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I. INTRODUCTION

Nucleon electromagnetic form factors are fundamental quantities and reveal important information on the spatial
distribution of charge and magnetization within a nucleon [1–5]. Understanding the nucleon electromagnetic structure
in terms of the underlying quark and gluon degrees of freedom of quantum chromodynamics is a challenging task
which has attracted the attention of both theory and experiment for many years.

For a long time, the overall trend of the experimental results for small and moderate values of the momentum
transfer Q2 = −q2 could be described reasonably well by phenomenological (dipole) fits

GpE(Q2) ∼
GpM (Q2)

µp
∼ GnM (Q2)

µn

∼ (1 +Q2/m2
D)−2 ,

GnE(Q2) ∼ 0 , (1)

with mD ∼ 0.84 GeV and the magnetic moments

µp ∼ 2.79 , µn ∼ −1.91 , (2)

in units of nuclear magnetons. More recently, the improved accuracy of the experimental data allows us to see clear
deviations from this dipole behavior in the region of low and intermediate Q2. This has led to a significant amount
of theoretical work aimed at describing these form factors, such as dispersion theory analysis [6–8], vector meson
exchange/dominance [9, 10] and polynomial fits based on the Kelly parametrization [11]. We will apply a simplified
variant of the latter to lattice results in this paper. Interest in these form factors has been revived over the last 10
years by experiments at Jefferson Laboratory which found an unexpected dependence of the nucleon’s electric and
magnetic form factors on the momentum transferred to the target nucleon [12–14]. More recently, a measurement
of the Lamb shift in muonic hydrogen [15] has produced a result for the electric radius of the proton that is several
sigma below the PDG (CODATA) value [16, 17]. At the same time, a new high-precision determination of the proton
form factors from ep-scattering experiments at MAMI has been reported [18], which confirms the traditional results
for the electric (and magnetic) mean square radius.

From a lattice perspective, it is common to evaluate fundamental observables like the charge radii and anomalous
magnetic moments in order to make a comparison with experimental and theoretical results. A feature of any
lattice simulation is that the quark mass is an input parameter, hence it is possible to map out the form factors
not only as a function of Q2, but also m2

π. Baryon charge radii and magnetic moments are of particular interest
in this case as predictions from chiral perturbation theory (ChPT) indicate that these quantities should provide an
excellent opportunity to observe the chiral non-analytic behavior of QCD [19–24]. An additional advantage of a lattice
simulation of nucleon electromagnetic form factors is that since they are performed at the quark level, it is possible to
determine the individual up and down quark contributions, providing valuable insights into the distribution of charge
and magnetization within a nucleon.

These issues are now beginning to be addressed in modern lattice simulations [23, 25–29] (see also [30] for a review).
A common feature of present lattice simulations with unphysical quark masses is that they tend to underestimate
the experimental and phenomenological results for the radii and magnetic moments of the nucleon. As mentioned
above, predictions from ChPT indicate that these observables should exhibit a dramatic non-analytic dependence on
the quark mass close to the chiral limit, however such features have yet to be seen clearly in a lattice simulation with
dynamical quarks.

In this paper, we will confront these issues through simulations with pion masses as low as mπ ∼ 180 MeV. In our
analysis, we place a strong emphasis on addressing the systematic errors present in a lattice simulation, such as finite
volume and lattice spacing effects. We also consider the effects of finite momentum resolution in lattice determinations
of form factors through the use of several parametrizations of the momentum dependence.

II. LATTICE SETUP AND METHODS

Below we briefly describe our lattice setup and the methods that we have used to compute the nucleon form factors.

A. Simulation parameters

We perform our simulations with two flavors of non-perturbatively O(a)-improved Wilson (Clover) fermions and
Wilson glue. Using these actions, we have generated gauge field configurations with the parameters given in Table I,
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β # κ N3 × T mπ [GeV] a [fm] L [fm] Ntraj

5.20 1 0.13420 163 × 32 1.40 0.083 1.3 O(5000)

5.20 2 0.13500 163 × 32 0.99 1.3 O(8000)

5.20 3 0.13550 163 × 32 0.69 1.3 O(8000)

5.25 4 0.13460 163 × 32 1.29 0.076 1.2 O(6000)

5.25 5 0.13520 163 × 32 1.00 1.2 O(8000)

5.25 6 0.13575 243 × 48 0.67 1.8 O(6000)

5.25 7 0.13600 243 × 48 0.48 1.8 O(5000)

5.29 8 0.13400 163 × 32 1.59 0.072 1.1 O(4000)

5.29 9 0.13500 163 × 32 1.16 1.1 O(5500)

5.29 10 0.13550 123 × 32 0.99 0.9 O(4500)

5.29 11 0.13550 163 × 32 0.92 1.1 O(5000)

5.29 12 0.13550 243 × 48 0.90 1.7 O(2000)

5.29 13 0.13590 123 × 32 0.93 0.9 O(5500)

5.29 14 0.13590 163 × 32 0.69 1.1 O(7000)

5.29 15 0.13590 243 × 48 0.66 1.7 O(6000)

5.29 15 0.13620 243 × 48 0.43 1.7 O(5500)

5.29 17 0.13632 243 × 48 0.31 1.7 O(7000)

5.29 18 0.13632 323 × 64 0.30 2.3 O(2700)

5.29 19 0.13632 403 × 64 0.29 2.9 O(2000)

5.29 20 0.13640 403 × 64 0.18 2.9 O(1000)

5.40 21 0.13500 243 × 48 1.32 0.060 1.4 O(3500)

5.40 22 0.13560 243 × 48 1.02 1.4 O(3500)

5.40 23 0.13610 243 × 48 0.72 1.4 O(4000)

5.40 24 0.13625 243 × 48 0.62 1.4 O(6000)

5.40 25 0.13640 243 × 48 0.50 1.4 O(2500)

5.40 26 0.13640 323 × 64 0.49 1.9 O(2500)

5.40 27 0.13660 323 × 64 0.28 1.9 O(2800)

5.40 28 0.13660 483 × 64 0.26 2.9 O(2200)

TABLE I. Overview of our simulation parameters where we have used the Sommer parameter with r0 = 0.5 fm to set the
physical scale.

where we have used the Sommer parameter with r0 = 0.5 fm to set the physical scale [31]. Summarizing these
parameters, we see that our four values of β = 5.20, 5.25 , 5.29 , 5.40, correspond to lattice spacings in the range
0.06 < a < 0.1 fm, allowing for the approach to the continuum limit to be assessed, while a range of lattice volumes
(0.9 < L < 3.0 fm) enable us to study finite size effects in our simulations. Finally, our pion masses now reach well into
the chiral regime, down to mπ ∼ 180 MeV, allowing us to investigate the applicability of different ChPT approaches
around and above the physical pion mass, and to search for chiral non-analytic behavior in our results. When
computing correlation functions on these configurations, we generally over-sample using up to 4 different locations of
the fermion source on a single configuration. We then use binning to obtain an effective distance of 20 trajectories.
We find that beyond this, the size of the bins has little effect on the error, which indicates residual auto-correlations
are small.

B. Extraction of form factors

On the lattice, we determine the form factors F1(Q2) and F2(Q2) by calculating the following matrix element of
the electromagnetic current

〈p′, s′|jµ(0)|p, s〉 = Ū(p′, s′)

[
γµF1(q2) + iσµν

qν
2mN

F2(q2)

]
U(p, s) , (3)

where U(p, s) is a Dirac spinor with momentum p and spin polarization s, q = p′ − p is the momentum transfer, mN

is the nucleon mass and jµ is the electromagnetic current. The Dirac, F1, and Pauli, F2, form factors of the proton
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are obtained by using

j(p)
µ =

2

3
ūγµu−

1

3
d̄γµd, (4)

between proton states. The isovector form factors are also obtained from proton states, but with the current

jvµ = ūγµu− d̄γµd . (5)

Similarly, we used the isoscalar current ūγµu+ d̄γµd for the computation of isoscalar form factors.
In electron scattering, it is common to rewrite the form factors F1 and F2 in terms of the electric and magnetic

Sachs form factors,

GE(Q2) = F1(Q2)− Q2

(2mN )2
F2(Q2) ,

GM (Q2) = F1(Q2) + F2(Q2) , (6)

as then the (unpolarized) cross section becomes a linear combination of squares of the form factors.

For, e.g., the proton F
(p)
1 (0) = G

(p)
E (0) = 1 gives the electric charge, while G

(p)
M (0) = µ(p) = 1 + κ(p) gives the

magnetic moment, where F
(p)
2 (0) = κ(p) is the anomalous magnetic moment. For a classical point particle, both form

factors are independent of Q2, so deviations from this behavior tell us something about the extended nature of the
nucleon.

In our lattice study, we use the standard proton interpolating field for a proton with momentum ~p

Bα(t, ~p) =
∑
~x,x4=t

e−i~p·~xεijku
i
α(x)ujβ(x)(Cγ5)βγd

k
γ(x) ,

B̄α(t, ~p) =
∑
~x,x4=t

ei~p·~xεijkd̄
i
β(x)(Cγ5)βγ ū

j
γ(x)ūkα(x) , (7)

where C is the charge conjugation matrix, i , j , k are color indices and α , β , γ are Dirac indices.
In order to improve the overlap of these interpolating fields with the ground state proton, we employ two improve-

ments: Jacobi smearing and non-relativistic projection. The latter of these has the additional advantage that we only
need to perform 2× 3 inversions rather than the usual 4× 3, since we only consider the first two Dirac components.

The matrix elements in Eq. (3) are obtained from ratios of three-point to two-point functions,

R(t, τ ; ~p ′, ~p;O) =
CΓ

3pt(t, τ ; ~p ′, ~p,O)

C2pt(t, ~p ′)

[
C2pt(τ, ~p

′)C2pt(t, ~p
′)C2pt(t− τ, ~p)

C2pt(τ, ~p)C2pt(t, ~p)C2pt(t− τ, ~p ′)

] 1
2

, (8)

for large time separations, 0� τ � t . 1
2LT , where LT is the temporal extent of our lattice. The nucleon two- and

three-point functions are given, respectively, by

C2pt(τ, ~p) = Tr
[
Γunpol〈B(τ, ~p)B(0, ~p)〉

]
,

CΓ
3pt(t, τ ; ~p ′, ~p,O) = Tr

[
Γ〈B(t, ~p ′)O(~q, τ)B(0, ~p)〉

]
. (9)

Here t and τ are the Euclidean times of the nucleon sink and operator insertion, respectively, ~p ′ (~p) is the nucleon
momentum at the sink (source), and O is the local vector current

Oµ(~q, τ) =
∑
~x

ei~q·~xq̄(~x, τ)γµq(~x, τ) . (10)

The trace in Eq. (9) is over spinor indices and the Γ matrix in the three-point function is one of

Γunpol =
1

2
(1 + γ4) , (11)

Γ1 =
1

2
(1 + γ4)iγ5γ1 , (12)

Γ2 =
1

2
(1 + γ4)iγ5γ2 . (13)
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We simulate with three different sink momenta ~p ′

L

2π
~p ′ = (0, 0, 0), (1, 0, 0), (0, 1, 0) . (14)

Finally, we use 17 different momentum transfers ~q = ~p ′ − ~p. Equations with identical values of virtual momentum
transfer q2 are combined to return the optimal statistics available at each working point. This procedure is outlined
in more detail in Ref. [23].

