, 1s;
(b ) if 1 ď i ă j ď b, then dij ě 1

2 ` ϑ;
(c ) if X Ď Vi and |X| ě δ|Vi| for some i P ras, then X spans at least one edge in H.

Then H contains a clique of order a` b.

Proof. We argue by induction on a` b. In the base case, a “ b “ 1, we have δ “ 1 and by
condition (c ) applied to X “ V1 there is indeed an edge in H.

In the induction step we certainly have a ě 2 and we assume first that a ą b. For every
i P ra´ 1s the set

Xpiq “
 

v P Va : |Npvq X Vi| ď ϑ
2 |Vi|

(

cannot be very large, as condition (a ) yields

ϑ
2 |Vi||Xpiq| ě epVi, Xpiqq ě ϑ|Vi||Xpiq| ´ ξ|Vi||Va| .

Together with ξ ď ϑ
2a this leads to |Xpiq| ď 1

a
|Va|. Now pick some v˚ P Va r

Ť

iPra´1sXpiq

and set V 1i “ Npv˚q X Vi for i “ 1, . . . , a ´ 1. The definition of Xpiq gives |V 1i | ě ϑ
2 |Vi|

for every i P ra´ 1s and, hence, the sets V 11 , . . . , V 1a´1 have the above properties (a ), (b ),
and (c ) for a ´ 1, ξ

ϑ2{4 , and
δ
ϑ{2 here in place of a, ξ, and δ there. So by the induction

hypothesis the neighbourhood of v˚ contains a Ka`b´1, wherefore indeed Ka`b Ď H.
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The case a “ b is similar, but instead of the sets Xpiq introduced above we consider

Y piq “
 

v P Va : |Npvq X Vi| ď
`1

2 `
ϑ
2

˘

|Vi|
(

for i P ra´1s. Invoking condition (b ) one can show |Y piq| ď 1
a
|Va| in the same way as before

and, hence, the set L “ Va r
Ť

iPra´1s Y piq satisfies |L| ě 1
a
|Va| ě δ|Va|. So by (c ) there is

an edge v˚w˚ both of whose endvertices belong to L. Since |Npv˚q XNpw˚q X Vi| ě ϑ|Vi|

holds for each i P ra ´ 1s, the induction hypothesis allows us to find a Ka`b´2 in the
common neighbourhood of v˚w˚ and again we obtain Ka`b Ď H. �

Suppose now that the regularity lemma has been applied, with a sufficiently small
accuracy parameter ξ, to some graph G of small independence number, meaning that for
some large integer t we have a partition of V pGq such as (3.1). When one now attempts
to find a K2r in G by means of Lemma 3.3, it only matters which of the quasirandom
pairs pVi, Vjq have their densities, for an appropriate ϑ ą 0, in the interval

“

ϑ, 1
2 ` ϑ

˘

or
even in

“1
2 ` ϑ, 1

‰

. We shall encode such information by the use of coloured edges in the
reduced graph, with green edges corresponding to pairs that are either irregular or too
sparse to be useful, and blue (or red) edges corresponding to quasirandom pairs of medium
(or large) density.

Let us say that a coloured graph is a complete graph all of whose edges have been coloured
red, blue, or green. Associated with any coloured graph G, say with vertex set V , we have
its so-called weight function w : V 2 ÝÑ t0, 1, 2u defined by

wpx, yq “

$

’

’

’

&

’

’

’

%

0 if x “ y or xy is green,

1 if xy is blue,

2 if xy is red

for all x, y P V . We will often identify G with the pair pV,wq. The degree of a vertex x of
a coloured graph G “ pV,wq is defined to be the sum

dpxq “
ÿ

yPV

wpx, yq

and by epGq we mean half of the sum of the degrees dpxq as x varies over V .
Two coloured graphs are said to be isomorphic if there is a colour-preserving bijection

between their vertex sets. A coloured graph pV 1, w1q is a subgraph of a coloured graph pV,wq
if V 1 Ď V and, additionally, w1px, yq ď wpx, yq holds for all x, y P V 1.

Next, we come to the coloured graphs which are relevant in connection with Lemma 3.3.
For integers a ě b ě 1 the coloured graph on a vertices without green edges whose red
edges form a clique of order b will be denoted by Ga`b,b. For every integer r ě 2 we set
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F2r “ tG2r,1, . . . , G2r,ru. A coloured graph is said to be F2r-free if none of its subgraphs
is isomorphic to a member of F2r.

In their proof of (1.1), Erdős, Hajnal, Szemerédi, and Sós use a lemma saying that every
F2r-free coloured graph on n vertices satisfies epGq ď 3r´5

3r´2n
2 (see [3, Lemma 3.3]). For the

proof of Proposition 3.1 we will use a stability version of this lemma. There are various
such statements, a rather strong one being the following.

Proposition 3.4. Suppose that r ě 2 and that G is a F2r-free coloured graph on n vertices
with δpGq ą 14r´24

7r´5 n. Then there is a partition V pGq “ W1 Ÿ . . . ŸWr such that all edges
within the partition classes are green and there are no red edges between W1 and W2.

A somewhat lengthy proof of this result is given in [10]. For the purposes of the present
work, however, it suffices to know only the weaker statement that follows. To keep this
article as self-contained as possible, we will supply a quick sketch of its proof below.

Proposition 3.5. Let r ě 2 and let α ą 0 be sufficiently small. Then every F2r-free
coloured graph G on n vertices with δpGq ě 2p3r´5q´α

3r´2 n admits a partition

V pGq “ W0 ŸW1 Ÿ . . . ŸWr

of its vertex set such that |W0| ď αn, all edges within the classes W1, . . . ,Wr are green,
and no edge from W1 to W2 is red.

We prepare the proof of this proposition by the following variant of [3, Lemma 3.3],
which can be proved in the same way. Let RKr´1 denote a red clique of order r ´ 1 and
set F`

2r “ F2r Y tRKr´1u.

Lemma 3.6. For r ě 2 every F`
2r-free coloured graph G on n vertices satisfies

epGq ď r´2
r´1n

2 .

