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Abstract

All conventional cloud parameterization schemes rely on a quasi-equilibrium assumption, which de-

fines the relation between the subgrid cloud processes and the grid scale model flow. However, the

quasi-equilibrium assumption is valid in a limited number of model applications on the relatively

coarse model grids and in slowly varying convective environments.

In this thesis, a stochastic parametrization of shallow cumulus clouds is developed to sim-

ulate a shallow cumulus cloud field over the ocean across a range of model grid resolutions. A theory

of fluctuations in a shallow convective ensemble is developed by combining the canonical ensemble

theory applied to convection and large eddy simulations (LES) of the convective case over the ocean.

The main purpose of this theory is to represent fluctuations of the convective states within model

grid columns around the statistical equilibrium. Such a representation provides the distribution of all

possible subgrid convective states for the given synoptic situation, instead of delivering an ensem-

ble average response like in a conventional parameterization approach, and thus provides a way to

quantify the uncertainty of subgrid convection in numerical models.

In a parametrization based on a mass flux approach, the upward transport of mass and

other conserved quantities is controlled by the convective mass flux through the cloud base, which

is the main variable to be defined by the model closure. Based on LES and findings from cloud

tracking, we define the cloud mass flux distribution of a shallow convective cloud ensemble as a

bimodal distribution, with the two modes separated by the buoyancy criterion. This distribution is a

generalization of the exponential distribution to the Weibull distribution function by accounting for

the change in the distribution shape due to diversity of cloud lifetimes.

First, a stochastic stand alone model is constructed based on the developed shallow con-

vective ensemble framework. It is formulated as a compound random process, with a number of

convective elements drawn from the Poisson distribution, and the cloud mass flux sampled from the

mixed Weibull distribution. The convolution of these two functions results in a scale-aware compound

distribution, with the variance and skewness increasing with resolution. The convective memory is

accounted for through the diversity of cloud lifetimes, making the model formulation consistent with

the choice of the Weibull cloud mass flux distribution function, which is required to capture the correct

convective variability.

Second, the stochastic model is coupled to the eddy-diffusivity mass-flux parameterization

scheme in the ICON model. The closure assumption that the cloud area fraction is much smaller than

one is retained over the large-scale region around a model column, for which the statistical quasi-

equilibrium is still valid under stationary conditions. The total convective mass flux within model

grid columns represents the random cloud subensembles, whose spatial variability increases with res-

olution. The variability of the cloud subensembles combined with the stochastic cloud layer vertical

structure improves the modeled average thermodynamic structure and evolution of the boundary layer

over the ocean in the shallow cumulus cloud field.
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On the model grids with resolution below approximately 10 km that falls into the con-

vective gray zone, grid-scale dependent secondary circulations develop and influence the distribution

of cloud field properties by increasing the variance and by increasing and reversing the distribution

skewness. In the deterministic model simulations, the gray zone circulations are prone to develop into

strongly organized cloud streets with artificial features, while the stochastic model is acting to break

down the spurious convective organization.
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Zusammenfassung

Konventionelle Wolkenparameterisierungen basieren auf der Annahme eines Quasi-Gleichgewichts,

wobei eine direkte Beziehung zwischen subskaligen Wolkenprozessen und den aufgelösten Prozessen

angenommen wird. Ein solches Gleichgewicht ist jedoch nur für eine begrenzte Zahl von Modellan-

wendungen, insbesondere für grobe Gitterauflösung und schwach veränderliche konvektive Prozesse,

gültig.

In dieser Doktorarbeit wird eine stochastische Parametrisierung zur Simulation von

flachen Cumuluswolken entwickelt und für Wolkenfelder über dem Ozean unter verschiedenen Au-

flösungen getestet. Eine Theorie für Fluktuationen in einem Ensemble mit flacher Konvektion wird

entwickelt, indem die kanonische Ensembletheorie für Konvektion angewandt und mit Large Eddy

Simulationen (LES) für den konvektiven Fall über dem Ozean kombiniert wird. Die Hauptaufgabe

dieser Theorie ist es, konvektive Fluktuationen innerhalb einer Modellgitterzelle um das statistische

Gleichgewicht darzustellen. Die neue Theorie nutzt eine Verteilung für alle realisierbaren subskaligen

konvektiven Zustände bei einer bestimmten synoptischen Situation, anstelle des Ensemblemittels wie

in konventionellen Parametrisierungsansätzen. Das neue Verfahren stellt damit ein Mittel zur Quan-

tifizierung der Unsicherheiten von subskaliger Konvektion in numerischen Modellen zur Verfügung.

In einer Parametrisierung, die auf dem Massenflussansatz basiert, sind der vertikale

Massentransport und andere Erhaltungsgrößen abhängig von dem konvektiven Massenfluss durch

die Wolkenbasis, welches die wichtigste Variable ist, die von der Schließungsbedingung im Mod-

ell definiert wird. Basierend auf Erkenntnissen aus LES und Wolkenverfolgung definieren wir die

Massenflussverteilung von einem Ensemble flacher konvektiver Wolken als eine bimodale Verteilung,

wobei die beiden Moden anhand des Auftriebskriteriums unterschieden werden. Die Verteilungskurve

ändert sich von einer Exponentialverteilung zu einer gemischten Weibull-Verteilung, weil die Diver-

sität der Wolkenlebenszeit berücksichtigt wird.

In dem ersten Teil der Doktorarbeit wird ein eigenständiges stochastisches Modell kon-

struiert, das auf der Ensembletheorie für flache Konvektion basiert. Es ist formuliert als ein zusam-

mengesetzter Zufallsprozess, wobei zum Einen die Anzahl der konvektiven Elemente aus einer

Poisson-Verteilung bestimmt werden, und zum Anderen der Massenfluss in den Wolken aus einer

gemischten Weibull-Verteilung entnommen wird. Die Überlagerung dieser beiden Funktionen er-

möglicht eine skalenabhängige zusammengesetzte Verteilung, wobei Varianz und Schiefe bei besserer

Auflösung ansteigen. Das konvektive Gedächtnis wird durch die Diversität der Wolkenlebenszeiten

und durch explizite Wolkenlebenszyklen berücksichtigt, wodurch die Modellformulierung konsistent

ist mit der Wahl der Weibullverteilung von konvektiven Massenflüssen. Dies ist nötig, um die korrekte

konvektive Variabilität widerzugeben.

In dem zweiten Teil der Doktorarbeit wird das stochastische Modell mit einem Eddy-

Diffusivity Mass-Flux (EDMF) Parametrisierungsschema kombiniert und im ICON Modell getestet.

Die Schließungsannahme, dass der Bedeckungsgrat sehr klein ist, wird in dem großskaligen Gebiet
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um eine Gitterbox, für die das statistische Quasi-Gleichgewicht noch unter stationären Bedingungen

gültig ist, erfüllt. Der gesamte konvektive Massenfluss in den Modellsäulen repräsentiert einen quasi-

zufälligen Teil des Wolkenensembles mit der räumlichen Variabilität, die bei besserer Auflösung zu-

nimmt. Durch die Variabilität der Teilensembles in Kombination mit der stochastisch ermittelten

vertikalen Struktur der Wolkenschichten wird die modellierte mittlere thermodynamische Struktur

der Grenzschicht verbessert. Dies zeigt sich insbesondere für den Fall von flachen Cumuluswolken

über dem Ozean.

Auf Modellgittern mit einer horizontalen Auflösung unter 10 km, auch konvektive

Grauzone genannt, entwickeln sich von der Auflösung abhängige Sekundärzirkulationen, die die

Verteilung der Wolkenfelder beeinflussen. Dadurch steigt die Varianz der Verteilung und die

Verteilungsschiefe kann sowohl steigen als auch umgekehrt werden. In den deterministischen Mod-

ellsimulationen neigen die Zirkulationen innerhalb der Grauzone dazu, sich zu gut organisierten

Wolkenstraßen mit künstlichen Merkmalen zu entwickeln, während das stochastische Modell diese

unechte Organisation von Konvektion abzubauen versucht.
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Chapter 1

Introduction

The purpose of parameterizations in numerical atmospheric modelling is to account for the small-

scale processes that are cut off from a solution of the dynamical equations that describe the atmo-

sphere by discretization of the model equations onto a numerical grid of a finite size. A conventional

parameterization of boundary layer clouds is a statistical-physical representation of the average col-

lective effect of cumulus clouds within a model grid column based on the known grid-scale quantities.

In a parameterization of subgrid cloud processes, simplified statistical parametric relations are em-

ployed instead of applying the exact and complete set of physical equations, which would be huge

in number and uncertain even if it would be possible to solve them. These parametric relations carry

a number of unknown parameters, thus every cloud parametrization relies on one or more closure

assumptions that are in principle based on some physical process that determines the convective in-

tensity and control mechanisms on convection by the grid-scale flow. The closure assumption, as a

physical aspect of parameterization, places a physical constraint on an ensemble average property of

the subgrid cloud system.

From the statistical point of view, every parameterization relies on the statistical equilibrium assump-

tion, which results from the law of large numbers (Williams, 2005; Yano and Plant, 2012). If the

number of events within the model grid column is large, then the average outcome of the subgrid-

scale processes will be predictable and uniquely determined by the known large-scale quantities. In

the numerical atmospheric models, the statistical equilibrium is practically never fulfilled, because the

number of events within the model grid column is limited, but also because a clear separation between

the small-scale and the large-scale processes in the continuous spectrum of atmospheric flows can not

be assumed and justified (Nastrom and Gage, 1985; Williams, 2005; Yano and Plant, 2012). This sig-

nifies that the fluctuations around the statistical equilibrium are in theory always present. In practice,

these fluctuations can be assumed negligible in the coarse-resolution models (coarser than 50-100 km,

depending on the case) applied to a convective field in a slowly changing environment, in which case

the statistical quasi-equilibrium is assumed valid, and convection is in principle parameterizable (Xu
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et al., 1992). Otherwise, the fluctuations around the statistical equilibrium can be substantial, as in a

fast changing convective environment or in the convective cases modelled on high-resolution model

grids (finer than 10-50 km), where the assumption of quasi-equilibrium is no longer applicable and

the average value loses its statistical significance (Arakawa and Jung, 2011).

Given the fact that there is always some spread of the subgrid convection outcomes around the sta-

tistical equilibrium, an important question to ask is which outcome of subgrid convection should be

provided as the tendency for updating the grid-scale thermodynamic fields. This question is very sim-

ilar to one asked by Jaynes (1957) - whether it is the most probable rather than the average outcome

of a probability distribution that maximizes the entropy of a physical system that should be compared

with observations. If the maximum-entropy distribution of the system has a single, well defined and

sharp peak, then the answer to this question is obvious: the average over the distribution represents the

most probable outcome at the same time. However, in the case where the available physical informa-

tion does not infer the sharp-peaked distribution, or simply in the case which carries large uncertainty,

the distribution of possible outcomes can be very broad, and can have a non-Gaussian shape, thus it is

no longer justifiable to compare the distribution average with observations. Furthermore, this distri-

bution can possibly have two or more peaks and the distribution average can differ significantly from

the most probable outcome (Jaynes, 1957). If we translate this to the question of parameterization

of clouds and validity of the statistical equilibrium, we expect that in the coarse-resolution simula-

tions of a quasi-stationary convective case, the average of the distribution can represent the subgrid

convection correctly, while on the high resolution grids or in the fast varying convective conditions,

the fluctuations around the equilibrium average become substantial. Thus, in the latter case, in or-

der to represent the uncertainty of parameterization schemes in numerical models, the distribution

of all possible states should be defined in a parameterization. A physical constraint on the system,

formulated as a closure of the parametric relations, should determine the spread and the shape of the

distribution of all possible subgrid convective outcomes. This distribution will be scale-dependent,

meaning that as the model resolution becomes finer, the spread around the equilibrium will become

broader (e.g. Xu et al., 1992). Therefore, the parameterization development should also be guided

towards a scale-dependent formulation.

Once the statistical quasi-equilibrium is assumed valid to provide the basic parameterizability crite-

rion, the physical aspect of parameterization is brought forward on the large scale that is assumed

predictable. In most of the boundary layer cumuli parameterizations, the main closure assumption

that brings the physical aspect into the parameterization is some form of the boundary layer equilib-

rium, by which cumuli are related to processes that control the development and maintenance of the

convective boundary layer (CBL).

The topic of this thesis revolves around these two aspects of closure in cumulus parameterization,

the statistical and the physical closure aspect, the scales at which these assumptions are valid and

their interplay across scales. In the remainder of this introduction we describe the thermodynamic

structure of a typical cloudy boundary layer over the ocean, and through the historical recapitulation

of parameterization development, we emphasize the importance of parameterizing shallow convection

in numerical models. As a further motivation for this thesis research, an overview of convection
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treatment in the convective-scale-resolution models is given, after which we define the thesis goals

and its structure.

1.1 Thermodynamic structure of moist convective boundary layers

In order to understand the principles of parameterization of shallow clouds and convective boundary

layers, it is important first to learn about the vertical thermodynamic structure and mechanisms that

lead to a typical marine shallow cumulus boundary layer.

surface�layer

mixed�layer

transition�layer

cloud�layer

inversion�layer

Çvqt

©qt ©Çv

zb
h

free�atmosphere

Figure 1.1: A sketch of the cloudy CBL thermodynamic structure. Based on the vertical profiles of total
water mixing ratio qt and virtual potential temperature θv, several well defined layers can be recognized: a thin
surface layer with large qt and θv gradients, a mixed layer extending to the height h, a transition layer of depth
δtr between the top of the mixed layer h and cloud-base height zb, and a cloud layer capped by an inversion.

The convective boundary layer (CBL) develops when the underlying Earth’s surface is heated by the

incoming solar radiation and becomes warmer than the overlying air, or when colder air is advected

over the warmer surface. The surface that is warmer than the air atop transports heat to the lowest

layer of the atmosphere, a shallow surface layer spanning up to ∼ 100 m, where heat, moisture and

momentum are transported upwards via turbulent motion and where thermodynamic properties of air

change rapidly with height (Fig. 1.1). Thermally induced convective instability initiates narrow orga-

nized updrafts, which rise and transport heat, moisture, momentum and pollutants from the surface

layer upwards, while dense colder air sinks in the surrounding area to compensate for the upward

mass transport. These organized updrafts are a source of the turbulent kinetic energy in the CBL.

The turbulent kinetic energy is generated by the largest turbulent eddies or convective thermals in the

CBL, and is passed to smaller eddies in a cascade down to the smallest eddies which dissipate energy

by molecular viscosity. The energy cascade and turbulent mixing develop a well-mixed layer that can

be easily recognized by the typical, nearly constant vertical profiles of thermodynamic quantities, like

virtual potential temperature θv and total water mixing ratio qt (Fig. 1.1).
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The rising updraft can be thermodynamically described as a parcel of moisture-containing air that is

being lifted adiabatically. As the air parcel rises it expands and cools adiabatically following the dry

adiabatic lapse rate (around -10 K/km). At the top of the mixed layer, the rising parcel overshoots

into a weakly stable transition layer, and if it contains enough water vapor it will become saturated

at some height and will begin to condense its water. Those parcels that don’t have enough energy to

overcome the inhibition by the weakly-stable transition layer terminate their ascent within this layer

and detrain their mass into the environment. The height where the parcels become saturated is called

the lifting condensation level (LCL), which is recognized as the base of the transition layer. The

transition layer spans between the mixed layer top and the height of maximum liquid water content

at the cloud-base level. As the parcel rises above the LCL, it releases latent heat due to condensation,

which partly compensates the adiabatic cooling, so the temperature of the parcel now drops following

the moist adiabatic lapse rate (around -4 to -6 K/km).

If the parcel, now representing the cloudy updraft, has enough inertia it will reach the height level

where it will become positively buoyant again, and this level is recognized as the level of free con-

vection (LFC). Those clouds in which latent heating is not sufficient to overcome the stable transition

layer and thereby do not reach the LFC are the forced clouds, and they will live as long as they are

forced by their convective updrafts. Clouds that can reach the LFC are considered the active clouds,

and their further evolution above the LFC is determined by their own dynamics and mixing with the

environment. These active clouds can develop to large heights and vent the boundary layer air into the

free atmosphere. Passive clouds are classified as old decaying active clouds which no longer transport

the mixed layer air upwards. This classification of boundary layer clouds is defined in Stull (1985).

Vertical growth of active cumuli is limited by the temperature inversion at the top of the boundary

layer. Cumuli towers that reach the top of the CBL, overshot into the inversion and entrain the dry

and warm air from the free atmosphere down into the CBL to compensate for the upward outflow.

Thus, the inversion layer is also called the entrainment zone.

1.2 Background on parameterization of shallow convective clouds

The purpose of parameterization schemes extends further from numerical modelling applications in

weather prediction and climate studies. Theoretical parametric and conceptual models of physical

processes are very useful tools for gaining knowledge and understanding of the atmospheric phenom-

ena (Arakawa, 2004). Thus, the early shallow convection conceptual models helped in understanding

the structure of the boundary layer and the role that shallow convection plays in the large-scale cir-

culation of the atmosphere. The parameterization schemes that are developed for use in large-scale

models are mostly relying on these early parametric studies of cloud-topped boundary layers. Here

we review the background on parameterization of shallow clouds by separating the topic into three

stages: the early parametric studies, the parameterization schemes used in large-scale models, and

the relevance of parameterizing shallow cumulus clouds in numerical models. In the following, we

review only the most influential and relevant parameterization studies for the scheme developed in

this thesis.
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1.2.1 Early parametric studies of cloud-topped boundary layers

One of the first parametric models developed for studying the vertical transport of heat and moisture

by nonprecipitating cumulus convection is the model of Betts (1973). It consists of a mixed layer

model that represents the turbulent transport in the subcloud layer and a lapse rate model for the cu-

mulus cloud layer. The transition layer below the cloud base is parameterized as well to determine the

convective activity by controlling the convective mass flux into the cloud layer. A detailed description

of a mass flux approach for shallow convection is given in Chapter 3 of this thesis, thus we will not

provide the extensive description here. The closure of Betts (1973) model is based on an adjustment

of the cloud layer lapse rate structure towards a characteristic quasi-equilibrium stratification of the

moist CBL. This adjustment is usually realized during a defined adjustment timescale or during a

single model time step. This model predicted a destabilizing effect of cumulus clouds by warming the

lower part of the cumulus cloud layer and cooling the upper part of the CBL, which corresponds to the

inversion layer. This destabilization by cumulus convection together with the radiative cooling near

the CBL top maintains the trade inversion against the warming and drying effects of the large-scale

subsidence by counteracting its stabilizing effects (Betts, 1973, 1975). This mechanism had been con-

firmed in numerous observational studies, as for example in Holland and Rasmusson (1973) during

the Barbados Oceanographic and Meteorological Experiment (BOMEX) measurement campaign.

The interaction of a cloud ensemble with its environment is studied by Yanai et al. (1973) who devel-

oped an entraining-detraining model for cumulus clouds of different types. The closure of this model

is based on the statistical equilibrium by which an activity of the cloud ensemble is controlled by the

imposed large-scale flow. The model is based on a mass flux approach, where clouds are classified

into separate groups based on their cloud top heights, but the bulk representation of the cloud ensem-

ble is retained by averaging the outcome over all cloud types. This model, as well as a parallel study

of Gray (1973), revealed that the re-evaporation of liquid water and large amounts of water vapor

detrained from clouds are responsible for balancing the drying and heating of environmental air due

to compensating downward motion between active cumulus clouds. The shallower, nonprecipitating

cumulus clouds are thus essential in supporting the growth of deep precipitating cumulus towers by

supplying and maintaining the moisture in the lower part of the cloud layer against the heating effects

of subsiding air (Yanai et al., 1973; Esbensen, 1978).

The scheme of Yanai et al. (1973) was developed in parallel to the perhaps most famous cloud scheme,

the Arakawa and Schubert (1974) scheme. The Arakawa and Schubert (1974) cloud scheme is a

spectral, multiple cloud type, mass flux parameterization based on the theory of the interaction of a

cumulus ensemble with the large-scale environment. The basic parameter in the model is the cloud

work function, which is an integral measure of the buoyancy force of the cumulus clouds defined

for each cloud type. By transporting the mass out of the mixed layer, clouds decrease the mixed

layer depth and warm and dry the environment above. Such modification in the environment will

produce a smaller buoyancy force in the clouds and therefore will lower the cloud work function,

which is an act of stabilization. Large-scale forcing is counteracting the warming and drying of the

environment thus controlling the convective activity by increasing the cloud work function as an act

of destabilization. So, the cumulus activity will act to stabilize the atmosphere by equilibrating the
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cloud ensemble against the destabilization effect of the large-scale forcing. This is the main closure

assumption of this model named “the convective quasi-equilibrium assumption”. This assumption is

twofold, it assumes statistical equilibrium and the large number of convective clouds within a model

column, and it assumes that the convective activity is fully controlled by the large-scale flow.

The importance of a different interpretation between lateral entrainment and detrainment effects and

between their timescales was recognized in a diagnostic study of Betts (1975). In this study, a single

cloud type conceptual model for trade wind cumulus is developed, as an entraining-detraining bulk

cloud model with adjustment type closure. Detrainment acts on the longer timescale that is charac-

teristic for the effective changes caused in the environment, while entrainment acts on shorter cloud

timescales and represents the cloud dilution with height. This model was used to interpret BOMEX

fluxes in terms of moistening and cooling of the environment due to detrainment and warming and

drying due to cumulus-induced subsidence. The success of this scheme and the one from Yanai et al.

(1973) in representing the mean properties and thermodynamic structure of the CBL, supported the

argument that a single mass flux profile is sufficient in representing the thermodynamic fluxes for

some cases equally well but more simple than the spectral cloud models.

The interaction between the subcloud layer and shallow cumulus layer was modelled by Betts (1976),

where the mixed layer model of Betts (1973) is coupled to the cumulus parameterization of Betts

(1975). The coupling between these two CBL layers involves two important parameters: the ratio of

the model heat flux just below the cloud base to the surface heat flux and the ratio of the depth of the

model transition layer to the depth of the subcloud layer. These two parameters relate the cloud-base

mass flux and mass flux gradient to the subcloud layer parameters, and they also determine the mois-

ture budget of the subcloud layer and the rate of change of the cloud-base height. A similar approach

to coupling between the subcloud and the cloud layer is further developed in the parameterization

study of Neggers et al. (2006, 2009).

Another model that couples the trade wind cumulus clouds with their subcloud thermals was devel-

oped by Esbensen (1978) by extending the Arakawa and Schubert (1974) cloud scheme, where the

same budget equations for the moist conserved variables are applied to the subcloud and the cloud

layer. This study revealed that the buoyancy of shallow cumuli is an order of magnitude lower than

the buoyancy of deeper clouds, so the effects of shallow clouds on the temperature stratification in the

CBL are much smaller compared to radiative cooling and subsidence warming due to deep clouds.

This implies a much longer adjustment timescale in the case of a shallow cumuli ensemble until the

ensemble reaches the quasi-equilibrium state compared to the adjustment timescale of deep convec-

tive clouds. This adjustment timescale of shallow cumuli ensembles towards the quasi-equilibrium

stratification can be of the order of one day, so the conclusion of this study is that these two cloud

types should be parameterized using different approaches.

These early parametric studies leave us with several dilemmas about the cloud parameterization for-

mulation. Until today there is no common approach to parameterization related to the questions of

whether a spectral parameterization of clouds is necessary or a bulk scheme would suffice, whether a

single-cloud-type model can represent the cloudy layers well or multi-cloud-type models are neces-

sary, and whether to develop parameterizations with a unified or separate treatment of subcloud and
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cloud layers. Recently, more and more studies are revising the spectral and unified approaches to

parameterization, and some of them are listed in the following subsection.

1.2.2 Parameterization schemes for shallow convection in large-scale models

Early parametric models for cumulus clouds served as a basis for development of the parameterization

schemes that are applied in present day numerical weather prediction and climate models. The scheme

of Betts (1976) is applied in the adjustment-type cloud scheme of Betts and Miller (1986) in a single

column model setup. The novelty of this parameterization scheme is that it uses the observational

data in tropical areas to define the reference quasi-equilibrium profiles towards which the cumulus

cloud ensembles are being adjusted. The scheme of Yanai et al. (1973) was developed further by

Tiedtke (1989) to serve a practical purpose in the ECMWF (European Centre for Medium-Range

Weather Forecasts) forecasting model. In this scheme deep convection is controlled by the moisture

convergence in the large-scale flow, while shallow clouds are effectively controlled by the subcloud

layer turbulence. Thus Tiedtke (1989) recognized the importance of separating between various types

of convection because of different mechanisms controlling deep penetrative and mid-level clouds

compared to shallow cumulus clouds. However, Tiedtke (1989) also concluded that it is sufficient to

apply the bulk approach to model the effects of a cloud ensemble on the environment and large-scale

flow. Another bulk parameterization scheme for representing different cloud types, deep, mid-level

and shallow clouds, as well as dry convection was developed by Gregory and Rowntree (1990). The

closure of this model connects the initial convective mass flux to the initial buoyancy of a cloudy

rising parcel. This bulk model takes into account the differences in cloud heights within an ensemble

through the lateral detrainment at all levels bellow the cloud top.

More dependence of cloud profiles on the environmental conditions is introduced in a buoyancy-

sorting entraining-detraining model of Kain and Fritsch (1990). Mixing between clouds and their

environment is represented by defining mixtures of cloudy and environmental air in different propor-

tions. If it is positively buoyant, a mixture will entrain a fraction of environmental air into the cloud,

or if it is negatively buoyant, a mixture will detrain a fraction of cloudy air into the environment.

Bechtold et al. (2001) used the buoyancy sorting mixing scheme in a bulk parametrization based on

the convective available potential energy (CAPE) mass flux closure. This scheme includes deep and

shallow convection parameterizations. Another scheme based on the buoyancy-sorting approach is

the scheme of Bretherton et al. (2004) where the buoyancy sorting mechanism is used to represent

detrainment of cloudy air into the environment, while the dilution of cloud properties is parameter-

ized by an entraining model as in Betts (1973). Cloud-base mass flux is controlled by a convective

inhibition based scheme, which is similar to the transition layer control on the cloud-base mass flux

in the Betts (1973) scheme.

