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Worldsheet operator produt expansions andp-point funtions in AdS3/CFT2
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AbstratWe onstrut the operator produt expansions (OPE) of the hiral primary operatorsin the worldsheet theory for strings on AdS3 � S3 � T 4. As an interesting appliation,we will use the worldsheet OPEs to derive a reursion relation for a partiular lass ofextremal p-point orrelators on the sphere. We ompare our result with the orrespondingreursion relation previously found in the symmetri orbifold theory on the boundary ofAdS3.
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Contents1 Introdution 22 Worldsheet operator produt expansions in AdS3 32.1 Chiral primary operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32.2 Worldsheet operator produt expansions . . . . . . . . . . . . . . . . . . . 62.3 Worldsheet operator produt expansions of hiral primary operators . . . . 72.4 Disussion and omparison with boundary operator produt expansions . . 113 Reursion relation for worldsheet p-point funtions 124 Conlusions 15A OPE of H+3 primaries 16B Some orrelators and operator produt expansions 18C Resaling the operators in the OPE 181 IntrodutionIn the reent years, muh progress has been made in mathing orrelation funtions inthe AdS3=CFT2 orrespondene [1℄. In the symmetri produt orbifold theory on theboundary of the AdS3 spae, two- and three-point funtions of single-yle twist opera-tors were omputed in [2, 3℄. In [4℄, this analysis was extended to some simple four-pointfuntions, and reursion relations were found for some extremal p-point orrelators. Inthe dual worldsheet theory for string theory on AdS3 � S3 � T 4, the two- and three-point orrelators of hiral primary operators were derived in [5, 6℄ (see also [7, 8℄) andintriguing agreement with the dual boundary orrelators was found (Later, agreementwith supergravity was ahieved in [9℄, see also [10, 11, 12℄ for earlier work). Reently, in[13℄, (the one-partile ontributions of) some extremal four-point orrelators have beenomputed on the worldsheet using a general method for SL(2) orrelation funtions de-veloped in [14℄. Again, agreement was found with the orresponding boundary result of[4℄. Even though the string theory/supergravity and �eld theory orrelators are omputedat di�erent points in the moduli spae, they must and do agree as predited by the non-renormalization theorem of [15℄. This theorem states that all three-point funtions as wellas all extremal p-point funtions (p > 3) of hiral primary operators are proteted alongthe moduli spae [15℄.In this paper we extend the analysis of [13℄ by deriving a reursion relation for higherp-point orrelators in the worldsheet theory. Suh p-point funtions may be fatorized bymeans of worldsheet operator produt expansions (OPE), whih should not be mixed upwith their dual spaetime OPEs. Their general properties were disussed in [16℄ for stringtheory on a general AdSd+1 �W bakground. Here we speialize to AdS3 � S3 � T 4 andompute the worldsheet operator produt expansions of hiral primary operators in the2



assoiated H+3 � SU(2) Wess-Zumino-Witten (WZW) model. The hiral primaries areomposite operators of the bosoni H+3 and SU(2) primaries, usually dressed with somefree fermions and ghosts, and their OPEs are obtained by ombining the OPEs of theindividual �elds. Comparing the thus obtained (unintegrated) worldsheet OPEs with theorresponding spaetime OPEs, we �nd, not surprisingly, a one-to-one realization of thefusion rules of the hiral ring. We will also disuss some strutural di�erenes betweenboth kinds of OPEs.To �nd the reursion relation, we insert the worldsheet OPEs into a partiular lass ofextremal p-point funtions of hiral primary operators (In an extremal p-point funtionthe spaetime saling of the p-th operator is the sum of the spaetime salings of the otherp� 1 operators). After performing the integrals over a (single) worldsheet oordinate andthe SL(2) representation label h, in a similar fashion as in [13℄, the p-point funtionfatorizes into the produt of a p� 1-point funtion and a three-point funtion. In thisway we �nd a reursion relation whih, up to an overall fator F , is in agreement withthe reursion relation of the dual boundary orrelator previously found in [4℄. We willomment on F in the onlusions.2 Worldsheet operator produt expansions in AdS3In the following we derive the operator produt expansions of the hiral primary operatorsin the worldsheet theory for string theory on AdS3 � S3 � T 4. In the next setion, wewill use the resulting OPEs to �nd a reursion relation for a partiular lass of p-pointfuntions.2.1 Chiral primary operatorsWe begin by summarizing the worldsheet hiral primary operators [17, 18, 6℄. Our on-ventions are as in [13℄. In partiular, it is understood that all operators depend on theomplex worldsheet oordinate z, even though we often omit this dependene in the ar-guments of the operators.The worldsheet theory is the produt of an N = 1 WZW model on H+3 , an N = 1WZW model on S3 ' SU(2) and an N = 1 U(1)4 free superonformal �eld theory. Weemphasize here that, following [14℄, we onsider an H+3 = SL(2; C )=SU(2) sigma modelwhose target spae is a Eulidean AdS3. Likewise, the dual CFT2 on the boundary isunitary and its time variable an be analytially ontinued to Eulidean time. In thisway we avoid problems whih arise in the de�nition of operator produt expansions in the(Lorentzian) SL(2;R) WZW model [19℄{[22℄.The above WZW model has the aÆne world-sheet symmetry bsl(2)k �su(2)k0 � u(1)4.Critiality of the fermioni string on AdS3 � S3 requires the identi�ation of the levelsk and k0 [23℄, k = k0 . The label k denotes the supersymmetri level of the aÆne Liealgebras and is identi�ed with the bosoni levels kb and k0b as k = kb � 2 = k0b + 2. Thebosoni urrents are Ja for SL(2) and Ka for SU(2). The free fermions of SL(2) aredenoted by  a, those of SU(2) by �a (a = (+; 0;�) in either ase). It is onvenient to3



