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Abstract. We show that for an infinitely many natural numbers k there are k-uniform
hypergraphs which admit a ‘rescaling phenomenon’ as described in [9]. More precisely,
let Apk, I, nq denote the class of k-graphs on n vertices in which the sizes of all pairwise
intersections of edges belong to a set I. We show that if k “ rt2 for some r ě 1 and t ě 2,
and I is chosen in some special way, the densest graphs in Aprt2, I, nq are either dominated
by stars of large degree, or basically, they are ‘t-thick’ rt2-graphs in which vertices are
partitioned into groups of t vertices each and every edge is a union of tr such groups. It
is easy to see that, unlike in stars, the maximum degree of t-thick graphs is of a lower
order than the number of its edges. Thus, if we study the graphs from Aprt2, I, nq with a
prescribed number of edges m which minimize the maximum degree, around the value
of m which is the number of edges of the largest t-thick graph, a rapid, discontinuous
phase transition can be observed. Interestingly, these two types of k-graphs determine the
structure of all hypergraphs in Aprt2, I, nq. Namely, we show that each such hypergraph
can be decomposed into a t-thick graph HT , a special collection HS of stars, and a sparse
‘left-over’ graph HR.

§1. Introduction

By a set system we mean a pair S “ pV, Eq such that E is a collection of subsets of V .
The members of V are usually referred to as the vertices of the set system, whilst the
members of E are called edges. If all members of E are of the same cardinality k ě 0 we
call S a k-uniform hypergraph or, more briefly, a k-graph.

Occasionally we identify a hypergraph H with its set of edges, denoting, for example,
by |H| the number of edges in H. For a given set I of nonnegative integers, we say that a
k-graph H is I-intersecting if |eX f | P I holds for all distinct e, f P H. Starting with the
seminal work [4] of Erdős, Ko, and Rado, the study of I-intersecting hypergraphs and set
systems has a long tradition in extremal combinatorics (see, e.g., [2, 3, 6, 7, 10, 11] for some
milestones). Let us remark that sometimes in the literature (e.g., [2, 3, 6]) an I-intersecting
k-graph on n vertices is called an pn, k, Iq-system.

Motivated by the stability of extremal graphs for 3-uniform loose path of length 3 the
first two authors studied t0, 2, 3u-intersecting 4-graphs in [9]. The aim of the present
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article is to extend their results to the more general family J pr, tq which consists of all
I-intersecting rt2-graphs, where r ě 1 and t ě 2 are arbitrary integers and

I “
 

s : t | s or s ě rtpt´ 1q
(

.

This choice of the set of permissible intersections may look bizarre at first and our main
incentive to study it came from the aesthetical merits of the results we hoped to obtain: to
explain those, we start from the observation that there are two quite different examples of
dense rt2-graphs H P J pr, tq on n vertices with Θpnrtq edges.

The most obvious one is the full
`

rtpt´1q
˘

-star, i.e., a hypergraph H with a distinguished
rtpt´1q-set S of vertices, called the centre of the star, such that the edges of H are precisely
the rt2-supersets of S. Clearly such a star has exactly

`

n´rt2`rt
rt

˘

edges and it can be shown
that, for large n, it is the unique graph which maximises the number of edges among all
graphs from J pr, tq on n vertices (see Proposition 2.3 below).

However, there exists another natural construction of dense rt2-graphs H P J pr, tq
with n vertices and Θpnrtq edges. It proceeds by splitting the vertex set into tn{tu subsets
of size t called teams (and a small number of left-over vertices) and to declare an rt2-set to
be an edge if and only if it is a union of rt teams. We call the resulting hypergraph a thick
clique and to its subgraphs we refer as thick hypergraphs. Note that each thick hypergraph
has the property that for any two edges e and f the number |eX f | is a multiple of t and,
hence, it indeed belongs to J pr, tq.