Proof. The case r “ 2 is clear, for a RK1 is nothing else than a vertex. So suppose r ě 3
from now on. As in [3], two consecutive applications of Zykov’s symmetrisation method [16]
show that we may assume that there are is partition V pGq “ A1 Ÿ . . . Ÿ Am and that for
each i P rms there is a partition Ai “ Bi1 Ÿ . . . ŸBiki

such that

(i ) for i P rms and j P rkis all edges within Bij are green;
(ii ) if i P rms and j, j1 P rkis are distinct, then all edges between Bij and Bij1 are blue;
(iii ) and for distinct i, i1 P rms all edges between Ai and Ai1 are red.

Since G contains neither RKr´1 nor G2r,m, we have

1 ď m ď r ´ 2 and k1 ` . . .` km ď 2r ´ 1´m. (3.2)
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Set αi “ |Ai|{n for i P rms and notice that
řm
i“1 αi “ 1. It is well known that (i ) and (ii )

imply epAiq ď ki´1
2ki
|Ai|

2 and thus it remains to prove
ÿ

1ďiďm

ki´1
2ki

α2
i ` 2

ÿ

1ďiăjďm
αiαj ď

r´2
r´1 .

Subtracting this from
`
řm
i“1 αi

˘2
“ 1 we get

m
ÿ

i“1

ki`1
2ki

α2
i ě

1
r´1 .

The Cauchy-Schwarz inequality yields
m
ÿ

i“1

ki`1
2ki

α2
i ¨

m
ÿ

i“1

2ki

ki`1 ě
`

m
ÿ

i“1
αi
˘2
“ 1

and thus it suffices to show that
m
ÿ

i“1

ki

ki`1 ď
r´1

2 . (3.3)

Since the estimate k
k`1 ď

k`2
6 holds for each positive integer k, it is enough to prove

m
ÿ

i“1

ki`2
6 ď r´1

2

instead and in view of (3.2) this is clear. �

Proof of Proposition 3.5. Since r´2
r´1 ă

3r´5
3r´2 and α ! 1, we may suppose that epGq ą r´2

r´1 .
By Lemma 3.6 and the assumption that G be F2r-free it follows that G contains a RKr´1,
say with vertex set K “ tv1, v3, . . . vru. The minimum degree condition and α ! 1 yield

ÿ

xPV pGq

`

2r ´ 2´ dKpxq
˘

“
ÿ

vPK

`

2n´ dpvq
˘

ď
p6`αqpr´1q

3r´2 n ă 2n

and, hence, there is a vertex v2 P V pGq with 2r ´ 2 ´ dKpv2q ď 1. As G contains no
G2r,r “ RKr, it follows that v2 has exactly one blue neighbour in K and sends red edges
to all other members of K. By symmetry we may suppose that v1v2 is blue. Set

‚ L “ tv1, . . . , vru “ K Y tv2u,
‚ Wi “

 

x P V pGq : if j P rrs, then wpx, vjq “ wpvi, vjq
(

for i “ 1, . . . , r,
‚ W0 “ V pGqr pW1 Y . . .YWrq,
‚ and qpxq “ 2p3r´2q´2

`

wpv1, xq`wpv2, xq
˘

´3
`

wpv3, xq` . . .`wpvr, xq
˘

for every
x P V pGq.

Notice that the sets W1, . . . ,Wr are mutually disjoint. Exploiting that G contains neither
G2r,r nor G2r,r´1 one checks easily that

‚ all edges within one of the partition classes W1, . . . ,Wr are green
‚ no edge from W1 to W2 is red,
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‚ qpxq ě 6 for all x P V pGq,
‚ and that equality holds in the previous bullet if and only if x P W1 Ÿ . . . ŸWr.

It remains to show that |W0| ď αn. To this end we write

|W0| ď
ÿ

xPV pGq

pqpxq ´ 6q “ 2p3r ´ 5qn´ 2
`

dpv1q ` dpv2q
˘

` 3
`

dpv3q ` . . .` dpvrq
˘

and apply the minimum degree condition again. �

Finally, we show the main result of this section.

Proof of Proposition 3.1. Take appropriate constants

δ ! T´1
0 ! t´1

0 , ξ ! ϑ ! minpη, r´1
q ,

where T0 is obtained by applying the regularity lemma to t0 and ξ, and set n0 “ t0.
Consider a K2r-free graph G on n ě n0 vertices with αpGq ă δn and δpGq ě 3r´5

3r´2n. The
regularity lemma yields for some integers t P rt0, T0s and m ě 1 a partition

V pGq “ V0 Ÿ V1 Ÿ . . . Ÿ Vt

such that |V0| ď ξn, |V1| “ . . . “ |Vt| “ m, and for every i P rts all but at most ξt indices
j P rtsr tiu have the property that pVi, Vjq is ξ-quasirandom.

Define a coloured graph H with vertex set rts by declaring a pair ij to be green if
pVi, Vjq either fails to be ξ-quasirandom or has a density smaller than ϑ, blue if pVi, Vjq is
ξ-quasirandom and has a density in

“

ξ, 1
2 ` ξ

˘

, and red otherwise.
As a consequence of Lemma 3.3, H is F2r-free. Next, we will show that

δpHq ě 2
`3r´5

3r´2 ´ 3ϑ
˘

t . (3.4)

To verify this, we consider an arbitrary vertex i of H and denote the numbers of its blue
and red neighbours by a and b, respectively. The minimum degree condition on G yields

3r´5
3r´2mn ď

t
ÿ

j“0
epVi, Vjq .

On the right side of this estimate, the term corresponding to j “ 0 contributes at most ξmn,
j “ i contributes at mostm2, and the irregular pairs contribute at most ξtm2. Consequently
we have

`3r´5
3r´2 ´ ξ

˘

mn ď m2
` ξtm2

` tϑm2
` a

`1
2 ` ϑqm

2
` bm2.

Using n ě mt and canceling m2 we infer
`3r´5

3r´2 ´ ξ
˘

t ď p2ϑ` ξqt` 1` 1
2dHpiq .

So in view of t ě t0 " ϑ´1 and ξ ! ϑ we obtain dHpiq ě 2
`3r´5

3r´2 ´ 3ϑ
˘

t, which proves (3.4).
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By Proposition 3.5 and ϑ ! r´1 there exists a partition

rts “ W0 ŸW1 Ÿ . . . ŸWr

such that |W0| ď 18ϑrt, all edges within W1, . . . ,Wt are green, and no edge between W1

and W2 is red. For s P r0, rs we define

A˚s “
ď

iPWs

Vi .