Note that quark line disconnected contributions to the three-point function in Eq. (9), which are relevant for the
flavor singlet observables but cancel out in the isovector case, have not been included in our study.

III. NUMERICAL RESULTS

In the following, we present and discuss in some detail our numerical results for the Dirac and Pauli nucleon form
factors.

A. Q2-dependence of F1 and F2

In Figs. 1 to 4, we provide an overview of our results for the Dirac and Pauli form factors1 in the isovector (u− d)
and isosinglet (u+ d) channels, for three different ranges of mπ, including all ensembles specified in Table I. Lighter
pion masses are indicated by darker colored points.

For comparison, we also show in each case the parametrization of the Q2-dependence of the experimental data
obtained by Alberico et al. [32] as gray error bands. This parametrization has been originally performed for Sachs
electric and magnetic form factors for the proton and the neutron, Gp,nE,M , using Kelly’s parametrization ansatz [11]

for GpE,M and GnM , and a Galster parametrization for GnE , with in total 14 parameters. Since the parameters are

strongly correlated, we have employed the full error correlation matrices provided at [33] for the error propagation.

For our purposes, we consider the resulting parametrization of the Q2-dependence of Fu±d1,2 as a reasonably faithful

representation of the experimental data, at least for not too large Q2, and will use it as such throughout this work.
We note that since the quality and availability of experimental results at larger values of the momentum transfer
above ∼ 1 GeV2 decreases, in particular for GnE , the shown error bands might significantly underestimate the actual
uncertainties in this region. If not stated otherwise we will consider the proton form factors in the following and omit
the superscript p for notational simplicity.

In the cases of Fu±d1 in Figs. 1 and 3, the normalization at Q2 = 0 is fixed, and we clearly see that the slope of the
lattice data is significantly smaller than that of the parametrization. It is interesting to observe, however, that the
data points systematically move towards the physical result as the pion mass decreases. Concerning Fu−d2 in Fig. 2,
it seems at first sight that the lattice data points, which show little dependence on mπ, are in rough agreement with
experiment over a wide range of Q2. This can be quite misleading, as we will see in more detail in the following
sections: Not only is the slope of the lattice data points too small, but the lattice results for Fu−d2 (Q2 = 0) = κu−d
(obtained from extrapolations in Q2) are also significantly below the experimental value. In combination, one naturally
finds that the lattice and the experimental results do overlap in a certain range of the momentum transfer, however
without implying a general agreement for all Q2. Finally, our results for Fu+d

2 in Fig. 4 turn out to be compatible
with zero within errors for practically all accessible values of Q2, with the exception of a small number of data points
at lower pion masses and low momentum transfers, in particular the lowest Q2 ∼ 0.2 GeV2, showing a slight trend
towards negative values and the experimental error band.

Before engaging in a more detailed study of the dependence of F1,2 on Q2 and also on the pion mass, we briefly
address two interesting questions that have been discussed before in the literature and that can be addressed on the
basis of ratios of form factors.

The first deals with potentially different Q2-slopes of F1 for the up and the down quarks. In coordinate/impact
parameter space [34, 35], such different slopes would correspond to differently shaped quark density distributions and
therefore provide important information about the inner structure of the nucleon. Figure 5 gives an overview of our
results for the ratio F d1 /F

u
1 as a function of Q2, where we have included all lattice ensembles, and where darker colors

correspond to lighter pions on the lattice. The parametrization of the experimental data is, as before, illustrated by

1 As in our earlier study in [23], we have normalized the results for F2 such that the anomalous magnetic moment is given in units of the

physical nuclear magneton, e/(2mphys
N ).
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FIG. 1. Dirac form factor F1(Q2) in the isovector channel.
All ensembles are included, and darker colors correspond to
lighter pion masses. The gray shaded band represents the
parametrization by Alberico et al. [32] of the experimental
data.
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FIG. 2. Pauli form factor F2(Q2) in the isovector channel.
All ensembles are included, and darker colors correspond to
lighter pion masses. The gray shaded band represents the
parametrization of Ref. [32] of the experimental data.

the error band. While the data points at the largest pion masses show only a small dependence on Q2, they show a
systematic downwards trend towards ratios F d1 /F

u
1 < 0.5 for Q2 & 0.5 GeV2 as the pions get lighter, thereby moving

closer to the experimental error band. In the limit Q2 → 0, the experimental result flattens off considerably, which
we will discuss in more detail in section III C below on the basis of the separate mean square radii for up and down
quarks and different parametrizations of the lattice data.

The second question concerns the scaling of F2/F1 at intermediate to large Q2-values. Perturbative QCD suggests
that Q2F2/F1 ∼ const. as Q2 → ∞, up to logarithmic corrections ∝ lnQ2 [36–38]. Recently, supported by new
measurements of GnM at JLab Hall A, it has been noted that F2/F1 approximately scales as a constant already in

an intermediate range of Q2 = 1.5, . . . , 3.5 GeV2, separately for up and for down quarks [39]. We show our results
together with the parametrization of [32] for these ratios in Figs. 6 and 7. Clearly, the uncertainties and the scatter
of the lattice data, in particular for the up quark case in Fig. 6, make it difficult to draw any strong conclusions.
Nevertheless, the lattice data points in the different mπ-ranges are overall compatible with a flat Q2-dependence above
∼ 0.5 GeV2, which is most clearly seen for the down quarks in Fig. 7 at the largest pion masses. While the latter
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FIG. 3. Dirac form factor F1(Q2) in the isosinglet (u + d)
channel. All ensembles are included, and darker colors cor-
respond to lighter pion masses. The gray shaded band rep-
resents the parametrization by Alberico et al. [32] of the
experimental data.
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FIG. 4. Pauli form factor F2(Q2) in the isosinglet (u + d)
channel. All ensembles are included, and darker colors
correspond to lighter pion masses. The gray shaded band
represents the parametrization of Ref. [32] of the experimen-
tal data.

are about a factor of two below the experimental band, we see a clear upwards trend as lower pion masses are being
approached. These trends are less clear in the case of the up quarks in Fig. 6, for which the data points are, however,
generally closer to experiment.

In any case, more quantitative conclusions with respect to these interesting questions will have to be based on
precise lattice data at low pion masses that extends up to and beyond squared momentum transfers of Q2 ∼ 2 GeV2.

To conclude this section, we note that a study of potential systematic uncertainties, as well as the pion mass
dependence of the form factors at fixed Q2, is given further below in section V. In short, we do not see any significant,
systematic effects due to contributions from excited states (section V A), or the finite lattice spacing (section V B), at
least within statistical uncertainties. Although the lattice data points show an approximately linear dependence on
mπ or m2

π at fixed Q2, we find that simple linear extrapolations to the physical point would not lead to an agreement
with the results from experiment and phenomenology (section V B). We therefore conclude that a non-trivial pion
mass dependence has to set in between the lowest accessible lattice pion masses of ∼ 180, . . . , 260 MeV and mphys

π .
This will also be studied in greater detail on the basis of the mean square radii and anomalous magnetic moments in
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FIG. 5. The ratio F d1 /F
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1 of down to up quark contributions to the Dirac form factor. All ensembles are included. The darker

colors correspond to lighter pion masses. The gray shaded band represents the parametrization of Ref. [32] of the experimental
data.

section IV.

B. Parametrizations of the Q2-dependence

We now turn to analytical parametrizations of the Q2-dependence. These will not only allow us to interpolate
between the discrete values of Q2, but in particular to extrapolate our results for F2 to the forward limit in order to
extract the anomalous magnetic moment. Furthermore, well-chosen parametrizations are important to obtain more
realistic estimates for the mean square radii from the slopes of the form factors at Q2 = 0,

〈r2〉i = − 6

Fi(0)

dFi(Q
2)

dQ2

∣∣∣∣
Q2=0

. (15)

However, we note that the parametrizations unavoidably introduce some model dependence into the analysis.
In the following, we compare different ansätze for the Q2-dependence of the form factors. A common ansatz for the

Dirac form factor is a dipole,

F1(Q2) =
F1(0)

(1 +Q2/m2
D)2

, (16)

with, e.g., F p,u−d1 (0) = 1, where the dipole mass mD is a free fit parameter. The corresponding mean square radius
is then given by the squared inverse dipole mass, 〈r2〉1 = 12/m2

D. A more flexible parametrization is obtained with a
more general polynomial in the denominator,

F1(Q2) =
F1(0)

1 + c12Q2 + c14Q4
, (17)

with c12 and c14 as free fit parameters. Here the mean square radius is obtained from 〈r2〉1 = 6c12. The latter form
was already employed in Ref. [40], and it also allows for a matching to a simple vector meson exchange ansatz, as
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will be discussed below in section III D. Similarly, for the Pauli form factor F2, one could employ a simple dipole or
tripole form

F2(Q2) =
F2(0)

(1 +Q2/m2
p)
p
, (18)

where p = 2 or 3, and F2(0) and the pole mass mp are the fit parameters. In this case the Pauli radius is given by
〈r2〉2 = 6p/m2

p. Alternatively, a more general polynomial in the denominator leads to a three-parameter ansatz of the
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FIG. 8. Parametrization of the Q2-dependence of the isovector Dirac form factor lattice data for selected ensembles. The
shaded bands represent the 2-parameter fits to the lattice data points based on Eq. (17). We also show the corresponding
values of χ2/DOF . For comparison, the 1-parameter dipole fits based on Eq. (16) are indicated by the dashed lines, with
χ2/DOF given in parentheses.

form [40]

F2(Q2) =
F2(0)

1 + c22Q2 + c26Q6
, (19)

for which the mean square radius is 〈r2〉2 = 6c22. We note that the choices for the highest powers of Q2 in the

denominators of Eqs. (17) and (19) ensure that Fi(Q
2)

Q2→∞−−−−−→∼ 1/(Q2)i+1, as expected from perturbative QCD [36].

