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Abstract

We prove that the topological cycles of an arbitrary infinite graph
induce a matroid. This matroid in general is neither finitary nor cofini-
tary.

1 Introduction

One central aim of infinite matroid theory is to study the connections to
infinite graph theory [1, 3, 5, 7, 10, 8, 9, 16]. This approach has not only led
us to exciting questions about infinite matroids but also has allowed for new
perspectives on infinite graph theory. This paper is part of that approach:
We resolve the question for which graphs the topological cycles induce a
matroid.

So far there were many competing notions of topological cycle [14]. For
each of these notions we determine when the topological cycles induce a
matroid. This investigation leads us to a single notion of topological cycle.
This notion is strongest in the sense that the theorem that its topological
cycles induce a matroid implies the theorems about when the other notions
induce matroids. The matroids for this notion are in general neither finitary
nor cofinitary and are uncountable in a nontrivial way.

Let us be more precise: Given a graph together with an end boundary, a
topological cycle is a homeomorphic image of the unit circle in the topological
space consisting of the graph together with the boundary. Depending on
which end boundary we consider, we get a different notion of topological
cycle. The topological cycles induce a matroid if their edge sets form the
set of circuits of a matroid.
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For locally finite graphs, all these end boundaries are the same so that
in this case there is only one notion of topological cycle. Bruhn and Diestel
showed in this case that the topological cycles induce a matroid by showing
that it is the dual of the finite bond matroid [8].

For arbitrary 2-connected graphs, the dual of the finite bond matroid
also allows for a description by topological cycles (in the topological space
ETOP). However, this matroid is isomorphic to the matroid of a countable
graph after deleting loops and parallel edges.

Hence in order to construct matroids that are nontrivially uncountable,
we have to consider topological cycles of different topological spaces. One
such space is VTOP, which is obtained from the graph by adding the vertex
ends. In Figure 1, we depicted a graph whose topological cycles in VTOP
do not induce a matroid.

z

C

Figure 1: The dominated ladder is obtained from the one ended ladder by
adding a vertex that is adjacent to every vertex on the upper side of the
ladder. The topological cycles of VTOP of the dominated ladder do not
induce a matroid as they violate the elimination axiom (C3): We cannot
eliminate all the triangles from the grey cycle C.

The reason why this example works is that the topological cycle C goes
through a dominated end. Let DTOP be the topological space obtained
from VTOP by deleting the dominated ends. The main result of this paper
is the following.

Theorem 1.1. For any graph, the topological cycles in DTOP induce a
matroid.

The matroids of Theorem 1.1 are in general neither finitary nor cofinitary
and are uncountable in a nontrivial way. The proof of Theorem 1.1 involves
a new result on the structure of the end space [11] and the theory of trees
of matroids [4].

In 1969, Higgs proved that the set of finite cycles and double rays of G is
the set of circuits of a matroid if and only if G does not have a subdivision
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of the Bean-graph [18]. Using Theorem 1.1, we get a result for topological
cycles of VTOP in the same spirit.

Corollary 1.2. The topological cycles of VTOP induce a matroid if and
only if G does not have a subdivision of the dominated ladder, which is
depicted in Figure 1.

Theorem 1.1 implies similar results concerning the identification space
ITOP and we also extend the main result of [3], see Section 5 for details.

Theorem 1.1 extends to ‘Psi-Matroids’: Given a set Ψ of ends, by CΨ we
denote the set of those topological cycles in the topological space obtained
from VTOP by deleting the ends not in Ψ. By DΨ we denote the set of
those bonds that have no end of Ψ in their closure. It is not difficult to show
that the set of undominated ends is Borel, see Section 4. Thus the following
is a strengthening of Theorem 1.1.

Theorem 1.3. Let Ψ be a Borel set of ends that only contains undominated
ends. Then CΨ and DΨ are the sets of circuits and cocircuits of a matroid.

This paper is organised as follows. After giving the necessary background
in Section 2, we prove some intermediate results in Section 3. Then we prove
Theorem 1.3 in Section 4. Finally, in Section 5 we deduce from it the other
theorems mentioned in the Introduction.

2 Preliminaries

Throughout, notation and terminology for graphs are that of [15] unless de-
fined differently. And G always denotes a graph. We denote the complement
of a set X by X{. Throughout this paper, even always means finite and a
multiple of 2. An edge set F in a graph is a cut if there is a partition of the
set of vertices such that F is the set of edges with precisely one endvertex
in each partition class. A vertex set covers a cut if every edge of the cut
is incident with a vertex of that set. A cut is finitely coverable if there is a
finite vertex set covering it. A bond is a minimal nonempty cut.

For us, a separation is just an edge set. The boundary ∂(X) of a sepa-
ration X is the set of those vertices adjacent with an edge from X and one
from X{. The order of X is the size of ∂(X). Given a connected subgraph
C of G, we denote the set of those edges with at least one endvertex in C
by sC . Given a separation X of finite order and an end ω, then there is a
unique component C of G− ∂(X) in which ω lives. We say that ω lives in
X if sC ⊆ X.
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A tree-decomposition of G consists of a tree T together with a family of
subgraphs (Pt|t ∈ V (T )) of G such that every vertex and edge of G is in at
least one of these subgraphs, and such that if v is a vertex of both Pt and Pw,
then it is a vertex of each Pu, where u lies on the v-w-path in T . Moreover,
each edge of G is contained in precisely one Pt. We call the subgraphs Pt, the
parts of the tree-decomposition. Sometimes, the ‘Moreover’-part is not part
of the definition of tree-decomposition. However, both these two definitions
give the same concept of tree-decomposition since any tree-decomposition
without this additionally property can easily be changed to one with this
property by deleting edges from the parts appropriately. Given a directed
edge tu of T , the separation corresponding to tu is the set of those edges
which are in parts Pw, where u lies on the unique t-w-path in T . The
adhesion of a tree-decomposition is finite if any two adjacent parts intersect
finitely. A key tool in our proof is the main result of [11], as follows.

