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Abstract
Precipitation remains among the most poorly represented climate variables in state-of-the-
art general circulation models. This thesis investigates reasons for intermodel spread in both
global-mean precipitation as well as tropical precipitation patterns, and their change with
warming. We examine the constraints on global-mean precipitation in experiments of differ-
ent complexity provided by the Coupled Model Intercomparison Project phase 5 (CMIP5),
and explore the intermodel spread in tropical precipitation patterns in idealized aquaplanet
simulations from the Clouds On-Off Klimate Intercomparison Experiment (COOKIE).

Literature estimates of the rate of global-mean precipitation increase with surface warm-
ing disagree about the intermodel spread, reporting either a large or a small spread. Our
analysis of this rate in the CMIP5 ensemble corroborates the estimates of a small intermodel
spread. The spread is small if the temperature-mediated rate of precipitation increase is
explicitly separated from the direct precipitation response to a change in the atmospheric
composition; we respectively refer to these quantities as hydrological sensitivity parameter
(η) and adjustment (A). The intermodel spread in η arises from disagreement in lower-
tropospheric temperature and humidity changes in the tropics as well as diverse cloud ra-
diative changes, as revealed by a radiative kernel analysis applied to the atmospheric heat
budget. Three factors – η, A and the surface warming – determine the total precipitation
change with time. The intermodel disagreement in these three factors affects the spread in
the precipitation response (∆P ) on different time scales. Upon changes in the atmospheric
composition, in the short term the spread in ∆P is dominated by A, while in the longterm
the greatest spread arises from the surface temperature. From merely knowing A and η,
the precipitation response in a transient forcing experiment can be replicated with a simple
model.

Contrary to the recent suggestion that cloud radiative feedbacks are the key reason
for intermodel differences in the tropical precipitation response to warming in aquaplanet
simulations, we explore the hypothesis that the seed for intermodel spread is present also
when the cloud-radiation interaction is inhibited. Indeed, the model spread is greater in
the absence of atmospheric cloud radiative effects (ACREs), e.g. in the location of the
intertropical convergence zone (ITCZ), or the organization of the tropical circulation. The
ITCZ shifts polewards in all models when ACREs are absent, and the tropical distribution
of precipitation, which is governed by the vertical velocity, becomes more diverse.

We develop a simple framework to diagnose the vertical velocity in the tropics. The
framework is derived from the moist static energy (MSE) budget and assumes that the
vertical velocity can be expressed by a specified vertical velocity structure associated with
deep convection. Then the vertical mean vertical velocity is diagnosed as the ratio between
column MSE heating terms and the gross moist stability, which is the vertical advection
associated with the specified velocity structure. We find that the zonal-mean variation in
the vertical velocity is governed by the column heating rather than the gross moist stability.
Further, we employ the framework to understand the poleward shift of the ITCZ when
ACREs are removed. The results suggest that the heterogeneity in cloud radiative heating
with respect to the clear-sky column MSE heating terms is related to the shift in the ITCZ.



iv



v

Zusammenfassung
In den dem neuesten Forschungsstand entsprechenden allgemeinen Zirkulationsmodellen der
Atmosphäre stellt der Niederschlag noch immer eine der am unzulänglichsten simulierten Va-
riablen dar. In der vorliegenden Doktorarbeit werden Gründe für Modellunterschiede sowohl
in dem simulierten globalen Niederschlag als auch in der tropischen Niederschlagsverteilung
und deren Veränderungen mit der Erwärmung untersucht. Die globalen Niederschlagsände-
rungen werden in unterschiedlich komplexen Klimaexperimenten, die vom “Coupled Model
Intercomparison Project phase 5” (CMIP5) zur Verfügung gestellt sind, evaluiert, während
die Modellunterschiede der tropischen Niederschlagsverteilung in den Aquaplanetsimula-
tionen vom “Clouds On-Off Klimate Intercomparison Experiment” (COOKIE) untersucht
werden.

Die in der Literatur veröffentlichten Modellunterschiede für die Anstiegsrate des globa-
len Niederschlags im Zuge einer Erwärmung weichen voneinander ab, wobei entweder geringe
oder große Modellunterschiede angegeben werden. Unsere Analysen dieser Anstiegsrate in
dem CMIP5 Modellensemble untermauern die Literaturangaben mit geringeren Modellun-
terschieden. Die Unterschiede werden geringer, wenn die direkte Niederschlagsveränderung
als Reaktion auf Veränderungen in der atmosphärischen Zusammensetzung und die tem-
peraturbeeinflussten Niederschlagsveränderungen explizit getrennt voneinander betrachtet
werden. Wir nennen diese zwei Größen “Anpassung” (A) und “hydrologischer Sensitivitäts-
parameter” (η). Die Modellunterschiede von η können mit Hilfe einer Kernel-Analyse des
atmosphärischen Strahlungsbudgets auf Unterschiede in den Änderungen der Temperatur
und des Wasserdampfs in der unteren tropischen Troposphäre sowie auf unterschiedliche
Wolkenveränderungen zurückgeführt werden. Die zeitliche totale Niederschlagsveränderung
wird nicht nur von η und A bestimmt, sondern auch von der Oberflächenerwärmung. Die Dis-
krepanz zwischen den Modellen in diesen drei Größen beeinflusst die Modellunterschiede der
totalen Niederschlagsveränderung (∆P ) auf verschiedenen Zeitskalen. Wenn die atmosphä-
rische Komposition zum Beispiel durch Erhöhung von Kohlendioxid verändert wird, werden
die Modellunterschiede in ∆P auf kurzen Zeitskalen von A dominiert, während die Ober-
flächenerwärmung für die größten Niederschlagsunterschiede auf langen Zeitskalen sorgt.
Die Kenntnis von A und η genügt um die Niederschlagsveränderung in einem transienten
Antriebsexperiment mit einem einfachen Modell nachzubilden.

In Opposition zu dem vor kurzem veröffentlichten Vorschlag, dass Wolken-Strahlungs-
Rückkopplungsprozesse die Hauptursache für die Streuung zwischen Modellergebnissen der
tropischen Niederschlagsveränderung mit der Erwärmung in Aquaplanetsimulationen seien,
untersuchen wir die gegensätzliche Hypothese, dass der Ursprung für die Streuung auch ohne
das Vorhandensein von atmosphärischen Wolkenstrahlungseffekten (atmospheric cloud ra-
diative effects, ACREs) gegeben ist. Wenn ACREs unterbunden sind, nimmt die Diskrepanz
zwischen Modellergebnissen tatsächlich zu, wie zum Beispiel die Positionen der innertropi-
schen Konvergenzzone (ITCZ) oder die Organisation der tropischen Zirkulation. Die ITCZ
wird durch das Ausstellen der ACREs in allen Modellen polwärts verschoben. Dies sorgt für
größere Modellunterschiede in der Verteilung des tropischen Niederschlags, der wiederum
von der vertikalen Geschwindigkeit bestimmt wird.
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Wir entwickeln ein theoretisches Konzept um die vertikale Geschwindigkeit in den Tro-
pen zu diagnostizieren. Das theoretische Konzept wird aus dem Budget der feuchtstatischen
Energie (moist static energy, MSE) hergeleitet und basiert auf der Annahme, dass die verti-
kale Geschwindigkeit aus dem Produkt der vertikal gemittelten vertikalen Geschwindigkeit
und einer vorgegebenen Struktur der vertikalen Geschwindigkeit dargestellt werden kann,
wobei die Struktur in Anlehnung an das Profil der Tiefenkonvektion gewählt ist. Damit kann
die vertikale Geschwindigkeit aus dem Quotienten von MSE Wärmetermen und der Gesamt-
Feuchtestabilität (gross moist stability, Γh) diagnostiziert werden, wobei Γh die vertikale
Advektion von MSE durch die angenommene Geschwindigkeitsstruktur darstellt. Mit Hilfe
dieses Konzepts wird gezeigt, dass die zonal gemittelte Variation der vertikalen Geschwindig-
keit von der Variation des MSE Wärmeterms bestimmt wird und nicht von Γh. Das Konzept
wird weiterhin auf die Frage angewandt, warum die ITCZ in den Modellen unterschiedlich
weit polwärts verschoben wird, wenn die Wolken-Strahlungs-Wechselwirkung verhindert ist.
Die Ergebnisse lassen darauf schließen, dass das heterogene Heizen des Wolkenstrahlungs-
effekts im Vergleich zu dem wolkenfreien MSE Wärmeterm mit der Verschiebung der ITCZ
in Verbindung steht.
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1 Introduction

This thesis presents advances in understanding physical reasons for the disagreement among
state-of-the art general circulation models (GCMs) in the representation of global-mean and
regional precipitation as well as its change with warming. As part of the Coupled Model
Intercomparison Project (CMIP) phase 5, these models have served as the basis for projec-
tions of the future climate in the latest Fifth Assessment Report of the Intergovernmental
Panel on Climate Change.

Precipitation is the most important process for distributing freshwater over large areas.
Apart from its importance for the ecosystem, the availability of freshwater through precip-
itation has been fundamental for the development of human populations in the past, their
migrations as the climate changed, and directly affects billions of people in the present.
Some 9000 to 6000 years ago, prehistoric settlements were abundant in the Sahara be-
cause the northward migrating African monsoonal rainfall provided freshwater to initiate a
greening of the former desert (e.g. deMenocal and Tierney, 2012). As monsoonal rainfalls
shifted back south, scarcity of freshwater in Northern Africa and the reduced risk of flood-
ing triggered the reoccupation of the Nile river valley, marking the emergence of pharaonic
civilizations (Kuper and Kröpelin, 2006). Despite today’s advances in technology, human
health and economic prosperity rely on replenishing freshwater resources by precipitation,
e.g. in India (Sulochana Gadgil, 2006), or the Sahel zone (Barrios et al., 2010), but also
industrialized countries, such as for example the United States of America (MacDonald,
2010). Future changes of the hydrological cycle, induced by rising greenhouse gas concen-
trations and global warming, are almost certain to increase global-mean precipitation but
with substantial reductions in certain regions (e.g. Held and Soden, 2006; Bony et al., 2013;
Hegerl et al., 2015). Precipitation extremes such as droughts, and floods associated with
heavy rainfall are thought to increase in frequency and severity with global warming (e.g.
Dai, 2013; Kharin et al., 2013). However, the representation of precipitation ranks among
the most poorly simulated quantities in the general circulation models (Stephens et al.,
2010; Hawkins and Sutton, 2011). The uncertainty of precipitation projections constitutes
the key challenge for adapting water resource management to climate change (Jiménez Cis-
neros et al., 2014). A better physical understanding of the processes governing global-mean
precipitation, precipitation patterns, and their changes with warming in GCMs as well as
the causes for intermodel differences is imperative to prepare society with the knowledge
base to cope with an uncertain future.

General circulation models differ in many regards. They are highly complex numerical
representations of circulations in the atmosphere (AGCM), the coupled atmosphere-ocean
system (AOGCM) including land, vegetation and sea ice, or of the Earth System (ESM)
including for instance biogeochemical cycles like the carbon cycle, sulphur cycle and ozone.
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At their basis, they numerically solve the well-known primitive equations, describing the at-
mospheric and oceanic circulations. These models solve the equations in time and in space
on a three-dimensional grid. Due to limitations of computing resources, the horizontal grid
sizes of the CMIP5 models used in this thesis are on average approximately 200 km, with
the finest resolution at the equator being 120 km. Many atmospheric processes, such as
for example convection, precipitation, and clouds, occur on much smaller scales and are
thus not resolved. These processes have to be parameterized. Parameterizations are hy-
pothetical relationships that represent the unresolved sub-grid scale variability in terms of
resolved grid mean quantities. GCMs differ in many aspects: in the horizontal and vertical
resolution, and accordingly the time step; in the parameterizations which vary in complex-
ity; in the selection of represented processes, e.g. aerosols, atmospheric chemistry, dynamic
vegetation, biogeochemical cycles; in the implementation of the aforementioned processes;
and many more. Many of the parameters used in parameterizations are uncertain and often
non-observable. In the final stages of model development, some of these non-constrained
parameters are adjusted to tune the model to a known state of the climate system. The
tuning process, though yielding an equally plausible model, can lead to different represen-
tations of the climate system, e.g. precipitation over land as expected from observations,
or precipitation moving off the land to the ocean in the region of the maritime continent
(Mauritsen et al., 2012). The models provided by different modeling centers in the CMIP5
archive are not necessarily independent from each other. Model components may have been
shared in the development process which may lead to common biases (Knutti et al., 2013),
the same model may have been submitted to the CMIP5 archive in different resolutions or
with different selections of submodels. Nevertheless, the multi-model comparison to some
extent samples structural uncertainty among the models.

Comparing the model response to changes in the external forcing is a powerful tool to test
the understanding of how the forcing influences the climate state. The CMIP5 archive offers
numerous simulations of different complexity, where external forcings are specified according
to a protocol (for an overview see Taylor et al., 2012). External forcings – such as CO2 and
other greenhouse gas concentrations, aerosols, the solar constant, or others – are modified
to represent e.g. the twentieth century, or are raised step-like in more idealized experiments.
In addition, models are run in various configurations, ranging from the coupled AOGCMs,
AGCMs with fixed sea surface temperatures, to very idealized water-covered aquaplanets.
The intermodel comparison of the precipitation response to such controlled settings can help
build confidence in the community’s understanding of certain processes, if their response to
a forcing is consistent. If, however, their response differs, identifying the main processes
leading to the intermodel spread may also help guide the model improvement.

Previous literature focusing on the intermodel spread in precipitation states that mod-
els disagree about both the global-mean changes of precipitation with warming as well as
the regional changes, with particularly large spread in the tropical precipitation response.
Because the physical constraints, and thus possible causes for intermodel spread, differ be-
tween the global-mean or tropical regional perspective, the subsequent introductory sections
present an overview of the constraints on global-mean and the tropical spatial precipitation
distribution. In addition, in the remainder of this introduction, the leading research objec-
tives of this thesis are placed into the context of knowledge from the previous literature,
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where Chapter 2 focuses on the global-mean perspective, and Chapters 3 and 4 on spe-
cific aspects of the spatial precipitation distribution in the tropics. Each chapter contains
its own introduction and can thus be read independently.

1.1 The atmospheric heat budget as constraint on global-mean
precipitation

Upon being evaporated from the Earth’s surface, moisture is transported by atmospheric
circulations. As air rises, water vapor condenses, releasing latent heat of condensation and
forming clouds. Once precipitation again reaches the ground in liquid or solid form rather
than re-evaporating, it has effectively heated the atmosphere. For the Earth’s atmosphere
to remain in balance, the amount of heat provided to the atmosphere from the ground
by the latent and sensible heat fluxes has to equal the energy leaving the atmosphere. The
atmosphere cools by emission of longwave radiation, and is heated by absorption of shortwave
radiation by water vapor; but the longwave cooling dominates so that the net effect is a
radiative cooling of the atmosphere. That the global-mean precipitation is constrained by
energetics is by now broadly appreciated (e.g. Mitchell et al., 1987; Boer, 1993; Allen and
Ingram, 2002; O’Gorman et al., 2012). From an atmospheric budget view, the global-mean
precipitation (P ) is given as

LvP = R− SH, (1.1)

where multiplying by the latent heat of vaporization Lv transforms precipitation into en-
ergy units. The atmospheric net radiation, R, is given as the difference between top-of-
atmosphere (TOA) and surface radiation, and SH is the surface sensible heat flux. As
Figure 1.1 illustrates, the net atmospheric radiation is influenced by the atmospheric tem-
perature and water vapor, clouds, the surface albedo, well-mixed greenhouse gases and
aerosols. Global-mean precipitation can thus be understood from knowledge of the impacts
of these constituents on the global-mean atmospheric radiation and the sensible heat flux.

Under global warming, the rising CO2 concentrations reduce the Earth’s cooling to space,
leading to a surplus of absorbed energy at the TOA. The system regains energy balance
by increasing the surface temperature. The surface temperature change in response to a
doubling of CO2 concentration is generally referred to as equilibrium climate sensitivity
(ECS), following Charney et al. (1979). Initial increases in the surface temperature are
amplified or reduced by positive or negative climate feedbacks, respectively. An increased
water vapor concentration as well as a reduced surface albedo constitute positive feedbacks
on the surface temperature; uniform increases of the tropospheric temperature (Planck
response) and a reduced temperature lapse-rate constitute negative feedbacks; the sign of
the cloud feedback is still uncertain but assessed to be likely positive (Vial et al., 2013;
Boucher et al., 2013). Scientific consensus is that ECS likely ranges from 1.5K to 4.5K
(Collins et al., 2013). Numerous intermodel comparison studies have identified the cloud
feedback as root cause for intermodel spread in ECS estimates (e.g. Cess et al., 1990; Bony
et al., 2006; Dufresne and Bony, 2008; Zelinka et al., 2012; Vial et al., 2013).
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Figure 1.1: Illustration of the processes that influence the atmospheric heat budget. The net atmospheric
radiation is given by the difference of top-of-atmosphere (TOA) and surface radiative fluxes. Longwave
and shortwave radiative fluxes are abbreviated by LW and SW, respectively. Blue arrows denote the
latent and sensible heat fluxes (LH and SH). Well-mixed greenhouse gases (GHGwm) are for example
carbon dioxide or methane.

Because global-mean precipitation is tied to the energetics of the atmosphere, which in
turn is linked to the surface temperature, it is not surprising that global-mean precipitation
changes are related to surface temperature changes through the climate feedbacks’ influences
on the radiation. The rate of increase of global-mean precipitation with increasing surface
temperature has conventionally been referred to as “hydrological sensitivity”. This quantity
is estimated at the order of magnitude of 2%K−1, with considerable intermodel spread
ranging from 1%K−1 to 3%K−1 (Held and Soden, 2006). This spread constitutes a factor
of three difference between the lowest and highest model estimate, a spread as large as that
of ECS. While Previdi (2010) finds an even larger spread of factor 3.3, Andrews et al. (2009)
find a much smaller factor of 1.5 spread. Other factors of spread are scattered in between
(Lambert and Webb, 2008; Takahashi, 2009; Lambert and Allen, 2009; Pendergrass and
Hartmann, 2014).

An assessment of the literature shows, that the measure “hydrological sensitivity” has been
defined ambiguously. Some studies take into account that the global-mean precipitation
changes directly in response to changes in the atmospheric composition, e.g. abruptly in-
creasing CO2 concentrations, while this direct precipitation response is neglected in other
studies. When CO2 concentrations increase, the atmosphere cools less radiatively, resulting
in less global-mean precipitation (Eq. 1.1). This direct precipitation response has previously
been referred to as slow precipitation response (Bala et al., 2010), or as forcing (Andrews
et al., 2009). It will be called adjustment hereafter, because the precipitation adjusts to
the forcing induced by changes in the atmospheric composition, rather than representing
a forcing in itself. In addition to different definitions, experiments forced with different
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atmospheric composition changes were investigated in the studies. So far it had not been
shown how the intermodel spread in the rate of global-mean increase in precipitation with
warming depends on the definition and the investigated experiment.

There is some debate as to whether climate models show a muted precipitation response to
warming compared to observations. Wentz et al. (2007) find a rate of increase of 6%K−1

from satellite measurements, which is consistent to the rate of lower tropospheric moisture
increase with warming expected from the Clausius-Clapeyron equation. However, their es-
timate is based only on a 20 year period, neglecting internal variability. GCMs can also
predict precipitation increases of 7%K−1 or even larger for 20 year periods (Previdi and
Liepert, 2008; Liepert and Previdi, 2009), indicating that the modeled global-mean precipi-
tation response to global warming is per se not inconsistent with observations. Due to poor
data coverage, especially in the early twentieth century, observational records disagree on
the trend of precipitation change in the twentieth century by a factor of three (Hartmann et
al., 2013); though they all show that the global-mean precipitation has increased, coinciding
with positive trends of global-mean surface temperatures in the twentieth century.

Among other possibilities for disagreement between observations and models in the twen-
tieth century precipitation trend, the representation of twentieth century changes in the
atmospheric forcing, e.g. volcanic forcings, well-mixed greenhouse gases, solar radiation
or anthropogenic aerosols can lead to differences. Differences in the black carbon aerosol
explains much of the intermodel spread in the CMIP3 simulations of twentieth century
precipitation change (Pendergrass and Hartmann, 2012). Model simulations yield the pos-
sibility to separately study the impact of these forcings on the precipitation adjustment
and the temperature-mediated precipitation response (Andrews et al., 2010; Kvalevåg et al.,
2013), though only recently this became possible in a multi-model context (Samset et al.,
2016).

Only few studies have attempted to attribute the intermodel spread of the precipitation
rate of increase to the change in atmospheric variables such as the temperature, water
vapor, or clouds induced by climate feedbacks. Previdi (2010) employed the radiative kernel
technique (Soden et al., 2008) to the atmospheric heat budget. He found that the impact
of clouds, water vapor and lapse-rate considered together, and the sensible heat flux caused
similar intermodel deviations in how the atmospheric energy balance changed with warming.
Extending this study with the same methodology, O’Gorman et al. (2012) emphasize that
the spread caused by the cloud response dominates over that by lapse-rate and water vapor
considered together. By redoing clear-sky radiative calculations from the models’ mean
state changes, Pendergrass and Hartmann (2014) conclude that the intermodel scatter in
the atmospheric heat budget change of lapse-rate plus water vapor changes is as large as
that of cloud changes. However, none of the above studies have separated the atmospheric
heat budget changes into those from rapid adjustments and temperature-mediated changes.

Chapter 2 investigates the unresolved issues regarding the intermodel spread in the global-
mean precipitation response to global warming as outlined above. To help reconcile the
ambiguity of definitions concerning the rate of increase of precipitation with warming, I in-
troduce a concise terminology in analogy to the ECS terminology. By making use of twenty-
eight CMIP5 models and numerous experiments of different idealization, I assess how the



6 1 Introduction

intermodel spread in the rate of increase of precipitation with warming depends on the em-
ployed definition. I discuss how the intermodel spread in adjustments, temperature-mediated
precipitation increase and the surface warming impacts the spread in the precipitation re-
sponse on different timescales. Finally, I estimate the influence of changing atmospheric
variables due to climate feedbacks on the atmospheric heat budget change via the radiative
kernel technique by specifically separating between adjustments and temperature-mediated
response.

1.2 Constraints on tropical precipitation patterns

In contrast to the global-mean precipitation, the regional precipitation distribution is not
simply constrained by the energetics of the atmosphere. The diabatic cooling by radiation
only spatially correlates well with precipitation at hemispheric length scales or larger (Muller
and O’Gorman, 2011). In the extra-tropics, precipitation is associated with cyclonic systems
within the storm track regions. In the tropics, the strongest rain falls out of deep convective
clouds forming within the intertropical convergence zone (ITCZ), while shallow cumulus
clouds found in the trade wind zones produce intense but infrequent rain and stratocumulus
drizzles. The storm tracks, ITCZ, and trade winds are tied to the atmospheric circulation –
understanding what drives the intermodel spread in precipitation patterns and their changes
with warming becomes a question of understanding what controls the circulation of the
atmosphere.

