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ON THE JORDAN-HÖLDER PROPERTY FOR

GEOMETRIC DERIVED CATEGORIES

CHRISTIAN BÖHNING1, HANS-CHRISTIAN GRAF VON BOTHMER,
AND PAWEL SOSNA2

Abstract. We prove that the semiorthogonal decompositions of the
derived category of the classical Godeaux surface X do not satisfy the
Jordan-Hölder property. More precisely, there are two maximal excep-
tional sequences in this category, one of length 11, the other of length 9.
Assuming the Noetherian property for semiorthogonal decompositions,
one can define, following Kuznetsov, the Clemens-Griffiths component
CG(D) for each fixed maximal decomposition D. We then show that

Db(X) has two different maximal decompositions for which the Clemens-
Griffiths components differ. Moreover, we produce examples of rational
fourfolds whose derived categories also violate the Jordan-Hölder prop-
erty.

1. Introduction

Over the past couple of decades the use of derived categories in algebraic
geometry has become increasingly popular and successful. One advantage
of this approach is that classical varieties are considered within a larger
framework, namely noncommutative spaces by which we mean triangulated
C-linear categories with a DG-enhancement. Roughly, whereas in the clas-
sical theory one considers things patched from commutative rings, here one
passes to noncommutative C-algebras, and more generally DG-algebras, or
better, because everything should be “derived Morita invariant”, to the de-
rived categories of modules over these DG-algebras. There are more maps
between classical varieties when one considers them as noncommutative
spaces (“Fourier-Mukai transforms”). One may also imagine that, within
the larger category of noncommutative spaces, unrelated commutative ob-
jects can possibly be connected by noncommutative deformations and this
could shed more light on classical moduli problems.

The natural decompositions of a noncommutative space into simpler pieces
are the semiorthogonal ones (semiorthogonality with respect to the RHom•-
pairing). See Section 2 for details of the definition and background.

Semiorthogonal decompositions enjoy some good properties, for example,
there is an interesting action of the braid group on their pieces and they
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behave well under birational modifications and other natural constructions
like projective bundles. There are also properties that could be classified as
a bit pathological, for example, it has been recognized recently [BBKS12],
[GorOrl] that certain pieces in semiorthogonal decompositions cannot be
detected by any natural additive invariants (i.e., they evaluate to zero on
them indiscriminately). These pieces were called phantoms because of this.

Some other foundational questions about semiorthogonal decompositions
have remained open, however, in particular, whether the derived category
of a variety (always smooth and projective here) has finite length with re-
spect to these decompositions (the Noetherian property) and, more strongly,
whether maximal such decompositions are always essentially unique (i.e. up
to reordering of the pieces and equivalences of categories). The latter is
called the Jordan-Hölder property. There are few references available in the
literature, but it was discussed in [Kuz09a], [KuzECM] and phrased as a
question at the end of the article [Kaw05].

It is known that this fails for general triangulated categories by an ex-
ample of Bondal, see [KuzECM]: this is given as the derived category of
representations of a certain quiver with relations. However, it is not of geo-
metric origin, i.e. not equivalent to any Db(Z) where Z is a variety. Hence
it was hoped that some sort of geometricity may save the Jordan-Hölder
property in the context of derived categories of varieties. This would have
very nice consequences: in [Kuz10], [Kuz09a], [KuzECM] an approach to
nonrationality of generic cubic fourfolds is sketched which is partly based
on the Jordan-Hölder property and could be made into a complete proof if
Jordan-Hölder were true.

In the present article we show that the Jordan-Hölder property fails also
in the geometric set-up. Let Y = {x51+x52+x53+x54 = 0} ⊂ P

3 be the Fermat
quintic with the Z/5-action given by xi

✤

// ξixi (ξ a primitive fifth root of
unity) and let X = Y/(Z/5) be the so-called classical Godeaux surface, a
surface of general type with K2 = 1, pg = q = 0 and π1 = Z/5.

Theorem 4.3 The bounded derived category Db(X) of coherent sheaves on

the classical Godeaux surface X does not satisfy the Jordan-Hölder property,

namely it has two maximal exceptional sequences of different lengths: one

of length 11, which was already exhibited in [BBS12], and one of length 9,
which cannot be extended further.