Typical results for parametrizations of Fu−d1 (Q2) for selected ensembles are displayed in Fig. 8. We observe that
according to the χ2/DOF , the less restrictive polynomial ansatz seems to describe the data significantly better. Apart
from that, the main difference between the fits based on Eqs. (16) and (17) is the smaller slope and the broadening
of the error bands in the case of the 2-parameter polynomial ansatz in the region of larger Q2 where no data points
are available.

In the case of Fu−d2 , we are comparing a tripole (p = 3) ansatz, Eq. (18), with the more general polynomial
parametrization, Eq. (19), in Fig. 9. With respect to the χ2/DOF , the 3-parameter form doesn’t have any advantage.
However, due to the somewhat stronger broadening of the error bands at lower and larger values of Q2 in regions where
no data points are available, we consider the polynomial ansatz in general to be less biased and hence to provide more
realistic uncertainties with respect to extrapolations, in particular to Q2 = 0. A more quantitative comparison of
different parametrizations of F2(Q2) will have to be based on precise data over a broader range of Q2, e.g., employing
partially twisted boundary conditions [41, 42] to access very small momentum transfers.

In the following sections, we will argue further on the basis of a matching to a simplistic vector meson exchange
ansatz, and the extracted Dirac and Pauli radii, that the polynomial ansätze in Eqs. (17) and (19) provide a more
consistent description of the data. We will therefore consider them in the following as preferred compared to the
standard dipole and tripole forms in Eqs. (16) and (18).

A collection of numerical results for the mean square radii and anomalous magnetic moments, obtained from the
polynomial parametrizations, is provided in Appendix A, for all ensembles listed in Table I.
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FIG. 9. Parametrization of the Q2-dependence of the isovector Pauli form factor lattice data for selected ensembles. The
shaded bands represent the 3-parameter fits to the lattice data points based on Eq. (19). We also show the corresponding
values of χ2/DOF . For comparison, the 2-parameter tripole fits based on Eq. (18) (p = 3) are indicated by the dashed lines,
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C. Dirac radius

An overview of our results for the isovector Dirac radius, 〈r2〉u−d1 , as a function of mπ is provided in Fig. 10, as
obtained from the polynomial ansatz in Eq. (17).

Although the results from the polynomial ansatz are somewhat larger at lower values of mπ relative to the standard
dipole fits, we find that even at the lowest accessible pion masses of 200− 300 MeV, the lattice data points are about
50% below the phenomenological and experimental results. It is interesting to point out, however, that we observe an
upwards trend for mπ < 400 MeV that does not seem to follow the otherwise rather linear pion mass dependence of the
data points. In passing, we also note that there is a significant, so far unresolved difference between the values at the
physical point obtained from the recent muonic hydrogen measurements [15] and the PDG [16]. Incidentally, the result
from an earlier dispersion relation analysis of experimental form factor data [8] agrees well with the recent muonic
hydrogen study. The observation that lattice calculations at unphysically large pion masses give mean square radii
that are significantly below experiment has been made already in a number of previous publications, e.g. [23, 25–29].
In combination with a detailed study of potential discretization and finite volume effects, as well as contaminations
from excited states in section V, we will come to the conclusion that indeed a strong pion mass dependence has to
set in between the physical pion mass and mπ ∼ 200 MeV. This is also in agreement with general predictions from
chiral perturbation theory, as we will discuss below in section IV.

Apart from the normalization, the most significant difference between results from the polynomial and the dipole
fits are the relative positions of the lattice data points for small values of mπ×L < 3.4, which are most likely affected
by finite volume effects. They turn out to be residing above the data points for larger mπ×L in the case of the dipole
parametrization, and below for the polynomial ansatz in Fig. 10. Since one generically expects the radius of a hadron
to decrease as the volume decreases, we find again that the polynomial fit provides a more physical parametrization
of our data.

Corresponding results for the isosinglet Dirac radius are shown in Fig. 11. Overall, the data points feature small
statistical uncertainties and show only little scatter over the full range of pion masses. Below mπ < 700 MeV, we
even find a remarkable upwards tendency, although the lattice results at mπ ∼ 250 MeV are still ∼ 25% below the
expected range of values of 〈r2〉u+d

1 ∼ 0.60, . . . , 0.62 fm2 at the physical point.



12

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

mΠ@GeVD

<
r2

>
1u

-
d

@fm
2

D

Pohl et al. '10
Belushkin et al. '07
PDG 2010
mΠ�L<3.4
Β=5.40
Β=5.29
Β=5.25
Β=5.20

FIG. 10. Isovector Dirac radius versus mπ, as obtained from
fits to Fu−d1 using the polynomial ansatz in Eq. (17) (cf.
Fig. 8). The labels “PDG 2010” and “Pohl et al. ’10” refer to
Refs. [16] and [15], respectively. Unless specified otherwise,
the label “Belushkin et al. ’07” here and below refers to the
super-convergence (SC) values of Ref. [8].

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

mΠ@GeVD

<
r2

>
1u

+
d

@fm
2

D

Alberico et al. '08
Belushkin et al. '07

mΠ�L<3.4
Β=5.40
Β=5.29
Β=5.25
Β=5.20

FIG. 11. Isosinglet Dirac radius versus mπ, as obtained from
fits to Fu+d

1 using Eq. (17).

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

mΠ@GeVD

<
r2

>
1u

,d
@fm

2
D

"
Alberico et al. '08
"
Belushkin et al. '07
"
mΠ�L<3.4
down
up

FIG. 12. Comparison of Dirac radii for up and down quarks
in the proton as a function of the pion mass.

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

mΠ@GeVD

<
r2

>
1d

�<r
2

>
1u

Alberico et al. '08
Belushkin et al. '07
mΠ�L<3.4
Β=5.40
Β=5.29
Β=5.25
Β=5.20
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the proton as a function of the pion mass.

A more detailed discussion of the pion mass dependence of the isovector and isosinglet Dirac radii will be given
below in section IV A. Although we cannot exclude the presence of some discretization and finite volume effects in
〈r2〉u−d1 , our corresponding analysis in section V C does not provide any indication that they are larger than the
present statistical uncertainties.

In conjunction with the comparison of the slopes of F1(Q2) for up and for down quarks above (see the ratio F d1 /F
u
1

in Fig. 5), we show in Fig. 12 the corresponding Dirac radii as functions of mπ. They were obtained from separate
parametrizations of Fu1 (Q2) and F d1 (Q2) using Eq. (17). We find that the mean square radii of the down quarks
are systematically larger than those of the up quarks. The corresponding ratio in Fig. 13 is rather flat over the full
range of pion masses, with an average of 〈r2〉d1/〈r2〉u1 ∼ 1.24± 0.13. The observed hierarchy is in agreement with the
experimental and phenomenological results, although the latter show a much smaller difference between the up and
the down quark radius of just ≈ 2− 4%. It will be interesting to study the origin of this feature in more detail in the
future. We also note that the substantial difference between the values obtained from the analysis of Belushkin et al.
in [8] and the form factor parametrization of Alberico et al. [32] in Fig. 5 is, as before, at least to some extent related
to a corresponding difference in the proton charge radius, 〈r2〉pE .

D. Matching to a vector meson exchange ansatz

Specific contributions from vector meson exchange, the two-pion continuum, perturbative QCD etc. to nucleon form
factors have, for example, been investigated in [8] in the framework of a dispersion relation study of experimental
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data. Clearly, such a detailed analysis of the Q2-dependence of F1 and F2 is not possible on the basis of the currently
available lattice data. Still, to get some first insight into the physics behind our preferred parametrization in Eq. (17),
we now explore a matching to a simplistic vector meson exchange ansatz of the generic form

F (Q2) =
a1

M2
1 +Q2

+
a2

M2
2 +Q2

. (20)

In the isosinglet channel, one might expect that the lower of the two masses, say M1, corresponds to the ω(782).
In contrast, in the isovector channel the two-pion continuum contribution plays a leading role, which also generates
a ρ(770)-meson exchange contribution. A comparison with the simple ansatz Eq. (20) might therefore show that

Mu−d
1 ∼ mρ.
To facilitate the matching of the two-parameter ansatz in Eq. (17) with Eq. (20), we implement, in addition to

charge conservation, i.e.
∑
j a

u−d
j /(Mu−d

j )2 = 1 for Fu−d1 and similar for the isosinglet case, also the large-Q2-behavior

obtained from perturbative QCD [36], i.e. Fi(Q
2)

Q2→∞−−−−−→∼ 1/(Q2)i+1, by setting
∑
j aj = 0 for the Dirac form factor.

In the case of F2, we would have the additional condition
∑
j ajM

2
j = 0. We then compute the lowest real solution

for M2
1 from the parameters c12 and c14, which were obtained from the fits discussed above. The numerical values for

the extracted masses are provided in Appendix A. In Fig. 14, we display them in the form of ratios Mu−d
1 /mV and

Mu+d
1 /mV with mV =̂mlat

ρ (mπ) as functions of the pion mass. As we do not have results available for mlat
ω , we use

mlat
ρ instead also in the isosinglet channel, expecting that mlat

ρ ≈ mlat
ω also holds at larger pion masses. Remarkably,

we find that the ratios are very close to, and in most cases within errors fully compatible with, unity over the full
range of pion masses from mπ ∼ 1.5 GeV down to mπ ∼ 0.25 GeV. That this is a non-trivial observation is supported
by the fact that the lattice vector meson (ρ) mass, which has been obtained independently, shows a strong pion mass
dependence, as illustrated in the upper panel of Fig. 15. This pion mass dependence is clearly compensated to a good
approximation in the ratios in Fig. 14. At the same time, we see from the lower panel in Fig. 15 that the pion mass
dependences do not cancel out in the ratio mD/mV of the dipole mass, obtained from dipole fits to F1, Eq. (16), to
the lattice vector meson mass.

We interpret these results as providing strong evidence for the assumption that the Q2-dependence of F1 (within
the accessible ranges) is to a significant extent driven by vector meson exchange contributions, in particular from
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FIG. 17. Isosinglet anomalous magnetic moment versus mπ,
as obtained from separate fits to Fu2 and F d2 using Eq. (19).

the ω and ρ mesons. Furthermore, these findings provide additional support in favor of our preferred 2-parameter
parametrization in Eq. (17).

