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Abstra
tWe 
onstru
t the operator produ
t expansions (OPE) of the 
hiral primary operatorsin the worldsheet theory for strings on AdS3 � S3 � T 4. As an interesting appli
ation,we will use the worldsheet OPEs to derive a re
ursion relation for a parti
ular 
lass ofextremal p-point 
orrelators on the sphere. We 
ompare our result with the 
orrespondingre
ursion relation previously found in the symmetri
 orbifold theory on the boundary ofAdS3.
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tionIn the re
ent years, mu
h progress has been made in mat
hing 
orrelation fun
tions inthe AdS3=CFT2 
orresponden
e [1℄. In the symmetri
 produ
t orbifold theory on theboundary of the AdS3 spa
e, two- and three-point fun
tions of single-
y
le twist opera-tors were 
omputed in [2, 3℄. In [4℄, this analysis was extended to some simple four-pointfun
tions, and re
ursion relations were found for some extremal p-point 
orrelators. Inthe dual worldsheet theory for string theory on AdS3 � S3 � T 4, the two- and three-point 
orrelators of 
hiral primary operators were derived in [5, 6℄ (see also [7, 8℄) andintriguing agreement with the dual boundary 
orrelators was found (Later, agreementwith supergravity was a
hieved in [9℄, see also [10, 11, 12℄ for earlier work). Re
ently, in[13℄, (the one-parti
le 
ontributions of) some extremal four-point 
orrelators have been
omputed on the worldsheet using a general method for SL(2) 
orrelation fun
tions de-veloped in [14℄. Again, agreement was found with the 
orresponding boundary result of[4℄. Even though the string theory/supergravity and �eld theory 
orrelators are 
omputedat di�erent points in the moduli spa
e, they must and do agree as predi
ted by the non-renormalization theorem of [15℄. This theorem states that all three-point fun
tions as wellas all extremal p-point fun
tions (p > 3) of 
hiral primary operators are prote
ted alongthe moduli spa
e [15℄.In this paper we extend the analysis of [13℄ by deriving a re
ursion relation for higherp-point 
orrelators in the worldsheet theory. Su
h p-point fun
tions may be fa
torized bymeans of worldsheet operator produ
t expansions (OPE), whi
h should not be mixed upwith their dual spa
etime OPEs. Their general properties were dis
ussed in [16℄ for stringtheory on a general AdSd+1 �W ba
kground. Here we spe
ialize to AdS3 � S3 � T 4 and
ompute the worldsheet operator produ
t expansions of 
hiral primary operators in the2



asso
iated H+3 � SU(2) Wess-Zumino-Witten (WZW) model. The 
hiral primaries are
omposite operators of the bosoni
 H+3 and SU(2) primaries, usually dressed with somefree fermions and ghosts, and their OPEs are obtained by 
ombining the OPEs of theindividual �elds. Comparing the thus obtained (unintegrated) worldsheet OPEs with the
orresponding spa
etime OPEs, we �nd, not surprisingly, a one-to-one realization of thefusion rules of the 
hiral ring. We will also dis
uss some stru
tural di�eren
es betweenboth kinds of OPEs.To �nd the re
ursion relation, we insert the worldsheet OPEs into a parti
ular 
lass ofextremal p-point fun
tions of 
hiral primary operators (In an extremal p-point fun
tionthe spa
etime s
aling of the p-th operator is the sum of the spa
etime s
alings of the otherp� 1 operators). After performing the integrals over a (single) worldsheet 
oordinate andthe SL(2) representation label h, in a similar fashion as in [13℄, the p-point fun
tionfa
torizes into the produ
t of a p� 1-point fun
tion and a three-point fun
tion. In thisway we �nd a re
ursion relation whi
h, up to an overall fa
tor F , is in agreement withthe re
ursion relation of the dual boundary 
orrelator previously found in [4℄. We will
omment on F in the 
on
lusions.2 Worldsheet operator produ
t expansions in AdS3In the following we derive the operator produ
t expansions of the 
hiral primary operatorsin the worldsheet theory for string theory on AdS3 � S3 � T 4. In the next se
tion, wewill use the resulting OPEs to �nd a re
ursion relation for a parti
ular 
lass of p-pointfun
tions.2.1 Chiral primary operatorsWe begin by summarizing the worldsheet 
hiral primary operators [17, 18, 6℄. Our 
on-ventions are as in [13℄. In parti
ular, it is understood that all operators depend on the
omplex worldsheet 
oordinate z, even though we often omit this dependen
e in the ar-guments of the operators.The worldsheet theory is the produ
t of an N = 1 WZW model on H+3 , an N = 1WZW model on S3 ' SU(2) and an N = 1 U(1)4 free super
onformal �eld theory. Weemphasize here that, following [14℄, we 
onsider an H+3 = SL(2; C )=SU(2) sigma modelwhose target spa
e is a Eu
lidean AdS3. Likewise, the dual CFT2 on the boundary isunitary and its time variable 
an be analyti
ally 
ontinued to Eu
lidean time. In thisway we avoid problems whi
h arise in the de�nition of operator produ
t expansions in the(Lorentzian) SL(2;R) WZW model [19℄{[22℄.The above WZW model has the aÆne world-sheet symmetry bsl(2)k �
su(2)k0 � u(1)4.Criti
ality of the fermioni
 string on AdS3 � S3 requires the identi�
ation of the levelsk and k0 [23℄, k = k0 . The label k denotes the supersymmetri
 level of the aÆne Liealgebras and is identi�ed with the bosoni
 levels kb and k0b as k = kb � 2 = k0b + 2. Thebosoni
 
urrents are Ja for SL(2) and Ka for SU(2). The free fermions of SL(2) aredenoted by  a, those of SU(2) by �a (a = (+; 0;�) in either 
ase). It is 
onvenient to3