The point that interests us here is that even though both the star and the thick clique
have Θpnrtq edges, their maximum vertex degrees are of different orders of magnitude. In
fact, while the vertices belonging to the centre of a star have degree Ωpnrtq, the maximum
degree of a thick clique is easily seen to be only Opnrt´1q. Perhaps surprisingly, it turns
out that this phenomenon arises in a very “discontinuous” manner: As soon as a graph
from J pr, tq has one edge more than the thick clique, it needs to contain a vertex of
degree Ωpnrtq.

This is the main result of the present work which, crudely, can be stated as follows (for
further structural results see Theorems 2.2 and 3.5 below).

Theorem 1.1. For r ě 1 and t ě 2 there exists an n0 such that for every rt2-graph
H P J pr, tq with n ě n0 vertices and at least

`

tn{tu

rt

˘

` 1 edges we have ∆pHq ě m{p3tq.
On the other hand, for every n ě rt2 a thick clique H0 P J pr, tq on n vertices has

`

tn{tu

rt

˘

edges and ∆pH0q “
`

tn{tu´1
rt´1

˘

.

The main step in the proof of Theorem 1.1 is a somewhat surprising structural result (see
Theorem 2.2 below). It turns out that stars and thick hypergraphs which naturally emerge
when we study graphs from J pr, tq whose density is close to the maximum density Θpnrtq,
are natural building blocks for all ‘not too sparse’ graphs from J pr, tq. More specifically,
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we show that up to an ‘error of lower order,’ i.e., up to at most Opnrt´1q edges, any such
hypergraph arises by attaching “non-overlapping” stars to a thick hypergraph.

This article is organised as follows. In the next section we state a precise version of the
structure theorem mentioned above. Then, in Section 3, we show that it does indeed imply
Theorem 1.1 and give more structural characterisations of dense graphs from J pr, tq with
small maximum degree. Section 4 collects some tools needed for the proof of this structure
theorem including a ‘decomposition lemma’ (see Lemma 4.4 below) that might have some
other applications as well. Finally, in Section 5, we prove the structure theorem.

§2. The structure theorem

We begin this section with some definitions allowing us to formulate a precise version of
the structure theorem for rt2-graphs H P J pr, tq.

Let k ě s ě 0 be integers. A k-uniform hypergraph H “ pV,Eq with a set S Ď V of
distinguished vertices of size |S| “ s is an s-star if S Ď e holds for all edges e P E. We
call S the centre of the star and

Ť

hPEph r Sq is referred to as the body of the star. A
collection of stars is said to be semi-disjoint if their centres are distinct and their bodies
are mutually disjoint. Of course, an s-star H on |V | “ n vertices can have at most

`

n´s
k´s

˘

edges. If this happens we say that H is a full s-star and denote it by Sk
n,s.

Next, for a given hypergraph H “ pV,Eq, we say that a subset W Ď V of its vertex
set is inseparable in H, if for all edges h P E we have W X h P t∅,W u. Now consider
three natural numbers k, t, and n satisfying t | k, and suppose that a set V of n vertices
is partitioned into tn{tu many t-subsets called teams and fewer than t further vertices.
By rKk

n,t we denote the thick pk, n, tq-clique, i.e., the k-graph on n vertices whose
`

tn{tu

k{t

˘

edges are all possible unions of some k{t of these teams. We refer to its subgraphs as t-thick
or just thick hypergraphs. Evidently the teams are inseparable in rKk

n,t and a k-graph H on n
vertices possessing tn{tu mutually disjoint inseparable t-sets of vertices is a subhypergraph
of the thick clique rKk

n,t.
Finally, for positive integers t, `, and a, we define a class Fpt, `, aq of `t-graphs as follows.