E. Anomalous magnetic moment

We now turn to a discussion of the anomalous magnetic moment, κ = F2(0). As it cannot be extracted directly
at Q2 = 0 from a calculation of the Pauli form factor on the lattice with our methods, we have to rely on the Q2-
parametrizations discussed in section III B. For the reasons given above, we will focus here on the results from the
more flexible 3-parameter parametrization in Eq. (19).

Our results for κu−d as a function of the pion mass are displayed in Fig. 16. While the data points are systematically
rising as we approach lower pion masses, they are still about 25% below the precisely known experimental value of
κu−d = 3.7058893 at the lowest accessible pion masses of ∼ 200− 300 MeV.

Corresponding results for the isosinglet (u+ d) channel are shown in Fig. 17. Since the magnitude of Fu+d
2 is much

smaller than that of Fu−d2 , the respective lattice data points are in many cases very close to or even compatible with
zero, cf. Fig. 4, making a reliable extrapolation in Q2 very difficult. We therefore have fitted the contributions from
up and down quarks separately employing the polynomial ansatz in Eq. (19), and subsequently computed κu+d (as

well as 〈r2〉u+d
2 ) from the individual parts. While most of the resulting data points in Fig. 17 are again compatible

with zero within uncertainties, we still can observe a systematic trend towards negative values at lower pion masses.
In the region mπ < 500 MeV, we even see an overlap with the experimental value within uncertainties.

We will take a closer look at the pion mass dependence of κ below in section IV B. As before, we do not find any
indications for statistically significant systematic discretization or finite volume effects for this observable, as will be
discussed in section V C.

F. Pauli radius

The Pauli radius, 〈r2〉2, is given by the slope of F2(Q2) at zero momentum transfer. Since the lowest values of Q2

for which we can access F2 are in the range of Q2 ∼ 0.15, . . . , 0.5 GeV2 (for standard periodic boundary conditions
in spatial directions, and depending on the lattice parameters), the computation of the slope heavily relies on the
employed parametrization of the Q2-dependence. The results for our preferred polynomial, Eq. (19), ansatz are
displayed in Fig. 18 for the isovector case. Overall, we find that the central values for the polynomial parametrization
are higher than for the tripole ansatz. At the lowest accessible pion masses, the results from the polynomial ansatz
in Fig. 18 are just about 20% below the phenomenological value. In contrast, one finds that the corresponding
lattice data points from the tripole parametrization are about 40 − 50% below the phenomenological number. Not
surprisingly, the uncertainties from the more flexible 3-parameter fits are significantly larger, and potentially more
realistic, than for the 2-parameter tripole ansatz. As in section III B above, we prefer also in this case the more general
polynomial ansatz over the standard dipole or tripole parametrizations. With respect to F2(Q2), however, a more
conclusive assessment probably has to be based on lattice results obtained in larger volumes or employing (partially)
twisted boundary conditions in order to get access to lower and more densely spaced values of Q2.



15

0.0 0.5 1.0 1.5
0.0

0.2

0.4

0.6

0.8

1.0

mΠ@GeVD

<
r2

>
2u

-
d

@fm
2

D

Belushkin et al. '07

mΠ�L<3.4

Β=5.40

Β=5.29

Β=5.25

Β=5.20

FIG. 18. Isovector Pauli radius versus mπ, as obtained from
fits to Fu−d2 using Eq. (19) (cf. Fig. 9).

0.0 0.5 1.0 1.5
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

mΠ@GeVD

HΚ*
<

r2
>

2
Lu+

d
@fm

2
D Β=5.40

Β=5.29

Β=5.25

Β=5.20

FIG. 19. Results for the slope of the Pauli radius for (u+ d)-
quarks in the proton, (κ×〈r2〉2)u+d, as a function of the pion
mass. A range of results from experiment and phenomenology
is illustrated by the shaded vertical band at the physical pion
mass.

With respect to the isosinglet channel, we first note that 〈r2〉2 can be written as 〈r2〉2 = −6ρ2/κ, where ρ2 =
dF2(Q2)/dQ2|Q2=0 is the slope of the Pauli form factor. Since κu+d turns out to be small and mostly compatible with
zero within errors over a wide range of pion masses, cf. Fig. 17, we will avoid the resulting substantial uncertainties
in 〈r2〉u+d

2 by considering instead the slope alone, −6ρ2 = (κ× 〈r2〉2)u+d.
It is also interesting to note that for the isosinglet Pauli radius, or more precisely the slope (κ × 〈r2〉2)u+d, one

finds a rather widespread range of values from experiment and phenomenology: The super-convergence approach of
Ref. [8] gives (with a Dirac charge radius of 〈r2〉pE ∼ 0.84 fm2 that is close to the recent measurement by Pohl et

al. [15]) (κ × 〈r2〉2)u+d = 0.04 ± 0.12 fm2, where we have obtained the uncertainty from a standard (uncorrelated)
error propagation. From the same publication [8] the “Recent determinations” from Table I give (κ × 〈r2〉2)u+d =
−0.28 ± 0.52 fm2, for 〈r2〉pE ∼ 0.88 fm2 that is closer to the PDG value [16]. An even larger negative value can be

obtained from the parametrization of Ref. [32], (κ × 〈r2〉2)u+d = −0.66 ± 0.29 fm2 (taking into account the error
correlation matrix). In Fig. 19, we show our lattice results for (κ × 〈r2〉2)u+d together with the estimated range
of phenomenological values. While the lattice data points at large pion masses are mostly close to, and within
uncertainties compatible with, zero, we observe a trend towards non-zero, negative values below mπ ≈ 700 MeV.
Accordingly, our results at the lowest pion masses, with (κ × 〈r2〉2)u+d ≈ 0.0, . . . ,−0.7, are fully compatible with
the wide range of values from experiment and phenomenology, indicated by the shaded band. We expect the use
of (partially) twisted boundary conditions to be of great help in order to pin down the parametrization of the Q2-

dependence of Fu+d
2 at small Q2, which should lead in turn to significantly more precise values for (κ× 〈r2〉2)u+d.

IV. CHIRAL EXTRAPOLATIONS

In the literature, baryon ChPT has often been applied to lattice results with the goal to extrapolate them from pion
masses ' 300 MeV downwards to the chiral limit and to obtain in this way “a priori” or “a posteriori” predictions at
the physical point. In this process, less known or previously unknown low energy constants (LECs) are treated as free
fit parameters and are thereby determined from the available lattice data points and their respective uncertainties.
It is important to keep in mind, however, that in order to provide more than a mere parametrization of the mπ-
dependence of the data, such an approach has to rely on the assumptions that (i) the systematic uncertainties of the
lattice calculation are reasonably well under control, and (ii) that the particular ChPT-formula to the given order is
applicable at larger pion masses in the first place. While we are able to study the systematic uncertainties to some
extent directly on the basis of our extensive sets of lattice ensembles and results, cf. section V, the latter assumption is
generically hard to justify, in particular since for most nucleon observables results from (H)BChPT are only available
at the 1-loop level, and higher order corrections are difficult to quantify.

Therefore, in this work, we follow a somewhat different path:

• Well-known constants like gA of fπ will be fixed as usual to either their physical or their chiral limit values, see
Table II. The resulting uncertainties due to a variation of the constants between these values will be studied for
selected observables.
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• Low energy constants whose values are at least approximately known will be varied in reasonably wide ranges
to assess the related uncertainties.

• Central physical quantities of interest in this work, in particular the chiral limit value of the anomalous magnetic
moment, κ0, as well as regularization scale dependent counter term parameters, will be treated as free fit
parameters. They will be determined by fits preferably only to the experimental and phenomenological values
of the observable under consideration at the physical point. Only if this turns out to be insufficient, we will
include our lattice data points for pion masses below 260 MeV in the fit.

In essence, we attempt an “upwards extrapolation” from mphys towards lattice data points at larger pion masses. In
combination with our study of potential systematic uncertainties, this approach provides an opportunity to assess
the applicability of the different available ChPT-schemes in the range in between the physical pion mass and typical
lowest lattice pion masses of mπ ∼ 200, . . . , 400 MeV.

A. Dirac radius

In [22, 23], the mπ and Q2-dependence of the nucleon vector form factors was studied in the small scale expansion
(SSE), a heavy baryon scheme with explicit ∆-degrees of freedom, to O(ε3). The resulting pion mass dependence of

〈r2〉u−d1 is given by

〈r2〉u−d,SSE
1 = − 1

(4πfπ)2

{
1 + 7g2

A +
(
10g2

A + 2
)

ln
(mπ

λ

)}
+

c2A
54π2f2

π

{
26 + 30 ln

(mπ

λ

)
+ 30

δm√
δm2 −m2

π

ln

(
δm

mπ
+

√
δm2

m2
π

− 1

)}
+

12B
(r)
10 (λ)

(4πfπ)2
, (21)

which depends on four LECs, the pion decay constant fπ, the isovector axial vector coupling constant gA, the axial
vector pion-nucleon-∆ coupling constant cA = gπN∆, and the ∆-nucleon mass difference δm = m∆−mN , as well as a

counter term B
(r)
10 (λ) that removes the regularization scale dependence2. Generically, the LECs are taken in the chiral

limit, i.e. fπ = f0
π etc., however to the order considered, they can as well be taken at the physical point. Equation

(21) shows explicitly the well-known logarithmic lnmπ divergence that is expected in the chiral limit of 〈r2〉u−d1 .
From Eq. (21), the leading 1-loop HBChPT result (see, e.g., [19, 20]) can be easily recovered by setting cA = 0,

giving

〈r2〉u−d,HBChPT
1 = − 1

(4πfπ)2

{
1 + 7g2

A +
(
10g2

A + 2
)

ln
(mπ

λ

)}
+

12B
(r)
10 (λ)

(4πfπ)2
. (22)

We have employed both the SSE result in Eq. (21) as well as the HBChPT expression in Eq. (22) to extrapolate from

the physical pion mass upwards in mπ towards the lattice data points. The counter term B
(r)
10 was in both cases fitted

to the average phenomenological value at the physical point. This was done for a range of values of the low energy
constants fπ, gA, mN and δm, which have been varied in between their physical and chiral limit values, cf. Table II.
The coupling cA in the SSE approach has been varied at the same time in the range of cA = 1, . . . , 1.5. The outcome
of this procedure is shown in Fig. 20, where the dashed lines outline the uncertainty band from the heavy baryon
fits, and the shaded band represents the SSE approach. Here and below, a lighter shading is used for the ChPT-
extrapolation band for pion masses larger than those included in the fit. It is interesting to see that both approaches
show a rapidly decreasing isovector Dirac radius as the pion mass increases, even leading to an overlap with the lattice

data points at mπ ≈ 250, . . . , 300 MeV. We find that the adjusted counter term parameter B
(r)
10 varies significantly

for the different combinations of parameters and ChPT-approaches: In the SSE-approach, B
(r)
10 ≈ −1.28, . . . ,−0.37,

while for the HBChPT case, B
(r)
10 ≈ −0.16, . . . , 0.0, for a regularization scale of λ = 0.89 GeV. As has already been

noted in [23], it seems doubtful that these two ChPT approaches to the given orders are quantitatively applicable at
or above the physical pion mass. The overlap with the lattice data points should therefore be interpreted with some
care, as it might be accidental and not the result of a physically meaningful chiral extrapolation.