split the bosoni
 
urrents asJa = ja + |̂a ; |̂a = � ik "ab
 a b ; (2.1)and similarlyKa. Finally the u(1)4 symmetry is des
ribed in terms of free bosons as i�Y i,and the 
orresponding free fermions are �i (i = 1; 2; 3; 4).The 
hiral operators are 
onstru
ted from the dimension zero operatorsOj(x; y) = �h(x)�0j(y) with h = j + 1 ; j = 0; 12 ; :::; k�22 ; (2.2)where �h(x) and �0j(y) are the primaries of the bosoni
 H+3 and SU(2) WZW modelswith dimensions �(h) = �h(h� 1)kb � 2 ; �0(j) = j(j + 1)k0b + 2 ; (2.3)respe
tively.1 The labels x and y 
orrespond to the SL(2) and SU(2) representation labelsm and m0, respe
tively. Our 
onventions for these models 
an be found in appendix Aof [13℄. Sin
e h = j + 1, the operators Oj(x; y) have vanishing 
onformal dimensions,�(h) + �0(j) = 0.Neveu-S
hwarz se
torIn the Neveu-S
hwarz se
tor there are two families of 
hiral primaries. In the �1 pi
turethey are2 O(0)j (x; y) = e�� (x)Oj(x; y) ; (2.4)O(2)j (x; y) = e���(y)Oj(x; y) ; (2.5)where the �elds  (x) and �(y) are given by (x) = � + + 2x 3 � x2 � ;�(y) = ��+ + 2y�3 + y2�� : (2.6)The bosonized superghost �eld e�� ensures that the operators have ghost number �1.Sometimes we will also need the 
orresponding ghost number 0 operators, whi
h areobtained from (2.4) by a
ting with the pi
ture 
hanging operator �+1. These operatorswill be needed to get the 
orre
t ghost number in the 
orrelators. The ghost number 0operators are [6, 5℄~O(0)j (x; y) = �(1� h)|̂(x) + j(x) + 2k (x)�aP ay �Oj(x; y) ; (2.7)~O(2)j (x; y) = �hk̂(y) + k(y) + 2k�(y) ADAx �Oj(x; y) ; (2.8)1As mentioned above, we drop the dependen
e on the worldsheet 
oordinate z. For instan
e, theholomorphi
 H+3 operator is simply denoted by �h(x) instead of �h(x; z).2In [17℄, these operators are denoted by W�j and X+j , respe
tively.4



where the operators DAx and P ay areD�x = �x ; D3x = x�x + h ; D+x = x2�x + 2hx ;P�y = ��y ; P 3y = y�y � j ; P+y = y2�y � 2jy : (2.9)Here we used again the 
ompa
t notation|̂(x) = �|̂+ + 2x|̂3 � x2|̂� ;k̂(y) = �k̂+ + 2yk̂3 + y2k̂� ; et
: (2.10)Ramond se
torIn the Ramond se
tor there are also two families of 
hiral primaries, O(a)j (x; y) with a =�1. For their 
onstru
tion we need the spin operatorsS["1;"2;"3℄ = e i2 ("1Ĥ1+"2Ĥ2+"3Ĥ3) ; (2.11)where "I = �1 and Ĥi (i = 1; 2; 3) are bosonized fermions related to  a and �a (a = �; 0),as in [6℄ (Similarly, Ĥ4;5 are related to the fermions on the T 4, �i (i = 1; 2; 3; 4) [6℄). Then,in the �1=2 and �3=2 pi
ture the 
hiral primaries are given by3O(a)j (x; y) = e��2 s1;2� (x; y)Oj(x; y) (a = �1) ; (2.12)and ~O(a)j (x; y) = �pk(2h� 1)�1e� 3�2 s1;2+ (x; y)Oj(x; y) ; (2.13)respe
tively, wheres1�(x; y) = S�(x; y)e+ i2 (Ĥ4�Ĥ5) ; s2�(x; y) = S�(x; y)e� i2 (Ĥ4�Ĥ5) (2.14)and S�(x; y) = �xyiS[���℄ � xS[�+�℄ + yiS[+��℄ + S[++�℄ : (2.15)Full 
hiral primary operatorsThe full 
hiral primary operators are given by the produ
t of a holomorphi
 with ananti-holomorphi
 operator,O(A; �A)j (x; �x; y; �y) � O(A)j (x; y) �O( �A)j (�x; �y) ; (2.16)where A = 0; a; 2 and �A = �0; �a; �2. When integrated over the worldsheet, these operatorsare dual to the 
hiral primary operators O(A; �A)n (n-
y
le twist operators with n = 2j + 1)in the symmetri
 orbifold theory on the boundary of AdS3, de�ned e.g. in [2, 6, 4℄.3O(+1)j and O(�1)j 
ontain s1� and s2�, respe
tively. In [17℄, these operators are denoted by Y�j .5



2.2 Worldsheet operator produ
t expansionsThe general stru
ture of worldsheet operator produ
t expansions for strings on AdSd+1 �Wwas studied in [16℄. The vertex operators of this theory O h;j are usually labeled by thespa
etime s
aling dimension h asso
iated with the spa
etime 
onformal group SO(d+1; 1)and a 
olle
tive label j denoting some internal quantum numbers. Let us restri
t to d = 2.As exempli�ed in se
tion 2.1, for the spe
ial 
ase of AdS3�S3�T 4, the vertex operatorsare produ
ts of the primaries �h(z; x) and �0j(z; y) of the bosoni
 H+3 and SU(2) WZWmodels, dressed by a polynomial in the bosoni
 and fermioni
 worldsheet �elds and theirderivatives [17, 18, 23℄. These operators depend on both the worldsheet 
oordinate z aswell as the SL(2) and SU(2) representation labels x and y. As argued in [24℄, the labelx 
an be identi�ed with the 
oordinate on the boundary. Moreover, the SL(2) 
urrentalgebra on the string worldsheet indu
es a Virasoro algebra in spa
etime 
onformal �eldtheory. In addition to the usual worldsheet 
onformal weight � = �(h; j) the vertexoperators therefore also have a spa
etime s
aling dimension related to h.4 Physi
al vertexoperators have worldsheet dimension �(h; j) = 1.The Hilbert spa
e of the worldsheet theory 
ontains only the normalizable vertexoperators with h = 12 + is (s 2 R). For su
h operators, the most general form of an AdS3worldsheet OPE is, in the limit z ! 0, [16℄:O 1(0)O 2(x; �x; z; �z) =Xj ZC dh Z d2x0 jzj2(�(h;j)��(1)��(2))jxj�jx0j�jx0 � xj
 F(ji; j; hi; h)O h;j (x0; �x0; 0; 0)+ des
endants ; (2.17)where F is related to the 2-point and 3-point fun
tions on the worldsheet. The pa-rameters �, � and 
 are fun
tions of the spa
etime 
onformal weights of the operatorsO i � O hi ;ji (i = 1; 2) and O h;j , respe
tively. �(1), �(2) and �(h; j) denote the 
orre-sponding worldsheet 
onformal weights. The dependen
e on z and x is 
ompletely deter-mined by 
onformal invarian
e. The OPE 
ontains an integral over the 
ontour h = 12+is,whi
h is denoted by C. In the following, we ignore 
ontributions 
oming from the world-sheet des
endants.The above OPE is not dire
tly appli
able to worldsheet operators whi
h are dual tospa
etime operators. Su
h operators are non-normalizable and therefore not part of theHilbert spa
e. Instead they have spa
etime s
alings related to h lo
ated on the real axis ofthe 
omplex h-plane. The OPE of su
h non-normalizable operators is obtained by 
arefulanalyti
 