This failure of the Jordan-Hölder property is not confined to varieties of
general type: in Corollary 4.5 we show that its failure on the Godeaux surface
entails the failure on some rational fourfolds as well. Moreover, if one as-
sumes the Noetherian property for semiorthogonal decompositions, the two
exceptional sequences on X give rise to two different maximal semiorthogo-
nal decompositions whose respective Clemens-Griffiths components, see Def-
inition 2.5, differ.

The paper is organized as follows: Section 2 assembles and recalls basic
material concerning semiorthogonal decompositions and the Jordan-Hölder
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property. Section 3 explains the idea behind the construction of the length
9 sequence which cannot be extended, and Section 4 carries out the details
of this.

The results of the present paper suggest that some new ideas will probably
be needed before one may use derived category approaches to make progress
on rationality problems, to mention just one major application. Possibly one
has to get a grip on all possible different semiorthogonal decompositions in
a given situation and understand how the different ones are related.

Acknowledgment. We would like to thank Sven Porst for letting us bor-
row his laptop after the one of the second author crashed. All computations
for this article were done on his machine.

2. Semiorthogonal decompositions and the Jordan-Hölder

property

We recall some basic notions, in particular, the Jordan-Hölder property
and the definition of the Clemens-Griffiths component given in [KuzECM],
[Kuz09a].

We work over k = C. Let T denote a k-linear triangulated category.

Definition 2.1. A subcategory S ⊂ T is called admissible if the inclusion
functor has a left and right adjoint. A sequence of admissible subcate-
gories (S1, . . . ,Sn) of T is called a semiorthogonal decomposition of T if
Hom(Sj , Si) = 0 for all objects Sj ∈ Sj , Si ∈ Si with j > i, and, moreover,
the subcategories Si generate T in the sense that the smallest triangulated
subcategory containing all of them is equivalent to T . One writes

T = 〈S1, . . . ,Sn〉.

Definition 2.2. The category T satisfies the Noetherian property if every
increasing sequence S1 ⊂ S2 ⊂ . . . of admissible subcategories becomes
stationary.

Passing to the sequence of (right)orthogonals ⊥S1 ⊃⊥ S2 ⊃ . . . , one
sees that the Noetherian property is equivalent to the Artinian property for
T , that is, every descending sequence of admissible subcategories becomes
stationary.

Definition 2.3. A semiorthogonal decomposition T = 〈S1, . . . ,Sn〉 is called
maximal if each Si does not have any nontrivial semiorthogonal decompo-
sitions. The category T satisfies the Jordan-Hölder property if, firstly, T
satisfies the Noetherian property, and, secondly, if

T = 〈S1, . . . ,Sn〉

and
T = 〈U1, . . . ,Um〉

are two maximal semiorthogonal decompositions, then m = n and there
exists a bijection σ : {1, . . . , n} // {1, . . . ,m} such that Si is equivalent to
Uσ(i).
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Definition 2.4. The essential dimension ess.dim(T ) of T is the minimum
integer n such that there exists a fully faithful embedding T �

�

//Db(X) with
admissible image, where X is a smooth projective variety of dimension n.
We set ess.dim(T ) = ∞ if no such integer exists.

Definition 2.5. Let D be a maximal semiorthogonal decomposition of T =
Db(X) where X is a smooth projective variety of dimension n:

T = 〈S1, . . . ,Sn〉.

The Clemens-Griffiths component CG(D) of D is defined as the smallest
triangulated subcategory of T which contains all those Si with ess.dim(Si) ≥
n− 1.

We will construct examples of varieties X where Db(X) does not satisfy
the Jordan-Hölder property. We can take for X the classical Godeaux sur-
face. In fact, we will construct maximal exceptional sequences of different
lengths. Assuming the Noetherian property for Db(X) this implies that there
are two different maximal decompositions whose Clemens-Griffiths compo-
nents are not equivalent. Recall the

Definition 2.6. An object E ∈ Db(X) is called exceptional if RHom•(E,E) ≃
C. An exceptional sequence is a sequence of exceptional objects (E1, . . . , Em)
with RHom•(Ej , Ei) = 0 for j > i. The sequence is called unextend-

able if there does not exist an exceptional object F in Db(X) such that
(E1, . . . , Em, F ) is an exceptional sequence.

If an exceptional sequence is unextendable, there is no exceptional object
F ′ such that (F ′, E1, . . . , Em) is an exceptional sequence either: otherwise
one can mutate F ′ to the right.

Every exceptional sequence generates an admissible subcategory, and an
admissible subcategory is generated by an exceptional object if and only if
it is equivalent to the derived category of finite dimensional k-vector spaces.