Definition 2.1. For given natural numbers t, `, and a, we say that a `t-graph H “ pV,Eq

belongs to the class Fpt, `, aq if and only if there are partitions

V “ VT Y VS Y VR and H “ HT YHS YHR ,

such that
(i ) VT is a union of inseparable t-subsets of V , and HT “ HrVT s;
(ii ) HS “ th P H : |h X VS| “ `u consists of semi-disjoint

`

`pt ´ 1q
˘

-stars with their
centres in VT Y VR and their bodies in VS;

(iii ) any edge of H that intersects the body of a star S˚ Ď HS contains the centre of S˚;
(iv ) and |HR| ď |VT ||VS|n

`´3 ` |VR|an
`´2.
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Now the structure theorem for rt2-graphs H P J pr, tq promised in the introduction can
be stated as follows.

Theorem 2.2 (Structure Theorem). For all integers r ě 1 and t ě 2 we have

J pr, tq Ď Fpt, rt, prt2qr3t6
q .

The proof of this result is deferred to Section 5. We conclude this section by pointing
out that the structure theorem quickly allows us to determine the extremal rt2-graphs
from J pr, tq. The following statement shows that the extremal graph, the full

`

`pt´1q
˘

-star,
is unique and stable for this problem.

Proposition 2.3. Given natural numbers ` ě t ě 2, a, and c, there exists an integer n˚
such that every `t-graph H “ pV,Eq P Fpt, `, aq with |V | “ n ě n˚ and m ě

`

n´c
`

˘

´ n`´1

2p`´1q!
edges is obtained from an

`

`pt´ 1q
˘

-star by adding at most
`

c
`t

˘

further edges.
Moreover, if m ě

`

n´`t
`

˘

´ n`´1

2p`´1q! , then H is an
`

`pt´ 1q
˘

-star.
In particular, each H P F pt, `, aq has at most

`

n´`pt´1q
`

˘

edges, and this maximum is
achieved only if H is isomorphic to the full

`

`pt´ 1q
˘

-star S`t
n,`pt´1q.

Proof. Let us choose n˚ and D such that n˚ " D " maxpt, `, aq ` c, so all inequalities
below hold for n ě n˚. Moreover, let H “ pV,Eq with

|V | “ n ě n˚ and |E| “ m ě

ˆ

n´ c

`

˙

´
n`´1

2p`´ 1q!
be a `t-graph from Fpt, `, aq, and take partitions

V “ VT Y VS Y VR as well as H “ HT YHS YHR

exemplifying this.
Clearly

m ď

ˆ

|VT |{t

`

˙

`

ˆ

|VS|

`

˙

` |HR|, (2.1)

where
|HR| ď |VT ||VS|n

`´3
` |VR|an

`´2
ď p|VT | ` |VR|qan

`´2
ď an`´1 ,

and so
m ď

ˆ

|VS| ` |VT |{t

`

˙

` an`´1 . (2.2)

Assume first that |VS| ă n´ 2D. Then

|VS| `
1
t
|VT | ď |VS| `

1
2pn´ |VS|q “

1
2pn` |VS|q ď n´D

and so, by (2.2),

m ď

ˆ

n´D

`

˙

` an`´1
ă

ˆ

n´ c

`

˙

´
n`´1

2p`´ 1q! .
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As this contradicts our assumption, we may conclude that |VS| ě n´ 2D.
In particular, we have |VT | ` |VR| ď 2D, and |HT YHR| ď p2Da` 1qn`´2. Consider the

largest star S˚ “ pV ˚, E˚q in HS and let s be its centre. Then |V ˚| ě n{2, since otherwise,
by (2.1),

m “ |HS| ` |HT | ` |HR| ď

ˆ

n{2
`

˙

`

ˆ

n{2
`

˙

` p2Da` 1qn`´2
ă

ˆ

n´ c

`

˙

´
n`´1

2p`´ 1q! .