ontinuation in h. As shown in [16℄, this amounts to the in
lusion of additionaldis
rete 
ontributions from the poles of F . Otherwise, the form of (2.17) is preserved.4The exa
t spa
etime s
aling depends on the a
tual form of the operator, e.g. h[O(0)j ℄ = h[Oj ℄+h[ ℄ =h� 1 for the operator O(0)j de�ned in (2.4).
6



2.3 Worldsheet operator produ
t expansions of 
hiral primaryoperatorsWe now 
ompute the OPE (2.17) for the 
ase that the worldsheet operators are 
hiralprimary. We begin by 
onstru
ting the OPE of the dimension-zero operatorsOj(x; �x; y; �y) = �h(x; �x)�0j(y; �y) (h = j + 1) ; (2.18)whi
h form an essential part of the 
hiral primaries, as dis
ussed after (2.2). The OPE isobtained from the OPEs of the H+3 and SU(2) �elds �h(x; �x) and �0j(y; �y).The OPE of two H+3 primaries was found in [25℄. As shown in Appendix A, it 
an bewritten as�h2(x2; �x2)�h1(x1; �x1) = ZC+ dhC(h1; h2; h)jz12j�2�12jx12j�2h12B(h) �h(x1; �x1) ; (2.19)with h12 = h1 + h2 � h and �12 = �1 + �2 � � (C+ = 1=2 + iR+). C(h1; h2; h3) andB(h) are the SL(2) stru
ture 
onstants and the s
aling of the SL(2) two-point fun
tion,respe
tively. Similarly, the OPE of two SU(2) primaries is given by [26, 27℄�0j2(y2; �y2)�0j1(y1; �y1) =Xj C 0(j1; j2; j)jz12j�2�012 jy12j2j12�0j(y1; �y1) ; (2.20)with j12 = j1+ j2� j and �12 = �01+�02��0. In both OPEs we ignored the 
ontributionfrom 
urrent algebra des
endants. Combining both OPEs yields the operator produ
texpansionOj2(x2; �x2; y2; �y2)Oj1(x1; �x1; y1; �y1)=Xj ZC+ dhC 0Cjz12j�2(�12+�012)jy12j2j12B(h)jx12j2h12 �h(x1; �x1; z1; �z1)�0j(y1; �y1; z1; �z1)=Xj ZC+ dhC 0Cjz12j2(�(h)+�0(j))jy12j2j12B(h)jx12j2h12 Oj;h(x1; �x1; y1; �y1) : (2.21)In the last line we de�ned the more general operators Oj;h � �h�0j, for whi
h the labelsh and j are not related in any way. Re
all that the resulting operator Oj;h need not bephysi
al.Let us now 
onstru
t the OPE of the operator O(0;0)j in the �1 pi
ture and ~O(0;0)j in the0 pi
ture, whi
h are de�ned by (2.4) and (2.7), respe
tively. We start from the expression~O(0;0)j2 (x2; �x2; y2; �y2)O(0;0)j1 (x1; �x1; y1; �y1) (2.22)= �(1� h2)|̂(x2) + j(x2) + 2k (x2)�aP ay2�e�� (x1)� �(1� h2)�̂|(�x2) + �j(�x2) + 2k � (�x2)��aP a�y2�e��� � (�x1)Oj2(x2; �x2; y2; �y2)Oj1(x1; �x1; y1; �y1) :Using the OPEs (B.2)-(B.6) in appendix B and the identity2�aP ay = �(y)�y � j�y�(y) ; (2.23)7