Now we briefly discuss the impact of this on derived category approaches
to rationality of varieties: in [Kuz10], Kuznetsov has shown that for a smooth
cubic fourfold V there is a semiorthogonal decomposition

Db(V ) = 〈AY ,OV ,OV (1),OV (2)〉

and, for many classes of rational cubic fourfolds, AY is equivalent to the
derived category of a K3 surface, and, moreover, there are cases where AY

is a derived category of a “noncommutative” K3 surface (a 2-Calabi-Yau
category) of essential dimension bigger than 2. In these cases one does not
expect V to be rational.

Assuming the Jordan-Hölder property for derived categories of smooth
projective varieties, this would imply nonrationality of the generic cubic
fourfold since one could then speak of the Clemens-Griffiths component of
a variety and this would be birationally invariant (the latter would follow
immediately from the structure of derived categories of blow-ups, Beilinson’s
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theorem for Db(Pn) and the factorization theorem for birational maps into
a sequence of blow-ups and blow-downs in smooth centers).

Our results suggest that this approach needs some substantial modifi-
cation. However, it is very beautiful, and one may hope that either the
Clemens-Griffiths component is, by some miracle or deeper principle, a well-
defined notion for fourfolds of Kodaira dimension −∞, or one may control
all semiorthogonal decompositions of Db(V ) (or Db(P4)) suitably, as well as
their behaviour under elementary birational transformations.

3. Idea of the construction

For an arbitrary smooth projective variety Z, we have a nonsymmetric
bilinear pairing

χ(·, ·) : K0(Z)/(tors)×K0(Z)/(tors) //Z

given by the Euler form.

Definition 3.1. A sequence of objects (e1, . . . , en) is called numerically

semiorthonormal if χ(ei, ei) = 1 and χ(ej , ei) = 0 whenever j > i. It is
called a numerically semiorthonormal basis if moreover e1, . . . , en is a basis
of K0(Z)/(tors). This is equivalent to n = rk(K0(Z)/(tors)).

Clearly, the classes in K0(Z)/(tors) of the objects in an exceptional se-
quence (E1, . . . , En) in Db(Z) form a numerically semiorthonormal sequence.

The idea of the construction of our unextendable exceptional sequence is
based on the existence of an isomorphism of lattices K0(X)/(tors) ≃ K0(S)
where S is a del Pezzo surface of degree 1, i.e. the blow-up of P2 in eight
points, and the fact that there are line bundles L on S with χ(L) = 0, but
RΓ•(L) 6= 0, which under the above isomorphism correspond to classes in
K0(X)/(tors) which can be realized by acyclic line bundles L on X. Here
acyclic means RΓ•(L) = 0. That is, the idea is to exploit the difference of

the notion of effectivity on S and X.
There seems to be the folklore result that all numerically semiorthonormal

bases of K0(S) form one braid group orbit up to tensoring by classes of line
bundles and sign changes of basis vectors. However, whereas this is proven
for complete exceptional sequences on S, we could not find a proof for the
lattice theoretic result in the literature. However, we used it as a heuristic
philosophy to find the counterexample. This is formalized in the following

Lemma 3.2. If there are line bundles L on S and L on X with the above

properties and if numerically semiorthonormal bases in K0(S) form one

braid group orbit up to tensoring by classes of line bundles and sign changes

of basis vectors, then the Jordan-Hölder property does not hold for Db(X).

Proof. In the above set-up we have an exceptional pair (OX ,L
−1

) in Db(X).
We claim that it cannot be extended to a numerically semiorthonormal basis
even in K0(X)/(tors). In fact, otherwise, (OS ,L

−1) can also be extended
to a semiorthonormal basis in K0(S). By assumption and because there are
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full exceptional sequences in Db(S), we get that there is a full exceptional
sequence (E1, . . . , E11) in Db(S) such that [E1] = [OS ] and [E2] = [L−1]
in K0(S). But exceptional objects in Db(S) are pure, i.e. shifts of sheaves,
and these sheaves are either locally free or supported on exceptional curves.
Hence we must have that E1 and E2 are actually isomorphic to OS and
L−1 (up to a shift). But then (OS ,L

−1) would be an exceptional pair, a
contradiction because L is not acyclic.