Then V pGq “ V0 Ÿ A
˚
0 Ÿ A

˚
1 Ÿ . . . Ÿ A

˚
r is a partition of V pGq and

|V0| ` |A
˚
0 | ď ξn` |W0|m ď pξ ` 18rϑqn ď 1

2ηn .

This means that if we manage to show
(a ) epA˚s q ď 1

2ηn
2 for all s P rrs,

(b ) and epX1, X2q ď
1
2 |X1|X2| `

1
2ηn

2 for all X1 Ď A˚1 and X2 Ď A˚2 ,
then the partition V pGq “ A1 Ÿ . . . Ÿ Ar defined by A1 “ V0 Ÿ A

˚
0 Ÿ A

˚
1 and As “ A˚s for

s P r2, rs has both desired properties.
To prove (a ) we start for a given s P rrs from the decomposition

epA˚s q “
ÿ

iPWs

epViq `
ÿ

ijPW
p2q
s

epVi, Vjq .

Here, each of the at most t terms in the first sum is at most m2{2. Besides, there are at
most ξt2{2 terms corresponding to irregular pairs in the second sum, and each of them
amounts to no more than m2. Finally, the remaining at most t2{2 terms in the second sum
correspond to pairs whose density is at most ϑ. Thus we obtain

epA˚s q ď
` 1

2t `
ξ
2 `

ϑ
2

˘

m2t2

and due to t ě t0 and mt ď n an appropriate choice of our constants does indeed guarantee
that epA˚s q ď 1

2ηn
2.

Similarly, the proof of (b ) employs

epX1, X2q “
ÿ

iPW1

ÿ

jPW2

epVi XX1, Vj XX2q .

Again the contribution caused by irregular pairs is at most ξn2{2. The remaining terms
correspond to ξ-quasirandom pairs, which owing to the absence of red edges from W1 to W2

have density at most 1
2 ` ϑ. Consequently,

epX1, X2q ď
ÿ

iPW1

ÿ

jPW2

”

`1
2 ` ϑ

˘

|Vi XX1||Vj XX2| ` ξ|Vi||Vj|
ı

` 1
2ξn

2

ď
`1

2 ` ϑ
˘

|X1||X2| ` ξt
2m2

` 1
2ξn

2

ď 1
2 |X1||X2| `

`

ϑ` 3
2ξ
˘

n2
ď 1

2 |X1||X2| `
1
2ηn

2
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and the proof of Proposition 3.1 is complete. �

§4. Exact partitions

4.1. More information. It turns out that the lower bound epGq ě 3r´5
3r´2 ¨

n2

2 , which follows
from the minimum degree condition in Proposition 3.1, gives us further information on the
sizes of the vertex classes of the partition obtained there and on the edge densities between
these classes. This happens due to the following elementary inequality.

Lemma 4.1. If for r ě 2 the real numbers a1, . . . , ar sum up to 1, then
ÿ

1ďiăjďr
aiaj ´

1
2a1a2 ď

3r´5
2p3r´2q .

Moreover, if for some real % ě 0 we have
ÿ

1ďiăjďr
aiaj ´

1
2a1a2 ě

3r´5
2p3r´2q ´ % , (4.1)

then
ˇ

ˇai ´
2

3r´2

ˇ

ˇ ď 2?% for i “ 1, 2 and
ˇ

ˇai ´
3

3r´2

ˇ

ˇ ď 2?% for i “ 3, . . . , r.

Proof. Define

αi “

$

&

%

ai ´
2

3r´2 if i “ 1, 2

ai ´
3

3r´2 if i “ 3, . . . , r
and observe that

r
ÿ

i“1
α2
i ` α1α2 “

r
ÿ

i“1
a2
i ` a1a2 ´

r
ÿ

i“1

6ai
3r ´ 2 `

4 ¨ 3` 9pr ´ 2q
p3r ´ 2q2 “

r
ÿ

i“1
a2
i ` a1a2 ´

3
3r ´ 2 .

Due to
`
řr
i“1 ai

˘2
“ 1 this rewrites as

1
2α

2
1 `

1
2α

2
2 `

1
2pα1 ` α2q

2
`

r
ÿ

i“3
α2
i ď

3r´5
3r´2 ´

´

2
ÿ

iăj

aiaj ´ a1a2

¯

,

which establishes the first part of our claim. Moreover, if (4.1) holds for some % ě 0 we
obtain

1
2α

2
1 `

1
2α

2
2 `

1
2pα1 ` α2q

2
`

r
ÿ

i“3
α2
i ď 2% ,

whence |αi| ď 2?% holds for all i P rrs. �

With this lemma at hand we may prove the following estimates.

Fact 4.2. Suppose that a graph G and the partition

V pGq “ A1 Ÿ . . . Ÿ Ar

are as described and obtained in Proposition 3.1. Then
‚
ˇ

ˇ|Ai| ´
2n

3r´2

ˇ

ˇ ď 2
a

pr ` 1qη ¨ n for i “ 1, 2,
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‚
ˇ

ˇ|Ai| ´
3n

3r´2

ˇ

ˇ ď 2
a

pr ` 1qη ¨ n for i “ 3, . . . , r,
‚ epA1, A2q ě

1
2 |Ai||Aj| ´ rηn

2,
‚ and epAi, Ajq ě |Ai||Aj| ´ pr ` 1qηn2 whenever 1 ď i ă j ď n and pi, jq ‰ p1, 2q.

Proof. The minimum degree condition δpGq ě 3r´5
3r´2n yields epGq ě 3r´5

3r´2 ¨
n2

2 and due to
Proposition 3.1(i ) it follows that
` 3r´5

2p3r´2q ´ pr ` 1qη
˘

n2
`

ÿ

1ďiăjďr
pi,jq‰p1,2q

“

|Ai||Aj| ´ epAi, Ajq
‰

`
“1

2 |A1||A2| ` ηn
2
´ epA1, A2q

‰

ď
ÿ

1ďiăjďr
|Ai||Aj| ´

1
2 |A1||A2| . (4.2)

The square brackets on the left side being positive we deduce
` 3r´5

2p3r´2q ´ pr ` 1qη
˘

n2
ď

ÿ

1ďiăjďr
|Ai||Aj| ´

1
2 |A1||A2|

and the case % “ pr ` 1qη of Lemma 4.1 leads to the first two bullets.
Furthermore, Lemma 4.1 provides an upper bound of 3r´5

3r´2 ¨
n2

2 on the right side of (4.2).
Therefore we have

ÿ

1ďiăjďr
pi,jq‰p1,2q

“

|Ai||Aj| ´ epAi, Ajq
‰

`
“1

2 |A1||A2| ` ηn
2
´ epA1, A2q

‰

ď pr ` 1qηn2 .

and the last two bullets follow as well. �

4.2. Local minimum degree. Along the way leading from the partition provided by
Proposition 3.1 to our main theorem we will need to make further efficient uses of the
assumption K2r Ę G. It should be clear that building a K2r in G would be easier if we knew
that certain minimum degree conditions hold between the partition classes and the goal of
this section is to enforce several such conditions by moving a few vertices violating them
to other classes into which they fit better. For later reference we include the somewhat
lengthy list of properties that we shall obtain into a definition.