Theorem 2.1. Every graph G has a tree-decomposition (T, Pt|t ∈ V (T )) of
finite adhesion such that the ends of T are the undominated ends of G.

Remark 2.2. ([11, Remark 6.6]) Let (T,≤) be the tree order on T as in
the proof of Theorem 2.1 where the root r is the smallest element. We
remark that we constructed (T,≤) such that (T, Pt|t ∈ V (T )) has the fol-
lowing additional property: For each edge tu with t ≤ u, the vertex set⋃
w≥u V (Pw) \ V (Pt) is connected.

Moreover, we construct (T, Pt|t ∈ V (T )) such that if st and tu are edges
of T with s ≤ t ≤ u, then V (Ps) ∩ V (Pt) and V (Pt) ∩ V (Pu) are disjoint.

Given a part Pt of a tree-decomposition, the torso Ht is the multigraph
obtained from Pt by adding for each neighbour u of t in the tree a complete
graph with vertex set V (Pt) ∩ V (Pu).

We denote the set of (vertex-) ends of a graph G by Ω(G). A vertex v
is in the closure of an edge set F if there is an infinite fan from v to V (F ).
An end ω is in the closure of an edge set F if every finite order separation
X in which ω lives meets F . It is straightforward to show that an end ω is
in the closure of an edge set F if and only if every ray (equivalently: some
ray) belonging to ω cannot be separated from F by removing finitely many
vertices. An end ω lives in a component C if it is in the closure of the
edge set sC . A comb is a subdivision of the graph obtain from the ray by
attaching a leaf at each of its vertices. The set of these newly added vertices
is the set of teeth. The Star-Comb-Lemma is the following.
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Lemma 2.3. (Diestel [13, Lemma 1.2]) Let U be an infinite set of vertices
in a connected graph G. Then either there is a comb with all its teeth in U
or a subdivision of the infinite star S with all leaves in U .

Corollary 2.4. Every infinite edge set has an end or a vertex in its closure.

2.1 Infinite matroids

An introduction to infinite matroids can be found in [9], whilst the axioma-
tisation of infinite matroids we work with here is the one introduced in [3].
Let C and D be sets of subsets of a groundset E, which can be thought of
as the sets of circuits and cocircuits of some matroid, respectively.

(C1) The empty set is not in C.

(C2) No element of C is a subset of another.

(O1) |C ∩D| 6= 1 for all C ∈ C and D ∈ D.

(O2) For all partitions E = P ∪̇Q∪̇{e} either P + e includes an element of
C through e or Q+ e includes an element of D through e.

We follow the convention that if we put a ∗ at an axiom A then this refers
to the axiom obtained from A by replacing C by D, for example (C1∗) refers
to the axiom that the empty set is not in D. A set I ⊆ E is independent if
it does not include any nonempty element of C. Given X ⊆ E, a base of X
is a maximal independent subset Y of X.

(IM) Given an independent set I and a superset X, there exists a base of
X including I.

The proof of [3, Theorem 4.2] also proves the following:

Theorem 2.5. Let E be a some set and let C,D ⊆ P(E). Then there is a
matroid M whose set of circuits is C and whose set of cocircuits is D if and
only if C and D satisfy (C1), (C1∗), (C2), (C2∗), (O1), (O2), and (IM).

Theorem 2.5 shows that the above axioms give an alternative axioma-
tisation of infinite matroids, which we use in this paper as a definition of
infinite matroids. We call elements of C circuits and elements of D cocir-
cuits. The dual of (C,D) is the matroid whose set of circuits is D and whose
set of cocircuits is C.
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A matroid (C,D) is finitary if every element of C is finite, and it is tame
if every element of C intersects any element of D only finitely. An example
of a finitary matroid is the finite-cycle matroids of a graph G whose circuits
are the edge sets of finite cycles of G and whose cocircuits are the bonds of
G. We shall need the following lemma:

Lemma 2.6. [[7, Lemma 2.7]] Suppose that M is a matroid, and C, C∗ are
collections of subsets of E(M) such that C contains every circuit of M , C∗
contains every cocircuit of M , and for every o ∈ C, b ∈ C∗, |o∩ b| 6= 1. Then
the set of minimal nonempty elements of C is the set of circuits of M and
the set of minimal nonempty elements of C∗ is the set of cocircuits of M .

2.2 Trees of presentations

In this subsection, we give a toy version of the definitions of [4], which are
just enough to state the results of [4] we need in this paper. A tame matroid
is binary if every circuit and cocircuit always intersect in an even number
of edges.1

Roughly, a binary presentation of a tame matroid M is something like a
pair of representations over F2, one of M and of the dual of M , formally:

Definition 2.7. Let E be any set. A binary presentation Π on E consists
of a pair (V,W ) of sets of subsets of E satisfying (02) and are orthogonal,
that is, every o ∈ V intersects any d ∈W evenly. We will sometimes denote
the first element of Π by VΠ and the second by WΠ. We say that Π presents
the matroid M if the circuits of M are the minimal nonempty elements of
VΠ and the cocircuits of M are the minimal nonempty elements of WΠ.