Hence (OX ,L
−1

) is not extendable to an exceptional sequence of length
11 in Db(X). Since there is an exceptional sequence of length 11 in Db(X)
by [BBS12], the Jordan-Hölder property does not hold. �

Thus we first find candidates for L and L above. We need to introduce
some notation for this:

Notation 3.3. On the del Pezzo surface S we write KS for the canon-
ical class, h for the pull-back of the hyperplane class, e1, . . . , e8 for the
eight exceptional curves of the blow-up S // P

2. Then Pic(S) is gener-
ated by h, e1, . . . , e8 and the intersection matrix with respect to this basis is
diag(1,−1, . . . ,−1). One has KS = −3h+

∑

i ei. As a lattice Pic(S) ≃ 1 ⊥
(−E8) where 1 is generated by KS .

One also has Pic(X)/(tors) ≃ Pic(S) as lattices for X the Godeaux sur-
face. On X there are precisely 50 (smooth) elliptic curves of (canonical)
degree 1 which were made explicit in [BBS12]. We denote them by E±

i,j,

i, j ∈ Z/5, as in that paper. Moreover, we denote the canonical class by KX

and abbreviate E±

i := E±

i,0. There is a pencil of genus 2 curves on X with

five reducible fibers consisting of the two elliptic curves E+
i and E−

i meeting
transversely.

We can take L = OS(2e1). Then χ(L) = 0, but certainly L has a section,
hence is not acyclic. In fact, we may write OS(e1) = −KS + R, whence R
is a root, i.e. R2 = −2, KS .R = 0. Then there is an essential difference
between S and X:

Proposition 3.4. The bundle

L = OS(2(−KS +R))

is never acyclic, for any root R in Pic(S). However, on the Godeaux surface

X, the line bundle

L = OX(2(−KX +R′))

can be both acyclic or not acyclic depending on the choice of root R′. It is

acyclic, for example, if R′ = E+
1 − E+

2 , and not acyclic if R′ = KX − E+
1 .

Proof. There are 240 roots R in the (−E8)-lattice. Now V = −KS + R is
an exceptional vector in the terminology of [Dolg, Ch. 8]: it satisfies

V.KS = −1, V 2 = −1 .
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There are 240 of these on a del Pezzo surface of degree 1 and they correspond
precisely to the (−1)-curves on S. In particular, they are all effective by
[Dolg, Lem. 8.2.22].

Let us now show the second part of Proposition 3.4. Taking R′ = KX−E+
1

one gets
L = OX(−2E+

1 ) .

However, h2(L) = h0(KX + 2E+
1 ) and the exact sequence

0 //OX(KX + E+
1 )

//OX(KX + 2E+
1 )

//OE+

1

(KX + 2E+
1 )

// 0

yields h0(OX(KX+E+
1 )) = h0(OX(KX+2E+

1 )) since (KX+2E+
1 ).E

+
1 = −1.

But then the exact sequence

0 //OX(KX) //OX(KX + E+
1 )

// ωE1
// 0

yields h0(OX(KX + E+
1 )) = 1.

Now look at the case R′ = E+
1 − E+

2 . Clearly, for degree reasons, L has
no sections in this case, and by Serre duality, we just have to show that

h0(3KX − 2R′) = h0(3KX − 2E+
1 + 2E+

2 )

is zero. This follows from Lemma 3.5 below and the fact that KX − R′ is
not effective by [BBS12, Cor. 6.4(2)]. �

Lemma 3.5. Let R′ be a root in Pic(X) such that h0(X,KX − R′) = 0.
Then

h0(3KX − 2R′) = 0.

Proof. Let B = R′ + 2K. Then χ(B) = 1 and h2(B) = h0(K − B) = 0 for
degree reasons. Hence B is effective. Then

3K − 2R′ = 7K − 2B.

Since
h0(3K −B) = h0(K −R′) = 0

the ideal IB,X is generated in degrees ≥ 4. Therefore, the ideal I2B,X is

generated in degrees ≥ 8. By [ELS, Thm. A] the second symbolic power of
IB,X is equal to I2B,X and hence we get h0(7K − 2B) = 0. �

Remark 3.6. Alternatively, one can check that h0(3K−2R′) = 0 as follows.
By [BBS12] there exists a line L0

0 on X such that 3KX −L0
0 gives the genus

2 pencil on X and hence we can write

3KX − 2E+
1 + 2E+

2 = 3KX − 2E+
1 + 2(3KX − L0

0 − E−

2 )

= 9KX − 2L0
0 − 2E+

1 − 2E−

2 .