Now assuming |V ˚ X VS| ď n´ c´ 1 we could use (2.1) again and infer

m ď

ˆ

n´ c´ 1
`

˙

`

ˆ

c` 1
`

˙

` p2Da` 1qn`´2
ă

ˆ

n´ c

`

˙

´
n`´1

2p`´ 1q! ,

which, again, contradicts our assumption on m.
This proves that |V ˚ X VS| ě n´ c. By Definition 2.1(iii ), all edges of H intersecting

V ˚ X VS contain s and therefore they form an
`

`pt´ 1q
˘

-star. Since |V r pV ˚ X VSq| ď c,
there can be at most

`

c
`t

˘

edges not belonging to this star, which establishes our first
assertion. The moreover-part follows from the observation that in case c “ `t the only
potential further edge, V r pV ˚ X VSq, would still contain s and could thus be adjoined to
the star. �

§3. Minimum maximum degree

Let us first start with the proof of Theorem 1.1 which, let us recall, states that in
each graph from J pr, tq with m ą

`

tn{tu

rt

˘

edges there exists a big star which contains a
positive fraction of all edges; moreover thick cliques show that this result is sharp. We
prove this result in a slightly stronger form, which gives a better estimate for the size of
the biggest star for dense graphs. Besides, it states that each graph from J pr, tq which
has almost

`

tn{tu

rt

˘

edges and small maximum degree is thick. Here, for H P J pr, tq by HS

we denote the subgraph consisting of
`

rtpt´ 1q
˘

-stars whose existence is assured by the
Structure Theorem 2.2.

Theorem 3.1. For r ě 1 and t ě 2 there exists an n0 such that, for every rt2-graph
H P J pr, tq with n ě n0 vertices and at least

`

tn{tu

rt

˘

`1 edges, HS contains an
`

rtpt´1q
˘

-star
with at least n̂ vertices in the body and at least mn̂{n´ nrt´1 ą m{p3tq edges, where

n̂ “ n̂pn,mq “ min
!

N :
ˆ

N ´ 1
rt´ 1

˙

ě
rtm

n
´ rtnrt´2

)

ě
n

trt{prt´1q ´ p3rtq
3rt
ą

2n
5t . (3.1)

On the other hand, if
`

tn{tu

rt

˘

´ nrt´1

2trt´1prt´1q! ď m ď
`

tn{tu

rt

˘

, then each hypergraph H P J pr, tq
with m edges and ∆pHq ď m{p3tq is a subgraph of a thick clique rKrt2

n,t ; in particular,
∆pHq ď

`

tn{tu´1
rt´1

˘

.
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Proof. For given integers t ě 2, and r ě 1, choose n0 so large that all inequalities below
hold for n ě n0. Moreover, let H P J pr, tq, where the number of edges m satisfies

m ě

ˆ

tn{tu

rt

˙

´
nrt´1

2trt´1prt´ 1q! ą
nrt

trtprtq! ´
2rt2nrt´1

trtprt´ 1q! ą
´ n

rt2

¯rt

. (3.2)

By Theorem 2.2, H P Fpt, rt, prt2qr3t6
q, so let us take partitions V “ VT Y VS Y VR and

H “ HT YHS YHR exemplifying this. Then

|H| “ |HT | ` |HS| ` |HR| ď

ˆ

|VT |{t

rt

˙

`

ˆ

|VS|

rt

˙

` |VT ||VS|n
rt´3

` |VR|Cn
rt´2 , (3.3)

where C “ prt2qr3t6 . As a straightforward consequence of the above inequality we get the
following claim.

Claim 3.2. If VS “ ∅ then HR “ ∅ and m ď
`

tn{tu

rt

˘

.

Proof. Since VS “ ∅, the vertex set of H is partitioned into sets VT and VR, where |VT | is
divisible by t and |VR| “ n´ |VT |. Recall that VT consists of t-tuples that are inseparable
in H. Therefore, if HR ‰ ∅ then |VR| ě t and consequently, by (3.3),

m “ |HT | ` |HR| ď

ˆ

pn´ |VR|q{t

rt

˙

` 0` |VR|Cn
rt´2

ď

ˆ

tn{tu´ 1
rt

˙

` 2tCnrt´2

ă

ˆ

tn{tu

rt

˙

´
nrt´1

2trt´1prt´ 1q! ,

contrary to (3.2).
Thus we must have HR “ ∅ and, hence,

m “ |HT | ď

ˆ

tn{tu

rt

˙

. �

It turns out that if VS ‰ ∅, then the largest degree must be large.