this 
an also be written as~O(0;0)j2 (x2; �x2; y2; �y2)O(0;0)j1 (x1; �x1; y1; �y1)= ����(1� h2)�D(�1)21  (x1)�+  (x1)D(h1)21 + x221z21 (�(y2)�y2 � j2�y2�(y2))����2� e�����Oj2(x2; �x2; y2; �y2)Oj1(x1; �x1; y1; �y1)= ����x21z21  (x1) ((1� h2)2 + x21�x1 � 2h1) + x221z21 �(y2)�y2 + :::����2 e�����Oj2Oj1 : (2.24)The ellipses denote further terms involving derivatives of the type � and ��. In thisanalysis we negle
t des
endants and therefore ignore su
h terms. In the following we willalso need to Taylor expand �(y2) = �(y1)+y12��(y1)+ ::: and again drop derivatives of �.j:::j2 indi
ates that there is the same fa
tor in anti-holomorphi
 variables.Substituting (2.21) into (2.24), we evaluate the derivatives on Oj su
h that x21�x1 !h12 and y21�y2 ! j12 under the integral. We obtain~O(0;0)j2 (x2; �x2; y2; �y2)O(0;0)j1 (x1; �x1; y1; �y1)=Xj ZC+ dhC 0Cjz12j2(�(h)+�0(j)�1)jy12j2j12B(h)jx12j2(h12�1) �(h1 + h2 + h� 2)2O(0;0)j;h (x1; �x1; y1; �y1)+ (j12)2 jx21j2jy21j2O(2;2)j;h (x1; �x1; y1; �y1) + :::� ; (2.25)where we ignored possible terms involving 'mixed' operators of the type O(0;2)j;h and O(2;0)j;h .Before we 
ontinue, let us re
all how the fusion rules in the 
onformal �eld theoryon the boundary 
an be reprodu
ed from the worldsheet des
ription [6℄. The operatorsin the OPE must obey U(1) 
harge 
onservation (as measured by the SU(2) generatorK30 , see [6℄). Chiral (anti-
hiral) operators in the boundary CFT are mapped to highest(lowest) weight states of SU(2) in the worldsheet theory, i.e. M = J (M = �J). U(1)
harge 
onservation in the fusion of two worldsheet operators, symboli
allyO(�)j1 �O(�)j2 = [O(�)j3 ℄ ; (2.26)therefore requires [6℄ J = J1 + J2 ; (2.27)where Ji = ji+ai and ai = 0; 1=2; 1 for the holomorphi
 operators O(0);O(a);O(2), respe
-tively. The fusion of two SU(2) primary states requires j3 � j1 + j2 and therefore (2.27)implies a3 � a1 + a2 : (2.28)Clearly, the fusion rules must also obey the spin-statisti
s relations NS � NS ! NS,NS � R ! R, R � NS ! R, and R � R ! NS, where NS and R refer to the operators8



in the Neveu-S
hwarz se
tor (O(0);O(2)) and Ramond se
tor (O(a)), respe
tively. Thisallows for the following fusion rules in the holomorphi
 se
tor:(0)� (0) = (0) + (2) ;(0)� (2) = (2) ;(0)� (a) = (a) ;(a)� (a) = (2) : (2.29)Similar fusion rules hold in the anti-holomorphi
 se
tor. The four 
ases (2.29) 
an befreely 
ombined between holomorphi
 and anti-holomorphi
 operators. Note howeverthat in the fusion (0; 0)� (0; 0)! (0; 0) + (2; 2) the resulting operator must be the samein the holomorphi
 and anti-holomorphi
 se
tor, i.e. the 
ombinations (0; 2) and (2; 0)do not appear [6℄. In (2.25) the fusion rules therefore only allow for terms involving theoperators O(0;0)j;h : j = j1 + j2 � ~j ;O(2;2)j;h : j = j1 + j2 � 1 � ~j � 1 ; (2.30)where the j-values have been determined using (2.27). Terms proportional to O(0;2)j;h andO(2;0)j;h are forbidden by the worldsheet fusion rules.In order to 
ompare the worldsheet OPE with the 
orresponding boundary OPE, weneed to res
ale the operators as in [13℄ su
h that their (integrated) two-point fun
tionss
ale as unity. For instan
e, the operators O(0;�0)j (x; �x) will be res
aled asO (0;0)j (x; �x) = p2�2pk B(h)(2h� 1)gsO(0;�0)j (x; �x) : (2.31)Then, as shown in detail in appendix C, the OPE of the res
aled operators O (0;�0)j followingfrom (2.25) is~O (0;�0)j2 (x2; �x2; y2; �y2)O (0;�0)j1 (x1; �x1; y1; �y1) (2.32)= ZC+ dh 2h� 12�2k jz21j2(�(h)�1)jx21j2(h21�1) �jz21j2�0(~j) G (000)3 (j1; j2; ~j; h)O (0;�0)~j ;h (x1; �x1; y1; �y1)+ jx21j2jz21j2�0(~j�1) G (002)3 (j1; j2; ~j � 1; h)O (2;2)~j�1;h(x1; �x1; y1; �y1)� ;where in the last line we de�ned the 
oeÆ
ientsG (000)3 (j1; j2; j3; h3) � P (j1; j2; j3; h3) gsk (h1 + h2 + h3 � 2)2Qi(2hi � 1) 12 ;G (002)3 (j1; j2; j3; h3) � P (j1; j2; j3; h3) gsk (j1 + j2 � j3)2Qi(2hi � 1) 12 ; (2.33)9