We then look at the cover p : Y //X, where Y ⊂ P
3 is the Fermat quintic

with its Z/5-action, and remark that there are no Z/5-invariant sections in
H0(Y, 9KY ) = H0(Y,O(9)) which vanish in the subscheme p∗(2L0

0 +2E+
1 +

2E−

2 ) of Y . This can be checked by a computer algebra calculation with
Macaulay 2 [BBS12a]. In fact, there are even no degree 9 polynomials on
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P
3 in the ideal of the subscheme 2L0

0 + 2E+
1 + 2E−

2 except multiples of the
Fermat equation.

Hence our expectation is

Conjecture 3.7. The exceptional pair
(

OX ,OX

(

2(KX − E+
1 + E+

2 )
)

)

cannot be extended to a numerically semiorthonormal basis in K0(X)/(tors).

As we explained above, this would follow from the expected transitivity
result for mutations on numerically semiorthonormal bases. We checked
Conjecture 3.7 probabilistically by a computer, i.e. we found no numerical
extensions. In fact, the results of that experiment were that the maximal
length to which the above exceptional pair could be extended numerically
is 9. All extensions we found were of the numerical shape

(OS ,OS(−2e1),OC1
, . . . ,OC7

)

with theOCi
structure sheaves of (−1)-curves Ci on S such that (OC1

, . . . ,OC7
)

is completely orthogonal in K0(S).
We circumvent this difficulty by exhibiting an unextendable exceptional

sequence of length 9

(OS(KS),OS(KS + e2), . . . ,OS(KS + e8),OS(KS − 2e1)) =: (m1, . . . ,m9).

which contains OS(2e1) as a difference m∨
9 ⊗m1. Notice that OS(KS + ei),

i = 1, . . . , 8 is a numerically orthogonal set of roots.

Remark 3.8. The sequence (m1, . . . ,m9) is related to the sequence

(OS ,OS(−2e1),Oe2 , . . .Oe8).

as follows. Consider the sequence of (derived) duals

(O∨

e8
, . . . ,O∨

e2
,OS(2e1),OS)

and mutate the O∨
ei

to the right across OS(2e1) to obtain

(OS(2e1),OS(2e1 + e8)[1], . . . ,OS(2e1 + e2)[1],OS).

Forgetting the shifts, twisting by OS(K−2e1) and reordering the completely
orthogonal terms, we get the above sequence.

Definition 3.9. Consider the lattice

Λ :=

{

x+ y0h+ y1e1 + · · · + y8e8 +
1

2
zp

}

⊂ CH∗(S)[1/2]

where (x, y0, y1, . . . , y8, z) ∈ Z
11 and p is the class of a point. We set v =

(x, y, z), where

y = y0h+ y1e1 + · · ·+ y8e8.
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We have a Chern character map

ch : K0(S) //CH∗(S)[1/2]

sending a vector bundle E of rank r to

ch(E) = r + c1(E) +
1

2
(c1(E)

2 − 2c2(E)).

Notice that the Chern character is injective. It identifies the lattice K0(S)
with a lattice Z

11 ≃ ch(K0(S)) ⊂ Λ ⊂ CH∗(S)[1/2] with basis

1, h+
1

2
p, e1 −

1

2
p, . . . , e8 −

1

2
p, p.

This basis is obtained for example from the exceptional sequence

(OS ,OS(h),OS(2h),Oe1 , . . . ,Oe8).

The lattice Λ contains the previous lattice as a sublattice of index 2.
The Riemann-Roch theorem says

χ(S, E) = deg (ch(E).td(TS))2

where

td(TS) = 1−
1

2
KS +

1

12
(K2

S + c2) = 1−
1

2
KS + p.

The subscript 2 in the second but last formula means that one only considers
the top dimensional component. Hence in terms of the vector v = (x, y, z)

χ(S, E) = x−
1

2
y.KS +

1

2
z .

If E1 and E2 are two bundles, then

χ(E1, E2) = χ(S, E∨

1 ⊗ E2)

and

ch(E∨

1 ⊗ E2) = ch(E∨

1 ).ch(E2) = (x1 − y1 +
1

2
z1)(x2 + y2 +

1

2
z2)

= x1x2 + (x1y2 − x2y1) +
1

2
(x1z2 + x2z1 − 2y1y2)

whence

χ(E1, E2) = x1x2 −
1

2
(x1y2 − x2y1).KS +

1

2
(x1z2 + x2z1 − 2y1y2) .