Given a finitary binary matroid M , let VM be the set of those finite edge
sets meeting each cocircuit evenly, and let WM be the set of those (finite or
infinite) edge sets meeting each circuit evenly. Then (VM ,WM ) is called the
canonical presentation of a M .

Definition 2.8. A tree of binary presentations T consists of a tree T , to-
gether with functions V and W assigning to each node t of T a binary
presentation Π(t) = (V (t),W (t)) on the ground set E(t), such that for any
two nodes t and t′ of T , if E(t)∩E(t′) is nonempty then tt′ is an edge of T .

For any edge tt′ of T we set E(tt′) = E(t) ∩ E(t′). We also define the

ground set of T to be E = E(T ) =
(⋃

t∈V (T )E(t)
)
\
(⋃

tt′∈E(T )E(tt′)
)

.

1In [2], it is shown that most of the equivalent characterisations of finite binary matroids
extend to tame binary matroids.
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We shall refer to the edges which appear in some E(t) but not in E as
dummy edges of M(t): thus the set of such dummy edges is

⋃
tt′∈E(T )E(tt′).

A tree of binary presentations is a tree of binary finitary presentations
if each presentation Π(t) is a canonical presentation of some binary finitary
matroid.

Definition 2.9. Let T = (T, V ,W ) be a tree of binary presentations. A
pre-vector of T is a pair (S, v), where S is a subtree of T and v is a function
sending each node t of S to some v(t) ∈ V (t), such that for each t ∈ S we
have v(t)�E(tu) = v(u)�E(tu) 6= 0 if u ∈ S, and v(t)�E(tu) = 0 otherwise.

The underlying vector (S, v) of (S, v) is the set of those edges in some v(t)
for some t ∈ V (T ). Now let Ψ be a set of ends of T . A pre-vector (S, v) is a
Ψ-pre-vector if all ends of S are in Ψ. The space VΨ(T ) of Ψ-vectors consists
of those sets that are a symmetric differences of finitely many underlying
vectors of Ψ-pre-vectors.

pre-covectors are defined like pre-vectors with ‘W (t)’ in place of ‘V (t)’.
underlying covectors are defined similar to underlying vectors. A pre-covector
(S,w) is a Ψ-pre-covector if all ends of S are in Ψ. The space WΨ(T ) of
Ψ{-covectors consists of those sets that are a symmetric differences of finitely
many underlying covectors of Ψ{-pre-covectors.

Finally, ΠΨ(T ) is the pair (VΨ(T ),WΨ(T )).

The following is a consequence of the main result of [4], Theorem 8.3,
and Lemma 6.8.

Theorem 2.10 ([4]). Let T = (T, V ,W ) be a tree of binary finitary pre-
sentations and Ψ a Borel set of ends of T , then ΠΨ(T ) presents a binary
matroid. Moreover, the set of Ψ-vectors and Ψ{-covectors satisfy (O1), (O2)
and tameness.

We shall also need the following related lemma, which is a combination
of Lemma 6.6 and Lemma 6.8 from [4].

Lemma 2.11 ([4]). Let T = (T,M) be a tree of binary finitary presentations
and Ψ be any set of ends of T . Any Ψ-vectors of T and any Ψ{-covectors
of T are orthogonal.

3 Ends of graphs

The simplicial topology of G is obtained from the disjoint union of copies
of the unit interval, one for each edge of G, by identifying two endpoints of
these intervals if they correspond to the same vertex.
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First we recall the definition of |G| from [14], and then we give an equiv-
alent one using inverse limits. Given a finite set of vertices S and an end ω,
by C(S, ω) we denote the component of G− S in which ω lives. Let ~ε be a
function from the set of those edges with exactly one endvertex in C(S, ω)
to (0, 1). The set C~ε(S, ω) consists of all vertices of C(S, ω), all ends living
in C(S, ω), the set e×(0, 1) for each edge e with both endvertices in C(S, ω),
together with for each edge f with exactly one endvertex t(f) in C(S, ω),
the set of those points on f × (0, 1) with distance less than ~ε(f) from t(f).

The point space of |G| is the union of Ω(G), the vertex set V (G) and a
set e × (0, 1) for each edge e of G. A basis of this topology consists of the
sets C~ε(S, ω) together with those sets O that are open considered as sets in
the simplicial topology of G. Note that |G| is Hausdorff.

Given a finite vertex set W of G, by G+[W ] we denote the (multi-) graph
obtained from G by contracting all edges not incident with a vertex of W .
Thus the vertex set of G+[W ] is W together with the set of components
of G − W . We consider G+[W ] as a topological space endowed with the
simplicial topology. If U ⊆ W , then there is a continuous surjective map
f [W,U ] from G+[W ] to G+[U ].

Theorem 3.1. |G| is the inverse limit of the topological spaces G+[W ] with
respect to the maps f [W,U ].

Proof. For each vertex v of G, there is a point in the inverse limit which
in the component for G+[W ] takes the vertex whose branch set contains v.
This is the point corresponding to the vertex v. Similarly, there are points in
the inverse limit corresponding to interior points of edges. All other points
in the inverse limit correspond to havens of order < ∞ of G. As explained
in the appendix of [12], these are precisely the ends of G. Thus |G| and the
inverse limit have the same point set. It is straightforward to check that
they carry the same topology.

In particular, |G| has the following universal property: Suppose there is
a topological space X and for each finite set W of vertices of G, a continuous
function fW : X → G+[W ] such that f [W,U ] ◦ fW = fU for every U ⊆ W .
Then there is a unique continuous function f : X → |G| such that πW ◦ f =
fW , where πW : |G| → G+[W ] is the canonical projection.