In the tropics, defined as the region equatorward of ±30◦ latitude, the model response in
the regional precipitation to warming is less robust than in the extra-tropics (e.g. Knutti
and Sedláček, 2013). Precipitation changes are often separated into changes induced by the
thermodynamics and dynamics associated with changes in the circulation. As a consequence
of the thermodynamic response, the general patterns of precipitation change in models ex-
hibit increases or decreases in climatologically wet or dry areas, respectively. Observations
of ocean salinity changes support this general pattern change (Durack et al., 2012). These
pattern changes follow the “wet-get-wetter” and “dry-get-drier” paradigm (Held and Soden,
2006), which is based on the thermodynamically driven increases of lower tropospheric sat-
uration vapor pressure. If the relative humidity and circulation remain constant, a surface
warming by one Kelvin increases the lower tropospheric humidity by 6-7% according to
Clausius-Clapeyron. In the case of a constant circulation, higher tropospheric humidity
implies that the moisture convergence in convective areas increases, and moisture diver-
gence in dry descending areas increases. The paradigm is sometimes referred to as “direct
moisture effect” (Chou et al., 2006) or “rich-get-richer” (Chou et al., 2009). Because the
thermodynamically induced precipitation changes rely on the precipitation climatology, the
present-day biases in models will lead to biases in the projections of precipitation changes
(Bony et al., 2013).

Common tropical model biases with respect to observations are related to the position of
the ITCZ. The double ITCZ bias has been persistent throughout several model generations
(Mechoso et al., 1995; Dai, 2006; Oueslati and Bellon, 2015; Zhang et al., 2015), where
models simulate a secondary branch of the ITCZ south of the equator over the central
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and eastern Pacific for more than half of the year. In nature, a weak southern ITCZ branch
occurs over the eastern Pacific only during boreal spring. Over the Atlantic, models place the
precipitation maximum associated with the ITCZ either too eastward or too westward with
respect to observations (Siongco et al., 2015). These persistent biases have been related, for
example, to errors in the simulated SST patterns in AOGCMs, to the horizontal resolution,
and to the coupling between precipitation and the large-scale dynamics.

Dynamical precipitation changes are associated with changes in the vertical velocity. The
tropical circulation slows down with warming in models (e.g. Held and Soden, 2006; Vecchi
and Soden, 2007), which partially offsets the strength of the thermodynamic precipitation
response. Part of the slowdown of the tropical circulation is induced by the direct effect of
increased atmospheric CO2 on timescales faster than one year (Bony et al., 2013). Xie et al.
(2015) show that the intermodel spread in the tropical precipitation response is governed by
the spread in the dynamical precipitation response associated with changes in the vertical
velocity. Sea surface temperatures increase all over the tropics but not uniformly such that
SST patterns change with warming (Xie et al., 2010). Because deep convection triggers
more likely over the warmest SST (e.g. Graham and Barnett, 1987; Johnson and Xie, 2010),
shifting SST patterns entail a shift in the overturning circulation. Indeed, precipitation
pattern changes seem to be driven by SST pattern changes with warming (e.g. Ma and
Xie, 2013; Chadwick et al., 2013; Chadwick et al., 2014), implying a “warmer-get-wetter”
mechanism.

But the tropical precipitation also differs vastly among models, when sea surface tempera-
tures are uniformly raised. In CMIP5 aquaplanet simulations with fixed SSTs, a simplified
GCM configuration of a water-covered Earth, the tropical precipitation pattern change in
response to uniformly increasing SST by 4K differs strikingly among models (Stevens and
Bony, 2013). One model’s ITCZ contracts towards the equator, another shifts the ITCZ
polewards, in others precipitation increases all over the tropics. In the absence of erroneous
SST patterns from ocean-atmosphere coupling, land-atmosphere interactions including oro-
graphic effects, aerosols or other chemical species in the idealized aquaplanet simulation,
the problem of intermodel spread in the tropical precipitation response boils down to the
question of how convection couples to the large-scale environment given by the tropospheric
temperature, humidity and cloud distribution. Voigt and Shaw (2015) expand on this study
by focusing on the two models that showed the most diverse precipitation response, with one
showing a widening and the other a contraction of the ITCZ with warming. They decompose
the precipitation and circulation response to warming into contributions from the isolated
SST increase, the water vapor and the cloud changes by locking radiative feedbacks (e.g.
Mauritsen et al., 2013). For both models, the zonal-mean precipitation change in response to
the cloud radiative effect (CRE) change most closely resembles the total zonal-mean precipi-
tation change. Consequently, Voigt and Shaw (2015) conclude that the diverse CRE change
between the two models governs the diverse zonal-mean change in tropical precipitation
and circulation. Their work indicates that not only are diverse CRE changes with warming
the largest contributor to the intermodel spread in the equilibrium climate sensitivity, but
they also appear to be the core problem for the intermodel spread in precipitation pattern
changes.
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Figure 1.2: Illustration of how the cloud-radiation interaction is manipulated in the Clouds On-Off Klimate
Intercomparison Experiment. Longwave and shortwave radiative fluxes are abbreviated by LW and SW,
respectively.

However, closer inspection of their results suggests that half of the difference in the equato-
rial precipitation change with warming can be attributed solely to the diverse precipitation
response to increasing SST. This discrepancy between the apparent importance of CRE or
SST changes on the precipitation response in two models motivates us to investigate the
impact of CRE on the intermodel precipitation spread in a larger model ensemble. Six mod-
els performed aquaplanet Clouds On-Off Klimate Intercomparison Experiment (COOKIE)
simulations (Stevens et al., 2012), in which the cloud-radiation interaction is active like in
the standard model configuration, or in which the cloud-radiative interaction is inhibited
such that clouds become transparent to radiation (Figure 1.2). By exploring the difference
between these “clouds-on” and “clouds-off” simulations, the impact of atmospheric cloud ra-
diative effects (ACREs) on the tropical precipitation patterns and their change with warming
can be determined. In Chapter 3, I explore the intermodel spread in tropical mean and
spatial precipitation distribution in the COOKIE aquaplanet simulations. In particular, I
discuss the hypothesis that the seed for intermodel spread may exist already in the absence
of cloud-radiation interaction, opposing the conclusion of Voigt and Shaw (2015).

The paragraphs above highlight that the controls on the spatial distribution of precipitation
are complex. The nature of the problem of simulating tropical precipitation is the coupling
between the circulation, radiation and surface heat fluxes (Figure 1.3). The ratio between
radiative cooling and the static stability determines the vertical velocity. Radiative cooling
builds up convective instability, which eases the triggering of convection. In turn, convection
transports moisture and upon condensation heats the column through release of latent heat.
The latent heating and formation of clouds again modify the stratification and radiation.
Apart from clouds, water vapor and temperature stratification, the radiative cooling is in-
fluenced by the atmospheric composition, e.g. greenhouse gases or aerosols. The large-scale
circulation between regions of ascending and descending motion also impacts the surface
turbulent fluxes through surface winds. The surface turbulent fluxes heat and moisten the
boundary layer, affecting the boundary layer moist static energy. The moist static energy
(MSE), a conserved quantity in moist adiabatic ascent, is the sum of latent, internal and
potential energy. Convection occurs where the boundary layer MSE maximizes (e.g. Möbis
and Stevens, 2012). The stronger the surface winds, the stronger is the heat input into the
boundary layer, which further enforces the convection, constituting a positive feedback of
wind induced surface heat-exchange (WISHE). Where convection, and with that precipita-
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Figure 1.3: Illustration of the constraints on the tropical precipitation. The radiation and circulation
are strongly coupled in that they both depend on and influence the temperature (T ) and humidity
(q) structure, the clouds, and the atmospheric composition (e.g. by transporting chemical species).
The radiation and surface turbulent fluxes both influence and depend on the near-surface vertical tem-
perature and humidity gradients. The circulation and surface fluxes are coupled by the wind-induced
surface heat exchange (WISHE), which constitutes a positive feedback. A stronger circulation en-
hances the transport of heat from the surface to the atmosphere through stronger surface winds. A
stronger heat input from the surface in turn enhances convection and strengthens the circulation. Be-
cause the vertical velocity determines the precipitation, understanding the coupling between radiation,
surface turbulent fluxes and the circulation is a prerequisite to advance understanding of the tropical
precipitation distribution.

tion, occurs, is thus set by the coupling between radiation, circulation and surface turbulent
fluxes.

These three components are collectively represented in the column-integrated MSE budget.
The budget contains sources and sinks to the column MSE such as the surface turbulent
fluxes, the atmospheric radiative flux divergence, and horizontal as well as vertical advection
of MSE. Because it couples the impact of the horizontal winds, radiation and surface fluxes
to the vertical velocity, it has found many applications in conceptual models of the tropical
dynamics (e.g. Neelin and Held, 1987; Neelin and Zeng, 2000). These models are usually
built upon the assumption that the vertical velocity can be expressed by one vertical mode
associated with deep convection, which gives rise to the definition of the gross moist stability.
The gross moist stability can be thought of as a normalized vertical advection that represents
the efficiency with which MSE is exported from the column. The conceptual models vary
in complexity from a two-layer model that predicts surface moisture convergence (Neelin
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and Held, 1987) to sophisticated self-sufficient models of intermediate complexity coupled
to radiation, cloud and land surface schemes (e.g. Neelin and Zeng, 2000; Zeng et al.,
2000). A diagnostic tool to study how heating and the gross moist stability influence the
vertical velocity in different GCMs would be desirable to close the gap in the complexity of
conceptual models for the tropical dynamics.

Even in the simplified aquaplanet configuration with fixed SSTs peaking at the equator,
details of the coupling between radiation, circulation and surface turbulent fluxes can in-
fluence the distribution of tropical precipitation. The aquaplanet configuration has been
widely used to study the persistent model double ITCZ bias mentioned above. In some
cases the ITCZ appears as one single band of convection right at the equator, and in other
cases a double ITCZ occurs with two bands of convection located off the equator on either
hemisphere. Many different factors have been shown to influence the ITCZ position: the
latitudinal SST gradient, the dynamical core and horizontal resolution, the feedback be-
tween surface wind and evaporation, the parameterization of convection, and even the solar
constant (e.g. Dahms et al., 2011; Williamson et al., 2013; Oueslati and Bellon, 2013b; Liu
et al., 2010; Möbis and Stevens, 2012; Oueslati and Bellon, 2013a; Numaguti, 1993; Chou
and Neelin, 2004; Kirtman and Schneider, 2000; Barsugli et al., 2005). Only very recently,
the impact of ACREs on the position of the ITCZ on aquaplanets has received in depth at-
tention. By analyzing the COOKIE aquaplanet simulations, Harrop and Hartmann (2016)
find a consistent poleward shift when cloud-radiation interaction is inhibited. They argue
that the reduced atmospheric stability owing to the absence of ACRE modifies the convec-
tive available potential energy, such that convection can be triggered more easily further
off the equator. However, this suggested mechanism lacks insight into why the ITCZ shifts
more strongly in some models than in others.

To understand the zonal-mean precipitation distribution in the COOKIE simulations, in
Chapter 4 a simple framework is developed that diagnoses the vertical velocity, which in
turn is closely related to precipitation. The framework is derived from the moist static
energy budget. It assumes one vertical mode for the vertical velocity associated with deep
convection. Testing the framework shows that the diagnosed vertical velocity reproduces
the actual one well. The framework is employed to the COOKIE aquaplanet simulations
with the goal to understand the zonal-mean precipitation distribution as well as ITCZ shifts
induced by inhibiting cloud-radiation interactions.
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2 Understanding the intermodel spread in
global-mean hydrological sensitivity1

Abstract

This chapter assesses intermodel spread in the slope of global-mean precipitation change
(∆P ) with respect to surface temperature change. The ambiguous estimates in the liter-
ature for this slope are reconciled by analyzing four experiments from phase 5 of CMIP
(CMIP5) and considering different definitions of the slope. The smallest intermodel spread
(a factor of 1.5 between the highest and lowest estimate) is found when using a definition
that disentangles temperature-independent precipitation changes (the adjustments) from
the slope of the temperature-dependent precipitation response; here this slope is referred
to as the hydrological sensitivity parameter (η). The estimates herein show that η is more
robust than stated in most previous work. The authors demonstrate that adjustments and
η estimated from a steplike quadrupling CO2 experiment serve well to predict ∆P in a
transient CO2 experiment. The magnitude of η is smaller in the coupled ocean–atmosphere
quadrupling CO2 experiment than in the noncoupled atmosphere-only experiment. The
offset in magnitude due to coupling suggests that intermodel spread may undersample un-
certainty.
Also assessed are the relative contribution of η, the surface warming, and the adjustment on
the spread in ∆P on different time scales. Intermodel variation of both η and the adjust-
ment govern the spread in ∆P in the years immediately after the abrupt forcing change. In
equilibrium, the uncertainty in ∆P is dominated by uncertainty in the equilibrium surface
temperature response. A kernel analysis reveals that intermodel spread in η is dominated
by intermodel spread in tropical lower tropospheric temperature and humidity changes and
cloud changes.

2.1 Introduction

The intermodel spread in global-mean precipitation response appears to be substantial in
simulations of global warming. To narrow this spread, it may be helpful to understand
the slope of global-mean precipitation changes with respect to global-mean temperature.
However, estimates of the intermodel spread in this slope vary from one study to another.
To discern the origin of these differences, we reassess intermodel spread and the magnitude of

1 This chapter has been published with minor modifications as: Fläschner, D., T. Mauritsen, and B.
Stevens (2016). “Understanding the Intermodel Spread in Global-Mean Hydrological Sensitivity”. Journal
of Climate, 29, no. 2, pp. 801–817. doi: 10.1175/JCLI-D-15-0351.1.
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the slope of global-mean precipitation change with global-mean surface warming in climate
change experiments carried out as part of phase 5 of the Coupled Model Intercomparison
Project (CMIP5). We further investigate the relative contributions of different processes
to the spread in the simulated global-mean precipitation response. We only investigate
global-mean precipitation changes in this study. For simplicity hereafter, when we mention
precipitation or surface temperature, we refer to the global-mean quantities.

That changes in global-mean precipitation are constrained by the energetics of the atmo-
sphere is well understood (e.g. Newell et al., 1975; Mitchell et al., 1987; Boer, 1993; Allen
and Ingram, 2002; Held and Soden, 2006; O’Gorman et al., 2012). Given this energetic con-
straint, it could be assumed that estimates of the slope of precipitation change with surface
temperature change would be likewise constrained. However, the estimates of intermodel
spread vary among studies, from the smallest spread of 1.82-2.70Wm−2 K−1 (factor of 1.5
between lowest and highest model estimate) in Andrews et al. (2009) to studies suggesting
much larger intermodel spreads up to a factor of 3.3 for models participating in CMIP3 and
CMIP5 (Table 2.1). In addition to different estimates of intermodel spread, the ensemble-
mean magnitude of the ratio of precipitation change with warming also differs across these
model-based studies.

Table 2.1: Comparison between the literature and this study for estimates of the slope of precipitation
change with respect to surface temperature change. η denotes the hydrological sensitivity parameter
and ηa the apparent hydrological sensitivity parameter. The absolute spread shows the lowest and
highest model estimate (Wm−2 K−1, values in parantheses have the unit %K−1). The factor of
spread is the approximate ratio between the lowest and highest model estimate. The dispersion (%)
is the ensemble standard deviation divided by the ensemble mean.

Study Definition Absolute Factor Dispersion
of slope spread of spread

Held and Soden (2006) ηa (1-3) 3 –
Lambert and Webb (2008) η 1.3-3.2 2.4 –

(1.4-3.4) 2.4 –
Andrews et al. (2009) η 1.82-2.70 1.5 11
Takahashi (2009) η 1.50-3.13 2.1 19
Lambert and Allen (2009) η 0.84-1.97 2.3 27
Frieler et al. (2011) η – – 24
Previdi (2010) ηa (0.71-2.37) 3.3 31
Pendergrass and Hartmann (2014) ηa 0.7-1.9 2.7 27
This study (from abrupt4xCO2) η 1.85-2.73 1.5 11

(2.1-3.3) 1.6 11

General circulation models are an indispensable tool for studying and predicting precipi-
tation changes. However, the different estimates of the slope of global-mean precipitation
change may raise doubts as to the models’ ability to correctly predict global-mean precipita-
tion changes with global warming. Understanding the reasons for the different model-based
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estimates in the literature is important to judge how confident one can be in the predictions
of precipitation change. This insight may eventually help to improve the representation of
physical processes in the models and eventually the prediction of precipitation change with
global warming.

Physical and methodological issues complicate the interpretation of estimates of the pre-
cipitation response to warming in the literature. First, climate change experiments with
different degrees of idealization, from very idealized CO2-step configurations to transient
scenarios including multiple forcing agents, were analyzed. Second, authors define the slope
of precipitation change with respect to surface temperature change in different ways, but
describe it using the same term: “hydrological sensitivity”.

In some studies the term hydrological sensitivity is used to denote the ratio of global-
mean precipitation change to the corresponding global-mean surface temperature change,
where the changes were estimated as the differences between the perturbed and control
mean states (e.g. Held and Soden, 2006; Bala et al., 2008; Previdi, 2010; Pendergrass
and Hartmann, 2014). Other studies incorporate the expectation that precipitation not
only changes proportionally with surface temperature, but also adjusts directly to forcing
agents. For instance, Allen and Ingram (2002) and other studies (e.g. Lambert and Webb,
2008; Andrews et al., 2009) express the global-mean precipitation changes (∆P ) as a linear
function of the surface temperature changes (∆Ts) following

∆P = η· ∆Ts +A, (2.1)

where η is the proportionality factor between ∆P and ∆Ts, and A is an adjustment term
which measures the direct response of precipitation to forcing, independent of any eventual
surface temperature change. If, for example, the CO2 concentration in the atmosphere is
abruptly increased, the atmosphere is directly cooled less via the increased absorption of
longwave radiation from CO2 (Ramanathan, 1981). To balance this reduction in radiative
cooling, the atmosphere reacts rapidly by reducing a heating source, the precipitation (e.g.
Allen and Ingram, 2002; Andrews et al., 2009). Rising temperatures due to the forcing then
lead to more atmospheric cooling. Precipitation is thus initially suppressed by abruptly
increasing levels of CO2, but increases proportionally to surface temperature warming when
the forcing is held constant. The proportionality factor η of precipitation change with surface
temperature change has formerly been referred to as “differential hydrological sensitivity”
but also ambiguously as “hydrological sensitivity”.

A more precise terminology for precipitation changes with temperature changes would be
helpful. For the remainder of this work we will adopt a terminology (illustrated in Figure 2.1)
that is analogous to the well-defined framework of equilibrium climate sensitivity (ECS).

In the ECS framework (e.g. Sherwood et al., 2015), an external forcing F causes a radiative
imbalance at the top-of-atmosphere (∆RTOA) which arises from the direct radiative forcing
as well as adjustments of atmospheric properties without any change in the global-mean
surface temperature, e.g. clouds. The surface temperature responds to the radiative imbal-
ance according to ∆RTOA = λ∆Ts + F (e.g. Gregory et al., 2004) until a new equilibrium
is reached. The slope λ is called “climate feedback parameter” and the surface warming in
equilibrium due to a doubling of CO2 is called “equilibrium climate sensitivity”.
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Figure 2.1: Illustration of the terminology for precipitation change with surface temperature change
adopted in this work, by the example of abrupt4xCO2 data from IPSL-CM5A-LR. The “hydrological
sensitivity parameter” (η) is the slope of the global-mean precipitation response with respect to surface
temperature change when explicitly taking into account the rapid “Adjustment” of precipitation due
to forcing agents. The “apparent hydrological sensitivity parameter” (ηa) is given by the slope of
global time-mean responses without accounting for rapid precipitation adjustments. The equilibrium
precipitation change due to a quadrupling of CO2 is denoted as “equilibrium hydrological sensitivity”
at 4×CO2 (EHS4×). Small circles signify annual global-means, and large circles the endpoint and
equilibrium mean.

In analogy, for precipitation changes we will hereafter refer to the amount of global-mean
precipitation change in equilibrium due to a doubling of CO2 as “equilibrium hydrological
sensitivity” (EHS) and to η, the slope of temperature-dependent precipitation change, as
“hydrological sensitivity parameter”. In contrast to λ, η is not a feedback parameter, because
∆P does not feed back on ∆Ts. The slope of total precipitation change to total surface
temperature change will be referred to as the “apparent hydrological sensitivity parameter”
(ηa), where “apparent” alludes to the fact that ηa is what one might observe, but is sensitive
to the nature of the forcing. On the contrary, we prefer to think of η as a more characteristic
quantity that does not depend on the specifics of the forcing agent or the details of the
surface warming (Andrews et al., 2009; Bala et al., 2010; Andrews et al., 2010; Kvalevåg
et al., 2013). However, if A is not known a priori, then η can only be estimated in steplike
forcing experiments.

The aim of this work is to gain more insight into reasons for the intermodel spread in the
hydrological sensitivity. In light of the terminological ambiguity discussed above, we aim
to investigate the term “hydrological sensitivity” for both the previous definition and our
current terminology. First, we reassess the intermodel spread in the slope of precipitation
change with surface temperature change (η and ηa) in four CMIP5 experiments, compare
our estimates with the literature, and provide physical explanations for differences among
estimates. We discuss how the value and intermodel spread depend on the definition and
on the analyzed climate change experiment in a set of CMIP5 models (Section 2.3) as well
as the applicability of η and A derived from idealized steplike CO2 forcing experiment to a
transient CO2 experiment (Section 2.4).
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In the second part of this study, we discuss the intermodel spread in global-mean precipita-
tion response among the different CMIP5 models in an idealized experiment with abruptly
quadrupled CO2 concentration (Section 2.5). We assess how the three factors from Eq. 2.1
(η, ∆Ts, and A) contribute to the spread in the equilibrium precipitation response, follow-
ing the illustrative approach of Hawkins and Sutton (2009). Previdi (2010) and O’Gorman
et al. (2012) investigated reasons for intermodel spread in the slope of precipitation change
with the radiative kernel method (Soden et al., 2008), finding that the spread from clouds
dominates over the spread from temperature and water vapor changes. Takahashi (2009)
proposes that the intermodel spread in the slope is caused by scatter in the shortwave ab-
sorption among models. Pendergrass and Hartmann (2014) show that temperature and
water vapor profiles change differently and thus cause differences in the atmospheric heat
budget. To gain more insight into causes for intermodel spread in η and A, we employ the
methodology as in Previdi (2010), but use newer radiative kernels (radiative flux pertur-
bations due to a unit change in atmospheric state variable) to decompose the atmospheric
heat budget into contributions from CO2, temperature, water vapor and clouds.

2.2 Experiments and methods

2.2.1 Experiments

We investigate four CMIP5 experiments (Taylor et al., 2012), in which the atmospheric
heat budgets are perturbed in distinct ways. Coupled ocean-atmosphere (piControl, his-
torical, 1pctCO2, and abrupt4xCO2) and noncoupled atmosphere-only experiments (amip
and amip4K) are analyzed. To interpret our findings we also analyze some more specialized
experiments (amipFuture; see also sstClim and sstClim4xCO2 in AppendixA).

The historical simulation starts from preindustrial control conditions (piControl experi-
ment) but with prescribed transient historical forcings. Transient forcings include well-mixed
greenhouse gases, natural and anthropogenic aerosols as well as land-use, solar and orbital
forcings. Although recommended input for most of these forcings was provided, modeling
groups were free to specify e.g. the aerosol forcing.

The radiative forcing is less ambiguously defined in the more idealized CMIP5 experiments.
In the 1pctCO2 experiment the forcing consists of a gradual 1% per year increase of the CO2
concentration, yielding a near-linear increase in radiative forcing. The CO2 concentration
doubles after 70 years and quadruples after 140 years. In the abrupt4xCO2 experiment, the
preindustrial CO2 concentration is abruptly quadrupled with respect to piControl and then
held constant for the remainder of the simulation. The CMIP5 experiment protocol calls
for at least 150 years of simulation length for experiments with coupled models. If modeling
centers provided longer time series, all available monthly mean values were included in the
analysis. We selected models for which the abrupt4xCO2 experiment was available. Only
the r1i1p1 ensemble member of each model is included in the analysis. The noncoupled amip
and amip4K experiments are part of the Cloud Feedback Model Intercomparison Project
(Bony et al., 2011) where models are driven by prescribed sea-surface temperatures for
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the period 1979-2008 and the corresponding forcing agents. In amip4K, the sea-surface
temperatures are uniformly raised by 4K but all other boundary conditions remain as in
the amip experiment.