Claim 3.3. If VS ‰ ∅, then HS contains an
`

rtpt´ 1q
˘

-star with at least n̂ vertices and
at least mn̂{n´ nrt´1 edges, where n̂ is defined as in (3.1).

Proof. We start with bounding from below the average degree adpGq of the rt-graph
GS “ pVS, ESq with the set of vertices VS and the set of edges ES “ th X VS : h P HSu.
Using the upper bound on |HR| we get

adpGSq “
rt|HS|

|VS|
“
rtpm´ |HR| ´ |HT |q

n´ |VR| ´ |VT |

ě
rtm´ rt|VR|Cn

rt´2 ´ rt
`

|VT |{t
rt

˘

n´ |VR| ´ |VT |
´
rt|VT ||VS|n

rt´3

|VS|

“
rtm

n
`

rtm
n
p|VR| ` |VT |q ´ rt|VR|Cn

rt´2 ´ rt
`

|VT |{t
rt

˘

n´ |VR| ´ |VT |
´ rt|VT |n

rt´3 .
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Here the numerator of the second fraction is, due to (3.2), at least

rt|VR|n
rt´2

ˆ

n

prt2qrt
´ C

˙

` rt|VT |

ˆ

1
n

ˆ

tn{tu

rt

˙

´
nrt´2

2trt´1prt´ 1q! ´
1
|VT |

ˆ

|VT |{t

rt

˙˙

and because of |VT | ď n´ t and the largeness of n this term is positive. For these reasons
we have

adpGSq ě
rtm

n
´ rtnrt´2

ą

ˆ

n̂´ 2
rt´ 1

˙

.

Now, each vertex v of degree at least adpGSq must be contained in a component with
at least n̂ vertices and, since GS must contain a component whose average degree is at
least adpGSq, each such component must have at least adpGSqn̂{prtq edges. �

Finally, we can complete the proof of Theorem 3.1. If m ą
`

tn{tu

rt

˘

, then, by Claim 3.2,
we have VS ‰ ∅, and the first part of Theorem 3.1 follows directly from Claim 3.3. On the
other hand, if H P J pr, tq has m edges, where

ˆ

tn{tu

rt

˙

´
nrt´1

2trt´1prt´ 1q! ď m ď

ˆ

tn{tu

rt

˙

,

and ∆pHq ď m{p3tq, then Claim 3.3 implies that VS is empty and, by Claim 3.2, HR is
empty as well. Thus, H must be a subgraph of a thick prt2, n, tq-clique K̃rt2

n,t . �

Once we know that dense graphs from J pr, tq with m ą
`

tn{tu

rt

˘

contain vertices of large
degree one may ask about the structure of graphs which, for a given m “ mpnq, minimise
the maximum degree. A natural conjecture is that they can be expressed as a union of
large disjoint

`

rtpt´ 1q
˘

-stars with, perhaps, some limited number of extra edges like those
which intersect the centres of these stars in sets whose sizes are multiples of t.

In [9] such a result is proved for the family J p1, 2q. Namely, it is shown that from each
t0, 2, 3u-intersecting 4-graph with m ą

`

tn{2u

2

˘

edges that minimises the maximum degree
one can remove at most 470 edges to get a 4-graph which consists of at most 4 stars and,
perhaps, some number of isolated vertices. The number 4 here is optimal, while 470 is
clearly not and most likely it can be replaced either by 11, if we want each of the stars to
be a 2-star, or just by 8, if we are satisfied that each of the four stars is just a 1-star (for
details and discussions of this result see the final remarks in [9]).

The remaining part of this section is devoted to the proof of an analogous result for J pr, tq
in the general case. As we will see shortly, a similar result hold whenever r “ 1, while
for r ě 2 a weaker yet quite satisfactory characterisation of the extremal graphs can be
shown. Nevertheless, in order to state our theorem more precisely, let us introduce some
notation, analogous to those used in [9].