Definition 4.3. Let an integer r ě 2, a real ε ą 0, an n-vertex graph G, and a partition

V pGq “ B1 Ÿ . . . ŸBr

be given. Set dipvq “ dBi
pvq for all v P V pGq and i P rrs. We say that the above partition

is pr, εq-exact if the following conditions hold.
(α) For i “ 1, 2 one has

ˇ

ˇ|Bi| ´
2n

3r´2

ˇ

ˇ ď εn.
(β) For i “ 3, . . . , r one has

ˇ

ˇ|Bi| ´
3n

3r´2

ˇ

ˇ ď εn.
(γ) If i P rrs, then epBiq ď εn2.
(δ) If X1 Ď B1 and X2 Ď B2, then

ˇ

ˇepX1, X2q ´
1
2 |X1||X2|

ˇ

ˇ ď εn2.
(ε) If 1 ď i ă j ď r and pi, jq ‰ p1, 2q, then epBi, Bjq ě |Bi||Bj| ´ εn

2.
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(ζ) If ti, ju “ t1, 2u and v P Bi, then djpvq ě 1{3
3r´2n.

(η) If i P t1, 2u, j P r3, rs, and v P Bi, then djpvq ě 5{3
3r´2n.

(ϑ) If i P r3, rs, j P t1, 2u, and v P Bi, then djpvq ě 1{5
3r´2n.

(ι) If i, j P r3, rs are distinct and v P Bi, then djpvq ě 1
3r´2n.

The main result of this subsection is the following.

Proposition 4.4. For every r ě 2 and ε ą 0 there exist n0 P N and δ ą 0 such that every
K2r-free graph G on n ě n0 vertices, with δpGq ě 3r´5

3r´2n and αpGq ă δn has an pr, εq-exact
partition.

Proof. By monotonicity we may assume that ε is sufficiently small so that all estimates to
be performed below will hold. We commence be choosing a sufficiently small η ! ε. With
this number η we appeal to Proposition 3.1 and it answers with an integer n0 P N and
with some δ ą 0. We claim that these two constants have the desired properties.

Let any K2r-free graph G on n ě n0 vertices with αpGq ă δn and δpGq ě 3r´5
3r´2n be given

and take a partition
V pGq “ A0

1 Ÿ A
0
2 Ÿ . . . Ÿ A

0
r (4.3)

such that
(i ) epA0

i q ď ηn2 for all i P rrs;
(ii ) if X1 Ď A0

1 and X2 Ď A0
2, then epX1, X2q ď

1
2 |X1||X2| ` ηn

2.
Due to Fact 4.2 and η ! ε we may suppose moreover that
(iii ) for i “ 1, 2 we have

ˇ

ˇ|A0
i | ´

2n
3r´2

ˇ

ˇ ď 1
2εn;

(iv ) for i “ 3, . . . , r we have
ˇ

ˇ|A0
i | ´

3n
3r´2

ˇ

ˇ ď 1
2εn;

(v ) epA0
1, A

0
2q ě

1
2 |A

0
1||A

0
2| ´

1
4εn

2;
(vi ) and that epA0

i , A
0
i q ě |A

0
i ||A

0
j | ´

1
2εn

2 whenever 1 ď i ă j ď r and pi, jq ‰ p1, 2q.
We need to define an pr, εq-exact partition of G. To this end we perform a recursive

procedure, in the course of which a sequence of partitions of V pGq into r parts is constructed.
The starting point is (4.3). In each step only one vertex is moved from one vertex class
to another one, while all other vertices stay in the partition class they have belonged to
before. Let

V pGq “ As1 Ÿ A
s
2 Ÿ . . . Ÿ A

s
r

be the partition that we have after s steps and put

Ωs “ 6epAs1q ` 6epAs2q `
r
ÿ

i“3
epAsi q .

When the sth step is to carried out, we ensure that

Ωs ď Ωs´1 ´
1{4

3r´2n (4.4)



THE RAMSEY-TURÁN PROBLEM FOR CLIQUES 19

holds. This condition guarantees inductively that Ωs ď Ω0 ´
s{4

3r´2n and because of Ωs ě 0
this means that at some moment we will run out of permissible steps. When this happens
we stop the procedure and we let

V pGq “ B1 ŸB2 Ÿ . . . ŸBr (4.5)

be the terminal partition. The remainder of this proof is dedicated to proving that this
partition is pr, εq-exact. If the above procedure lasted for t steps, then

t{4
3r´2n ď Ω0

(i )
ď pr ` 10qηn2

informs us that
t ď 4p3r ´ 2qpr ` 10qηn ď 48r2ηn . (4.6)

In particular, η ! ε ! 1 allows us to conclude that t ď 1
2εn. Since only t vertices were

moved during the process, it follows from this bound and from (iii ) as well as (iv ) that
the clauses (α) and (β) of Definition 4.3 are satisfied.