2.2.2 Calculation methods

Two common methods exist to calculate the hydrological sensitivity parameter η: the re-
gression method (e.g. Gregory et al., 2004; Andrews et al., 2009; Lambert and Webb, 2008)
and the fixed-SST method (Hansen et al., 2005; Bala et al., 2010; Andrews et al., 2010;
Kvalevåg et al., 2013). For the abrupt4xCO2 experiment we perform an ordinary least
squares regression between annual global-mean ∆Ts and ∆P , where η is given by the slope,
and A by the y-intercept. For the amip4K experiment, we compute ∆P and ∆Ts as the
global and time-mean differences over the period of 1979-2008 between amip4K and amip.
Because the adjustment, A, is zero in amip4K, η is given directly as the ratio ∆P/∆Ts.

The apparent hydrological sensitivity parameter ηa has usually been calculated by subtract-
ing global time-averages over the last years of the perturbed experiment from a climatological
mean of the control state or alternatively of the beginning years of the perturbed climate
change experiment. We follow this approach for the abrupt4xCO2 experiment, and esti-
mate ηa for two different time-means. The endpoint-mean refers to the global time-average
over the last ten years of a model’s simulation. The equilibrium-mean is discussed here, be-
cause the endpoint-mean is not representative of equilibrium conditions, as the equilibration
timescale in coupled models is much greater than the typical 150 year simulation length.
To estimate the equilibrium hydrological sensitivity for a quadrupling of CO2 (EHS4×), we
follow the Gregory method (Gregory et al., 2004) and extrapolate the top-of-atmosphere
radiative flux imbalance towards equilibrium, finding the equilibrium climate sensitivity for
a 4×CO2 forcing (ECS4×). Together with η and A, the EHS4× is determined by Eq. 2.1.
Unless otherwise noted, we calculate ηa for both the historical and 1pctCO2 experiments
as the slope from the regression of annual mean ∆Ts and ∆P . We choose this method
because it yields the general trend of precipitation evolution with surface temperature for
the transient forcing experiment. This method is shown to be superior to the method of
differencing time-averages for estimating linear trends (Barnes and Barnes, 2015). Note,
transient forcing simulations do not readily allow one to separate the adjustment.

2.3 The slope of precipitation change with respect to surface
temperature change in CMIP5 simulations

Here we compare the slope of global-mean precipitation increase with respect to surface
warming as found in four CMIP5 experiments and estimated according to the definitions in
Section 2.1. The ensemble-mean values and their intermodel spread of the hydrological sensi-
tivity parameter (η) and the apparent hydrological sensitivity parameter (ηa) are portrayed
by Gaussian distributions (Figure 2.2a). Individual model values are given in Table 2.2. The
spread is shown as the standard deviation across the ensemble (Figure 2.2a) or in terms of
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Figure 2.2: Comparison of the slope of precipitation change with respect to surface temperature change
for different definitions of the slope and different CMIP5 experiments. a) The spread is shown as
Gaussian curves, as given by the ensemble mean and standard deviation of the hydrological sensitivity
parameter (η) and the apparent hydrological sensitivity parameter (ηa). b) The ensemble standard
deviation is scaled by the ensemble mean to yield the dispersion. Table 2.2 lists the parameter values
for all models.

the dispersion (Figure 2.2b), which is the standard deviation normalized by the ensemble
mean. Because the dispersion provides a measure of the relative spread among models, it
is more indicative of the inter-experiment spread than the standard deviation. The smaller
the dispersion, the smaller is the relative intermodel spread.

First we examine how the magnitude and spread depend on the definition of the slope. The
dependence on the definition can only be tested with the abrupt4xCO2 experiment. It is
well understood that η is greater than ηa because the fast precipitation adjustment to an
increase in CO2 is negative (e.g. Allen and Ingram, 2002; Andrews et al., 2009; Bala et al.,
2010). We show that the choice of η or ηa to characterize the “hydrological sensitivity”
also strongly influences the spread of the slope (Figure 2.2b). The dispersion, and thus the
relative intermodel spread, is smallest for η (10.7%) and larger for the two ηa estimates. The
smaller spread in η is simply explained by the fact that the spread of the slope is explicitly
separated from the spread of the adjustment. Estimating the slope via the definition of ηa
reveals that its magnitude and spread are sensitive to the surface warming, and thus time.
When ηa is computed at equilibrium conditions (greater surface warming), the spread from
the adjustment looses its impact on the spread of the slope relative to endpoint conditions
(smaller dispersion of 14.6% versus 18.2%). Not being influenced by the adjustment, the
definition of η yields a more precise estimate for the increase of precipitation with surface
warming (2.24± 0.24Wm−2 K−1, error is given as one intermodel standard deviation).

The inter-experiment differences in magnitude and spread of the slope depend on the exper-
iment configuration. For the idealized steplike warming experiment (amip4K), the spread
in η is similarly small (dispersion of 9.3%) as for abrupt4xCO2. That the magnitude of η
is higher in amip4K (2.79± 0.26Wm−2 K−1) as compared to abrupt4xCO2 is unexpected;
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Table 2.2: Values of the hydrological sensitivity parameter (η) and the apparent hydrological sensitivity
parameter (ηa) from different CMIP5 experiments. All values are in Wm−2 K−1 or for abrupt4xCO2
additionally in parantheses in %K−1. Error estimates are given as plus or minus one standard error
from the ordinary least squares regression. Ensemble error is plus or minus one ensemble standard
deviation. The models are ordered such that their η value in the abrupt4xCO2 simulation increases.
Data has been horizontally interpolated to a common Gaussian T63 grid prior to analysis.

Model historical (ηa) 1pctCO2 (ηa) abrupt4xCO2 (η) amip4K (η) Reference
ACCESS1-0 0.47± 0.15 0.82± 0.01 1.85± 0.02 ( 2.06± 0.02) – Bi et al. (2013)
BNU-ESM 0.93± 0.07 1.22± 0.02 1.87± 0.03 ( 2.14± 0.04) – Ji et al. (2014)
HadGEM2-A – – – 2.32 Collins et al. (2011)
HadGEM2-ES 0.70± 0.20 0.98± 0.01 1.90± 0.02 ( 2.13± 0.02) – ”
FGOALS-s2 – 1.45± 0.02 1.92± 0.04 ( 2.49± 0.05) – Bao et al. (2013)
CanESM2 0.84± 0.07 1.10± 0.02 1.97± 0.03 ( 2.48± 0.03) – Arora et al. (2011)
CanAM4 – – – 2.55 Salzen et al. (2013)
FGOALS-g2 1.44± 0.09 1.29± 0.01 1.99± 0.02 ( 2.44± 0.02) 2.59 Li et al. (2013)
GFDL-ESM2G 1.26± 0.10 0.82± 0.05 2.01± 0.03 ( 2.34± 0.04) – Dunne et al. (2012)
MIROC-ESM 0.08± 0.09 1.37± 0.01 2.08± 0.03 ( 2.56± 0.03) – Watanabe et al. (2011)
MPI-ESM-LR 1.19± 0.07 1.42± 0.01 2.15± 0.03 ( 2.54± 0.04) 2.74 Stevens et al. (2013)
GFDL-ESM2M 1.50± 0.12 1.12± 0.04 2.17± 0.03 ( 2.53± 0.04) – Dunne et al. (2012)
BCC-CSM1-1 1.26± 0.04 1.33± 0.01 2.18± 0.03 ( 2.69± 0.04) 2.74 Wu et al. (2014)
MPI-ESM-MR 1.29± 0.09 1.53± 0.02 2.23± 0.04 ( 2.59± 0.04) 2.93 Giorgetta et al. (2013)
ACCESS1-3 0.76± 0.16 1.46± 0.02 2.24± 0.03 ( 2.44± 0.03) – Bi et al. (2013)
CNRM-CM5 0.42± 0.17 1.27± 0.02 2.24± 0.03 ( 2.52± 0.03) 2.77 Voldoire et al. (2012)
IPSL-CM5B-LR 1.51± 0.06 1.06± 0.02 2.24± 0.04 ( 2.79± 0.05) 2.89 Hourdin et al. (2013)
CSIRO-Mk3-6-0 0.29± 0.14 1.47± 0.02 2.25± 0.02 ( 2.68± 0.03) – Rotstayn et al. (2012)
MPI-ESM-P 1.03± 0.07 1.42± 0.01 2.25± 0.03 ( 2.66± 0.04) – Giorgetta et al. (2013)
GFDL-CM3 0.82± 0.20 1.37± 0.02 2.26± 0.03 ( 2.56± 0.03) – Donner et al. (2011)
NorESM1-M 0.84± 0.12 1.05± 0.02 2.32± 0.03 ( 2.86± 0.04) – Bentsen et al. (2013)
CCSM4 1.43± 0.06 1.22± 0.01 2.39± 0.03 ( 2.82± 0.04) 3.10 Meehl et al. (2011)
BCC-CSM1-1-m 1.55± 0.05 1.58± 0.02 2.40± 0.03 ( 2.97± 0.04) – Wu et al. (2014)
MIROC5 0.72± 0.12 1.15± 0.02 2.42± 0.06 ( 2.61± 0.06) 2.71 Watanabe et al. (2010)
INMCM4 1.38± 0.08 1.26± 0.02 2.43± 0.06 ( 2.69± 0.06) – Volodin et al. (2010)
GISS-E2-H 0.74± 0.08 1.36± 0.01 2.49± 0.03 ( 2.68± 0.03) – Schmidt et al. (2014)
IPSL-CM5A-LR 1.60± 0.05 1.50± 0.01 2.51± 0.02 ( 3.27± 0.03) 2.83 Dufresne et al. (2013)
IPSL-CM5A-MR 1.81± 0.07 1.49± 0.01 2.57± 0.03 ( 3.24± 0.03) – Dufresne et al. (2013)
GISS-E2-R 0.38± 0.14 1.27± 0.02 2.63± 0.05 ( 2.86± 0.06) – Schmidt et al. (2014)
MRI-CGCM3 -0.19± 0.22 1.92± 0.02 2.73± 0.05 ( 3.22± 0.06) 3.30 Yukimoto et al. (2012)
Ensemble 0.97± 0.51 1.30± 0.24 2.24± 0.24 ( 2.64± 0.30) 2.79± 0.26

the usage of the same definition should yield similar values if η is a characteristic quantity
for the evolution of the temperature-dependent ∆P . Possible reasons for differences are
discussed in more detail in Section 2.6.

For the transient experiments (1pctCO2 and historical), the slope is, as explained above,
suppressed by the effect of the adjustments. Here only ηa can be estimated because the exact
forcings for the individual models are unknown. The suppression is stronger in the histor-
ical simulation (0.91± 0.51Wm−2 K−1). In addition to greenhouse gas forcings, absorbing
aerosols (e.g. biomass burning and black carbon) reduce the precipitation increase (e.g.
Andrews et al., 2010; Kvalevåg et al., 2013). Among the considered experiments, the spread
is largest in the historical simulation (dispersion of 53%), although it is calculated by the
regression method, thereby yielding the trend of historical ∆P evolution with ∆Ts. Esti-
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Table 2.3: Comparison of the regression and the endpoint method. The regression method applied to
abrupt4xCO2 yields η, all other estimates yield ηa. Values shown are the ensemble mean plus or minus
one ensemble standard deviation and in parantheses are the minimum-maximum range of model values.
Units are Wm−2 K−1.

Experiment Regression Endpoint
historical 0.97± 0.51 (-0.19- 1.81) 0.44± 0.94 (-1.64-1.76)1

1pctCO2 1.30± 0.24 ( 0.82- 1.92) 1.28± 0.23 ( 0.72-1.88)
abrupt4xCO2 2.24± 0.24 ( 1.85- 2.73) 1.39± 0.25 ( 0.91-1.97)
1 Endpoint ensemble estimates for the historical experiment exclude GFDL-
CM3 for which ηa = −16.4Wm−2 K−1.

mates of ηa have even greater spread when calculated using the endpoint method (Table 2.3)
because endpoint-means strongly depend on the forcing and thus time. The spread in the
historical experiment cannot be expected to be as small as in the idealized experiments, be-
cause a large diversity in aerosol load and distribution (e.g. Stevens, 2015) causes a variable
forcing on the respective model’s atmospheric heat budget. Aerosols have been shown to
exert a great impact on the intermodel spread of ηa in the CMIP3 ensemble (e.g. Previdi,
2010; Pendergrass and Hartmann, 2012). In addition, the natural variability is high com-
pared to the signal from the forcing, which increases the intermodel spread of the estimated
slope. The effect of natural variability is also apparent in Hegerl et al. (2015), where the
spread in the representative concentration pathways (RCPs) reduces with increasing forcing
(their Figure 1b).

The merit of estimating ηa for a transient experiment with such variable forcings on the at-
mospheric heat budget remains questionable because physical reasons for intermodel spread
in ηa are difficult to disentangle. On the contrary, the concept of the hydrological sensitivity
parameter η reveals that models in fact agree well on the magnitude of η.

We consider the estimate in η from abrupt4xCO2 as the most appropriate estimate for the
CMIP5 model ensemble for the rate of increase in precipitation with surface warming. The
estimate, with absolute model spread of 1.85-2.73Wm−2 K−1 (with a factor of 1.5 between
the highest and lowest model estimate) and a dispersion of 10.7%, supports the results
in Andrews et al. (2009) who also find a factor of 1.5 spread among models. Why is the
intermodel spread in η larger in the remaining studies (Table 2.1)?

The analysis above demonstrates that the spread in the slope of precipitation increase is
larger when ηa is calculated (Held and Soden, 2006; Previdi, 2010; Pendergrass and Hart-
mann, 2014). Studies that estimate η from transient multi-experiment model ensembles
via a multiple regression analysis must make assumptions as to the magnitude of forcings,
finding larger spreads (Lambert and Allen, 2009; Frieler et al., 2011). Takahashi (2009)
finds the best estimate from a muti-model multi-run ensemble by looking at two transient
and one steplike CO2 and accounting for adjustments. The larger dispersion (19%) in that
study may arise from a different application of the regression method. Lambert and Webb
(2008) calculate η from the 2×CO2 CMIP3 experiment and from a large ensemble of models
with physically perturbed atmospheric sub-grid scale parameters. Probably the analysis of
models with physically perturbed parameters initiated the larger spread in Lambert and
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Webb (2008) (factor of 2.4 difference), but such experiments are less constrained estimates
of the present climate. The large number of CMIP5 models analyzed here may therefore be
considered as a representative sample to infer that intermodel differences resulting in a fac-
tor of 1.5 spread in η among models which is comparably small to what has been estimated
in most previous work.

2.4 Applicability of the hydrological sensitivity parameter to
transient experiments

We have shown that the hydrological sensitivity parameter is a robust measure in the ide-
alized abrupt 4×CO2 experiment, but ηa found in transient forcing simulations is sensitive
to the experimental configuration. Transient forcings, however, are more realistic, as an
abrupt quadrupling of CO2 concentration is not expected to happen in reality.

Of what use is then a measure estimated from the abrupt4xCO2 simulations to understand
precipitation change in the more complex reality? Thorpe and Andrews (2014) demon-
strated that η estimated from abrupt4xCO2 serves well for predicting the overall precipita-
tion response in the historical and different Representative Concentration Pathway (RCP)
experiments, simply by considering fast precipitation adjustments to aerosols, ozone, CO2,
solar changes and other greenhouse gases. For this analysis, TOA forcing estimates for the
different forcing agents had to be converted into atmospheric forcings, but the conversion
ratios were known for only two models and thus had to be applied to the rest of the models.
Consequently, the total spread of ∆P could not be exactly predicted.

Here we ask how well precipitation changes in the transient 1pctCO2 can be predicted by
only knowing the temperature-dependent precipitation response (η) and the fast precipita-
tion adjustment (A) from abrupt4xCO2. To do so, we scale A (the adjustment for a four-fold
CO2 increase) by the relative change in forcing in year n to predict ∆P

∆Pnpred. = η · ∆Tns +A · n

2 log2 1.01. (2.2)

The scaling factor multiplying A has been estimated by assuming that the forcing increases
linearly with the logarithm of the CO2 concentration, which increases at 1% per year. It is
thus identically one at the time of CO2 quadrupling, i.e., n = 139.32 years. This approach
is similar to the one adopted by Good et al. (2012).

The predicted evolution of precipitation changes with surface temperature changes coincides
with the overall model precipitation change (Figure 2.3a). Apart from the two GISS models,
the absolute difference between predicted and model ∆P is smaller than ca. ± 0.9Wm−2 (or
± 0.03mmday−1) as shown by the gray shading (Figure 2.3b). Precipitation increases non-
linearly with surface warming in the GISS models in the abrupt4xCO2 experiment which
leads to ambiguity in the estimates of η and A, resulting in a biased ∆Pnpred.. The good
agreement in the other models, however, suggests that idealized climate change experiments
may serve well in projecting the global-mean precipitation response.
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Figure 2.3: a) Evolution of annual mean precipitation change (∆P ) with corresponding surface temper-
ature change (∆Ts) in the 1pctCO2 experiment, with respect to the climatological mean in piControl.
Gray thin lines show actual model results, and colored thick lines the predicted precipitation change
following Eq. 2.2. b) Absolute deviation of predicted and model ∆P . All colored lines are smoothed by
a 5-year running average. The gray shading ranges from -0.80 to 0.86Wm−2. All 1pctCO2 experiments
from Table 2.2 are shown, except GFDL-ESM2M and GFDL-ESM2G as our analysis suggests that their
CO2 increase stopped after 70 years.

From this we deduce that the difficulties to exactly project ∆P in Thorpe and Andrews
(2014) arose from uncertainties in forcing estimates other than from CO2. For here it is
shown that η and A, estimated from abrupt 4×CO2 experiments, can predict the precipita-
tion change in a transient CO2 experiment reasonably well.

2.5 Sources of intermodel spread in the global-mean precipitation
response on different timescales

In this section we address the causes of intermodel spread in the precipitation response
on different timescales whereas the previous sections investigated the degree of difference
among models in the slope of precipitation change with surface temperature change. As we
have shown that the intermodel spread in the slope (η) corresponds to the smallest estimate
of spread in the literature, one might think that global-mean precipitation predictions from
models would converge towards the same value. Nevertheless, the global-mean equilibrium
precipitation response to an abrupt 4×CO2 forcing – hereafter Equilibrium Hydrological
Sensitivity at 4×CO2 (EHS4×) – exhibits a factor of 3 spread among CMIP5 models, even
though η has a twofold smaller factor of spread (1.5) in the same experiment (Section 2.3).

Which factors, then, determine the larger spread in EHS4×? Assuming that ∆P linearly
increases with ∆Ts, the spread in EHS4× is affected by the spread in Equilibrium Climate
Sensitivity for a quadrupling of CO2 (ECS4×), the hydrological sensitivity parameter and
the adjustment (Figure 2.4a).
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Figure 2.4: a) Adjustment (A), hydrological sensitivity parameter (η), and Equilibrium Climate Sensitivity
for a quadrupling of CO2 (ECS4×) in the 28 abrupt4xCO2 models. Dots denote the Equilibrium
Hydrological Sensitivity for a quadrupling of CO2 (EHS4×), where dot size increases for larger EHS4×.
Colors darken for increasing ECS4×. b) Contributions to spread in EHS4× from A, η and ECS4×;
estimated via Eq. 2.1, by setting 2 of the three factors to their corresponding ensemble-mean values.
The standard deviations of ∆P due to variation of the free factors are normalized by the actual standard
deviation in equilibrium ∆P . Note that normalized standard deviations do not add to unity.

At equilibrium, it is the spread in ECS4× which primarily impacts the large range of EHS4×
(Figure 2.4b). Here the respective standard deviations σi, with i being A, η or ECS4×, are
normalized by the standard deviation of EHS4×, yielding σ̂i. When comparing the respective
contributions to ∑iσ̂i, then ECS4× on its own makes up 57% of the spread, whereas A and
η contribute with only 16 and 27% respectively. Thus, ECS4× conditions the spread of
the EHS4×. In fact, if only the spread in ECS4× were to determine the spread in EHS4×,
the spread in EHS4× would be slightly larger (σ̂ECS4×=1.07). An anticorrelation between η
and ECS4× leads to smaller ∆P for models with high surface temperature warming and vice
versa; the spread of EHS4× is thus smaller when η and A can vary than if only ECS4× caused
the spread. Our conclusion, that the spread in ECS4× dominates the spread in EHS4× is
consistent with other analysis (Thorpe and Andrews, 2014).

The spread in adjustment is important in the early stages of warming, where the spread in
adjustment dominates over the influence of differing surface warming among models, with
ca. 45% contribution to the sum of σ̂i (Figure 2.5). The importance of η rises with warming,
surpassing the adjustment’s contribution to ∑iσ̂i after about 20 years. The residual, given
as offset between model ∆P and that of the regression line following Eq. 2.1, amounts to
about 20% in the very beginning but reduces with time. The residual is both due to errors in
the prediction and internal variability. Uncertainty due to surface warming only overwhelms
the combined effect of σ̂η + σ̂A after year 70 of the abrupt4xCO2 simulation (Figure 2.5).

To understand the spread in precipitation response over all timescales, it is thus necessary to
better understand separate sources of spread for equilibrium surface warming, η and A. All
three spread-causing factors are determined by how the energy fluxes of the system change



2.5 Sources of intermodel spread in the global-mean precipitation response 23

Po
rt

io
n 

of
 Σ

σ i (%
)

Years after abrupt forcing

Adjustment

Hydrological Sensitivity
Parameter

Surface Warming

Residual

ˆ

Figure 2.5: Contributions of surface warming, hydrological sensitivity parameter, adjustment and residual
to the sum of their respective normalized standard deviation (σ̂i) as a function of years after the 4×CO2
forcing. Note the logarithmic timescale. The σ̂i are estimated as in Figure 2.4b but for annual mean
standard deviations of ∆P . The residual contribution is given by the portion of normalized standard
deviation of differences between model and calculated ∆P following Eq. 2.1.

in response to the CO2 forcing in the abrupt4xCO2 models. The analysis of spread-causing
factors in the energetics of the atmosphere thus serves as a straightforward approach for
better understanding the variation in precipitation response.

Since the 1970s when General Circulation Models were first established, extensive effort has
been placed on developing a framework for understanding contributions to the spread in ECS
(Charney et al., 1979). This framework has made it possible to decompose the temperature
response into radiative contributions from climate change feedbacks: temperature, cloud,
water vapor and surface albedo feedback. The uncertainty in ECS estimates originates
foremost from the uncertainty in simulated cloud feedback (e.g. Cess et al., 1990; Dufresne
and Bony, 2008), and in particular in the shortwave component of the low-cloud feedback
(e.g. Bony and Dufresne, 2005; Zelinka et al., 2012; Vial et al., 2013). The path towards
better constraining the spread in climate sensitivity has thus been comprehensively laid out.