split the bosoni urrents asJa = ja + |̂a ; |̂a = � ik "ab a b ; (2.1)and similarlyKa. Finally the u(1)4 symmetry is desribed in terms of free bosons as i�Y i,and the orresponding free fermions are �i (i = 1; 2; 3; 4).The hiral operators are onstruted from the dimension zero operatorsOj(x; y) = �h(x)�0j(y) with h = j + 1 ; j = 0; 12 ; :::; k�22 ; (2.2)where �h(x) and �0j(y) are the primaries of the bosoni H+3 and SU(2) WZW modelswith dimensions �(h) = �h(h� 1)kb � 2 ; �0(j) = j(j + 1)k0b + 2 ; (2.3)respetively.1 The labels x and y orrespond to the SL(2) and SU(2) representation labelsm and m0, respetively. Our onventions for these models an be found in appendix Aof [13℄. Sine h = j + 1, the operators Oj(x; y) have vanishing onformal dimensions,�(h) + �0(j) = 0.Neveu-Shwarz setorIn the Neveu-Shwarz setor there are two families of hiral primaries. In the �1 piturethey are2 O(0)j (x; y) = e�� (x)Oj(x; y) ; (2.4)O(2)j (x; y) = e���(y)Oj(x; y) ; (2.5)where the �elds  (x) and �(y) are given by (x) = � + + 2x 3 � x2 � ;�(y) = ��+ + 2y�3 + y2�� : (2.6)The bosonized superghost �eld e�� ensures that the operators have ghost number �1.Sometimes we will also need the orresponding ghost number 0 operators, whih areobtained from (2.4) by ating with the piture hanging operator �+1. These operatorswill be needed to get the orret ghost number in the orrelators. The ghost number 0operators are [6, 5℄~O(0)j (x; y) = �(1� h)|̂(x) + j(x) + 2k (x)�aP ay �Oj(x; y) ; (2.7)~O(2)j (x; y) = �hk̂(y) + k(y) + 2k�(y) ADAx �Oj(x; y) ; (2.8)1As mentioned above, we drop the dependene on the worldsheet oordinate z. For instane, theholomorphi H+3 operator is simply denoted by �h(x) instead of �h(x; z).2In [17℄, these operators are denoted by W�j and X+j , respetively.4



where the operators DAx and P ay areD�x = �x ; D3x = x�x + h ; D+x = x2�x + 2hx ;P�y = ��y ; P 3y = y�y � j ; P+y = y2�y � 2jy : (2.9)Here we used again the ompat notation|̂(x) = �|̂+ + 2x|̂3 � x2|̂� ;k̂(y) = �k̂+ + 2yk̂3 + y2k̂� ; et: (2.10)Ramond setorIn the Ramond setor there are also two families of hiral primaries, O(a)j (x; y) with a =�1. For their onstrution we need the spin operatorsS["1;"2;"3℄ = e i2 ("1Ĥ1+"2Ĥ2+"3Ĥ3) ; (2.11)where "I = �1 and Ĥi (i = 1; 2; 3) are bosonized fermions related to  a and �a (a = �; 0),as in [6℄ (Similarly, Ĥ4;5 are related to the fermions on the T 4, �i (i = 1; 2; 3; 4) [6℄). Then,in the �1=2 and �3=2 piture the hiral primaries are given by3O(a)j (x; y) = e��2 s1;2� (x; y)Oj(x; y) (a = �1) ; (2.12)and ~O(a)j (x; y) = �pk(2h� 1)�1e� 3�2 s1;2+ (x; y)Oj(x; y) ; (2.13)respetively, wheres1�(x; y) = S�(x; y)e+ i2 (Ĥ4�Ĥ5) ; s2�(x; y) = S�(x; y)e� i2 (Ĥ4�Ĥ5) (2.14)and S�(x; y) = �xyiS[���℄ � xS[�+�℄ + yiS[+��℄ + S[++�℄ : (2.15)Full hiral primary operatorsThe full hiral primary operators are given by the produt of a holomorphi with ananti-holomorphi operator,O(A; �A)j (x; �x; y; �y) � O(A)j (x; y) �O( �A)j (�x; �y) ; (2.16)where A = 0; a; 2 and �A = �0; �a; �2. When integrated over the worldsheet, these operatorsare dual to the hiral primary operators O(A; �A)n (n-yle twist operators with n = 2j + 1)in the symmetri orbifold theory on the boundary of AdS3, de�ned e.g. in [2, 6, 4℄.3O(+1)j and O(�1)j ontain s1� and s2�, respetively. In [17℄, these operators are denoted by Y�j .5