Thus, let us define the minimum maximum-degree function of J pr, tq by setting

fpJ pr, tq;n,mq “ min
 

∆pHq : H “ pV,Eq P J pr, tq, |V | “ n, and |E| “ m
(



8 TOMASZ ŁUCZAK, JOANNA POLCYN, AND CHRISTIAN REIHER

for all nonnegative integers n and m. The corresponding collection of extremal hypergraphs
is denoted by EpJ pr, tq;n,mq.

Note that the function fpJ pr, tq;n,mq is always bounded from below by the average
degree rt2m{n; on the other hand, one can always find a thick graph from J pr, tq such
that the degrees of all vertices, except at most t ´ 1, are within distance one from each
other. Hence, from Theorem 3.1 it follows that whenever m ď

`

tn{tu

rt

˘

and n is large enough
we have

rrt2m{ns ď fpJ pr, tq;n,mq ď rrt2m{ns` 1 ,
i.e., in this range of m the function fpJ pr, tq;n,mq is determined up to a constant term.
Thus, it remains to study the value of fpJ pr, tq;n,mq and the structure of the extremal
graphs from EpJ pr, tq;n,mq for m ą

`

tn{tu

rt

˘

. For this we require one more concept.
Let us say that an

`

rtpt´ 1q
˘

-star S with some number N of vertices in its body is heavy
if its minimum vertex degree is at least 2r2t3N rt´2. The standard process of repeatedly
removing vertices of low degree allows us to find in any

`

rtpt´ 1q
˘

-star S a maximal heavy
substar S 1 Ď S (which is possibly empty). This star S 1 is called the core of S, its set of
edges is denoted by crepSq, and by crvpSq we mean the set of vertices forming its body.

The first two parts of the following fact list standard properties of the process by means
of which the core is constructed, while its third part explains that cores have a property
reminiscent of condition (iii ) in Definition 2.1.

Fact 3.4. Let r ě 1 and t ě 2.
(a ) There are integers n0 and c0 such that if a hypergraph H P J pr, tq has n ě n0

vertices and m ą
`

tn{tu

rt

˘

edges, then there is a heavy star S Ď H with

|S| ě
mn̂pn,mq

n
´ 3r2t3nrt´1 and | crvpSq| ě n̂pn,mq ´ c0 ą

2n
5t ,

where n̂pn,mq is the number introduced in (3.1).
(b ) For every positive integer a there exists an integer b such that every

`

rtpt´1q
˘

-star S
with N vertices in its body and |S| ě

`

N´a
rt

˘

satisfies | crvpSq| ě N ´ b.
(c ) If H P J pr, tq and S Ď H is a heavy

`

rtpt ´ 1q
˘

-star, then every edge of H
intersecting the body of S needs to contain the centre of S.

Proof. For the proof of part (a ) we take n0 to be at least as large as the number provided
by Theorem 3.1. We then know that for any H P J pr, tq as above there exists a star
Ŝ Ď H with |Ŝ| ě mn̂pn,mq

n
´ nrt´1. Throughout the process yielding S “ crepŜq we remove

at most 2r2t3
řn

i“1 i
rt´2 ă 2r2t3nrt´1 edges and thus S has at least the size we claimed.

To obtain the desired lower bound on | crvpSq| we use that the definition of n̂ “ n̂pn,mq

implies pn̂´1qm
n

ą
`

n̂´1
rt

˘

, whence
ˆ

| crvpSq|

rt

˙

ě |S| ą

ˆ

n̂´ 1
rt

˙

´ 3r2t3nrt´1
ą

ˆ

n̂´ c0

rt

˙
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holds for sufficiently large c0 and n0.
For the verification of part (b ) we may take two large constants b, b1 with b " b1 " a.