2 Here and below, an analytic continuation of the form (r2 − 1)±1/2 ln
(
r +
√
r2 − 1

)
→ ∓(1 − r2)±1/2 arccos(r) with r = δm/mπ is

regarded as implicit for mπ > δm, i.e. r < 1.
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mπ[ MeV] fπ[ MeV] gA mN [ MeV] δm[ MeV]

0 86 1.2 890 330

139 92 1.269 938 271

TABLE II. Standard low energy constants at the physical point and in the chiral limit (estimated). We denote the ∆-nucleon
mass difference by δm = m∆ −mN .
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FIG. 20. Pion mass dependence of the isovector Dirac
radius, as obtained from fits to Fu−d1 using Eq. (17). The
band outlined by the dashed curves, and the shaded band
represent heavy baryon and SSE chiral extrapolations,
respectively. For the details, see Eqs. (21) and (22) and the
surrounding text.
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FIG. 21. Pion mass dependence of the isovector Dirac ra-
dius, as obtained from fits to Fu−d1 using Eq. (17). The
shaded band represents a BChPT-fit to an average of the phe-
nomenological and experimental values at the physical point
with the counter term as the only fit parameter. The dotted
line represents the heavy-baryon limit of the central covariant
fit result. For the details, see Eq. (23) and the surrounding
text.

Results for the pion mass dependence of 〈r2〉u−d1 in the covariant BChPT-scheme of Ref. [43] (without explicit
∆-DOFs) have been obtained in [44]. To O(p4), it reads

〈r2〉u−d,BChPT
1 = Bc1 + (r2

1)u−d,(3) + (r2
1)u−d,(4) , (23)

where the individual higher order contributions (r2
1)u−d,(3,4) are given in Appendix B in Eqs. (B2) to (B4). It is

interesting to note that in contrast to the SSE-expansion to O(ε3), the O(p4)-contribution in Eq. (B4) introduces
a dependence on the coupling c6, which determines the isovector anomalous magnetic moment in the chiral limit,
κ0,u−d=̂c6, as we will see below. We also note that the regularization scale in Eqs. (B2) to (B4) has been set equal to
the nucleon mass in the chiral limit, m0

N ≈ 0.89 GeV.

For the covariant BChPT extrapolation, we have varied the LEC c6 in a range of 4, . . . , 6 to account for the related
systematic uncertainties. As before, for a given value of c6, we have fitted the counter term Bc1 to the average of
the phenomenological values at mphys

π , giving a relatively stable Bc1(m0
N ) ≈ −1.5 GeV−2. The result is represented

by the error band in Fig. 21, which in addition includes a variation of the standard LECs as described above.
Compared to Fig. 20, the extrapolation band falls off more slowly, and lies about 20% above the lattice data points
at mπ ∼ 260 MeV. Notably, a heavy baryon expansion of the covariant BChPT result leads to a curve that quickly
bends upwards above the physical pion mass, as illustrated by the dotted line in Fig. 21. Assuming that the BChPT
formula to the given order is applicable at the physical pion mass, this would indicate that the corresponding HBChPT
expansion has a much smaller radius of convergence, and starts to break down already above mπ ∼ 100 MeV. In
comparing HBChPT, SSE and BChPT expansions it is interesting to note that progress with respect to the isovector
nucleon form factors has been reported very recently in BChPT including the ∆-resonance in the so-called δ-power
counting scheme, see [45] and references therein.

At the one-loop level in HBChPT, with or without explicit ∆-DOFs, the isosinglet Dirac radius turns out to be

independent of mπ, 〈r2〉u+d,HBChPT,SSE
1 = const. [20, 21]. Furthermore, while the analytical expression of the BChPT

result of Ref. [44] for 〈r2〉u+d
1 shows at first sight a rather non-trivial pion mass dependence, it turns out to be nearly
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FIG. 22. SSE chiral extrapolation of the isovector anomalous
magnetic moment. The shaded error band represents the
fit of the SSE Eq. (24) with two free parameters (κ0 and a
counter-term) to the experimental value and the lattice data
for mπ ≤ 260 MeV. For the details, see Eq. (24) and the
surrounding text.
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FIG. 23. BChPT extrapolation of the isovector anomalous
magnetic moment. The shaded error band represents fits of
Eq. (25) with two free parameters (c6=̂κ0 and a counter-
term) to the experimental value and the lattice data for mπ ≤
260 MeV. The heavy-baryon limit of the central covariant fit
result is indicated by the dotted line. For the details, see
Eq. (25) and the surrounding text.

flat in practice3. To the contrary, a rather strong pion mass dependence for this observable is observed on the lattice
down to mπ ∼ 230 MeV, cf. Fig. 11. Lacking any reason to assume that the pion mass dependence suddenly flattens
off at the physical pion mass, we conclude that the available ChPT results for 〈r2〉u+d

1 are most likely not even
qualitatively applicable at or above mphys

π . We therefore refrain from extracting the relevant LECs from fits to the
phenomenological values at the physical point. It is interesting to note that, although lacking a theoretical foundation,
a naive linear extrapolation in mπ of the lattice data points below mπ = 500 MeV would get reasonably close to the
experimental and phenomenological values at the physical point in Fig. 11.

B. Anomalous magnetic moment

The pion mass dependence of κu−d in the small scale expansion to O(ε3) can be written as [22, 23]

κSSE
u−d = κ0

u−d + Ku−d(mπ)− 8E
(r)
1 (λ)mNm

2
π , (24)

where we provide the explicit expression for Ku−d(mπ) in Appendix B in Eq. (B1). In addition to the LECs that were
already discussed above, κSSE

u−d depends on the isovector anomalous magnetic moment κ0
u−d and the isovector nucleon-

∆ coupling constant cV = c0V in the chiral limit. The counter-term parameter E
(r)
1 (λ) removes the regularization scale

dependence to the given order. Neither cV nor cA are known to great precision. In order to reduce the number of fit
parameters, we will keep them fixed but perform various fits for cV = −1.5, . . . ,−3.5 GeV−1 and cA = 1.0, . . . , 1.5

in order to assess the related uncertainties. The two remaining unknowns, κ0
u−d and E

(r)
1 (λ), are treated as free

fit parameters and can be obtained from fits to the experimental value at the physical point and the lattice data
point at mπ ∼ 260 MeV. We show the results of the SSE-fits to κu−d in Fig. 22. In the chiral limit, we obtain
κ0
u−d ∼ 5.3, . . . , 5.5, which is remarkable 40% above the precisely known value at the physical point. For the counter-

term parameter, we find values of E
(r)
1 ∼ −2.9, . . . ,−5.2 GeV−3 for λ = 0.89 GeV. Since the extrapolation band

continues to fall off above mπ ∼ 300 MeV, it misses the lattice data points to the right, which show little pion mass
dependence between mπ ∼ 300 MeV and mπ ∼ 700 MeV.

The corresponding expression in the covariant BChPT-approach of Ref. [44] reads

κBChPT
u−d =

m
(n)
N

m0
N

{
c6 − 16m0

Nm
2
πe
r
106(λ) + (κu−d)

(3) + (κu−d)
(4)

}
, (25)

3 Assuming that the anomalous magnetic moment in the chiral limit fulfills 0 > κ0
u+d ≈ κ

phys
u+d ∼ −0.36, which is confirmed by the observed

pion mass dependence of κu+d and the corresponding chiral extrapolations, see, e.g., Ref. [26] and our discussion below in section IV B.
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FIG. 24. SSE chiral extrapolation of the isosinglet anomalous
magnetic moment. The shaded error band represents the
fit of the SSE Eq. (26) with two free parameters (κ0 and a
counter-term) to the experimental value and the lattice data
for mπ ≤ 260 MeV.
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FIG. 25. BChPT extrapolation of the isosinglet anomalous
magnetic moment. The shaded error band represents fits of
Eq. (27) with two free parameters (κ0

s=̂κ
0
u+d/3 and a counter-

term) to the experimental value and the lattice data for mπ ≤
260 MeV. The dotted line illustrates the heavy-baryon limit
of the central covariant fit result.

where m
(n)
N denotes the nucleon mass used in front of F2 in the parametrization of the current in Eq. (3). In our case,

m
(n)
N = mphys

N = 0.938 GeV, and we will explicitly replace m
(n)
N by mphys

N in the following. The contributions at O(p3)

and O(p4), i.e. (κu−d)
(3,4), are given in Appendix B in Eqs. (B5) and (B6), respectively.

These expressions depend on c6=̂κ0 as well as the additional LEC c4, plus a counter-term parameter er106. Varying
c4 in the range of 3.2, . . . , 4.0 GeV−1, we have determined c6 and the counter-term from fits to the experimental value
and the lattice data at mπ ∼ 260 MeV. The result is shown in Fig. 23. Again, we find a rather large value for κu−d
in the chiral limit, κ0

u−d ∼ 4.8, . . . , 5.1, somewhat below the values of the SSE extrapolation. For the counter-term

parameter, we obtain er106 ∼ 0.5, . . . , 1.0 GeV−3 for λ = 0.89 GeV. The error band is close to the one in Fig. 22 for
the SSE case up to pion masses of ∼ 300 MeV, but then falls off more strongly, already lying a factor of about two
below the data point at ∼ 400 MeV. More interesting is the observation that the non-relativistic limit, mN →∞, of
the covariant fit, indicated by the dotted line in Fig. 23, drops off even more strongly and starts to deviate from the
full result already at the physical point. In the case that the covariant approach is at all quantitatively applicable in
these ranges of the pion mass, this would suggest in turn that the range of applicability of the corresponding heavy
baryon expansion is much more limited.