For fixed i P rrs the current value of epAiq can change by at most n in every step and
thus we have

epBiq ď epA0
i q ` tn ď 49r2ηn2

ď εn2

by (i ) and (4.6), which shows the validity of (γ). The proof of (ε) is very similar but
uses (vi ) instead of (i ). We leave the details to the reader. Proceeding similarly with (v )
one can obtain

epB1, B2q ě
1
2 |B1||B2| ´

1
2εn

2 . (4.7)

Let us continue with (δ). For any two sets X1 Ď B1 and X2 Ď B2 we have

epX1, X2q ď epX1 X A
0
1, X2,XA

0
2q ` p|B1 r A0

1| ` |B2 r A0
2|qn

(ii )
ď 1

2 |X1 X A
0
1||X2,XA

0
2| ` ηn

2
` tn

and in view of (4.6) it follows that

epX1, X2q ď
1
2 |X1||X2| `

1
4εn

2 . (4.8)

We still need an estimate in the other direction and for this purpose we invoke (4.7) and
make two applications of (4.8), thus getting

epX1, X2q “ epB1, B2q ´ epB1, B2 rX2q ´ epB1 rX1, X2q

ě
`1

2 |B1||B2| ´
1
2εn

2˘
´
`1

2 |B1||B2 rX2| `
1
4εn

2˘
´
`1

2 |B1 rX1||X2| `
1
4εn

2˘

“ 1
2 |X1||X2| ´ εn

2 .

Altogether the pair pB1, B2q behaves indeed as demanded by (δ).
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It remains to deal with the local minimum conditions (ζ), (η), (ϑ), and (ι). The proofs
of all four of them are very similar and rely on the property (4.4) of the procedure that
was used to generate the partition (4.5). We will only display the proof (η) here and leave
the three other clauses to the reader.

Assume, for instance, that there is a vertex v P B1 with d3pvq ă
5{3

3r´2n. Due to the
minimum degree condition imposed on G we must have

d1pvq ě
3r´5
3r´2n´ |B2| ´

5{3
3r´2n´

r
ÿ

i“4
|Bi| .

Because of (α) and (β) this implies

d1pvq ě
1{3

3r´2n´ pr ´ 2qεn ,

wherefore
6d1pvq ´ d3pvq ą

1{4
3r´2n .

Consequently we can perform a pt` 1qst step of our procedure and move v from B1 to B3.
This contradicts the supposed maximality of t, and thereby (η) is proved. �

§5. Refined edge counting

Let us start this section with an elementary lemma, the following.

Lemma 5.1. Every graph G not containing a cycle of length 3, 5, or 7 satisfies

epGq ď αpGq2 .

Proof. We construct recursively a sequence z1, . . . , zk of distinct vertices of G according to
the following rules.

‚ Let z1 be any vertex of G whose degree is maximal.
‚ If at some moment the vertices z1, . . . , zi have already been selected, we ask ourselves
whether the set Qi of all vertices having a distance of at least four from all of them
is empty or not.

‚ If Qi “ ∅, we set k “ i and terminate the procedure.
‚ Otherwise we take a vertex zi`1 P Qi whose degree is as large as possible.

Set Q0 “ V pGq and Wi “ Qi´1 rQi for i “ 1, . . . , k. Notice that

V pGq “ W1 Ÿ . . . ŸWk

is indeed a partition, because Q0 Ě Q1 Ě ¨ ¨ ¨ Ě Qk “ ∅. Owing to the maximum degree
conditions imposed on the vertices zi we have

2epGq “
ÿ

xPV pGq

dpxq ď
k
ÿ

i“1
|Wi| ¨ dpziq . (5.1)



THE RAMSEY-TURÁN PROBLEM FOR CLIQUES 21

We contend that for i P rks every vertex x P Wi has at most distance three from zi. To see
this we remark that due to x R Qi there has to be an index j P ris such that x has distance
at most three from zj . Moreover, j ă i would yield x R Qi´1, contrary to x P Wi. Thus we
must have j “ i, as desired.

It follows that we can partition Wi into a set of vertices having distance 0 or 2 from zi

and a set of vertices having distance 1 or 3 from zi. Both partition classes are independent
sets, for otherwise G would contain an odd cycle of length 3, 5, or 7.

In particular, we have |Wi| ď 2αpGq for each i P rks and in view of (5.1) we obtain

epGq ď αpGq
k
ÿ

i“1
dpziq .

Due to their construction any two of the vertices z1, . . . , zk have a distance of at least
four. Therefore, their neighbourhoods are mutually disjoint and taken together they form
an independent set. Thus we have indeed epGq ď αpGq2. �

After this little distraction we resume our task of proving Theorem 1.2. In the light
of the work in the two previous sections, it seems desirable to deal with the case that G
admits an exact partition, which will occupy the remainder of the present section.

Proposition 5.2. Given an integer r ě 2, there exists a real ε ą 0 such that for every
δ ď ε every n-vertex graph G with K2r Ę G and αpGq ď δn admitting an pr, εq-exact
partition of its vertex set has at most

`3r´5
3r´2 ` δ ´ δ

2˘n2

2 edges.

Proof. Throughout the arguments that follow we will assume that ε has been chosen so
small that all estimates encountered below hold. Now let δ ď ε, let G “ pV,Eq be a
K2r-free graph on n vertices with αpGq ă δn and let

V “ B1 Ÿ . . . ŸBr

be an pr, εq-exact partition of G. By lowercase greek letters enclosed in parentheses such
as (α), . . . , (ι) we shall always mean the corresponding clauses of Definition 4.3.

The statement that follows will often be useful in conjunction with the hypothesis that G
be K2r-free.

Claim 5.3. Suppose that I Ď rrs and that for every i P I we have a set Xi Ď Bi with
|Xi| ě

1{15
3r´2n. Then the set X “

Ť

iPI Xi contains a clique of order 2|I| ´ 1.
Moreover, if I does not contain both of 1 and 2, than X does even contain a clique of

order 2|I|.

Proof. Let us begin with the “moreover”-part. Intending to apply Lemma 3.3 with ϑ “ 1
2

and a “ b “ |I| we need to check that for distinct i, j P I the pair pXi, Xjq is p16´r, 1q-dense
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and that αpGq ă |Xi|{4r. The latter is an immediate consequence of δ ď ε ! 1. Moreover,
if Yi Ď Xi and Yj Ď Xj, then

epYi, Yjq
(ε)
ě |Yi||Yj| ´ εn

2
ě |Yi||Yj| ´ 16´r|Xi||Xj| ,

as desired. If 1, 2 P I we can still apply Lemma 3.3 with ϑ “ 1
2 , but this time with a “ |I|

and b “ |I| ´ 1. This is because (δ) allows us to show, in the same way as above, that the
pair pX1, X2q is p1{16r, 1{2q-dense. �

Next we explain how condition (γ) is utilised.

Claim 5.4. If i P rrs and X Ď Bi, then epXq ď n{60
3r´2 |X|.

