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Abstract

We study maximal independent families for sets in the projective hierarchy. Our
main result shows that in the Cohen model, there are no maximal independent families.
We also consider a new cardinal invariant related to the question of destroying and
preserving maximal independent families.

1 Introduction

In descriptive set theory, one often looks at objects defined in a con-constructive way, such as
ultrafilters, Bernstein-type sets, maximal almost disjoint families etc., and asks the question
“how low in the projective hierarchy do such objects first appear”? In this paper, we look
at maximal independent families, a close relative of the maximal almost disjoint families
studied in this way by the same authors in [1].

Definition 1.1. A family I ⊆ [ω]ω is called independent if whenever we choose finite disjoint
F,G ⊆ I, we get

σ(F ;G) :=

( ⋂
A∈F

A

)
∩

( ⋂
B∈G

(ω \B)

)
is infinite.

A family I ⊆ [ω]ω is called a maximal independent family (m.i.f.) if it is independent and
maximal with regard to this property.

Note that maximality of I is equivalent to:

∀X ∈ [ω]ω ∃F ∈ [I]<ω ∃G ∈ [I \ F ]<ω (σ(F ;G) ⊆∗ X ∨ σ(F ;G) ∩X =∗ ∅).

By identifying the space [ω]ω with 2ω via characteristic functions, one can consider
independent families as subsets of the reals and study their complexity in the projective
hieararchy.

Remark 1.2. If I is a Σ1
n m.i.f. then it is ∆1

n.
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Proof. Suppose I is a Σ1
n m.i.f. Then ∀X ∈ [ω]ω :

X /∈ I ⇐⇒ ∃F ∈ [I]<ω ∃G ∈ [I \ F ]<ω

(X /∈ F ∧X /∈ G ∧ (σ(F ;G) ⊆∗ X ∨ σ(F ;G) ∩X =∗ ∅)).

The last statement is easily seen to be Σ1
n.

Theorem 1.3 (Miller; [2]). There is no analytic m.i.f.

An analysis of Miller’s proof shows the following stronger result: Σ1
n(C) ⇒ @Σ1

n-
m.i.f., for all n, where we use “Σ1

n(C)” to denote the statement “all Σ1
n sets have the Baire

property”. In particular, it follows that in the Cohen model there is no Σ1
2 m.i.f., that in

the Solovay and the Shelah model (for projective Baire Property without inaccessible) there
is no m.i.f. at all, and that AD⇒ there is no m.i.f.

In this paper, we prove a much stronger result, namely, that in the Cohen model there is
no projective m.i.f. Since Σ1

2(C) is false in the Cohen model, this will show that the above
implication cannot be reversed in general.

On the other hand, it is easy to construct a m.i.f. by induction using a wellorder of the
reals. In particular, it is easy to see that in L, there exists a Σ1

2 m.i.f. In [2], Miller used
sophisticated coding techniques to show that, in fact, there is a Π1

1 m.i.f. in L. Building
on an idea due to Asger Törnquist [4], we will show that in fact this proof is unneccessary,
since one can show directly in ZFC that if there exists a Σ1

2 m.i.f. then there exists a Π1
1

m.i.f.

The paper is structured as follows: in Section 2, we prove the implication mentioned
above. In Section 3 we present a break-down of Miller’s original proof necessary for further
development. In Section 4 we prove the main theorem about projective m.i.f.’s in the Cohen
model, and in Section 5 we study a cardinal invariant related to the question of preserving
or destroying a m.i.f.

2 Σ1
2 and Π1

1 m.i.f ’s

Theorem 2.1. If there exists a Σ1
2 m.i.f. then there exists a Π1

1 m.i.f.

Proof. Suppose I0 is a Σ1
2 maximal independent family. Let F0 ⊆ ([ω]ω)

2
be a Π1

1 set such
that I0 is the projection of F0. Consider the space ω ∪̇ 2<ω as a disjoint union, and consider
the mapping

g :
([ω]ω)

2 −→P (ω ∪̇ 2<ω)
(x, y) 7−→ x ∪ {χy�n | n < ω}

where χy is the characteristic function of y. It is not hard to see that g is a continuous
function (in the sense of the space P(ω ∪̇ 2<ω)).