Turning our attention to the isosinglet channel, we first note that in HBChPT at one-loop level, a pion mass
dependence is only observed in the modified SSE counting scheme of Ref. [22] (denoted by ’scheme C’). It is given by

κSSE
u+d = κ0

u+d − 24E2mNm
2
π , (26)

where E2 is a counter-term parameter. The result of a fit to the experimental value at the physical point and the
lattice data point at mπ ∼ 260 MeV is illustrated by the shaded error band in Fig. 24. We find a non-zero, negative
value for the isosinglet anomalous magnetic moment in the chiral limit, κ0

u+d = −0.40± 0.05, while the counter-term

parameter turns out to be small and compatible with zero within errors, E2 = −0.08± 0.12 GeV−3.
The pion mass dependence in the BChPT calculation of Ref. [44] reads

κBChPT
u+d =

mphys
N

m0
N

{
κ0
u+d − 48m0

Nm
2
πe
r
105(λ) + (κu+d)

(3) + (κu+d)
(4)

}
, (27)

where the contributions (κu+d)
(3,4) of O(p3) and O(p4) are given in Eqs. (B7) and (B8) in Appendix B. One finds

that κu+d depends on the chiral limit value κ0
u+d = 3κ0

s = κ0
p + κ0

n, and a counter-term parameter er105(λ). As before,
the regularization scale has been set to λ = 0.89 GeV. From a fit to the experimental value and the lattice data point
at mπ ∼ 260 MeV, we obtain a negative κ0

u+d ∼ −0.6, . . . ,−0.49, with a small value for the counter-term parameter

of er105 ∼ 0.58, . . . , 0.79 GeV−3. The result of the fit is shown by the shaded error band in Fig. 25. With just two
data points constraining the fit, the band quickly broadens at larger pion masses, thereby prohibiting a quantitative
assessment. We note, however, that the center of the band provides a good description of the lattice data points up to
mπ ∼ 500 MeV. In the heavy-baryon limit, we find a strongly downwards bending curve directly above the physical
pion mass, illustrated by the dotted line. This indicates once more that the radius of convergence of the heavy-baryon
approach at one-loop level is limited to the region below mphys

π (assuming that the BChPT result is applicable up to
mπ ∼ 260 MeV in our fit in the first place).
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C. Pauli radius

To separate the pion mass dependence of the slope of F2(Q2) from that of F2(0) = κ, we focus here on the product
κ×〈r2〉2 instead of 〈r2〉2 (see also [26]). This avoids in particular a potential issue related to the expression for κ(mπ)
that is used in the denominator of the chiral expansion of 〈r2〉2 = −6ρ2(mπ)/κ(mπ), where ρ2 = dF2(Q2)/dQ2|Q2=0

is the slope. Depending on the order of the ChPT-calculation, one is in general allowed to employ ChPT-expressions
of different orders for κ(mπ) in the denominator without affecting the overall consistency of the chiral expansion of
〈r2〉2 to the given order. Since the pion mass dependence of κ can be rather strong (as discussed in the previous
section, where κu−d(m

phys
π ) increases by as much as 40% as mπ → 0), the ambiguity in the choice of κ(mπ) could

have a significant impact on the uncertainty of the chiral extrapolation of 〈r2〉2.
We therefore consider in the following the SSE and BChPT expansions of κ× 〈r2〉2. The result in the SSE [22, 23]

to O(ε3) is

(
κ× 〈r2〉2

)u−d,SSE

=
g2
AmN

8πf2
πmπ

+
c2AmN

9π2f2
π

√
δm2 −m2

π

ln

(
δm

mπ
+

√
δm2

m2
π

− 1

)
+ 24mNBc2 , (28)

showing explicitly the well-known linear divergence in mπ expected in the chiral limit. It depends again on the
coupling cA, and a counter-term parameter Bc2. As in the case of κu−d, we have varied cA = 1.0, . . . , 1.5, and
determined Bc2 as the only free parameter from a fit to the phenomenological value at the physical point. We find
Bc2 = 0.32, . . . , 0.82 GeV−3. The result is illustrated in Fig. 26 by the shaded bands, in comparison to the lattice
data points obtained from the polynomial ansatz Eq. (19) for the Q2-dependence of F2. While the extrapolation
band quickly decreases above mphys

π , it overshoots the lattice results by about 20 − 40% in the region of mπ ∼
260, . . . , 500 MeV.

A significantly more involved expression for the mπ-dependence has been obtained in the BChPT-scheme of Ref. [43]
to O(p4), which can be written as [44](

κ× 〈r2〉2
)u−d,BChPT

=
mphys
N

m0
N

(
24m0

Ne
r
74(λ) + (κr2

2)u−d,(3) + (κr2
2)u−d,(4)

)
, (29)

where the individual terms, (κr2
2)u−d,(3) and (κr2

2)u−d,(4), are provided in Appendix B in Eqs. (B9) and (B10).
This result depends, apart from the counter-term parameter er74(λ), also on the couplings c4 and c6=̂κ0

u−d. The
regularization scale has been fixed to λ = 0.89 GeV. To study the predicted mπ-dependence, we have varied, as
before, c4 = 3.2, . . . , 4.0 GeV−1, and used the corresponding values obtained for c6 = κ0

u−d from the BChPT analysis
of κu−d above. The unknown parameter er74 has been fitted to the phenomenological value at the physical point,
giving er74 ∼ 1.6, . . . , 2.0 GeV−3. We compare this approach with the mπ-dependence of our results obtained from the

polynomial ansatz for Fu−d2 (Q2) in Fig. 27. Similarly to the SSE-extrapolation discussed before, the extrapolation
curves lie somewhat above the lattice data points for mπ ∼ 260 MeV to 500 MeV. Taking the heavy-baryon limit of
the central band, we obtain the dotted curve in Fig. 27. Under the assumption that the BChPT result is applicable
at the physical pion mass, we find that the contributions of O(1/(mN )n), which are included in the covariant BChPT
approach, start to play an important role already before mphys

π is reached. Hence also for this observable, our results
indicate that the range of applicability of the leading order heavy-baryon ChPT result is restricted to pion masses
. 100 MeV.

With respect to the isosinglet channel, we note that at the one-loop level in HBChPT, 〈r2〉u+d
2 is predicted to

vanish, i.e. the form factor is independent of Q2, Fu+d
2 (Q2) = const. [21]. Similar to the case of the isosinglet Dirac

radius, the BChPT calculation gives at first sight a rather non-trivial mπ-dependence [44], but in practice it turns out
to be flat over the full range of relevant pion masses, (κ×〈r2〉2)u+d,BChPT ≈ const. Given the poorly determined value
at the physical point, we conclude that it is currently difficult to provide even a semi-quantitative chiral extrapolation
of (κ× 〈r2〉2)u+d from mphys

π to the chiral limit and to larger pion masses.

V. SYSTEMATIC UNCERTAINTIES

A. Contaminations from excited states

A potentially important source of systematic uncertainties is given by contributions from excited states in the
nucleon correlation functions. For too small distances between the operator insertion time τ and the source and sink
times they could adversely affect the ratios of three- to two-point functions in Eq. (8), and thereby the plateau values
from which we extract the form factors. In turn, if the sink time tsnk and accordingly τ are chosen too large, the
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FIG. 26. SSE chiral extrapolation of κ×〈r2〉2 in the isovector
channel. The shaded error bands represent fits of the SSE
results in Eq. (28) with one free parameter (a counter-term)
to the experimental value.
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FIG. 27. BChPT extrapolation of κ × 〈r2〉2 in the isovector
channel. The shaded error bands represent fits of the BChPT
results in Eq. (29) with one free parameter (a counter-term)
to the experimental value.

signal-to-noise ratio begins to deteriorate, and the data points start to fluctuate more strongly4. This is mostly an
issue at larger hadron momenta required for the analysis of the form factors at Q2 > 0. Hence we have to seek a
compromise between potential contaminations from excited states on the one hand, and noisy/fluctuating correlation
functions and plateaus on the other.

In this work, we have chosen primarily a fixed distance between source and sink of about 0.95 fm. Instead of studying
the excited states contributions directly by performing, e.g., multi-exponential fits (which are notoriously unstable)
of the correlations functions, we have analyzed the form factors for a range of different sink times tsnk = 11, . . . , 19,
for a single ensemble with β = 5.29, κ = 0.13590. The dependence of, e.g., the data points for F1 at fixed Q2 on tsnk

is then a direct indicator for the possible influence of excited state contributions on our results. The results of this
study are displayed in Fig. 28, showing Fu−d1 as a function of tsnk for the four values Q2 ∼ 0.49, 0.94, 1.36, 1.75 GeV2.
We note that the broader band (corresponding to our primary choice tsnk = 13) is compatible with all data points
at sink times up to and including tsnk = 16 within errors. While the central values decrease on average by a small
amount as tsnk increases from 13 to 16, no clear systematic trend can be established when the uncertainties are taken
into account. At large tsnk ≥ 17, we find that the data points start to fluctuate more strongly as the momentum
transfer increases. This indicates that the plateaus indeed become unstable due to deteriorating signal-to-noise ratios
of the correlation functions in the ratio at large times and momenta. At larger Q2 > 1.8 GeV2 (not shown), we even
find that the extracted values for F1 quickly approach zero as tsnk → 19.

In summary, for the given ensemble, we cannot identify a systematic dependence of our results for F1 on the
sink time within errors, excluding large tsnk values where strong fluctuations and low signal-to-noise ratios make a
quantitative analysis impossible. This indicates that the uncertainty due to excited state contaminations is not larger
than the statistical errors in our study.

B. Discretization effects and pion mass dependence at fixed Q2

Studies of discretization effects and the pion mass dependence of the lattice results are usually directly performed
for the fundamental observables of interest. In our case, these are the radii of the Dirac and Pauli form factor, as
well as the anomalous magnetic moments. However, due to the discrete values of the momentum transfer that can
be accessed in a finite volume, in particular the still rather large, lowest non-zero Q2 of ≈ 0.2 GeV2 in our case, the
extraction of these observables requires non-trivial inter- and extrapolations of the form factor data in Q2. To avoid
an intermixture of the primary lattice artifacts with uncertainties due to the required Q2-parametrization, we now
attempt to investigate the a- and mπ-dependences of the form factor data directly for fixed values of Q2 > 0. In this
regard, one has to keep in mind that changes in the lattice volume, spacing, and the quark mass (and thereby the
nucleon mass), lead in general to different sets of values of Q2 for the different ensembles. To study the lattice spacing
dependence, we have therefore scanned our data sets for narrow ranges in Q2 and mπ (with maximum relative widths

4 Also the two-point functions taken at tsnk in the ratio might fluctuate around zero within errors, thereby leading to an unreliable result
for the plateau.
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FIG. 28. Dependence of Fu−d1 at fixed values of Q2 on the sink time tsnk in the three point function, for β = 5.29, κ = 0.13590.
Results for our choice tsnk = 13 are indicated by the filled (red) points and corresponding bands. The thin gray shaded band
represents the parametrization of Ref. [32] of the experimental data.
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FIG. 29. Lattice spacing dependence of the isovector Dirac form factor for fixed narrow ranges in Q2 and mπ. The gray shaded
bands represent the parametrization of Ref. [32] of the experimental data.

of 8%) for which data points for three or more couplings β are available. The residual Q2- and mπ-dependences within
these narrow windows were taken into account by interpolations and subsequent relative shifts of the data points to
the central values of Q2 and mπ in the respective ranges. As a test, we have monitored the relative shifts and found
that their absolute values are about the same size as the statistical errors of the shifted data points.