From all above mentioned studies it is evident that the representation of mixing of the cloudy air

with the environment is among the most uncertain aspects of cloud parameterizations. Based on LES

of the BOMEX shallow cumulus case, Neggers et al. (2002) developed a model formulated as the

ensemble of rising parcels to examine the relaxation timescale for lateral mixing in shallow cumulus

clouds. In this study, it is found that the timescale of mixing is not dependent on the cloud depth, but
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the dependence of cloud dilution on the updraft property comes from the entrainment rate, which is

inversely proportional to the vertical velocity. Such a multi-parcel model was able to represent the

typical variability in a cumulus ensemble and to reproduce the joint distribution of conserved variables

in the cloud layer. Neggers et al. (2002) emphasize that the previous bulk models were not able to

represent the convective variability properly because of uncertain or inadequate parameterizations

of mixing with the environment. The importance of diversity of convective plumes for an accurate

description of lateral mixing with the environment was also noted by Cheinet (2004), who developed

a multiple mass flux parameterization for the surface generated convection. This parameterization

is extended to include the cloud layer parametrization, by unifying the convective mixed layer and

cloud layer transports, where the same surface-generated convective plumes are used to represent the

subcloud updrafts and clouds.

One of the first unified parameterization frameworks for moist convection that combines a high order

planetary boundary layer (PBL) turbulence scheme with a mass flux cloud scheme was developed

by Lappen and Randall (2001). In this scheme a joint probability density function (PDF) of moist

conserved quantities is assumed and integrated to derive the equations that are then used in the high

order closure of the PBL turbulence scheme. Soares et al. (2004) developed a unified description of

turbulent transport in the cloud-topped boundary layer within the eddy-diffusivity mass-flux (EDMF)

framework previously proposed by Teixeira and Siebesma (2000). The EDMF scheme unifies lo-

cal turbulent mixing and nonlocal convective mixing, while the same budget equations of surface-

generated convective updrafts are used to represent the subcloud and cloud layer updrafts. Strong

updrafts are modelled by using a mass flux approach and an entraining parcel model similar to Betts

(1973) with an extension to the cloud layer, while the small-scale turbulent transport is modelled by an

eddy-diffusivity approach. The unified framework of EDMF is further developed in work of Neggers

et al. (2009) and Neggers (2009) where the scheme is extended by allowing a gradual transition and

partitioning between the dry and moist bulk updrafts as a least complex scheme that can represent a

smooth coupling between the shallow convective cloud layer and subcloud mixed layer. This scheme

is described in detail and developed further in Chapter 3 of this thesis.

An updraft multiple-mass-flux scheme of Sušelj et al. (2012) is a further development of EDMF by in-

troducing the branching updraft approach based on a PDF of moist updraft properties. In this scheme,

a single updraft originates at surface and as it ascends it branches with height into multiple dry and

moist updrafts. Sušelj et al. (2012) favor the multi-mass-flux approach to realistically represent the

thermodynamic structure of a steady case over the ocean and a time-varying convective case over

the land. Sušelj et al. (2013) further developed EDMF in a single-column model by implementing

two stochastic processes into the scheme, one to represent the variability in the number of plumes

and second to represent the uncertainty in lateral mixing. Sušelj et al. (2013) argue that a stochastic

method is necessary to represent the vertical thermodynamic structure of various shallow convective

cases. A stochastic parameterization of shallow convection can as well be a good approach to repre-

sent the ensemble spread of temperature and humidity in the convective gray zone, though the range

where a stochastic approach is required extends beyond the gray zone up to 10 km of grid spacing

(Dorrestijn et al., 2013). This stochastic parameterization uses a lattice type model for sampling the

pairs of turbulent heat and moisture fluxes, whose states are pre-calculated using LES on different
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coarse-grained resolutions. Another lattice type model of convective states is used in the multi-cloud

parameterization of Khouider et al. (2010) for application in coarse-resolution climate models (on the

100 km scales). They define three types of cloud elements of different heights that interact with each

other within the model grid column and with the convective environment to represent the subgrid vari-

ability due to convective organization. The novelty of the stochastic approach developed in this thesis

is mostly related to the physical aspects that control the variability in a convective ensemble on high-

resolution grids and to nonlocality and scale-dependence of the distribution of subgrid-convective

states, and will be outlined in Section 1.4.

1.2.3 Importance of shallow cumuli in weather and climate modelling

As it was already mentioned in this chapter, shallow cumulus clouds play an important role in shap-

ing the thermodynamic structure of the CBL by transporting heat, momentum and moisture within

the lower part of the troposphere and thus influencing the hydrological and energy cycles of the

atmosphere. The importance of parameterizing shallow convection in numerical models is further

emphasized by the work of Tiedtke et al. (1988), where shallow convection was recognized as a nec-

essary mechanism to maintain a realistic trade wind inversion, which is in line with previous studies

of Betts (1973, 1975) and Holland and Rasmusson (1973). Shallow convection dries the subcloud

layer, so more moisture can be supplied to the atmosphere via turbulent fluxes by evaporation from

the subtropical oceans. The increased moisture being supplied to the boundary layer by the effects of

shallow convection parameterization is transported into the tropics by the trade winds thus increasing

the moisture source for deep cumulus convection. Through this connection, shallow clouds influence

the general circulation patterns, and are responsible for the enhancement of the Hadley cell and a

more realistic intertropical convergence zone (ITCZ, Tiedtke et al., 1988; Zhu and Bretherton, 2004;

Neggers et al., 2007a). Tiedtke et al. (1988) further demonstrated that the shallow convection pa-

rameterization and the improved model physics were more important than the resolution increase for

reducing the model systematic errors in the tropics.

Over the land, the shallow convection parameterization included into the model configuration im-

proves the simulation of the diurnal cycle of convection and preconditioning of deep convection (Zhu

and Bretherton, 2004). On the larger scales, by moistening and preconditioning the lower troposphere

for deep convection, shallow clouds are essential for simulation of the Madden-Julian oscillation

(MJO) in global climate models (GCMs, e.g. Zhang and Mu, 2005; Zhang and Song, 2009). The role

of shallow convection in the low-level heating in GCMs is also critical for initial strengthening and

maintenance of the MJO (e.g. Li et al., 2009; Lappen and Schumacher, 2014).

In the modelling studies of tropical cyclones, parameterization of shallow convection can influence the

intensification rate of the cyclone vortex during the early stage of cyclone development, by lowering

the buoyancy within the vortex core (Zhu and Smith, 2002). Shallow convective clouds influence not

only the tropical cyclone intensity but also the tropical cyclone tracks (Torn and Davis, 2012). In the

study of Torn and Davis (2012), the forecast of the tropical cyclone tracks using a cloud-permitting

model was significantly improved when the parametrization of shallow cumulus clouds was included

into the model configuration.
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Another example of interaction of shallow cumuli with other types of clouds in a GCM is the role

of shallow cumulus clouds in decreasing the stratocumulus cloud amounts in the lower subtropical

atmosphere over the oceans (von Salzen et al., 2005). An important role of shallow convection pa-

rameterization is to transport moisture from the CBL into the free atmosphere, thus when shallow

convection is not parameterized this transport becomes inefficient. This results in an enhanced de-

velopment of stratiform cloudiness, which strongly perturbs the global radiative balance. Due to the

shallow cumulus effects, the change in the global mean shortwave forcing at the top of the atmosphere

can be of the order of -11 Wm−2 (von Salzen et al., 2005).

All the above mentioned mechanisms through which shallow clouds influence the atmospheric circu-

lation and atmospheric moisture and energy budgets indicate the importance of shallow cloud param-

eterization in climate modelling. Due to a limited understanding of these interaction processes and

due to inadequate representation of shallow clouds in global and regional climate models, shallow

clouds are one of the largest sources of uncertainty in climate sensitivity studies (Bony and Dufresne,

2005; Wyant et al., 2006; Medeiros et al., 2008; Bony et al., 2015)

1.3 Convection on the meso-γ-scale grids

The target resolution range for the shallow cumulus scheme developed in this thesis extends down

to the atmospheric meso-γ scales (2-20 km). So, in this subsection, we briefly review the status of

numerical modelling of convection on the meso-γ-scale resolutions.

A common approach to atmospheric modelling at the kilometer-scale resolution is to permit deep

convection to develop on the model grid instead of applying a subgrid deep convection parameteri-

zation. A benefit of this approach is that the meso-α- (20-200 km) and meso-β-scale (200-2000 km)

convective systems are effectively resolved, and uncertainties and deficiencies of the convective pa-

rameterization for these processes are avoided. Another benefit of models on high resolutions is

the ability of using the high-resolution input data such as orography and land use data or assimila-

tion of high-resolution radar or satellite data (e.g. Lean et al., 2008). Even though deep clouds are

not effectively resolved on the kilometer-scale grids, there is a number of studies that show a better

representation of mesoscale convective systems and convective organization when simulations and

forecasts are performed without a parameterization scheme for deep convection (e.g. Weisman et al.,

1997; Speer and Leslie, 2002; Steppeler et al., 2003; Knippertz et al., 2009; Baldauf et al., 2011).

This improvement results from more physical processes that are explicitly resolved when the resolu-

tion of models is increased, however objective scores of forecasts do not necessarily get higher and

the point-specific accuracy of forecasts can not be achieved on kilometer scales (Mass et al., 2002;

Done et al., 2004).

The length of a useful numerical forecast depends on the scale of the modelled flow, so at the

mesoscales the predictability limit is reached faster than on the synoptic scales (Lorenz, 1969). To

assess the sensitive dependence on initial conditions and model uncertainty, ensemble prediction sys-

tems are developed for atmospheric modelling on convective scales (e.g. Kong et al., 2007; Gebhardt

et al., 2008, 2011; Clark et al., 2011; Migliorini et al., 2011; Romine et al., 2014). This is a relatively
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new area of research, and although the ensemble techniques are commonly applied on the synoptic

scales, the methods of constructing an ensemble on the synoptic scales can not be translated directly

to the convective scales. The main reason for this is the mechanism of error growth on convective

scales, which differs from the mechanisms on synoptic scales. Moist convection is the leading pro-

cess that controls the forecast skill of a convective-scale resolution model and the fast error growth

at mesoscales is associated with the moist-convective instability (Zhang et al., 2003, 2006; Tan et al.,

2004; Hohenegger et al., 2006; Selz and Craig, 2015). A well known fact from the convective-scale

ensemble studies is that the ensemble spread is underestimated, and a great deal of the underesti-

mation comes from the lacks in representation of the model uncertainty (e.g. Romine et al., 2014).

Furthermore, techniques used to account for the model uncertainty in current ensemble systems, such

as the stochastic kinetic energy back-scatter scheme (Shutts, 2005) or the stochastically perturbed pa-

rameterization tendencies (Buizza et al., 1999), improve the ensemble spread, but reduce the forecast

value of the individual ensemble members (e.g. Romine et al., 2014). Given that moist convection

is causing the fast error growth at the mesoscales and that the ensemble spread lacks variability due

to the model uncertainty, the focus should be in developing a stochastic parameterization of con-

vection, in which the perturbation distribution is based on the physical principles, and the system is

constrained in the mean so that the performance of the individual ensemble members is not degraded.

Another difficulty for atmospheric modelling on the kilometer scales results from under-resolved con-

vection developed on the model grid. These under-resolved circulations are overenergetic and their

spatial overturning scales are much larger than natural convective scales (Bryan et al., 2003; Bryan

and Rotunno, 2005; Petch, 2006). The reason for this behavior is in the interruption of the turbu-

lent energy cascade, which is not explicitly resolved because the simulated flow does not become

turbulent unless the grid scale is less than 100 m. So, the energy accumulates at the large scales con-

trolled by the model grid scale (Bryan and Rotunno, 2005). Overenergetic, under-resolved flows lead

to problems in forecasts such as over-prediction of rainfall amount and delayed convective activity

(Lean et al., 2008; Roberts and Lean, 2008). Furthermore, on the kilometer-scale grids, as a result

of introducing numerical fluctuations from imperfect numerical schemes into the statically unstable

layers in atmosphere, unnatural and spurious organization can develop, such as a regular pattern of

convective cells 3 km above ground in the simulation of a squall-line at the kilometer-scale resolution

of Takemi and Rotunno (2003) and Bryan (2005). The atmospheric free convection on the gray zone

grids is another processes that can form spurious organization, as a combination of numerical artifacts

and under-resolved convective circulations (Piotrowski et al., 2009; Zhou et al., 2014; Ching et al.,

2014). The spurious organization can be removed by increasing the model diffusivity (like in Takemi

and Rotunno, 2003), but this approach is case dependent and requires tuning with no physical basis.

A better solution to this problem would be to develop a parameterization scheme that introduces con-

trolled fluctuations and is able to dissolve the spurious organized structures. It is an open question

whether the convective scheme should completely take over the convective transport and prevent the

under-resolved convective circulations from developing on the grid scale.

On top of all the above listed examples of model performance when deep convection is permitted

on the kilometer-scale-resolution grids, shallow cumulus convection is far from being resolved, but

at the same time it is in the gray zone for an effective parameterization. The gray zone for shallow
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convective clouds is approximately between hundreds of meters and ten kilometers of grid spacing

in numerical models, which intersects with the meso-γ scales. In some of the above cited studies

about the convective-scale modelling, shallow convection is not considered separately from deep

convection and is parameterized at resolutions coarser than 4 km and explicitly modelled on higher

resolutions (Weisman et al., 1997; Speer and Leslie, 2002; Steppeler et al., 2003; Done et al., 2004).

In other studies, shallow convection is accounted for by using modified cloud schemes with reduced

convective activity, by limiting the cloud-base mass flux. The reasoning behind this approach is to

allow the model to explicitly represent the mesoscale convective structures, but also to include the

parameterization of weaker convective clouds that are not resolved at all at these resolutions (Lean

et al., 2008). If the shallow clouds are parameterized in the convection-permitting simulations, (e.g.

like in Knippertz et al., 2009), the scheme will work in the gray zone regime, which is not an

adequate approach. So, obviously, the situation is far from being solved and the best strategy for

treatment of convection at these high-resolution scales is still not agreed upon. Thus, there is a need

for a parameterization scheme that can perform adequately in the gray zone for shallow convection.

1.4 Thesis objective

The goal of this thesis is to develop a stochastic parameterization of shallow cumulus clouds that is

equally adequate for coarse and for high-resolution scales of atmospheric models. The purpose of

this stochastic parameterization is to model the fluctuations of convective subgrid states around the

equilibrium state of the cloud ensemble embedded in a slowly changing large-scale environment. The

research here focuses on the RICO (Rain In Cumulus over the Ocean) case, which is modified for the

purpose of this study by suppressing precipitation in order to limit the level of mesoscale organization

of convection and shallow clouds. The reason for this choice is to isolate the intrinsic variability of

convection emerging from the subgrid scales from the variability originating in cloud organization.

As a first step towards parameterization development, a theory of fluctuations in a shallow convective

cloud ensemble is developed by generalization of the convective ensemble of deep clouds (Craig and

Cohen, 2006). The formulation of the generalized convective ensemble is supported by the numer-

ical large eddy simulation (LES) and cloud tracking of individual clouds of the RICO case. This

theoretical-empirical shallow cumulus ensemble framework defines the scale-dependent probability

distribution of possible convective states in the model grid columns. By randomly sampling the in-

dividual realizations of this distribution, the fluctuations of convective states around the statistical

equilibrium can be represented across the range of model horizontal resolutions.

One of the main components of the shallow cumulus ensemble framework is the cloud mass flux

distribution function, while the total mass flux in the cloud ensemble is the main parameter defined by

the parameterization closure. Thus, the distribution function of the cloud mass flux is first derived by

combining the theory and LES and the distribution parameters are related to the large-scale average

properties of the cumulus ensemble. The shape of the cloud mass flux distribution influences the

variance of other cloud properties, thus besides the parameterization development, the stochastic

cumulus ensemble framework is used as a tool to study what controls the shape of the mass flux
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distribution and as well what controls the variability in the convective ensemble. This part of the

study is described in Chapter 2 of this thesis.

When developing a parameterization in a full 3D atmospheric model there is a number of choices to

be made regarding the complexity of the parametrization schemes. In the second part of this thesis the

stochastic model based on the theoretical and LES findings is coupled to the EDMF scheme in a non-

hydrostatic numerical weather prediction (NWP) model. In the NWP model on high resolution grids,

an additional requirement for parameterization development is the formulation of the cloud layer ver-

tical structure. Thus, we reconsider the formulation of the entrainment rate and the cloud mass flux

vertical profile in the EDMF scheme, and discuss the least complex configuration of parameterization

sufficient to represent the statistical properties of the RICO case across scales. At the high-resolution

scales cloud fields are affected by the convective gray zone and by the grid-scale convective organi-

zation, thus a parameterization development addresses these questions as well. The implementation

of the stochastic model into the NWP model and the first results and their implications are described

in Chapter 3.

The stochastic shallow cumulus parameterization developed in this thesis is intended to cover multiple

purposes from extending the knowledge about cloud ensembles to improving the performance of

numerical models. In the remainder of this thesis the stochastic scheme is used in an idealized model

setup to

• study the properties and structure of a cumulus ensemble and its coupling with the environment,

• maintain the quasi-equilibrium assumption applicable across the range of modelling scales,

thus making the parameterization scale-adaptive,

• correctly represent the intrinsic variability of cloud fields,

• search for and develop the least complex mass flux ensemble formulation that is sufficient to

represent the average vertical structure of a convective case, its time evolution and its spatial

variability,

• improve the model performance in the convective gray zone by dissolving the spurious cloud

organization, and

• provide a way to represent uncertainty of the model convective scheme by using a stochastic

approach that is physically based (Plant and Craig, 2008).

Concluding remarks about the parameterization development, the main improvements of the parame-

terization and the new understanding of the cumulus ensemble are given in Chapter 4 of this thesis.
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Chapter 2

Fluctuations in a quasi-stationary shallow

cumulus cloud ensemble

In this chapter we propose an approach to stochastic parameterization of shallow cumulus clouds

to represent the convective variability and its dependence on the model resolution. To collect infor-

mation about the individual cloud lifecycles and the cloud ensemble as a whole, we employ a large

eddy simulation (LES) model and a cloud tracking algorithm, followed by conditional sampling of

clouds at the cloud-base level. In the case of a shallow cumulus ensemble, the cloud-base mass flux

distribution is bimodal, due to the different shallow cloud subtypes, active and passive clouds. Each

distribution mode can be approximated using a Weibull distribution, which is a generalization of ex-

ponential distribution by accounting for the change in distribution shape due to the diversity of cloud

lifecycles. The exponential distribution of cloud mass flux previously suggested for deep convection

parameterization is a special case of the Weibull distribution, which opens a way towards unification

of the statistical convective ensemble formalism of shallow and deep cumulus clouds.

Based on the empirical and theoretical findings, a stochastic model has been developed to simulate

a shallow convective cloud ensemble. It is formulated as a compound random process, with the

number of convective elements drawn from a Poisson distribution, and the cloud mass flux sampled

from a mixed Weibull distribution. Convective memory is accounted for through the explicit cloud

lifecycles, making the model formulation consistent with the choice of the Weibull cloud mass flux

distribution function. The memory of individual shallow clouds is required to capture the correct

convective variability. The resulting distribution of the subgrid convective states in the considered

shallow cumulus case is scale-adaptive – the smaller the grid size, the broader the distribution.

This study is published as a research paper in Sakradzija, M., Seifert, A., and Heus, T.: Fluctuations in a quasi-
stationary shallow cumulus cloud ensemble, Nonlin. Processes Geophys., 22, 65-85, doi:10.5194/npg-22-65-2015, 2015.
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2.1 Introduction

To set a path towards the development of a stochastic shallow-cloud parameterization for numerical

atmospheric models, we study how the unresolved convective processes relate to the resolved grid-

scale variables in an ensemble of shallow cumulus clouds. According to a conventional deterministic

approach to cloud parameterization, the outcome of shallow cumulus processes within a grid box of

a numerical model is represented as an average over the cloud ensemble or as a bulk effect. However,

different microscopic configurations of a convective cloud ensemble can lead to the same average

outcome on the macroscopic grid scale (Plant and Craig, 2008). If a one-to-one relation between the

subgrid and grid scales is assumed, the spatial and temporal variability of convection that is observed

in nature and in the cloud-resolving simulations will not be represented in atmospheric models. At

the same time, the improvement in parameterization should address the dependence of the subgrid- to

grid-scale relation on the model resolution and physics time step (e.g. Jung and Arakawa, 2004). This

is especially important on the meso-γ atmospheric scales, since moist convection and rain formation

are recognized as the most uncertain processes acting on these scales and the core reason for the

short mesoscale predictability limit (e.g. Tan et al., 2004; Zhang et al., 2003, 2006; Hohenegger et al.,

2006).

Commonly used tools to study convective cloud processes at a high temporal and spatial resolution

in order to develop parameterizations are the cloud resolving models (CRMs). To represent deep

convective clouds explicitly, CRMs are used at the grid scale of 1 km order of magnitude, while

shallow convective clouds become explicitly resolved at a grid scale of O(10–100 m), which is the

size of the largest energy-producing eddies in the turbulent boundary layer, hence the name large

eddy simulation (LES). To formulate the effects of clouds on their environment across the different

scales of atmospheric flow, a technique of coarse-graining can be applied to the CRM and LES fields

(see, for example, Shutts and Palmer, 2007, Section 3). In this way, a relation between the subgrid

convection and the resolved flow can be emulated to reveal the properties and components of the

parameterization and to reflect its dependence on the model grid resolution.

From the previous studies of deep convective cloud fields using CRMs and the coarse-graining meth-

ods, it is known that the subgrid- to grid-scale relation is neither fully deterministic nor diagnostic,

which suggests that stochastic and memory components should be included in a parameterization.

These components are sensitive to the spatial and temporal scales of a numerical model. As the

horizontal resolution of a model gets higher, the stochastic component of the subgrid- to grid-scale

relation becomes more pronounced (Xu et al., 1992; Shutts and Palmer, 2007; Jones and Randall,

2011). At the same time, an increase in horizontal resolution implies a shorter model time step

and, as a consequence, a larger impact of the memory component on parameterization. In this case,

changes in the resolved flow take place on a timescale close to or less than the convective response

timescale, and the convective cloud system exhibits a nondiagnostic behaviour (e.g. Pan and Ran-

dall, 1998; Jones and Randall, 2011). Along with the effects of time lag in the convective response,

memory of convection also comprises a feedback process by which the past interactions between con-

vective elements and thermodynamic fields on the near-cloud scale modify convection at the current

time (Davies et al., 2013). Furthermore, a delay in the convective response becomes longer with the
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emergence of mesoscale cloud organization (Xu et al., 1992), and can be interpreted as an additional

convective memory effect (Bengtsson et al., 2013). The importance of memory effects on subgrid

processes is also assessed in a more general study of Wouters and Lucarini (2012, 2013), where they

show that a coupling between two dynamical systems with different characteristic timescales involves

a deterministic perturbation, a stochastic perturbation and a memory term with a pronounced scale

dependence.

A behaviour of the subgrid- to grid-scale relation similar to the behaviour of deep convection, but

on the smaller spatial scales, can be confirmed in LES studies of shallow convection. The stochastic

effects in a coarse-grained shallow convective cloud ensemble become dominant on the scales close

to 10 km and less (see Fig. 2 in Dorrestijn et al., 2013). We will refer to these spatial scales as the

“stochastic” scales for the shallow convective ensemble.

Parameterization schemes developed specifically for shallow convection are in most cases based on

the mass flux concept (Bechtold et al., 2001; von Salzen and McFarlane, 2002; Deng et al., 2003;

Bretherton et al., 2004; Neggers, 2009). In a mass flux scheme, clouds within a model grid box are

parameterized as a single bulk updraft or as a spectrum of cloud updrafts via a simple entraining–

detraining plume model, and the vertical transport is determined by the upward mass flux through the

cloud base. Estimation of the bulk or ensemble average cloud-base mass flux is a part of the model

closure and is based on some form of the quasi-equilibrium assumption (Arakawa and Schubert,

1974). According to the quasi-equilibrium assumption, in a slowly varying large-scale environment,

the subgrid convective ensemble is under control of the large-scale forcing with a statistical bal-

ance fulfilled between the unresolved and resolved processes. However, at the stochastic scales, the

quasi-equilibrium assumption is no longer valid. The model grid box is not large enough to contain

a robust statistical sample of shallow clouds and the timescale of parameterized processes can not be

separated from the timescale of the resolved processes. This suggests that a stochastic and nondiag-

nostic approach to parameterization is necessary not only for representing the small-scale variability

of convection, but also for representing the cloud field adequately by providing a way to make the

parameterization scale-adaptive, and to avoid the scale separation problem.

Increasing horizontal resolution of atmospheric models is also strongly connected to the mesoscale

predictability limit, which is reached faster on the smaller scales of the resolved motion (Lorenz,

1969). The reason for a shorter predictability time on the smaller spatial scales comes from the faster

error growth on these scales due to moist convection (Zhang et al., 2003, 2006). In the simulations

with the grid resolution of the order of 1 km, the small-scale initial errors spread fast throughout

the domain and exponentially amplify over the regions with the convective instability (Hohenegger

et al., 2006). Due to nonlinear interactions, initial uncertainties propagate upscale in a process known

as the “inverse error cascade” and degrade the forecast quality on the larger scales (Lorenz, 1969;

Leith, 1971). Here the stochastic term of a parameterization plays a role in representing the subgrid

fluctuations that, due to the nonlinearity of the process, lead to the error growth and upscale error

propagation. Thus, the stochastic term provides a way to quantify the uncertainties coming from the

formulation of the subgrid cloud processes and is necessary to improve the ensemble spread in the

ensemble prediction systems – EPS (see the review of Palmer et al., 2005).
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Recently, EPS have been developed for the limited area models at the convection-permitting grid

resolution to address the sensitive dependence on initial conditions (e.g. Kong et al., 2007; Gebhardt

et al., 2008; Clark et al., 2009; Migliorini et al., 2011). The main goal of this new field of research is

the improvement of the quantitative precipitation forecasts and the forecasts of convective and storm

events. In the convection-permitting models, deep convective clouds are explicitly represented on the

grid scale, while the planetary boundary layer (PBL) convection and shallow clouds are still subgrid

processes and have to be parameterized. Nevertheless, the introduction of the stochastic physics into

the convection-permitting EPS has been limited so far. The stochastically perturbed parameterization

tendencies (SPPT) scheme of Buizza et al. (1999) is adapted and applied in a short-range convection-

permitting EPS by Bouttier et al. (2012) to improve the ensemble reliability and the ensemble spread–

error relationship. Another example is the recent work of Baker et al. (2014), where another similar

method of parameter perturbation of the model physics tendencies called the random parameters (RP)

scheme (Bowler et al., 2008) is modified and applied to a convection-permitting EPS. Both of these

approaches are rather pragmatic and general in perturbing the physical tendencies in a model. The

effect of stochastic schemes specifically developed for the shallow clouds and based on the underlying

physical processes has not been investigated so far, mainly because stochastic schemes for shallow

clouds have not been formulated until recently. One example is the scheme developed for stochastic

parameterization of convective transport by shallow cumulus convection (Dorrestijn et al., 2013),

based on LES studies of nonprecipitating shallow convection over the ocean. In this scheme, the

pairs of turbulent heat and moisture fluxes are randomly selected as corresponding to different states

of a data-inferred conditional Markov chain (CMC). In another approach, two stochastic processes

are implemented in the eddy-diffusivity mass-flux (EDMF) scheme (Siebesma et al., 2007; Neggers,

2009), the Monte Carlo sampling of the convective plumes and the stochastic lateral entrainment

(Sušelj et al., 2013).