A function f from S1 to |G| is sparse if f−1(v) never contains more than
one point for each interior point v of an edge, and if there are two distinct
points x, y ∈ S1 with f(x) = f(y), then there are two points z1 and z2 in
different components of S1−x−y both of whose f -values are different from
f(x) and not equal to interior points of edges.
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Let f from S1 to |G| be a sparse continuous function. Then f meets an
edge e in an interior point if and only if it traverses this edge precisely once.
The set of those edges e is called the edge set of f , denoted by E(f). If f
is a topological cycle, we call E(f) a topological circuit. An edge set F is
geometrically connected if F meets every finitely coverable cut b with the
property that two components of G− b contain edges of F . Note that if the
closure of an edge set F in |G| is connected in |G|, then F is geometrically
connected.

Lemma 3.2. A nonempty edge set X is the set of edges of a sparse contin-
uous function f from S1 to |G| if and only if it meets every finitely coverable
cut evenly and is geometrically connected.

Proof. For the ‘only if’-implication, first note that the edge set of f is ge-
ometrically connected since connectedness is preserved under continuous
images. Second, let F be a finitely coverable cut and let W be a finite ver-
tex set covering it. If there is a sparse continuous function f : S1 → |G|,
then πW ◦ f : G+[W ] → |G| is also continuous and its edge set Y meets F
in X ∩ F . Note that Lemma 3.2 is true with ‘G+[W ]’ in place of ‘|G|’. So
X ∩ F = Y ∩ F is even, as F is a cut of G+[W ].

The ‘if’-implication is a consequence of Theorem 3.1: Suppose we have
a geometrically connected set X meeting every finitely coverable cut evenly.
Then for every finite vertex set W , the edge set X ∩E(G+[W ]) meets every
cut of G+[W ] evenly and is geometrically connected. Hence X ∩E(G+[W ])
is the edge set of a sparse continuous function fW in G+[W ]. Each fW is
essentially given by a cyclic order on E(fW ). As each vertex of W is incident
with only finitely many vertices of X, the set E(fW ) is finite. Thus we can
use a standard compactness argument to ensure that fU = f [W,U ] ◦ fW
for every U ⊆ W . Then the limit of the fW is continuous by the universal
property of the limit and it is sparse by construction.

The simplest example of a finitely coverable cut is the set of edges inci-
dent with a fixed vertex. Thus the edge set of a sparse continuous function
has even degree at each vertex by Lemma 3.2. Thus we get the following.

Corollary 3.3. Given a sparse continuous function f , then for every fi-
nite vertex set W only finitely many components of G−W contain vertices
incident with edges of E(f).

Proof. Let X be the set of those edges of E(f) incident with vertices of
W . Note that X is finite by Lemma 3.2. If two components of G − W
contain vertices incident with edges of E(f), then sD intersects X for every
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component D containing vertices incident with edges of E(f) as E(f) is
geometrically connected by Lemma 3.2. Thus there are only finitely many
such components D.

Having Lemma 3.2 and Corollary 3.3 in mind, the set F below can be
sought of as the edge set of a topological cycle. Thus the following is an
extension of the ‘Jumping arc’-Lemma [15]:

Lemma 3.4. Let F be an edge set meeting every finitely coverable cut evenly
such that for every finite vertex set W only finitely many components of
G−W contain vertices of V (F ). Let b be a cut which does not intersect F
evenly. Then there is an end in the closure of both F and b.

Given a finite vertex set W and a component D of G−W , we denote by
v(D) the vertex of G+[W ] with branch set D.

Proof. First we show that for every finite vertex set W there is a component
D of G −W such that sD contains infinitely many edges of both F and b.
Suppose for a contradiction there is a vertex set W violating this. For a
component D of G−W , let X(D) be the set of those vertices in D incident
with edges of b. Similarly, let Y (D) be the set of those vertices in D incident
with edges of F . Let U be the union of W with those X(D) such that Y (D)
is infinite and those Y (D) such that Y (D) is finite.

By assumption Y (D) is empty for all but finitely many D. Thus U is
finite. Let G′ be the graph obtained from G+[U ] by deleting all vertices
v(K) for all components K of G− U such that Y (K) is empty.

Since F ∩ E(G′) has even degree at each vertex of G+[U ], the same is
true for G′. On the other hand b ∩ E(G′) is a cut by construction. Thus it
intersects F ∩ E(G′) evenly. As the intersection of b and F is included in
E(G′) by construction, we get the desired contradiction.

Hence for every finite vertex set W there is a component DW of G −
W such that sDW

contains infinitely many edges of both F and b. By a
standard compactness argument, we can pick the components DW with the
additional property that if U ⊆ W , then f [U,W ](v(DW )) = v(DU ). Thus
the components DW define a haven of order < ∞ of G, which defines an
end ω as explained in the appendix of [12]. By construction the end ω is in
the closure of both F and b, completing the proof.

Lemma 3.5. Let f be a sparse continuous function from S1 to |G| and let
x, y ∈ S1 such that f(x) and f(y) are distinct and not interior points of
edges. Then for each connected component C of S1 − x− y there is an edge
eC of G such that eC × (0, 1) is included in f(C).
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Proof. We pick a finite vertex set W containing x and y. Clearly, the above
lemma is true with ‘G+[W ]’ in place of ‘|G|’. Thus for each connected
component C of S1 − x− y there is an edge eC of G such that eC × (0, 1) is
included in πW (f(C)). Hence eC × (0, 1) is included in f(C).