2.2 Worldsheet operator produt expansionsThe general struture of worldsheet operator produt expansions for strings on AdSd+1 �Wwas studied in [16℄. The vertex operators of this theory O h;j are usually labeled by thespaetime saling dimension h assoiated with the spaetime onformal group SO(d+1; 1)and a olletive label j denoting some internal quantum numbers. Let us restrit to d = 2.As exempli�ed in setion 2.1, for the speial ase of AdS3�S3�T 4, the vertex operatorsare produts of the primaries �h(z; x) and �0j(z; y) of the bosoni H+3 and SU(2) WZWmodels, dressed by a polynomial in the bosoni and fermioni worldsheet �elds and theirderivatives [17, 18, 23℄. These operators depend on both the worldsheet oordinate z aswell as the SL(2) and SU(2) representation labels x and y. As argued in [24℄, the labelx an be identi�ed with the oordinate on the boundary. Moreover, the SL(2) urrentalgebra on the string worldsheet indues a Virasoro algebra in spaetime onformal �eldtheory. In addition to the usual worldsheet onformal weight � = �(h; j) the vertexoperators therefore also have a spaetime saling dimension related to h.4 Physial vertexoperators have worldsheet dimension �(h; j) = 1.The Hilbert spae of the worldsheet theory ontains only the normalizable vertexoperators with h = 12 + is (s 2 R). For suh operators, the most general form of an AdS3worldsheet OPE is, in the limit z ! 0, [16℄:O 1(0)O 2(x; �x; z; �z) =Xj ZC dh Z d2x0 jzj2(�(h;j)��(1)��(2))jxj�jx0j�jx0 � xj F(ji; j; hi; h)O h;j (x0; �x0; 0; 0)+ desendants ; (2.17)where F is related to the 2-point and 3-point funtions on the worldsheet. The pa-rameters �, � and  are funtions of the spaetime onformal weights of the operatorsO i � O hi ;ji (i = 1; 2) and O h;j , respetively. �(1), �(2) and �(h; j) denote the orre-sponding worldsheet onformal weights. The dependene on z and x is ompletely deter-mined by onformal invariane. The OPE ontains an integral over the ontour h = 12+is,whih is denoted by C. In the following, we ignore ontributions oming from the world-sheet desendants.The above OPE is not diretly appliable to worldsheet operators whih are dual tospaetime operators. Suh operators are non-normalizable and therefore not part of theHilbert spae. Instead they have spaetime salings related to h loated on the real axis ofthe omplex h-plane. The OPE of suh non-normalizable operators is obtained by arefulanalyti ontinuation in h. As shown in [16℄, this amounts to the inlusion of additionaldisrete ontributions from the poles of F . Otherwise, the form of (2.17) is preserved.4The exat spaetime saling depends on the atual form of the operator, e.g. h[O(0)j ℄ = h[Oj ℄+h[ ℄ =h� 1 for the operator O(0)j de�ned in (2.4).
6



2.3 Worldsheet operator produt expansions of hiral primaryoperatorsWe now ompute the OPE (2.17) for the ase that the worldsheet operators are hiralprimary. We begin by onstruting the OPE of the dimension-zero operatorsOj(x; �x; y; �y) = �h(x; �x)�0j(y; �y) (h = j + 1) ; (2.18)whih form an essential part of the hiral primaries, as disussed after (2.2). The OPE isobtained from the OPEs of the H+3 and SU(2) �elds �h(x; �x) and �0j(y; �y).The OPE of two H+3 primaries was found in [25℄. As shown in Appendix A, it an bewritten as�h2(x2; �x2)�h1(x1; �x1) = ZC+ dhC(h1; h2; h)jz12j�2�12jx12j�2h12B(h) �h(x1; �x1) ; (2.19)with h12 = h1 + h2 � h and �12 = �1 + �2 � � (C+ = 1=2 + iR+). C(h1; h2; h3) andB(h) are the SL(2) struture onstants and the saling of the SL(2) two-point funtion,respetively. Similarly, the OPE of two SU(2) primaries is given by [26, 27℄�0j2(y2; �y2)�0j1(y1; �y1) =Xj C 0(j1; j2; j)jz12j�2�012 jy12j2j12�0j(y1; �y1) ; (2.20)with j12 = j1+ j2� j and �12 = �01+�02��0. In both OPEs we ignored the ontributionfrom urrent algebra desendants. Combining both OPEs yields the operator produtexpansionOj2(x2; �x2; y2; �y2)Oj1(x1; �x1; y1; �y1)=Xj ZC+ dhC 0Cjz12j�2(�12+�012)jy12j2j12B(h)jx12j2h12 �h(x1; �x1; z1; �z1)�0j(y1; �y1; z1; �z1)=Xj ZC+ dhC 0Cjz12j2(�(h)+�0(j))jy12j2j12B(h)jx12j2h12 Oj;h(x1; �x1; y1; �y1) : (2.21)In the last line we de�ned the more general operators Oj;h � �h�0j, for whih the labelsh and j are not related in any way. Reall that the resulting operator Oj;h need not bephysial.Let us now onstrut the OPE of the operator O(0;0)j in the �1 piture and ~O(0;0)j in the0 piture, whih are de�ned by (2.4) and (2.7), respetively. We start from the expression~O(0;0)j2 (x2; �x2; y2; �y2)O(0;0)j1 (x1; �x1; y1; �y1) (2.22)= �(1� h2)|̂(x2) + j(x2) + 2k (x2)�aP ay2�e�� (x1)� �(1� h2)�̂|(�x2) + �j(�x2) + 2k � (�x2)��aP a�y2�e��� � (�x1)Oj2(x2; �x2; y2; �y2)Oj1(x1; �x1; y1; �y1) :Using the OPEs (B.2)-(B.6) in appendix B and the identity2�aP ay = �(y)�y � j�y�(y) ; (2.23)7