By Π1
1-uniformization, there exists a Π1

1 set F ⊆ F0 which is the graph of a function, i.e.,
∀x ∈ I0 ∃!y ((x, y) ∈ F ). We let I := g[F ] and claim that I is a Π1

1 m.i.f.

To see that I is Π1
1, note that for z ∈ [ω ∪̇ 2<ω]ω, there is an explicit way to recover

x and y such that g(x, y) = z, if such x and y exist. More precisely: for B ⊆ 2<ω, let
lim(B) := {y ∈ 2ω | ∀n (y�n ∈ B)}. Note that if B is infinite then lim(B) 6= ∅. Then we
can say the following: z ∈ I if and only if
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1. ∀y, y′ (y ∈ lim(z ∩ 2<ω) ∧ y′ ∈ lim(z ∩ 2<ω) → y = y′), and

2. ∀y (y ∈ lim(z ∩ 2<ω) → (z ∩ ω, y) ∈ F ).

This gives a Π1
1 definition of I.

To see that I is independent, suppose we have z1, . . . zn and w1, . . . w` ∈ I, the z’s being
different from the w’s. Write ai := zi ∩ ω and bj := wj ∩ ω. Then all ai and bj are in
dom(F ) = I0, and moreover, since F is a function, the ai’s are different from the bj ’s. But
then we have that σ(z1, . . . , zn;w1, . . . , w`) ⊇ σ(a1, . . . , an; b1, . . . , b`) is infinite, since the
latter set is infinite by the independence of I0.

To show maximality of I, suppose W ∈ [ω ∪̇ 2<ω]ω and W /∈ I. Let A := W ∩ ω. By maxi-
mality of I0, there are a1, . . . , an and different b1, . . . , b` such that σ(a1, . . . , an, A; b1, . . . b`)
is finite or σ(a1, . . . , an; b1, . . . b` ∪ {A}) is finite, w.l.o.g. the former. Then there are
z1, . . . , zn and different w1, . . . , w` such that ai = zi ∩ ω and bj = wj ∩ ω. To make sure
that the “2<ω-part” of the zi’s and the wj ’s does not make the intersection infinite, we pick
two additional t0 6= t1 ∈ I, different from the zi’s and the wj ’s. Let t0 = g(x0, y0) and
t1 = g(x1, y1). If y0 = y1, then (t0 \ t1)∩ 2<ω = ∅, hence σ(x1, . . . , xn,W, t0; b1, . . . b`, t1) is
finite. If, on the other hand, y0 6= y1, then the sets {χy0�n | n < ω} and {χy1�n | n < ω}
are almost disjoint, so (t0 ∩ t1)∩ 2<ω is finite. In that case, σ(x1, . . . , xn,W, t0, t1; b1, . . . b`)
is finite. So in any case, I ∩ {W} is not independent, completing the proof.

3 Perfect almost disjoint and almost covering sets

Next, we turn our attention to Miller’s original proof of the non-existence of analytic m.i.f.’s.,
using it to prove a stronger result and breaking it down a bit, using the following definition.

Definition 3.1. A tree T ⊆ 2<ω is called perfect almost disjoint (perfect a.d.) if it is a
perfect tree and ∀x, y ∈ [T ] {n | x(n) = y(n) = 1} is finite. A tree S ⊆ 2<ω is called perfect
almost covering (perfect a.c.) if it is a perfect tree and ∀x, y ∈ [T ] {n | x(n) = y(n) = 0} is
finite.

Definition 3.2.

1. A set A ⊆ 2ω satisfies the perfect-a.d.-a.c. property, abbreviated by Sad-ac, if there
exists a perfect a.d. tree T with [T ] ⊆ A, or there exists a perfect a.c. tree S with
[S] ∩A = ∅.

2. A set A ⊆ 2ω satisfies the perfect-a.c.-a.d. property, abbreviated by Sac-ad, if there
exists a perfect a.c. tree S with [S] ⊆ A, or there exists a perfect a.d. tree T with
[T ] ∩A = ∅.