4 Proof of Theorem 1.3

Given a connected graph G, we fix a tree-decomposition (T, Pt|t ∈ V (T ))
as in Theorem 2.1 that has the additional properties of Remark 2.2. For an
undominated end ω of G, we denote the unique end of T in which it lives
by ιT (ω). It is straightforward to check that ιT is a homeomorphism from
Ω(G) restricted to the undominated ends to Ω(T ).

For each t ∈ V (T ), let M(t) be the finite-cycle matroid of the torso Ht.
Let V (t) = VM(t) and W (t) = WM(t). Thus V (t) consists of those finite edge

sets of Ht that have even degree at every vertex, and W (t) consists of the
cuts of Ht.

Remark 4.1. T = (T, V ,W ) is a tree of binary finitary presentations.

The aim of this section is to prove Theorem 1.3 from the Introduction.
For that we have to show for each Borel set Ψ of undominated ends of G that
certain sets CΨ and DΨ are the sets of circuits and cocircuits of a matroid.
By Theorem 2.10, we know that ΠιT (Ψ)(T ) presents some matroid. In this
section we prove that the circuits and cocircuits of that matroid are given
by CΨ and DΨ.

To build this bridge from ΠιT (Ψ)(T ) to the sets CΨ and DΨ, we start
as follows. We have the two topological spaces Ω(G) and Ω(T ), which each
have their own Borel sets. The next lemma shows that these two systems of
Borel sets are compatible:

Lemma 4.2. The set of dominated ends of G is Borel. In particular, for
any set Ψ of undominated ends, Ψ is Borel in Ω(G) if and only if ιT (Ψ) is
Borel in Ω(T ).

To prove this lemma, we need some intermediate lemmas. By Bk(r) we
denote the ball of radius k around a fixed vertex r.

Lemma 4.3. The graph G[Bk(r)] has a spanning tree Yk of diameter at
most 2k + 1.

Proof. Proving this by induction over k, we may assume that G[Bk−1(r)]
has a spanning tree Yk−1 of diameter at most 2k − 1. Then Yk−1 together
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with all edges joining vertices in Bk(r) \ Bk−1(r) to vertices in Yk−1 is a
connected subgraph of G[Bk(r)] with vertex set Bk(r). Let Yk be any of its
spanning trees extending Yk−1. Moreover, Yk has diameter at most 2k + 1
by construction.

Lemma 4.4. Let G be a graph with a fixed vertex r. The set Ωk of those
ends dominated by some vertex in Bk(r) is closed.

Proof. In order to show that Ωk is closed, we prove that its complement is
open. For that it suffices to find for each ray R not dominated by some
vertex in Bk(r) some finite separator SR disjoint from Bk(r) that separates
Bk(r) from a tail of R.

Suppose for a contradiction that there is not such a finite separator SR.
Then we can recursively pick infinitely many Bk(r)-R-paths that are vertex-
disjoint except possibly their starting vertices. Let U be the set of their
starting vertices. The set U is infinite because otherwise some u ∈ U would
dominate R, which is impossible. By Lemma 4.3, G[Bk(r)] has a rayless
spanning tree Yk. Applying the Star-Comb-Lemma [15, Lemma 8.2.2] to
Yk and U , we find a vertex v in G[Bk(r)] together with an infinite fan
whose endvertices are in U . Enlarging this fan by infinitely many of the
previously chosen Bk(r)-R-paths, yields an infinite fan which witnesses that
v dominates R, which is the desired contradiction. Thus there is such a
finite set RS for every ray R not dominated by some vertex in Bk(r) and so
Ωk is closed.

Proof that Lemma 4.4 implies Lemma 4.2. By Lemma 4.4, the set of dom-
inated ends is a countable union of closed sets and thus Borel.

The next step in our proof of Theorem 1.3 is to give a more combinatorial
description of the set CΨ defined in the Introduction. For a set A, we denote
the set of minimal nonempty elements of A by Amin. Given a set Ψ of ends
of G, an edge set o is in CΨ if o meets every finitely coverable cut evenly and
is geometrically connected. The next lemma implies that CΨ = CminΨ .

Lemma 4.5. Given a Borel set Ψ of ends of G, the following are equivalent
for some nonempty edge set o.

1. o ∈ CΨ;

2. o is the edge set of a sparse continuous function from S1 to |G| that
only has ends from Ψ in the closure;

3. o is the edge set of a sparse continuous function from S1 to |G| \Ψ{.
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In particular, if o is minimal nonempty with one of these properties,
then it is minimal nonempty with each of them. Furthermore o is minimal
nonempty with one of these properties if and only if o is the edge set of a
topological cycle in |G| \Ψ{.

Proof of Lemma 4.5. Clearly 2 and 3 are equivalent. And 1 and 2 are equiv-
alent by Lemma 3.2. Thus 1,2 and 3 are equivalent.

To see the ‘Furthermore’-part, first note that the edge set of a topologi-
cal cycle in |G| \Ψ{ is a minimal nonempty edge set satisfying 3. To see the
converse, let o be a minimal edge set which is the edge set of a sparse con-
tinuous function f from S1 to |G|\Ψ{. Suppose for a contradiction that f is
not injective. Then there are two distinct points x, y ∈ S1 with f(x) = f(y).
By sparseness of f , there are two points z1 and z2 in different components
of S1−x− y whose f -values are different from f(x). By Lemma 3.5 applied
first to x and z1 and second to x and z2, for each of the two components
C1 and C2 of S1 − x− y there is for each i = 1, 2 an edge ei of G such that
ei × (0, 1) is included in f(Ci).