Less attention has been focused on understanding intermodel spread in the slope of pre-
cipitation change with surface temperature change and in the rapid adjustment. Previdi
(2010), one of the pioneers in this undertaking, diagnosed the radiative impact of changing
atmospheric variables on the atmospheric heat budget. In so doing, the respective contri-
butions of these radiative effects could be attributed to ηa. That study, however, was based
on an experiment which was simultaneously forced by CO2 and aerosols, where the latter
has subsequently been found to dominate the intermodel spread in ηa (Pendergrass and
Hartmann, 2012). O’Gorman et al. (2012), extending the analysis of Previdi (2010) for the
same experiment, emphasized that different changes of clouds in the models cause larger
intermodel scatter than lapse-rate plus water vapor changes. Using a different methodology,



24 2 Understanding the intermodel spread in global-mean hydrological sensitivity

Pendergrass and Hartmann (2014) found that both clear-sky radiative cooling spread, re-
sulting from differing changes in lapse-rate plus moistening, and cloudy-sky radiative cooling
spread contribute to intermodel scatter in ηa.

None of the above studies, however, addressed intermodel spread in η and A due to radiative
effects from changing atmospheric variables, for instance by separating between the fast and
temperature-dependent atmospheric heat budget changes resulting from abruptly increased
CO2 levels. This knowledge would seem helpful, though, to gain insight into the sources
of spread in precipitation response resulting from the spread in the adjustment and the
hydrological sensitivity parameter, especially for early years of warming (Figure 2.5). To
this end, we perform radiative decompositions of the spread in η and A in the abrupt4xCO2
experiment.

2.5.1 Radiative decomposition of the spread in η and A

We decompose the changes of the atmospheric radiative imbalance (∆R = ∆RTOA −
∆Rsurface) in the abrupt4xCO2 by the kernel method (Soden et al., 2008). The decom-
position is performed such that

Lv ∆P ≈
∑

∆Rx −∆SH, (2.3)

with the sensible heat flux SH, the latent heat of vaporization Lv = 2500 kJ kg−1, and the
index x denotes: contributions from CO2 plus stratospheric temperature changes (CO2 +
Strat), changes in the tropospheric temperature lapse-rate (LR), changes due to uniform
tropospheric warming arising from surface temperature increase (Planck), changes in water
vapor (WV), changes in surface albedo, and changes in clouds. The investigation of the
decomposed slope from the regression of ∆Rx against ∆Ts provides information as to sources
of spread in the hydrological sensitivity parameter (ηx), and the y-intercept of the regression
as to sources of spread in the rapid precipitation adjustment (Ax).

To isolate ∆Rx from changes in the atmospheric heat budget for individual changes in at-
mospheric state variables (∆x), we follow the technique described by Previdi (2010), but
employ a newer kernel (Block and Mauritsen, 2013) calculated with the MPI-ESM-LR model
(Stevens et al., 2013) which is then used for every model in this analysis. The kernels are
vertically interpolated to the CMIP5 pressure levels and mass-weighted by the pressure thick-
ness of each vertical layer. Any ∆x is derived as a monthly mean deviation in abrupt4xCO2
from the climatological mean of all available piControl months in the given model, preserv-
ing the monthly, regional and vertical structure. Afterwards ∆x is interpolated to the same
horizontal resolution as the applied kernel (Gaussian grid with T63) before performing the
radiative decomposition. We choose to interpolate the model variables to the kernel grid,
because the temperature and water vapor kernels have sharp gradients in orographic areas,
where grid points below the surface are defined as missing values. Interpolation of fields with
stronger gradients introduces more errors. Detailed information about the MPI-ESM-LR
kernels is given in Block and Mauritsen (2013).
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We illustrate the practicalities of our calculations by the example of the lapse-rate component
of the hydrological sensitivity parameter (see Previdi (2010) for more details on the kernel
method applied to the atmospheric heat budget). The lapse-rate change (∆LR) is defined as
the change in deviation of tropospheric temperature from a uniform tropospheric warming
equal to the change in surface temperature. The change in atmospheric radiative fluxes due
to a lapse rate change (∆RLR) is then given by the vertical integral from the surface to the
tropopause ∆RLR ≈

∫ pt
ps
kT · ∆LRdp, where p denotes pressure and the subscripts s and t

surface and tropopause. The temperature kernel (kT ) is the change of atmospheric radiative
fluxes due to a unit temperature change at a given grid point and vertical level. Deducing
from kT (Figure S1), a temperature increase by 1K leads to increases of atmospheric cooling
at any vertical level, but this effect is stronger in the lower troposphere. Similarly to Soden
et al. (2008), the tropopause is approximated to be at 100 hPa in the tropics (30◦N to
30◦S) and linearly drops in height with increasing latitude towards 300 hPa at the poles.
The stratospheric temperature changes are considered in the x=CO2+Strat term, where
the contributions are first calculated separately using a CO2 kernel and by multiplying
stratospheric temperature changes with the temperature kernel before summing both terms.

Then ηLR arises from the slope found by ordinary least squares regression of annual global-
mean ∆RLR vs. ∆Ts; the y-intercept gives ALR. Almost all abrupt4xCO2 models from
Table 2.2 are included in the following results, except FGOALS-g2 and CSIRO-Mk3-6-0 as
they did not provide all necessary variables for this analysis. Signs are chosen in terms
of atmospheric heating; negative contributions lead to stronger cooling which is balanced
by increases in η or a less strong adjustment. The other ηx and Ax are estimated with
the standard kernel technique, but for atmospheric radiative convergence instead of TOA
radiative fluxes.

2.5.2 Spread in the hydrological sensitivity parameter

Intermodel spread of atmospheric heating changes with warming in the abrupt4xCO2 experi-
ment is dominated by large absolute and interquartile ranges of lapse-rate and cloud-induced
radiative changes with warming (Figure 2.6a), whereas models agree well on the magnitude
of radiative contributions coming from surface albedo changes, Planck effect, water vapor
and sensible heat flux changes.

To better assess the spread due to changes in the thermodynamic structure of the tropo-
sphere, contributions to ∆P from lapse-rate and water vapor changes are considered together
(ηLR+WV), as the water vapor concentration increases with temperature approximately fol-
lowing the Clausius-Clapeyron equation (e.g. Trenberth et al., 2005; Held and Soden, 2006).
The separation of ηLR+WV into three vertical layers reveals that models disagree most in
the lower tropospheric changes (Figure 2.6b). Although intermodel spreads of ηLR and ηWV
in the middle and upper troposphere are individually as large or even larger than in the
lower troposphere (not shown), they cancel almost perfectly in the middle and upper tropo-
sphere because ηLR and ηWV are anti-correlated (with r= -0.89 and r= -0.92). In the lower
troposphere, however, ηLR and ηWV correlate positively (r= 0.61). The opposite correlation
between the lower and upper troposphere can be understood by considering how increases in
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Figure 2.6: a) Decomposition of the hydrological sensitivity parameter (η) for 26 abrupt4xCO2 models.
Box-whisker-plots show the minimum and maximum as the whiskers; the box shows the 1st quartile,
the median and the 3rd quartile as horizontal lines. The residual is the difference between model
∆R/∆Ts and

∑
x ηx. b) Vertical separation of ηLR+WV into the lower (pressure p > 700 hPa), middle

(700 hPa ≥ p > 400 hPa) and upper (400 hPa ≥ p ≥ 100 hPa) troposphere. The lower tropospheric
ηLR+WV is further separated into regions and shown here for the tropics (equatorward of ± 30◦), the
mid-latitudes (± 30◦ to ± 60◦) and the poles (poleward of ± 60◦). For any separation, first ∆Rx is
vertically integrated at each grid point and month, then if applicable, regionally averaged and last
regressed against global annual-mean ∆Ts.

water vapor and temperature modify the radiative budget at the surface and TOA (Pender-
grass and Hartmann, 2014). In the upper troposphere, increases of water vapor lead to less
radiative cooling at the TOA, while increased surface temperatures lead to more cooling;
the uncertainties cancel approximately. Increased water vapor and temperature in the lower
troposphere both lead to more cooling of the atmosphere to the surface; hence uncertainties
due to the models’ lower tropospheric temperature and humidity structure amplify the lower
tropospheric spread in ηLR+WV. Further separation of the lower tropospheric changes into
three regions – tropics, mid-latitudes, and poles – indicates that the spread in the lower tro-
posphere mainly emerges from differing model responses of the lower tropospheric structure
in tropical areas (Figure 2.6b).

That intermodel spread does not reduce strongly by summing up lapse-rate and water
vapor changes may appear surprising as these are usually thought to offset each other to a
large degree (e.g. Bony et al., 2006). This thought, however, arises from considering how
lapse-rate and water vapor changes affect the TOA fluxes and not the surface. For the
spread of ηLR+WV and ηLR to be commensurate (Figure 2.6), this implies that the spread
originates in the surface contribution to the atmospheric heating. Our results agree well with
Pendergrass and Hartmann (2014) who also conclude that the radiative effects of lapse-rate
and water vapor changes do not compensate each other in the atmosphere. These results
differ, however, from the findings of O’Gorman et al. (2012) who report a smaller intermodel
spread in ηLR+WV than in the respective ηLR or ηWV.
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In terms of precipitation magnitude, warming of the troposphere (with medians of ηPlanck =
−1.86Wm−2 K−1 and ηLR = −0.44Wm−2 K−1) is the single most important determinant
for the increase in precipitation with surface warming (η = 2.24Wm−2 K−1) by increasing
the longwave atmospheric cooling on a global-mean basis (Figure 2.6a). A less important
source of precipitation increase is the sensible heat flux (ηSH = −0.26Wm−2 K−1); the mag-
nitude of the sensible heat flux decreases with warming in all models, which must be offset
by more precipitation. The precipitation increase is dampened by changes in water vapor
(ηWV = 0.22Wm−2 K−1) and clouds (ηCloud = 0.26Wm−2 K−1) in most models. Although
increases of water vapor concentration enhance the longwave cooling of the atmosphere
(ηWV, LW = −0.66Wm−2 K−1), this cooling is overcompensated by the additional absorp-
tion of shortwave radiation by the water vapor (ηWV, SW = 0.87Wm−2 K−1). Contrary
to our study, Previdi (2010) and O’Gorman et al. (2012) find that ηWV, LW > 0, although
both studies use a very similar methodology to ours. Qualitative comparison suggests that
probably the opposing results are caused by differences in the longwave water vapor kernel
(see the discussion of FigureA1 in AppendixA.1), particularly in the lower troposphere.
However, our calculations concerning ηWV, LW are in line with the findings of other studies
(Mitchell et al., 1987; Pendergrass and Hartmann, 2014).

Noteworthy challenges remain in better separating contributions of radiative effects on η with
the kernel method, as there exists a considerable spread in the residual between ∑x ∆Rx
and the model atmospheric heat budget change (Figure 2.6a). Because only one set of
kernels derived from a single model in a preindustrial state was employed to perform the
decomposition in the individual models, a residual may reflect differences in host model
treatments of radiative transfer particularly in the shortwave spectrum (Takahashi, 2009;
Pendergrass and Hartmann, 2014). Though more shortcomings of the kernel method exist, a
better method that addresses these issues and is as computationally and practically feasible
has yet to be developed.

Presenting the residual of the kernel decomposition is important for validating the kernel
calculations and to gain confidence in the results. We test whether the scatter of the residual
arises from systematic offsets in any of the ηx. No single ηx is responsible for the residual, as
the correlation coefficients between the residual and the individual ηx are small (|r| ≤ 0.26).
The spread in the residual can thus be understood as a combined effect of small errors
arising from each of the ηx. As such, the spread in the residual does not contradict the main
result that models disagree most concerning how their cloud and lower tropical tropospheric
temperature and moisture structure changes affect the atmospheric heat budget changes.

The lower tropospheric warming response and its impact on the surface energy budget thus
is crucial to better understand how the atmospheric heat budget and therefore precipitation
will change on slow timescales. Moreover, this understanding seems to also be important
to interpret the offset in ensemble-mean η between the coupled and noncoupled simulations
(Section 2.6).
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2.5.3 Spread in the adjustment

Better understanding of the precipitation adjustments A has received less attention than
η. Recently Richardson et al. (2016) have explored regional precipitation adjustments to
different forcing agents, where precipitation increases rapidly over land in the tropics but
reduces over land in the mid-latitudes and over the ocean in response to increased CO2.
Here we investigate how the global precipitation adjustment is composed of the separate
contributions from the typical factors considered in kernel analyses of radiative effects.

It is straightforward to employ the kernel method to attain these contributions to fast
changes of the atmospheric energy budget. Here the radiative contributions to the adjust-
ment are given by the y-intercept of the regression. Global-mean precipitation initially
decreases (with a median of A = −4.26Wm−2) when CO2 increases. This precipitation
decrease is sustained by the combined radiative heating of CO2 and the fast cooling of
the stratosphere (ACO2+Strat = 3.67Wm−2) which induces additional atmospheric heating
(Figure 2.7).

The decomposition shows that precipitation adjustments are not influenced by the surface
albedo or by the Planck effect (medians of AAlbedo = 0.01Wm−2 and APlanck = 0.01Wm−2),
nor does water vapor have a discernible effect (AWV = 0.13Wm−2). The only other term
systematically influencing the fast changes of the atmospheric heat budget appears to be
the lapse-rate adjustment (ALR = −1.34Wm−2). The lapse-rate adjustment influences the
hydrological cycle through stabilizing the atmosphere (Kamae et al., 2015). The stabilization
of the atmosphere with higher CO2 levels increases atmospheric cooling and thus counteracts
the direct effect of CO2 on the precipitation adjustment. Our analysis reveals a considerable
intermodel spread in the lapse-rate and cloud adjustment.

It is somewhat discouraging that not only does the residual exhibit a large spread, but
the residual is also large with a median of 2.50Wm−2. The reason for this offset in the
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Figure 2.7: Decomposition of the atmospheric heat budget adjustment derived from 26 models performing
the abrupt4xCO2 experiment. More details are provided in the caption of Figure 2.6.
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radiative decomposition of the adjustment is difficult to trace down; we tested for two
possible errors arising from estimating the adjustment via the regression method. Residuals
in the adjustment may result from non-linearities in any of the ∆Rx with ∆Ts, or from the
fact that the regression-based adjustment does not capture internal variability. However,
neither of these two possible errors can account for the offset in the adjustment residual
from the radiative decomposition (see detailed discussion in the AppendixA.2 including Ax
estimated with the fixed-SST method).

Studies investigating the CO2 plant physiological effect find differing (about a factor of 4)
estimates of rapid precipitation reduction over land due to reduced transpiration in two
models (Abe et al. (2015) find ca. -0.75Wm−2 in MIROC3 and Andrews et al. (2011) ca.
-2.89Wm−2 in HadCM3), which may also be a source for intermodel spread of Ax and
ASH. The kernel decomposition cannot identify the role of plant physiological effects in
the intermodel spread in adjustment; this deficiency cannot explain the residual, however,
because the radiative fluxes have to balance with or without a plant physiological effect.

Notwithstanding the difficulties in attributing the residual, the sensible heat flux is unaf-
fected by the radiative decomposition, evolves quite linearly with ∆Ts, and its adjustment
is consistently diagnosed with both calculation methods (FigureA2, lower left panel). Half
of the models predict that the sensible heat flux increases on fast timescales, while the other
half predicts the opposite (Figure 2.7). Considering that the spread in sensible heat flux ad-
justment correlates strongly with the spread in fast precipitation adjustment (r= 0.76), for
future work it would be useful to improve understanding of fast sensible heat flux changes
to get a deeper insight in fast precipitation changes.

In summary, to represent precipitation changes on fast timescales more consistently among
models, more understanding about the spread in fast adjustment to a CO2 forcing is required.
In particular, our results have shown that more attention is needed to better separate
radiative contributions to the adjustment from vertical temperature structure changes and
sensible heat flux changes immediately after CO2 levels have been raised.

2.6 Hydrological sensitivity parameter in coupled versus
noncoupled experiments

The magnitude of the estimated hydrological sensitivity parameter (η) between coupled
ocean-atmosphere and noncoupled atmosphere-only models differs surprisingly by ca. 12-
30% (Section 2.3), although intermodel spread in η is similarly small (dispersion of 10.7%
and 9.3%) for the coupled abrupt4xCO2 experiment and for the noncoupled amip4K exper-
iment. As a first assumption we expected the same magnitude of η in both the coupled and
noncoupled experiment. If η is a consistent descriptive quantity of the climate system, con-
strained by the atmospheric heat budget, η should be of the same magnitude independent
of the model configuration. Although the noncoupled amip experiments do not account
for changes in ocean temperatures in response to surface flux imbalances, they have the
advantage of being driven by observed sea-surface temperature distributions and thus more
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adequately represent the pattern of precipitation. Here we discuss possible reasons for a
larger η in the noncoupled model configuration.

Differing magnitudes in η can easily be achieved by employing either the endpoint or re-
gression method (Table 2.3). This reasoning does not apply here because the hydrological
sensitivity parameter is concisely defined as the slope of precipitation change with surface
temperature change when accounting for the fast precipitation adjustment. The expectation
of similar multi-model mean η in different experiments relies on the assumption, though,
that the atmospheric heat budgets will change in the same way with warming. In the fol-
lowing we test several hypotheses why the atmospheric radiative cooling may increase more
strongly in the noncoupled models.

The warming patterns differ between the coupled and the amip4K experiments. The coupled
abrupt4xCO2 experiment exhibits stronger polar than tropical warming, whereas the sea-
surface in amip4K per definition warms globally uniformly. We test for the influence of
warming patterns by estimating η in patterned warming AMIP experiments (amipFuture),
which are scaled to also warm by 4K in the global-mean. Analysis is performed for a subset
of eight available amip4K and amipFuture models. If patterned warming was responsible
for the greater η in amip4K than in abrupt4xCO2, then η would have to be smaller in
amipFuture. This is, however, not the case as in seven of eight models η is even slightly
larger (not shown). Patterned warming is thus not the reason for higher mean η in the
noncoupled model configuration.

The hydrological sensitivity parameter may be lower in a higher CO2 loading world (Good et
al., 2012). Is the lower CO2 concentration in amip4K causing the higher η? We address this
suggestion by performing AMIP and AMIP+4K at 4×CO2 concentrations in the ECHAM6
model (Stevens et al., 2013). Indeed, we find that η is smaller by 6% compared to the
corresponding ECHAM amip4K experiment at 1×CO2 concentration (2.63Wm−2 K−1 vs.
2.79Wm−2 K−1). This finding, however, accounts for less than a third of the difference in
η between the coupled (2.15Wm−2 K−1) and noncoupled (2.74Wm−2 K−1) MPI-ESM-LR
model.

Finally, we investigate how the atmospheric heat budget is influenced by differently changing
state variables like temperature, humidity or clouds between the coupled and noncoupled
models. For this, we perform the same kernel methodology as in Section 2.5.2 to the time-
mean differences of amip4K and amipFuture respectively. Only six models are included
in this analysis, as not all necessary variables were available for BCC-CSM1-1 and IPSL-
CM5B-LR.

The greatest offset between coupled and noncoupled models is found in how the thermody-
namic structure changes (Figure 2.8). A systematic difference in radiative impact of cloud
changes between coupled and noncoupled experiments is apparent, but this difference ac-
tually counteracts the signal of higher η in noncoupled models. The offset in changes in
the thermodynamic structure is again dominated by the lower troposphere (pressure p >
700 hPa), as it warms more strongly in the noncoupled experiments (not shown). A stronger
warming implies enhanced atmospheric cooling, and thus a larger hydrological sensitivity
parameter. It is as of yet unclear how coupling leads to weaker warming in the lower tro-
posphere in abrupt4xCO2. Possibly different land-sea contrasts or the fact that the surface
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Figure 2.8: Comparison of the decomposed hydrological sensitivity parameter (η) between coupled
(abrupt4xCO2) and noncoupled (amip4K & amipFuture) experiments. Analysis is performed anal-
ogously to Figure 2.6a, but for a common set of 8 available coupled and noncoupled models.

temperature cannot respond to precipitation in the noncoupled experiments could offset
η. In any case, the budget analysis suggests that quantifying the effect of coupling on the
lower tropospheric thermodynamic structure may provide insights to how precipitation is
simulated to change with warming.

Considering that coupling varies the mean values of η by 12-30%, it is questionable whether
models fully represent the whole scope of the real world hydrological sensitivity parameter.
Although the intermodel spread of η is small for either the coupled or the noncoupled
experiments, the model configuration dictates with which magnitude the atmospheric heat
budget adapts to surface warming.

2.7 Conclusions

The majority of previous literature states that models disagree about the slope of precipita-
tion change with respect to surface temperature change with up to a factor of three difference
between the lowest and highest estimate (Held and Soden, 2006; Previdi, 2010; O’Gorman
et al., 2012). However, the very definition of the slope varies among the studies. To fa-
cilitate the comparison of estimates, we introduce a more formal terminology analogous to
that of the equilibrium climate sensitivity framework. The slope of temperature-dependent
precipitation change, when accounting for rapid precipitation changes (adjustment) of the
atmosphere to radiative forcings, is referred to as “hydrological sensitivity parameter” (η)
and the slope of total precipitation response to surface warming as “apparent hydrolog-
ical sensitivity parameter” (ηa). The word “apparent” encompasses that ηa depends on
atmospheric forcing and surface warming. We introduce the term “equilibrium hydrological
sensitivity” as the equilibrium change of precipitation due to a doubling of CO2.

We compare the intermodel spread and magnitude of η and ηa in four different forc-
ing experiments among current CMIP5 models. We show that intermodel spread in η is
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small in the abrupt4xCO2 experiment relative to most previous work. Our estimate of
η=2.24± 0.24Wm−2 K−1, with a total range of 1.85-2.73Wm−2 K−1 correspond to the es-
timates in Andrews et al. (2009). The spread is larger in part of the other studies because
for the definition of ηa the spread in the adjustment projects onto that of the temperature-
dependent precipitation response (Held and Soden, 2006; Previdi, 2010; Pendergrass and
Hartmann, 2014). In other studies (Takahashi (2009); Lambert and Allen (2009); Frieler
et al. (2011)) the multi-regression approach to estimate η from transient experiments yielded
larger spread than the direct calculation from idealized steplike climate change experi-
ments as in this study. We further demonstrate that η and A estimated from the idealized
abrupt4xCO2 experiment reproduce the simulated precipitation in the transient 1pctCO2
simulation well.

The comparison of the similarly idealized coupled ocean-atmosphere abrupt4xCO2 and the
noncoupled atmosphere-only amip4K simulations reveals that the experimental configura-
tion modifies the magnitude of η. In both configurations the atmospheric heat budget
changes robustly. However, the choice, whether or not the atmosphere is coupled to the
ocean, offsets the magnitude of η estimates by 12-30% towards higher η in the noncoupled
amip4K. This offset suggests that the intermodel spread for a given climate change exper-
iment may underestimate the real model spread of the hydrological sensitivity parameter
arising from different experiment configurations. To put this in perspective, the difference in
multi-model mean η between the amip4K and abrupt4xCO2 experiments is nearly as large
as the intermodel spread within one of the experiments.

Although the hydrological sensitivity parameter is more robust than assumed from a litera-
ture review, the simulated global-mean precipitation response at the end of the abrupt4xCO2
simulation remains uncertain. In equilibrium conditions we attribute this spread in equilib-
rium hydrological sensitivity due to a quadrupling of CO2 foremost to the uncertainty in the
corresponding equilibrium climate sensitivity. In contrast, in the first half of the simulation
(∼70 years) the largest contributor to the spread is uncertainty in the adjustment, followed
by the uncertainty in the hydrological sensitivity parameter.