The goal of our study is to formulate a shallow convective parameterization that encompasses the

stochastic and memory effects of convection, using the theoretical and empirical findings about the

cloud ensemble. We study a shallow convective-cloud case (Rain in Cumulus over the Ocean –

RICO) using large eddy simulation (LES). RICO is a precipitating quasi-stationary shallow convec-

tive case that also shows some mesoscale organization. We coarse-grain the cloud ensemble to study

the subgrid- to grid-scale relation and its dependence on the horizontal resolution. The variability of

shallow convection and its scaling with the horizontal resolution is then quantified. Individual cloud

lifecycles and the role of the diversity of cloud lifetimes are examined employing the cloud tracking

routine of Heus and Seifert (2013). This numerical study gives a path to apply the theory of fluc-

tuations in an equilibrium convective ensemble of Craig and Cohen (2006) to a shallow convective

case.

In the following, we propose a generalization of the theory of fluctuations in a convective ensemble by

including the system memory and by considering the impact of the diversity in cloud lifecycles on the

cloud-base mass flux distribution shape. This provides a stochastic and memory term in the subgrid-

to grid-scale relation, and a deterministic component is also retained in adequate proportion, depend-

ing on the grid scale. This combined empirical–theoretical concept is then structured in a stochastic

stand-alone model of a shallow cumulus ensemble, similar to the approach of Plant and Craig (2008)
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for deep convection, referred to as PC-2008 in the following text. A spectral representation of the

cloud field with the cloud lifecycles modelled explicitly introduces the memory of individual clouds

and opens the way to estimating the impact of this memory on the variability of convection. Sensi-

tivity tests of the gradual generalization of the convective-fluctuation theory provide a definition of

a consistent and least complex model formulation.

Large eddy simulation and the cloud tracking algorithm necessary for the analysis are described

in Section 2.2. Physical and statistical properties of a cloud ensemble are described here and the

cloud mass flux distribution is analysed. A stand-alone stochastic model is constructed based on

empirical and theoretical findings and the model formulation is derived for the different levels of

system generalization (Section 2.3). Different formulations of the stochastic model are discussed,

and tested against LES results, to decide on minimal and consistent representation of all relevant

features of subgrid convection and its variability (Section 2.4).

2.2 Shallow cumulus ensemble statistics

To develop a stochastic parameterization for shallow cumuli that includes convective memory in its

formulation, a detailed description of the cloud ensemble and the processes acting on the scale of an

individual cloud is necessary. A large eddy simulation as a cloud-resolving model suffices for the

detailed description of the shallow cumuli field in a large horizontal area, while the cloud tracking as

a post-processing routine collects the information about every simulated cloud during its lifetime.

2.2.1 Large eddy simulations and cloud tracking

We use the UCLA-LES (University of California, Los Angeles – Large Eddy Simulation) model,

a version from Stevens (2010), to simulate shallow convection. The dynamical core of the LES

model is based on the Ogura–Phillips anelastic equations, discretised over the doubly periodic uni-

form Arakawa C-grid (Stevens et al., 1999, 2005). The set of anelastic equations is solved for the

prognostic variables: velocity components (u, v,w), total water mixing ratio qt, liquid water poten-

tial temperature θl, number ratio of rainwater Nr and mass mixing ratio of rainwater qr. The time

integration is solved using a third-order Runge–Kutta numerical method. A directionally split mono-

tone upwind scheme is used for the advection of scalars, and directionally split fourth-order cen-

tered differences are used for the momentum advection. The subgrid fluxes are modelled by the

Smagorinsky–Lilly scheme, and the warm-rain scheme of Seifert and Beheng (2001) is used for the

cloud microphysics as described in Stevens and Seifert (2008).

In this study, the LES model is set up to simulate the GCSS (GEWEX Cloud Systems Studies) RICO

shallow cumulus case, as in van Zanten et al. (2011), see also Appendix A.1. The RICO case is based

on the Rain In Cumulus over the Ocean field study (Rauber et al., 2007). It represents the average

conditions during an undisturbed period from 16 December 2004 to 8 January 2005 in the trade-wind

region over the western Atlantic. The focus of this field study was on the processes related to the
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Figure 2.1: Snapshots taken every 6 h during RICO simulations showing the cloud albedo: the higher cloud
droplet number density RICO case (RICO-140) vs. the standard RICO case (RICO-GCSS). These horizontal
cloud field snapshots are a courtesy of T. Heus. The RICO case simulations are performed by Heus and Seifert
(2013)
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rain formation in shallow cumuli and on how the rain modifies the individual cloud and the cloud

ensemble statistics.

The standard RICO-GCSS case was simulated over a large domain of around 50 km × 50 km, with

the horizontal grid spacing of 25 m and vertical resolution of 25 m up to 4 km in height. In such

a large domain and on a high-resolution grid, a cloud field can evolve into an organized mesoscale

convective system, forming clusters and line-like structures (Seifert and Heus, 2013). This transition

to an organized cloud field depends mostly on precipitation rate and, for the RICO-GCSS simulation,

the first organized cloud clusters develop around the twelfth hour of the simulation (Fig. 2.1d). In

the RICO-140 case, which has a doubled cloud droplet number density, Nc = 140 cm−3, and is

virtually nonprecipitating, the cloud field remains quasi-random, but the individual clouds grow in

size throughout the simulation time (Fig. 2.1a, c, e and g). The convective variability in an organized

case is, of course, very different from the variability of a quasi-random cloud field. This is discussed

in more detail later in Section 2.4.2, where we discuss RICO-GCSS and RICO-140 to quantify the

effects of organization, but for most of the analysis we focus on the simple case of the RICO-140 with

a quasi-random cloud field.

The cloud tracking algorithm developed by Heus and Seifert (2013) is used as a post-processing

tool for the LES simulation results. The tracking is based on the vertically integrated liquid water

content, namely the liquid water path. The clouds are projected onto a two-dimensional plane and are

identified as consisting of the adjacent points with the liquid water path exceeding a chosen threshold

value. Cloud merging and splitting is done in two directions: forward and backward in time. Along

with the projected cloud area, cloud buoyant cores, subcloud thermals and rain are tracked during

the simulation, with the links among them retained. The choice of the two-dimensional tracking of

the projected clouds came from the limitations imposed by the computational expenses and the large

memory resources that are required. For more details and validation of the tracking method, see Heus

and Seifert (2013).

To develop a cloud parameterization based on the mass flux concept, the cloud mass flux has to be

estimated at the cloud-base level. For the RICO case, we choose the level at 700 m, which is the first

or second height level above the cloud base during most of the simulation time. Thus, it is necessary to

identify the area that every cloud occupies at the 700 m level. Because the liquid water path threshold

of 5 g m−2 is taken as a definition of a cloudy column in the cloud tracking algorithm and the clouds

are projected onto a two-dimensional surface, we check what the error is introduced by the tracking

regarding the domain average cloud variables at the 700 m height. We define the cloudy air at the

700 m height level as points holding the liquid water content qc larger than 0.01 g kg−1, which is the

same definition as in the LES model analysis. In this way, we are able to test the tracking and the

cloud conditional sampling routine, comparing the outcome statistics with the original LES statistics.

The relative difference in cloud fraction before and after the tracking is 1.93 %, which is a negligible

difference in absolute value, and can be neglected.
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2.2.2 Cloud definition and the distribution of cloud-base mass flux

Starting from the sixth hour of RICO simulation to avoid the model spin-up period, we choose several

sequential time frames of 6 h duration and apply the tracking method to the cloud field. Each individ-

ual cloud in the simulated cloud field is tracked in space and time during its life and cloud properties

are recorded each minute of the simulation. Clouds are taken into account only if their existence

started during the selected time frame, but if their duration spanned beyond the time frame, they

are tracked further on to complete their lifecycles. We study the lifetime average cloud properties,

contrary to the instantaneous properties of the cloud field at a single model time step.

How should clouds be defined in a parameterization? A definition of the cloud entity is chosen

depending on the processes that will be introduced in a parameterization. We aim for a unified scheme,

which will be used to reproduce the cloud fraction, cloud vertical transport of mass and scalars, and

possibly also rain formation. Therefore, we test how the distribution of cloud mass flux depends on

the choice of the cloud entity as a cloud condensate, cloud buoyant core or a cloud updraft. To identify

the points that form the cloud entity on a certain height level, a conditional sampling is performed

with the three different criteria (as in Siebesma and Cuijpers, 1995; de Roode et al., 2012):

1. cloud sampling over the points with liquid water content: qc > 0 g kg−1;

2. buoyant core sampling, by comparing the virtual potential temperature of each cloudy point

with the slab average: θv > θv and qc > 0 g kg−1;

3. and cloud updraft sampling over the cloudy points with positive vertical velocity: w > 0 m s−1

and qc > 0 g kg−1.

Following the work of Cohen and Craig (2006), the mass flux of an individual cloud at a certain height

level is defined as

mi = ρaiwi, i = 1, 2, . . . , n, (2.1)

where ρ is the domain average density, ai is the cloud area, wi is the vertical velocity averaged over

the cloudy points, and n is the number of clouds (Arakawa and Schubert, 1974).

The cloud-base mass flux of each individual cloud that appeared during the time frame of 6 h (from

the sixth to the twelfth hour) is averaged over the cloud lifetime and the distribution of lifetime-

averaged mass flux is calculated for all three cloud entity definitions (Fig. 2.2). This distribution is

defined as the cloud rate distribution of cloud-base mass flux g(m, t)dmdt, which gives the number of

clouds with the lifetime-average mass flux in the range [m,m+dm] generated during the time interval

[t, t + dt]. The integration of g(m, t) with respect to m results in the cloud generation rate, G(t), which

is the number density of clouds generated per unit time:

G(t) =

∫ ∞

0
g(m, t)dm. (2.2)
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2.2.3 Shallow cloud subtypes

The shallow cumulus cloud ensemble is composed of different cloud subtypes (Stull, 1985). Shallow

clouds that originate from the convective updrafts overshoot into the inversion layer at the top of the

mixed layer. If a cloud has enough inertia to overcome the convective inhibition and reaches the level

of free convection (LFC), its growth is fuelled further up. Those are the active buoyant clouds. Clouds

that never reach the LFC and remain negatively buoyant above the mixed layer are the forced clouds.

Another cloud group is made of passive clouds, which are remnants of the old decaying clouds or are

formed due to gravity waves.

Following the definition of an active cloud in the tracking routine as a cloud holding a buoyant core

with the maximum in-cloud excess of θv exceeding the threshold of 0.5 K (Heus and Seifert, 2013),

we divide the cloud ensemble from the RICO-140 simulation (6–12 h time period) into two separate

groups: the active-cloud group comprising the clouds with single or multiple buoyant cores, and all

the other clouds in the passive-cloud group.

The two different groups of shallow cumuli form the two modes of the cloud rate distribution and

the joint distribution of cloud mass flux and other cloud properties (Fig. 2.3). In the RICO cloud

ensemble, passive clouds are large in number and can develop a smaller area at the cloud base and

transport less mass compared to the active clouds. This can be identified at the cloud rate distribution

of cloud-base mass flux, as the passive cloud group takes the lower range of the mass flux and higher

probabilities in the distribution, and the active cloud group takes a higher mass flux range and the

distribution tail (Fig. 2.3a). In a random shallow cumulus field, small-scale turbulent motion controls

the in-cloud processes and the interaction of clouds with their environment. As a result of the quasi-

random processes, the cloud fields are highly variable and the cloud properties are vastly diverse. It is

obvious that clouds of equal area at the cloud base do not have a unique magnitude of the other cloud

properties; they are in fact highly dispersed. However, the joint distribution of cloud mass flux and

cloud lifetime shows some correlation, with a Spearman rank correlation coefficient (as defined in

Wilks, 2006, p.55) of rρ = 0.79. This joint distribution can be well approximated with two power-law

relations τi = αim
β

i
with i = 1, 2 describing a power-law increase in cloud lifetime with the cloud

mass flux for each cloud group separately (Fig. 2.3c). Similarly, the two different cloud groups form

the two modes of the joint distribution of cloud mass flux and cloud vertical velocity (Fig. 2.3b). In

this case the correlation coefficient is rρ = 0.48 and it is evident that the cloud-base mass flux does not

scale with the vertical velocity. Therefore, the lifetime averaged cloud-base mass flux of an individual

cloud is mainly controlled by the horizontal area that it occupies at the cloud base.

During the selected 6 h time frame (6–12 h) of the RICO-140 simulation, passive clouds form around

72 % of the total cloud number in the ensemble. Even though a single passive cloud on average

contributes less to the upward transport and cloud fractional cover than an active cloud, their collec-

tive contribution can not be neglected, because they are large in number and can also live long (see

Fig. 2.3c). The contribution of active clouds to the vertical transport of mass and scalars is around

63 %, even though they form only 27 % of the total cloud number in the ensemble, while the contri-

bution of active clouds to the cloud fraction is only slightly higher than the contribution of the passive

cloud group, around 54 % (Table 2.1).
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Table 2.1: Contribution of the different cloud subtypes r〈N〉, r〈C〉 and r〈M〉 to the total cloud number 〈N〉, cloud
fraction 〈C〉 and vertical mass flux 〈M〉, respectively. Given results are the time averages for the time frame
6–12 h of the LES RICO-140 simulation.

700 m level Passive (1) Active (2) Total

Domain size (km2) - - 51.22

〈N〉 (no.) 1258.3 476.16 1734.45
〈C〉 (–) 0.0206 0.0246 0.0452
〈M〉 (kg s−1) 30.11 × 106 51.82 × 106 81.94 × 106

r〈N〉 (%) 72.55 27.45 100
r〈C〉 (%) 45.64 54.36 100
r〈M〉 (%) 36.75 63.25 100

2.2.4 Canonical cloud ensemble distribution

According to the theory of fluctuations in an ensemble of weakly interacting deep convective clouds

that is in statistical equilibrium with the large-scale environment (Craig and Cohen, 2006), the cloud

mass flux distribution follows an exponential law

p(m) =
1

〈m〉
e−m/〈m〉, (2.4)

where m > 0 is the average mass flux of an individual cloud, and 〈m〉 is the cloud ensemble average

mass flux per cloud. This distribution was derived in analogy to the Gibbs canonical distribution of

microstates of a physical system.

In the case of shallow convection, the cloud rate distribution of mass flux at the 700 m height level

is more complicated than a simple exponential function. This distribution is a superposition of two

modes (Fig. 2.4a), due to the existence of different cloud subtypes forming the shallow cumulus

ensemble (Stull, 1985): passive clouds in one mode and active buoyant clouds in the second mode

(see Section 2.2.3). Forced clouds are not defined separately in the cloud tracking routine, but based

on the buoyancy criterion, we can assign them to the passive cloud distribution mode. Furthermore,

the cloud rate distribution deviates from the exponential distribution. This is observed from the semi-

logarithmic plot in Fig. 2.4a, where the density distribution function does not form a straight line for

either of the modes, and the best fit suggests a more general distribution function.

The cloud rate distribution of mass flux is a highly right-skewed distribution with a heavy tail and can

be well modelled as a two-component mixture of the generalized exponential distribution (i.e. mixed

Weibull distribution, Fig. 2.4a):

p(m) = f
k

θ1

(

m

θ1

)k−1

e−(m/θ1)k

+ (1 − f )
k

θ2

(

m

θ2

)k−1

e−(m/θ2)k

, (2.5)

where f is a fraction of the cloud ensemble belonging to the first passive mode and 1− f is a fraction

of the cloud ensemble belonging to the second active mode. The Weibull distribution is a special

case of the generalized gamma distribution family and is frequently used in the survival analysis field

of statistics to model the physical systems with components that age during the time towards their



2.2 Shallow cumulus ensemble statistics 27

failure. The parameters θ1 > 0 and θ2 > 0 refer to the scale of the two distribution modes, and

parameter k > 0 is the distribution shape.

Here we are making a parallel between the cloud mass flux distribution and a lifetime distribution to

explain the deviation of the cloud rate distribution of mass flux from the exponential shape through the

parameter k. The parameter k introduces the effect of system memory in the cloud rate distribution of

mass flux. The two main types of convective memory effects recognized in the CRM studies (Davies

et al., 2013) are a memory effect due to the time evolution of a cloud field in a changing environment,

and a memory effect due to the finite individual cloud lifetimes. In our case, because of the stationarity

assumption, we only include the latter effect, and the distribution shape k is smaller than 1 due to the

different and finite lifetimes of individual clouds. This local memory effect is accounted for through

the correlation of cloud-base mass flux of individual clouds with their lifetime (see Appendix A.2 for

more details).
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Figure 2.4: Semi-logarithmic plots of the cloud rate density distribution of cloud-base mass flux and the cloud
failure rate function. These plots correspond to the RICO-140 simulation time frame of 6–12 h. The cloud
rate density distribution is fitted using the mixdist R package (R Development Core Team, 2013), and the
distribution shape parameter is set as equal for both distribution modes: k1 = k2 = k.
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If the shape parameter lies in the interval 0 < k < 1, the Weibull distribution describes a cloud

population with the failure rate decreasing with the cloud mass flux by following the failure rate

function

hi(m) =
k

θi

(

m

θi

)k−1

, i = 1, 2, (2.6)

where h(m) is the failure rate defined as the frequency of failures per unit mass flux, conditioned on

the average mass flux of a cloud. If a cloud has already developed higher mass flux, it is more likely

that it will be able to transport an additional portion of the mass through its cloud base compared to

a cloud that has developed lower mass flux. The results from LES support the theoretical failure rate

function of cloud population, showing a decrease in the failure rate with the cloud-base mass flux

(see Fig. 2.4b). In the case of a shallow cumulus population, the Weibull distribution with 0 < k < 1

provides a good fit to the empirical data, since the cloud ensemble consists of a large number of short-

lived clouds in the lower range of the cloud-base mass flux, and with fewer long-lived clouds in the

high mass flux range (see Fig. 2.3c).

A special case of the Weibull distribution, when k = 1 and the failure rates are constant, i.e. h(m) =

1/〈m〉, is the exponential distribution. A population would have an exponential distribution if the

system was memoryless and if the system constituents had equal lifetimes. When describing a realistic

cloud ensemble, this distribution is likely to be bimodal, with each mode being right skewed and

heavy tailed (0 < k < 1). This comes from a reasoning that in any cloud ensemble, it is more likely

that large clouds will live longer and develop higher mass flux compared to the smaller clouds. In

the cloud ensemble of the RICO case, the best fit suggests the shape parameter k = 0.7 (Fig. 2.4a).

However, the value of parameter k might change with the changes in the large-scale environment and

with the emergence of the cloud field organization, since both of these features carry a component of

convective memory. We will discuss the sensitivity of the ensemble statistics to this parameter further

in Section 2.4.

An important aspect of applying the Weibull distribution to the parameterization of clouds is its po-

tential universality as a cloud mass flux distribution. During the transition of a cloud field from

shallow to deep convection, the shape parameter might change from approximately k = 0.5 in the

case of a shallow cloud field to close to k = 1, corresponding to the exponential distribution function

which has been suggested for deep convective clouds. With this in mind, it might be possible to unify

the parameterization of fluctuations in shallow and deep convective cloud systems within the same

scheme. Furthermore, this approach can be considered to be an empirical generalization of the Gibbs

formalism to convective cloud systems with memory.

2.2.5 Variability of the small-scale convective states

The domain of the LES RICO-140 simulation is successively divided into areas of different sizes, to

mimic the different grid sizes of the stochastic model, and cloud properties are averaged or summed

over these areas. In this way, we obtain the distribution of compound subgrid convective states de-

pending on the horizontal resolution of the model.
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Figure 2.6: Schematic representation of the stochastic PC-2008 approach.

initialized cloud as a function of the cloud mass flux, according to the fit obtained from Fig. 2.3b.

During the model run, clouds are treated as individual objects with their own memory and duration.

A lifecycle is assigned to each cloud, with the cloud properties changing accordingly, and after the

lifetime expires the cloud is removed from the simulation. So, at each model time step, which is set to

1 min, the subgrid convective processes are represented by the effects of all clouds that exist in a grid

box, at the different stages of their lifecycles.

The large-scale properties driving the model are the ensemble mean properties: total cloud number

〈N〉 and total cloud-base mass flux 〈M〉. In addition, cloud fraction 〈C〉 is also taken as a third quantity,

because we aim for a scheme that unifies the representation of the cloud vertical transport and cloud

cover. Thus, as a result of the stochastic modelling, we get the fractional cloud cover C and the total

mass flux M in each model grid box, and the correct variability, depending on the choice of the model

horizontal resolution (see also Keane and Plant, 2012). With the cloud ensemble statistics formulated

in this way, the variability of small-scale states is represented in a physically based manner, resulting

from the random and limited sampling (Plant and Craig, 2008).

2.3.1 Counting the clouds

Initialization of new clouds within a model time step is done through a Poisson counting process, after

which the clouds are uniformly and randomly distributed over space. In this section we test whether

the temporal Poisson distribution holds for the RICO case.

For a process to be described as a random Poisson process, events should be independent of each

other and the distribution of events should follow the Poisson distribution. The Poisson distri-

bution is often found in nature, since it results from a process subject to the law of rare events:

“where a certain event may occur in any of a large number of possibilities, but where the proba-

bility that the event does occur in any given possibility is small, then the total number of events



2.3 Empirical–theoretical model formulation 31

that do happen should follow, approximately, the Poisson distribution” (Pinsky and Karlin, 2011).

This law can be interpreted as a very low probability of occurrence of two exactly identical

clouds in a given area, even though this area can contain a large number of clouds. Therefore,

(a) total cloud number time series (6-12 h)
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Figure 2.7: The total cloud number time series, and
a corresponding histogram plot with a fit to the Pois-
son model, and a Q–Q plot as a goodness of fit test.
The distribution is fitted using the method of moments,
while the histograms and Q–Q plots are made using R
libraries (R Development Core Team, 2013). The time
interval between the snapshots is 10 min.

according to the law of rare events, the number

of generated clouds in the area should approx-

imately follow the Poisson distribution. If we

assume that the shallow cumuli are point-like

events with a low probability of occurrence and

that the events occur randomly but with a con-

stant cloud production rate G, as in Craig and

Cohen (2006), the probability that n clouds will

be generated in a domain during the time inter-

val (t, t +∆t] is given by the Poisson distribution

p(n) =
(G∆t)ne−G∆t

n!
, n = 0, 1, 2, . . . (2.7)

Consequently, we assume that the distribution

of the total number of clouds in a domain also

approximately follows the Poisson distribution.

This approximation is necessary for the estima-

tion of variance of the compound cloud mass

flux distribution in Section 2.3.3.

To test the validity of an assumption for the

Poisson distribution, we show the empirical his-

togram of the total number of clouds in the LES

RICO case domain, and a fit to the theoretical

Poisson model for the 6 h period of simulation

(Fig. 2.7b). The rate parameter for the distribu-

tion fit is estimated from empirical LES-RICO

results using the method of moments. Even

though the RICO case is not ideally stationary

(the number of clouds has a decreasing trend, see

Fig. 2.7a), for a limited time period of 6 h, these

two distributions are similar. Figure 2.7c shows

the quantile–quantile plot (Q–Q plot as defined

in Wilks, 2006) with the points representing the

pairs of quantiles of the theoretical vs. empir-

ical distributions. The two distributions match

closely, with the points lying approximately on

the straight x = y line.
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2.3.2 Closure for the distribution parameters

The cloud rate distribution of cloud mass flux g(m) relates to the instantaneous distribution n(m′)

through the information about the cloud lifetime τ(m). So, in the ensemble average limit, we can

assume that

〈g(m)〉 = 〈n(m)〉
〈τ(m)〉

. (2.8)

Because of the stationarity, the ensemble average equals the time average in our case and will be

denoted with 〈.〉. Note that a similar relation is also used for the galactic stellar creation function as

a product of the distribution of stars (mass function) and their formation rate (function of time) (e.g.

Chabrier, 2003, Eq. 6). This relation is also implicitly used in the scheme of Plant and Craig (2008).

We approach the formulation of closure by approximating the cloud rate distribution of mass flux

with a two-component mixed Weibull function

g(m) =
2

∑

i=1

Gi

k

λk
i

mk−1e−(m/λi)k

, (2.9)

with scale parameters λi and shape parameter k related to the average mass flux per cloud as 〈m〉i =
λiΓ(1+

1
k
). The cloud generating rate G, as the number of generated clouds per second in a given area,

is the intensity parameter of the Poisson distribution, and the index i refers to the two cloud subtypes

(see Section 2.2.3).

The ensemble average number of clouds in a domain can be derived by integrating the instantaneous

distribution of cloud mass flux:

〈N〉 =
∫ ∞

0
〈n(m′)〉dm′ =

∫ ∞

0
〈τ(m)〉〈g(m)〉dm. (2.10)

We use a power-law relation for the cloud lifetime dependence on the cloud mass flux:

τi = αim
βi , i = 1, 2. (2.11)

The parameters αi and βi for the two cloud subtypes are obtained from the nonlinear least square

fitting of the joint distribution of cloud mass flux and cloud lifetime (Fig. 2.3c).

After substitution of Eqs. (2.9) and (2.11) into Eq. (2.10) and integration, we get an expression for

the ensemble mean number of clouds:

〈N〉 =
2

∑

i=1

〈Ni〉 =
2

∑

i=1

Giαiλ
βi

i
Γ

(

1 +
βi

k

)

. (2.12)

An expression for the ensemble mean cloud fraction 〈C〉 can be derived using the Riemann–Stieltjes

integration of the instantaneous distribution function

〈C〉 =
∫ ∞

0
〈a(m′)〉 〈n(m′)〉dm′, (2.13)
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where a(m′) is the instantaneous cloud area just above the cloud base (700 m level). From the defini-

tion of the cloud mass flux it follows that the lifetime-averaged cloud area is a(m) = m/(ρw), and we

assume that the density equals ρ = 1 kg m−3 for notational simplicity. The average vertical velocity is

also a closure parameter, and here we simplify it by using an average over all clouds, w = 〈M〉/(〈C〉A).