There is nothing to prove in case N ď b, so let us assume N ą b from now on. As above
we have |S r crepSq| ď 2r2t3N rt´1 and, hence,

| crepSq| ě

ˆ

N ´ a

rt

˙

´ 2r2t3N rt´1
ě

ˆ

N ´ b1

rt

˙

,

which is only possible if | crvpSq| ě N ´ b1.
Finally, let H and S be as in (c ), write B for the set of vertices forming the body of S,

set N “ |B|, and consider any e P H intersecting B in some vertex v. The minimum
degree condition satisfied by S yields |S| ě 2rt2N rt´1. As at most rt2N rt´1 edges of S
can intersect eX B, there is an edge f P S disjoint to eX B and, consequently, we have
|eX s| P I, where s denotes the centre of S. Similarly, for every w P eXB distinct from v

there are at most N rt´2 edges of S containing both v and w, and thus there is an edge
f 1 P S with peX Bq X f 1 “ tvu, which proves |eX s| ` 1 P I. But the only possibility for
the consecutive integers |eX s| and |eX s| ` 1 to belong to I is that s Ď e, as desired. �

The following result describes the structure of H P EpJ pr, tq;n,mq quite precisely.

Theorem 3.5. For all integers t ě 2 and r ě 1, there exist an integer n˚ “ n˚pr, tq

and constants ci “ cipr, tq, i “ 1, 2, 3, such that from every rt2-graph H “ pV,Eq in
EpJ pr, tq;n,mq with n ě n˚ vertices and m ą

`

tn{tu

rt

˘

edges one can remove at most c1

edges to get a graph which consists of ` ď 7t2 many
`

rtpt ´ 1q
˘

-stars S1, S2, . . . , S` and,
perhaps, some number of isolated vertices.

Moreover, we can also assume that
(i ) | crvpS

iq| ě n{p7t2q, for i “ 1, 2, . . . , `´ 1;
(ii )

ˇ

ˇV r
Ť`

i“1 crvpS
iq
ˇ

ˇ ď c2;
(iii ) the centres of the stars S1, . . . , S` are pairwise disjoint.
In particular, we can delete from H at most c3n

pr´1qt edges to get a union of at most `
vertex disjoint

`

rtpt´ 1q
˘

-stars.

Proof. Let us assume that n is sufficiently large, m ą
`

tn{tu

rt

˘

, and that H P EpJ pr, tq;n,mq.
The idea for constructing the first ` ´ 1 of the desired stars is to apply Fact 3.4 (a )
iteratively, pulling these stars out of H one by one. This process comes to an end when
we cannot guarantee anymore to find a star with a sufficiently large core in the remaining
part of H.

More precisely, we start by setting H1 “ H. Due to Fact 3.4 (a ) there exists a maximal
star S1 Ď H1 with | crvpS

1q| ě 2n{p5tq and | crepS
1q| ě mn̂pn,mq{n ´ 3r2t3nrt´1. By H2

we denote the hypergraph arising from H1 by the deletion of all vertices in crvpS
1q and

all edges in S1. If for some integer i ě 2 we have just chosen a star Si´1 Ď H i´1 and
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constructed a hypergraph H i Ď H i´1 with ni vertices and mi edges, we check whether the
conditions

(a ) ni ě n̂pn,mq,
(b ) and mi ą

`

tni{tu

rt

˘

are satisfied. If at least one of them fails we set ` “ i and terminate the procedure, the last
constructed objects being S`´1 and H`. On the other hand, if both conditions hold, the
assumptions of Fact 3.4 (a ) are satisfied by H i. Thus we find a maximal star Si Ď H i with
| crvpS

iq| ě 2ni{p5tq and | crepS
iq| ě min̂pni,miq{ni ´ 3r2t3nrt´1

i . Moreover, we let H i`1

denote the hypergraph with vertex set V pH iqr crvpS
iq and edge set H i r Si.

Notice that for each i P r`´ 1s property (a ) of the above process entails

| crvpS
i
q| ě

2ni

5t ě
2n̂pn,mq

5t ě
4n

25t2 ą
n

7t2 ,

meaning that condition (i ) of the theorem holds. Besides, since crvpS
1q, . . . , crvpS

`´1q are
mutually disjoint, it also follows that ` ď 7t2. Denote the centre of Si by si for i P r`´ 1s.