We perform a radiative decomposition of the atmospheric heat budget changes via the kernel
method to attribute how radiative effects influence the hydrological sensitivity parameter
and the adjustment. The spread in η mainly arises from the spread in cloud radiative effects
and lapse-rate plus water vapor. The spread in lapse-rate and water vapor radiative effects
across the model ensemble can be attributed to different lower tropospheric temperature
and water vapor changes, foremost in the tropics. In terms of spread in the adjustment,
a non-negligible residual from the decomposition hinders a firm conclusion. The analysis
reveals, however, that the spread in the fast response of the sensible heat flux, where half
of the models reduce and half increase the sensible heat flux on fast timescales, may be a
strong suspect for causing uncertain fast precipitation changes.
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3 Impact of ACRE on the intermodel spread
in tropical precipitation

3.1 Introduction

State-of-the art general circulation models disagree about the projected changes in regional
precipitation with warming, especially in the tropics (Xie et al., 2015). The ability to
consistently project regional precipitation change has not improved between the earlier phase
3 of the Coupled Model Intercomparison Project (CMIP) and the newer model generations
of phase 5 (Knutti and Sedláček, 2013). This chapter will explore possible reasons for
the intermodel spread in tropical precipitation patterns and their changes. Particularly we
investigate the influence of atmospheric cloud radiative effects on the intermodel spread in
precipitation in idealized aquaplanet simulations.

The intermodel spread in tropical precipitation change is linked to uncertainty in how the
tropical circulation will change with warming (e.g. Shepherd, 2014; Xie et al., 2015). The
tropical circulation, in turn, depends on the interaction between surface fluxes, atmospheric
radiation, and moist convective processes. Whereas uncertainty in precipitation predictions
may also arise from scenario uncertainty and internal variability, the model uncertainty
dominates the difficulty in predicting precipitation (Hawkins and Sutton, 2011). Models
differ e.g. in the formulation of their dynamical cores, in the parameterization of sub-scale
processes such as moist convection, clouds, land surface, treatment of sea ice and vege-
tation, horizontal and vertical resolution and many other factors. Even when the model
configuration is simplified to only compare models in aquaplanet configuration with fixed
sea surface temperatures (SSTs) – thus removing e.g. intermodel differences in SST pat-
terns, land-sea contrasts, atmosphere-vegetation interactions, and ocean circulations – the
tropical precipitation change to a uniform warming by 4K diverges strongly among models
(Stevens and Bony, 2013). In some models the band associated with the strongest tropical
precipitation, the intertropical convergence zone (ITCZ), contracts towards the equator; in
others it shifts polewards. The response of cloud radiative effects is just as diverse among
models, resembling the precipitation changes.

Many studies have identified the importance of cloud radiative effects on the tropical cir-
culation (e.g. Ramanathan, 1987; Slingo and Slingo, 1988; Slingo and Slingo, 1991; Randall
et al., 1989; Sherwood et al., 1994; Bergman and Hendon, 2000; Fermepin and Bony, 2014;
Li et al., 2015). One possibility by which clouds impact the circulation is by modulating the
spatiotemporal pattern of atmospheric diabatic heating of the atmosphere. Different cloud
types induce different atmospheric cloud radiative effects (ACREs), which are determined
by the difference in cloud radiative effects between the top of the atmosphere (TOA) and
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the surface. Deep clouds found in the tropical convergence zones exert a heating on the
atmosphere, and low clouds found primarily over low SST regions induce a diabatic cooling,
especially in the lower troposphere (Tian and Ramanathan, 2002).

Cloud radiative effects have long been known to be the root cause for intermodel spread in
the temperature response to a doubling of the atmospheric CO2 concentration (e.g. Cess
et al., 1990; Bony and Dufresne, 2005; Vial et al., 2013), the equilibrium climate sensitivity
(ECS). Lately, ACREs have been hypothesized to also constitute the root cause for inter-
model spread in the precipitation response to surface warming (e.g. Voigt et al., 2014; Voigt
and Shaw, 2015). Voigt and Shaw (2015) focus on the two CMIP5 aquaplanet models (MPI-
ESM-LR and IPSL-CM5A-LR) showing the most diverse tropical precipitation change with
warming. Whereas the intertropical convergence zone (ITCZ) contracts in the MPI model
such that precipitation increases strongly at the equator and decreases in the remaining
tropics, the IPSL model weakly enhances precipitation in the entire tropics (Figure 3.1, top
row). Voigt and Shaw (2015) employ the feedback locking technique (e.g. Mauritsen et al.,
2013) that allows decomposing the circulation response with warming between the radia-
tive effects of changing SSTs, clouds and water vapor. They conclude that the circulation
response to warming – and with that the precipitation response – is most strongly shaped
by how the cloud radiative heating changes with warming. Upon closer inspection of their
results, however, the precipitation response to uniformly raising SST by 4K strongly dif-
fers between the two models, explaining about half of the difference in total precipitation
response at the equator. This different precipitation response to warming occurs although
water vapor and cloud radiative effects are fixed to the control state.
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Figure 3.1: Precipitation change (∆P ) in response to a 4K uniform warming for the MPI-CM5-LR and
IPSL-CM5A-LR models (left and right column). The response is shown for the clouds-on and clouds-off
simulations (top and bottom row).
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Is it then possible that the seed of intermodel differences is present in the absence of atmo-
spheric cloud radiative effects, and only gets accentuated by ACREs? This question moti-
vates us to investigate the impact of ACREs on the intermodel spread of variables related
to the tropical precipitation and circulation in a larger model ensemble. We will analyze
model simulations from the Clouds On-Off Klimate Intercomparison Experiment (Stevens
et al., 2012, COOKIE), which provides simulations where the cloud-radiation interaction is
inhibited, and simulations where ACREs are active. To investigate our hypothesis, like Voigt
and Shaw (2015) we will focus on the aquaplanet configuration as it has been shown to be
a useful, idealized testbed for studying processes related to climate change (Medeiros et al.,
2015). The atmospheric cloud radiative effect certainly impacts the precipitation change in
response to warming SSTs by 4K, as portrayed by the different response in the clouds-on
versus clouds-off simulations (Figure 3.1). But even in the absence of cloud-radiation inter-
action, the precipitation responds quite differently between the MPI and the IPSL model;
with drying between the double ITCZs in MPI-CM5-LR and wettening in the entire tropics
in IPSL-CM5-LR.

After describing the COOKIE simulations in more detail (Section 3.2), we will characterize
the precipitation and circulation in the COOKIE simulations. In particular we focus on
the question whether the seed for intermodel spread in tropical precipitation is present also
in the absence of cloud-radiation interaction (Section 3.3). We provide a synthesis of the
analysis in Section 3.4.

3.2 COOKIE simulations

We investigate simulations from the Clouds On-Off Klimate Intercomparison Experiment
(COOKIE; Stevens et al., 2012) in the aquaplanet configuration, which have been performed
by six atmospheric general circulation models.

COOKIE consists of two main sets of experiments: 1) the “clouds-on” simulations where
clouds interact with the radiation as normal, and 2) the “clouds-off” simulations where
clouds are artificially made transparent to radiation by setting their cloud liquid and cloud
ice to zero in the calculation of radiative transfer. Note that clouds can still develop in the
“clouds-off” experiment – they just do not influence radiation. Besides the different radiative
settings, the two sets of experiments are identical. The comparison between both sets of
experiments allows assessing how the atmospheric cloud radiative effect (ACRE) impacts
the mean state of the models, for example their precipitation patterns and circulation.

To better identify intermodel differences, we limit our analysis to the idealized aquaplanet
model configuration. In this configuration, the planet’s surface is assumed to be saturated
with a fixed sea surface temperature (SST). The SSTs vary zonally uniformly with latitude
following the ‘Qobs’ profile, which is closest to the observed zonal-mean temperature dis-
tribution compared to other idealized aquaplanet SST profiles (Neale and Hoskins, 2001).
Following ‘Qobs’, the surface temperatures peak at 27 ◦C at the equator, decline throughout
the tropics and mid-latitudes, and are held constant poleward of 60◦ latitude at 0 ◦C. Besides
the modifications to the calculation of radiative transfer in the clouds-off experiment, the
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Table 3.1: Aquaplanet COOKIE models used in this study.

Model Reference
CNRM-CM5 Voldoire et al. (2012)
MPI-CM5-LR1 Stevens et al. (2013)
IPSL-CM5A-LR Dufresne et al. (2013)
MIROC5 Watanabe et al. (2010)
MRI-CGCM3 Yukimoto et al. (2012)
HadGEM2-A Collins et al. (2011)

1 Although the COOKIE version of the MPI model is essentially similar to the MPI-ESM-LR used in CMIP5,
we refer to it with the name under which it is provided in the COOKIE project.

COOKIE aquaplanet configuration follows that of the aquaplanets in the Coupled Model
Intercomparison Project phase 5 (CMIP5). The solar radiation is specified as perpetual
equinox conditions, removing the seasonal cycle but the diurnal cycle is retained. Sea ice,
orography and aerosols are set to zero.

We analyze aquaplanet simulations with the ‘Qobs’ SST, hereafter referred to as “control”,
and simulations where ‘Qobs’ SSTs are uniformly raised by 4K, hereafter referred to simply
as “4K”. Thus four experiments, two warming states and two different specifications of
clouds, are available for the investigation of intermodel spread in precipitation patterns
and their changes with warming. Six modeling centers performed the COOKIE simulations
for both warming states (Table 3.1). All modeling centers were using the model version
corresponding to what they used in CMIP5 for the simulations, except for the MPI model.
A slightly newer version than in CMIP5 was used (ECHAM6.1.05) with added bug fixes,
but the newer version does not influence the mean climate to any significant extent.

Though the surface temperatures should be identical to the ‘Qobs’ profile in all models
according to the COOKIE protocol, this is not the case for all models (Figure 3.2). The
MRI-CGCM3 model has higher peak SSTs than the remaining models. Especially near the
equator, SST gradients are steeper, which complicates the direct comparison to the other
models. The differing SST profile arises because a skin sea surface temperature scheme
is employed in the MRI model and the ‘Qobs’ profile is used to fix the sub-skin layer
temperature. In the MRI model, SSTs thus can vary zonally and are offset from the other
models. The IPSL-CM5A-LR model has slightly lower SSTs than ‘Qobs’. However, as
the SST gradients are similar to ‘Qobs’, the intermodel comparison should not be hindered.
Though the MIROC5 model uses the ‘Qobs’ profile in both clouds-off simulations, a different
SST profile is used in the clouds-on simulations (not shown) with steeper SST gradients close
to the equator (named ‘Control’ in Neale and Hoskins (2001)). Models tend to place the
ITCZ more equatorward when the SST are steeper (Williamson et al., 2013). In MIROC5,
assessing the impact of atmospheric cloud radiative effects on climate variables is thus not
feasible because differences between the clouds-on and clouds-off simulations might also arise
from differing SST profiles. We focus our analysis on the tropics, which are defined as areas
equatorward of ± 30◦ latitude.
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Figure 3.2: Sea surface temperature in the control clouds-off simulation in the tropics. The thick dashed
line corresponds to the ‘Qobs’ profile.

3.3 Precipitation and circulation in COOKIE

In this section we characterize the precipitation and circulation in the COOKIE simula-
tions. In particular, we explore the hypothesis stated in the introduction – that the seed
of intermodel spread is present in the absence of cloud radiative effects. For this, we first
focus on intermodel spread in tropical mean quantities and subsequently on regional aspects
of precipitation and circulation in the clouds-on versus clouds-off simulations. We include
circulation quantities in this characterization, because, as discussed in the introduction,
the regional tropical precipitation is primarily controlled by the circulation. This point is
emphasized by the close intermodel agreement of how the mean precipitation, binned into
different circulation regimes, relates to the strength of the vertical mean vertical velocity ω∗
(Figure 3.3). Strong convection (negative ω∗) leads to strong precipitation, whereas precipi-
tation amounts are independent of the subsidence velocity for ω∗ approximately greater than
15 hPa day−1. This relationship is independent of whether ACREs are active or inactive.

3.3.1 Tropical mean characterization

The absence of ACREs leads to larger tropical mean precipitation (P ) in all models (Fig-
ure 3.4). The tropical mean precipitation scales positively between the clouds-on and clouds-
off simulation, such that models with smaller P in the standard clouds-on configuration tend
to have smaller precipitation values also in the absence of ACREs, and vice versa. In terms of
intermodel spread, the range between minimum and maximum P is smaller in the clouds-off
(0.64mmday−1) than in clouds-on (0.91mmday−1) experiment; clouds amplify the inter-
model spread. Both higher P , as well as smaller spread in the clouds-off simulation are also
found in the 4K state (not shown). However, the estimated range of P sensitively relies
on the MIROC5 model, in which different SST profiles are specified in the clouds-on and
clouds-off configurations. It is unclear whether the larger intermodel spread in the clouds-on
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Figure 3.3: Relationship of tropical precipitation with the vertical mean vertical velocity (ω∗). The
precipitation is averaged in bins of ω∗ of 5 hPa day−1. Negative ω∗ denote convective regimes, and
positive ω∗ denote subsidence regimes.

configuration arises solely from ACREs or also from the effect of differing SST profiles in
MIROC5.

To determine for which reasons the tropical mean precipitation is larger in the absence of
ACREs, we explore the atmospheric heat budget. Globally, the cooling by atmospheric
radiation (R = RTOA − Rsurface) is balanced by latent heating from precipitation (Lv P )
and the surface sensible heat flux (SH) as discussed in Chapter 2 (Eq. 2.3). For the tropical
mean, this budget includes a residual term associated with moisture and heat export out of
the tropics

0 = R+ LvP + SH + Residual, (3.1)

with Lv = 2500 kJ kg−1 denoting the latent heat of vaporization. The atmospheric radiation
can further be separated into the sum of atmospheric clear-sky radiation (Rclr) and the
ACRE. Positive signs correspond to heating of the atmosphere. Note that three models
(MPI-CM5-LR, MIROC5, MRI-CGCM3) diagnose ACRE also in the clouds-off experiment.
Nevertheless, the clouds are transparent in the radiative transfer calculations such that
ACRE is set to zero in the following analysis.

Differences in the tropical heat budget terms between the clouds-on/off simulations provide
insight into reasons for the differing P . The cloud-radiation interaction makes it rain less
in all models in the tropical mean mainly because of atmospheric cloud radiative heating
in the control state (Figure 3.5) as well as in 4K (not shown). That ACRE is positive
indicates that the heating from deep clouds outweighs the radiative cooling from low clouds.
Additionally to the removed heating by clouds in the clouds-off experiment (multi-model
mean ∆ACRE=16.34±4.54Wm−2 with the spread being one ensemble standard deviation),
the atmosphere is cooled less by clear-sky radiation in the clouds-off case (∆Rclr = −6.57 ±
2.90Wm−2). The smaller clear-sky radiative cooling in clouds-off is probably associated
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with reduced atmospheric temperatures and water vapor. The change in ACRE dominates
over ∆Rclr. This leads to the overall weaker atmospheric radiative cooling in the clouds-on
simulations (∆R=9.77± 5.26Wm−2), which is balanced by reductions in tropical mean
precipitation (Lv ∆P = −6.65 ± 4.57Wm−2) and the surface sensible heat flux (∆SH= -
2.76± 1.08Wm−2). The residual change, associated with changes in heat export out of the
tropics owing to inhibiting cloud-radiation interaction, is the smallest term in almost all
models. Though energy is exported out of the tropics in all models and simulations (not
shown), the residual change between the clouds-on and clouds-off simulations shows both
signs, indicating a change in energy transport across the tropical border of ±30◦ or that
the change in the tropical border due to a widening or narrowing of the Hadley cell is not
captured by our fixed definition of the tropics. The change in precipitation is uncorrelated
with the change in residual (R2 =0.02), but Lv ∆P correlates strongly with ∆R in both the
control and 4K states (R2 =0.79). The cloud radiative heating is thus the main contributor
for weaker tropical mean precipitation in the clouds-on simulations.

Next we explore how the changes in atmospheric cloud radiative effects with warming influ-
ence the intermodel spread in the hydrological sensitivity parameter (η) in the tropics, which
is the rate of increase of tropical mean precipitation with tropical mean surface warming
(see Section 2.1). Figure 3.6 indicates that the intermodel spread in η is larger in the ab-
sence of ACREs (1.9Wm−2 K−1 difference between MIROC5 and HadGEM2-A) than in the
control clouds-on configuration (1.5Wm−2 K−1 between IPSL-CM5A-LR and HadGEM2-
A). Though again the MIROC5 model strongly determines the intermodel spread and it is
unclear whether the previous statement would hold true if the SST profile followed ‘Qobs’
in the clouds-on simulation. Nevertheless, for the remainder of the models, the change in
ACREs with warming causes a weaker increase in precipitation with warming than when
ACREs are disabled, with the exception of IPSL-CM5A-LR.
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Figure 3.6: Comparison of the tropical hydrological sensitivity parameter (η) between the clouds-on and
clouds-off simulations.
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Comparing how the different terms in the tropical energy budget change with warming
between the clouds-on and clouds-off simulation will give insight into reasons for the gener-
ally weaker η in the clouds-on simulation (Figure 3.7). Besides the MRI-CGCM3 model, for
which η does not change much between the on/off experiments, the atmospheric cloud radia-
tive effect in the clouds-on simulation changes with tropical warming such that clouds heat
the atmosphere more, thus reducing the precipitation increase. The change of the clear-sky
radiative cooling with warming is more diverse among models between clouds-on/off simu-
lations. ∆Rclr barely differs in CNRM-CM5, MRI-CGCM3 and HadGEM2-A, and reduces
in MPI-CM5-LR and IPSL-CM5A-LR when removing ACREs. In fact, for the IPSL model
the clear-sky cooling increases more in the clouds-on simulation and even overcompensates
the heating effect from the change in ACREs. Because of the greater clear-sky cooling, the
hydrological sensitivity parameter can become greater in the clouds-on simulation in the
IPSL model (Figure 3.6).

3.3.2 Spatial characterization of the tropical precipitation and circulation

Whereas the diabatic cooling by radiation gives a good indication of the latent heating by
condensation due to precipitation at large spatial scales (Muller and O’Gorman, 2011), i.e.
the entire tropics, at finer scales other processes determine the rate of precipitation and its
spatial organization. The most notable feature of precipitation organization in the tropics is
the intertropical convergence zone (ITCZ). To investigate how atmospheric cloud radiative
effects influence the intermodel spread of tropical precipitation patterns we first focus on
the position and strength of the ITCZ. To reduce the dependence on the model’s horizontal
resolution, we fit a cubic spline to the zonal-mean precipitation with a latitudinal resolution
of 0.1◦. The position is defined as the latitude where the zonal-mean precipitation maximizes
and the strength of the ITCZ as the precipitation rate at the ITCZ position.

For all models, turning off cloud radiative effects shifts the ITCZ polewards (Figure 3.8a).
That cloud radiative effects lead to a more equatorward positioning of the ITCZ in the
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Figure 3.8: a) Position and b) strength of the ITCZ in the COOKIE simulations.

control experiment was also recently reported by Harrop and Hartmann (2016) who also
analyze the COOKIE simulations. They hypothesize that changes in the atmospheric cloud
radiative effects drive changes in the convective available potential energy (CAPE): clouds
heat the upper tropical troposphere, thus increasing the tropospheric stability and weaken-
ing CAPE; on the other hand CAPE is strengthened by ACRE by increases in boundary
layer moisture associated with an increased circulation strength. We will offer a different
hypothesis in Section 4.4.2. Also in the 4K experiment, the ITCZ is consistently located
more equatorward in the presence of ACREs.

The different positions of the ITCZ among models and between the clouds-on and clouds-off
simulations entail a further implication: the temperature structure will differ. In the trop-
ics, the free tropospheric temperature structure is set in the most convective areas, where
convective heating makes the temperature profile follow the moist adiabat (Johnson and
Xie, 2010). Temperature gradients between convective and subsiding areas are efficiently
flattened out by gravity waves such that a weak temperature gradient is a good approx-
imation for the tropics (Sobel et al., 2001). Due to the different ITCZ positions among
models and experiments, the convective areas coincide with different surface temperatures,
entailing different free tropospheric temperature profiles following the moist adiabat. The
tropospheric temperature structure sets the static stability and influences the radiative cool-
ing rate, which in turn affect the strength of subsidence motion and aggregation, as will be
discussed later.

In general, the ITCZ positions are more diverse among models in the absence of ACREs
(Figure 3.8a) and the ITCZ strength is more similar (Figure 3.8b). In the control clouds-off
simulations, the ITCZ position ranges between 3.2◦ in the MRI model, which can almost
be considered a single ITCZ (Möbis and Stevens, 2012), and 14.5◦ in CNRM-CM5, forming
a double ITCZ with the widest extension between precipitation peaks in the northern and
southern hemisphere; this extreme poleward position in CNRM-CM5 would correspond to a
permanent rain band in the Sahel zone in a realistic geographic configuration. When clouds
and radiation can interact, the range in the ITCZ position reduces to 0◦ also in MRI-CGCM3
and 7.9◦ in CNRM-CM5. In the IPSL model, ACREs shift the ITCZ equatorwards by 1.8◦.
Fermepin and Bony (2014, their Figure 5), who analyze COOKIE simulations of the IPSL-
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CM5A-LR model where only the planetary boundary layer clouds are made transparent to
the radiation scheme, do not find a shift in the ITCZ position. This comparison indicates
that at least in the IPSL-CM5A-LR model heating of the upper troposphere by the deep
clouds is the main reason for the ITCZ shift. Generally, the shift in the ITCZ position is
not related to the strength of atmospheric cloud radiative effects or the ITCZ position in
the clouds-on configuration (Harrop and Hartmann, 2016). Contrary to the assertion that
ACREs lead to more diverse model behavior (Voigt and Shaw, 2015), the interaction of
clouds and radiation leads to more consistent precipitation patterns across models in the
case of the ITCZ position.

Changes of cloud radiative effects with warming have been identified as the main contributor
for the spread in the tropical precipitation response to warming between the IPSL-CM5A-
LR and the MPI model (Voigt and Shaw, 2015): here cloud radiative effects contract the
ITCZ equatorwards in the MPI model and widen the ITCZ in the IPSL model. Indeed,
the shift in the ITCZ position with warming is diverse among the models in the clouds-on
simulations, with equatorwards movement in the MPI model (−2.7◦) and weaker polewards
movement in the remaining models up to 0.4◦ in HadGEM2-A (0.9◦ in MIROC5), or no
movement in MRI-CGCM3. With the exception of the MPI model, ACRE changes do not
seem to strongly influence the ITCZ position. However, in the absence of ACRE changes with
warming, the movement of the ITCZ differs among models. The ITCZ shifts equatorwards
in MRI-CGCM3 (-1.5◦), HadGEM2-A (-0.4◦), and CNRM-CM5 (−0.3◦); it shifts polewards
in IPSL-CM5A-LR (0.2◦), MIROC5 (0.2◦) and in MPI-CM5-LR (1.0◦). The comparison
between the on/off simulations shows that changes in ACRE with warming are probably
not the main reasons for intermodel differences in ITCZ shifts.

The peak precipitation at the ITCZ is generally stronger when clouds and radiation interact
(Figure 3.8b), with the exception of the IPSL model where the precipitation amount is
almost constant. The strength of the ITCZ and its position are anti-correlated in the
clouds-on (R2=0.86) as well as clouds-off simulations (R2=0.63) across the control and 4K
simulations. Though the intermodel spread in the ITCZ position is larger in the absence of
ACREs, the spread in the ITCZ strength is smaller despite the correlation between position
and strength. The ITCZ strength is strongly correlated with the upwards velocity, which in
turn is related to the fractional organization of the tropical circulation into convecting and
subsiding regions.