and P (j1; j2; j3; h3) � CC 0 2�pB(h1)B(h2)B(h3) 
� (
� = 1=(2�4k3)) : (2.34)The fa
tor P (j1; j2; j3; h3) re
e
ts the fa
t that h3 is not related to j3 in the third operator.This fa
tor would be just one, P (j1; j2; j3; h3) = 1, if h3 were related to j3 by h3 = j3+1.5In that 
ase, and if j3 is related to j1 + j2 as in (2.30), the 
oeÆ
ients redu
e to theextremal three-point 
orrelatorsG (000)3 (j1; j2; j3; h3)jh3=j3+1 = DO (0;0)j1 (1)O (0;0)j2 (1) ~O (0;0)j3 (0)E ;G (002)3 (j1; j2; j3; h3)jh3=j3+1 = DO (0;0)j1 (1) ~O (0;0)j2 (1)O (2;2)j3 (0)E ; (2.35)found in [6, 5℄. Note, for instan
e, that the U(1) 
harge 
onservation j3 = j1 + j2 isequivalent to h3 = h1 + h2 � 1, if h3 = j3 + 1. However, we stress that we do not assumeany relation between h and ~j at this stage, i.e. the operators on the right-hand-side of(2.32) need not be physi
al.The other OPEs allowed by the fusion rules are 
omputed in a similar way. We �nd~O (0;�0)j2 (x2; �x2; y2; �y2)O (2;�2)j1 (x1; �x1; y1; �y1)= ZC+ dh 2h� 12�2k jz21j2(�(h)+�0(~j)�1)jx21j2(h21�1) G (022)3 (j1; j2; ~j; h)O (2;�2)~j ;h (x1; �x1; y1; �y1) ; (2.36)~O (0;�0)j2 (x2; �x2; y2; �y2)O (a;�a)j1 (x1; �x1; y1; �y1)= ZC+ dh 2h� 12�2k jz21j2(�(h)+�0(~j)�1)jx21j2(h21�1) G (0aa)3 (j1; j2; ~j; h)O (a;�a)~j ;h (x1; �x1; y1; �y1) ; (2.37)O (a;�a)j2 (x2; �x2; y2; �y2)O (b;�b)j1 (x1; �x1; y1; �y1)= ZC+ dh 2h� 12�2k jz21j2(�(h)+�0(~j)�1)jx21j2(h21�1) G (ab2)3 (j1; j2; ~j; h)O (2;�2)~j ;h (x1; �x1; y1; �y1) ; (2.38)withG (022)3 (j1; j2; j3; h3) � P (j1; j2; j3; h3)gsk (�h1 + h2 + h3)2Qi(2hi � 1) 12 ; (2.39)G (0aa)3 (j1; j2; j3; h3) � P (j1; j2; j3; h3)gsk (h1 + h2 + h3 � 2)2(2h3 � 1)2 (2h1 � 1) 12 (2h3 � 1) 12(2h2 � 1) 12 ; (2.40)G (ab2)3 (j1; j2; j3; h3) � P (j1; j2; j3; h3)gsk (2h1 � 1) 12 (2h2 � 1) 12(2h3 � 1) 12 Æab : (2.41)The 
orrelators (2.39){(2.41) redu
e again to the extremal three-point fun
tions 
omputedin [6℄, if h3 = j3 + 1. Note that the total ghost number is preserved in the OPEs.5This 
an be seen by using the identity (4.29) in [13℄. This identity has �rst been found in [5, 6℄.10



2.4 Dis
ussion and 
omparison with boundary operator produ
texpansionsSome 
omments on the worldsheet operator produ
t expansions (2.32) are in order. Sim-ilar statements will hold for the OPEs (2.36){(2.38).First, let us �rst 
ompare (2.32) with the general form (2.17). De�ning �(h; j) ��(h) + �0(j) + 1, whi
h is the worldsheet 
onformal dimension of O (0;0)j;h (and O (2;2)j;h ), we�nd that at small z and small x (2.32) agrees with the general form (2.17), sin
e the
hiral primaries have 
onformal dimension �(1) = �(2) = 1 and jz21j2(�(h;j)��(1)��(2)) =jz21j2(�(h)+�0(j)�1). Re
all also that O (0;0)j;h and O (2;2)j;h s
ale di�erently in x, h(0) = h � 1and h(2) = h [13℄. The total x-dependen
e should be jx21j2(h(A)�h(0)1 �h(0)2 ) with A = 0; 2 inthe �rst and se
ond term of (2.32), respe
tively. Therefore there is an additional fa
torjx21j2 in the se
ond term of (2.32). Consequently, we �nd that the OPE has the 
orre
ts
aling in both x and z. (In (2.32) we have already used U(1) 
harge 
onservation su
hthat there is no sum over j anymore).Se
ond, another pe
uliar feature of (2.32) is the appearan
e of the fa
tor2h� 12�2k : (2.42)As we will see later, when we use the OPE inside a general 
orrelator, this fa
tor will
an
el against the residue of the h-integral, whi
h is proportional to the inverse of thederivative of the SL(2) 
onformal weight, (�h�)�1 / k=(2h� 1).Third, it is also interesting to 
ompare the worldsheet OPE (2.32) with the 
orre-sponding spa
etime OPE of n-
y
le twist operators of the type O(0;0)n whi
h are dual tothe worldsheet operators O (0;0)j . This OPE is given by [4℄6O(0;0)n2 O(0;0)n1 = C3O(0;0)~n + C 03O(2;2)~n�2 + ::: ; (2.43)with ~n = n1 + n2 � 1 and stru
ture 
onstants C3 and C 03. The ellipses indi
ate terms
oming from multi-
y
le operators. Given that the 
y
le lengths ni are related to ji byni = 2ji+1 (and ~n = 2~j+1), we observe a stru
tural resemblan
e between the worldsheetand the spa
etime OPE, 
f. (2.32) with (2.43). In parti
ular, both OPEs satisfy the fusionrelation (0; 0)� (0; 0)! (0; 0)+ (2; 2) of the 
hiral-
hiral ring. More general, we �nd thatthe worldsheet OPEs (2.32), (2.36)-(2.38) mimi
 the fusion rules of the (
; 
) ring in thespa
etime 
onformal �eld theory,(0; 0)� (0; 0) = (0; 0) + (2; 2) ;(0; 0)� (2; 2) = (2; 2) ;(0; 0)� (a; a) = (a; a) ;(a; a)� (a; a) = (2; 2) : (2.44)6See [4℄ for a pre
ise de�nition of the operators O(0;0)n and the 
orresponding OPE.
11