By applying the relation between the instantaneous and cloud rate mass flux distribution Eq. (2.8),

we get

〈C〉 =
∫ ∞

0
〈a(m)〉〈τ(m)〉〈g(m)〉dm. (2.14)

After substitution and integration, and assuming that w is constant among individual clouds, we find

〈C〉 =
2

∑

i=1

〈Ci〉 =
2

∑

i=1

Giαi

wρ
λ

1+βi

i
Γ

(

1 +
1

k
+
βi

k

)

, (2.15)

and, similarly, for the total cloud mass flux,

〈M〉 =
2

∑

i=1

〈Mi〉 =
2

∑

i=1

Giαi λ
1+βi

i
Γ

(

1 +
1

k
+
βi

k

)

. (2.16)

When k = 1, Eqs. (2.12)–(2.16) describe a system with exponentially distributed cloud-base mass

flux. In the case of a constant cloud lifetime among all clouds in the ensemble, Eqs. (2.12)–(2.16)

reduce to

〈N〉 =
2

∑

i=1

Giτi, (2.17)

〈C〉 =
2

∑

i=1

Gi

wρ
τi
λi

k
Γ

(

1

k

)

, (2.18)

〈M〉 =
2

∑

i=1

Giτi
λi

k
Γ

(

1

k

)

. (2.19)

This formulation results in a system of two equations, Eqs. (2.12) and (2.15) or Eq. (2.16), with three

unknowns, G, 〈m〉 = λΓ(1 + 1
k
) and k, for each cloud subtype. For the purpose of this study, we set

the parameter k to 0.7 for both cloud groups, as estimated from the empirical RICO case distribution

(Fig. 2.4a). The parameters of the power-law relation for the cloud lifetime Eq. (2.11), αi and βi,

i = 1, 2, are estimated from the empirical results from LES and are of secondary importance for the

variability in our model (see Section 2.4.2). This leaves us with a closed system, if the ensemble

average number of clouds 〈Ni〉 and cloud fraction 〈Ci〉 or cloud-base mass flux 〈Mi〉 are known, and

the stochastic model can be constrained to reproduce the correct ensemble average statistics and the

small-scale variability. In this study we focus on the variability of convection when the forcing is

constant and the ensemble average properties are taken as known quantities from the results of the

cloud tracking.

However, in a large-scale numerical model, it is not likely that the information about the total cloud

number in a domain will be available. It would also be useful if the distribution parameters were
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constrained by the closure formulation as dependent on the large-scale model quantities, so that the

distribution shape could change with the cloud field evolution. To avoid counting the clouds and

fitting the cloud number and cloud mass flux distribution empirically, a more robust quantity could be

used – the average lifetime per cloud, 〈τ〉 = 〈N〉/G. In a large-scale model, the constraint on 〈M〉 or

〈C〉 is given from the resolved scales in an existing mass flux parameterization, and the information

necessary to divide the cloud ensemble into passive and active cloud groups is available from the

separate treatment of the active and passive cloudiness (for example, see Neggers, 2009). Therefore,

the closure of 〈m〉 and 〈τ〉 has to be developed from empirical studies or from theory, so that we are left

with the two equations and two unknowns: G and k. In the PC-2008 scheme, as a first approximation,

the parameters 〈m〉 and 〈τ〉 are set to a constant value, though they might depend on the changes in

the large-scale environment. We assume that this approximation holds for the RICO simulation, since

the cloud evolution is quasi-stationary and the forcing is constant. Results from the cloud tracking of

RICO clouds support this approximation (Table 2.2). For the three successive time frames from 6 to

24 h of simulation, the average mass flux per cloud is around 1× 105 kg s−1 for the active cloud group

and around 1 × 104 kg s−1 for the passive cloud group, and the average lifetime is roughly 20 min for

active clouds and 5 min for passive clouds.

Table 2.2: Model closure parameters estimated from the cloud tracking results.

Parameter Unit 6–12 h 12–18 h 18–24 h

〈m〉 kg s−1 1.91 × 104 1.82 × 104 1.67 × 104

〈m1〉 kg s−1 1.05 × 104 1.04 × 104 1.12 × 104

〈m2〉 kg s−1 8.87 × 104 8.97 × 104 10.16 × 104

〈τ〉 min 7 5 3
〈τ1〉 min 5 4 3
〈τ2〉 min 20 18 18

2.3.3 The variance of compound distribution

The total mass flux M in a model grid box can be interpreted as a random sum of the individual cloud

mass fluxes of a random number of clouds n (as in Craig and Cohen, 2006):

M =

n
∑

i=1

mi, (2.20)

where the cloud mass flux is constant during the cloud lifetime, so that m′ = m. We assume that the

total number of clouds in some region (or a model grid box) follows the Poisson distribution

p(n) =
N̂ne−N̂

n!
, n = 0, 1, 2, . . . (2.21)

which can be justified with the good fit to the empirical results (Fig. 2.7). Here N̂ is the average

number of clouds within a model grid box. In the case of the Weibull-distributed lifetime-average
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cloud mass flux, the distribution at a certain instant in time is given by

p(m′) =
τ(m)

〈τ〉
k

λk
mk−1e−(m/λ)k

, (2.22)

where 〈τ〉 is the average lifetime per cloud.

The probability distribution of the sum of n independent identically distributed random variables m,

conditioned on the number n, is the compound distribution or the distribution of the random sum

p(M) =
∞
∑

n=1

p(n) f n(M), (2.23)

where f n(M) is the n-fold convolution of p(m′) as defined in (Pinsky and Karlin, 2011, p.74). Prop-

erties of this distribution depend on the random number of clouds n and are analysed empirically

for the RICO case in Section 2.2.5. In the case of exponentially distributed individual cloud mass

fluxes, this distribution is defined as the compound Poisson distribution of cloud population, and can

be analytically expressed (Eq. 14 in Craig and Cohen, 2006).

By definition, the expected value of a compound distribution can be expressed as

E[M] = E[n]E[m] (2.24)

and the variance as

Var[M] = E[n]Var[m] + (E[m])2Var[n] (2.25)

(Pinsky and Karlin, 2011).

In a cloud field with variable cloud lifetime and Weibull distributed cloud mass flux, the expected

value of the compound distribution is

E[M] = N̂
α

〈τ〉
λβ+1Γ

(

β + k + 1

k

)

, (2.26)

and the variance is

Var[M] = N̂
α

〈τ〉
λβ+2Γ

(

β + k + 2

k

)

. (2.27)

The variance of the compound distribution that encompasses the diversity of cloud lifetimes depends

on the average number of clouds in a region N̂, average cloud mass flux 〈m〉 functioning through λ

and k, the β exponent from the lifetime relation, and the average lifetime per cloud 〈τ〉. The average

cloud lifetime is defined as

〈τ〉 = 〈N〉/G = αλβΓ
(

β + k

k

)

. (2.28)

Please note that in Eq. (2.28) 〈N〉 corresponds to the full convective ensemble in a large equilibrium

area, while N̂ introduced in this section corresponds to the model grid box of an arbitrary size.
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To test the scale adaptivity of the compound distribution variance, we derive the relation to describe

how the normalized variance of total mass flux changes with the average number of clouds:

Var[M]

(E[M])2
=
Γ
(

β+k

k

)

Γ
(

β+k+2
k

)

Γ2
(

β+k+1
k

)

1

N̂
. (2.29)

When k = 1, this reduces to the expression valid for the exponential function case with the cloud

lifetimes defined as Eq. (2.11) for a single exponential mode:

Var[M]

(E[M])2
=

(β + 2)

(β + 1)

1

N̂
, (2.30)

and furthermore, if it is assumed that the lifetimes of all clouds are equal, this reduces to

Var[M]

(E[M])2
=

2

N̂
, (2.31)

as in Craig and Cohen (2006, their Eq. 18).

2.3.4 Cloud lifecycle

In the case of shallow convection, large variability in the cloud size and cloud lifetime can be found.

Individual shallow clouds can have a lifetime ranging from a couple of minutes to several hours.

Therefore, in contrast to the PC-2008 where the cloud lifetime is constant among different clouds,

we introduce the varying cloud lifetime depending on the cloud mass flux and we model the cloud

lifecycles explicitly.

On the convection-permitting scales of resolved motion, the subgrid shallow convection is in

a nonequilibrium regime, i.e. there is no timescale separation between the subgrid and resolved

processes. To adjust to the changes in forcing, convection requires a finite time that can span longer

than the model time step. This timescale is referred to as the convective adjustment or the closure

timescale in the literature. Using cloud-resolving simulations of deep convection, Davies et al. (2013)

identified another memory timescale that is not carried by the large-scale mean thermodynamic fields,

but by the structures on the near-cloud scale. These structures are the result of individual clouds mod-

ifying their environment throughout their lifecycles. This type of convective memory expresses itself

through the effects of past convection modifying the convection at the present time. A first step to

introducing the aspects of these two timescales of convective memory into the parameterization is to

represent the cloud lifecycles explicitly.

The cloud lifetime of individual clouds τ(m) can be evaluated empirically from LES (Fig. 2.3c) by

approximating the joint distribution of cloud mass flux and cloud lifetime with a simple power-law

relation Eq. (2.11). This distribution is highly dispersed and the power-law fit is biased by the smallest

clouds that are large in number. The implications of this crude simplification of a highly dispersed

joint distribution are not significant, and will be explained further in Section 2.4.
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(a) short lifetime, τ < 30 min
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(b) medium lifetime, 30< τ < 60 min
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(c) long lifetime, τ > 60 min
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Figure 2.8: Idealized function for the cloud lifecycle (red line) and the examples of individual cloud lifecycles
(gray dots) from the LES RICO-140 case, after the cloud tracking. The purpose of this plot is to describe the
actual lifecycles of LES clouds and their vast variability. The red curves are not intended to actually fit the LES
cloud lifecycles.

Having the average mass flux of each cloud in a model grid box, an idealized cloud lifecycle can be

assigned to each cloud following a simple lifecycle function

m′

m
=

3

2

∣

∣

∣

∣

∣

4 · t

τ

(

t

τ
− 1

)

∣

∣

∣

∣

∣

(2.32)

(similar to Herbort and Etling, 2011, where a sine function was used for the temporal development of

deep convective shower cells). The cloud mass flux of each cloud at each time step m′ is normalized

by the lifetime average cloud mass flux m and changes according to Eq. (2.32) as a function of

the normalized cloud time t/τ. The empirical cloud lifecycles from LES and cloud tracking results

are much more complicated than the idealized cloud lifecycle function (Fig. 2.8). Smaller, short-

lived clouds follow the idealized cloud lifecycle function more closely (Fig. 2.8a), compared to the

longer-lived clouds (Fig. 2.8b). The discrepancy from Eq. (2.32) is especially pronounced if the

cloud is a long-lived multi-pulse entity (Fig. 2.8c). We approach the modelling of the cloud lifecycle
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function without statistically fitting the actual LES cloud lifecycles, but instead the idealized function

Eq. (2.32) is used to prove that the details in the exact lifecycle function shape are not a necessary

requirement to model the variance of subgrid cloud properties correctly (see Section 2.4.3). In the

previous section, derivation of the total mass flux variance (Eq. 2.29) did not incorporate the cloud

lifecycle function (Eq. 2.32), and only the variability in the cloud lifetimes in a convective ensemble

was taken into account.

2.4 Tests with different levels of model complexity

The goal of every parameterization is to represent the subgrid processes using a simplified concep-

tual approach and as few parameters as possible, but on the other hand the simplification of process

formulation should not degrade the quality and level of produced information. The consistency of the

parameterization assumptions can provide a valuable guidance to choose a certain set of assumptions

over another. In the following, we compare different formulations of the stochastic model, to test

what the level of complexity necessary to model the shallow convective cloud ensemble is, and dis-

cuss possible inconsistencies, especially in simplified models. The stochastic model should reproduce

the ensemble average quantities and the variability of subgrid convective states.

The stochastic model is run as an ensemble with 50 members on the horizontal domain of 51.2 km ×
51.2 km. The ensemble model runs are performed multiple times with the different model formulation

and each of these runs is repeated five times using the different horizontal grid resolutions of the

stochastic model: 1.6, 3.2, 6.4, 12.8, and 25.6 km. The empirical coarse-grained LES quantities

(Section 2.2.5) are used for the validation of results from the stochastic model ensemble runs. To stay

within the quasi-stationary regime of the RICO case, we limit the time frame to 6 h, focusing on the

time period from the sixth to the twelfth hour of the simulation.

Table 2.3: Parameters for the model formulation with the two-component mixed Weibull distribution.

Parameter Value Unit

Domain size 51.22 km2

k 0.7 –
λ1 7269.08 kg s−1

λ2 29 868.46 kg s−1

f1 0.81 –
f2 0.19 –
G 4.55 # s−1

G1 3.69 # s−1

G2 0.86 # s−1

α1 0.02 kg−1

β1 1.04 –
α2 0.33 kg−1

β2 0.72 –
w 0.69 m s−1
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Distribution parameters are estimated as a function of the large-scale quantities: ensemble average

cloud cover 〈Ci〉, total mass flux 〈Mi〉 and total number of clouds in a domain 〈Ni〉, which are taken

from the LES tracking results (Table 2.1). The distribution parameters, λi, i = 1, 2 for the cloud rate

mass flux distribution and Gi, i = 1, 2 for the Poisson cloud number distribution, are calculated using

Eqs. (2.12)–(2.16), and their values are given in Table 2.3. Estimation of the parameters in this way

ensures that the model reproduces the correct ensemble average quantities.

The fraction of the active cloud mode is calculated as f2 = G2/(G1 + G2) and the fraction of the

passive cloud mode as f1 = 1 − f2 (Table 2.3). The cloud-base mass flux is sampled for each cloud

individually, depending on the group it belongs to, following the procedure for generating the random

variates from the mixed exponential function described in Wilks (2006, p. 127). The choice for the

splitting into two groups is given by generating a random number f = [0, 1]. The initialized cloud

becomes active if the fraction f is less than f2; otherwise, it is assigned to the passive cloud group.

2.4.1 Generalization of the exponential distribution

In this section, we compare the performance of the stochastic model depending on the choice for the

cloud rate distribution, starting from a single-parameter single-mode exponential function and then

gradually increasing the distribution complexity by adding a second mode and one more parameter –

the distribution shape.

Compared to the LES domain average statistics, the cloud ensemble average properties are reproduced

well using the different formulations of the stochastic model, with the relative error below 0.6 %

(Table 2.4 showing the mixed Weibull case). Low errors in the ensemble average quantities prove that

the model equations and the numerical methods are consistent with the theoretical model formulation.

Table 2.4: Ensemble average cloud properties resulting from the stochastic model ensemble runs with the
different horizontal resolutions.

Mixed Weibull distribution function with the explicit cloud lifecycles

Resolution (km) 〈N〉 (no.) Error (%) 〈C〉 (–) Error (%) 〈M〉 (kg s−1) Error (%)

1.6 1724.95 0.55 0.04515 0.15 81 810 364 0.15
3.2 1725.10 0.54 0.04517 0.11 81 847 963 0.11
6.4 1725.81 0.50 0.04511 0.25 81 730 366 0.25
12.8 1726.21 0.47 0.04510 0.27 81 716 417 0.27
25.6 1724.41 0.58 0.04511 0.25 81 730 047 0.25

From the snapshots taken over six hours of simulation (6–12 h), the frequency distributions of the

compound cloud mass flux at the 700 m height level are constructed for the different horizontal reso-

lutions of the stochastic model and compared with the coarse-grained LES results (Fig. 2.9). It can be

concluded, already by visual inspection, that the LES and the stochastic model frequency distributions

are highly similar. Limited sampling of the cloud ensemble produces a correct frequency distribution

of the subgrid convective states for the different choices of the model grid size. This signifies that the

stochastic model is scale-adaptive and that the variability of small-scale convective states depends on
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the model grid resolution. There is a lack of variability when the cloud mass flux is sampled from

an exponential function with constant cloud lifetime (exp. τ = 20 min, Fig. 2.9). This model set-up

would correspond to the prescribed exponential function for deep convection in PC-2008, with the

constant cloud lifetime τ = 45 min. Thus, in a shallow convective case, a more complicated dis-

tribution function that encompasses the effect of cloud lifecycles should be used. This statement is

supported by the improvement in performance of the stochastic model in the case of a mixed Weibull

distribution including the explicit cloud lifecycles (mix wei. τ = αmβ, Fig. 2.9). The reason for this

improvement could be the generalization of the cloud rate distribution, the introduction of the second

distribution mode, the introduction of the cloud lifecycles, or a combination of all three. We examine

all three reasons in the rest of this chapter.
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Figure 2.9: Histograms of the compound cloud mass flux at the 700 m height level normalized by the grid box
area of the different horizontal resolution: coarse-grained LES tracking results vs. stochastic model results.
Plots show the two stochastic model cases: a two-component mixed Weibull case with explicit cloud lifecycles
(k = 0.7; coloured lines) and a single-mode exponential case without cloud lifecycles (k = 1; coloured dots).
Colours also correspond to Fig. 2.5. Hellinger distance H stands for the mixed Weibull case.
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As a tool for quantitative comparison between the frequency distribution resulting from different runs

of the stochastic model and the reference distribution obtained from the LES coarse-graining, we use

the Hellinger distance as a measure of distribution similarity. The Hellinger distance H between the

two discrete probability distributions P and Q is defined as

H(P,Q) =
1
√

2

√

√

√

k
∑

i=1

(
√

pi −
√

qi)2, (2.33)

where pi and qi are the corresponding probability measures. A useful property of the Hellinger

distance is its skew independence, which enables us to compare the scores between the distribution

pairs of different skewness resulting from the different choice of horizontal grid resolution (Fig. 2.9).

The Hellinger distance H confirms a high level of similarity between the distributions of different

resolution pairs, with the H values in a very low range, from 0.018 to 0.12 (Fig. 2.9a–e). Compari-

son of the results from the stochastic model set-up using a single exponential function vs. a mixed

exponential or a mixed Weibull function via Hellinger distance shows the importance of modelling

the two distribution modes for each cloud group separately (Fig. 2.10). For the distribution similarity,

the introduction of the second mode in the cloud rate distribution (mix exp. vs. exp., Fig. 2.10) has

a larger impact than the explicit modelling of the cloud lifecycles (exp. τ = αmβ vs. exp. τ = 20 min,

Fig. 2.10). The difference in performance of a mixed exponential case vs. a mixed Weibull case (i.e.

k = 1 vs. k = 0.7) is not so evident from the point of view of frequency distribution match, but it

becomes distinct for evaluation of the variability measure (see Section 2.4.2).
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Figure 2.10: Comparison of the Hellinger distance between the distribution pairs from simulations using dif-
ferent model configurations: a single exponential (exp.) configuration with and without cloud lifecycles, and
a mixed exponential (mix exp.) and mixed Weibull (mix wei.) configuration with explicit cloud lifecycles.

2.4.2 Quantifying the variability

According to the theory of fluctuations in a convective ensemble (Section 2.3.3), the normalized

variance of the compound distribution scales inversely with the cloud number following Eqs. (2.29)–

(2.31). With the increasing complexity of the cloud rate distribution, from a single mode exponential
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to a mixed Weibull distribution, the variance of subgrid convective states becomes more accurately

represented (Fig. 2.11a), taking the LES coarse-grained variance scaling (RICO_140 6–12 h) as a ref-

erence case.

The magnitude of normalized variance is controlled by the number of clouds in the subgrid regions.

The smaller the grid box, the smaller the number of clouds it can contain, and the variance gets

higher. Here, the cloud lifecycles play a role as well, since the cloud number will be influenced by the

individual cloud lifetimes (see Section 2.4.3). The effect of introducing a second distribution mode

(exp. to mix exp.) on the variance scaling is approximately equal to the effect of a generalization of

the cloud rate distribution from exponential to Weibull (mix exp. to mix wei., Fig. 2.11a). The latter

points to the fact that the shape parameter k has a significant impact on the variance (Fig. 2.11b and

Eq. 2.29), since the change from a mixed exponential to a mixed Weibull distribution happens through

the change in k from 1 to 0.7. The effect of excluding the explicit cloud lifecycles from the model

formulation using a single exponential distribution mode (exp. τ = 20 min, Fig. 2.11a) is a minor and

negligible improvement, but it still reveals a more correct formulation of the model.
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Figure 2.11: The variance of compound mass flux as a function of the inverse cloud number. Cloud lifecycles
are explicit in all simulations and the time frame is 6–12 h, if not stated otherwise. The grid size is decreasing
from the left (50 km) to the right (1 km) side of the graph.
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The parameter k controls the range of the cloud mass flux that can be sampled from the probability

density function in the model. Setting the value of the shape parameter to 0.6 ≤ k ≤ 0.7, the stochastic

model generates a cloud ensemble with a large number of short-lived small clouds and fewer large

clouds, which fits the cloud ensemble of the RICO case (Fig. 2.11b). When increased to k = 1 (mix

exp. Fig. 2.11b), this parameter describes a cloud ensemble of equal lifetimes not depending on the

cloud size. Constrained by the model formulation, the exponential probability distribution function,

from which the cloud mass fluxes are sampled, does not span across a large enough range of the

cloud mass flux values to match the results from the LES. With the decrease in k, the sensitivity of

the variance scaling becomes higher, which means that in a cloud ensemble with more diversity in the

cloud lifecycles, the shape of the distribution changes faster with the further increase in diversity.

The sensitivity of the stochastic model is also tested with regard to the exponent of the cloud lifetime

relation, β. A relatively large range for βi, i = 1, 2 is explored (Fig. 2.11c), and Eq. (2.29) is used as

a theoretical model for this test. The variability of convection does not depend highly on the exponent

β of the cloud lifetime relation Eq. (2.11), as long as the lifetime increases with the cloud mass flux

following a power law within the dispersion range of Fig. 2.3c.

The stochastic model was constructed using the assumption of a random cloud field with noninter-

acting cloud elements (clouds could interact only through the large-scale flow). From the results

presented in Figs. 2.9 and 2.11, we conclude that this assumption is valid for a quasi-random cloud

field (Fig. 2.1a–c, e, and g) before the emergence of cloud clusters or arcs. With the ageing of the

cloud field, the variability does not change unless the cloud field starts to show a pronounced spatial

organization. Therefore, we test the effects of organization on the variability of small-scale convec-

tive states (Fig. 2.11d). The variance produced by clustering of the clouds in the time frame from

12 to 18 h (Fig. 2.1d, f) and organization into the mesoscale structures during the time frame from

18 to 24 h (Fig. 2.1f, h) have approximately the same magnitudes as the effects of the convective

intensity in the domain in terms of the range of cloud mass flux of individual clouds in a domain.

The emerging organization of clouds will cause a decrease in the shape parameter of the mass flux

distribution, though this decrease will be small and visible as a change in a distribution tail (not shown

here). This indicates that the effects of organization are important for the convective variability, but

they are clearly not introduced solely through the mass flux distribution and the individual cloud life-

cycles. We speculate here that the additional source of memory and spatial correlations related to

the mesoscale organization are a mechanism responsible for the increase in variance. Convective or-

ganization and the correct convective variability are not represented in commonly used deterministic

convective parameterizations in numerical weather and climate models. Stochastic approaches are a

promising tool for addressing this problem; a good example of a mechanism for parameterization of

convective organization is the cellular automaton (e.g. Palmer, 2001; Bengtsson et al., 2013). How

a stochastic model, assuming a locally random cloud field, will be able to model convective organiza-

tion when coupled to a three-dimensional atmospheric model, poses an interesting question for future

studies.
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2.4.3 Different choices for the cloud lifecycles

In this section, we test how the explicit representation of the cloud lifecycle influences the resulting

frequency distribution and scale-adaptivity of the stochastic model. The focus is on the definition

of the cloud lifetime in the stochastic model, which can be set to a constant value as in the scheme

of Plant and Craig (2008) or can be set as a variable, depending on the cloud-base mass flux. Even

though the lifetime of a cloud is not a deterministic function of the cloud-base mass flux, it can be

approximated with a power-law function relating it to the cloud mass flux (Fig. 2.3c). In the case of

a constant cloud lifetime, the cloud lifecycles are not modelled explicitly, and the lifetime average

cloud-base mass flux is used instead of the simplified lifecycle function (Eq. 2.32).

The stochastic model is run using the different model configurations:

1. mixed Weibull, τ = 10 min, no lifecycles;

2. mixed Weibull, τ = 20 min, no lifecycles;

3. mixed Weibull, τ = 30 min, no lifecycles;

4. mixed exponential, τ = 20 min, no lifecycles;

5. and mixed Weibull, τi = αim
βi , i = 1, 2, with lifecycles.

The best match of the frequency distribution across the high-resolution scale of the model is achieved

in case (5), where the cloud lifetime depends on the magnitude of the cloud-base mass flux, with

the two cloud groups treated separately, and with an explicit lifecycle (Fig. 2.12a). The Hellinger

distance degrades for the coarser grid resolution, where the mixed exponential case with a constant

cloud lifetime (4) performs better. Cases (1)–(3) evidently all perform worse than (4)–(5), with the

further degradation of the scale-adaptivity.

The reason for the degradation of the distance measure in case (5) comes from the larger error in the

ensemble average (Table 2.4) for the coarser model grid resolution compared to the fine resolution.

However, this error is less than 0.3 %, which is negligible, and therefore the increase in the Hellinger

distance is not significant. In case (4) there is no such degradation with coarsening of the resolution,

except for the scales larger than 20 km. In case (4) the error in the ensemble mean is between 0.42 and

0.74 %, which is larger than the error in case (5), but is not increasing with the coarsening of the

resolution. However, due to the compensation of the error in the ensemble mean with the error of

under-sampling of the mass flux distribution function and the error introduced by excluding the cloud

lifecycles, the Hellinger distance in case (4) is lower than in case (5) for the coarse-grid resolutions.

As a result of equal lifetimes in a cloud population (cases 1–3), convective compound variance is

overestimated by the same amount for the different choices of the cloud lifetime (Fig. 2.12b). This

independence from the specific value of the constant lifetime (from 10 to 30 min) means that, on

the grid-scale level, the system has no memory and the effects of the individual clouds average out.

The same would apply for case (4) if we test for a different constant τ, with the difference that the

underestimation of the variance in this case comes from the distribution shape choice (k = 1 vs.
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Figure 2.12: Comparison of the distribution pairs from the simulations using a constant and the mass-flux-
dependent cloud lifetime.

k = 0.7). In case (5), the effects of convective memory will be carried on by the clouds that are small

in number but that live longer. On the other hand, a large number of small short-lived clouds will

have less effect on the future state of convection, which depicts a more realistic situation.

The question of consistency in the model formulation enters here. The error compensation in case (4)

can be justified by the consistency in combining the different effects in the model formulation, which

is more important than the accuracy and complexity in the representation of the separate processes.