this an also be written as~O(0;0)j2 (x2; �x2; y2; �y2)O(0;0)j1 (x1; �x1; y1; �y1)= ����(1� h2)�D(�1)21  (x1)�+  (x1)D(h1)21 + x221z21 (�(y2)�y2 � j2�y2�(y2))����2� e�����Oj2(x2; �x2; y2; �y2)Oj1(x1; �x1; y1; �y1)= ����x21z21  (x1) ((1� h2)2 + x21�x1 � 2h1) + x221z21 �(y2)�y2 + :::����2 e�����Oj2Oj1 : (2.24)The ellipses denote further terms involving derivatives of the type � and ��. In thisanalysis we neglet desendants and therefore ignore suh terms. In the following we willalso need to Taylor expand �(y2) = �(y1)+y12��(y1)+ ::: and again drop derivatives of �.j:::j2 indiates that there is the same fator in anti-holomorphi variables.Substituting (2.21) into (2.24), we evaluate the derivatives on Oj suh that x21�x1 !h12 and y21�y2 ! j12 under the integral. We obtain~O(0;0)j2 (x2; �x2; y2; �y2)O(0;0)j1 (x1; �x1; y1; �y1)=Xj ZC+ dhC 0Cjz12j2(�(h)+�0(j)�1)jy12j2j12B(h)jx12j2(h12�1) �(h1 + h2 + h� 2)2O(0;0)j;h (x1; �x1; y1; �y1)+ (j12)2 jx21j2jy21j2O(2;2)j;h (x1; �x1; y1; �y1) + :::� ; (2.25)where we ignored possible terms involving 'mixed' operators of the type O(0;2)j;h and O(2;0)j;h .Before we ontinue, let us reall how the fusion rules in the onformal �eld theoryon the boundary an be reprodued from the worldsheet desription [6℄. The operatorsin the OPE must obey U(1) harge onservation (as measured by the SU(2) generatorK30 , see [6℄). Chiral (anti-hiral) operators in the boundary CFT are mapped to highest(lowest) weight states of SU(2) in the worldsheet theory, i.e. M = J (M = �J). U(1)harge onservation in the fusion of two worldsheet operators, symboliallyO(�)j1 �O(�)j2 = [O(�)j3 ℄ ; (2.26)therefore requires [6℄ J = J1 + J2 ; (2.27)where Ji = ji+ai and ai = 0; 1=2; 1 for the holomorphi operators O(0);O(a);O(2), respe-tively. The fusion of two SU(2) primary states requires j3 � j1 + j2 and therefore (2.27)implies a3 � a1 + a2 : (2.28)Clearly, the fusion rules must also obey the spin-statistis relations NS � NS ! NS,NS � R ! R, R � NS ! R, and R � R ! NS, where NS and R refer to the operators8



in the Neveu-Shwarz setor (O(0);O(2)) and Ramond setor (O(a)), respetively. Thisallows for the following fusion rules in the holomorphi setor:(0)� (0) = (0) + (2) ;(0)� (2) = (2) ;(0)� (a) = (a) ;(a)� (a) = (2) : (2.29)Similar fusion rules hold in the anti-holomorphi setor. The four ases (2.29) an befreely ombined between holomorphi and anti-holomorphi operators. Note howeverthat in the fusion (0; 0)� (0; 0)! (0; 0) + (2; 2) the resulting operator must be the samein the holomorphi and anti-holomorphi setor, i.e. the ombinations (0; 2) and (2; 0)do not appear [6℄. In (2.25) the fusion rules therefore only allow for terms involving theoperators O(0;0)j;h : j = j1 + j2 � ~j ;O(2;2)j;h : j = j1 + j2 � 1 � ~j � 1 ; (2.30)where the j-values have been determined using (2.27). Terms proportional to O(0;2)j;h andO(2;0)j;h are forbidden by the worldsheet fusion rules.In order to ompare the worldsheet OPE with the orresponding boundary OPE, weneed to resale the operators as in [13℄ suh that their (integrated) two-point funtionssale as unity. For instane, the operators O(0;�0)j (x; �x) will be resaled asO (0;0)j (x; �x) = p2�2pk B(h)(2h� 1)gsO(0;�0)j (x; �x) : (2.31)Then, as shown in detail in appendix C, the OPE of the resaled operators O (0;�0)j followingfrom (2.25) is~O (0;�0)j2 (x2; �x2; y2; �y2)O (0;�0)j1 (x1; �x1; y1; �y1) (2.32)= ZC+ dh 2h� 12�2k jz21j2(�(h)�1)jx21j2(h21�1) �jz21j2�0(~j) G (000)3 (j1; j2; ~j; h)O (0;�0)~j ;h (x1; �x1; y1; �y1)+ jx21j2jz21j2�0(~j�1) G (002)3 (j1; j2; ~j � 1; h)O (2;2)~j�1;h(x1; �x1; y1; �y1)� ;where in the last line we de�ned the oeÆientsG (000)3 (j1; j2; j3; h3) � P (j1; j2; j3; h3) gsk (h1 + h2 + h3 � 2)2Qi(2hi � 1) 12 ;G (002)3 (j1; j2; j3; h3) � P (j1; j2; j3; h3) gsk (j1 + j2 � j3)2Qi(2hi � 1) 12 ; (2.33)9