We obtain the topological space K from C1 ∪ {x, y} ⊆ S1 by identifying
x and y. Note that K is homeomorphic to S1. Moreover, the restriction f̄
of f to C1∪{x} considered as a map from K to |G| is continuous. However,
the edge set of f̄ is included in the edge set of f without e2, violating the
minimality of the edge set of f . Thus f is injective, and so o is the edge set
of a topological cycle in |G| \Ψ{, completing the proof.

Let DΨ be the set of cuts that do not have an end of Ψ in their closure.
Put another way, d ∈ DΨ if and only if d does not have an end of Ψ in its
closure and it meets every finite cycle evenly. Note that DΨ = DminΨ . The
next step in our proof of Theorem 1.3 is to relate CΨ and DΨ to the sets of

ιT (Ψ)-vectors of T and ιT (Ψ){-covectors of T .

Lemma 4.6.

1. The edge set of a finite cycle is an underlying vector of an ∅-pre-vector
of T ;

2. Any finitely coverable bond is an underlying covector of an ∅-pre-
covector of T .

Proof. In this proof we use the tree order ≤ on T as in Remark 2.2.
To see the second part, let d be a finitely coverable bond and let V (G) =

A∪̇B be a partition inducing d and let A′ be a finite cover of d. Since G is
connected, the partition is unique and both A and B are connected.
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For t ∈ V (T ), let x(t) be the set of crossing edges of the partition
V (Pt) = (A∩V (Pt))∪̇(B ∩V (Pt)) in the torso Ht. Let S be the set of those
nodes such that A and B both meet V (Pt).

Our aim is to show that (S, x) is an ∅-pre-covector of T , which then by
construction has underlying set d. By construction, x(t) ∈W (t). It remains
to verify the followings sublemmas.

Sublemma 4.7. S is connected. Moreover, for each st ∈ E(S), x(s) con-
tains an edge of the torso Ht.

Sublemma 4.8. S is rayless.

Proof of Sublemma 4.7. It suffices to show for each st ∈ E(T ) separating
two vertices of S that X = V (Ps) ∩ V (Pt) contains vertices of both A and
B. This follows from the fact that A and B are both connected and each
has vertices in at least two components of G−X.

Proof of Sublemma 4.8. Suppose for a contradiction that S includes a ray
v1v2 . . .. By taking a subray if necessary we may assume that vi < vi+1. As
A′ is finite, by the ‘Moreover’-part of Remark 2.2 there is some m such that
for all w ≥ vm the part Pw does not contain vertices of A′. By Remark 2.2,

Xi =
(⋃

w≥vi+1
V (Pw)

)
\ V (Pi) is connected. As vm+2 ∈ S, both A and B

contain vertices of Pvm+2 ⊆ Xm. Thus Xm contains an edge of d, which is
incident with a vertex of A′. This is a contradiction to the choice of m.

To see the first part, let o be the edge set of a finite cycle. We shall define
for each node t ∈ V (T ) an edge set x(t), which plays a similar role as in the
last part. For that we need some preparation. Let y(t) = o ∩ E(Pt). Let
st ∈ E(T ) with s < t. Let Z(st) be the set of those vertices of V (Ps)∩V (Pt)
incident with an odd number of edges of y(t).

Sublemma 4.9. |Z(st)| is even.

Proof. The set b of edges joining V (Ps)∩V (Pt) with
(⋃

w≥t V (Pw)
)
\V (Ps)

is a cut. Thus o intersection b evenly. Since b(st) ⊆ E(Pt) by Remark 2.2,
the number |Z(st)| has the same parity as |o ∩ b| and so is even.

Thus there is a matching M(st) of Z(st) using only edges from E(Hs)∩
E(Ht). We obtain x(t) from y(t) by adding all the sets M(st) where s is a
neighbour of t. Let S be the set of those nodes t where x(t) is nonempty.
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Our aim is to show that (S, x) is an ∅-pre-vector of T , which then by
construction has underlying set o. First note that S is finite as y(t) is
nonempty for only finitely many t. Thus it remains to verify the following
sublemmas.

Sublemma 4.10. x(t) has even degree at each vertex of Ht.

Sublemma 4.11. S is connected. Moreover, for each st ∈ E(S), x(s)
contains an edge of the torso Ht.

Proof of Sublemma 4.10. By construction x(t) has even degree at all vertices
v in V (Ht) ∩ V (Hs), where st ∈ E(T ) with s < t. Hence if t is maximal in
S, then x(t) has even degree at all vertices of Ht. Otherwise the statement
follows inductively from the statement for all the upper neighbours. Indeed,
let v ∈ V (Ht) \ V (Hs), where st ∈ E(T ) with s < t. Then the degree of v
in x(t) is congruent modulo 2 to the degree of v in o plus the sum of the
degrees of v in x(u), where the sum ranges over all upper neighbours u of
t.

Proof of Sublemma 4.11. It suffices to show for each st ∈ E(T ) separating
two vertices of S that M(st) is nonempty. Suppose for a contradiction that
M(st) is empty. Let Ts be the component of T − t containing s. The
symmetric difference Ds of all x(u) with u ∈ Ts contains only edges of o and
has even degree at each vertex by Sublemma 4.10.

Moreover, Ts contains a vertex v of S. Either Pv contains an edge of o
or it has a neighbour w such that M(vw) is nonempty and Pw contains an
edge of o. In the later case w is also in Ts. So in either case, Ds is nonempty.

Similarly, we define Tt and Dt, and deduce that Dt is nonempty. Since
Ds and Dt are both nonempty, we deduce that o includes two edge disjoint
cycles, which is the desired contradiction.

Corollary 4.12. Every Ψ{-covector d of T is in DΨ.