There are two options for the model formulation, consistent with our understanding of the cloud

ensemble statistics:

1. a memoryless system, bearing in mind the stationarity of our case, which should be described

using a mixed exponential distribution and a constant lifetime among clouds (similar to PC-

2008), and

2. a system with memory, with diverse cloud lifecycles modelled explicitly and with the corre-

sponding Weibull distribution for the cloud-base mass flux.
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This raises the question of the importance of the system memory, introduced by the diversity of cloud

lifecycles, for the parameterization of convection. From the results shown in Fig. 2.12b we conclude

that the convective memory, and hence the model set-up (2), is necessary to reproduce the convective

variability accurately, with a higher importance of the system memory for the more diverse cloud field

(smaller k) and for the higher model resolution.

In the reference case of the stochastic model test runs, which corresponds to model set-up (2), the

cloud vertical velocity is set to a constant value applied to all clouds, and the cloud lifetime is sam-

pled from a deterministic power-law relation to the cloud-base mass flux. This is in disagreement

with the empirical results from LES, which show a highly scattered joint distribution for both quan-

tities (Fig. 2.3). Is a deterministic relation between the mass flux and other cloud properties a valid

approximation? The variance of compound Poisson distribution depends on the number of convec-

tive elements in a model grid box, and scales as Var[M]/(E[M])2 = 2/〈N〉 (Craig and Cohen, 2006).

With the introduction of the cloud-base mass-flux-dependent cloud lifetime Eq. (2.30), this relation

incorporates a weak dependence of variance on the cloud lifetime relation through the exponent β,

while in the case of the more general Weibull distribution Eq. (2.29), also on parameter k. Having

in mind such weak dependence of variance on the cloud lifetime relation (Fig. 2.11c), it is not likely

that the variability could be enhanced by the conditional random sampling of the joint probability

distribution of the cloud-base mass flux and cloud lifetime. Therefore, there is no need for the further

sophistication of the stochastic model; i.e. a deterministic relation between the cloud mass flux and

other cloud properties is sufficient.

2.5 Summary and conclusions

Subgrid-scale convective processes can be related to the mean large-scale field through a parameteri-

zation that comprises a deterministic component, a stochastic component and the convective memory

carried by the finite lifecycles of clouds. These three components change in their contribution to the

overall subgrid effects, depending on the resolution of the model. Thus, a cloud parameterization

should be developed in such a way as to adapt to the different resolutions of model grid and model

time step.

We have studied the fluctuations in a shallow convective ensemble of the Rain in Cumulus over

the Ocean (RICO) case, which is a precipitating shallow convective case in the trade-wind region.

Shallow cumulus ensemble statistics are analysed using LES, and cloud tracking is applied to study

the cloud lifecycles. The theory of fluctuations in an equilibrium convective ensemble of Craig and

Cohen (2006) is extended and applied to shallow convection, combining it with the empirical findings.

As a first step towards a stochastic shallow convective parameterization, the stochastic stand-alone

model has been developed. The model is based on an approach similar to the PC-2008 stochastic

scheme, in which the subgrid convective state is represented as a subsample of the full convective

ensemble.

The diversity of shallow cloud lifecycles causes the deviation of the cloud-base mass flux distribution

from the exponential memoryless distribution. Therefore, we introduce the dependence of the cloud
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mass flux on the cloud lifetime by generalizing the cloud mass flux distribution to a Weibull proba-

bility density function. In this way, the variability of cloud lifecycles is introduced in the stochastic

representation of shallow convection. We also account for the different shallow cloud subtypes by

defining two modes of the cloud-base mass flux distribution.

The convective ensemble average statistics and convective variability are constrained by the model

closure by setting implicitly the value of two parameters, the average mass flux per cloud 〈m〉 and the

average ensemble cloud lifetime 〈τ〉. The model formulation is such that, depending on how these

two parameters might change due to the forcing, the underlying distribution and its relation to the

cloud lifecycles would dynamically adapt to these changes.

Clouds are initiated in a model grid box assuming that their number follows the Poisson distribution

and the cloud-base mass flux is drawn randomly for each cloud from the mixed Weibull probability

density function. The model is forced with the domain ensemble average cloud properties from LES

and the probability density function parameters are fitted theoretically using a formulation for the

system closure. Limited sampling of clouds in a model grid box results in the compound Poisson

distribution of small-scale convective states, which possesses an inherent property of scale-adaptivity.

In this way the model is constrained to give the correct ensemble average values, and the variability

of subgrid convective states is reproduced in a physically based manner.

As a measure of convective variability, the variance of the subgrid compound distribution is dependent

on the number of clouds in a grid box and the range of their cloud-base properties. We show that the

correct variability can be reproduced by the model by accounting for the system memory through

the cloud-base mass flux distribution and by modelling the cloud lifecycles explicitly. The resulting

histograms of subgrid convective states are simulated with a high level of agreement with LES across

the different scales. Even though the individual cloud properties are highly dispersed, the compound

distribution of subgrid convective states is robust and insensitive to the randomness of local cloud

properties. This implies that the simplicity of the stochastic model can be retained and that the

assumption about deterministic relations between the cloud mass flux and other cloud properties is

valid.

This study provides a generalization of the convective ensemble theory of Craig and Cohen (2006),

using a formulation that attempts to unify the stochastic parameterization of shallow and deep con-

vective clouds depending on two parameters: 〈τ〉 and 〈m〉. These parameters are related to the large-

scale information that is controlled by the convective regime, and are possibly also dependent on the

changes in the large-scale forcing. Therefore, it is necessary to develop a closure for these two param-

eters, based on the large-scale processes controlling the atmospheric boundary layer and transition to

deep convection. In this chapter, we establish the applicability of the convective fluctuation theory to

shallow convection, generalizing it by the introduction of system memory.

In the next chapter, the stochastic model is developed further by coupling it to an existing mass flux-

based shallow convective parameterization in a numerical model.
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Chapter 3

An approach to parameterize shallow cumuli

across scales

The parameterization of shallow cumuli across a range of spatial resolutions in atmospheric mod-

els faces at least three major difficulties: 1. the closure assumptions of existing parameterization

schemes are not valid on the scales below approximately 10 km, 2. there is a substantial amount

of convective variability that increases with coarse-grained resolution in LES studies and that is not

captured using a common deterministic approach, and 3. on model grids with a resolution that falls

into the convective gray zone, grid-scale dependent secondary circulations can develop and intro-

duce artificial variability modes in the cloud fields. In this chapter, we present a detailed description

of the developed parameterization of shallow cumuli using a stochastic and scale-aware approach

in a nonhydrostatic model on kilometer-scale grids. The new scheme represents the stochastic and

scale-dependent fluctuations around the equilibrium state of a shallow cumulus ensemble, and pro-

vides a way to maintain the validity of closure assumptions across scales. In addition, we discuss the

influence of the convective gray zone on variability in parameterized convective cloud fields.

3.1 Introduction

Behavior and characteristics of numerically modelled convection and clouds are highly dependent on

the horizontal resolution of atmospheric models. The convergence of a modelled state to the real state

of a physical system is not entirely a numerical problem caused by the finite-difference methods used

to solve the dynamical equations (e.g. Jung and Arakawa, 2004; Arakawa, 2004). It is the parame-

terization of subgrid physical processes, especially convection and clouds, that does not converge to

the real physics as the model resolution is increased (Kiehl and Williamson, 1991; Giorgi and Marin-

ucci, 1996; Williamson, 1999; Pope and Stratton, 2002; Bryan et al., 2003; Jung and Arakawa, 2004).

This study is in preparation for publication as Sakradzija M., and A. Seifert: An approach to parameterize shallow
convection across scales, in preparation, 2015.
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Besides the nonconverging model physics, in a convective boundary layer modelled on the gray zone

grids, convectively induced secondary circulations can develop and support the emergence of grid-

dependent organized cellular or roll structures (Jung and Arakawa, 2004; Piotrowski et al., 2009;

LeMone et al., 2010; Honnert et al., 2011; Zhou et al., 2014; Ching et al., 2014). Thus, the model dy-

namics also exhibit a grid-scale dependent behavior in form of the spurious convective organization.

This type of organization does not reflect the state of a natural system, but instead it reflects a state

resulting from a combination of numerical artifacts and model dynamics (Bryan, 2005; Piotrowski

et al., 2009). The fact that model physics does not converge with increasing resolution suggests that

there is a need for a scale-aware parameterization of clouds and convection in high-resolution models.

Moreover, the tendency of model dynamics to develop convective transport and organized convection

on the grid scale also points out the need for a unified parameterization of turbulence, convection and

clouds, because these processes are tightly linked and causally connected. This connection is mostly

visible through variability in the cloud field that is highly influenced by the grid-scale dependent

convective circulation and organization.

One of the main reasons for nonconverging behavior of model physical parameterizations are the

assumptions made in order to close the model equations and to provide the basic parameterizability

criterion. These assumptions are mostly defined on the coarse model grids, for which the parameteri-

zation is originally intended. One of the main assumptions in a conventional cloud parameterization

is the validity of the statistical quasi-equilibrium between a subgrid cloud ensemble and the grid-scale

flow. On coarse grids with horizontal resolutions in the range of 20 to 50 km, convection and shallow

cumuli ensembles are considered as subgrid phenomena and the statistical quasi-equilibrium is widely

applied. In this case the convective ensemble average is used as the representative of subgrid convec-

tive processes. On the other side of the spatial scale range, on very high resolutions of O(10-100 m),

the dynamics of convection and clouds is taken as effectively resolved. On the intermediate spatial

scales between these two asymptotic cases, in the range of O(100 m-10 km), the dominant convective

scale is comparable to the scale of the model grid, and convection is no longer effectively resolved,

but at the same time it is not effectively parameterized. This refers to the convective gray zone, also

called “terra incognita“ by Wyngaard (2004) who recognized and defined the problem of numerical

modelling of turbulent flows on the intermediate scales. In the gray zone, the inherent variability of

convection becomes larger with the increase of grid resolution, and a model grid cell can hold only

a subsample of the convective cloud ensemble, which invalidates the statistical quasi-equilibrium as-

sumption (see Plant and Craig, 2008; Dorrestijn et al., 2013, and also Chapter 2). The stochastic

method developed in Chapter 2 provides a way to include the variability of convection around the

statistical equilibrium and its dependence on the model grid resolution into a parameterization of

shallow cumuli.

Parameterization of shallow convection across scales inevitably involves the question of the interac-

tion of model physics and model dynamics in the convective gray zone. On the gray zone range of

spatial scales, the multi-scale convective and cloud processes are not fully subgrid phenomena, but

nevertheless they are artificially truncated at the model resolution scale into the subgrid- and grid-

scale processes. The energy spectrum of the atmospheric flow is continuous and there is no evident

reason for such separation of the scales of motion (Nastrom and Gage, 1985). Thus, the artificial
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truncation of convective processes and cloud ensembles at the model grid-resolution scale causes

an artificial interaction between the model dynamics and subgrid physical parameterizations. In an

undisturbed, slowly changing convective situation, the solution of the model dynamical equations

leads to emergence of organized convective motion on the model grid in form of convective cells or

rolls. This type of organized motion is similar in mechanism to the Rayleigh-Bernard convection,

and emerges when the buoyancy forces overcome the viscous momentum transfer in the flow. In the

zone between effectively resolved convection, which is considered at the grid scale of 10-100 m, to

the effectively subgrid convection, which is considered on the spatial scales of 20-50 km, organized

convective circulations are highly grid-dependent, overenergetic compared to the natural convection

and in that sense artificial (e.g. Piotrowski et al., 2009; Zhou et al., 2014; Ching et al., 2014). This

brings additional uncertainty into the parameterization of clouds in numerical atmospheric models on

the gray zone grids, because this kind of organization inflates the variance and reverses the skewness

of subgrid cloud properties.

To address these two major model properties that degrade the convergence, i.e. the validity of statisti-

cal equilibrium and the gray zone convective variability, in this chapter we extend the eddy-diffusivity

mass-flux (EDMF) scheme in the nonhydrostatic ICON model by introducing the stochastic shallow

cumulus ensemble model (Chapter 2) into the EDMF framework. The main purpose of the new

shallow cumulus cloud scheme is to introduce the variability of subgrid convective states around the

statistical equilibrium in a scale-aware and physically sound manner, similar to the Plant and Craig

(2008) scheme developed for deep convection. As in Chapter 2, the developed scheme is used to

simulate the Rain In Cumulus over the Ocean (RICO) case. The condition for the statistical quasi-

equilibrium is fulfilled by applying a deterministic model closure across a large area around each

model grid cell, while the subgrid convective states are subsampled from a quasi-equilibrium dis-

tribution defined in a compound stochastic process. In this way, the macroscopic state of the cloud

ensemble is constrained based on the physical principles of model closure, and the uncertain micro-

scopic states of the cloud subensembles within model grid cells are governed by a probabilistic law.

This approach draws further benefits by applying other parameterization assumptions on the scale at

which they are valid, such as the assumption of a very small fractional area covered by clouds ac ≪ 1,

which is an inevitable component of common mass flux cloud parameterizations (e.g. Arakawa and

Schubert, 1974; Arakawa and Jung, 2011).

Relaxation of the quasi-equilibrium assumption by accounting for the subgrid stochastic variability

of convection is beneficial on the coarse grids as well, and the application of stochastic cloud physics

is far more broad than the application to the gray zone convection. The stochastic parameterization

of convection represents the uncertainty of the model physics in the ensemble prediction systems by

inflating the ensemble spread (e.g. Palmer, 2001; Teixeira and Reynolds, 2008). The stochastic con-

vective perturbations can grow and propagate to the synoptic scales and thereby represent the upscale

growth and propagation of the model error (Teixeira and Reynolds, 2008; Selz and Craig, 2015).

The unresolved convective variability has a substantial impact on the ability of numerical models to

represent the low-frequency variability modes of the atmosphere in the tropics on intraseasonal and

longer timescales (Lin and Neelin, 2000, 2002). There are as well indications that convectively gen-

erated spatial variability in atmospheric thermodynamic fields can influence the timing of the diurnal
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cycle of convection over land (Stirling and Petch, 2004), thus a stochastic parameterization of con-

vection could be beneficial in improving the modelling of the short-timescale atmospheric variability.

A stochastic multicloud convective parameterization (Khouider et al., 2010) improves the variability

of tropical convection by simulating the intermittent structure of synoptic and mesoscale convective

systems and convectively coupled waves better compared to a deterministic scheme (Frenkel et al.,

2012). The subgrid stochastic celular automata (CA) scheme that parameterizes the lateral organiza-

tion of convection and convective memory can mimic the organization by gravity waves originating

from deep convection (Bengtsson et al., 2011). There are also indications that a stochastic convec-

tion parameterization can increase the forecasting skill of the model (Bright and Mullen, 2002; Berner

et al., 2015) and reduce the systematic model biases (Berner et al., 2012). Thus, the aim of a stochastic

convection parameterization is not merely to induce a statistical impact in the ensembles and improve

the measure of uncertainty, but also to improve the physical aspects of a modelled system.

In this chapter, we describe the development of the stochastic EDMF parameterization in ICON, and

we present the first results of the multi-resolution tests of the new stochastic EDMF moist convection

scheme. We also quantify the effects of the spurious convective organization on the convective vari-

ability in the RICO simulations using the deterministic and stochastic shallow convection schemes

and we discuss the implications of these convective circulations on the further development of PBL

parameterizations. Description of the ICON model and the convective case study is provided in Sec-

tion 3.2. The unified EDMF parameterization of turbulence, convection and clouds is described in

Section 3.3, where the main closure assumptions of the scheme are documented as well. Section

3.4 contains the description of the stochastic EDMF scheme in ICON, while the results of numerical

simulations using both the deterministic and the stochastic model are given in Section 3.5.

3.2 Description of the model and case study

A multi-scale approach to parameterization of shallow convective clouds is partly motivated by the

new-generation sophisticated models that offer the possibility of local grid refinement and on-line

nesting (e.g. Tomita and Satoh, 2004; Skamarock et al., 2012; Zängl et al., 2015). In such a model

configuration, parameterization schemes have to adapt to the model resolution automatically without

the possibility of additional tuning of the scheme parameters and activity depending on the model res-

olution. The ICON model, developed jointly by the German Weather Service (Deutscher Wetterdienst

- DWD) and the Max Planck Institute for Meteorology (MPI-M), is one example of such a model,

built on the icosahedral horizontal mesh of points with local grid refinement (Zängl et al., 2015).

In this study we use the fully compressible nonhydrostatic version of ICON. Model equations are

discretized over a numerical grid of triangular cells with Arakawa C staggering. The description of

the model equations and numerical methods are described in Zängl et al. (2015) and are not pro-

vided here because the full model description would be out of the scope of this thesis. The model

configuration used in this study is a limited-area version of ICON, with cyclic boundary conditions

on a pseudo 2D torus triangular grid similar to the one used in Dipankar et al. (2015), who devel-

oped this configuration of ICON for the large eddy simulation (LES) purposes. In this configuration
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the horizontal resolution is uniform and the vertical coordinate is height-based. Instead of the LES

physical parametrization package developed by Dipankar et al. (2015), for the purpose of this study

we apply the numerical weather prediction package (NWP) developed at DWD. For the parameter-

ization of turbulence, convection and shallow clouds we employ the EDMF scheme, and beside the

numerical diffusion scheme, EDMF is the only parameterization included. The parameterization of

radiation, grid-scale condensation and precipitation, and deep convection is excluded from the model

configuration. Radiative, large-scale advection and subsidence tendencies are applied through the

prescribed large-scale forcing as defined in the UCLA-LES RICO case (Appendix A.1). The LES

RICO-140 case, which is the case with suppressed precipitation, is used as a reference simulation

like in Chapter 2. The surface boundary conditions of the RICO case are as well adopted from the

UCLA-LES boundary conditions specification (Appendix A.1) and are prescribed locally within the

EDMF scheme. These surface conditions are the constant sea surface temperature, the constant sur-

face pressure, and a simple surface layer parameterization for the surface turbulent fluxes (Appendix

A.1).

3.3 Unified treatment of convective boundary layers in ICON

Turbulence, convection and shallow planetary boundary layer clouds are parameterized within a uni-

fied framework of the eddy-diffusivity mass-flux scheme (EDMF) in ICON. In this scheme the turbu-

lent flux of a conserved quantity φ = {θl, qt} is decomposed into the diffusive and convective transport

terms (Siebesma et al., 2007) scaled by the diffusive area fraction AK and convective area fraction

Aup respectively:

w′φ′ = AKw′φ′
K
+Aupw′φ′

up
(3.1)

The first term on the right hand side represents local turbulent mixing and is parameterized by the

eddy-diffusivity approach, and the second term represents nonlocal transport by strong organized

updrafts via the mass flux approach:

w′φ′ = −K
∂φ

∂z
+ Mu(φup − φ), (3.2)

where K denotes the eddy-diffusivity, ∂φ/∂z is a local vertical gradient of a conserved quantity, Mu

is the convective updraft kinematic mass flux, and φup − φ is the excess of the updraft property φ in

respect to the environment. The eddy-diffusivity approach used within the EDMF framework is the

K-profile scheme of Troen and Mahrt (1986) and Holtslag and Boville (1993). The kinematic mass

flux is defined as a product of updraft area fraction aui and updraft vertical velocity wui:

Mui ≡ auiwui. (3.3)

Neggers et al. (2009) extended the EDMF framework into the dual-updraft mass flux formulation

(EDMF-DualM) by splitting the mass flux term into the dry (i = 1) and moist (i = 2) updraft terms to
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represent the shallow convective clouds that form on top of the boundary layer moist updrafts:

Aupw′φ′
up
=

2
∑

i=1

Mui(φui − φ). (3.4)

In this way, the dry boundary layer formulation is extended to represent moist boundary layer convec-

tion. This is still a bulk approach to shallow convection parameterization, though the two plumes can

be considered as the simplest multi-plume model possible, and is considered the least complex mass

flux scheme that consistently couples the subcloud layer updrafts and shallow cumulus clouds in the

study of Neggers et al. (2009). The dry bulk updraft (i = 1) represents all subcloud layer updrafts that

do not condense their water and that terminate at the top of the mixed layer. The moist bulk updraft

(i = 2) represents all updrafts that condense water and give rise to the positively buoyant cumulus

clouds. The mass flux approach for the moist convective updrafts in the subcloud layer extends to the

cloud layer in a consistent way and the vertical transport below and within the cloud layer is modelled

using the same entraining plume model.

The focus of our study is on the updraft mass flux term, and the shallow cumulus cloud scheme that is

coupled to the convective transport parameterization within the EDMF-DualM framework (Neggers

et al., 2009). In the following, we will call this parameterization simply EDMF, but we will always

refer to the dual-mass-flux framework.

3.3.1 The entraining plume model

Vertical profiles of thermodynamic and momentum tendencies are estimated in EDMF by applying

an updraft plume model to both dry and moist updrafts in the scheme. The updraft budget equations

for a conserved variable φ used in EDMF are formulated as in Siebesma et al. (2007) and citations

therein:
1

Mui

∂Mui

∂z
= ǫ − δ (3.5)

∂Muiφui

∂z
= ǫMuiφ − δMuiφui + auiFφui

(3.6)

ǫ and δ are the lateral entrainment an detrainment rates, and Fφu contains all external sources and

sinks of the conserved quantity φ.

When all the external sources and sinks for φ are excluded, and Eq. (3.5) is substituted into Eq. (3.6),

the outcome is an entraining updraft equation (see also Betts, 1975)

∂φui

∂z
= −ǫui(φui − φ), (3.7)

where ǫui is the fractional entrainment rate.

Substitution of the mass flux definition into Eq. (3.6) results in the vertical velocity budget equation

(Siebesma et al., 2007):

− 1

2

∂w2
ui

∂z
− ǫwiw

2
ui + Pui + Bui = 0 (3.8)
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where ǫwi is the fractional entrainment rate for vertical velocity, which is assumed to be proportional

to the fractional entrainment rate for φ with the factor of proportionality b = 0.5, i.e. ǫwi = b ǫui

(Siebesma et al., 2007). In the updraft velocity equation, the main source terms are the pressure P and

buoyancy B terms. The pressure term P is expressed as proportional to the vertical velocity variance

(Schumann and Moeng, 1991; Siebesma et al., 2007):

P = −1

ρ

∂p

∂z
=
∂w2

∂z
≈ ∂µw

2

∂z
, (3.9)

where µ ≈ 0.15.

Substituting ǫwi = b ǫui and Eq. (3.9) into Eq. (3.8) results in vertical velocity budget equation as used

in Neggers et al. (2009):
1

2
(1 − 2µ)

∂w2
ui

∂z
= −bǫuiw

2
ui + Bui, (3.10)

where

Bui =
g

θv
(θv,ui − θv). (3.11)

Eqs. (3.7) and (3.10) are solved for the initial conditions given by the updraft initialization at the low-

est model level. The integration terminates at the height where w2
ui
= 0. The mass flux equation (3.5)

is not explicitly solved in the EDMF formulation, because it becomes obsolete with the formulation

of closure for the vertical structure of the moist updraft mass flux based on the buoyancy sorting of

environmental and updraft air mixtures (see the following section). Furthermore, the entrainment rate

formulation is not employed in the estimation of the mass flux profile, and is used only in the updraft

budget equations for the conserved quantities. So, dilution of the plumes by entrainment and shape

of the mass flux profiles are parameterized separately in EDMF (Neggers et al., 2009).

3.3.2 Main closure assumptions in the EDMF scheme

The three main closure assumptions in the EDMF formulation are the moist updraft area fraction

au2 closure based on the boundary layer equilibration mechanism described in (Neggers et al., 2006;

van Stratum et al., 2014), the closure for lateral entrainment rate for dry and moist updrafts ǫui, and

estimation of the vertical structure of the moist updraft mass flux (Neggers et al., 2009). In the

remainder of this section, we describe these three EDMF closure assumptions in detail, because some

aspects of these assumptions will have to be reconsidered for the development of the stochastic scale-

aware parameterization.

Moist updraft area fraction

The feedback mechanism between the mixed layer humidity, convective mass flux and mixed layer

depth is responsible for a steady-state shallow cumulus boundary layer over the ocean with a robust

cloud cover and mass flux over the time (Neggers et al., 2006). This mechanism serves as the main
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Figure 3.1: The mechanism of the CBL adjustment to equilibrium after a moisture perturbation. This equi-
libration mechanism has four phases: a) the typical equilibrium phase that is observed very often in the trade
wind regions over the ocean, b) the perturbed phase by subcloud layer moistening which increases au2 and M,
c) the adjustment phase in which au2 and M are restored to the equilibrium values, and d) the final restored
phase. This sketch is reproduced from Neggers et al. (2006).

physically based closure assumption in the cloud scheme of EDMF, so in the following we include

the description of this mechanism as explained in (Neggers et al., 2006).

In an equilibrium state (Fig. 3.1a), a typical cumulus cloud fraction over the trade wind region is

only a few percent, and the mixed layer top is always held close to the cloud-base height (Betts,

1976; Neggers et al., 2006). If the system is destabilized by moistening in the subcloud layer, more

rising updrafts will start to condense water at the top of the mixed layer, which will result in the

increase of the moist updraft area fraction au2 (Fig. 3.1b). The mass flux M is controlled by the

moist updraft area fraction au2 (see also Chapter 2), thus the increase of moist updraft area fraction

is followed by an increase in the mass flux (Fig. 3.1b). As more mass gets transported out of the

subcloud layer, the subcloud layer shrinks and h becomes lower. At the lower height h temperature

is higher and the saturation deficit increases, which restores au2 and M accordingly back to lower

values (Fig. 3.1c). In the adjustment phase, the subcloud layer slowly grows again, entraining dry air

at the height h, which restores the humidity profile by continuous drying near the subcloud layer top,

while near the surface humidity is slowly restored by the reduced surface evaporation (Fig. 3.1d). The

distance between h and the cloud-base height is the depth of the transition layer δtr, a weak inversion

layer just below the cloud base, which changes during the equilibration of the system and regulates

the convective transport (see also Bretherton et al., 2004). This feedback mechanism was already

recognized in early coupled subcloud layer model and mass flux scheme for the shallow-cloud layer

of Betts (1976). As one of the main parameters in the coupled scheme of Betts (1976), the transition

layer depth plays an important role in cumulus formation by controlling the detrainment of convective
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plumes near the cloud base, and thus controlling the fraction of the subcloud updrafts that can rise

through the transition layer and form clouds.

Based on the above described equilibration mechanism, the fraction of the updraft area that rises

out of the mixed layer and forms buoyant clouds is determined in EDMF by the ratio of transition

layer depth δtr and the subcloud mixed layer depth h. This ratio is multiplied by the proportionality

term which depends on the beta distribution function shape, to take into account the distribution of

conserved quantities at the cloud base:

au2 =

(

δtr

h

) 1

2p + 1
(3.12)

where the constant p = 2.2 that characterizes the distribution shape is estimated from LES (Neggers

et al., 2007b).