Question 3.3. Do the statements Γ(Sad-ac) or Γ(Sac-ad) have any interesting characterisa-
tions and/or has anything like this ever been studied previously, for example for Γ = ∆1

2 or
Γ = Σ1

2?

Lemma 3.4. Γ(C)⇒ Γ(Sad-ac) ∧ Γ(Sac-ad) for any projective pointclass Γ.

Proof. Let A ⊆ 2ω be in Γ. If A has the Baire property, in particular there is a basic open
set [s] such that [s] ⊆∗ A or [s] ∩ A =∗ ∅ (here ⊆∗ and =∗ denote modulo meager). If we
assume the former, we will find both a perfect a.d. tree T and a perfect a.c. tree S such that
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[T ] ⊆ A and [S] ⊆ A. Analogously, if we assume the latter, we will find both a perfect a.d.
tree T and a perfect a.c. tree S such that [T ] ∩ A = ∅ and [S] ∩ A = ∅. Thus, it is clear
that in effect we prove both Γ(Sad-ac) and Γ(Sac-ad). We only show how to construct the
perfect almost disjoint tree T in the former case; the other cases are similar.

So, assume [s] ⊆∗ A and let Bn be nowhere dense so that [s] \A ⊆
⋃
nBn.

• Let s∅ be an extension of s with at least one (new) non-zero digit, and such that
[s∅] ∩B0 = ∅. Let k0 := |s∅|.

• Let s〈0〉 be an extension of s∅, with at least one new non-zero digit, and such that
[s〈0〉] ∩B1 = ∅. Let k1 := |s〈0〉|.

• Let s〈1〉 be an extension of s∅ consisting only of 0’s on the interval [k0, k1), followed by
an arbitrary extension with at least one non-zero digit, and such that [s〈1〉]∩B1 = ∅.
Let k2 := |s〈1〉|.

• Let s〈0,0〉 be an extension of s〈0〉, consisting only of 0’s on the interval [k1, k2), followed
by an arbitrary extension with at least one non-zero digit, and such that [s〈0,0〉]∩B2 =
∅. Let k3 := |s〈0,0〉|.

• Let s〈0,1〉 be an extension of s〈0〉, consisting only of 0’s on the interval [k1, k3), followed
by an arbitrary extension with at least one non-zero digit, and such that [s〈0,1〉]∩B2 =
∅. Let k4 := |s〈0,0〉|.

• Continue in the same way: sσ_〈i〉 extends sσ with only 0’s until the largest kj which
has been defined, followed by an arbitrary extension with at least one non-zero digit,
such that [sσ_〈i〉] ∩B|σ|+1 = ∅.

Finally let T be the tree generated by {sσ | σ ∈ 2<ω}. This is a perfect tree (because of the
“new non-zero digit”), and clearly [T ] ⊆ [s] ∩ A. The construction clearly guarantees that
[T ] is an almost disjoint tree.

To construct the perfect almost covering tree S in A, proceed analogously replacing “0” by
“1” in the proof above.

Remark 3.5. An equivalent formulation of the above lemma is: “for every countable model
M there exists a perfect almost disjoint set and perfect almost covering set of Cohen reals
over M”.

Lemma 3.6. Σ1
n(Sad-ac)⇒ @Σ1

n-m.i.f. and Σ1
n(Sac-ad)⇒ @Σ1

n-m.i.f..

Proof. We prove both statements simultaneously. Let I be Σ1
n, and assume, towards con-

tradiction, that I is a m.i.f. Let

H := {X | ∃F ∈ [I]<ω ∃G ∈ [I \ F ]<ω (σ(F ;G) ⊆∗ X)}
K := {X | ∃F ∈ [I]<ω ∃G ∈ [I \ F ]<ω (σ(F ;G) ∩X =∗ ∅)}

Then both H and K are Σ1
n sets. Moreover, by maximality of I, [ω]ω = H ∪K.