and P (j1; j2; j3; h3) � CC 0 2�pB(h1)B(h2)B(h3) � (� = 1=(2�4k3)) : (2.34)The fator P (j1; j2; j3; h3) reets the fat that h3 is not related to j3 in the third operator.This fator would be just one, P (j1; j2; j3; h3) = 1, if h3 were related to j3 by h3 = j3+1.5In that ase, and if j3 is related to j1 + j2 as in (2.30), the oeÆients redue to theextremal three-point orrelatorsG (000)3 (j1; j2; j3; h3)jh3=j3+1 = DO (0;0)j1 (1)O (0;0)j2 (1) ~O (0;0)j3 (0)E ;G (002)3 (j1; j2; j3; h3)jh3=j3+1 = DO (0;0)j1 (1) ~O (0;0)j2 (1)O (2;2)j3 (0)E ; (2.35)found in [6, 5℄. Note, for instane, that the U(1) harge onservation j3 = j1 + j2 isequivalent to h3 = h1 + h2 � 1, if h3 = j3 + 1. However, we stress that we do not assumeany relation between h and ~j at this stage, i.e. the operators on the right-hand-side of(2.32) need not be physial.The other OPEs allowed by the fusion rules are omputed in a similar way. We �nd~O (0;�0)j2 (x2; �x2; y2; �y2)O (2;�2)j1 (x1; �x1; y1; �y1)= ZC+ dh 2h� 12�2k jz21j2(�(h)+�0(~j)�1)jx21j2(h21�1) G (022)3 (j1; j2; ~j; h)O (2;�2)~j ;h (x1; �x1; y1; �y1) ; (2.36)~O (0;�0)j2 (x2; �x2; y2; �y2)O (a;�a)j1 (x1; �x1; y1; �y1)= ZC+ dh 2h� 12�2k jz21j2(�(h)+�0(~j)�1)jx21j2(h21�1) G (0aa)3 (j1; j2; ~j; h)O (a;�a)~j ;h (x1; �x1; y1; �y1) ; (2.37)O (a;�a)j2 (x2; �x2; y2; �y2)O (b;�b)j1 (x1; �x1; y1; �y1)= ZC+ dh 2h� 12�2k jz21j2(�(h)+�0(~j)�1)jx21j2(h21�1) G (ab2)3 (j1; j2; ~j; h)O (2;�2)~j ;h (x1; �x1; y1; �y1) ; (2.38)withG (022)3 (j1; j2; j3; h3) � P (j1; j2; j3; h3)gsk (�h1 + h2 + h3)2Qi(2hi � 1) 12 ; (2.39)G (0aa)3 (j1; j2; j3; h3) � P (j1; j2; j3; h3)gsk (h1 + h2 + h3 � 2)2(2h3 � 1)2 (2h1 � 1) 12 (2h3 � 1) 12(2h2 � 1) 12 ; (2.40)G (ab2)3 (j1; j2; j3; h3) � P (j1; j2; j3; h3)gsk (2h1 � 1) 12 (2h2 � 1) 12(2h3 � 1) 12 Æab : (2.41)The orrelators (2.39){(2.41) redue again to the extremal three-point funtions omputedin [6℄, if h3 = j3 + 1. Note that the total ghost number is preserved in the OPEs.5This an be seen by using the identity (4.29) in [13℄. This identity has �rst been found in [5, 6℄.10



2.4 Disussion and omparison with boundary operator produtexpansionsSome omments on the worldsheet operator produt expansions (2.32) are in order. Sim-ilar statements will hold for the OPEs (2.36){(2.38).First, let us �rst ompare (2.32) with the general form (2.17). De�ning �(h; j) ��(h) + �0(j) + 1, whih is the worldsheet onformal dimension of O (0;0)j;h (and O (2;2)j;h ), we�nd that at small z and small x (2.32) agrees with the general form (2.17), sine thehiral primaries have onformal dimension �(1) = �(2) = 1 and jz21j2(�(h;j)��(1)��(2)) =jz21j2(�(h)+�0(j)�1). Reall also that O (0;0)j;h and O (2;2)j;h sale di�erently in x, h(0) = h � 1and h(2) = h [13℄. The total x-dependene should be jx21j2(h(A)�h(0)1 �h(0)2 ) with A = 0; 2 inthe �rst and seond term of (2.32), respetively. Therefore there is an additional fatorjx21j2 in the seond term of (2.32). Consequently, we �nd that the OPE has the orretsaling in both x and z. (In (2.32) we have already used U(1) harge onservation suhthat there is no sum over j anymore).Seond, another peuliar feature of (2.32) is the appearane of the fator2h� 12�2k : (2.42)As we will see later, when we use the OPE inside a general orrelator, this fator willanel against the residue of the h-integral, whih is proportional to the inverse of thederivative of the SL(2) onformal weight, (�h�)�1 / k=(2h� 1).Third, it is also interesting to ompare the worldsheet OPE (2.32) with the orre-sponding spaetime OPE of n-yle twist operators of the type O(0;0)n whih are dual tothe worldsheet operators O (0;0)j . This OPE is given by [4℄6O(0;0)n2 O(0;0)n1 = C3O(0;0)~n + C 03O(2;2)~n�2 + ::: ; (2.43)with ~n = n1 + n2 � 1 and struture onstants C3 and C 03. The ellipses indiate termsoming from multi-yle operators. Given that the yle lengths ni are related to ji byni = 2ji+1 (and ~n = 2~j+1), we observe a strutural resemblane between the worldsheetand the spaetime OPE, f. (2.32) with (2.43). In partiular, both OPEs satisfy the fusionrelation (0; 0)� (0; 0)! (0; 0)+ (2; 2) of the hiral-hiral ring. More general, we �nd thatthe worldsheet OPEs (2.32), (2.36)-(2.38) mimi the fusion rules of the (; ) ring in thespaetime onformal �eld theory,(0; 0)� (0; 0) = (0; 0) + (2; 2) ;(0; 0)� (2; 2) = (2; 2) ;(0; 0)� (a; a) = (a; a) ;(a; a)� (a; a) = (2; 2) : (2.44)6See [4℄ for a preise de�nition of the operators O(0;0)n and the orresponding OPE.
11