Entrainment

The rising plume budget equations, Eqs. (3.7) and (3.10), are applied to both bulk updrafts in the

EDMF scheme. Neggers et al. (2009) argue that such an approach is feasible only if the updraft

lateral entrainment rate is dependent on the state of the updraft. As in Neggers et al. (2002) the

dependence on the state of the updraft is achieved by parameterizing the updraft lateral entrainment

rate as inversely dependent on updraft velocity:

ǫui =
1

τǫwui

(3.13)

The entrainment turnover timescale τǫ is constant and is estimated from LES as τǫ = 400 s. By

this entrainment formulation, an updraft that is rising faster through the model grid layer will have

less time to mix with the environment and thus will be less diluted, and vice versa. The same updraft

entrainment rate is applied to the moist updraft in the subcloud and cloud layers. In the current EDMF

configuration in ICON, the dry updraft entrainment rate is further modified by including a term that

takes into account the proximity of the surface as in Köhler et al. (2011):

ǫu1 =
1

τǫwu1
+ cǫ

1

z
(3.14)

The entrainment rate of the dry updrafts scales with 1/z near the surface, with a factor cǫ = 0.4.

Vertical mass flux structure

Detrainment is the dominant mechanism that regulates the vertical structure of mass flux in the cloud

layer (Esbensen, 1978; de Rooy and Siebesma, 2008), however, it is a challenging task to derive an

explicit formulation of the detrainment rate for the purpose of parameterization. A benefit of the

separate treatment of the vertical mass flux structure and plume dilution by turbulent mixing with the
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environment is that there is no need for an explicit formulation of the detrainment rate δ (de Rooy and

Siebesma, 2008).

The closure for the mass flux vertical structure in EDMF is an implicit version of a buoyancy sorting

scheme (see for example Kain and Fritsch, 1990). In such schemes, the turbulent mixing between

clouds and their environment takes place at the cloud periphery, and this is represented by the mix-

tures of cloudy and environmental air that can entrain or detraine the air mass from the cloud. These

mixtures differ by their buoyancy, which depends on the fraction of the environmental air χ contained

in the mixture. A mixture of cloudy and environmental air will be less buoyant if the fraction of envi-

ronmental air χ is higher, and more buoyant if χ is lower. A critical mixing fraction of environmental

air χc is defined as the fraction of environmental air at which the mixture is neutrally buoyant. If

χ > χc the mixture is negatively buoyant, and therefore its role is in detraining of the cloud air. The

mixture entrains the fraction of environmental air and dilutes the cloud if it is positively buoyant, that

is when χ < χc. By defining such mixtures, the dependence of the mass flux profiles on both the

updraft properties and on the environmental conditions is introduced.

In EDMF, instead of explicitly formulating the buoyancy sorting and χc, a moist zero buoyancy deficit

qx
t −qt is used instead, where the critical total water mixing ratio qx

t corresponds to the critical fraction

χc at which the mixture would be neutrally buoyant. Thus, the critical total water mixing ratio qx
t is

defined as the point on a lateral mixing line between the mean state and the cloud core state, where

buoyancy is equal to zero (Fig. 3.2). In terms of this formulation, if the mean total water mixing ratio

of a model grid column qt is far from the critical total water mixing ratio qx
t only a small fraction of

the cumulus updraft will be positively buoyant and able to form clouds. And the other way around, if

the distance between qt and qx
t is small, a large fraction of the updraft will become cloudy.

qt

}v r }v qsat
qt

x

qt u2

qt

Figure 3.2: A mixing diagram representing the lateral mixing line (blue line) between the cloud and its envi-
ronment on the total water mixing ratio qt versus the virtual potential temperature excess θv−θv plot. The moist
updraft qt is defined by the normal probability density function with the mean qtu2 and standard deviation σup

qt .
The point where the mixing line intersects with the zero buoyancy line defines the critical total water mixing
ratio qx

t where the cloudy and environmental air mixtures are exactly neutrally buoyant. Positively buoyant
points within the moist updraft that satisfy the condition qt > qx

t form the cloud. This diagram is reproduced
from Neggers et al. (2009).
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The normalized moist zero buoyancy deficit Qc is defined as:

Qc =
qx

t − qt

σqt

(3.15)

where σqt
is the standard deviation of the total water mixing ratio. The normalized moist zero buoy-

ancy deficit Qc is correlated to the cloud fraction ac, which is expressed as a correlation function of

the vertical gradients of ac and Qc (Neggers et al., 2009):

1

ac

∂ac

∂z′
= Ca

1

Qc

∂Qc

∂z′
(3.16)

The correlation coefficient Ca is found to be equal to -1.8 based on the LES studies of several different

cases, over the ocean and over the land (Neggers et al., 2009). z′ is the height above the cloud base

normalized by the cloud layer depth.

Using this formulation of buoyancy sorting, the updraft mass flux profile is made dependent on the

updraft properties and the excess in total water mixing ratio in respect to the environment. The

formulation of gradient scaling scaling relation Eq. 3.16 in EDMF is based on the vertical gradients

of normalized moist zero buoyancy deficit Qc at the cloud base and at the cloud top, after which

the moist updraft area fraction is interpolated linearly between the cloud base and the cloud top. This

approach is suitable for representing the typical peaks in the cloudiness near the cloud base, as well as

near the top of the cloud layer in the convective cases with relatively strong capping inversion, such

as RICO (Neggers et al., 2009). Finally, the vertical profiles of the cloud mass flux are calculated

using Eq. 3.3.

3.4 Stochastic EDMF scheme

The stochastic model is a nonlocal probabilistic cloud ensemble framework that operates on the full

modelling domain and keeps the memory of individual cloud lifecycles. Coupling of the stochastic

model to EDMF introduces a spectral cloud ensemble and a local memory component to the otherwise

fully diagnostic and bulk EDMF cloud scheme. In this study a spectral cloud ensemble is used for

the purpose of parameterizing the subgrid convective variability, while the bulk aspects of EDMF

are still retained on the large scales where the quasi-equilibrium assumption is valid. In the future

phases of the parameterization development, some aspects of the spectral cloud ensemble such as

the individual cloud lifecycles will have more implications, especially in the updraft microphysics

parameterization. On a very high resolution, below 6 km approximately, where a single cloud scale

approaches the model grid scale, the cloud area and the individual cloud mass flux are allowed to

spread across the neighboring grid cells in the stochastic model. This latter feature is a step towards

a parameterization in the gray zone for an individual cloud, where the communication between the

neighboring grid cells has to be implemented instead of a classic localized grid-column approach.

In this section we describe the coupling between the stochastic model based on the convective en-

semble statistics (Chapter 2) and the EDMF scheme in ICON. The variability of subgrid convective
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mass flux is parameterized by subsampling the convective cloud ensemble in a scale-aware approach,

so that the statistical quasi-equilibrium is applied on the large scale where the convective cloud area

fraction is very small au2 << 1. The stochastic model developed in Chapter 2 is operating on a

two-dimensional horizontal plane, and when it is implemented in the 3D ICON model, the vertical

structure of cloud layer also has to be reassessed. So, in this section we also propose two feasible

options to develop the parameterization of the cloud layer vertical structure in the stochastic EDMF

framework.
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Figure 3.3: The flow chart of the stochastic EDMF scheme in ICON during a single model physics time
step. The ICON model consists of the model dynamics level where the prognostic equations are discretized
and solved (left side) and the model physics level where the subgrid processes contributions are calculated by
using different parameterization schemes, which are mainly diagnostic (right side). The two model components
are merged by an interface level at which the exchange of model variables between the model dynamics and
physics takes place.

3.4.1 Perturbed moist updraft area fraction

The main variable that represents individual clouds in the stochastic EDMF scheme is the moist

updraft area fraction au2, based on which the convective mass flux M is calculated following Eq. (3.3).

The main EDMF quasi-equilibrium closure assumption is applied on au2, and that is why the definition
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of the au2 closure is the point where the stochastic model from Chapter 2 is introduced into the EDMF

framework.

The stochastic model generates a compound distribution of the subgrid moist updraft area fraction au2.

This compound distribution is a convolution of the Poisson distribution that counts the clouds and the

mixed Weibull distribution that defines the individual cloud mass fluxes (Fig. 3.4). The mixed Weibull

distribution consists of two distribution modes, one representing the active clouds and the other one

representing the passive and forced clouds. In the EDMF scheme turbulent-diffusive and convective

transports are as well described by a bi-modal distribution, thus the passive cloud distribution mode

is not implemented into the EDMF scheme, but its estimation is transferred to the diffusive transport

and passive cloud parameterization of EDMF. The Weibull mass flux distribution for active clouds is

retained in the stochastic ensemble model and is used to define the fluctuations of the moist updraft

mass flux Mu2 and area fraction au2. The resulting distribution of the perturbed a
p

u2 is scale-adaptive,

and its variance and skewness change with the model resolution because the number of initiated cloud

elements in the Poisson process depends on the grid cell area. Using this approach, au2 is perturbed in

a physically based manner, having the large-scale ensemble average of cloud properties as a physical

constraint on the system as formulated in Chapter 2.

A

au2 bulk

PDF of cloud mass fluxes

Stochastic scheme

t’, q’

t, q EDMF

Figure 3.4: A schematic diagram of the stochastic shallow cumulus ensemble on the ICON model grid. The
subgrid updraft area fraction is estimated as a random sum of the individual updraft area fractions within each
model grid cell. The closure is applied on the large scale around the grid cell (red border), while the EDMF
scheme updates the local grid cell thermodynamic properties based on the random subsample of the cloud
ensemble.

The time step of the stochastic EDMF parameterization starts with averaging of the prognostic vari-

ables that are input to EDMF as shown on the flow chart, Fig. 3.3. The averaging is performed over

the large area around each grid cell in ICON (Fig. 3.4), which is currently the full simulation domain.

This is justified by the randomness and uniformity of the LES RICO-140 cloud field. The stochastic

model is coupled to the EDMF physics scheme in ICON and is implemented at the model dynamics-

physics interface level. At the model interface level all physical parameterization schemes are called

and the grid-scale prognostic fields are updated by the contribution of the subgrid physical processes.

These classic deterministic parameterization schemes are grid point based, with no communication
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between the model columns in horizontal direction, while the stochastic model requires a nonlocal

spatial averaging. That is why the EDMF scheme is called twice at the model interface level. The

first call of EDMF calculates the large-scale closure for the moist updraft area fraction au2 and the

updraft vertical velocity wu averaged over the large-scale area A. The bulk moist updraft area fraction

au2 and updraft vertical velocity wu are then fed into the stochastic model after the first EDMF call

at the model interface level. The stochastic model is run for the current time step to perturb au2 in a

scale-aware manner, by producing a distribution of subgrid convective area fractions that is dependent

on the model resolution. The perturbed area fraction a
p

u2 is then provided as an input to the second

EDMF call, which is now fed with the nonaveraged prognostic fields in the case of the stochastic

treatment of cloud layer vertical structure or with the averaged fields in the case of the bulk treat-

ment of the cloud layer vertical structure (see Sections 3.4.2 and 3.5.2). In the second call the EDMF

scheme continues further from the au2 closure point to compute the moisture and heat budgets and

estimate the vertical structure of the cloud layer (Fig. 3.3).

A requirement of the conventional mass flux schemes is that the cloud area fraction remains much

smaller than the total grid cell area fraction, which is not fulfilled on the gray zone grids where the

model grid scale approaches the scale of individual clouds. However, in the stochastic EDMF scheme,

the closure assumption for the moist updraft area fraction, Eq. (3.12), is assumed to be valid for the

large area A around a model grid cell (Fig. 3.4), as in the stochastic model formulation in Chapter 2.

Thus, we avoid the gray zone dependence of the closure assumption and Eq. (3.12) is used in the

same form as in the deterministic EDMF scheme, but now applied on the scale where the statistical

quasi-equilibrium is valid. However, the separation of the grid cell area into the strong updrafts and

environment requires an additional definition for the total updraft area fraction, which is originally

composed of the sum of dry and moist updraft area fractions

Aup = 1 −AK =

2
∑

i=1

aui (3.17)

and is a model constant set to Aup = 0.1. In the stochastic EDMF scheme, the total updraft area

fractionAup∗ is grid-dependent, because the moist updraft area fraction au2 is allowed to vary between

zero and one. So, if a grid column is likely to hold a cloud, the total convective area fraction in the

stochastic formulationAup∗ is allowed to grow according to the area fraction occupied by clouds

Aup∗ = MAX(Aup, a
p

u2). (3.18)

The dry updraft area fraction au1 is still not parameterized as scale-adaptive in the current model

formulation, because we focus on the cloud parameterization component of EDMF in this study.

3.4.2 Scale-dependence of the cloud layer vertical structure

The updraft budget equations, Eqs. (3.7) and (3.10), can in general be applied to a bulk convective

updraft within a bulk convection scheme or to a single updraft in a multi-mass-flux approach. The

EDMF scheme is a bulk scheme with two separate updrafts, i.e. dry and moist updrafts, and plume
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equations are valid for each of these bulk updrafts (previous section). On the gray zone scales, where

the convective ensemble is subsampled, the bulk updraft budget equations are not well defined. There

are several closure parameters that are defined specifically for the case of a robust statistical sample

of an updraft ensemble: the entrainment rate for the conserved quantities ǫ, the entrainment rate

for the updraft vertical velocity ǫw, and the proportionality parameter µ in the pressure term of the

updraft velocity equation (Eq. 3.10). Furthermore, the formulation of the updraft mass flux vertical

structure in the cloud layer is not defined at the gray zone scales either. The cumulus ensemble is

under-sampled at these scales, and the spread of the employed scaling relation (Eq. 3.16) becomes

wider with the increase of resolution (see the next section). There is no unique vertical gradient of the

cloud area fraction ac for each gradient of the normalized moist zero buoyancy deficit Qc (Eq. 3.16).

In this section, we discuss the limitations of closure assumptions for the entrainment and for the

vertical mass flux structure on the gray zone grids. We also suggest possible solutions to an adequate

parameterization of the cloud layer vertical structure, which we will test later in Section 3.5.2.

Limits of the entrainment formulation

The formulation of the lateral entrainment rate is important to represent the interaction between

the updrafts and their environment. The entrainment rate formulation for moist and dry updrafts

(Eq. 3.13) is valid in case of a robust cloud ensemble within a grid column, and can be applied to

both updrafts because it is formulated as dependent on the updraft vertical velocity (Neggers et al.,

2002, 2009). However, the outcome of the EDMF parameterization is sensitive to the value of the

timescale τǫ (see Section 3.5.2), which is estimated based on the LES studies. Moreover, it is dif-

ficult to define what this parameter exactly represents and it is used mostly as a tuning parameter

in models, taking the value in the range from 300 s to 600 s (de Rooy and Siebesma, 2010; Sušelj

et al., 2013). A picture on the scale of an individual cloud is somewhat different - the small-scale

diffusive turbulent lateral mixing maintains the constant cloud profile with height, where the massive

dynamical entrainment takes place at the cloud base, and the massive dynamical detrainment takes

place at the cloud top (de Rooy and Siebesma, 2010). Between these two asymptotic configurations

of the parameterization, fully bulk or fully spectral, the entrainment rate is not well defined.

Besides the entrainment rate, the parameters µ and b from Eqs. (3.7) and (3.10) also have to be

redefined as dependent on the grid cell size, the number of clouds within the grid cell, and the range

of the cloud properties within that cell. Due to the cloud ensemble subsampling, these parameters are

uncertain, which suggests a stochastic approach to parameterize them. This aligns with the studies in

which it is suggested that cloud dilution with height should be parameterized as a stochastic process

in order to represent well the thermodynamic structure of the cloudy boundary layer in diverse cases

(Raymond and Blyth, 1986; Romps and Kuang, 2010; Sušelj et al., 2013; Dawe and Austin, 2013).

There are indications that the correlation rate of the moist convecting parcel state with the cloud base

state is completely lost a few hundred meters above the cloud base and the responsible process for

changing the convective parcel state above the cloud base is the stochastic entrainment (Romps and

Kuang, 2010). However, Dawe and Austin (2013) suggest that the formulation of the entrainment

rate as dependent on the updraft properties should be retained, because both ǫ and δ show a strong
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dependence on cloud properties, but at the same time they also exhibit a substantial randomness. They

also quantify the variability in entrainment rate, which is in the range ǫ ∈ [0.005, 0.2] m−1. Given the

uncertainty in τǫ and documented dependence of ǫ on wu and at the same time documented random

characterictics of ǫ, the entrainment rate ǫ still could be parameterized using Eq. (3.13), but instead

of a constant τǫ this parameter should be stochasticaly perturbed. As in Sušelj et al. (2013) it would

require two stochastic processes to parameterize shallow convection across scales, one to represent

the stochastic plume dilution with the height, and the other to represent variability in the moist updraft

fraction contained within a model grid column.

Scale-dependence of the vertical mass flux profile

Parameterization of the vertical mass flux profile in terms of the gradient scaling relation (Eq. 3.16) is

tested in a coarse-graining study of the RICO-140 LES case. We repeat the gradient scaling relation

here for the convenience of the reader:

1

ac

∂ac

∂z′
= −1.8

1

Qc

∂Qc

∂z′
(3.19)

(Neggers et al., 2009). The gradients of the normalized moist zero buoyancy deficit Qc and cloud

area fraction ac are estimated from LES, and are plotted on the scatter plots for the different coarse-

graining resolutions (Fig. 3.5). The scaling relation Eq. (3.19) is plotted in its original form without

fitting it to the LES scatter points (red line on Fig. 3.5). Based on these results, we conclude that on

the model grids with a horizontal resolution larger than 20 km the scaling relation Eq. (3.19) is valid

because the estimated gradients corresponding to the RICO-140 case fall close to the parameterization

line. Therefore, Eq. (3.19) can be applied on the coarse grids in the original deterministic form. On

the grids with a horizontal resolution finer than 20 km, the scatter of points that represent the pairs of

vertical gradients of Qc and ac is wide and the scaling relation is no longer valid.

The lateral mixing line (Fig. 3.2) is reproduced from the LES RICO-140 simulation (Fig. 3.6), by

coarse-graining the thermodynamic properties over different-resolution grids, and by following the

EDMF buoyancy sorting and mixing line formulation explained in Section 3.3.2. The scatter on the

gradient scaling plots on high resolutions (Fig. 3.5c-f) originates mainly from the variability of the

grid cell mean states qt along the zero buoyancy line (blue markers on Fig. 3.6). This also partly

explains the increase in the scatter of points with resolution because the variability of qt increases

with the decreasing grid cell area. There is also some variability in the critical moist zero buoyancy

deficit qx
t point on the lateral mixing line, however, this scatter is much smaller. Thus, the closure

scaling Eq. (3.19) is impaired on the high resolution grids because of the uncertainty in the moist zero

buoyancy deficit Qc on the high resolutions, and of course, also because of the high variability in the

subgrid cloud fraction ac on the high resolution grids.
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Suggestions for the new vertical structure parameterization

There are at least three possibilities for an adequate application of the updraft budget equations and

buoyancy sorting scheme on the gray zone scales:

1. The plume equations and the buoyancy sorting closure in the stochastic EDMF configuration

can be applied to the bulk updraft resulting from a summation of all updrafts within a large-scale

area A (see figure 3.4). This means that the shape of the ensemble average vertical profile of

mass flux and other updraft properties is retained on all resolutions, but on the scale of a single

model grid column the profile is scaled with the perturbed area fraction a
p
u within that column.

In this way, the variability in the mass flux vertical profiles depending on the cloud subensemble

size within a model grid column is not represented, but on the other side, the formulation of

the model closure is consistent with the scale at which it is applied. This option for the cloud

vertical structure parameterization is tested in Section 3.5.2 as a reference stochastic case.

2. A stochastic parameterization of the mass flux profile based on the cloud subsample properties

could be developed in addition to the stochastic parameterization of the moist updraft area

fraction. The stochastic model that is coupled to the EDMF scheme provides enough details of

the cloud subsample in the gray zone, such as the number of clouds within a model grid column,

and individual cloud heights and horizontal area fractions. This information could be included

into a parameterization of the vertical mass flux profile and its variability across resolutions.

Furthermore, a stochastic parameterization of the lateral entrainment rate used in the plume

equations (3.7) and (3.10) is needed, because, as it was explained in previous sections, this

parameter is likely to be stochastic and resolution dependent. This option is tested in Section

3.5.2, Test 1 and Test 2.

3. The third option would be to apply the plume equations to each individual updraft correspond-

ing to each individual cloud initiated in the stochastic model. This, however, is not attractive

for most applications of NWP or climate models, due to required computational and memory

costs.

In this study we consider the first option as our base model setup and show that it might be sufficient

for representing the average thermodynamic fields, cloud properties and their time evolution, as well

as the variance and skewness of subgrid cloud properties in a shallow cumulus case over the ocean.

The second option is tested as well in Section 3.5.2, and compared with the base setup of the stochastic

model.
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Figure 3.5: A test of the original EDMF closure assumption given by Eq. 3.19 (red line) for the RICO case.
Plots are showing the pairs of the vertical gradients of the moist updraft area fraction and zero-buoyancy deficit
of qt above the cloud base, within the time frames starting at 6 (gray), 12 (red) and 18 h (green). Results are
coarse-grained across the resolutions, from 51.2 km (top-left) to 1.6 km (bottom-right). Correlation coefficients
r1, r2, and r3, are calculated for all three time frames (above the plot).
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Figure 3.6: The RICO case lateral mixing line at a level above the cloud base on a scatter plot of the virtual
potential temperature excess θv − θv and total water mixing ratio qt (gray). The coarse-grained values of the
mean total water mixing ratio qt (blue) and the critical value qx

t (green) at the zero buoyancy line are shown for
the range of resolutions, from 51.2 km (top-left) to 1.6 km (bottom-right). The coarsest resolution case shows
only five points, representing the five time frames of six hours duration (6-12 h, 12-18 h, 18-24 h, 24-30 h, and
30-36 h), and the number of points increases by the number of grid cells towards the fine resolution cases.
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3.5 Numerical simulations

We approach the evaluation and testing of the stochastic parameterization by using an idealized model

simulation of the RICO case. A single column model configuration is commonly used to test the

newly developed parameterizations, however this approach is appropriate in the case where the sub-

grid cloud processes are parameterized assuming no direct communication or correlation between the

neighboring model columns, but the interaction takes place only through the mean flow. In the case of

the new stochastic EDMF scheme, the entire limited area model domain can be considered equivalent

to a single-column setup for testing the parameterization capability to predict the macroscopic state

of the system, while the stochastic model is applied across this domain for the probabilistic modelling

of the microstates of the system.

In this section we perform deterministic and stochastic model simulations using the ICON model on

the double-periodic limited area domain of around 4102 km2. Experiments are conducted multiple

times using a range of horizontal resolutions from around 1 to 50 km (Table 3.1). In all experiments

the vertical grid spacing is stretched with the minimum layer depth of 100 m near the surface and with

a total of 50 levels up to 10 km height. Near the top boundary of the modelling domain, the sponge

layer is set for wave damping starting at the height of 7 km.

Table 3.1: Model horizontal resolution and time step

triangle edge (km) rectangular edge (km) number of points time step (s)

2.43 1.6 168 × 196 3
4.86 3.2 84 × 98 5
9.72 6.4 42 × 48 10

19.45 12.8 20 × 24 20
38.90 25.6 10 × 12 40
77.81 51.2 8 × 8 80

Turbulence, convection and shallow clouds are parameterized using the unified EDMF parameteri-

zation scheme, which is called every fourth dynamics time step, and no other physics schemes are

employed to simulate the RICO case. As described in Section 3.2 and in Appendix A.1, the constant

large-scale forcing tendencies are applied following the ICON LES framework of Dipankar et al.

(2015). A land/ocean surface scheme is as well included in the model configuration, but it is used

only for technical reasons because of its hard-coded coupling with EDMF. The constant sea surface

properties are prescribed explicitly within the EDMF scheme. This study focuses on the nonprecip-

itating behavior of the convective case over the ocean, thus the parameterization of precipitation

formulated within the moist updraft budget equations is not included in the model configuration.

3.5.1 Deterministic simulations

The deterministic EDMF scheme is tested in ICON by comparing its performance to the LES simula-

tion of RICO-140. The typical RICO domain-averaged quantities, vertical structure of the RICO case

and its time evolution are reproduced in ICON model on the meso-γ-scale model grids.
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The opposite behavior between high and coarse resolution simulations is caused by the divergence

of grid-scale flows on different model grids that takes place already after 12 hours of the simulation

(see section 3.5.4). Before the divergence of grid-scale flows takes effect, the EDMF scheme itself

has no resolution dependence, and this is demonstrated by the almost identical vertical profiles of the

convective boundary layer properties after only 10 hours of simulation (Fig. 3.7). As it will be de-

scribed later in Section 3.5.4, on high resolution grids, convective circulations develop and organize

into regular roll structures that bring in inhomogeneities into the cloud field and change the convective

regime of RICO into an organized case. The inhomogeneities brought in by the convective organi-

zation influence the parameterization of the cloud layer vertical structure, and activate the effects of

the impaired scaling relation (Eq. 3.19, Fig. 3.5) in the formulation of the vertical mass flux structure.

This degrades the vertical profiles of cloud mass flux with the increase in model resolution to the grids

with a length finer than 10 km. In the homogeneous cloud field, before the emergence of convective

circulations, the scaling relation Eq. 3.19 has the same behavior on different resolutions and does not

affect the model convergence.

The apparent divergence of simulations on the coarse model grids, visible mostly in the mass flux

M and cloud fraction ac vertical structure (Fig. 3.8), results from small differences in the evolution

of the cloud fields among the simulations. As we will show later, precipitation is not included in

the model configuration, so the cloud liquid water piles up and the convective system shows small

jumps in cloud liquid water path and higher jumps in cloud cover (see Fig. 3.16). The small jumps

and the gradual increase of cloud liquid water path is very similar across the resolutions, thus we see

no differences in the absolute value of qc on the vertical profile plots. On the other hand, the higher

jumps in the cloud cover evolution cause small differences across the resolutions, which reflect in the

vertical profiles of the cloud fraction. However, it is uncertain if these differences in ac across the

coarse resolutions can be interpreted as a regular divergence pattern of simulations.