Proof. First note that d has only ends of Ψ{ in its closure. Moreover d is a
cut as it meets every finite cycle evenly by Lemma 4.6 and Lemma 2.11 as
T is tree of binary finitary presentations.

Let FΨ be the set of those edge sets o meeting every finitely coverable cut
evenly such that for every finite vertex set W only finitely many components
of G−W contain vertices of V (o). Note that CΨ ⊆ FΨ by Lemma 3.2 and
Corollary 3.3.
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Lemma 4.13. Any nonempty o ∈ FΨ includes a nonempty element of CΨ.
Hence, FminΨ = CminΨ .

Proof. We say that edges e and f of o are in the same geometric component
if o meets every finitely coverable cut d such that e and f are in different
components of G− d. It is straightforward to check that being in the same
geometric component is an equivalence relation. Pick some e ∈ o and let u
be its equivalence class. It suffices to show that u is in CΨ, which is implies
by the following two sublemmas.

Sublemma 4.14. u is meets every finitely coverable cut evenly.

Sublemma 4.15. u is geometrically connected.

Before proving these two sublemmas, we give a construction that is used
in the proof of both these sublemmas. Let x ∈ o and let b be a finitely
coverable cut. For all z ∈ b∩ (o \ u), there is a finitely coverable cut bz such
that x and z are in different components of G− bz. Let V (G) = A∪̇B be a
partition inducing b, and let V (G) = Az∪̇Bz be a partition inducing bz such
that x has both its endvertices in Az. Let d be the cut consisting of those
edges with precisely one endvertex in the intersection of A and the finitely
many Az. Note that d is finitely coverable. By construction d ∩ u = d ∩ o.
Moreover, b ∩ u = d ∩ u since any y ∈ u has both its endvertices in Az.

Proof of Sublemma 4.14. Let b be a finitely coverable cut. Then b∩u = d∩o,
and thus b ∩ u has even size.

Proof of Sublemma 4.15. Let b be a finitely coverable cut such that there
are edges x and y of u in different components of G − b. Thus there is a
partition V (G) = A∪̇B inducing b such that x has both endvertices in A
and y has both endvertices in B. Then x and y are in different components
of G−d. As x and y are in the same geometric component, d meets o. Thus
b meets u, completing the proof.

Lemma 4.16. Every Ψ-vector o of T is in FΨ.

Proof. The set o meets every finitely coverable bond evenly by Lemma 4.6
and Lemma 2.11 as T is tree of binary finitary presentations. Since ev-
ery finitely coverable cut is an edge-disjoint union of finitely many finitely
coverable bonds, o meets each finitely coverable cut evenly.

The set o is a finite symmetric difference of sets oi, which are underlying
sets of Ψ-pre-vectors (Si, oi). Note that Si is locally finite as each oi is finite
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and for each xy ∈ E(Si), the set oi(x) contains an edge of the torso of Py. It
suffices to show that there is no finite vertex set W together with an infinite
set A of components of G−W each containing a vertex of V (oi).

Suppose for a contradiction there is such a set W . By the ‘Moreover’-
part of Remark 2.2, there is a rayless subtree Q of T containing all nodes q
such that its part Pq contains a vertex of W and the root r of T . For each
A ∈ A, there is an edge zA in oi ∩ sA. Let tA be the unique node of T such
that zA ∈ PtA .

Next we define an edge eA for each A ∈ A. If tA ∈ Q, we pick eA = zA.
Otherwise, let qA be the last node on the unique tA-Q-path and uA be the
node before that. By Remark 2.2, PuA together with the parts above is
connected. Thus all these parts are included in A. Thus the nodes uA are
distinct for different A. Moreover, qA is on the path from tA to some tB
for some other b ∈ A. As Si is connected and tA, tB ∈ Si, it must be that
qA ∈ Si. So uA is in Si, as well. Thus ōi(qA) contains an edge of the torso
of PuA . Pick such an edge for eA. Summing up, we have picked for each
A ∈ A an edge eA in some oi(q) with q ∈ Q ∩ Si such that all these eA are
distinct.

Note that Si ∩ Q is finite as Si is locally finite and Q is rayless. Since
each eA is in some of the finite sets oi(x) with x ∈ Si∩Q, we get the desired
contradiction.

Theorem 4.17. Let Ψ be a Borel set of ends of an infinite connected graph
G that are all undominated. Then there is a matroid M whose set of circuits
is CminΨ and whose set of cocircuits is DminΨ .

Proof. By Lemma 4.2, ιT (Ψ) is Borel. Thus we apply Theorem 2.10 to
the tree of presentations T , yielding that ΠιT (Ψ)(T ) presents a matroid M .
Note that FΨ and DΨ satisfy (01) by Lemma 3.4. Hence by Corollary 4.12
and Lemma 4.16, we can apply Lemma 2.6 to FΨ and DΨ and M . As
FminΨ = CminΨ by Lemma 4.13, we get the desired result.

Proof of Theorem 1.3. By considering distinct connected components sep-
arately, we may assume that G is connected. By Lemma 4.5, CminΨ is the

set of topological cycles in |G| \ Ψ{. Thus Theorem 1.3 follows from Theo-
rem 4.17.

5 Consequences of Theorem 1.3

First, we prove for any graph G that the set of topological circuits is the set
of circuits of a matroid if and only if G does not have a subdivision of the
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dominated ladder H. This theorem was already mentioned in the Introduc-
tion, see Corollary 1.2. We start with a couple of preliminary lemmas.

Lemma 5.1. Let ω be a dominated end of a graph G such that there are
two vertex-disjoint rays R and S belonging to ω. Then G has a subdivision
of H.