Clearly, since every sheaf has a resolution by locally free ones on S and both
sides of the previous equation are bilinear in E1, E2 resp. v1, v2, the formula
holds for arbitrary classes E1 and E2 in K0(S). Also, x, y, z have integer
coordinates for arbitrary classes in K0(S).

Proposition 3.10. The sequence (m1, . . . ,m9) is numerically unextendable

in K0(S).
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Proof. We consider

m10 = −h+
3

2
p

m11 = 2 + 2k + h− 3e1 − p

in the lattice ch(K0(S)) ⊂ Λ. One checks by direct computation that m10

and m11 are numerically semiorthogonal to m1, . . . ,m9 and span the orthog-
onal complement over Z in the lattice ch(K0(S)). Indeed, the matrix

(

χ(m10,m10) χ(m10,m11)
χ(m11,m10) χ(m11,m11)

)

=

(

−1 1
−5 4

)

hat determinant equal to 1. Furthermore,

χ(sm10 + tm11) = −s2 − 4st+ 4t2.

Since −s2 − 4st + 4t2 = 1 has no solution modulo 4, there exists no class
in K0(S) that is numerically semiorthogonal to m1, . . . ,m9 and numerically
exceptional. �

4. The counterexamples

Before proceeding further we recall the following fact from [BBS12]: the
roots

A1 = E−

0,4 − E+
4,4,

A2 = E+
4,0 − E+

3,0,

A3 = E+
3,0 − E+

2,0,

A4 = E+
2,0 − E+

1,0,

A5 = E+
1,0 − E−

0,0,

A6 = E−

0,2 − E−

0,4,

A7 = E−

0,3 − E−

0,0,

A8 = E−

0,4 − E−

0,1

in Pic(X)/(tors) form a (−A8)-subsystem of the root lattice (−E8) ⊂
Pic(X)/(tors). The bundles

O(A1),O(A1 +A2), . . . ,O(A1 + · · ·+A8)

form a completely orthogonal exceptional sequence whose terms give roots
in Pic(X)/(tors) by [BBS12].
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Proposition 4.1. Consider the following line bundles on X:

M1 = O(KX)

M2 = O(A1 +A2)

M3 = O(A1 +A2 +A3)

M4 = O(A1 + · · ·+A4)

M5 = O(A1 + · · ·+A5)

M6 = O(A1 + · · ·+A6)

M7 = O(A1 + · · ·+A7)

M8 = O(A1 + · · ·+A8)

M9 = O(3K − 2A1).

Then (M1, . . . ,M9) becomes an exceptional sequence after tensoring each

of the Mi with an appropriate torsion line bundle.

Proof. It follows from [BBS12] that the sequence (M1, . . . ,M8) is excep-
tional and this remains true after twisting all these bundles by arbitrary
torsion line bundles. To prove that there exists a torsion line bundle Oτ

such that Mi ⊗M−1
9 ⊗Oτ is acyclic, we write up to numerical equivalence

Mi −M9 ∼ nKX −D

with D effective and check that the ideal of p∗(D) ⊂ Y has less than
five sections in degree n. A Macaulay 2 script doing this can be found
at [BBS12a]. �

Proposition 4.2. The sequence of Proposition 4.1 is unextendable. That is,

there does not exist an exceptional object F ∈ Db(X) such that the sequence

(M1, . . . ,M9,F) is exceptional.

Proof. Notice that there is an isometry of lattices Pic(S) //Pic(X)/(tors)
mapping (m1, . . . ,m9) to (M1, . . . ,M9). This follows since each orthogonal
system of eight roots is of the form

A1, A1 +A2, . . . , A1 + · · ·+A8

whereA1, . . . , A8 form a (−A8)-subsystem. The corresponding (−A8)-system
in Pic(S) is (k+e1, e2−e1, . . . , e8−e7), and the Weyl group action on (−A8)
subsystems of the (−E8)-lattice is transitive by the Borel-Siebenthal theo-
rem. By Proposition 3.10, this immediately implies the result. �

Theorem 4.3. The derived category of the classical Godeaux surface X does

not satisfy the Jordan-Hölder property.