Because of mass conservation arguments, different ITCZ positions among models and in the
presence or absence of ACREs imply that the fraction of areas with subsiding motion will
also differ. Following a simple consideration of mass conservation (e.g. Bjerknes, 1938), the
subsidence fraction (A↓) is given by a relationship between mean upwards velocity (ω↑) and
downwards velocity (ω↓)

A↓ = ω↑
ω↓ − ω↑

. (3.2)

Figure 3.9 shows the relation of the subsidence fraction with ω↑ and ω↓ estimated at 500 hPa,
where the vertical motion strength at 500 hPa is a widely used proxy for the large-scale
tropical circulation (Bony et al., 2004). As expected, A↓ is fairly unrelated to the strength
of the subsiding motion at 500 hPa (R2=0.06). The weak correlation makes sense because
the subsiding motion is given by the ratio of the radiative cooling rate and the static stability
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in clear-sky regions. The vertical temperature structure, which is set by the moist adiabat
in the convective regions (e.g. Johnson and Xie, 2010), determines both the static stability
and, along with the distribution of water vapor, the cooling rate. The subsidence velocity
is thus unrelated to the subsidence fraction.

The subsidence velocities vary between 17.1 and 28.5 hPa day−1, with stronger subsidence
motion in the control state and weaker subsidence when the surface is warmed by 4K (Fig-
ure 3.9). Because the radiative cooling rates are not available from the model output, we
assume a typical tropical clear-sky cooling rate of 1Kday−1 (e.g. Hartmann and Larson,
2002). Using this cooling rate, the static stability has to be weak (≈0.035K hPa−1) to sup-
port the maximum ω↓ and it has to be stronger (≈0.058K hPa−1) to support the minimum
ω↓. Higher static stabilities are expected when the surface temperature rises in association
with the more stable moist adiabatic temperature lapse rate in a warmer climate (Bony
et al., 2016, their Figure 4c). Though also the cooling rate depends on the temperature and
moisture, its variation with temperature does not seem to account for the radiatively driven
divergence in the upper tropical troposphere (Bony et al., 2016).

The independence of the mean subsidence velocity on the subsidence area fraction implies
that the mean upwards velocity has to vary according to mass conservation arguments
(Eq. 3.2). The mean upwards velocity is stronger if the subsidence fraction is large and
decreases with decreasing subsidence fraction (Figure 3.9). In the models, ω↑ aligns well
within the bounds of low and high static stability as a simple estimate of the minimum
and maximum subsidence velocity. Because the subsidence velocity is greater in the control
than in the 4K state, convective motion must be stronger in the colder state for the given
model and on/off experiment. Convection is generally weaker in the clouds-off experiments
because of the more poleward ITCZ position and with that a smaller subsidence fraction.
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Indications of the intermodel spread found in the ITCZ position extend to the intermodel
spread in subsidence fraction because both are anti-correlated (R2=0.88).

From the above considerations it is unclear why the convective velocity, or alternatively the
subsidence fraction, differs between the clouds-on and clouds-off simulations. We explore
this issue by considering the probability density function of the vertical pressure velocity
at 500 hPa (PDFω500). In the clouds-on experiment, with the exception of CNRM-CM5
the models agree well on the negatively skewed shape of PDFω500 (Figure 3.10), with the
typical peak at subsidence velocities between 15 and 30 hPa day−1 controlled by clear-sky
radiative cooling and the static stability (e.g. Bony et al., 2004). It is unclear why CNRM-
CM5 presents the exception to the common model behavior. In the clouds-off experiment,
however, the statistics of the circulation differ more markedly among models. Three models
(HadGEM2-A, MRI-CGCM andMPI-CM5-LR) still place the peak of PDFω500 at subsidence
velocities similar to the clouds-on experiment. The remaining models (IPSL-CM5A-LR,
MIROC5 and CNRM-CM5) show weak convecting motion in the majority of the tropics
with only secondary peaks in the subsidence regime. The absence of atmospheric cloud
radiative effects thus increases the intermodel spread in the statistics of the large-scale
circulation in the tropics.

What causes the difference between the circulation statistics in the clouds-on and clouds-off
experiments? A look at PDFω500 separately diagnosed only for areas poleward of the ITCZ
position (Figure 3.10, middle column) and areas between the two ITCZs (Figure 3.10, right
column) gives some indication that the differences in the tropical PDFω500 stem from areas
equatorward of the ITCZ – hereafter the inner-ITCZ zone. The PDFs in the clear-sky areas,
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which are expected in regions poleward of the ITCZ, show similar shapes among models
as well as the clouds-on and clouds-off experiments. Inter-experiment differences between
on/off simulations thus are rooted in the inner-ITCZ zone.

In the inner-ITCZ zone, which is characterized by upward motion, the peaks of PDFω500 are
located at negative vertical pressure velocities, though of different magnitudes among the
models. The strength of the convective motion is similar between on/off simulations in IPSL-
CM5A-LR and CNRCM-CM5, weakens in the absence of clouds for HadGEM2-A, MPI-
CM5-LR and MIROC5, and cannot be compared in MRI-CGCM3 as it has a single ITCZ in
the clouds-on experiment. For MIROC5 it is unclear whether the shift in mean convective
velocity is merely due to cloud radiative effects or also due to a different SST profile. Because
the area fraction of the inner-ITCZ zone is greater when clouds are transparent to radiation,
the model inconsistencies imprint stronger on the total tropical PDFω500 , leading to larger
intermodel spread in the absence of clouds.

Next we explore a possible reason for the intermodel differences in upward motion strength
within the inner-ITCZ zone that is related to the ITCZ position. The inner-ITCZ zone is
characterized by high surface moist static energy owing to high surface temperature and
boundary layer moisture content, and thus convection will frequently occur (Möbis and
Stevens, 2012). If the ITCZ is located near the equator, the upward motion will lead to
divergence in a poleward direction in the upper troposphere. However, the further away the
ITCZ is located from the equator, the more the divergent motion can be directed into the
inner-ITCZ zone as well, whereupon the dry air from aloft starts to subside. This mechanism
may stabilize the upper troposphere and suppress convective motion in the inner-ITCZ zone.
Indeed, the mean vertical velocity in the inner-ITCZ zone correlates strongly (R2=0.81) with
the position of the ITCZ latitude (Figure 3.11).
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3.4 Synthesis: Is the seed for intermodel spread present in the
absence of cloud radiative effects?

In this chapter, we investigate the influence of atmospheric cloud radiative effects (ACREs)
on different aspects of the tropical precipitation. For this we analyze aquaplanet simulations
from six models participating in the Clouds On-Off Klimate Intercomparison Experiment
(COOKIE, Stevens et al., 2012). In COOKIE the cloud-radiation interaction is either active
(“clouds-on”) or inhibited (“clouds-off”), which allows inferences of how the diabatic heating
by cloud radiative effects influences the tropical circulation and consequently the tropical
precipitation patterns. Upon removing ACREs, the intertropical convergence zone (ITCZ)
shifts polewards in all models. The degree to which the ITCZ shifts differs among models,
however.

We first explore a hypothesis regarding the dominant source of intermodel spread in trop-
ical precipitation changes. By investigating the precipitation response to warming in two
aquaplanet models, Voigt and Shaw (2015) conclude that different responses of cloud radia-
tive effects are the main contributor to the spread among the two models. However, upon
closer inspection of their results, the question arises whether differences in the precipitation
response originate already without cloud radiative changes, whereupon different responses
in ACREs might merely exacerbate the initial differences.

We addressed our hypothesis – whether the seed for intermodel spread is present in the
absence of cloud-radiation interaction – by exploring tropical mean as well as spatial aspects
of precipitation and the tropical circulation. The arguments discussed above either directly
support or do not support the hypothesis depending on the investigated parameter.

The hypothesis is supported by larger spread among models in the absence of cloud radiative
effects in:

• how the tropical mean precipitation changes with warming, as given by the tropical
hydrological sensitivity parameter (η),

• the position of the intertropical convergence zone (ITCZ) which implies different ver-
tical temperature structures,

• the statistics of the large-scale tropical circulation, as shown by PDFω500 , where dif-
ferences among models are determined by a different organization of the circulation in
the inner-ITCZ zone.

However, we also identified parameters which do not support our hypothesis in that the
intermodel spread is larger when cloud radiative effects are absent:

• the tropical mean precipitation rate both in the control and 4K state, and

• the peak precipitation rate at the position of the ITCZ.

All of the above considerations rely on a small model ensemble (six models) where in the
case of clouds-on experiments the MIROC5 model results are difficult to interpret owing
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to the different underlying SST profile. However, the COOKIE experiments are the largest
available data set as of now that allows to investigate the impact of cloud radiative effects
on the simulated climate. Although we identified parameters that do not support our
hypothesis – that cloud radiative effects are not the primary reason for intermodel spread
of tropical precipitation characteristics – we also identified a number of parameters that
lead to strongly differing tropical circulation and precipitation patterns in the absence of
cloud radiative effects, supporting our hypothesis. The question whether ACREs lead to
larger or smaller intermodel spread thus has to be discussed in context of the parameter of
interest. Overall our results show that contrary to the common assumption, where making
a problem simpler by e.g. removing the cloud radiative effect would entail a more similar
solution, simplifying a problem does not necessarily lead to convergence of the results to a
more common answer.
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4 Diagnosing the zonal-mean precipitation
via an MSE framework

4.1 Introduction

The regional precipitation is strongly correlated with vertical velocity, as discussed in the
introduction of this thesis (Section 1.2) and shown in Figure 3.3. Likewise, differences in how
patterns of precipitation change with warming are primarily associated with differences in
the circulation among models, rather than differences associated with the thermodynamics
(e.g. Shepherd, 2014; Xie et al., 2015). In this chapter we develop a framework to diag-
nose the vertical velocity from the energetics. We employ this framework to understand
the controls on the zonal-mean vertical velocity on aquaplanets as well as to explore why
the intertropical convergence zone shifts polewards when the cloud-radiation interaction is
inhibited.

The idealized configuration of aquaplanets, planets in which the surface is completely water-
covered, presents a convenient testbed for the framework developed here. The sea surface
temperatures (SSTs) are prescribed to follow the ‘Qobs’ profile as given by the AquaPlanet
Experiment Project (Neale and Hoskins, 2001), which peak at the equator at 27◦C, decline
until they are held constant at 0◦ poleward of 60◦ latitude. Because of the eliminated land-
sea distribution, orography, seasonality, and neglected sea-ice, the aquaplanets’ simulated
mean climate is zonally symmetric. The dynamics and parameterizations of the full general
circulation model (GCM) are retained; with that, the aquaplanet is a configuration to study
intermodel differences in a simpler context. Despite their simple configuration, aquaplanets
have been shown to capture the robust responses of the hydrological cycle and large-scale
circulation to surface warming found in the Earth-like configuration (Medeiros et al., 2015).
In this study, we employ our diagnostic framework to the aquaplanet simulations provided
by the Clouds On-Off Klimate Intercomparison Experiment (COOKIE, Stevens et al., 2012),
in which simulations either include cloud-radiation interaction as in the standard aquaplanet
configuration, or in which cloud-radiation interaction is inhibited.

On aquaplanets, tropical precipitation is organized in convective rainbands associated with
the intertropical convergence zone (ITCZ). Aquaplanets have been widely used to study the
double ITCZ problem. This problem refers to the persistent second ITCZ in coupled climate
models, which is located south of the equator over the Atlantic and Pacific oceans for longer
periods than observed (Mechoso et al., 1995; Dai, 2006; Oueslati and Bellon, 2015; Zhang
et al., 2015). On aquaplanets, the position of the ITCZ can depend on various factors.
The ITCZ shifts from a single to a double structure as tropical SST gradients flatten (e.g.
Dahms et al., 2011; Williamson et al., 2013; Oueslati and Bellon, 2013b). Further factors
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influencing the ITCZ position on aquaplanets are: the dynamical core and model resolution
(Landu et al., 2014), the convection parameterization (Liu et al., 2010; Möbis and Stevens,
2012; Oueslati and Bellon, 2013a), the feedback between surface wind and evaporation
(Numaguti, 1993; Chou and Neelin, 2004; Liu et al., 2010; Möbis and Stevens, 2012), and
various boundary conditions such as solar constant specifications (Kirtman and Schneider,
2000; Barsugli et al., 2005).

The role of atmospheric cloud radiative effects on the ITCZ position in aquaplanets has
received little attention. Chao and Chen (2004) found no influence on the ITCZ position
upon inhibiting the cloud-radiation interaction. This result is contrary to our analysis
(Chapter 3) and the recent findings in Harrop and Hartmann (2016) who also investigate
the impact of ACREs on the ITCZ position in aquaplanet COOKIE simulations: inhibiting
ACREs leads to a consistent poleward shift in all models. Harrop and Hartmann (2016)
propose a mechanism based on the convective available potential energy (CAPE) to explain
the equatorward contraction of the ITCZ in the presence of ACREs. They argue that cloud
radiative heating exerted on the upper troposphere leads to a stabilization of the upper
troposphere, which induces a contraction of high CAPE values towards the equator, thus
contracting the ITCZ equatorwards. We offer another possible reason for the poleward
shift when inhibiting ACREs, inferred from a simple diagnostic framework for the vertical
velocity that we propose.

Our framework, which we derive from the moist static energy (MSE) budget, expresses the
vertical mean vertical velocity as the ratio of a column-integrated heating term and the
gross moist stability. The gross moist stability can be understood as a normalized vertical
advection of a conserved moist quantity, such that it represents the efficiency of exporting
energy from the atmospheric column. Originally, the concept was introduced by Neelin
and Held (1987) as “a convenient way of summarizing our ignorance of the details of the
convective and large scale transients”. Since then many different definitions for the gross
moist stability have been used (for a review see Raymond et al., 2009). Roughly they can
be grouped into theoretical and diagnostic definitions. The diagnostic definitions vary, but
essentially the vertically integrated horizontal divergence of a quantity conserved in moist
adiabatic processes is normalized by some measure of the strength of convective motion.
Both this measure of strength as well as the divergence are directly estimated from observed
or modeled fields of the conserved quantity and velocity.

The theoretical studies rely on assuming a structure of the vertical velocity. Based on an
assumed moist adiabatic temperature stratification, this structure resembles a first baroclinic
mode associated with deep convective motion (Yu et al., 1998; Neelin and Zeng, 2000; Zeng et
al., 2000). By representing the vertical velocity as a deep convective mode (e.g. Figure 4.1c),
gross moist stability values are found to be positive in the tropics (Yu et al., 1998; Chou
et al., 2013). However, diagnostic approaches identify that the gross moist stability becomes
negative in tropical areas where shallow convection predominates (e.g. Back and Bretherton,
2006), or in the early stages of the convective life cycle characterized by shallow convection
(e.g. Inoue and Back, 2015b).

Shallow convection is characterized by low-level convergence and mid-level divergence (Fig-
ure 4.1b). Due to the vertical profile of MSE, with high surface values, a mid-tropospheric
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Figure 4.1: Illustration of the net column moist static energy (MSE) and vertical velocity (ω, positive for
descending motion) associated with shallow and deep convection. a) A typical tropical MSE profile is
characterized by high values close to the surface owing to high temperature and humidity, a minimum
of MSE in the mid-troposphere due to the rapid decrease of humidity, and increasing values in the
upper troposphere because of the contribution from the geopotential. b) Shallow convection leads to
a net import of MSE because of low-level convergence in areas of high MSE and mid-level divergence
where MSE is low. c) Deep convection stabilizes the troposphere by net MSE export due to mid-level
convergence in areas of low MSE and upper-level divergence where MSE is high.

minimum and increasing values in the upper troposphere, a low-level convergence and mid-
level divergence lead to a net import of MSE into the tropospheric column, destabilizing the
atmosphere by vertical motion. Back and Bretherton (2009) attempted to include shallow
convection by a second mode to predict a precipitation climatology, but could not success-
fully constrain the deep-mode amplitude when using the MSE budget; their model thus had
to be based on the dry static energy, neglecting horizontal variations in moisture. In Lintner
et al. (2012), the addition of a second mode to a tropical model of intermediate complexity
did not strongly improve the precipitation climatology with respect to the model based on a
single deep-convective mode (Neelin and Zeng, 2000). Because of the success of the single-
mode theoretical models in simulating tropical precipitation climatologies (Neelin and Held,
1987; Neelin and Zeng, 2000; Zeng et al., 2000), and the lack of evidence that adding a
second mode has clearly greater explanatory power, in this study we base our diagnostic
framework on a gross moist stability formulation with one vertical velocity structure related
to deep convection (similar to Figure 4.1c). The import of MSE due to shallow convection
is retained as a forcing in the framework.

In the remaining part of this chapter, we briefly describe the COOKIE experiments (Sec-
tion 4.2). We introduce and discuss the diagnostic framework derived from the MSE budget
(Section 4.3), and apply the framework to the COOKIE simulations (Section 4.4). Specifi-
cally we investigate whether the heating or the gross moist stability explain the zonal-mean
shape of the vertical mean vertical velocity, and with that the precipitation (Section 4.4.1).
Last we develop a theory for the poleward shift of the ITCZ upon inhibiting ACREs with the
help of the diagnostic framework (Section 4.4.2). We summarize our findings in Section 4.5.
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4.2 Simulations

We test the diagnostic MSE framework with the help of the aquaplanet simulations pro-
vided by the Clouds On-Off Klimate Intercomparison Experiment (COOKIE, Stevens et al.,
2012). We refer to simulations with active cloud-radiation interaction as “clouds-on” and
to those with inhibited cloud-radiation interaction as “clouds-off”. From the comparison
between clouds-on and clouds off simulations the impact of atmospheric cloud radiative ef-
fects (ACREs) on the simulated circulation and spatial precipitation distribution can be
assessed. Climate change can be investigated by comparing the control simulation with
‘Qobs’ SSTs to simulations where SSTs are uniformly raised by 4K. Six models performed
the control and 4K COOKIE simulations: CNRM-CM5, MPI-CM5-LR, IPSL-CM5A-LR,
MIROC5, MRI-CGCM3, HadGEM2-A. In MIROC5 the prescribed SSTs differ between the
cloud-on and clouds-off simulations, where SSTs follow ‘Qobs’ in the cloud-off experiment,
but tropical SST gradients are steeper in the clouds-off experiment. More information on
the simulations and aquaplanet configuration is given in Section 3.2.

4.3 Diagnostic MSE framework for precipitation investigation

The moist static energy (h) is given by the sum of thermal, latent and potential energy

h = cpT + gz + Lvq, (4.1)

where cp is the specific heat of dry air at constant pressure, T the absolute temperature,
q the specific humidity, and gz the geopotential. The moist static energy is a convenient
variable to characterize the energy in an air parcel as its vertical integral is approximately
conserved in moist adiabatic motions. A typical tropical MSE profile has large values at the
surface associated with high specific humidity and temperature. With increasing height, the
humidity content decreases rapidly, leading to a mid-tropospheric minimum in MSE. In the
upper troposphere, where Lvq is low, MSE increases again owing to the contribution of the
geopotential.

In stationarity, the column integrated moist static energy budget at any point is

0 = SH + LH +R− [~v· ~∇h]−
[
ω
∂h

∂p

]
, (4.2)

where the terms from left to right correspond to the surface sensible and latent heat fluxes,
the radiative flux divergence across the column, and the horizontal and vertical advection of
moist static energy; square brackets denote the mass weighted vertical integral. Generally,
the turbulent surface fluxes transport energy into the troposphere and represent a source
of column MSE while the radiation cools the atmosphere through longwave radiation and
represents a sink of column MSE. The horizontal and vertical advection can become both
sinks and sources of column MSE depending on the vertical structure of MSE, horizontal
winds, as well as the vertical velocity.
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The vertical structure of vertical velocity in the tropics is thought to be represented by two
baroclinic modes, one related to deep convection with low level convergence and upper level
divergence, and one related to shallow circulations with middle level convergence/divergence
(e.g. Yuan and Hartmann, 2008; Inoue and Back, 2015a). The deep mode explains most
of the variance in tropical vertical velocity profiles. Our aim, to get an expression for the
vertical velocity, can be achieved by separating the vertical advection term into the vertical
advection related to an assumed vertical velocity structure, and vertical advection associated
with the deviation from this structure

−
[
ω
∂h

∂p

]
= −ω∗

[
φ(p)∂h

∂p

]
−
[
(ω(p)− ω∗φ(p))∂h

∂p

]
. (4.3)

We express the vertical velocity profile ω(p) by one single mode of deep convection with
the vertical mean vertical velocity ω∗ yielding the amplitude of the assumed structure φ
of deep convection. φ is chosen to be positive, with more details on its specification pre-
sented in Section 4.3.1. The deviation vertical advection term, V α

h = −[(ω(p)− ω∗φ(p))∂h∂p ],
then retains the vertical advection associated with shallow circulations and further modes.
Essentially, our approach follows the framework introduced by Bony et al. (2013).

The vertical MSE advection normalized by some quantity related to a mass flux, in our case
ω∗, is traditionally referred to as gross moist stability (Neelin and Held, 1987)

Γh = −
[
φ(p)∂h

∂p

]
. (4.4)

It is a convenient quantity to characterize the stability of the tropical troposphere related to
moist convective processes in a column-integrated sense. The gross moist stability represents
the export or import of moist static energy in the tropospheric column, where deep vertical
motions typically export MSE and stabilize the troposphere, while shallow circulations tend
to import MSE having a destabilizing effect (e.g. Back and Bretherton, 2006) as illustrated
in Figure 4.1.

We rearrange the MSE budget (Eq. 4.2) using Eq. 4.4, such that the vertical mean vertical
velocity is expressed as the ratio of a heating term Q = SH + LH + R + H + V α

h and the
gross moist stability:

− ω∗ = Q

Γh
= βQ, (4.5)

with β denoting the inverse gross moist stability, and H the horizontal advection. With the
help of Eq. 4.5 it is thus possible to test whether the models’ spread in the heating or in
the gross moist stability are more decisive in setting the zonal-mean structure of ω∗ in the
individual models (Section 4.4). Note that technically V α

h is an additional vertical advection
term, however, we consider it as part of the forcing by including it into the heating term.
In doing so we follow the reasoning by Chou et al. (2013) in that the destabilizing effect
of shallow circulations is responsible for the import of MSE and thus represents a forcing
that deep vertical motion responds to. Because the diagnostic framework is based on one
vertical mode, we will in particular explore the question how much of the vertical velocity
can be explained by assuming one single mode associated with deep convection. Once the
controls on the vertical mean vertical velocity are understood, precipitation patterns can
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be reconstructed using the close relationship of precipitation as a function of the vertical
velocity shown in Figure 3.3.

4.3.1 Choice of generic vertical velocity profile influences gross moist stability

By considering the definition of the gross moist stability (Eq. 4.4) it becomes imminently
clear that the magnitude of Γh will depend on the choice of the assumed vertical velocity
structure φ. The profile of φ determines how strongly the vertical gradient of h, shown in
Figure 4.2a, is weighted at different heights. Because of the profile of h with high surface
values, a mid-tropospheric minimum and increasing h in the upper troposphere (as illus-
trated in Figure 4.1a), the vertical gradient −∂h

∂p is negative in the lower troposphere and
positive in the upper troposphere. If φ is chosen to be more top-heavy, Γh will become more
positive; if its maximum is placed in the mid-troposphere the sign of Γh strongly depends
on the level of the mid-tropospheric minimum in h; if φ is bottom-heavy Γh will be negative.
Optimally, the choice of φ should be based on physical considerations.