The results for the a2-dependence are displayed in Figs. 29 and 30 for Fu−d1 and Fu−d2 , respectively. While some
fluctuations of the central values as functions of a2 are visible, they do not seem to follow a systematic pattern. Overall,
the data points are compatible with a constant behavior within statistical errors. In combination, the uncertainties
and the fluctuations of the data for the given Q2-values are however too large to allow for a consistent, quantitative
continuum extrapolation. Still, although we cannot exclude the presence of some discretization effects, we do not see
any evidence that they could significantly reduce the large gap between the lattice data points and the experimental
result illustrated by the shaded bands in Figs. 29 and 30.

A similar approach to the pion mass dependence at fixed Q2 leads to the results displayed in Figs. 31 and 32.
Following the above findings on the a2-dependence, we have in this case included all β on an equal footing. For
Fu−d1 in Fig. 31, we observe an approximately linear dependence on mπ over a wide range of Q2 from ∼ 0.5 GeV2

up to ∼ 1.8 GeV2. While the data points do show a slight downwards trend in the right direction, simple linear
extrapolations would clearly miss the experimental values by about 20% to 40% at the physical pion mass. Keeping
in mind that chiral perturbation theory predicts a logarithmically diverging slope of Fu−d1 at Q2 = 0 as mπ → 0, it
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FIG. 30. Lattice spacing dependence of the isovector Pauli form factor for fixed narrow ranges in Q2 and mπ. The gray shaded
bands represent the parametrization of Ref. [32] of the experimental data.
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FIG. 31. Pion mass dependence of the isovector Dirac form factor for selected ranges in Q2 and mπ. The gray bars represent
the parametrization of Ref. [32] of the experimental data at the physical point.

is not surprising that also for Fu−d1 (Q2 6= 0), a non-linear m2
π-dependence has to set in at low pion masses.

In the case of Fu−d2 in Fig. 32, we find again that the lattice results are, to a good approximation, linear in mπ.
While the data points at lower Q2 are constant within the uncertainties, a slight downwards slope seems to develop
as we approach larger momentum transfers. In contrast to Fu−d1 , a naive linear extrapolation in mπ would even lead

to an overlap with the experimental values at the physical pion mass, at least for the lowest value of Q2 ∼ 0.50 GeV2

in Fig. 32. This does not imply, however, that the lattice results for mπ > mphys
π provide a good description of the

experimental data over a wider range of Q2. At large Q2, linear extrapolations in mπ would lead to values for Fu−d2

that are systematically larger than in experiment. We therefore find again that the Q2-slope of the lattice data (even
when naively extrapolated to mphys

π at fixed Q2) is too small, and a typical dipole or tripole extrapolation (see section

III B) to Q2 = 0 would then lead to a Fu−d,lat
2 (Q2 = 0) = κlat

u−d < κphys
u−d . The apparently good agreement of the

lattice data points with the experimental values in the top row of Fig. 32 has to be interpreted as the result of a too
small slope and, at the same time, a too low normalization (at Q2 = 0) at unphysically large lattice pion masses.
This is studied explicitly in sections IV B and IV C above, where we discuss the pion mass dependence and chiral
extrapolations of κu−d and the slope of Fu−d2 (Q2), respectively.



24

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

mΠ@GeVD

F
2

u-
d

HQ
2

~
0.

50
G

eV
2

L

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

mΠ@GeVD

F
2

u-
d

HQ
2

~
0.

96
G

eV
2

L

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

mΠ@GeVD

F
2

u-
d

HQ
2

~
1.

42
G

eV
2

L

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

mΠ@GeVD

F
2

u-
d

HQ
2

~
1.

83
G

eV
2

L

FIG. 32. Pion mass dependence of the isovector Pauli form factor for selected ranges in Q2 and mπ. The gray bars represent
the parametrization of Ref. [32] of the experimental data at the physical point.
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FIG. 33. Lattice spacing dependence of the isovector Dirac radius for fixed ranges of mπ, as obtained from fits to Fu−d1 using
Eq. (17) (cf. Fig. 8). The residual pion mass dependence in the given mπ-windows has been taken into account by restricted
linear fits, and the data points have been shifted accordingly to the central mπ-values. The gray bands represent the range of
values obtained from experiment and phenomenology at the physical point.

C. Discretization and finite volume effects in the Dirac radius and the anomalous magnetic moment

Our study of the a-dependence of F1 at fixed mπ and Q2 above in section V B already indicated that the dis-
cretization errors are small. Here, we perform a similar analysis for the isovector Dirac radius obtained from the
Q2-parametrization based on Eq. (17). In Fig. 33 we show our results for 〈r2〉u−d1 for narrow ranges of mπ as a
function of a2. For direct comparison, we also show an average of the experimental results at the physical point as a
gray error band. The residual pion mass dependence of the lattice data within the mπ-ranges has been accounted for
by linear fits to the pion mass dependence and subsequent relative shifts of the data points to the central mπ-values.
As expected, we find that the results are compatible within statistical uncertainties for the three or four different
available values of a2. Apart from some small fluctuations, which, however, do not show a systematic trend, we find
that even the central values of the data points are in good agreement. Overall, in the accessible parameter ranges,
and for a2 ∼ 0.0035, . . . , 0.007 fm2, we therefore do not observe any significant, systematic lattice spacing dependence
of our results. Most importantly, a naive extrapolation of our data in a2 to the continuum limit would not bring us
any closer to the experimental value indicated by the gray band.
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FIG. 34. Volume dependence of the isovector Dirac radius for fixed values/ranges of mπ, as obtained from fits to Fu−d1 using
Eq. (17) (cf. Fig. 8). The residual pion mass dependence in the given mπ-windows has been taken into account by restricted
linear fits, and the data points have been shifted accordingly to the central mπ-values. Fits to the L-dependence of the data
points are indicated by the dashed lines, and the light shaded bands represent the resulting value in the infinite volume limit.
The upper gray bands indicate the range of values obtained from experiment and phenomenology at the physical point.

With respect to finite volume effects, we display in Fig. 34 our results for 〈r2〉1 as a function of the box length L.
As before, the lattice data points were shifted to the central values of the indicated narrow ranges in mπ employing
linear interpolations in order to account for the residual pion mass dependence. In contrast to the absence of any
a2-dependence discussed before, we observe a slight, systematic upwards trend of the data points as L increases. In
a first attempt to quantify this observation, we have fitted the L-dependence of the data points in each pion mass
range with a simple exponential ansatz inspired by predictions from chiral perturbation theory: a + b exp(−mπL).
The results of the fits are indicated by the dashed lines, and the corresponding estimated values in the infinite volume
limit are shown as light shaded bands. We note that all data points, apart from the ones with mπ × L < 3.4 (filled
diamonds), show at least a small overlap with the infinite volume band within uncertainties. The rightmost points
at larger volumes are in all cases fully compatible with the estimated results at L =∞ and hence can be regarded as
corresponding to the infinite volume limit.

We now turn to systematic uncertainties in the anomalous magnetic moment, following the same strategy as outlined
above for the case of the isovector Dirac radius. The a2-dependence of κu−d is shown in Fig. 35 for two ranges of
mπ. Within the uncertainties, the data points do not show any systematic trend as the lattice spacing decreases
and are fully compatible with constants in a2. As before, a linear extrapolation would not bring us any closer to the
experimental value indicated by the thin gray band.

Figure 36 displays the dependence of κu−d on the box length L for selected ranges of mπ. In contrast to 〈r2〉u−d1

in Fig. 34, the data points do not show any clear upward or downward trend as L→∞. Since the uncertainties and
fluctuations are somewhat larger, we will have to leave a more quantitative estimate of finite volume effects in κu−d
for future works.

VI. SUMMARY AND OUTLOOK

On the basis of an extensive set of ensembles for two flavors of O(a)-improved Wilson fermions and Wilson gluons,
we have computed and studied the Dirac, F1(Q2), and Pauli, F2(Q2), form factor of the nucleon. Four different
lattice spacings from a = 0.083 fm to a = 0.060 fm, spatial volumes of V ∼ (1.0, . . . , 3.0 fm)3, and a wide range
of pion masses extending down to mπ ∼ 180 MeV, allowed us to investigate in some detail the continuum, infinite
volume, and chiral limit. As in previous studies, we do not yet see an overlap or agreement of the lattice data with
results from experiment and phenomenology for the slopes of the isovector Dirac and Pauli form factors, nor for
the normalization of the latter, i.e. the isovector anomalous magnetic moment κu−d = Fu−d2 (Q2 = 0), even at the
lowest accessible pion masses of 180 MeV < mπ < 300 MeV. Our results indicate that these discrepancies cannot be
explained by discretization or finite volume effects. Contributions from excited states, another source of systematic
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to Fu−d2 using Eq. (17). The residual pion mass dependence in the given mπ-windows has been taken into account by restricted
linear fits, and the data points have been shifted accordingly to the central mπ-values. The gray bands represent the value
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FIG. 36. Volume dependence of the isovector anomalous magnetic moment for fixed ranges of mπ, as obtained from fits to
Fu−d2 using Eq. (17). The residual pion mass dependence in the given mπ-windows has been taken into account by restricted
linear fits, and the data points have been shifted accordingly to the central mπ-values. The gray bands represent the value
from experiment at the physical point.

uncertainties, were studied for a single ensemble by varying the sink time of the three point function, also giving
no hint for substantial effects larger than the statistical errors. Concerning the pion mass dependence, our results
for F1(Q2) and F2(Q2) at fixed values of Q2 look mostly linear in mπ or m2

π within the accessible ranges. Linear
extrapolations to the physical pion mass, however, would not lead to an agreement with experiment.