Proof. This is clear from Propositions 4.1 and 4.2 together with the fact
that Db(X) has an exceptional sequence of length 11 by [BBS12]. �

Corollary 4.4. Assume that the Noetherian property holds for Db(X). Then
there exists two maximal semiorthogonal decompositions D1 and D2 on X
whose Clemens-Griffiths components CG(D1) and CG(D2) are not equiva-

lent.
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Proof. We have two semiorthogonal decompositions

Db(X) = 〈L1, . . . ,L11,B1〉,

Db(X) = 〈M1, . . . ,M9,B2〉

where (L1, . . . ,L11) is the exceptional sequence from [BBS12], and B1 and B2

are the respective orthogonal complements. Here B1 is a quasi-phantom with
Grothendieck group Z/5. We can go on decomposing B1 and B2 if possible
until we reach two maximal decompositions D1 and D2. Note that an inde-
composable piece in a semiorthogonal decomposition has essential dimension
0 if and only if it is generated by an exceptional object, and CG(Di) are
hence obtained by grouping together all those indecomposable pieces which
are not generated by an exceptional object. Hence B1 and B2 are already
equal to CG(D1) resp. CG(D2) in this case. But their Grothendieck groups
have different ranks, so they are not equivalent. �

Corollary 4.5. There exist rational smooth projective fourfolds Z for which

Db(Z) does not satisfy the Jordan-Hölder property.

Proof. We can embed the surface X into P
5 and find a generic projection to

P
4 such that the image X̄ ⊂ P

4 has improper double points as only singular-
ities (which look like two planes meeting transversally in one point locally).

Blowing up the double points, we have an embedding X ⊂ P̃
4. Now consider

the fourfold Z = BlX(P̃4). By a result of [Orlov93] the derived category of

Z has a semiorthogonal decomposition into a copy of Db(P̃4) and one copy
of the blow-up center Db(X). Now we can produce an exceptional sequence

in Db(Z) by concatenating a full exceptional sequence in the copy Db(P̃4)
with the sequence (M1, . . . ,M9) above in Db(X). For the same numerical
reasons as above, there is no exceptional object in the (left) orthogonal to
this sequence. However, there are exceptional sequences of greater length in
Db(Z) (simply choose (L1, . . . ,L11) also in Db(X)). This proves the Corol-
lary. �

The last Corollary shows that the failure of the Jordan-Hölder property
is clearly not restricted to manifolds of general type, and it even fails for
varieties which one has to control when trying to implement the approach
to nonrationality of generic cubic fourfolds suggested in [Kuz10]. Thus, as
suggested at the end of Section 2, probably a substantial modification or, in
any case, further ideas will be needed here.
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[BBS12a] Chr. Böhning, H.-Chr. Graf von Bothmer and P.
Sosna, Macaulay 2 files for this paper, available at
http://www.math.uni-hamburg.de/home/boehning/research/JordanHoelderM2/M2scripts.html

[Dolg] I. Dolgachev, Classical Algebraic Geometry: A Modern View, Cambridge Uni-
versity Press (2012).

[ELS] L. Ein, R. Lazarsfeld and K. E. Smith, Uniform bounds and symbolic powers

on smooth varieties, Invent. Math. 144 (2001), Nr. 2, 241–252.
[GorOrl] S. Gorchinskiy and D. Orlov, Geometric phantom categories, preprint (2012),

arXiv:1209.6183.
[Kaw05] Y. Kawamata, Derived categories and birational geometry, in: Algebraic Ge-

ometry. Part 2, Seattle, 2005, 655–665, Proc. Sympos. Pure Math. vol. 80,
Amer. Math. Soc., Providence, RI, 2009.

[KuzECM] A. Kuznetsov, Derived categories and rationality of cubic fourfolds, slides of
talk available at http://www.mi.ras.ru/˜akuznet/publications/5ecm.pdf

[Kuz09a] A. Kuznetsov, Derived categories of coherent sheaves and rationality of

algebraic varieties, talk given at the International Conference ”Contemporary
Mathematics” 2009, Moscow–St.-Petersburg, video presentation available at
http://www.mathnet.ru/php/presentation.phtml?option lang=eng&presentid=337

[Kuz10] A. Kuznetsov, Derived categories of cubic fourfolds, Cohomological and
geometric approaches to rationality problems, 219–243, Progr. Math. 282,
Birkhäuser Boston, Inc., Boston, MA, 2010.

[Orlov93] D. Orlov, Projective bundles, monoidal transformations and derived categories

of coherent sheaves, Izv. Akad. Nauk SSSR Ser.Mat. 56 (1992), 852–862; Eng-
lish transl. in Math. USSR Izv. 38 (1993), 133–141.
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