One such consideration is that heating drives vertical motion more easily where the gross
moist stability minimizes. According to Eq. 4.5, convection (negative ω∗) is associated with
a heating (positive Q) of the gridbox column when the gross moist stability is positive,
which conforms to the physical view of deep convection heating and stabilizing the tropo-
sphere by releasing latent heat. Considering Eq. 4.5, in the case of negative gross moist
stabilities, deep convection would have to be associated with a cooling of the column, which
contradicts the above physical view. We thus will define φ(p) such that Γh is positive in the
considered COOKIE simulations (Section 4.2), which additionally ensures that the sign of
Γh corresponds to export of MSE from the column as expected from deep vertical motion
(Back and Bretherton, 2006). Furthermore, to allow the framework set by Eq. 4.5 to be
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Figure 4.2: a) Vertical pressure gradient of the moist static energy with height in the clouds-off control
experiment, horizontally averaged between the double ITCZs. b) Profiles of the vertical velocity profile
(φ) assumed in the study of Bony et al. (2013) (dashed line) and in this study (solid line) with a surface
and tropopause placed at 1013 hPa and 100 hPa respectively.
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applicable, Γh has to remain unequal to zero, which is most easily achieved by requiring Γh
to be positive.

To choose φ such that Γh remains positive in all four experiments of the COOKIE aquaplanet
suite, we started our tests with the profile of φ used in Bony et al. (2013). This profile follows
a cubic polynomial that vanishes below the surface and above the tropopause, and places the
maximum in the mid-troposphere at 600 hPa (Figure 4.2b). However, using this profile, the
near-equatorial minimum in time zonal-mean Γh did not fulfill our requirement to remain
positive in all experiments. As discussed before, φ with a mid-tropospheric maximum puts
weight on vertical levels where −∂h

∂p is negative, thus resulting in a negative vertical integral.
In order to be able to specify a bounded profile that can easily be modified from symmetric
to skewed, we introduce a beta distribution; the profile of φ can thus be changed via the
shape parameters a and b. The requirement that Γh remains positive in all four experiments
was met when a = 2 and b = 3 which yields a top-heavy profile of φ with the maximum
approximately at 400 hPa (Figure 4.2b). Various other choices of a and b that produce a
top-heavy profile would have also given positive Γh but would have modified its magnitude.

Considering the steep gradients of MSE in the upper troposphere, it is clear that the in-
tegration depth set by the chosen level of the tropopause (pt) also modifies the magnitude
of Γh. Most often in previous work a fixed tropopause height, e.g. 100 hPa is assumed.
However, the tropopause height varies among models and with latitude. We estimate pt at
each time and gridcell using the WMO definition whereby the tropopause height is given
by the level at which the temperature lapse rate is 2Kkm−1 or less. Using a variable pt
especially reduces Γh for the CNRM model owing to its low tropical tropopause height of
approximately 150 hPa. Taking into account the requirements for the profile, the integration
borders and further that

∫
φ(p)dpg = 1, we define the generic vertical velocity profile as:

φ(p) =


(ps−pt)(p−pt)a−1(ps−p)b−1

B(ps,pt,a,b) , pt ≤ p ≤ ps

0, otherwise
, (4.6)

with B(ps, pt, a, b) = Γ(a)Γ(b)
Γ(a+b)(ps−pt)a+b−1 , and Γ the gamma function.

Figure 4.3 shows the resulting time zonal-mean gross moist stability in the control clouds-on
and clouds-off experiments (left column) as well as the changes with warming (right column).
The time zonal-mean Γh is characterized by the minimum values in areas which coincide
roughly with the areas between the two ITCZs. This minimum of Γh is consistent with
the physical expectation that where Γh is low, less heating is required to drive convective
motion. Γh increases poleward of the ITCZs, indicating that the greater stability hinders
convection. The polewards increase in Γh arises from a combination of increased stability
in the upper troposphere as well as the reduced moisture in the lower troposphere of areas
located polewards of the ITCZ, placing the minimum in MSE at lower vertical levels and
thus increasing the weight of positive −∂h

∂p . The change in Γh with warming is inconsistent
in sign among models and dependent on the latitude. The inconsistency applies to both the
clouds-on and clouds-off experiments.

Though the regional variation in Γh is determined by the vertical gradient of MSE, the
discussion above concerning the choice of φ and the integration borders emphasizes that
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Figure 4.3: Gross moist stability (Γh) of the control clouds-off and clouds-on experiments (left column)
and its change with warming (right column). Clouds-off and clouds-on simulations are shown in the
top and bottom row, respectively.

the magnitude of Γh is hardly comparable among studies. Climatologies of the gross moist
stability (e.g. Yu et al., 1998; Chou et al., 2013) thus should be interpreted in terms of the
chosen definition of gross moist stability and the generic vertical velocity profile.

4.3.2 Validity of the MSE framework

Before employing the framework given by Eq. 4.5 we test its validity in diagnosing the
vertical mean vertical velocity from time zonal-mean Q and Γh. The atmospheric radiative
flux is the divergence between TOA and surface radiative fluxes, and the surface turbulent
fluxes are directly available from the model output. We calculated the horizontal advection,
as well as the gross moist stability and deviation vertical advection from monthly mean
fields of moist static energy, horizontal winds and vertical velocity. Originally the budget
in Eq. 4.2 was not closed and the residual term was not substantially smaller than the other
terms. However, we could only diagnose the horizontal advection from monthly mean values,
whereas the total horizontal advection comprises a non-negligible eddy advection term in
the tropics (Peters et al., 2008) in addition to the mean horizontal advection. By rerunning
the MPI model with diagnostic transport output we reassured ourselves that the zonal-mean
distribution and magnitude stem from the horizontal eddy advection to a first degree. The
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Figure 4.4: Time zonal-mean of the individual terms comprised in the heating term Q shown for the
control clouds-off experiment. Note the different choice of value ranges for each term, but for all
subplots a total range of 140Wm−2 is shown.

residual is thus regarded as eddy advection, such that the horizontal advection H is given
as the sum of monthly mean and eddy horizontal advection (Hmean and Heddy).

The individual terms in Q differ quite strongly in their zonal-mean contribution to the
heating as well as among models (Figure 4.4). The surface turbulent heat fluxes (SH and
LH) are sources to the column moist static energy throughout the tropics, while the sensible
heat flux is small in magnitude compared to the latent heat flux. The atmospheric radiation
and the horizontal time-mean advection represent a sink of column MSE, with the strongest
cooling resulting from the radiation. Column MSE is also exported by the horizontal eddy
advection throughout the tropics, with the exception of equatorial areas, where Heddy is
close to zero or slightly positive. Because horizontal temperature gradients in the tropics
are small (e.g. Sobel et al., 2001), the column export of MSE by horizontal advection is
dominated by horizontal moisture advection. The deviation vertical advection term V α

h

both represents a sink and source term, where areas of MSE import roughly coincide with
convective regions, and MSE is exported in subsidence areas. As elaborated in Section 4.3,
V α
h represents the vertical advection of MSE associated with deviations from the assumed

deep convective vertical velocity mode φ. Per definition, the vertical advection owing to the
deep mode exports MSE in convective regions and imports MSE in subsidence areas. That
V α
h is positive in convective areas signifies the import of MSE due to shallow convective

motion, and with that leads to a heating of the tropospheric column.

The zonal-mean −ω∗ diagnosed from other terms in the MSE budget, e.g. for the clouds-off
control experiment, is shown in Figure 4.5a. The peak values associated with the ITCZ range
from approximately 15 to 44 hPa day−1, whereas subsidence velocities are quite consistent
among models for reasons discussed in Section 3.3.2. The deviation between diagnosed and
model −ω∗ is small compared to the magnitude of −ω∗ in all four experiments (Figure 4.5b).
The framework given by Eq. 4.5 is thus applicable to investigate the controls on the zonal-
mean −ω∗ by separating between the heating term Q and the gross moist stability Γh.

4.4 Employing the MSE framework

With the help of the MSE framework described in the previous section, we investigate how
the different terms of the MSE budget balance the time zonal-mean, vertical mean vertical
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Figure 4.5: a) Vertical mean vertical velocity (−ω∗) diagnosed with Eq. 4.5 for the control clouds-off
experiment and b) the difference between diagnosed and model −ω∗ for all four experiments.

velocity (hereafter simply referred to as ‘vertical velocity’). First, we examine the extent
to which the vertical velocity can be understood by assuming that the spatial variability of
the vertical velocity profile can be expressed by one dominant mode associated with deep
convection (Section 4.4.1). Second, we investigate the shift of the ITCZ due to atmospheric
cloud radiative effects (Section 4.4.2). In this section all analysis is performed on the control
clouds-off experiment if not otherwise noted.

4.4.1 Controls on the zonal-mean vertical velocity

To separate the impacts of zonal-mean variations in the heating term Qi and inverse gross
moist stability βi of the model i on the zonal-mean vertical velocity −ω∗i (the asterisk is
omitted in the following for simplicity), we decompose ωi = ω + ω′i into the multi-model
mean zonal-mean (denoted by the overline) and the anomaly from the multi-model mean
(denoted by a prime); we treat Qi and βi in the same way. Then the anomalous vertical
velocity from Eq. 4.5 can be written as

− ω′i = β′iQ+ βQ′i + β′iQ
′
i + β′iQ

′
i. (4.7)

The anomalous vertical velocity in relation to the four terms on the right side of Eq. 4.7 is
shown in Figure 4.6. One term (βQ′i), which comprises the anomalous heating, stands out
from the others. For all models this term follows most closely the one-to-one line. That
β′iQ is not related to −ω′i demonstrates that the stability is only secondary in explaining the
zonal-mean variation in the vertical velocity. In fact, there is no notable relationship of the
other three terms in Eq. 4.7 with ω′i, implying that most of the zonal-mean variation in ω′i
is explained by the zonal-mean variation in the anomalous heating term in all models.

We further ask how much the sums of different combinations of the four terms in the
decomposition explain the zonal-mean variation in ω′i (Figure 4.7). In total, fifteen possible
combinations of terms are available. We estimate the root mean square error (RMSE)
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Figure 4.6: Anomalous vertical mean vertical velocity as a function of its decomposition into four terms
given by Eq. 4.7 for the control clouds-off experiment.

between the actual model’s −ω′i and each of these combinations of terms, e.g. the RMSE
between −ω′i and β′iQ + βQ′i + β′iQ

′
i + β′iQ

′
i. Further we normalize the RMSE of each

combination by the RMSE of the ‘no term’; ‘no term’ signifies the relationship of ω′i with
ω. A separation between the combinations is apparent (Figure 4.7): all of the combinations
of terms that contain βQ′i have smaller normalized RMSE as measured by the multi-model
median with values between about 0.1 and 0.2 than all other combinations (about 0.5 to 0.6).
Variations in the anomalous heating term are thus fundamental in explaining variations in
the vertical velocity, whereas variations in gross moist stability are of less importance.

Is there a dominant term contained in Qi that is most responsible for the high correlation
between βQ′i and −ω′i? To investigate this question, we estimate the normalized RMSE for
the different combinations of source terms in Qi: for the sum of surface latent and sensible
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performed on the control clouds-off experiment.
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heat flux (SFi), the atmospheric radiative heating rate (Ri), the horizontal advection (Hi),
and the vertical advection due to second and higher baroclinic modes (V α

h ). This again
results in fifteen possible combinations (Figure 4.8). Though a separation in the magnitude
of multi-model median error is not as apparent as in the previous figure, one term again
ranks among the smallest: the deviation vertical advection term V α

h . In fact, when only
considering V α

h we obtain the smallest error. The other terms comprised by Qi, however, do
not seem to be important in shaping the zonal-mean vertical velocity structure. The single
terms βRi′, βSFi′, and βHi

′ rank at the tenth, twelfth and fifteenth place with respect to
their multi-model median normalized RMSE. Though the normalized RMSEs are shown
only for the control clouds-off experiment (Figures 4.7 and 4.8), the general conclusions are
the same for the other experiments.

The small RMSEs of all terms associated with anomalous V α
h encourage us to explore the

controls on V α
h in more detail (Figure 4.9). As expected from the good correlation with

−ω′i, V α
h is positive in convective areas and negative in subsidence regions (Figure 4.4, right-

most plot). A positive sign implies that moist static energy is imported into the column
via vertical circulations, providing energy to support convective motions. Import of MSE
by vertical advection is associated with shallow circulations rather than differences in the
vertical gradients of MSE (e.g. Back and Bretherton, 2006). Indeed, −∂h

∂p is similar among
different vertical velocity regimes as well as among models (Figure 4.9, top row).

It is the deviation of the vertical velocity from the assumed deep mode (ω(p) − ω∗φ(p))
shown in the middle row of Figure 4.9, that varies between the velocity regimes, therefore
setting the zonal-mean variation in −ω′i. Overall, ω(p) − ω∗φ(p) has the greatest absolute
values in the lower troposphere and is of the same sign as ω∗. This underestimation of
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Figure 4.8: As in Figure 4.7 but for the sums of combinations of the individual terms in βQ′i. SF is the
sum of surface sensible and latent heat flux, H the horizontal advection, R the atmospheric heating
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velocity structure. The analysis is performed on the control clouds-off experiment.
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Figure 4.9: Vertical profiles averaged in different velocity regimes, from strong convective (left) to strong
subsidence (right) of the vertical gradient of moist static energy (top row), the deviation vertical
velocity from the assumed deep mode velocity (middle row), and the corresponding non-integrated V αh
term. The control clouds-off experiment was used for plotting.

vertical velocity by the assumed deep mode φ, together with the negative lower tropospheric
−∂h
∂p , results in the lower-tropospheric positive contribution to V α

h in convective areas and
negative contribution in subsidence areas (Figure 4.9, bottom row). The assumed deep
mode additionally overestimates the vertical velocity in the upper troposphere, enhancing
the lower-tropospheric contribution to V α

h ; however the overestimation has a minor impact
compared to the lower-tropospheric underestimation. Furthermore, the magnitude of ω(p)−
ω∗φ(p) is correlated with the magnitude of ω∗, indicating that the velocity in the lower
troposphere is systematically underestimated by the assumed top-heavy vertical velocity
structure. Thus, the close relationship between the vertical velocity and V α

h arises from the
deviation of the actual vertical velocity profile from the assumed generic vertical velocity
structure associated with deep convection.

To understand the zonal-mean variation in the vertical velocity, understanding of the vertical
advection due to secondary and higher modes of the vertical velocity profile is indispensable.
However, the assumptions made in the choice of φ (Section 4.3.1) required us to select a
somewhat more top-heavy shape than what an empirical orthogonal function analysis has
identified as the tropical deep mode (Yuan and Hartmann, 2008). Our assumptions may
introduce deviations from the vertical velocity profile that are not necessarily related to a
physical mode of spatial variability in ω, e.g. from shallow circulations.

To test whether V α
h is still the dominant term in explaining the vertical mean vertical

velocity, we repeat the previous analysis for the control clouds-off experiment, but estimate
φ with different parameters (a = 1.7, b = 1.8) which yields a shape with a mid-tropospheric
maximum, similar to the deep mode in Yuan and Hartmann (2008) or Bony et al. (2013).
Due to the constraint of a positive gross moist stability (Section 4.3.1), the mid-heavy φ
could not be used for all experiments. Changing the assumed shape impacts the magnitude
of the gross moist stability, and the anomalous vertical advection V α

h , which in turn impacts
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Figure 4.10: Anomalous vertical mean vertical velocity as a function of the decomposed four terms in
βQ′i, shown for the control clouds-off experiment and calculated by using the mid-heavy φ given by
a = 1.7 and b = 1.8.

not only the RMSEs of βV α
h
′ but also the other terms in βQ′i. Likewise, with the mid-heavy

shape the anomalous heating term βQ′i best explains the zonal-mean variations of −ω′i.
But with the new shape, the signal of βV α

h
′ becomes less clear (Figure 4.10); none of the

terms systematically correlate well with −ω′i. Overall, the normalized RMSEs increase (not
shown) compared to Figure 4.8. Also the ordering of the terms changes, with βRi′ ranked as
the second term of smallest normalized multi-median RMSEs, and βV α

h
′ as the sixth term,

whereas with the top-heavy φ the βV α
h
′ term ranked first and βRi′ ranked as the tenth term.

Apparently the success of the different terms comprised in βQi′ for explaining zonal-mean
variations of ω′i partly hinges upon the assumed shape of the vertical velocity profile φ.

The above results provide a limitation to the applicability of the framework by which the
vertical mean vertical velocity is given as the ratio between a heating term and the gross
moist stability (Eq. 4.5). By the constraint that the gross moist stability remains positive in
all models and experiments, the export efficiency of MSE given by Γh can only be represented
by a top-heavy generic vertical velocity structure in COOKIE. That the results depend
sensitively on the specification of φ in the lower troposphere, highlights the importance of
column MSE import by bottom-heavy convective motion. Including bottom-heaviness of
vertical motion, which is physically related to the impact of shallow convection, into the
gross moist stability within our framework thus seems a next natural step. However, if the
gross moist stability was expressed as the sum of a deep mode (subscript d) and shallow
mode (subscript s), such that Γh = Γh,d + Γh,s, then Γh would become negative in parts of
the tropics with shallow circulations. Then singularities in the ratio between heating and
gross moist stability would exist and the framework would loose its diagnostic property.

The one-mode vertical velocity structure approach has previously been successfully applied
in other models. A model of intermediate complexity, the Quasi-equilibrium Tropical Circu-
lation Model (QTCM, Neelin and Zeng, 2000), is built upon the assumption to represent the
vertical structure of temperature, humidity and the vertical velocity by one mode related
to deep convection. In this one-mode configuration, the QTCM successfully predicted the
gross features of the tropical convergence zones (Zeng et al., 2000). Including a second mode
associated with a prognostic boundary layer only modestly improves the precipitation cli-
matology with respect to the one-mode QTCM (Lintner et al., 2012). Back and Bretherton
(2009) attempted to predict precipitation based on two modes of vertical velocity estimated
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from reanalysis data also via the moist static energy budget. However, they were faced with
problems in constraining the deep mode and had to revert to applying their framework to
the dry static energy budget, effectively neglecting horizontal variations in moisture. We
showed the diagnostic power of our one-mode framework. Despite being limited to one as-
sumed top-heavy vertical velocity shape, the framework merits further investigation due to
its simplicity.

4.4.2 Influence of ACRE on the ITCZ shift

The diagnostic MSE framework presented in the previous section offers the opportunity to
study the impact of atmospheric cloud radiative effects (ACREs) on the vertical velocity
through the ACRE influence on the zonal-mean distribution of column MSE heating. In this
section, we investigate how the ITCZ would shift if ACRE did not contribute to the MSE
column heating in the control clouds-on experiment. We define Qclr as the clear-sky column
MSE heating, where Qclr = Q−ACRE is obtained by subtracting zonal-mean ACREs from
the zonal-mean Q of the control clouds-on experiment.

In all models, Qclr is weaker than the total column MSE heating Q (Figure 4.11) because
deep clouds heat the atmospheric column by their ACRE. Similarly to Harrop and Hartmann
(2016) we find no correlation between the integrated ACRE heating and the ITCZ shift
between the clouds-on and clouds-off experiment. Neither does the original ITCZ location
correlate with the strength of the ITCZ shift upon inhibiting ACRE. Instead we find that the
heterogeneous zonal-mean shape of ACRE has a great influence on the zonal-mean shape of
the clear-sky column heating, Qclr. Qclr peaks at lower latitudes than Q as indicated by the
dashed and solid vertical lines in Figure 4.11 (top row) in the CNRM, MPI and HadGEM
models. In the IPSL model, the peak shifts equatorwards although almost non-negligibly.
No shift is evident in the MRI model which has a single ITCZ. Why is the ACRE influencing
the zonal-mean distribution of Q? In the two models with the greatest ITCZ shifts (CNRM-
CM5 and MPI-CM5-LR), the peak in Q is dislocated polewards from the peak in ACRE
(not shown), such that removing ACREs can impact the location of the peak in Qclr. In
the other models, the peak in ACRE aligns with the peak in Q, implying that removing
ACRE can only reduce the magnitude to smaller Qclr but not the location of the peak. We
compare the model zonal-mean vertical velocity ω∗ with the estimated ω∗clr (Figure 4.11,
bottom row), which is diagnosed via Eq. 4.5 by using Qclr. A poleward shifting peak in the
heating upon removal of ACREs is indicative of a shift in the ITCZ position.

Finally we test whether the poleward shift in the ITCZ position just by considering clear-sky
instead of all-sky heating is related to the observed ITCZ shift between the clouds-on and
clouds-off experiment (Figure 4.12). Generally, the diagnosed shift from simply removing
ACRE from the heating term is smaller than the total shift related to inhibiting cloud-
radiation interaction in the models. This is not surprising, as the models can adjust to
the removed heating in the atmosphere and feedbacks between the environment and the
convection scheme may enhance an initial signal. With the exception of the MRI model,
models that have a small diagnosed shift also tend to exhibit a small ITCZ shift between the
clouds-on/off experiments and respectively for models with a greater shift. Whether there
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Figure 4.11: Comparison between the zonal-mean clear-sky heating Qclr and the total heating Q for
five COOKIE models in the top row, and in the bottom row between the corresponding clear-sky and
total vertical mean vertical velocity (ω∗clr and ω∗). The analysis is shown for the control clouds-on
experiment. MIROC5 is excluded because of the differing underlying SST profile from the other models.
Latitudes are only shown for the northern hemisphere. The vertical lines indicate the latitude where
either the clear-sky or total zonal-mean variable maximizes.

is indeed a relationship between the diagnosed and actual shift in the ITCZ is difficult to
infer from just five models, of which four models show the expected behavior. However, we
propose a reason for the models to initially relocate the ITCZ polewards – by subtle changes
in the distribution of the column heating, it becomes easier for the models to convect more
poleward if ACREs are switched off. Upon this initial ITCZ shift, the feedbacks between
convection and the large-scale environment seem to shift the ITCZ even further polewards.

Recently, Harrop and Hartmann (2016) also proposed a mechanism to explain the equator-
ward shift of the ITCZ due to atmospheric cloud radiative effects in the COOKIE models.
Their mechanism is based on a diagnostic convective available potential energy (CAPE)
approach introduced by Landu et al. (2014). Both studies estimate CAPE, which can be
considered as a measure for atmospheric stability, from the monthly-mean temperature and
moisture fields in COOKIE. Harrop and Hartmann (2016) find, that the cloud radiative
effect of deep tropical clouds heats the upper troposphere, leading to an overall increase in
atmospheric stability in the clouds-on case. The increased stability reduces CAPE. Higher
specific humidity, especially in the boundary layer, increases CAPE in the clouds-on experi-
ment. Because the temperature effect dominates over the humidity effect in contracting the
ITCZ equatorwards in the clouds-on experiment, Harrop and Hartmann (2016) conclude
that the ITCZ is contracted equatorwards because the upper-tropospheric temperature in-
creases due to cloud radiative heating. However, the temperature structure of the tropics
is also determined by the moist adiabat in the areas of stronger convection (e.g. Johnson
and Xie, 2010). As the ITCZ is located further equatorward because of cloud radiative ef-
fects, upper-tropospheric temperatures will follow a warmer moist adiabat and consequently
be more stable. The estimated CAPE is simply a result of the temperature and humidity
structure, which in turn are set by the circulation. The hypothesized temperature effect on



4.5 Summary 65

0 1 2 3 4 5 6 7 8

ITCZ shift: off-on

0

1

2

3

4

5

6

7

8

IT
C

Z
sh

if
t:

c
le

a
r-

a
ll

CNRM-CM5
MPI-CM5-LR
IPSL-CM5A-LR
MRI-CGCM3
HadGEM2-A

Figure 4.12: Comparison of the ITCZ shift as found by the difference in ITCZ location between the
clouds-off and clouds-on experiment, and the ITCZ shift as diagnosed by considering Qclr and Q. The
comparison is shown for the control experiment.