Proof. If |X| ď n{60
3r´2 this follows from the trivial bound epXq ď |X|2. On the other hand,

if |X| ě n{60
3r´2 , then we have

epXq
(γ)
ď εn2

ď
`

n{60
3r´2

˘2
ď

n{60
3r´2 |X|

due to ε ! 1. �

Claim 5.5. For each i P r3, rs we have

epBi, V q ď pn´ |Bi|q|Bi| ` δn|Bi| .

Proof. Look at the partition Bi “ B`i ŸB
´
i defined by

B`i “
!

x P Bi : |NpxqrBi| ě n´ |Bi| ´
n{15
3r´2

)

and B´i “ Bi rB`i . Clearly, we have

epBi, V rBiq ď pn´ |Bi|q|Bi| ´
n{15
3r´2 |B

´
i | (5.2)

and Claim 5.4 yields
epB´i q ď

n{60
3r´2 |B

´
i | . (5.3)

Now assume for the sake of contradiction that Bi contains a triangle uvw two of whose
vertices, say v and w, belong to B`i . Let X denote the common neighbourhood of u, v,
and w. The definition of B`i leads to

|X XBj| ě |Npuq XBj| ´
2{15
3r´2n

(ι)
ě

13{15
3r´2n

for j P r3, rsr tiu and, similarly, we have |X XBj| ě
1{15
3r´2n for j “ 1, 2 due to (ϑ). Thus

the assumptions of Claim 5.3 are satisfied by I “ rrsr tiu and X, meaning that X contains
a K2r´3. But together with the triangle uvw this clique gives us a K2r in G, which is
absurd.

This proves that there are no such triangles in Bi and due to αpGq ă δn it follows
that no vertex in Bi can have more than δn neighbours in B`i . Therefore we have
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epB`i , B
´
i q ď δn|B´i | and 2epB`i q ď δn|B`i |. Taking (5.2) and (5.3) into account we can

now deduce

epBi, V q “ epBi, V rBiq ` 2epB`i q ` 2epB`i , B´i q ` 2epB´i q

ď pn´ |Bi|q|Bi| ` δn|Bi| `
`

n{30
3r´2 ` δn´

n{15
3r´2

˘

|B´i | ,

and in view of δ ! 1 the desired estimate follows. �

Before we proceed deriving similar upper bounds for epB1, V q and epB2, V q, we record
some useful properties of the common neighbourhoods of edges in B1.

Claim 5.6. Any two vertices u, v P B1 forming an edge have at least 4{15
3r´2n common

neighbours in each of B3, . . . , Br, but less than 1{15
3r´2n common neighbours in B2.

Proof. For each i P r3, rs we have

|Npuq XNpvq XBi| ě |Npuq XBi| ` |Npvq XBi| ´ |Bi| ,

which due to (β) and (η) yields

|Npuq XNpvq XBi| ě
10{3
3r´2n´

` 3
3r´2 ` ε

˘

n ě 4{15
3r´2n ,

as desired. If u and v had at least 1{15
3r´2n common neighbours in B2, we could use Claim 5.3

with I “ rrsr t1u to find a K2r´2 among the common neighbours of those two vertices,
contrary to K2r Ę G. �

Claim 5.7. For i P t1, 2u we have

epBi, V q ď |Bi|pn´ |B1| ´ |B2|q `
1
2 |B1||B2| `

1
2δnp|B1| ` |B2|q ´

1
2δ

2n2 .

Proof. Due to symmetry it suffices to prove this for i “ 1 only. The vertices in

P “
!

x P B1 : |NpxqrB1| ď n´ |B1| ´
1
2 |B2| ´

1{15
3r´2n

)

(5.4)

receive special treatment.

Fact 5.7.1. There is no triangle in B1 two of whose vertices are outside P .

Proof. Arguing indirectly we assume that uvw is such a triangle. By Claim 5.6 no two of
the three vertices u, v, and w can have 1{15

3r´2n common neighbours in B2, whence

d2puq ` d2pvq ` d2pwq ă |B2| `
1{5

3r´2n .

On the other hand, by the definition of P we have d2pxq ą
1
2 |B2|´

1{15
3r´2n for every x P B1rP

and together with (ζ) this yields

d2puq ` d2pvq ` d2pwq ą 2
`1

2 |B2| ´
1{15
3r´2n

˘

`
1{3

3r´2n “ |B2| `
1{5

3r´2n .

This contradiction proves Fact 5.7.1. �
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Since αpGq ă δn, it follows that no vertex in P can have δn neighbours in B1 rP , which
in turn reveals epP,B1 r P q ď δn|P |. Together with the estimate epP q ď n{60

3r´2 |P |, which
follows from Claim 5.4, this gives

2epP,B1 r P q ` 2epP q ď
`

2δ ` 1{30
3r´2

˘

n|P | ď 1{15
3r´2n|P |

and by adding the upper bound on epP, V rB1q that trivially follows from (5.4) we arrive
at

epP, V q ` epP,B1 r P q ď |P |pn´ |B1| ´
1
2 |B2|q . (5.5)

Fact 5.7.2. There is no C3, C5, or C7 in G all of whose vertices are in B1 r P .

Proof. Assume contrariwise that for some ` P t3, 5, 7u the vertices in C “ tv1, . . . , v`u form
such a cycle. If a vertex x P B2 is adjacent to q vertices in C, then the neighbourhood of x
contains at least q ´ 1

2p`´ 1q edges of this cycle, whence

epC,B2q “
ÿ

xPB2

dCpxq ď
1
2p`´ 1q|B2| ` t ,

where t denotes the number of triangles formed by a vertex in B2 and an edge of the cycle.
Further, by the second part of Claim 5.6, each edge of the cycle can sit in at most 1{15

3r´2n

such triangles, wherefore t ď 7{15
3r´2n.

On the other hand, each v P C has at least 1
2 |B2| ´

1{15
3r´2n neighbours in B2 due to

C Ď B1 r P and (5.4), whence

epC,B2q “
ÿ̀

k“1
d2pvkq ě

1
2`|B2| ´

7{15
3r´2n .

By combining all these estimates we infer

|B2| ď
28{15
3r´2n ,

which, however, violates (α). This concludes the proof of Fact 5.7.2. �

Now consider the partition
B1 r P “ Q ŸR Ÿ S

defined by

Q “
!

x P B1 r P : d2pxq ď
1
2p|B2| ` δnq

)

,

R “
!

x P B1 r P : 1
2p|B2| ` δnq ă d2pxq ď

7{4
3r´2n

)

,

and S “
!

x P B1 r P : 7{4
3r´2n ă d2pxq

)

.