Stability of the RICO case in ICON EDMF

RICO is a precipitating shallow cumulus case over the ocean, and in principle, it is a transient case

but for the pupose of parameterization it can be considered quasi-stationary on hour timescales (in

Chapter 2 we used six-hour time frames). In the EDMF simulations without precipitation, the RICO

case becomes unstable approximately after a day and a half. This is expressed as the gradual increase

of cloud cover over time to 100 % until the third day of simulation, and very unstable times series of

both cloud cover and cloud liquid water path (Fig. 3.9, green). When precipitation is permitted during

the five day long simulation, cloud cover and liquid water path time series are stable and the system

maintains the balance (Fig. 3.9, purple). Simulations longer than five days were not performed here,

but the expectation is that they are feasible using the deterministic EDMF scheme if precipitation is

allowed on the subgrid scale.

During the first day of the simulation, the EDMF closure mechanism based on the boundary layer

equilibrium described in Section 3.3.2, Fig. 3.1, maintains the low cloud fraction and brings the sys-

tem close to equilibrium state after every small perturbation. However, after approximately 32 hours

of simulation, the EDMF closure assumptions completely break down as too much liquid water is
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(a) cloud cover (b) cloud liquid water path

Figure 3.9: Comparison of the time series of cloud cover and cloud liquid water path between the LES RICO
case (gray), deterministic EDMF without precipitation (green) and deterministic EDMF with precipitation
(purple).

accumulated over the time because its release by precipitation is disabled by the model configuration.

After the liquid water path exceeds around 100 g m−2 and after the cloud fraction exceeds 30-40 %,

the behavior of the scheme is no longer physical and the whole mechanism of equilibration breaks

down after which the simulations fails. The main reason for this kind of instability of simulated con-

vection is the assumption of the total convective area fraction of 10 % allowed in the deterministic

scheme (Section 3.4.1,Aup = 10%).

In the following, we exclude the subgrid precipitation that originates from convective clouds in the

EDMF configuration to isolate the effects of the stochastic EDMF parameterization on the nonprecip-

itating convective case. Therefore, the RICO case is studied here during a day and a half in all

simulations before the instability affects the simulated cloud system.

3.5.2 Stochastic simulations

In this section we present the results of the stochastic EDMF scheme described in Section 3.4 em-

ployed to simulate the RICO case in ICON. The stochastic scheme is tested across the range of model

horizontal resolutions (Table 3.1). The reference case for the stochastic simulations is resulting from

the bulk updraft configuration of the budget equations and the buoyancy sorting scheme applied to the

bulk updraft (the first option for the vertical structure formulation in Section 3.4.2). Thus, in the ref-

erence configuration, the stochastic approach is affecting the simulations solely through the perturbed

updraft area fraction a
p

u2.

The vertical profiles of cloud fraction ac and cloud liquid water mixing ratio qc demonstrate a de-

crease in cloudiness with increasing resolution (Fig. 3.10). In a similar way as in the deterministic

simulations, this reduction in ac and qc results from the changes in the mass flux profile with reso-

lution (Fig. 3.10, bottom right). In general, the stochastic model successfully reproduces the mean

thermodynamic vertical structure of the RICO case, and furthermore, the cloud layer profiles of ac

and qc show an improvement towards the shape of the LES RICO profile. The structure of the cloud

layer vertical profiles is very similar but evidently smoother than the structure of the profiles in the

deterministic experiments (Fig. 3.10, top row). The turbulent fluxes of heat and moisture are mod-
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elled well, and they show a small dependence on resolution, which also reflects the dependence of the

mass flux profile on the model resolution (Fig. 3.10, bottom row).

This resolution dependence is partly caused by the convective circulations that develop on the model

grid as a solution of the model dynamics. In difference to the deterministic simulations, this effect acts

on all grid resolutions tested in this experiment. Because the convective circulations are grid-scale

dependent, the influence they have on the vertical profiles as well depends on the model resolution

(see Section 3.5.4). The vertical structure parameterization across the model resolutions is simplified

in this model configuration where the shape of the bulk vertical structure is retained on all resolutions

(option 1 in Section 3.4.2), which is another factor that causes a reduction in the mass flux, turbulent

fluxes and wind profiles with resolution. This suggests that a simplified formulation of the vertical

cloud structure in this base stochastic model formulation is not sufficient to reach the complete scale

convergence of the CBL parameterization.

The vertical profiles of the wind components are affected by the stochastic model more than the other

RICO properties, and are degraded on a very high resolution below ∼ 6 km (Fig. 3.10, middle row).

The momentum fluxes might require a different treatment of plume dilution with height by lateral

mixing, which should is separately defined from the parameterization of thermodynamic fluxes. This

difference, however, becomes important on the high model resolutions within the convective gray

zone, while the coarse-resolution simulations are not affected.

In the remainder of this section, we will test different formulations of the lateral mixing mechanism

and the mass flux vertical structure formulation and try to reproduce the correct thermodynamics and

wind profiles on high resolution model grids. However, we do not provide the final or a complete

solution for a scale-aware lateral mixing parameterization in the convective gray zone.

Sensitivity of the cloud layer to the entrainment timescale

Given the fact that the entrainment timescale τǫ is uncertain, it is possible that the timescale τǫ has a

high influence on the RICO case average vertical profiles in the stochastic model configuration. This

is why we test the sensitivity of the RICO case vertical structure to this parameter, by performing

two experiments across the range of model resolutions, first with a shorter entrainment timescale

τǫ = 300 s and second with a longer timescale τǫ = 600 s. A shorter entrainment timescale produces a

stronger entrainment rate with height, while a longer entrainment timescale sets a weaker entrainment

rate. Here we apply the change in τǫ to both dry and moist updrafts, following Eqs. (3.13) and (3.14).

The cloud layer is highly sensitive to the parameterization of the entrainment timescale as expected

(Fig. 3.11). A less vigorous and shallower cloud layer results from the stronger entrainment by setting

a short timescale (Fig. 3.11a), and the difference among the simulations on different grid resolutions

is more pronounced than in the reference case. On the coarse resolutions, the vertical profiles are

unstable, with two or more strong peaks near the cloud base and cloud top levels. Doubling of the en-

trainment timescale changes the cloud profiles substantially, and the cloud layer becomes significantly

deeper (Fig. 3.11b). The cloud water mixing ratio shows a strong dependence on the model resolution

in the latter case - as the model resolution increases the cloud liquid water decreases. Cloud fraction
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scaling relation (Eq. 3.16) becomes wider with the increase of resolution (see Fig. 3.5). These are the

two main reasons to parameterize the vertical structure of the cloud layer more adequately. In this

section, we test several possible approaches to the cloud layer vertical structure parameterization on

the gray zone grids, and we discuss the requirements for a complete scale-aware vertical structure

parameterization. The model configurations suggested here correspond to the suggestion for the new

vertical structure parameterization, option 2 defined in the section 3.4.2.
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Figure 3.12: Distribution of τǫ across the resolution, as parameterized in a stochastic treatment of the cloud
layer vertical structure by Eq. 3.20.

First, we test a semi-stochastic parameterization of τǫ and Γac
, with arbitrarily selected and tuned

variance of the sampling distribution. The tuning of the sampling distribution variance is performed

towards the RICO-140 cloud layer vertical structure. In the case of τǫ , we adopt the scale-dependence

of the moist updraft area fraction compound distribution, which is defined in Chapter 2 (see Fig. 2.9),

by adding a perturbation term to τǫ as

τ
p
ǫ = τǫ + a∗

a
p

u2 − au2

au2
τǫ , (3.20)

where a
p

u2 is a perturbed moist updraft area fraction, au2 is a nonperturbed bulk moist updraft area

fraction, and a∗ is a factor that controls the spread of the perturbed entrainment timescale τp
ǫ . The

factor a∗ is a tuning parameter valid for the RICO-140 case at this stage of model development, and

it ranges from 0.03 in high resolution simulations to 0.1 in coarse resolution simulations. In this way

the distribution of τǫ is scale-aware, with a variance and skewness that increase with model resolution

(Fig. 3.12). As the resolution of the model increases, the spread around the nonperturbed determin-

istic timescale τǫ becomes higher, and the distribution of all possible values of τp
ǫ becomes right

skewed. Thus the entrainment rate ǫ is still parameterized as a function of the updraft vertical veloc-

ity wui, but it also comprises a quasi-random component introduced through the modified entrainment
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We perform two simulations, first by tuning the τǫ sampling distribution (Fig. 3.12) to repro-

duce the correct thermodynamic structure of the RICO boundary layer, and second by tuning

the τǫ distribution to reproduce the correct momentum transport and wind profiles of the RICO

case. The results of these two simulations presented on Fig. 3.14 show that when the model

is tuned by changing the τǫ distribution to represent correctly the thermodynamic structure, the

vertical wind profiles are degraded (as in the previous experiments using the stochastic EDMF

scheme, Fig. 3.10). On the other hand, when the τǫ distribution is tuned to represent the verti-

cal wind profiles correctly, the thermodynamic structure and cloud fraction profiles are degraded

(Fig. 3.14). This suggests that parameterized momentum transport and thermodynamic transport

should use separately defined lateral entrainment mixing mechanisms in the gray zone models.
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Figure 3.15: A sketch of the subgrid mass flux vertical
profile construction. Individual clouds have different
heights and intensities and a constant vertical mass flux
profile. Depending on the random number of clouds
within a grid column, the total cloud mass flux profile
will have various shapes.

We conclude here that the stochastic param-

eterization of a shallow convective ensemble,

by subsampling the individual realizations of

subgrid convection to represent the fluctuations

around the equilibrium, combined with an ap-

propriate vertical structure stochastic parameter-

ization, improves the cloud layer vertical struc-

ture in a transient convective case such as RICO.

The cloud fraction and cloud liquid water con-

tent (Fig. 3.14a) now match the LES RICO pro-

files closely. Thus, the least complex parameter-

ization that is able to reproduce the RICO case

vertical structure properly across scales includes

the stochastic cloud ensemble framework and a

semi-stochastic cloud layer vertical structure pa-

rameterization.

Time series

Now we continue the analysis of the basic stochastic EDMF RICO case (option 1 from Section 3.4.2).

The time series of cloud cover and cloud liquid water path are plotted on the panel on Fig. 3.16. It is

evident that the deterministic EDMF scheme overestimates cloudiness on all model grids. We know

from the previous section that EDMF is unstable if precipitation that originates from moist updrafts is

not included into the model configuration (Fig. 3.9). Here we show that the stochastic EDMF captures

the RICO time series better than the deterministic scheme and clearly smooths the abrupt peaks in

the time series of cloud cover and liquid water content on all model resolutions (Fig. 3.16). So, the

most prominent effect of the stochastic model on the time evolution of the RICO convective case is

stabilization of the time series of cloud cover and cloud liquid water content (Fig. 3.16).

Resolution dependence is evident in the time series as well, where the high resolution cases develop

cloudiness that is reduced throughout the simulation compared to the coarse resolution cases. We
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(a) cloud cover (b) cloud liquid water path

Figure 3.16: The RICO time series of the cloud cover and cloud liquid water path showing the deterministic
EDMF (green), stochastic EDMF simulation (pink), and LES RICO-140 time series (gray).
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Figure 3.17: RICO time series of the moist updraft area fraction at the cloud-base level showing the determin-
istic EDMF without precipitation (green) and stochastic EDMF without precipitation (pink).

attribute this reduction partly to the resolution sensitivity of the cloud layer vertical structure pa-

rameterization, the entrainment rate formulation and the vertical mass flux structure, and partly to

the interaction of EDMF with the convective circulations permitted on the grid scale (see the next

two sections). The stochastic model introduced to EDMF perturbs the updraft area fraction and is

not directly responsible for the scale-dependence of the time series. To prove the latter statement,

we show that there is no scale-dependence of the average updraft fraction at the cloud-base level on

Figure 3.17, though the stochastic variability introduced at the cloud base slightly increases with the

resolution. The increase of variability in the updraft area fraction at a level above the cloud base

reflects the increase of variability in the cloud field caused by the circulations permitted on the grid

scale, and is not introduced by the stochastic model. By the applied stochastic approach itself, the

fluctuations of the domain average updraft area fraction in time should not be resolution dependent

(not shown here).

3.5.3 Convective variability across scales

From the coarse-graining study of the LES RICO case (Chapter 2), we draw the conclusion that the

statistical quasi-equilibrium can be considered valid on grid resolutions coarser than approximately

20 km (see Fig. 3.18a). We have to emphasize that this conclusion holds in the case of a quasi-

stationary convective cloud field in a slowly changing environment. In this section we show how the

fluctuations around the equilibrium develop in ICON, in the deterministic and in the stochastic RICO

simulations, forced by the constant large-scale forcing tendencies (see Appendix A.1).

Variability of the subgrid convective states in ICON increases with the model resolution, which is

illustrated on the histogram plots (Fig. 3.18b-d).
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fraction is reversed in the stochastic simulations (Fig. 3.18c,d) compared to the LES coarse-grained

cloud fraction histograms (Fig. 3.18a). The histograms resulting from the stochastic simulations

include the variability due to convective ensemble subsampling, but obviously, there is another source

of variability superimposed on the stochastic variability. Similarly as in the deterministic simulations,

this additional variability results from the grid-scale flow and emergence of convective circulations.

Note also that the stochastic entrainment parameterization from the previous section brings in more

smooth and stable shapes to the histograms (Fig. 3.18d).

3.5.4 Grid-scale dependent secondary circulations

The deterministic EDMF cloud scheme produces horizontally homogeneous thermodynamic fields

on the coarse grid resolutions, from around 10 to 50 km (not shown here). In the high resolution

simulations with the grid scale less than 10 km, secondary convectively induced circulations emerge

and develop over time into organized convective rolls (Fig. 3.19). The timing of emergence of these

circulations and their spatial scales are highly dependent on the model resolution. On the 6.4 km

grid, convective circulations emerge after around 20 hours of simulation, while on the finer grids they

develop sooner - short time before 20 hours in the case of the 3.2 km simulation, and after around

12 hours in the case of the 1.3 km simulation. The imposed wind and Earth’s rotation dictate the

direction of the organized roll structures, and the period of inertial oscillation can be recognized on

the panel plot in Fig. 3.19a, as the direction of rolls changes the angle for around 45 degrees during

12 hours.

The spatial scales of convective circulations depend highly on the model resolution. On the LES

model grids, convection and clouds are effectively resolved and convective organization can take place

in a thermally and mechanically induced case under the constant large-scale forcing such as RICO.

LES of the RICO case simulate the emergence and development of convective organization into rolls

and arc structures, and even in the case when precipitation is suppressed (RICO-140), convective

rolls develop and are well defined after a day of simulation time (Fig. 2.1). These rolls have a spatial

scale that is controlled by the CBL depth. As the model resolution coarsens, the model grid scale

becomes another dominant spatial scale, because it becomes comparable to the dominant convective

scale. At these scales, where convection is no longer effectively resolved, the energy of the flow is

shifted towards larger scales compared to the effectively resolved case, thus the size of the circulations

developed on the model grid also has to be larger (Bryan and Rotunno, 2005; Cheng et al., 2010).

This as well influences the spatial distribution of clouds, which organize along the updrafts of these

secondary circulations. Cheng et al. (2010) also point out that on the gray zone scales, parameterized

transport is underestimated, while the resolved-scale transport is overestimated, so that the mean

transport remains equal across the model resolutions. In difference to the LES simulations of Cheng

et al. (2010), in the stochastic and deterministic ICON simulations, the turbulent fluxes are almost

completely subgrid, with only a negligible contribution from the resolved scales. This finding aligns

well with the study of Bryan and Rotunno (2005) that explains this phenomena by the fact that the

turbulent energy cascade is not explicitly resolved on the kilometer-scale grids in NWP models, and

the simulated flow does not become turbulent on the grid scales coarser than approximately 100 m.
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The grid-scale flow develops in a different manner in the stochastic simulations, and these flows

are captured on the snapshots of liquid water content and vertical velocity taken above the cloud-

base level after 24 hours of simulation (Fig. 3.20). The convective circulations are as well grid-

scale dependent in these simulations and they develop immediately from the simulation start. This

circulation development is supported by the stochastic fluctuations that introduce inhomogeneities

into the cloud field. However, these circulations are not organized into strong roll structures which is

an improvement compared to the deterministic simulations.

As expected, a high dependence on the grid scale can be found in the higher moments of convective

and cloud properties, as the variance increases due to grid-scale convective structures, and skewness

of the distribution changes the sign (Fig. 3.22). This obviously adds some artificial characteristics to

the cloud field. In the deterministic simulations variance of the cloud liquid water mixing ratio qc is

equal to zero before the under-resolved convective structures develop (Fig. 3.22a). The emergence of

convective organized structures is characterized by a strong increase in variance that takes place after

(a) 6.4 km resolution, snapshots at t = 24 h, t = 28 h, t = 32 h, and t = 36 h

(b) 3.2 km resolution, snapshots at t = 20 h, t = 24 h, t = 28 h, and t = 32 h

(c) 1.6 km resolution, snapshots at t = 12 h, t = 16 h, t = 20 h, and t = 24 h

Figure 3.19: Horizontal snapshots of the RICO case cloud liquid water mixing ratio at a level above the
cloud base simulated by using the deterministic EDMF scheme. The starting snapshot is at the moment when
secondary circulations are initiated, which depends on the model resolution. Snapshot are taken every 4 hours.
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(a) Cloud liquid water, qc [mg kg−1] (b) Vertical velocity, w [m s−1]

Figure 3.20: Horizontal snapshots of the RICO case cloud liquid water mixing ratio and vertical velocity at a
level above the cloud base at the 24th hour of simulation using the stochastic cloud scheme. The simulation of
RICO is repeated using different horizontal resolutions, from around 25.6 km (top) to around 3.2 km (bottom).
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12 hours of simulation on the highest resolution grid to after 30 hours of simulation on the coarse

resolution grids. The variance saturates for around half of a day after two days of simulation, but

due to instability of the simulation without precipitation, it continues to increase again with time and

becomes very variable until the end of simulation (Fig. 3.21). At the moment when the convective

circulations emerge and develop on the model grid, the skewness of qc in the deterministic simulations

shows a peak and grows into the negative side and opposite of the skewness of qc in the LES RICO

case (Fig. 3.22b).

Figure 3.21: Five day long time series of the variance of cloud liquid water mixing ratio at a level above the
cloud base in the deterministic EDMF (green) and stochastic EDMF RICO case (purple). The duration of the
coarse-grained LES RICO case (gray) is only 48 h. After two days of simulation, the variance saturates for
around half of a day, but because the simulation without precipitation is not stable, the variance continues to
grow again and largely varies until the end of simulation. The abrupt drop of the variance near the end of
simulation is due to the change in the cloud base height in the simulation, so the values correspond to a higher
level into the cloud layer then at the start.

In the stochastic simulations of the RICO case secondary circulations also develop, even on the coarse

model grids. However, these circulations have a different structure and smaller scale compared to de-

terministic simulations because the spurious and strong roll organization is now removed (Fig. 3.20).

The stochastic cloud field still looks more realistic than the deterministic field because the stochastic

variability of clouds is modelled using a physically based approach, but this variability is superim-

posed on the variability introduced by the grid-scale dependent convective circulations. The time se-

ries of qc variance show that the variance is slowly growing over time by approximately same amount

across the resolutions, and it is always overestimated compared to the LES RICO case qc variance

(Fig. 3.22a). After 40 hours, the variance reaches the saturation, after which the flow becomes stable

(Fig. 3.21). Compared to the deterministic simulation, this variance is greatly reduced by the effects

of the stochastic perturbation in the updraft area fraction, which is a significant improvement. In a

similar way, the skewness of qc is reduced and negative from the beginning of the simulations in

comparison to the LES RICO case qc skewness (Fig. 3.22b). This reduction in skewness compared

to the LES RICO case qc skewness is caused by the grid-scale dependent circulations. On the resolu-

tion finer than around 6 km, the qc skewness of the LES simulation grows into the positive side, and

the stochastic simulation behavior follows this increase. In these high resolution cases, qc skewness

resulting from the stochastic simulations changes the sign and becomes positive (Fig. 3.22b) and thus

improves the distribution of subgrid convection.
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(a) variance (b) skewness

Figure 3.22: Comparison of the time series of liquid water mixing ratio variance and skewness between
the coarse-grained LES RICO case (gray), deterministic EDMF (green) and stochastic EDMF (pink). These
properties are calculated for a single level just above the cloud base, similar as in the previous four figures.
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The results presented here indicate that the correct parameterization of variability in a convective

cloud field on the gray zone grids would require prevention of the convectively induced secondary

circulations that are not effectively resolved. In this case, convective organization would have to be

fully parameterized, and the increase of model resolution would still show benefits for example by

using high-resolution observation and land surface data. The variability in the cloud field is highly

influenced by the variability in convection, which was expected in a thermally induced convective

case. This suggests that a unified PLB and cloud parameterization such as EDMF is a necessity, with

a more physically based link between the PBL processes than in the system with separate schemes

for clouds, convection and PBL turbulence interacting only through the mean flow. From the point of

view of a PBL turbulence parameterization, a 1D turbulence scheme, active only in vertical direction

as conventionally used in mesoscale models, is no longer sufficient to parameterize turbulence and

convection on the gray zone scales. An adequate turbulence parameterization would require a new

approach to be applied on kilometer-scale grids (Fiori et al., 2010; Honnert and Valéry, 2014). The

reason for this is that in the gray zone, horizontal turbulent fluxes are not negligible and horizontal

scales of motion are comparable to the vertical scales of motion (Fiori et al., 2010). Furthermore, an

adequate turbulence scheme would comprise a horizontal turbulent transport component that is also

scale-aware and nonlocal, and with different eddy-diffusivity coefficients in horizontal and in vertical

direction, because in the gray zone turbulence can not be assumed isotropic (Honnert and Valéry,

2014).

3.6 Summary and conclusions

In this chapter we considered a method to parameterize shallow cumuli in high-resolution atmospheric

models across the range of horizontal resolutions. A unified parameterization of the PBL, the EDMF

scheme, is employed to represent the subgrid effects of turbulence, convection and clouds of the

RICO case in the idealized limited area setup of ICON. The developed stochastic parameterization

provides a way to retain the validity of statistical quasi-equilibrium down to the kilometer scale of

model grids in a quasi-stationary shallow convective case. The fluctuations of cloud properties around

the equilibrium are modelled by a stochastic approach and the cloud field is constrained in the mean

based on the physical principle that controls the development of the moist convective boundary layer.

As part of this study, the EDMF scheme is adapted to simulate the idealized RICO case over the ocean,

with fixed sea surface temperature and a simple parameterization of surface fluxes, instead of using

the full land/ocean surface scheme. The RICO idealized large-scale forcing is as well introduced to

account for the large-scale advection, subsidence and radiation tendencies following the ICON con-

figuration of Dipankar et al. (2015). The EDMF scheme performance and scale-dependence of the

RICO case simulations are tested in multiple experiments of the same case, but on different resolu-

tions. By analyzing these numerical tests, we studied how the deterministic EDMF scheme performs

across the model resolutions, and we found that EDMF produces a robust cloud field with a small de-

pendence on resolution. The dependence on resolution is reflected in the results mainly near the cloud

layer top as a reduction of cloudiness in the high resolution simulations, and it develops as a result
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of the divergence in the model grid-scale flow circulations across the range of grid resolutions. This

divergence of the grid-scale flow introduces inhomogeneities in the cloud field, which then activates

a different behavior of the parameterization of the cloud layer vertical structure across resolutions.

So, next to the different evolution of cloud fields across resolutions, deficiencies in vertical structure

parameterization on high resolution grids influence the scale-dependence of the RICO case. It is also

evident that the time evolution of the RICO cloud properties stabilizes with the increase of resolution,

thus, in general, the domain average properties of RICO are well reproduced in ICON.

The EDMF scheme is further developed by coupling the stochastic shallow cumulus ensemble model

developed in Chapter 2 into the scheme framework, to introduce the fluctuations of the moist updraft

area fraction around the statistical equilibrium. In a similar way as in the deterministic study, the

resolution dependence tests were repeated to evaluate the stochastic EDMF scheme. We have found

that the stochastic model produces the correct average RICO boundary layer structure and its time

evolution. There is some improvement in the vertical structure of cloud layer, as the profiles resulting

from stochastic simulations match the LES RICO profiles closer, and the vertical structure of the cloud

layer is smoother than in the deterministic simulations. Another important effect of the stochastic

scheme is the stabilization of the time series of cloud properties, and evident reduction of cloudiness

with the increase of model resolution. Thus, by introducing the stochastic variability in the moist

updraft area fraction we achieve the stability of the cloud system over time on all grid resolutions.

We also tested what aspects of parameterization should be reconsidered in a stochastic framework

on the high resolution scales. The formulation of the cloud layer vertical structure parameterization,

specifically the entrainment rate formulation, impacts the scale-dependence of the stochastic simu-

lations. An additional semi-stochastic treatment of the cloud layer vertical structure revealed that

further improvement in reproducing the cloud layer vertical profiles can be achieved, since with the

correct choice of the lateral entrainment timescale distribution and adequate cloud mass flux profiles,

the correct profiles of cloud fraction and cloud liquid water of RICO can be reproduced, even on the

gray zone model grids. However, these tests also indicated that a separate parameterization of the

momentum and thermodynamic fluxes might be necessary on the gray zone model grids. These tests

provide important insights into the requirements for the correct lateral mixing and mass flux profile

formulation in the future scale-aware cloud parameterizations.

In all numerical tests, variability of the RICO cloud field is quantified across a range of model res-

olutions and compared to the coarse-grained LES RICO case. The grid-scale flow dynamics is as

well included in the analysis of the subgrid convective states distribution, and implications of the flow

permitted on the model grid are assessed for the scale-aware parameterization. Convectively induced

circulations develop in both deterministic and stochastic simulations, but they are of different structure

and characteristics. In deterministic simulations, convection and the cloud field are strongly organized

into spurious convective rolls and this organization inflates the variance of the cloud properties, and

reverses and increases the skewness. In the stochastic simulations, the distribution of cloud fraction

is scale-dependent and the distribution shape resembles the LES coarse-grained distribution across

the range of model horizontal resolutions. The spurious organization is dissolved by the effects of the

stochastic scheme, which improves the variability of the cloud field, however, the grid-scale circula-
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tions are still present. The variability introduced by the grid-scale flow due to convective circulations

is superimposed on the stochastic variability, so in total the variance and skewness are overestimated.

However, the improvement is evident in the stochastic simulations, where the flow is stabilized, the

variance is lower and the skewness is as well improved compared to the deterministic simulations.