In fa
t, upon integration over the worldsheet 
oordinates, the worldsheet OPE (2.32)be
omes identi
al to the spa
etime OPE (2.43) (multi-
y
le 
ontributions ignored).7Fourth, one might worry that (2.32) still depends on the spa
etime 
oordinates x,while the spa
etime OPE (2.43) has no singularities. We will see however in the nextse
tion that, when the OPE is employed inside an extremal p-point 
orrelator of 
hiralprimary operators, the x-dependen
e will drop out (Basi
ally the integration over h willyield a relation between h and ~j whi
h eliminates the x-dependen
e in both terms in(2.32).).3 Re
ursion relation for worldsheet p-point fun
tionsIn this se
tion we derive a re
ursion relation for a parti
ular extremal worldsheet p-pointfun
tion and 
ompare it with the 
orresponding relation for the dual boundary 
orrelatorpreviously 
omputed in [4℄.A simple worldsheet p-point fun
tion on the sphere is given by the produ
t of p(res
aled) operators O j � O (0;0)j ,G p � G j1 ;:::;jpp = g�2s * ~O jp (1)O jp�1 (1) p�2Yi=2 Z d2zi ~O ji (xi; �xi; zi; �zi)!O j1 (0)+ ; (3.1)with the extremality 
ondition jp = p�1Xi=1 ji : (3.2)Modular invarian
e has been used to �x three of the p worldsheet points as z1;p�1;p =0; 1;1. Similarly, the 
ontinuous SL(2) representation labels are 
hosen as x1;p�1;p =0; 1;1. The x labels will later be identi�ed with the 
omplex 
oordinates in the spa
etime
onformal �eld theory [24℄. The 
orrelator G p involves p � 2 ghost number zero and 2ghost number �1 operators, ~O (0;0)j and O (0;0)j , respe
tively. Re
all that the total ghostnumber of a 
orrelator on a genus-g surfa
e must be �� = �(2� 2g), whi
h is �2 on thesphere.We now show that the p-point fun
tions G p satisfy the re
ursion relationG p ' DO (0;0)~j (1) ~O (0;0)j2 (1)O (0;0)j1 (0)E G p�1 (3.3)with ~j = j1 + j2. The symbol ' indi
ates that (3.3) is true up to a fa
tor F whi
h
urrently 
annot be reprodu
ed on the worldsheet. This fa
tor is 
oming from two-parti
le 
ontributions in the intermediate 
hannel, whi
h are nonlo
al on the worldsheet.7This 
an be seen by setting z1 = 0 and z = z2 and performing the integral over z and h as des
ribed inse
tion 3 below. After the integration over h, G (000)3 and G (002)3 have redu
ed to the extremal 
orrelators(2.35) whi
h are identi
al to the 
oeÆ
ients C3 and C 03 appearing in (2.43) [6, 5℄.12



The fa
tor F has however been determined in the dual symmetri
 orbifold theory. There
ursion relation for the dual boundary 
orrelators Cp is given byCp = np~n DO(0;0)y~n (1)O(0;0)n2 (1)O(0;0)n1 (0)ECp�1 (3.4)with ~n = n1+n2�1 [4℄. The non-renormalization theorem of [15℄ predi
ts the equivalen
eof both re
ursion relations su
h that F 
an be identi�ed as F = np~n = 2jp+12~j+1 .Proof of (3.3): Substituting the worldsheet OPE (2.32) into G p , we obtain8G p = g�2s Z d2z2 ZC dh*~O jp (1)O jp�1 (1) p�2Yi=3 Z d2zi ~O ji (xi; �xi; zi; �zi)!O ~j ;h(0)+� 2h� 12�2k jz2j2(�(h)+�0(~j)�1)jx2j2(h21�1) G (000)3 (j1; j2; ~j; h) + :::= Z d2z ZC dh2h� 12�2k jzj2(�(h)+�0(~j)�1)jxj2(h21�1) G p�1 G (000)3 (j1; j2; ~j; h) + ::: ; (3.5)where we set z = z2 (x = x2) and introdu
ed the short hand notation G p�1 for G j;j3 ;:::;jpp�1 .The ellipses indi
ate that there is in prin
iple a se
ond 
ontribution from the operatorO (2;2)~j�1;h in the OPE (2.32). This 
ontribution is zero, as will be shown below.The integrals over z and h 
an be done as in the 
ase of four-point fun
tions [13, 14℄.As in [13℄, we need to do the z-integral before the h-integral. In that 
ase we have to be
areful about the o

urren
e of divergen
ies and regularize the z-integral by introdu
inga 
uto� " [14℄. Later, after the integrations, we will eventually take the limit " ! 0. Ingeneral it is not known how to 
ompute the z-integral over the whole range of z, but it 
anbe 
omputed in the limit of small jzj < ". In this region, the z-integral 
an be performedby elementary methods, Zjzj<" d2z jzj2(�(h)�1) = ��(h)"2�(h) (3.6)with �(h) = �(h)+�0(~j). As dis
ussed in [16, 14℄, the integral only over jzj < " 
apturesthe single-
y
le (or, in higher dimensions, single-tra
e) terms in the spa
etime OPE. Byperforming the integral only over jzj < ", we omit nonlo
al 
ontributions from the large zregion, whi
h are expe
ted to give the double-
y
le terms in the spa
etime OPE [14, 16℄.This limitation prevents us from deriving the overall fa
tor F , whi
h is known to arisefrom double-
y
le operators in the spa
etime OPE [4℄.We now turn to the integration over h. In general, after the z integration, there areadditional dis
rete 
ontributions 
oming from poles in the integrand of (3.5) [14, 16℄. Su
h
ontributions arise when the poles 
ross the integration 
ontour duringi) the analyti
 
ontinuation in j1 and j2 (or h1;2 = j1;2 + 1), and8Within a p-point fun
tion the integration over the half-axis C+ = 1=2 + iR+ 
an be extended to anintegration over the full axis C = 1=2 + iR [25℄. 13



ii) the shift of the 
ontour from h = 1=2+ is to h = h0+ is (s 2 R), where h0 is de�nedby �(h0) = 0.9There are altogether four types of poles [14, 16℄:type I: � = 0 ;type II: h = h1 + h2 + n ;type III: h = k � h1 � h2 + n ;type IV: h = jh1 � h2j � n ; n 2 f0; 1; 2; :::g :The poles of type II-IV are poles in the stru
ture 
onstants C(h; h1; h2). As dis
ussedextensively in [16℄, none of these poles 
ontributes to the integral, at least if the pre
edingz integration is restri
ted to the regime jzj < ". Even though naively one might interpretthe 
ontributions from the poles of type II as \double-
y
le" operators in the spa
etimeCFT, su
h 
ontributions go to zero in the "! 0 limit [16℄ (This is in agreement with thegeneral expe
tation [16℄ that 
ontributions from double-
y
le operators arise non-lo
ally,i.e. at large z and not in the jzj < " region). Type III poles do not appear if one assumesh1 + h2 < k+12 [14℄. Other than the poles of type II, the type IV poles may 
ontributeboth during the analyti
 