Assume that Σ1
n(Sad-ac) was true. Then, applying this property to H, we either obtain

a perfect almost disjoint tree T with [T ] ⊆ H, or a perfect almost coverting tree S with
[S]∩H = ∅, hence [S] ⊆ K (note that here, and in the rest of the proof, we identify subsets
of ω with their characteristic function).
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Alternatively, assume that Σ1
n(Sac-ad) was true. Then, applying this property to K, we

either obtain a perfect almost covering tree S with [S] ⊆ K, or a perfect almost disjoint tree
T with [T ] ∩K = ∅, and therefore [T ] ⊆ H.

In both cases, the proof proceeds analogously.

First assume there is a perfect almost disjoint T with [T ] ⊆ H. For each X ∈ [T ] let FX , GX
witness the fact that X ∈ H, and apply the ∆-systems Lemma to find distinct X,Y ∈ [T ]
such that (FX ∪ FY ) ∩ (GX ∪ GY ) = ∅. Then σ(FX ∪ FY ;GX ∪ GY ) ⊆∗ X ∩ Y =∗ ∅,
contradicting the independence of I.

Similarly, assume there is a perfect almost covering S with [S] ⊆ K, and proceed analogously.
Then we obtain σ(FX ∪ FY ;GX ∪GY ) ∩ (X ∪ Y ) =∗ ∅. But by assumption (X ∪ Y ) =∗ ω
so this implies that σ(FX ∪FY ;GX ∪GY ) =∗ ∅, again contradicting the independence of I.

Corollary 3.7. Σ1
n(C)⇒ @Σ1

n m.i.f.

Remark 3.8. A curious aspect of this corollary is that the proof can proceed either via
Sad-ac or via Sac-ad; in fact, considering just any one of these dichotomy properties would
be sufficient (see Figure 1), and in the proof of Lemma 3.6 it would be sufficient for just H
or just K to be Σ1

2.

Γ(C) +3

"*

Γ(Sad-ac) Σ1
n(Sad-ac)

$,
Γ(Sac-ad) Σ1

n(Sad-ac) +3 @Σ1
n m.i.f.

Figure 1: Impications in ZFC.

Question 3.9. Can we strengthen Lemma 3.6 to ∆1
n(Sad-ac) ⇒ @Σ1

n-m.i.f.? (Note that
∆1
n(Sad-ac) and ∆1

n(Sac-ad) are equivalent).

4 Projective m.i.f ’s

The general question is: in which models do m.i.f.’s of complexity Γ exist? A recent abstract
result of Schrittesser [3] shows:

Fact 4.1 (Schrittesser 2016). In the iterated Sacks model (of any length) starting from L,
there exists a (lightface) ∆1

2 m.i.f.

Theorem 4.2. In the Cohen model there are no projective m.i.f.’s

What we actually show is that in the Cohen model all projective sets (and even all sets
in L(R)) satisfy Sad-ac and Sac-ad. The main point is the following Lemma, closely related
to Lemma 3.4:

Lemma 4.3. If c ∈ [s] is Cohen over V , then in V [c] there exists a perfect almost disjoint
set and a perfect almost covering set of Cohen reals over V , contained in [s].
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Proof. Let P denote the partial order consisting of finite trees T ⊆ 2<ω with the following
property: ∃k0 < k1 < · · · < k` such that T ⊆ 2≤k` , and for every i < `, there is at most one
t ∈ T where t�[ki, ki+1) is not constantly 0 (notice that the tree constructed in the proof of
Lemma 3.4 has this property). The trees are ordered by end-extension.

Notice that P generically adds a perfect tree TG, defined as the limit of the trees in G.
Moreover, using an analogous idea to Lemma 3.4, we can see that T is almost disjoint and
that every x ∈ [TG] is Cohen-generic over the ground model.

Since P is countable, it is isomorphic to Cohen forcing. Therefore, if V [c] is a Cohen extension
of V , it is also a P-generic extension of V , so there exists a perfect almost disjoint set [TG]
of Cohen reals. W.l.o.g. TG can be assumed to be within [s].

To obtain a perfect almost covering set of Cohen reals in [s], apply the same argument with
“0” replaced by “1”.