These results confirm the point made by the previous studies of the EDMF development (Soares

et al., 2004; Teixeira and Siebesma, 2000; Neggers et al., 2009; Sušelj et al., 2012), which is the

necessity of developing the unified parameterizations of turbulence, convection and clouds, instead

of developing the common modular model configurations where physical parameterizations update

the grid-scale flow but do not communicate the information directly between the subgrid physical

processes. In addition, a multi-scale approach to parameterization would require a reassessment

of the parameterization approaches, so that the subgrid physical processes include a time correlation

(convective memory) and spatial correlations (convective organization). The scheme developed in this

thesis sets the basic requirements for a multi-scale cloud parameterization and provides a foundation

for achieving the goal of a unified multi-scale PBL parameterization in future research.
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Chapter 4

Conclusions

In some atmospheric modelling applications the statistical quasi-equilibrium assumption, as the main

requirement for parameterizability of convection, is not satisfied. Validity of this assumption fails for

two main reasons: first, spatial scales of model columns are not large enough to contain a robust num-

ber of convective elements, and second, there is no scale separation between subgrid convection and

the grid-scale flow, but more importantly, there is no timescale separation in a time-varying convec-

tive environment (Williams, 2005; Yano and Plant, 2012; Davies et al., 2013). The research presented

in this thesis considers the spatial-scale criterion in a quasi-stationary shallow convective case, and

provides a solution to retain the assumption of statistical quasi-equilibrium across all modelled spa-

tial scales. Moreover, the assumption that the convective mass flux is controlled by the boundary

layer equilibrium would fail as a direct consequence of the failure of the statistical quasi-equilibrium

assumption. Thus, the same research method presented in this thesis provides a solution to retain

validity of the physical aspect of the closure assumption. Even though a quasi-stationary case is con-

sidered in this thesis and we do not address the timescale separation, it is still emphasized that the

convective memory is an important component that controls the shallow cloud ensemble statistics.

The statistical ensemble framework, defined and applied to model the Rain In Cumulus over the

Ocean (RICO) case in Chapter 2, provides a way to apply the parameterization closure at the sys-

tem’s macroscale level, while the grid cell states are governed by probabilistic laws and are carrying

grid-scale dependent uncertainty. Main ingredients of the statistical ensemble applied to shallow con-

vection are the Poisson process for counting convective elements, and a sampling process from the

mixed Weibull distribution to obtain the convective intensity in a model grid column. This approach

is a generalization of the deep convective ensemble of Craig and Cohen (2006) and Plant and Craig

(2008) to shallow convection and is a promising framework for unification of the cloud ensemble

theories.

In the following, we draw conclusions from the research conducted in this thesis, and we outline

the main requirements for development of a shallow cumuli parameterization, together with some
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new insights and further understanding of convective ensembles. Some important implications of the

thesis results are also suggested between the conclusion statements.

4.1 What controls the cloud mass flux distribution?

The knowledge about what shapes the cloud mass flux distribution in a convective ensemble, and

how the distribution parameters are influenced by the imposed forcing on the ensemble, is required to

define the main pillar of the formulation of cloud parameterization schemes. From the first phase of

this thesis research presented in Chapter 2, we conclude that two main factors that control the shape

of the mass flux distribution in a quasi-stationary shallow cloud ensemble are the buoyancy of the

cloudy air and a diversity of cloud lifetimes which we have interpreted as a local memory component.

Based on the buoyancy criterion, as the vertically integrated virtual potential temperature excess of

cloudy model columns larger than 0.5 K, the shallow cloud ensemble can be split into the buoyant

and nonbuoyant cloud groups (Heus and Seifert, 2013). The buoyant cloud group comprises active

cumulus clouds which can be found above the level of free convection in the CBL, while the other

cloud group comprises passive and forced clouds. These two cloud groups form the two modes of the

cloud mass flux distribution in a shallow convective ensemble. These results could be extrapolated

to interpret a deep convective cloud group as the third distribution mode that forms the right side

distribution tail. In that way, this theoretical mass flux distribution model would unify the shallow

and deep convective ensembles.

The mass flux distribution modes deviate from the exponential distribution shape and this deviation

is governed by the diversity of cloud lifetimes. This diversity within the cumuli ensemble can be

interpreted as the local memory component that drives the distribution shape further away from the

exponential towards a more general Weibull distribution (see the derivation of the Weibull distribu-

tion in Appendix A.2). The resulting distribution of the cloud ensemble is a superposition of the

Weibull distribution modes. The more complex the cloud ensemble is, the more power-law like the

final distribution shape will be. Considerations of long-term memory effects on the statistics of a

cumulus ensemble are not covered in this thesis. However, we anticipate a similar change in the dis-

tribution shape, away from an exponential and towards a power-law, due to the long-term changes in

the convective environment and as well due to emergence of the cloud field organization.

4.2 Variability in a shallow convective ensemble

We have studied the fluctuations in the RICO shallow convective ensemble, by using the stochastic

stand-alone model developed as a part of the thesis research. The model is based on the statistical

cumulus ensemble framework and it simulates the compound distribution of convective subgrid mass

fluxes, which possesses an inherent property of scale-adaptivity with the variance and skewness that

increase with model resolution.

The variance of the compound distribution is controlled by the average number of convective elements

and the range of the cloud-base mass flux in the model columns (Craig and Cohen, 2006). Through
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the cloud-base mass flux distribution, the local cloud-scale memory affects the variance of compound

distribution, which also implies that the cloud lifecycles have to be modelled explicitly to satisfy the

consistency criterion in the model formulation. We prove this by performing multiple simulations

using the stochastic stand-alone model. Moreover, we show that the introduction of the local memory

effects into the cumulus ensemble is necessary to model the correct variance at all model resolutions.

The cloud ensemble framework that includes the memory effects into its formulation could provide

more benefits in a parameterization of nonequilibrium convective cases in future research. However,

a similar analysis as in this thesis could be applied to time-varying convective cases, or to transient

cases, where the cumulus ensemble framework would be applied to a sequence of quasi-equilibrium

states, thus maintaining the local quasi-equilibrium in a time-changing environment (e.g. as explained

in Arakawa and Schubert, 1974). In that case, an additional time-dependent closure for the ensemble

average mass flux and the average cloud lifetime would be necessary, while in the current model

configuration these quantities are applied as constants evaluated from LES and cloud tracking.

4.3 Resolution dependence of the deterministic RICO case in ICON

In the second research phase, the eddy-diffusivity mass-flux (EDMF) scheme was employed in ICON

to represent the subgrid effects of turbulence, convection and clouds of the RICO case for the range

of model horizontal resolutions, from around 1 to 50 km of grid lengths. The results of these multi-

resolution simulations are compared to the LES RICO case statistics. Instead of coupling it with

the land surface scheme, the EDMF scheme is adapted by prescribing the constant sea surface tem-

perature and a simple parameterization of the surface fluxes (see Appendix A.1). The large-scale

advection, subsidence and radiation tendencies are applied as the constant large-scale forcing on the

RICO idealized case following the ICON configuration of Dipankar et al. (2015).

In a homogeneously initialized convective case with constant and homogeneous forcing, the EDMF

scheme starts with the identical performance across different model resolutions. However, as soon as

the RICO case develops some spatial inhomogeneity on the high range of model resolutions (below

10 km), the differences in the average cloud profiles start to develop mainly as a reduction of cloudi-

ness near the cloud layer top, with more reduction on the higher resolutions. The spatial inhomo-

geneities are a result of the convectively induced circulations that develop after a certain time period

from the beginning of the simulations, with different timing and different spatial scales at different

grid resolutions. This divergence of the grid-scale flow activates different behavior of the cloud layer

vertical structure parameterization across different resolutions. The deterministic EDMF cloud layer

vertical structure parameterization breaks down on the grid lengths of approximately 10 km and less,

so the deficiencies in vertical structure parameterization in EDMF influence the scale-dependence of

the RICO case only on high resolution grids. Another aspect of the RICO case scale-dependence is an

evident stabilization of the time series of the RICO cloud properties with the increase of resolution.

This is again caused by the grid-scale circulations that are removing the convective instability more

efficiently than EDMF is independently capable of.
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4.4 Stochastic EDMF scheme in ICON

The stochastic shallow cumulus ensemble model is coupled to the EDMF scheme in ICON to in-

troduce the fluctuations of the moist updraft area fraction around the statistical equilibrium into the

representation of the RICO cumulus ensemble. We have found that the stochastic model produces the

correct average RICO boundary layer structure and its time evolution (Section 3.5.2). The vertical

structure of the cloud layer is improved as the profiles resulting from stochastic simulations match

the LES RICO profiles closer, especially on the high resolution grids, and the vertical structure of the

cloud layer is smoother than in the deterministic simulations. This improvement results from relax-

ation of the statistical equilibrium assumption and random sampling of the convective subensembles.

The parameterization of lateral mixing remains one of the most uncertain components of the param-

eterization scheme in this study as well as in the previous parameterization studies described in the

Introduction, Section 1.2.2. The formulation of the cloud layer vertical structure, especially the en-

trainment rate formulation, is very sensitive to small changes in the value of key parameters, which

has a negative impact on the resolution dependence of the stochastic simulations. Additional tests

of the cloud layer vertical structure were undertaken to reveal that the improvement in the simulated

RICO case cloud vertical profiles can be achieved by applying an adequate formulation of the mass

flux vertical structure combined with a finely tuned lateral entrainment formulation. Thus, in a similar

way in which the multi-mass-flux approach (Neggers, 2015) reduces the excessive cloud liquid water

in the EDMF framework, the stochastic cloud ensemble subsampling scheme with a refined vertical

structure parameterization is as well capable to provide the correct liquid water and cloud fraction

profiles. However, further research and parameterization development are still necessary to achieve

the scale-aware lateral entrainment formulation in the stochastic EDMF scheme developed in Chapter

3. An alternative approach to achieve the most efficient and scale-aware parameterization that would

be able to reproduce the correct vertical cloud layer structure, would be to combine a multi-mass-flux

cloud parameterization with the stochastic subensemble sampling method developed in this thesis.

We have also demonstrated in Section 3.5.2 that by introducing the stochastic fluctuations in the moist

updraft area fraction, the stability of the cloud system over time is achieved on all grid resolutions.

This improvement results from the fluctuations that introduce spatial inhomogeneity into the cloud

field immediately from the beginning of the simulation and help the grid-scale circulations to develop

even on coarse grids.

4.5 Implications for convection in meso-γ-scale models

Atmospheric meso-γ scales fall into the convective gray zone, which is a range of horizontal model

resolutions where convection is not effectively resolved. In the RICO convective case, thermally

forced at the lower boundary, convective circulations develop on the model grid in both deterministic

and stochastic simulations performed using the ICON model. The spatial length scale and intensity of

these circulations are controlled by the model grid resolution, and thus cannot be considered realistic

and are not comparable with the LES RICO convective circulations. Furthermore, deterministic and
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stochastic RICO case simulations in ICON show a different behavior and structure of the grid-scale

flow circulations.

Convection developed on the gray zone grids highly affects the distribution of cloud properties, like

liquid water content and cloud fraction. The grid-scale circulations inflate the variance and change

the sign of the distribution skewness compared to the LES RICO case, so in the stochastic RICO

simulations the gray zone variability is superimposed on the stochastic variability. On the other

side, in deterministic simulations, convection and the cloud field are strongly organized into spurious

convective rolls and this type of organization changes the variance and skewness of the convective

subgrid states distribution even further.

The stochastic parameterization improves the representation of the RICO case in ICON by dissolving

the spurious gray zone organization and thus improving the measure of convective variability. By

removing the spurious organization, the variance of subgrid cloud distribution is vastly reduced com-

pared to the deterministic simulations and the skewness is as well improved. As a result of this effect,

the distribution of subgrid cloud properties resembles the coarse-grained LES RICO distribution and

its scale-dependence much closer compared to the deterministic case distribution at all tested resolu-

tions. And finally, the stochastic fluctuations stabilize the time evolution of the RICO cloud properties

at all tested resolutions. However, even though the stochastic scheme solves the gray zone problem

for a cloud ensemble by subsampling the total cloud number, it does not provide a mechanism to solve

the gray zone turbulence and convection problem, and improve the under-resolved convective grid-

scale circulations. The under-resolved grid-scale circulations are still present at all model horizontal

resolutions in the stochastic RICO simulations.

Because turbulence and convection highly affect the cloud field distribution, cloud parameterization

should be unified with the turbulence and dry convection parameterization within a single parame-

terization scheme instead of approaching the parameterization in a modular manner. Under-resolved

convection in the gray zone can lead to severe model biases in cloudiness and precipitation amounts

(e.g. Lean et al., 2008; Roberts and Lean, 2008). Thus, the unified parameterization of a cloudy CBL

should work towards preventing the under-resolved circulations and parameterizing the effect of tur-

bulence and convection completely. How to approach the development of such a parameterization for

the gray zone is not an easy solvable and fully understood problem, but there are some indications

that a gray zone turbulence and convection parameterization should be three-dimensional, anisotropic

and nonlocal in horizontal as well as in the vertical direction (Honnert and Valéry, 2014), or the LES

type schemes should be used to bridge the gap between the mesoscales and the LES resolution scales

(Fiori et al., 2010; Bhattacharya, 2014), instead of simply applying one-dimensional vertical turbulent

mixing schemes commonly used in NWP models nowadays.

4.6 A consistent and the least complex model configuration

In this concluding section, we will combine the results from all conducted simulations to infer what

is the least complex but still sufficient and consistent parameterization formulation to reproduce the

RICO thermodynamic structure, its time evolution and variability.
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In the first phase of the thesis research, we concluded that there are two possible consistent stochastic

cumulus ensemble formulations: one that does not include the local memory component and the other

that includes the memory component. The question of consistency comes into play when choosing

the combination of the stochastic model components, the mass flux distribution function and the

level of diversity in cloud lifetimes and cloud lifecycles. The first choice combines the exponential

distribution function for the cloud mass fluxes and constant cloud lifetimes in a stochastic ensemble,

without modelling the cloud lifecycles explicitly and thus keeping the cloud properties constant during

the cloud lifetime. The second consistent option combines the Weibull distribution function to model

the cloud mass fluxes in the ensemble, and cloud lifetimes that change across the ensemble and

depend on the cloud convective intensity. In this case, the cloud lifecycles are modelled explicitly. An

important implication of these choices is that it is necessary to discover and understand the physical

mechanisms that lead to the distribution function used in a model in order to avoid the inconsistencies

in model formulation. These inconsistencies can sometimes be severe and in some cases the increased

complexity of the model, even though it represents the cloud ensemble more accurately, does not lead

to an improved result but instead degrades the model performance, as we showed in the Chapter 2.

Furthermore, we proved that the second option, the model formulation that includes the local memory

component, is necessary to represent the variance of subgrid cloud properties correctly. It was also

shown that the simplicity in some aspects of the cumulus ensemble can be retained, such as using

the average vertical velocity instead of representing its stochastic variability among the clouds, or the

deterministic power-law relation between the cloud mass flux and cloud lifetime, instead of random

sampling of the joint PDF which is indeed highly scattered. The compound distribution of subgrid

convective states, as the main result from the stochastic modelling of the RICO cumulus ensemble, is

robust and insensitive to the randomness of local cloud properties other than the cloud mass flux and

the cloud size.

The stochastic shallow cumulus ensemble developed in this thesis is a generalization of the deep

convective ensemble theory of Craig and Cohen (2006), using a formulation that attempts to unify the

stochastic ensembles of shallow and deep convective clouds depending on two parameters: ensemble

average cloud lifetime 〈τ〉 and the ensemble average cloud mass flux 〈m〉. Thus, the same framework

would be sufficient to model multiple cloud types, based on these two parameters and based on the

complete mass flux distribution that represents multiple cloud types (a three-mode distribution already

discussed in Section 4.1). The shape of the cloud mass flux distribution is controlled by the ensemble

memory component, thus it is also possible to relate the power-law exponent β in the cloud lifetime

equation to the mass flux distribution shape parameter k (see Appendix A.2). These parameters and

the mass flux distribution function are possibly controlled by the synoptic situation and by the changes

in the forcing imposed by the environment onto the ensemble. To develop the stochastic framework

further, it would be necessary to develop a closure for these parameters based on the large-scale

processes controlling the atmospheric boundary layer and the transition to deep convection.

When implemented into ICON by coupling it with the EDMF scheme, the stochastic cloud ensemble

provides a tool to answer the questions asked in Section 1.2.1: Is a spectral parameterization of clouds

necessary or would a bulk scheme suffice to model the RICO case? In the early work of (Betts, 1975),

a bulk approach to parameterize the BOMEX shallow cumuli ensemble was successful and sufficient
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to model the thermodynamic structure of that case. However, this does not imply that the bulk ap-

proach should be sufficient for a more complex case, such as RICO. This was already indicated in the

previous parameterization studies (Neggers, 2009). So, in this thesis we have confirmed that a multi-

mass-flux approach or a stochastic cumulus ensemble model with an adequate lateral entrainment

parameterization has to be developed to represent the correct RICO cloud water content and cloud

fraction (see also Neggers, 2015). However, in order to apply the multi-mass-flux parameterization

across the convective gray zone regimes, it is also necessary to model the cumulus cloud ensemble by

randomly subsampling the subgrid convective states. Thus, we conclude that a hybrid subensemble

multi-mass-flux approach would be the least complex and sufficient approach necessary to model the

RICO case properly.

The second question concerned a single cloud type model and whether it can represent the cloudy

layers well or multi-cloud-type models are necessary. Even though we do not address this question

in this thesis, because our analysis is limited to a single convective case that does not include all

convective cloud types, we provide the formulation of a stochastic ensemble that has a great potential

to address this question in future work.

The answer to the third question, i.e. whether to develop a unified or a separate scheme for the

subcloud and cloud layers, follows from this thesis research as an obvious choice of a unified model,

because forced and active cumulus clouds are rooted in the subcloud updrafts. The EDMF scheme

used in this thesis unifies the subcloud layer updrafts with the clouds that they initiate. Based on

the gained knowledge, we suggest that all parameterization schemes should be developed to unify

all relevant CBL processes within a single parameterization scheme, in a similar way as the EDMF

parameterization is formulated.

4.7 Overall concluding remarks

A scale-aware shallow convection parameterization that represents the average cumulus ensemble

properties and the convective fluctuations around the statistical equilibrium comprises a deterministic

component, a stochastic component and the local cloud memory component. These three components

change in their contributions to the subgrid cloud fraction, cloud liquid water and mixing tendencies

depending on the resolution of the model. The developed approach introduces a stochastic cloud

ensemble into the parameterization formulation and is more complex than a bulk scheme, but it is still

less complex than a full spectral scheme. Our results support the recent trend in the parameterization

development community towards a unified parameterization of turbulence, convection and clouds, but

also towards three-dimensional, and spatially and temporally nonlocal approaches.

The stochastic parameterization developed here provides a method to represent the fluctuations in a

convective ensemble, but still retains the constraint on the ensemble average realization so that the

results of modelling are reproducible on the macro-scale, while quantifying the subgrid uncertainty

at the level of a single realization. An implication of such an approach to parameterization of shallow

clouds for the ensemble modelling is that the uncertainty due to the model physics could be repre-

sented using this approach to improve the ensemble spread, while not degrading the average model
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outcome, and to simulate the model error growth and upscale propagation, in a similar way as in the

deep convective cases of Craig and Cohen (2006), Plant and Craig (2008), and Selz and Craig (2015).
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Appendices

A.1 RICO case setup

The LES RICO case configuration is presented here, as defined in van Zanten et al. (2011) and can

be found as well on the web address: http://www.knmi.nl/samenw/rico/index.html.

Initial profiles

The initial profiles of potential temperature θ, specific humidity qv, and wind components u and v are

constructed as linear fits of the measurement data from radiosondes during the RICO field study in

the period from 16 December 2004 to 8 January 2005. It is assumed that there is no liquid water at

the initial time ql = 0, so that θ = θl and qv = qt. Location of the RICO case domain center is at

18.0◦ N and 61.5◦ W.

Zonal wind u [m/s]

z > 0 − 9.9 + 2 × 10−3 z

Meridional wind v [m/s]

z > 0 − 3.8

Total water mixing ratio qt [g/kg]

0 < z < 740 16.0 + (13.8 − 16.0)/740 z

740 < z < 3260 13.8 + (2.4 − 13.8)/(3260 − 740) (z − 740)

z > 3260 2.4 + (1.8 − 2.4)/(4000 − 3260) (z − 3260)

Liquid water potential temperature θl [K]

0 < z < 740 297.9

z > 740 297.9 + (317.0 − 297.9)/(4000 − 740) (z − 740)
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Surface conditions

The surface turbulent fluxes of heat, moisture and momentum are parameterized using the bulk aero-

dynamic formulation:

w′θ′
l
= −Ch |U |

(

θl − S S T
(

p0

p

)Rd/cp
)

w′q′t = −Cq |U | (qt − qsat|z=0)

u′w′ = −Cm |U | u

v′w′ = −Cm |U | v

where Ch = 0.001094, Cq = 0.001133, Cm = 0.001229, Rd = 287 JK−1kg−2 is the gas constant

of dry air and cp = 1004 JK−1kg−1 is the specific heat of dry air at constant pressure. The sea-

surface temperature is prescribed as a constant S S T = 299.8 K, and the surface pressure is set to

ps = 1015.4 mb. The sea surface potential temperature is θ0 = 298.5 K with a reference pressure of

1000 mb. The mean wind velocity |U | is defined by averaging the lowest model level wind intensity.

Large-scale forcing

The vertical profiles of the subsidence rate and temperature and moisture tendencies due to horizontal

advection are prescribed as the constant large-scale forcing. The large-scale cooling combines the ra-

diative and advective cooling, while the effects of subsidence are applied only on the thermodynamic

fields qt and θl. The geostrophic winds ug and vg are as well prescribed as constant tendencies.

Large-scale subsidence w [m/s]:

0 < z < 2260 − 0.005/2100 z

z > 2260 − 0.005

Large-scale horizontal θl advection combined with radiative cooling rate [K/s]:

z > 0 − 2.5/86400

Large-scale horizontal qt advection [g/kg/s]:

0 < z < 2980 − 1.0/86400 + (1.3456/86400) z/2980

z > 2980 4 × 10−6

Geostrophic zonal wind ug [m/s]:

z > 0 − 9.9 + 2.0 × 10−3z

Geostrophic meridional wind vg [m/s]:

z > 0 − 3.8
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A.2 Survival analysis of a stationary cloud ensemble

To study the cloud lifecycles and the role they play in shaping the distribution of cloud properties, we

use a method from the survival analysis. In this appendix, we relate the individual cloud mass flux to

the cloud lifetime and derive the survival function of a shallow cloud population. This function is then

used to define the distribution of the cloud mass flux and to derive the link between the distribution

shape parameter and the exponent of the cloud lifetime relation. Thus, this analysis can be considered

as a closure for the distribution shape parameter in a stationary cumulus case.

First, we assume that there is a population of N shallow cumulus clouds that are initialized at the

same time and that have different sizes and lifetimes τi, i = 1,N. A “stress“ is introduced to the

system and is depleting the individual clouds by the average rate µr. This depleting stress can be

any process counteracting the convection and cloud development. In a stationary convective case the

stress is corresponding to the turbulent mixing and dilution of clouds due to entrainment and by the

influence of clouds on their environment by detrainment. This stress has an effect distributed over the

individual clouds depending on the cloud horizontal area or cloud mass flux m, so that by rule, larger

clouds can live longer: τi = αm
β

i
, where i = 1,N, and α and β are the fitting parameters. This relation

can be inferred from LES (Chapter 2).

Different cloud populations can have a different average cloud lifetime 〈τ〉 and average cloud mass

flux 〈m〉. For every set of the parameters 〈τ〉 and 〈m〉 there is a reference cloud depleting rate µr. In

such population of clouds, a change in the number of clouds during the time happens following the

equation:
dN

dτ
= −Nµτ

〈τ〉
τ
, (A.1)

or, assuming a power-law relation for the normalized cloud lifetimes τ/〈τ〉 = (m/〈m〉)β following:

dN

N
= −µτ

〈τ〉
τ

dτ. (A.2)

Substituting and solving for m we get:

lnN = −µτ〈m〉β
∫

m−βdm, (A.3)

lnN = −µτ〈m〉β
m1−β

1 − β
, (A.4)

N = exp

[

−µτ〈m〉β
m1−β

1 − β

]

. (A.5)

This expression is the survival function of Weibull distribution with the shape parameter k = 1 − β
and a scale parameter λ if µτ〈m〉1−k/k = 1/λk. The survival function describes the probability that

the element of a system will survive beyond a specified time, or in our case it is a probability that the

cloud will survive beyond the point of developing mass flux m. So, the survival function of a Weibull
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distributed population can be written as:

N = exp

[

−
(

m

λ

)k
]

(A.6)

The expected value of the Weibull distribution is 〈m〉 = λΓ[1 + 1/k], while the expected value of the

transformed distribution is 〈τ〉 = λ1−kΓ[1/k], thus, we find that the average rate of cloud depletion is

equall to:

µτ =
〈τ〉
〈m〉2−k

. (A.7)

Following this formulation, the shape parameter k and the lifetime exponent β are related as k = 1−β.
In the case of a single-parameter exponential distribution k = 1 and β = 0, i.e. lifetime is constant

and independent on the cloud mass flux.

Second parameter α from relation τ = αmβ equals α = 〈τ〉〈m〉−β = 〈τ〉〈m〉k−1.

Now we set up a theoretical model of the dependence of the shape parameter k on the system char-

acteristic time scale 〈τ〉. In a stationary case, the characteristic time is the average cloud lifetime

〈τ〉.

As it is stated in Chapter 2, the total number of clouds in a domain N(t) can be estimated by integrating

the instantaneous distribution n(m′, t) with respect to the instantaneous mass flux m′, and here we

repeat the equation:

N(t) =

∫ ∞

0
n(m′, t)dm′, (A.8)

where m′ is the instantaneous cloud mass flux. The cloud rate distribution of cloud mass flux g(m)

relates to the instantaneous distribution n(m′) through the information about the cloud lifetime τ(m).

So, in the ensemble average limit, we can assume:

〈g(m)〉 = 〈n(m)〉
〈τ(m)〉

. (A.9)

We consider here only the active cloud group and approximate the cloud rate distribution of mass flux

with the Weibull function:

g(m) = G
k

λk
mk−1e−(m/λ)k

(A.10)

with scale parameter λ and shape parameter k, related to the average mass flux per cloud as 〈m〉 =
λ Γ(1 + 1

k
). The cloud generating rate G, as the number of generated clouds per second in a given

area, is the intensity parameter of the Poisson distribution.

The ensemble average number of clouds in a domain can be written as:

〈N〉 =
∫ ∞

0
〈τ(m)〉 〈g(m)〉dm. (A.11)

A power law relation is assumed for the cloud lifetime dependence on the cloud mass flux as inferred

from LES in Chapter 2: τ = αmβ. After substitution and integration we get an expression for the
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