Our data for the ratio (F d1 /F
u
1 )(Q2), for pion masses below ∼ 500 MeV, show a reasonable overlap with the

phenomenological parametrization over the full range of Q2 we could access. It is interesting to observe that this ratio
drops off by about 50% reaching Q2 ∼ 2 GeV2, pointing towards a much narrower spatial distribution of up quarks
in the proton than of down quarks. Furthermore, we find that the Dirac radius of down quarks is systematically
larger than for up quarks, over the full range of available pion masses. Concerning the ratio of the Pauli to the Dirac
form factor, (F2/(κF1))u,d, our results are in general compatible with a rather flat Q2-dependence as observed in
experiment, although the statistics and the covered Q2-ranges are at this point insufficient to permit a quantitative
assessment. With respect to results in the isosinglet channel or involving individual quark flavors, one has to keep in
mind that quark line disconnected contributions have been neglected.

For inter- and extrapolations in the momentum transfer, and in particular to extract the mean square radii and
anomalous magnetic moments, we have performed and studied different parametrizations of the Q2-dependence of F1

and F2. For the Dirac form factor, we find that a more flexible (polynomial) 2-parameter ansatz provides a numerically
and physically much more convincing description compared to the commonly employed dipole fits. This is borne out
by a matching onto a basic vector meson exchange model: In the case of the polynomial parametrization, we find that
the extracted lowest vector meson masses agree very well with the separately computed lattice vector meson (ρ) mass,
over a very wide range of pion masses from 1500 MeV down to 260 MeV. This indicates that the Q2-dependence of
the nucleon form factors on the lattice is to a significant extent governed by the exchange of the lowest vector meson
resonances, that is the ρ in the isovector, and the ω in the isosinglet channel.

With respect to chiral extrapolations using chiral perturbation theory, we followed a somewhat different path than in
the past. Instead of attempting extrapolations of the lattice data down to the physical pion mass, we investigated the
applicability of the different ChPT-schemes by including the known results from experiment and phenomenology at
the physical point, and, only if necessary, lattice data for pion masses below 260 MeV, in the chiral fits. Not precisely
known low energy constants were varied over sufficiently wide ranges to assess the related uncertainties. While our
data points show for the first time the onset of a non-analytical chiral behavior at the lowest pion masses, it still turns
out to be difficult to achieve a consistent quantitative understanding of the mπ-dependences using the different heavy
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baryon, small scale expansion (explicitly including the ∆ resonance), and covariant BChPT approaches. This is in
particular the case for the isovector Dirac radius, where traditional HBChPT predicts a too steep, and a covariant
BChPT approach a too flat slope as the pion mass increases above mphys

π . Also the extrapolations of the isovector
anomalous magnetic moment and slope of the Pauli form factor are still challenging, as they clearly under- or overshoot
the lattice data points for pion masses of ' 300 MeV. In the chiral limit, we obtain a rather large κ0

u−d ∼ 4.8, . . . , 5.5,
in agreement with previous lattice studies. For the anomalous magnetic moment in the isosinglet channel, we obtain
a reasonable description of the lattice data up to pion masses of ∼ 500 MeV, within rather broad ChPT extrapolation
bands. In this case, we find a clearly negative value of κ0

u+d ∼ −0.6, . . . ,−0.35 at mπ = 0. Apart from κu+d, we did
not attempt any chiral extrapolations in the isosinglet channel, since the available 1-loop results from ChPT in this
sector are clearly not applicable even at the physical pion mass. In all considered cases, we find that the heavy-baryon
limits of the covariant BChPT extrapolations appear to break down at or even below mphys

π . This casts strong doubts
on the applicability of the leading 1-loop heavy-baryon approaches in this region of the pion mass.

Recalling the importance of vector meson exchange contributions for the Q2-dependence of the form factors that
we observed before, it could be interesting to include such contributions explicitly in the ChPT-description not only
of the Q2-, but also the mπ-dependence of these observables. Form factor calculations including explicit ρ, ω and φ
resonances have been performed in covariant BChPT in the so-called EOMS-scheme [46–48], leading to an improved
description of the Q2-dependence of the nucleon form factors at the physical pion mass. It will be interesting to study
the applicability of such calculations at larger (lattice) pion masses, and eventually to compare with the combined
mπ- and Q2-dependence of the lattice data.

Concerning future nucleon form factor studies on the lattice, our current analysis underlines the importance to obtain
results for pion masses below 200 MeV in sufficiently large volumes of V ' 3.5 fm, which represents a remarkable
computational challenge. Apart from being crucial for the chiral extrapolation and comparison with experiment,
such calculations will be indispensable for a quantitative understanding of the volume dependence at our lowest pion
mass of ∼ 180 MeV, where we begin to see finite size effects in, e.g., the data for the Dirac radius. Furthermore,
our investigation and comparison of different ansätze for the Q2-dependences has shown that precise data points are
required over a wide range of the momentum transfer in order to limit additional parametrization uncertainties, in
particular for the extraction of the anomalous magnetic moments and the radii from the slopes at Q2 = 0. In this
respect, (partially) twisted boundary conditions for the quark fields in spatial directions have already proven to be
highly helpful to access very small non-zero values of the momentum transfer in the case of the pion form factor, see,
e.g., [49–51]. First studies along these lines for the nucleon form factors are promising [52] and will be continued in
the near future. Regarding higher Q2 > 2 GeV2 (involving larger nucleon momenta), it will be important to carefully
monitor fluctuations in the correlation functions and potential contaminations from excited state contributions.

Appendix A: Collection of numerical results

Table III shows our results for the mean square radii, anomalous magnetic moments, and vector meson masses
Mu−d

1 and Mu+d
1 , for all ensembles specified in Table I. Definitions and details are given in sections III B and III D.

Appendix B: Chiral perturbation theory formulae

Here we provide a collection of (parts of) SSE and covariant BChPT expressions for the mean square radii and
the anomalous magnetic moments. For the details, we refer to Refs. [22, 23, 44] and the sections IV, IV B and IV C
above.
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# 〈r2〉u−d1 [ fm2] 〈r2〉u+d
1 [ fm2] κu−d κu+d 〈r2〉u−d2 [ fm2] (κ× 〈r2〉2)u+d[ fm2] Mu−d

1 [ GeV] Mu+d
1 [ GeV]

1 0.103(11) 0.125(8) 1.461(148) -0.121(155) 0.145(41) -0.147(111) 1.602(209) 1.629(133)

2 0.186(20) 0.207(15) 2.096(909) . . . 0.320(273) . . . 1.194(163) 1.307(102)

3 0.194(33) 0.236(29) 2.165(2.120) . . . . . . . . . 1.135(190) 1.250(102)

4 0.100(11) 0.135(10) 1.507(273) 0.406(289) 0.179(79) 0.233(262) 1.542(236) 1.647(158)

5 0.127(14) 0.144(17) 1.801(1.562) . . . . . . . . . 1.485(207) 0.962(119)

6 0.200(6) 0.267(5) 2.107(68) -0.131(85) 0.343(23) -0.195(90) 1.129(30) 1.131(50)

7 0.230(10) 0.322(9) 2.200(135) -0.260(158) 0.367(45) -0.242(179) 1.020(40) 0.986(65)

8 0.083(6) 0.111(5) 1.425(138) 0.164(119) 0.158(36) 0.040(67) 2.109(205) 1.885(155)

9 0.125(9) 0.141(9) 1.676(347) -0.498(306) 0.215(93) -0.401(290) 1.578(174) 1.428(141)

10 0.353(132) 0.516(173) . . . . . . . . . . . . 0.789(188) 0.659(191)

11 0.128(15) 0.170(16) 1.222(501) . . . . . . . . . 1.692(193) 1.252(146)

12 0.160(5) 0.198(3) 1.924(49) 0.080(44) 0.279(17) 0.028(43) 1.325(48) 1.438(40)

13 . . . . . . 7.885(3.210) . . . . . . . . . 1.027(223) 1.017(165)

14 0.160(25) 0.223(15) . . . . . . . . . . . . 1.257(160) 1.009(37)

15 0.193(4) 0.259(3) 2.163(59) -0.109(58) 0.374(21) -0.104(63) 1.146(19) 1.128(27)

16 0.237(10) 0.326(11) 2.235(143) -0.434(171) 0.381(50) -0.457(209) 1.010(33) 0.972(66)

17 0.250(21) 0.445(19) 2.396(491) . . . 0.482(148) . . . 1.064(27) 1.008(55)

18 0.296(20) 0.417(14) 2.877(184) 0.005(273) 0.602(84) . . . 0.863(84) 0.828(86)

19 0.319(15) 0.429(7) 2.466(80) -0.400(91) 0.474(40) -0.413(146) 0.817(30) 0.797(24)

20 0.330(60) 0.435(58) 3.475(2.301) . . . . . . . . . 1.030(98) 0.870(136)

21 0.112(3) 0.138(2) 1.513(40) 0.039(38) 0.177(11) -0.027(24) 1.660(99) 1.713(50)

22 0.146(6) 0.183(5) 1.792(74) -0.074(90) 0.254(25) -0.088(74) 1.337(58) 1.364(96)

23 0.169(11) 0.226(9) 1.789(164) -0.182(200) 0.230(51) -0.197(181) 1.353(137) 1.397(84)

24 0.221(14) 0.252(10) 2.031(369) . . . 0.335(121) . . . 1.156(124) 1.105(56)

25 0.198(25) 0.268(16) 2.098(1.508) . . . . . . . . . 1.162(179) 1.009(12)

26 0.219(9) 0.314(7) 2.248(99) -0.278(100) 0.399(38) -0.240(125) 1.069(42) 0.977(37)

27 0.215(18) 0.389(24) 2.505(311) . . . 0.428(98) . . . 1.011(42) 0.982(48)

28 0.299(11) 0.438(8) 2.608(115) -0.269(133) 0.548(60) -0.146(234) 0.851(24) 0.766(14)

TABLE III. Results for the mean square radii and anomalous magnetic moments, as well as the vector meson masses Mu−d
1 and

Mu+d
1 obtained from a matching to the vector meson exchange ansatz, cf. section III D. Entries with very large uncertainties

have been replaced by ellipses. The ensembles 1, . . . , 28 are specified in Table I. All results are based on the polynomial
parametrizations of F1(Q2) and F2(Q2) discussed in section III B.

Small scale expansion (SSE)
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In the following expressions, m0
N denotes the nucleon mass in the chiral limit, while mN represents the pion mass

dependent nucleon mass, mN (mπ) [44].
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