Fact 5.7.3. There is no edge connecting a vertex in S with a vertex in B1.
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Proof. By (ζ) and the definition of S the common neighbourhood of such an edge would
intersect B2 in at least

7{4
3r´2n`

1{3
3r´2n´ |B2|

(α)
ě

1{15
3r´2n

vertices, contrary to Claim 5.6. �

Fact 5.7.4. The set R Y S is independent.

Proof. Assume that we have an edge uv both of whose endvertices are in RYS. According
to the definitions of R and S, the common neighbourhood J of u and v has at least δn
vertices in B2 and by αpGq ă δn there exists an edge xy in B2 X J .

We will now try to construct a K2r´4 in the common neighbourhood J˚ Ď J of u, v, x,
and y, which would give a contradiction to K2r Ę G. To this end we utilise Claim 5.3 with
I “ rrsr t1, 2u and it remains to show that we have |Bj X J˚| ě

1{15
3r´2n for every j P r3, rs.

Thanks to Claim 5.6 we already know that x and y have at least 4{15
3r´2n common

neighbours in each Bj with j P r3, rs, so it suffices to prove |Bj X J | ě |Bj| ´
1{5

3r´2n instead.
For this purpose it is enough to establish

|J r pB1 YB2q| ě n´ p|B1| ` |B2|q ´
1{5

3r´2n . (‹)

Now due to u, v P B1 r P and (5.4) we have

|J rB1| ě 2
`

n´ |B1| ´
1
2 |B2| ´

1{15
3r´2n

˘

´ pn´ |B1|q “ n´ |B1| ´ |B2| ´
2{15
3r´2n

and Claim 5.6 tells us that
|J XB2| ď

1{15
3r´2n .

It is easily seen that the last two estimates imply p‹q. �

We will now work towards an upper bound on epB1 r P,B2q. Due to the definitions
of Q, R, and S we have

epB1 r P,B2q ď |Q| ¨
1
2p|B2| ` δnq ` |R| ¨

7{4
3r´2n` |S||B2|

(α)
ď p|Q| ` |R|q ¨ 1

2p|B2| ` δnq ` |R| ¨
4{5

3r´2n` |S||B2| .

According to Fact 5.7.4 and αpGq ă δn we have |R| ď δn´ |S| and thus we arrive at

epB1 r P,B2q ď
1
2 |B1 r P |p|B2| ` δnq ` pδn´ |S|q

4{5
3r´2n`

1
2 |S|p|B2| ´ δnq

“ 1
2 |B1 r P ||B2| `

1
2δnp|B1 r P | ` |B2|q ´

1
2δ

2n2

` pδn´ |S|q
` 4{5

3r´2n`
1
2δn´

1
2 |B2|

˘

.

Employing (α) we may weaken this to

epB1 r P,B2q ď
1
2 |B1 r P ||B2| `

1
2δnp|B1| ` |B2|q ´

1
2δ

2n2
´ 2δnpδn´ |S|q . (5.6)
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Next we learn from Lemma 5.1 and Fact 5.7.2 that epQYRq ď αpQYRq2, where αpQYRq,
the size of the largest independent set in QYR, is at most δn´ |S| due to Fact 5.7.3 and
αpGq ă δn. So in other words we have epQYRq ď pδn´ |S|q2 ď δnpδn´ |S|q. A further
application of Fact 5.7.3 leads to the seemingly stronger inequality epB1rP q ď δnpδn´|S|q

and together with (5.6) this yields

epB1 r P,B1 YB2 r P q ď 1
2 |B1 r P ||B2| `

1
2δnp|B1| ` |B2|q ´

1
2δ

2n2 .

Adding the trivial upper bound for e
`

B1 r P, V r pB1 YB2q
˘

we obtain

epB1 r P, V r P q ď |B1 r P |
`

n´ |B1| ´
1
2 |B2|

˘

` 1
2δnp|B1| ` |B2|q ´

1
2δ

2n2 .

Combined with (5.5) this shows the desired estimate

epB1, V q ď |B1|
`

n´ |B1| ´
1
2 |B2|

˘

` 1
2δnp|B1| ` |B2|q ´

1
2δ

2n2

and the proof of Claim 5.7 is thereby complete. �

Finally, the addition of the r inequalities provided by the Claims 5.5 and 5.7 reveals

2epGq “
r
ÿ

i“1
epBi, V q ď 2

ÿ

1ďiăjďr
|Bi||Bj| ´ |B1||B2| ` δn

r
ÿ

i“1
|Bi| ´ δ

2n2

and Lemma 4.1 leads to
2epGq ď

`3r´5
3r´2 ` δ ´ δ

2˘n2 .

Thereby Proposition 5.2 is proved. �

§6. The proof of Theorem 1.2

Now the following should be clear.

Proposition 6.1. For every integer r ě 2 there exist an integer n0 and a positive real
number δ0 such that for every δ ď δ0 every graph G on n ě n0 vertices with K2r Ę G,
δpGq ě 3r´5

3r´2n, and αpGq ă δn has at most
`3r´5

3r´2 ` δ ´ δ
2˘n2

2 edges.

Proof. Let ε ą 0 be the number provided by Proposition 5.2. By plugging it into Proposi-
tion 4.4 we obtain some constants n0 P N and δ0 ą 0. Without loss of generality we may
suppose that δ0 ď ε. To check that these two numbers have the desired property we consider
any graph G on n ě n0 vertices satisfying the above conditions for some δ ď δ0 ď ε.

Now Proposition 4.4 informs us that G has an pr, εq-exact partition and Proposition 5.2
yields the desired upper bound on epGq. �

The only things which are currently missing from a proof of Theorem 1.2 are that we
still need to abolish the minimum degree condition and n0. This will be accomplished by
means of a vertex deletion argument and an adjustment of δ0.
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Proof of Theorem 1.2. Let n0 P N and δ0 P p0, 1q be as obtained by Proposition 6.1 and
set

δ˚ “
1
r2 min

`

δ2
0, n

´2
0
˘

. (6.1)

Consider any n-vertex graph G satisfying

αpGq ă δn and epGq ą
`3r´5

3r´2 ` δ ´ δ
2˘n2

2 (6.2)

for some δ ď δ˚. We are to prove that G contains a K2r and our strategy for doing so is to
find a subgraph G1 Ď G which otherwise would contradict Proposition 6.1. Define

q “ epGq ´ 3r´2
3r´5 ¨

n2`n
2

and notice that δn ą αpGq ě 1 entails

2q ą pδ ´ δ2
qn2

´ 3r´5
3r´2n ą

`

1´ δ ´ 3r´5
3r´2

˘

δn2 (6.1)
ą

`1
r
´ 1

r2

˘

δn2
ě δn2

{r2 .