ontinuation and the additional shift in the 
ontour. It wasfound in [16℄ that the 
ontribution 
oming from 
rossing the 
ontour during the analyti

ontinuation is exa
tly the opposite of that during the subsequent shift of the 
ontour. Ine�e
t, the poles of type IV do not modify the �nal result.We are left with poles of type I, �(h) = 0, 
orresponding to h = h0 � ~j + 1. Theresidue of this pole is Res(f ; h0) = �"2�(h0)�0(h0) 2h0 � 12�2k G p�1 G (000)3 ; (3.7)where f is the integrand of (3.5) and 0 � �h. Remarkably, the �rst and se
ond fa
tor onthe right-hand side 
an
el ea
h other (up to 2�), sin
e �0(h0) = �h�(h0). Moreover, thex-dependen
e drops out sin
e h21 � 1 = h2 + h1 � h0 � 1 = j2 + j1 � ~j = 0. Applying theresidue theorem, we thus obtainG p = G p�1 G (000)3 (j1; j2; ~j; h = ~j + 1)= DO (0;0)~j (1) ~O (0;0)j2 (1)O (0;0)j1 (0)E G p�1 ; (3.8)whi
h is nothing but (3.3).We still have to show that in (3.5) there are no 
ontributions from the operator O (2;2)~j�1;h.The additional term in the integrand of (3.5) is proportional tojzj2(�(h)+�0(~j�1)�1)jxj2(h21�2) G (002)3 (j1; j2; ~j � 1; h) (3.9)9It is 
onvenient to shift the 
ontour in this way sin
e, as we will see, most of the pole 
ontributionsvanish during the shift. 14



and has a pole at h = ~j. After applying the residue theorem, the x-dependen
e drops out,sin
e jxj2(h2+h1�h�2) = jxj2((j2+1)+(j1+1)�~j�2) = 1 and we get the additional 
ontributionDO (2;2)~j�1 (1) ~O (0;0)j2 (1)O (0;0)j1 (0)E G 0p�1 ; (3.10)where G 0p�1 is de�ned byG 0~j�1;j3;:::;jpp�1 = g�2s DO (0;0)j4 (1) ~O (0;0)j3 (1)XO (2;2)~j�1 (0)E (3.11)and X denotes the produ
t of p� 4 ~O (0;0)j operators.Clearly, for p = 4, the three-point 
orrelator G 0~j�1;j3;j43 is zero, as 
an be seen asfollows. The extremality 
ondition (3.2) for Gj1;j2;j3;j44 
an be written asj4 = j1 + j2 + j3 = ~j + j3 ; (3.12)whi
h is formally the U(1) 
harge 
onservation for the fusion of O (2;2)~j�1 and ~O (0;0)j3 . However,the fusion rules require a4 � ~a + a3 (
f. with (2.28)), whi
h is violated sin
e a4 = 0 and~a + a3 = 1 + 0 = 1, implying G 03~j�1;j3;j4 = 0. A similar argument holds for p > 4. Thus,the term (3.10) vanishes identi
ally.4 Con
lusionsIn this paper we studied the worldsheet realization of the 
hiral ring stru
ture of theN = (4; 4) symmetri
 orbifold theory on the boundary of AdS3 � S3 � T 4. Our mainresults are the (unintegrated) worldsheet operator produ
t expansions (2.32) and (2.36){(2.38), whi
h ni
ely re
e
t the fusion rules of the 
hiral ring. Despite the similarity tothe dual spa
etime OPEs, there are also some stru
tural di�eren
es whi
h we dis
ussedat length in se
tion 2.4. In parti
ular, the worldsheet OPEs are not simply given bythe (extremal) worldsheet three-point fun
tions of 
hiral primary operators [5, 6℄, as onemight naively expe
t. In fa
t, the operators O h;j appearing on the right hand side of theworldsheet OPEs need not even be physi
al, i.e. there is a priori no relation between theSL(2) and SU(2) labels h and j, whereas h = j + 1 for 
hiral primaries. In this respe
t,the OPEs are more general than the three-point fun
tions in [5, 6℄. However, when theworldsheet OPEs are integrated over the worldsheet 
oordinates, the h integral turns outto have a pole at h = j + 1, and the worldsheet OPEs be
ome identi
al to those of thespa
etime CFT.As an interesting appli
ation, we used the worldsheet OPEs to derive a re
ursionrelation for a parti
ular 
lass of extremal p-point 
orrelators on the worldsheet. Our result(3.3) for the 
orrelator (3.1) agrees with the re
ursion relation for the dual boundaryp-point fun
tion [4℄, up to a simple overall fa
tor F = np=~n. In the spa
etime OPEthe fa
tor F 
omes from two-
y
le operators, whose 
ontributions are not suppressed inextremal 
orrelators at largeN . Unfortunately, these 
ontributions arise nonlo
ally on theworldsheet and are presently not very well understood [16℄. It would be highly desirable15



to understand in more detail how multi-
y
le (or, in general, multi-tra
e) operators aretreated in worldsheet OPEs.In this paper (and its pre
ursors [5℄{[8℄,[13℄) worldsheet p-point fun
tions on AdS3�S3(with NSNS 
uxes) are 
omputed on the full quantum level. This may be 
ompared to thesemi-
lassi
al treatment of worldsheet p-point fun
tions for string theory on AdS5 � S5(with RR 
uxes), see e.g. [28℄{[33℄. To gain more insight into the latter approa
h, it wouldbe interesting to repeat su
h semi-
lassi
al 
omputations on AdS3 � S3 and 
ompare theresults with the already known quantum 
orrelators. It may also be of interest to attempta full quantum 
omputation on AdS3 ba
kgrounds with Ramond-Ramond 
uxes, perhapsusing te
hniques suggested in [34℄.A
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hool.AppendixA OPE of H+3 primariesIn the following we derive the worldsheet operator produ
t expansion of 
hiral primaryoperators in the H+3 model. { Important note: Other than in the rest of the paper, weuse the 
onventions of Tes
hner [25℄ in this appendix, i.e. we use j to label the H+3 states.The worldsheet OPE of two H+3 primaries is [25℄10�j1(x1; �x1; z1; �z1)�j2(x2; �x2; z2; �z2)= ZC+ dj3 C(j1; j2; j3)jz12j�2�12(J12(j3)��j3�1)(z2; �z2) ; (A.1)where(J12(j3)��j3�1)(z2; �z2) � ZC d2x3 jx12j2j12jx23j2j23 jx31j2j31��j3�1(x3; �x3; z2; �z2) : (A.2)Here �12 = �1 +�2��3, j12 = j1 + j2� j3, et
. We prefer to express the OPE in termsof �j3 rather than ��j3�1. We therefore substitute the expression(J12(j3)��j3�1)(z2; �z2) = 
(�2j3)(��)
(�j23)
(�j31) 1B(j3)(J12(�j3 � 1)�j3)(z2; �z2) (A.3)10We inter
hange the labels 1$ 2. In the following we ignore the 
ontribution from des
endants.16