In fat, upon integration over the worldsheet oordinates, the worldsheet OPE (2.32)beomes idential to the spaetime OPE (2.43) (multi-yle ontributions ignored).7Fourth, one might worry that (2.32) still depends on the spaetime oordinates x,while the spaetime OPE (2.43) has no singularities. We will see however in the nextsetion that, when the OPE is employed inside an extremal p-point orrelator of hiralprimary operators, the x-dependene will drop out (Basially the integration over h willyield a relation between h and ~j whih eliminates the x-dependene in both terms in(2.32).).3 Reursion relation for worldsheet p-point funtionsIn this setion we derive a reursion relation for a partiular extremal worldsheet p-pointfuntion and ompare it with the orresponding relation for the dual boundary orrelatorpreviously omputed in [4℄.A simple worldsheet p-point funtion on the sphere is given by the produt of p(resaled) operators O j � O (0;0)j ,G p � G j1 ;:::;jpp = g�2s * ~O jp (1)O jp�1 (1) p�2Yi=2 Z d2zi ~O ji (xi; �xi; zi; �zi)!O j1 (0)+ ; (3.1)with the extremality ondition jp = p�1Xi=1 ji : (3.2)Modular invariane has been used to �x three of the p worldsheet points as z1;p�1;p =0; 1;1. Similarly, the ontinuous SL(2) representation labels are hosen as x1;p�1;p =0; 1;1. The x labels will later be identi�ed with the omplex oordinates in the spaetimeonformal �eld theory [24℄. The orrelator G p involves p � 2 ghost number zero and 2ghost number �1 operators, ~O (0;0)j and O (0;0)j , respetively. Reall that the total ghostnumber of a orrelator on a genus-g surfae must be �� = �(2� 2g), whih is �2 on thesphere.We now show that the p-point funtions G p satisfy the reursion relationG p ' DO (0;0)~j (1) ~O (0;0)j2 (1)O (0;0)j1 (0)E G p�1 (3.3)with ~j = j1 + j2. The symbol ' indiates that (3.3) is true up to a fator F whihurrently annot be reprodued on the worldsheet. This fator is oming from two-partile ontributions in the intermediate hannel, whih are nonloal on the worldsheet.7This an be seen by setting z1 = 0 and z = z2 and performing the integral over z and h as desribed insetion 3 below. After the integration over h, G (000)3 and G (002)3 have redued to the extremal orrelators(2.35) whih are idential to the oeÆients C3 and C 03 appearing in (2.43) [6, 5℄.12



The fator F has however been determined in the dual symmetri orbifold theory. Thereursion relation for the dual boundary orrelators Cp is given byCp = np~n DO(0;0)y~n (1)O(0;0)n2 (1)O(0;0)n1 (0)ECp�1 (3.4)with ~n = n1+n2�1 [4℄. The non-renormalization theorem of [15℄ predits the equivaleneof both reursion relations suh that F an be identi�ed as F = np~n = 2jp+12~j+1 .Proof of (3.3): Substituting the worldsheet OPE (2.32) into G p , we obtain8G p = g�2s Z d2z2 ZC dh*~O jp (1)O jp�1 (1) p�2Yi=3 Z d2zi ~O ji (xi; �xi; zi; �zi)!O ~j ;h(0)+� 2h� 12�2k jz2j2(�(h)+�0(~j)�1)jx2j2(h21�1) G (000)3 (j1; j2; ~j; h) + :::= Z d2z ZC dh2h� 12�2k jzj2(�(h)+�0(~j)�1)jxj2(h21�1) G p�1 G (000)3 (j1; j2; ~j; h) + ::: ; (3.5)where we set z = z2 (x = x2) and introdued the short hand notation G p�1 for G j;j3 ;:::;jpp�1 .The ellipses indiate that there is in priniple a seond ontribution from the operatorO (2;2)~j�1;h in the OPE (2.32). This ontribution is zero, as will be shown below.The integrals over z and h an be done as in the ase of four-point funtions [13, 14℄.As in [13℄, we need to do the z-integral before the h-integral. In that ase we have to beareful about the ourrene of divergenies and regularize the z-integral by introduinga uto� " [14℄. Later, after the integrations, we will eventually take the limit " ! 0. Ingeneral it is not known how to ompute the z-integral over the whole range of z, but it anbe omputed in the limit of small jzj < ". In this region, the z-integral an be performedby elementary methods, Zjzj<" d2z jzj2(�(h)�1) = ��(h)"2�(h) (3.6)with �(h) = �(h)+�0(~j). As disussed in [16, 14℄, the integral only over jzj < " apturesthe single-yle (or, in higher dimensions, single-trae) terms in the spaetime OPE. Byperforming the integral only over jzj < ", we omit nonloal ontributions from the large zregion, whih are expeted to give the double-yle terms in the spaetime OPE [14, 16℄.This limitation prevents us from deriving the overall fator F , whih is known to arisefrom double-yle operators in the spaetime OPE [4℄.We now turn to the integration over h. In general, after the z integration, there areadditional disrete ontributions oming from poles in the integrand of (3.5) [14, 16℄. Suhontributions arise when the poles ross the integration ontour duringi) the analyti ontinuation in j1 and j2 (or h1;2 = j1;2 + 1), and8Within a p-point funtion the integration over the half-axis C+ = 1=2 + iR+ an be extended to anintegration over the full axis C = 1=2 + iR [25℄. 13