We call a set of vertices X Ď V pGq solid if

epXq ě 3r´5
3r´2 ¨

|X|2`|X|
2 ` q .

Owing to the definition of q the whole vertex set V pGq is solid and, consequently, there
exists a maximal solid set X 1 Ď V pGq. Let G1 denote the subgraph of G induced by X 1.
Utilising the trivial upper bound on the number of its edges we infer

|X 1
|
2
ě 2epG1q ě 2q ě δn2

{r2 ,

whence

r
?
δ ¨ |X 1

| ě δn ą 1 . (6.3)

On the other hand, (6.1) implies r
?
δ ď r

?
δ˚ ď n´1

0 and thus we arrive at |X 1| ě n0.
The maximality of X 1 tells us that for an arbitrary vertex x P X 1 the set X 1 r txu fails

to be solid, meaning that

3r´5
3r´2 ¨

|X 1|2`|X 1|
2 ` q ď epX 1

q “ epX 1 r txuq ` dpxq ă 3r´5
3r´2 ¨

|X 1|2´|X 1|
2 ` q ` dpxq ,

i.e., dpxq ą 3r´5
3r´2 |X

1|. Thereby we have proved that

δpG1q ą 3r´5
3r´2 |X

1
| .

The number δ1 “ δn{|X 1| satisfies αpG1q ď αpGq ă δn “ δ1|X 1| and due to (6.3)
and (6.1) we have δ1 ď r

?
δ ď r

?
δ˚ ď δ0. So with the possible exception of K2r Ę G1 all

the assumptions of Proposition 6.1 hold for G1 and δ1.
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On the other hand, the solidity of X 1 yields

2epG1q ě 3r´5
3r´2 |X

1
|
2
´ 3r´5

3r´2pn´ |X
1
|q `

`

2epGq ´ 3r´5
3r´2n

2˘

(6.2)
ą 3r´5

3r´2 |X
1
|
2
´ δnpn´ |X 1

|q ` pδn2
´ δ2n2

q

“
`3r´5

3r´2 ` δ
1
´ δ12

˘

|X 1
|
2 ,

meaning that the conclusion of Proposition 6.1 fails for G1 and δ1. Therefore we have
indeed that K2r Ď G1 Ď G. �

§7. Odd cliques revisited

The goal of this section is to sketch a proof of the upper bound on f2r`1pδq provided by
Theorem 1.3. As the case r “ 1 is trivial, we concentrate on the case r ě 2 in the sequel.

As a matter of fact, one can prove f2r`1pδq ď
r´1
r
` δ along the lines suggested by

Section 3–6, but the details are much simpler because the first two classes of our partitions
are not playing a special rôle anymore.

The required knowledge on coloured graphs concerns the collection

F2r`1 “ tG2r`1,1, . . . , G2r`1,ru .

The corresponding analogue of Proposition 3.4, likewise proved in [10], reads as follows.

Proposition 7.1. Suppose that r ě 2 and that G is a F2r`1-free coloured graph on n

vertices with δpGq ą 6r´8
3r´1n. Then there is a partition V pGq “ W1 Ÿ . . . ŸWr such that all

edges within the partition classes are green.

By applying this to the reduced graph, the regularity lemma allows us to show the
following.

Proposition 7.2. Given an integer r ě 2 and a real η ą 0 there exist n0 P N and δ ą 0
such that for every K2r`1-free graph G on n ě n0 vertices with αpGq ă δn and δpGq ě r´1

r
n

there is a partition

V pGq “ A1 Ÿ A2 Ÿ . . . Ÿ Ar

with epAiq ď ηn2 for all i P rrs.

Due to the lower bound epGq ě r´1
r
¨ n

2

2 entailed by the minimum degree condition, such
a partition needs to have the further properties

‚
ˇ

ˇ|Ai| ´
n
r

ˇ

ˇ ď
?

2rη ¨ n for every i P rrs;
‚ and epAi, Ajq ě |Ai||Aj| ´ rηn2 whenever i, j P rrs are distinct.
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We may now imitate the proof of Proposition 4.4 and start moving vertices around. This
time, however, we just need to track the simpler quantity Ωs “

řr
i“1 epA

s
i q and by making

sure that it decreases by at least n
4r in every step we arrive at the following.

Proposition 7.3. For every r ě 2 and ε ą 0 there exist n0 P N and δ ą 0 such that
every K2r`1-free graph G on n ě n0 vertices, with δpGq ě r´1

r
n and αpGq ă δn admits a

partition

V pGq “ B1 Ÿ . . . ŸBr

such that

‚ epBiq ď εn2 for i “ 1, . . . , r;
‚
ˇ

ˇ|Bi| ´
n
r

ˇ

ˇ ď εn for i “ 1, . . . , r;
‚ and if i, j P rrs are distinct, then every vertex in Bi, has at least n

3r neighbours
in Bj.

These properties are enough to make the idea from the proof of Claim 5.5 work and
thus one can show epBi, V q ď pn ´ |Bi|q|Bi| ` δn|Bi| for every i P rrs. By adding these
inequalities one obtains epGq ď

`

r´1
r
` δ

˘

n2

2 .
To summarise, we have the following analogue of Proposition 6.1.

Proposition 7.4. For every integer r ě 2 there exist an integer n0 and a positive real
number δ0 such that for every δ ď δ0 every graph G on n ě n0 vertices with K2r`1 Ę G,
δpGq ě 3r´5

3r´5n, and αpGq ă δn has at most
`

r´1
r
` δ

˘

n2

2 edges.

Finally, the arguments from Section 6 allow us to remove the restriction on the minimum
degree and to dispose of the additional parameter n0. So altogether we have indeed
f2r`1pδq ď

r´1
r
` δ.
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