into (A.1) and obtain�j1(x1; �x1; z1; �z1)�j2(x2; �x2; z2; �z2) (A.4)= ZC+ dj3 C(j1; j2; j3)jz12j�2�12 
(�2j3)(��)
(�j23)
(�j31) 1B(j3)� ZC d2x3 jx12j�2(�j1�j2�j3�1)jx23j�2(1+j31)jx31j�2(1+j23)�j3(x3; �x3; z2; �z2) :We now simplify the expression by 
omputing the x3-integralI = ZC d2t0 jtj�2(�j1�j2�j3�1)jt0j�2(1+j31)jt� t0j�2(1+j23)�j3(x2�t0; �x2��t0; z2; �z2) ; (A.5)where we have de�ned t = x12 and t0 = x23. Denoting t = jtjt̂ and de�ning y = t0=jtj, wegetI = jtj�2(�j1�j2+j3+1) ZC d2t0 (jt0j=jtj)�2(1+j31)j(t0=jtj � t̂)j�2(1+j23)�j3(x2�t0; �x2��t0; z2; �z2)= jtj2j12 ZC d2y jyj�2(1+j31)jy � t̂j�2(1+j23)�j3(x2�yjtj; �x2��yjtj; z2; �z2) : (A.6)In the OPE, x1 and x2 are assumed to be 
lose to ea
h other su
h that jtj is small. We alsoignore the subleading 
ontributions from spa
e-time des
endants. We may then Taylorexpanded the operator �j3(x2 � yjtj; �x2 � �yjtj; z2; �z2) around x2 and obtain11I � jtj2j12�j3(x2; �x2; z2; �z2) ZC d2y jyj�2(1+j31)jy � t̂j�2(1+j23) : (A.7)Using the identity ZC d2y jyj2aj1� yj2b = ��
(�1� a� b)
(�a)
(�b) ; (A.8)the integral I be
omesI = (��)jx12j2j12 
(1 + 2j3)
(1 + j31)
(1 + j23)�j3(x2; �x2; z2; �z2) : (A.9)Thus, �j1(x1; �x1; z1; �z1)�j2(x2; �x2; z2; �z2)= ZC+ dj3C(j1; j2; j3)jz12j�2�12 1B(j3) jx12j2j12�j3(x2; �x2; z2; �z2) : (A.10)Repla
ing j ! �h (�j ! �h), we get (2.19).11An almost identi
al expansion was done in Eq. (2.10) in [16℄.17



B Some 
orrelators and operator produ
t expansionsIn this appendix we list some worldsheet operator produ
t expansions used in se
tion 2.It is 
onvenient to express these OPEs in terms of the operatorD(hi)ki = 1zki �x2ki�xi � 2hixki� ; (B.1)where hi denotes the spa
etime s
aling of the operator it a
ts on. Some important world-sheet operator produ
t expansions are [6, 13℄:j(xk)�hi(xi) � D(hi)ki �hi(xi) ; (B.2)j(x1)j(x2) � (k + 2)x212z212 +D(�1)12 j(x2) ; (B.3)|̂(x1)|̂(x2) � �2x212z212 +D(�1)12 |̂(x2) ; (B.4)|̂(x1) (x2) � D(�1)12  (x2) ; (B.5) (x1) (x2) � kx212z12 : (B.6)C Res
aling the operators in the OPEIn this appendix we 
ompute the res
aled OPE (2.32). For 
omparison with the boundarytheory, it is useful to res
ale the operators su
h that, when integrated over z, their two-point fun
tions are just one (integration over z1;2). The res
aled operators are [13℄O (0;0)j (x; �x) = p2�2pk B(h)(2h� 1)gsO(0;�0)j (x; �x) ;O (a;�a)j (x; �x) =s2�2(2h� 1)B(h) gsO(a;�a)j (x; �x) : (C.1)The operator O(2;2)j (x; �x) is res
aled as O(0;0)j (x; �x) (Tilded operators are res
aled as theiruntilded partners). Then, substituting the OPE (2.25) into~O (0;�0)j2 (x2; �x2; y2; �y2)O (0;�0)j1 (x1; �x1; y1; �y1)= 2�2g2skpB(h1)(2h1 � 1)B(h2)(2h2 � 1) ~O(0;�0)j2 (x2; �x2; y2; �y2)O(0;�0)j1 (x1; �x1; y1; �y1) ; (C.2)we get~O (0;�0)j2 (x2; �x2; y2; �y2)O (0;�0)j1 (x1; �x1; y1; �y1) (C.3)=Xj ZC dh jz12j2(�(h)+�0(j)�1)jy12j2j12jx12j2(h12�1) (2h� 1)p(2h� 1)(2h2 � 1)(2h1 � 1) gsp2�2 C 0Cpk B(h1)B(h2)B(h)� �(h1 + h2 + h� 2)2O (0;�0)j;h (x1; �x1; y1; �y1) + (j12)2 jx21j2jy21j2 O (2;�2)j;h (x1; �x1; y1; �y1)� ;whi
h 
an be written as (2.32). 18
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