ii) the shift of the ontour from h = 1=2+ is to h = h0+ is (s 2 R), where h0 is de�nedby �(h0) = 0.9There are altogether four types of poles [14, 16℄:type I: � = 0 ;type II: h = h1 + h2 + n ;type III: h = k � h1 � h2 + n ;type IV: h = jh1 � h2j � n ; n 2 f0; 1; 2; :::g :The poles of type II-IV are poles in the struture onstants C(h; h1; h2). As disussedextensively in [16℄, none of these poles ontributes to the integral, at least if the preedingz integration is restrited to the regime jzj < ". Even though naively one might interpretthe ontributions from the poles of type II as \double-yle" operators in the spaetimeCFT, suh ontributions go to zero in the "! 0 limit [16℄ (This is in agreement with thegeneral expetation [16℄ that ontributions from double-yle operators arise non-loally,i.e. at large z and not in the jzj < " region). Type III poles do not appear if one assumesh1 + h2 < k+12 [14℄. Other than the poles of type II, the type IV poles may ontributeboth during the analyti ontinuation and the additional shift in the ontour. It wasfound in [16℄ that the ontribution oming from rossing the ontour during the analytiontinuation is exatly the opposite of that during the subsequent shift of the ontour. Ine�et, the poles of type IV do not modify the �nal result.We are left with poles of type I, �(h) = 0, orresponding to h = h0 � ~j + 1. Theresidue of this pole is Res(f ; h0) = �"2�(h0)�0(h0) 2h0 � 12�2k G p�1 G (000)3 ; (3.7)where f is the integrand of (3.5) and 0 � �h. Remarkably, the �rst and seond fator onthe right-hand side anel eah other (up to 2�), sine �0(h0) = �h�(h0). Moreover, thex-dependene drops out sine h21 � 1 = h2 + h1 � h0 � 1 = j2 + j1 � ~j = 0. Applying theresidue theorem, we thus obtainG p = G p�1 G (000)3 (j1; j2; ~j; h = ~j + 1)= DO (0;0)~j (1) ~O (0;0)j2 (1)O (0;0)j1 (0)E G p�1 ; (3.8)whih is nothing but (3.3).We still have to show that in (3.5) there are no ontributions from the operator O (2;2)~j�1;h.The additional term in the integrand of (3.5) is proportional tojzj2(�(h)+�0(~j�1)�1)jxj2(h21�2) G (002)3 (j1; j2; ~j � 1; h) (3.9)9It is onvenient to shift the ontour in this way sine, as we will see, most of the pole ontributionsvanish during the shift. 14



and has a pole at h = ~j. After applying the residue theorem, the x-dependene drops out,sine jxj2(h2+h1�h�2) = jxj2((j2+1)+(j1+1)�~j�2) = 1 and we get the additional ontributionDO (2;2)~j�1 (1) ~O (0;0)j2 (1)O (0;0)j1 (0)E G 0p�1 ; (3.10)where G 0p�1 is de�ned byG 0~j�1;j3;:::;jpp�1 = g�2s DO (0;0)j4 (1) ~O (0;0)j3 (1)XO (2;2)~j�1 (0)E (3.11)and X denotes the produt of p� 4 ~O (0;0)j operators.Clearly, for p = 4, the three-point orrelator G 0~j�1;j3;j43 is zero, as an be seen asfollows. The extremality ondition (3.2) for Gj1;j2;j3;j44 an be written asj4 = j1 + j2 + j3 = ~j + j3 ; (3.12)whih is formally the U(1) harge onservation for the fusion of O (2;2)~j�1 and ~O (0;0)j3 . However,the fusion rules require a4 � ~a + a3 (f. with (2.28)), whih is violated sine a4 = 0 and~a + a3 = 1 + 0 = 1, implying G 03~j�1;j3;j4 = 0. A similar argument holds for p > 4. Thus,the term (3.10) vanishes identially.4 ConlusionsIn this paper we studied the worldsheet realization of the hiral ring struture of theN = (4; 4) symmetri orbifold theory on the boundary of AdS3 � S3 � T 4. Our mainresults are the (unintegrated) worldsheet operator produt expansions (2.32) and (2.36){(2.38), whih niely reet the fusion rules of the hiral ring. Despite the similarity tothe dual spaetime OPEs, there are also some strutural di�erenes whih we disussedat length in setion 2.4. In partiular, the worldsheet OPEs are not simply given bythe (extremal) worldsheet three-point funtions of hiral primary operators [5, 6℄, as onemight naively expet. In fat, the operators O h;j appearing on the right hand side of theworldsheet OPEs need not even be physial, i.e. there is a priori no relation between theSL(2) and SU(2) labels h and j, whereas h = j + 1 for hiral primaries. In this respet,the OPEs are more general than the three-point funtions in [5, 6℄. However, when theworldsheet OPEs are integrated over the worldsheet oordinates, the h integral turns outto have a pole at h = j + 1, and the worldsheet OPEs beome idential to those of thespaetime CFT.As an interesting appliation, we used the worldsheet OPEs to derive a reursionrelation for a partiular lass of extremal p-point orrelators on the worldsheet. Our result(3.3) for the orrelator (3.1) agrees with the reursion relation for the dual boundaryp-point funtion [4℄, up to a simple overall fator F = np=~n. In the spaetime OPEthe fator F omes from two-yle operators, whose ontributions are not suppressed inextremal orrelators at largeN . Unfortunately, these ontributions arise nonloally on theworldsheet and are presently not very well understood [16℄. It would be highly desirable15



to understand in more detail how multi-yle (or, in general, multi-trae) operators aretreated in worldsheet OPEs.In this paper (and its preursors [5℄{[8℄,[13℄) worldsheet p-point funtions on AdS3�S3(with NSNS uxes) are omputed on the full quantum level. This may be ompared to thesemi-lassial treatment of worldsheet p-point funtions for string theory on AdS5 � S5(with RR uxes), see e.g. [28℄{[33℄. To gain more insight into the latter approah, it wouldbe interesting to repeat suh semi-lassial omputations on AdS3 � S3 and ompare theresults with the already known quantum orrelators. It may also be of interest to attempta full quantum omputation on AdS3 bakgrounds with Ramond-Ramond uxes, perhapsusing tehniques suggested in [34℄.AknowledgmentWe would like to thank Carlos Cardona, Matthias Gaberdiel, Volker Shomerus and J�orgTeshner for useful disussions and omments on the paper. Part of this work was doneduring DESY's summer student programme 2010. T. W. thanks DESY for its hospitalityduring the summer shool.AppendixA OPE of H+3 primariesIn the following we derive the worldsheet operator produt expansion of hiral primaryoperators in the H+3 model. { Important note: Other than in the rest of the paper, weuse the onventions of Teshner [25℄ in this appendix, i.e. we use j to label the H+3 states.The worldsheet OPE of two H+3 primaries is [25℄10�j1(x1; �x1; z1; �z1)�j2(x2; �x2; z2; �z2)= ZC+ dj3 C(j1; j2; j3)jz12j�2�12(J12(j3)��j3�1)(z2; �z2) ; (A.1)where(J12(j3)��j3�1)(z2; �z2) � ZC d2x3 jx12j2j12jx23j2j23 jx31j2j31��j3�1(x3; �x3; z2; �z2) : (A.2)Here �12 = �1 +�2��3, j12 = j1 + j2� j3, et. We prefer to express the OPE in termsof �j3 rather than ��j3�1. We therefore substitute the expression(J12(j3)��j3�1)(z2; �z2) = (�2j3)(��)(�j23)(�j31) 1B(j3)(J12(�j3 � 1)�j3)(z2; �z2) (A.3)10We interhange the labels 1$ 2. In the following we ignore the ontribution from desendants.16