Proof. Let v be a vertex dominating ω. By taking subrays if necessary, we
may assume that v lies on neither R nor S. As R and S belong to the same
end, there are infinitely many vertex-disjoint paths P1, P2, . . . from R to S.
We may assume that no Pi contains v. Let ri be the endvertex of Pi on
R and si be the endvertex of Pi on S. By taking a subsequence of the Pi
if necessary, we can ensure that the order in which the ri appear on R is
r1, r2, . . .. Similarly, we may assume that the order in which the si appear
on S is s1, s2, . . ..

Let Q1, Q2, . . . be an infinite fan from v to R ∪ S. So for one of R or
S, say R, there is an infinite fan Q′1, Q

′
2, . . . from v to it that avoids the

other ray. As each Pi and each Q′j is finite, we can inductively construct
infinite sets I, J ⊆ N such that for i ∈ I and j ∈ J the paths Pi and Q′j are
vertex-disjoint.

Indeed, just consider the bipartite graph with left hand side (Pi|i ∈ N)
and right hand side (Q′j |j ∈ N) and put an edge between two paths Pi and
Q′j if they share a vertex. Now we use that each vertex of this bipartite
graph has only finitely many neighbours on the other side to construct an
independent set of vertices that intersects both sides infinitely. Indeed, for
each finite independent set, there are two vertices, one on the left and one
on the right, such that the independent set together with these two vertices
is still independent. So there is such an infinite independent set and I is its
set of vertices on the left and J is its set of vertices on the right.

Finally, v together with R, S and (Pi|i ∈ I) and (Q′j |j ∈ J) give rise to
a subdivision of H, which completes the proof.

Lemma 5.2. Let o be a topological circuit that has the end ω in its closure.
Then there is a double ray both of whose tails belong to ω.

This lemma already was proved in [6, Lemma 5.6] in a slightly more
general context.

Proof of Corollary 1.2. If G has a subdivision of H, then as explained in
the Introduction the topological set of topological circuits violates (C3).
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Thus it remains to consider the case that G has no a subdivision of H.
Now we apply Theorem 1.3 with Ψ the set of undominated ends, which is
Borel by Lemma 4.2.

It suffices to show that every topological circuit o of G is a Ψ-circuit. So
let ω be an end in the closure of o. Then by Lemma 5.2 there is a double
ray both of whose tails belong to ω. If ω was not in Ψ, then G would have
a subdivision of H by Lemma 5.1. Thus ω is in Ψ. As ω was arbitrary, this
shows that every end in the closure of o is in Ψ.

Theorem 1.3 can also be used to extend a central result of [3] from count-
able graphs to graphs with a normal spanning tree as follows. Given a graph
G with a normal spanning tree T , in [3] we constructed the Undomination
graph U = U(G,T ). This graph has the pleasant property that it has few
enough edges to have no dominated end but enough edges to have G as a
minor. Moreover there is an inclusion ũ from the set of ends of G to the
set of ends of U . By Theorem 1.3, for every Borel set Ψ, the Ψ-circuits of
U(G,T ) are the circuits of a matroid. Now we use the following theorem.

Theorem 5.3 ([3, Theorem 9.9]). Assume that (U, ũ(Ψ)) induces a matroid
M . Then (G,Ψ) induces the matroid M/C.

We refer the reader to [3, Section 3] for a precise definition of when the
pair (G,Ψ) consisting of a graph G and an end set Ψ induces the matroid
M . Very very roughly, this says that the set of certain ‘topological circuits’
which only use ends from Ψ is the set of the circuits of M . However the
topological space taken there is different from the one we take in this paper,
so that the definition of topological circuit there does not match with the
definition of topological circuit in this paper. For example, in this different
notion a ray starting at a vertex v may also be a circuit if the end it converges
to is in Ψ and dominated by v. However these two notions of topological
circuit are the same if no vertex is dominated by an end. Thus combining
Theorem 5.3 and Theorem 1.3, we get the following.

Corollary 5.4. Let G be a graph with a normal spanning tree and Ψ ⊆ Ω(G)
such that ũ(Ψ) is Borel, then (G,Ψ) induces a matroid.

For example, if we choose Ψ equal to the set of dominated ends, then we
get an interesting instance of this corollary: Like Theorem 1.3, this gives a
recipe to associate a matroid (which we call MI(G)) to every graph G that
has a normal spanning tree which in general is neither finitary nor cofinitary.
These two matroids need not be the same. For example, these two matroids
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differ for the graph obtained from the two side infinite ladder by adding a
vertex so that it dominates precisely one of the two ends.

In fact the circuits of the matroid MI(G) can be described topologically,
namely they are the edge sets of topological cycles in the topological space
ITOP, see [14] for a definition of ITOP. About ITOP, we shall only need the
following fact, which is not difficult to prove: Given a graph G, we denote
by GI , the multigraph obtained from G by identifying any two vertices
dominating the same end. It is not difficult to show that G and GI have the
same topological cycles. Thus in order to study when the topological cycles
of G induce a matroid, it is enough to study this question for the graphs
GI . In what follows, we show that the underlying simple graphs G′I of GI
always has a normal spanning tree. This will imply the following:

Corollary 5.5. The topological cycles of ITOP induce a matroid for every
graph.

Let H ′ be the graph obtained from the dominated ladder H by adding
a clone of the infinite degree vertex of H. Note that G′I has no subdivision
of H ′. Thus G′I has a normal spanning tree due to the following criterion:

Theorem 5.6 (Halin [17]). If G is connected and does not have a subdivision
of the completes graph on countably many vertices, then G has a normal
spanning tree.
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