Proof of Theorem 4.2. Let W := V Cκ (for any κ), and let A be a set in W defined by a
formula φ(x) with real or ordinal parameters, w.l.o.g. all of which are in V (so we can
forget about them). In W , let c be Cohen over V , and assume w.l.o.g. that φ(c). Then
V [c] |= “p 
Q φ(č)”, where Q is the remainder forcing leading from V [c] to W and p is some
Q-condition. However, since Cκ is the product forcing, Q is isomorphic to Cκ. Moreover,
since Cκ is homogeneous we can assume that p is the trivial condition, hence we really have:

V [c] |= “ 
Cκ φ(č)”

Let [s] be a Cohen condition with c ∈ [s] forcing this statement in V . By Lemma 4.3, first
we find a perfect a.d. tree T with T ∈ V [c] , [T ] ⊆ [s] and such that all x ∈ [T ] are Cohen
over V . Note that this fact remains true in W , since “being a perfect set of Cohen reals” is
upwards absolute. Now, for any such x ∈ [T ] (in W ), we have that x ∈ [s], and therefore
V [x] satisfies whatever [s] forces, in particular

V [x] |= “ 
Cκ φ(x̌)”

But, again, the remainder forcing leading from V [x] to W is isomorphic to Cκ, and it follows
that W |= φ(x).

Similarly, we also find a perfect a.c. tree S with exactly the same properties. Thus A satisfies
both Sad-ac and Sac-ad, and the rest follows by Lemma 3.6.

5 ℵ1-Borel and ℵ1-closed m.i.f ’s

The question of definable m.i.f’s is closely related to questions concerning certain cardinal
invariants (compare with [1]).

Definition 5.1.

1. i is the least size of a m.i.f.

2. icl is the least κ such that there exists a collection {Cα | α < κ}, where each Cα is a
closed independent family, and

⋃
α<κ Cα is a m.i.f.

3. iB is the least κ such that there exists a collection {Bα | α < κ}, where each Bα is a
Borel independent family, and

⋃
α<κBα is a m.i.f.
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It is clear that iB ≤ icl ≤ i. It is also known that r ≤ i and d ≤ i, where d and r denote
the dominating and reaping numbers, respectively. Notice that if iB > ℵ1, then there are
no Σ1

2 m.i.f.’s (since Σ1
2-sets are ℵ1-unions of Borel sets).

Theorem 5.2. cov(M) ≤ iB.

Proof. Let κ < cov(M) and let {Bα | α < κ} be a collection of Borel independent families.
We need to show that I :=

⋃
α<κBα is not maximal.

Suppose otherwise, and for every finite E ⊆ κ define

HE := {X | ∃F ∈ [
⋃
α∈E Bα]<ω ∃G ∈ [

⋃
α∈E Bα \ F ]<ω (σ(F ;G) ⊆∗ X)}

KE := {X | ∃F ∈ [
⋃
α∈E Bα]<ω ∃G ∈ [

⋃
α∈E Bα \ F ]<ω (σ(F ;G) ∩X =∗ ∅)}

Notice that by maximality of I =
⋃
α<κBα, we have⋃

{HE ∪KE | E ∈ [κ]<ω} = [ω]ω.

Since κ < d = cov(Kσ), there must exist a finite E ⊆ κ such that HE ∪KE /∈ M. Suppose
HE /∈ M: since HE is analytic, there exists a basic open [s] with [s] ⊆∗ HE . By the
argument from Lemma 3.4, there exists a perfect a.d. tree T with [T ] ⊆ HE . But then, by
the argument from Lemma 3.6, it follows that

⋃
α∈E Bα is not independent, contrary to the

assumption. Likewise, if KE /∈M then using the argument from Lemma 3.4, there exists a
perfect a.c. tree S with [S] ⊆ HK , and the rest is the same.

We end this section with the following open questions:

Question 5.3.

1. Is it consistent that icl < d or iB < d?

2. Is it consistent that icl < r or iB < r?

3. Is it consistent that icl < i or iB < i?

4. Can we have d > ℵ1 or r > ℵ1 together with a Σ1
2 m.i.f.?

5. Does the existence of a Σ1
n+1 m.i.f. imply the existence of a Π1

n m.i.f. for n > 2?
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