into (A.1) and obtain�j1(x1; �x1; z1; �z1)�j2(x2; �x2; z2; �z2) (A.4)= ZC+ dj3 C(j1; j2; j3)jz12j�2�12 (�2j3)(��)(�j23)(�j31) 1B(j3)� ZC d2x3 jx12j�2(�j1�j2�j3�1)jx23j�2(1+j31)jx31j�2(1+j23)�j3(x3; �x3; z2; �z2) :We now simplify the expression by omputing the x3-integralI = ZC d2t0 jtj�2(�j1�j2�j3�1)jt0j�2(1+j31)jt� t0j�2(1+j23)�j3(x2�t0; �x2��t0; z2; �z2) ; (A.5)where we have de�ned t = x12 and t0 = x23. Denoting t = jtjt̂ and de�ning y = t0=jtj, wegetI = jtj�2(�j1�j2+j3+1) ZC d2t0 (jt0j=jtj)�2(1+j31)j(t0=jtj � t̂)j�2(1+j23)�j3(x2�t0; �x2��t0; z2; �z2)= jtj2j12 ZC d2y jyj�2(1+j31)jy � t̂j�2(1+j23)�j3(x2�yjtj; �x2��yjtj; z2; �z2) : (A.6)In the OPE, x1 and x2 are assumed to be lose to eah other suh that jtj is small. We alsoignore the subleading ontributions from spae-time desendants. We may then Taylorexpanded the operator �j3(x2 � yjtj; �x2 � �yjtj; z2; �z2) around x2 and obtain11I � jtj2j12�j3(x2; �x2; z2; �z2) ZC d2y jyj�2(1+j31)jy � t̂j�2(1+j23) : (A.7)Using the identity ZC d2y jyj2aj1� yj2b = ��(�1� a� b)(�a)(�b) ; (A.8)the integral I beomesI = (��)jx12j2j12 (1 + 2j3)(1 + j31)(1 + j23)�j3(x2; �x2; z2; �z2) : (A.9)Thus, �j1(x1; �x1; z1; �z1)�j2(x2; �x2; z2; �z2)= ZC+ dj3C(j1; j2; j3)jz12j�2�12 1B(j3) jx12j2j12�j3(x2; �x2; z2; �z2) : (A.10)Replaing j ! �h (�j ! �h), we get (2.19).11An almost idential expansion was done in Eq. (2.10) in [16℄.17



B Some orrelators and operator produt expansionsIn this appendix we list some worldsheet operator produt expansions used in setion 2.It is onvenient to express these OPEs in terms of the operatorD(hi)ki = 1zki �x2ki�xi � 2hixki� ; (B.1)where hi denotes the spaetime saling of the operator it ats on. Some important world-sheet operator produt expansions are [6, 13℄:j(xk)�hi(xi) � D(hi)ki �hi(xi) ; (B.2)j(x1)j(x2) � (k + 2)x212z212 +D(�1)12 j(x2) ; (B.3)|̂(x1)|̂(x2) � �2x212z212 +D(�1)12 |̂(x2) ; (B.4)|̂(x1) (x2) � D(�1)12  (x2) ; (B.5) (x1) (x2) � kx212z12 : (B.6)C Resaling the operators in the OPEIn this appendix we ompute the resaled OPE (2.32). For omparison with the boundarytheory, it is useful to resale the operators suh that, when integrated over z, their two-point funtions are just one (integration over z1;2). The resaled operators are [13℄O (0;0)j (x; �x) = p2�2pk B(h)(2h� 1)gsO(0;�0)j (x; �x) ;O (a;�a)j (x; �x) =s2�2(2h� 1)B(h) gsO(a;�a)j (x; �x) : (C.1)The operator O(2;2)j (x; �x) is resaled as O(0;0)j (x; �x) (Tilded operators are resaled as theiruntilded partners). Then, substituting the OPE (2.25) into~O (0;�0)j2 (x2; �x2; y2; �y2)O (0;�0)j1 (x1; �x1; y1; �y1)= 2�2g2skpB(h1)(2h1 � 1)B(h2)(2h2 � 1) ~O(0;�0)j2 (x2; �x2; y2; �y2)O(0;�0)j1 (x1; �x1; y1; �y1) ; (C.2)we get~O (0;�0)j2 (x2; �x2; y2; �y2)O (0;�0)j1 (x1; �x1; y1; �y1) (C.3)=Xj ZC dh jz12j2(�(h)+�0(j)�1)jy12j2j12jx12j2(h12�1) (2h� 1)p(2h� 1)(2h2 � 1)(2h1 � 1) gsp2�2 C 0Cpk B(h1)B(h2)B(h)� �(h1 + h2 + h� 2)2O (0;�0)j;h (x1; �x1; y1; �y1) + (j12)2 jx21j2jy21j2 O (2;�2)j;h (x1; �x1; y1; �y1)� ;whih an be written as (2.32). 18
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