CAPE may therefore partly be a result of the ITCZ shift itself and the argument is circular
to some degree.

Because of the design of COOKIE it was possible to show that the interaction between
radiation and clouds shifts the ITCZ equatorwards by Harrop and Hartmann (2016) and
the current study. While their argument is based on a zonally homogeneous increase in
atmospheric stability owing to cloud radiative effects leading to a contraction of high CAPE
values towards the equator, our argument is based on the heterogeneous effect that clouds
have in heating the atmosphere. Both approaches are based on a diagnostic analysis and
cannot disentangle the feedbacks between the circulation and the environment, which have
been shown to strongly impact the ITCZ position (e.g. Möbis and Stevens, 2012).

4.5 Summary

We introduce a framework derived from the moist static energy (MSE) budget with which
the vertical mean vertical velocity can be diagnosed as the ratio of a column-integrated
heating term and the gross moist stability. The heating term contains the diabatic heating
from the surface turbulent heat fluxes, the radiative heating, and the import or export of
moist static energy from horizontal advection as well as a vertical advection term associated
with the import of MSE from deviations in the vertical velocity profile from the assumed
deep-mode vertical velocity structure. This assumed vertical velocity structure is used in
the estimation of the normalized vertical advection related to deep convection, as expressed
by the gross moist stability. For the applicability of the framework, the vertical velocity
structure is defined such that the gross moist stability remains positive in all COOKIE
simulations. For that, a top-heavy vertical velocity structure had to be chosen. With the
help of the framework, the zonal-mean vertical mean vertical velocity can be diagnosed with
only a negligible residual.

In applying the framework, we find that the zonal-mean variation in the vertical advection
associated with the deviation from the assumed shape (V α

h ) is the best predictor of the ver-
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tical mean vertical velocity consistently among models and experiments. As V α
h represents

the import or export of column MSE due to deviations of the assumed from the actual verti-
cal velocity profile, this term highlights the importance of shallow convection for importing
MSE into the column, and thus destabilizing the troposphere, such that deep convection can
occur. Unfortunately, the degree to which V α

h explains the vertical mean vertical velocity
depends on the choice of the vertical velocity structure.

Nevertheless, we also find that the other source terms, the sensible and latent heat flux as
well as the horizontal advection of MSE, are less successful in explaining the zonal-mean
vertical mean vertical velocity from a diagnostic point of view. Variations in the gross
moist stability are less important in explaining the vertical velocity than variations in the
heating term. This implies that for understanding what drives the tropical circulation it is
fundamental to understand the controls on the diabatic heating.

Finally, we attempt to explain why inhibiting cloud-radiation interaction leads to a poleward
shift of the ITCZ with the help of the diagnostic framework. In addition to the diagnosed
vertical velocity estimated using the total heating term, we can estimate the vertical velocity
when the ACRE is subtracted from the total heating. In four of five models, for which this
analysis was possible, the estimated ITCZ shift owing to the missing ACRE is related to
the ITCZ shift between the clouds-on to the clouds-off experiment. In these models, the
diagnosed peak in the vertical mean vertical velocity shifts because the peak in ACRE does
not coincide with the peak in the total heating term. In the MRI model, we diagnose a zero
shift in the ITCZ position. As it has a single ITCZ, the peak in ACRE is aligned with the
peak in the heating term. However, upon turning off cloud-radiation interaction the ITCZ
still shifts polewards in the MRI model.

As our analysis is based on a diagnostic framework we cannot expect to be able to explain
the full behavior of the ITCZ. The location of the ITCZ is strongly determined by subtleties
in the representation of moist convective processes and how convection interacts with the
large-scale environment. However, our results point out that the heterogeneous distribution
of ACRE with respect to the column heating by surface turbulent heat fluxes, clear-sky
radiative cooling, and MSE import by horizontal and anomalous vertical advection may be
important for explaining the shift of the ITCZ once cloud-radiation interaction is inhibited.
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5 Conclusions

The present thesis investigates the intermodel spread in state-of-the art general circulation
model simulations of precipitation and its change with warming. Previous work has high-
lighted the large spread in both the simulation of global-mean precipitation with warming
as well as the spatial pattern change of tropical precipitation (Hawkins and Sutton, 2011;
Knutti and Sedláček, 2013; Xie et al., 2015) compared to, for example, the simulation of
temperature and temperature change.

A careful reading of the literature suggests that part of the discrepancy in reported global-
mean precipitation rate of increase with surface warming, often termed “hydrological sensi-
tivity”, is due to an ambiguous use of the term. For one, the term has been used to refer to
the total rate of global-mean precipitation increase with surface warming. And second, only
the temperature-mediated global-mean precipitation rate of increase with surface warming
was considered. The latter definition explicitly separates between the temperature-mediated
precipitation response and the direct precipitation changes to e.g. changing atmospheric
CO2 occurring on fast time scales without changes in the surface temperature. The direct
precipitation response is called “adjustment” (A). To help distinguish the different defini-
tions in the present thesis as well as in future work, a consistent terminology is proposed.
We refer to the temperature-mediated precipitation rate of increase with warming as “hy-
drological sensitivity parameter” (η) and to the other definition as “apparent hydrological
sensitivity parameter” (ηa). When estimating η, we find a small spread with a factor of
1.5 difference between models, which increases by 35% when estimating ηa in the same
experiment. The spread is greater for ηa, because the spread in the adjustments is inter-
mingled with that of the temperature-mediated precipitation response. The conundrum of
large versus small global-mean precipitation rate increase in the literature can be resolved
with a consistent terminology. The terminology proposed in the present thesis has begun
to be adopted in other work (Samset et al., 2016; Myhre et al., submitted).

Further, we make use of the atmospheric energetic constraint on global-mean precipitation to
understand how climate feedbacks drive the intermodel spread in η and A. Typical climate
feedbacks on the surface temperature are: the surface albedo, the cloud, the water vapor, and
the temperature feedback (separated into lapse-rate changes and uniform warming). Because
changes in these variables modify the atmospheric radiation budget, they also impact both
η and A. To investigate impacts of climate feedbacks on the intermodel spread in η and A,
we apply the radiative kernel technique (Soden et al., 2008) to the atmospheric heat budget
changes. Of all climate feedbacks, the intermodel spread is largest in the hydrological
sensitivity parameter of clouds and the combined effect of lapse-rate plus water vapor. In
particular, the intermodel spread in the latter can be traced to model disagreement in how
the lower-tropospheric tropical temperature and humidity structure changes with warming.
A non-negligible residual in the decomposition of A hinders conclusions about the causes
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for intermodel spread. Nevertheless, our analysis suggests that the spread in fast global-
mean precipitation response to lapse-rate and cloud changes may be important also for the
intermodel spread in A.

The adjustment, and consequently the hydrological sensitivity parameter, can only be esti-
mated from idealized step-like forcing experiments, as for example abruptly quadrupling the
atmospheric CO2 concentration. With a simple linear model, we show that estimates of A
and η from the 4×CO2 experiment serve to predict global-mean precipitation changes also in
a transient CO2 increase experiment. The small spread found in η raises confidence that it is
a characteristic quantity to describe temperature-mediated precipitation changes. Recently,
the Precipitation Driver Response Model Intercomparison Project (PDRMIP, Samset et al.,
2016) provides idealized simulations with step-like forcing changes of black carbon, the solar
constant, sulfur, methane and CO2, in a multi-model context. Initial results (AppendixB)
from PDRMIP suggest that the magnitude of η is indeed independent of the individual forc-
ing. This independence of η supports our general argument of Chapter 2 – the precipitation
response to a forcing should be separately viewed in the context of the hydrological sensitiv-
ity parameter and the precipitation adjustment. So doing indicates that to disentangle the
twentieth century global-mean precipitation trend in models it is important to understand
and quantify the precipitation adjustments to forcings such as aerosols, the solar constant
and greenhouse gases.

The spatial distribution of tropical precipitation patterns and their changes with warming
is less well constrained than the global-mean precipitation. The large intermodel spread
in regional precipitation has been related to the dynamical precipitation response in the
tropics (Xie et al., 2015) which is determined by changes in the vertical velocity. Going one
step further, Voigt and Shaw (2015) focus on the impact of cloud radiative effect (CRE)
changes on the tropical circulation in two models with very different precipitation responses
to warming in a very idealized aquaplanet setup. Their results suggest that diverse CRE
changes constitute the root cause for the difference in the tropical circulation response
between the two models. We explore the impact of CRE on tropical precipitation and
circulation quantities in a larger model ensemble provided by the Clouds On-Off Klimate
Intercomparison Experiment (COOKIE, Stevens et al., 2012). For a few quantities removing
CREs reduces the model spread, for instance in the tropical mean precipitation or in the
magnitude of peak precipitation at the intertropical convergence zone (ITCZ). However, we
find a larger intermodel spread in the tropical circulation organization, which contradicts
the expectation from Voigt and Shaw (2015) that model results would become more similar
in the absence of cloud-radiation interaction. In particular, for the experiments where the
cloud-radiation interaction is inhibited we find: a greater spread in tropical-mean η; a greater
spread in the simulated position of the ITCZ; and an overall more diverse organization of
the tropical circulation especially in the inter-ITCZ region at and near the equator. It
becomes clear that different representations of atmospheric CRE are not the root cause for
intermodel differences in the tropical precipitation and circulation. Our analysis suggests
that the seed for intermodel differences in spatial precipitation patterns is present in the
absence of cloud-radiation interaction.

We develop a simple diagnostic framework to investigate the diverse model response in
how the ITCZ shifts polewards upon inhibiting cloud-radiation interaction. Because we
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find that precipitation and vertical velocity are strongly related, it suffices to understand
the vertical velocity. Our framework is derived from the column-integrated moist static
energy budget, which represents the coupling between radiation, surface turbulent fluxes
and the circulation. The framework diagnoses the vertical mean vertical velocity as the
ratio between column heating terms and the gross moist stability. The gross moist stability
(e.g. Neelin and Held, 1987) can be defined by assuming that the tropical vertical velocity can
be expressed by a generic vertical velocity structure associated with deep convection. The
vertical velocity’s amplitude is given by the vertical mean vertical velocity. The gross moist
stability represents the efficiency with which large-scale motion exports moist static energy
(MSE) from the column. The residual between the model and diagnosed vertical velocity
is small, such that the framework can be applied to separately understand the influence of
column heating and the gross moist stability. To avoid singularities in the framework, the
assumed mode of vertical velocity has to be specified such that the gross moist stability
is positive everywhere. The framework then yields the behavior expected from physical
reasoning, namely that to support convective motion, less heating is needed when the gross
moist stability is low. Building upon the longstanding success of conceptual models of the
tropical dynamics based on the MSE budget, in this thesis we develop a framework that
directly diagnoses the vertical velocity from known fields of heating and stability. With that,
a new diagnostic tool to explore the controls on the tropical vertical velocity is available
that ranges in complexity between the two-layer model by Neelin and Held (1987) and the
more sophisticated models for tropical dynamics that are coupled to radiation, cloud and
land surface schemes (e.g. Neelin and Zeng, 2000).

From applying the framework to the COOKIE aquaplanet simulations, several findings
emerge. The zonal-mean vertical velocity on the aquaplanets is controlled by zonal-mean
variations in the heating term rather than the gross moist stability. This opposes the com-
mon conception that the gross moist stability represents a decisive quantity to understand
how the large-scale flow controls convection (Raymond et al., 2009). While indeed the gross
moist stability is low in regions with convective motion, it is nevertheless the heterogeneous
distribution of column heating that best explains the distribution of the vertical velocity
in the COOKIE simulations. The heating term is comprised of surface turbulent fluxes,
the atmospheric cooling, the horizontal advection, and an anomalous vertical advection
term associated with the deviation vertical velocity from the assumed deep-mode velocity
structure. Of the various heating terms, the anomalous vertical advection term individu-
ally explains most of the tropical vertical velocity distribution. However, the choice of the
assumed vertical velocity structure somewhat influences the importance of the anomalous
vertical advection. This dependence on the assumed structure represents a caveat to the
framework proposed in this study. Nevertheless, that neither the gross moist stability, nor
the distribution of surface latent or sensible heat flux strongly determine the vertical velocity
distribution emerges as a finding independent of the specified vertical velocity structure.

With the help of the framework we propose a possible explanation for why the ITCZ shifts
polewards when the cloud-radiation interaction is inhibited in the COOKIE aquaplanet
simulations. The atmospheric radiation consists of a clear-sky and a cloudy-sky component
in the simulations where clouds are active. By merely considering the clear-sky radiative
contribution to the column heating, the cloud radiative effect can be extracted from the total
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heating. With that, the vertical velocity due to clear-sky components can be diagnosed. We
find that the heterogeneous atmospheric cloud radiative heating by deep clouds with respect
to the remaining clear-sky heating terms is key to explain the shift in the ITCZ. If the peak
of the cloud radiative heating aligns with the peak of the clear-sky heating terms, the ITCZ
will not shift in the experiment where cloud radiative effects are inhibited. When, however,
the peak clear-sky heating is situated more poleward than the peak cloud radiative heating,
then the peak in the diagnosed vertical velocity shifts polewards; and with it the ITCZ. This
explanation holds true in four of five investigated models. Understanding the heterogeneous
nature of cloud radiative heating by deep clouds with respect to the other heating terms of
the MSE budget is the key to understand the shifting ITCZ upon inhibiting cloud radiative
effects in aquaplanet simulations.

In summary, this thesis explored the intermodel spread in precipitation and its change with
warming in many different aspects. From the investigation of global-mean spread, a new
terminology emerged that helped reconcile the varying estimates in the literature concerning
the rate of precipitation increase with warming. By emphasizing the need to explicitly
separate between the hydrological sensitivity parameter and the adjustment, the importance
of adjustments was highlighted. There is as of yet little understanding on how the global-
mean precipitation adjustment responds to changes in the temperature, humidity, and clouds
induced by modifications of the atmospheric composition. In terms of the intermodel spread
in the tropical precipitation patterns and circulation, focus was placed on the importance
of clouds. Contrary to the expectation that simplifying the problem by inhibiting cloud-
radiation interaction, we found that a considerable intermodel spread persists, especially in
the organization of the tropical circulation and location of the ITCZ position. To answer
the exciting question, which physical process may constitute the key cause for intermodel
differences in the tropical precipitation distribution, remains a challenge.
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A Supplementary material to Chapter 2

A.1 Temperature and water vapor kernels

Any interpretation of radiative decomposition of precipitation changes using the radiative
kernel method depends on the applied kernel. The temperature kernel used in this study
(FigureA1, left column) compares well with the one in Previdi (2010, their Figure 1) in
terms of magnitude and structure. However, differences are found in the longwave water
vapor kernel (Previdi (2010, their Figure 2) vs. FigureA1, middle column). In Previdi
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Figure A1: Annual zonal mean temperature and water vapor kernels used for the radiative decomposition
of precipitation change with warming in Section 5a. Atmospheric heating due to a uniform raise of
atmospheric temperatures by 1K (left), the heating of water vapor change due to a 1K warming at
constant relative humidity is separated into the longwave (middle) and shortwave (right) components.
The all-sky (top) and clear-sky (bottom) are shown. Data is weighted by the depth of the corresponding
pressure level.

(2010), the longwave cooling due to water vapor increases from a 1K warming at constant
relative humidity is of similar magnitude in the lower troposphere as the longwave warming
in the middle and upper troposphere. In the water vapor kernel used here, the lower-
tropospheric cooling is larger than the warming by more than a factor of three. Here, the
longwave (LW) component of ηWV enhances precipitation increase (ηWV, LW = −0.66 ±
0.07Wm−2 K−1). The negative sign might arise because changes in water vapor in the
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lower troposphere are weighted more strongly and thus dominate the sign of the vertically
integrated ηWV, LW contrary to Previdi (2010) who finds ηWV, LW = 0.29Wm−2 K−1. The
values of the shortwave (SW) component of ηWV (ηWV, SW = 0.87 ± 0.07Wm−2 K−1 here
and 0.98Wm−2 K−1 in Previdi (2010)) are commensurate.

A.2 Testing for influences on the adjustment residual

A.2.1 Non-linearity of ∆Rx with ∆Ts

The employed regression method assumes linear changes of ∆Rx with ∆Ts. The evolution
of ∆Rx with ∆Ts is quasi-linear for most of the models and for all x besides ∆RLR and
∆RWV (not shown). The strongest non-linear behavior is found for the GFDL models in the
lapse-rate and water vapor response, where the slope changes at approximately ∆Ts= 2.5K
(or after approximately 5 years). This issue extends to the estimates of the η decomposition.
Nevertheless, the adjustment estimates are affected more strongly than the η decomposition
as it relies on a good estimate of the slope during the beginning years of an abrupt forcing
experiment; the estimate of the hydrological sensitivity parameter, however, is dominated by
the weight of the remaining years. In fact, the GFDL models yield the lowest estimates of the
lapse-rate adjustment (not shown) and thus represent the models with the greatest residual.
The median of the adjustment residual does not strongly reduce when Ax are calculated from
the regression over the first 10 years (2.29Wm−2 vs. 2.50Wm−2). Even when excluding
the GFDL models from the decomposition, the residual remains at 1.95Wm−2 K−1. The
non-linearity does not appear to explain the offset of the residual.

A.2.2 Internal variability

To test whether the residual in the adjustment radiative decomposition arises because the
regression method does not account for internal variability, we estimate the adjustment of
the radiative atmospheric heat budget from CMIP5 fixed SST experiments, where sea surface
temperatures are held fixed for a subset of piControl years (sstClim), and CO2 concentrations
are quadrupled (sstClim4xCO2). The change of the equilibrium mean radiative atmospheric
fluxes gives the fast adjustment of precipitation (Hansen et al., 2005; Bala et al., 2010),
which is then decomposed as described in Section 5a. Among other difficulties, this method
features the disadvantage, that global mean ∆Ts 6= 0 due to land surface warming (Sherwood
et al., 2015). We account for this additional warming by comparing the adjustments of
the regression and fixed SST methods at the global mean ∆Ts found for the given model
from the fixed SST experiment. The comparison is performed for the intersection of 12
available fixed SST and abrupt4xCO2 models (BNU-ESM is excluded as it provides an
unreasonably low global mean longwave surface emittance of 271.35Wm−2 K−1 for a mean
surface temperature of 286.95K).

Although the comparison of methods points out some differences for the decomposed ad-
justment, the offset in the residual is only slightly reduced (FigureA2). Differences in
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Figure A2: Comparison of adjustment estimates with two calculation methods: regression method for
abrupt4xCO2 experiment and fixed-SST method for sstClim4xCO2 experiment. Dots represent indi-
vidual models. The line with a slope of one is shown in gray.

the surface albedo, Planck and water vapor adjustment will not appreciably modify the
residual, because their values are small compared to the residual. The CO2+Stratospheric
temperature, cloud and sensible heat flux adjustment agree well among both methods. The
lapse-rate adjustment is less negative in the fixed SST method, probably due to different
land temperature changes in the fixed SST experiment. The less negative lapse-rate ad-
justment in the fixed SST method leads to a greater ∑x ∆Rx, and with that, contributes
to the slightly reduced offset in the residual (medians of fixed SST and regression method
are 1.27Wm−2 vs. 1.34Wm−2 for the subset of 12 models). It remains open, though,
whether the different lapse-rate adjustment estimate is an indication that the regression
method overestimates fast lapse-rate changes, or whether the actual fast lapse-rate changes
are underestimated because the coupling between SST and the atmosphere is disabled in
the sstClim experiments.
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B Hydrological sensitivity parameter
estimates from PDRMIP

During the course of this thesis I performed simulations with the coupled MPI-ESM1.1-LR
model (revision 7931) for the Precipitation Driver and Response Model Intercomparison
Project (PDRMIP, Samset et al., 2016). This project aims at investigating the separate
precipitation responses to idealized step-like forcing changes in black carbon, the solar con-
stant, sulfur, methane and CO2 with respect to present-day concentrations. Specifically, the
concentrations are increased tenfold for black carbon (BC×10), twofold for CO2 (CO2×2),
threefold for methane (CH4×3), fivefold for sulfur (SO4×5), and the solar constant is in-
creased by 2%. Nine models participated in this initiative: CanESM2, GISS-E2, HadGEM2,
HadGEM3-GA4, MPI-ESM1.1, NCAR CESM1 CAM4, NCAR CESM1 CAM5, NorESM1,
and MIROC-SPRINTARS. All models performed all forcing simulations, with the exception
of our model for which the BC×10 experiment was not possible.

Some studies have pointed out that the rate of temperature-mediated precipitation increase
with warming – “hydrological sensitivity parameter” (η) in our terminology – is more similar
for different forcing agents, than the total precipitation increase with warming termed “ap-
parent hydrological sensitivity parameter” (ηa), e.g. Andrews et al. (2009); Andrews et al.
(2010); Kvalevåg et al. (2013). However, these studies were based on individual model results
which raised the question whether η is indeed independent of the forcing in other models as
well. The PDRMIP framework yields the first opportunity to explore the dependence of η
on idealized forcing changes in a multi-model context.

Indeed, the multi-model mean η is independent of the forcing agent (FigureB1a), ranging
from 2.14Wm−2 K−1 to 2.53Wm−2 K−1. These values correspond well to η = 2.24Wm−2 K−1

as estimated from the abrupt4xCO2 experiment of the CMIP5 model ensemble. Not only
is the magnitude of the multi-model mean similar among the forcing agents, but also the
intermodel spread of η. FigureB1b shows the dispersion, given as the ratio between inter-
model standard deviation and the multi-model mean, to again allow a better comparison to
the spread in the CMIP5 ensemble. The dispersion in PDRMIP is commensurate to that in
the CMIP5 ensemble. The precipitation response to increases in black carbon concentration
presents the only exception. For this forcing agent, the models’ precipitation response is
very diverse. The diverse model response to black carbon changes may be due to the differ-
ent ways through which black carbon can interact with the atmospheric heat budget; it can
both directly absorb and scatter solar radiation, through heating it can modify the stability,
and it can change the cloud microphysical properties. Nevertheless, we could show from the
analysis of PDRMIP, that the hydrological sensitivity parameter is a characteristic quantity
to express precipitation changes in response to surface temperature changes. The hydro-
logical sensitivity parameter is more meaningful than the apparent hydrological sensitivity
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Figure B1: a) Hydrological sensitivity parameter estimated for the PDRMIP experiments and
abrupt4xCO2 from the CMIP5 model ensemble. Dots represent the multi-model mean, and error
bars show one intermodel standard deviation. b) The dispersion for the experiments in a) given by the
multi-model standard deviation normalized by the mean.

parameter for which temperature-independent precipitation adjustments are intermingled
with the temperature-mediated precipitation response.
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2.3 a) Evolution of annual mean precipitation change (∆P ) with corresponding
surface temperature change (∆Ts) in the 1pctCO2 experiment, with respect
to the climatological mean in piControl. Gray thin lines show actual model
results, and colored thick lines the predicted precipitation change following
Eq. 2.2. b) Absolute deviation of predicted and model ∆P . All colored lines
are smoothed by a 5-year running average. The gray shading ranges from
-0.80 to 0.86Wm−2. All 1pctCO2 experiments from Table 2.2 are shown, ex-
cept GFDL-ESM2M and GFDL-ESM2G as our analysis suggests that their
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2.4 a) Adjustment (A), hydrological sensitivity parameter (η), and Equilibrium
Climate Sensitivity for a quadrupling of CO2 (ECS4×) in the 28 abrupt4xCO2
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2.6 a) Decomposition of the hydrological sensitivity parameter (η) for 26 abrupt4xCO2
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2.8 Comparison of the decomposed hydrological sensitivity parameter (η) be-
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