Now we investigate in detail the structure of the last hypergraph H`. The following
result is crucial for our argument. It shows, in particular, that our statement about c1

holds.

Claim 3.6. There are constants c1 “ c1pr, tq and c4 “ c4pr, tq such that after removing at
most c1 edges from H` this hypergraph becomes the union of an

`

rtpt ´ 1q
˘

-star with at
least

`

n`´c4
rt

˘

edges and, perhaps, some number of isolated vertices.

Proof. Suppose that the assertion does not hold. Our aim is to get a contradiction with
the assumption that H P EpJ pr, tq;n,mq by constructing a graph H 1 P J pr, tq having the
same number of vertices and edges as H but a smaller maximum degree. Choose some
absolute constants c, c1, c2, c1, and c4 depending only on r and t, sufficiently large so that
all arguments below will work, and obeying the hierarchy

c1 " c4 " c2 " c1 " c .

First case: n` ă n̂pn,mq

Notice that we may assume n` ě c4, since otherwise an appropriate choice of c1 would
show that the claim holds with an empty star. Moreover, if m` ą

`

n`´c2

rt

˘

the desired conclu-
sion can be drawn from Proposition 2.3 (and Theorem 2.2). So we may supposem` ď

`

n`´c2

rt

˘

from now on.
The hypergraph H 1 will have three kinds of edges. First, there will be stars Ŝ1, . . . , Ŝ`´1,

where each Ŝi is obtained from crepS
iq by the omission of a single edge.

Second, there will be edges serving as “substitutes” for the edges in F i “ Si r crepS
iq

for i P r`´ 1s. The reason for this substitution is that it “cleans up some space” so that
in the end H 1 P J pr, tq will be true. Let us recall that |F i| ď Opnrt´1q follows from the
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construction of cores. Hence, there are disjoint subsets U1, . . . , U `´1 of the vertex set of H`

with |U i| “
P

|F i|{
`

| crvpSiq|

rt´1

˘T

ď c for i P r`´ 1s. Now instead of F i we put the same number
of edges of the type tvu Y si Y f into H 1, where v P U i, and f is a subset of the body
crvpS

iq with rt´ 1 elements.
Third, we include a star with m` ` p`´ 1q edges into H 1 that uses only vertices of H`

that are not occupied by the sets si and U i for i P r`´ 1s. There is enough space for such
a star, as at most `prt2 ` cq ď c1 vertices are occupied, m` ď

`

n`´c2

rt

˘

, and n` is sufficiently
large.

It remains to check that we have indeed ∆pH 1q ă ∆pHq. The only vertices of H 1 that
might be problematic are in the centre of the new star that has just been created.

However, working carefully with the estimates provided by Theorem 3.1 and exploiting
that we are in the first case, one checks easily that

∆pHq ě |S1
| ě

mn̂pn,mq

n
´ 3r2t3nrt´1

ě

ˆ

n̂pn,mq ´ c1

rt

˙

ą

ˆ

n` ´ c
2

rt

˙

` p`´ 1q ě m` ` p`´ 1q .

Thus H 1 contradicts indeed our assumption that H P EpJ pr, tq;n,mq.

Second case: n` ě n̂pn,mq

This means that the iterative procedure that led us to the stars S1, . . . , S`´1 stopped
owing to the failure of condition (b ), i.e., that

m` ď

ˆ

tn`{tu

rt

˙

. (3.4)

One can deal with this case in a very similar way as with the previous one but instead
of replacing the edges of H` by one large star we replace them by t smaller and mutually
disjoint stars with roughly n`{t vertices and m`{t edges.

The inequality m`

t
ď
`

n`{t´c1

rt

˘

, which is a direct consequence of (3.4), shows that there is
indeed enough space for such stars.

Finally, it remains to check that the hypergraph H 1 generated as above really has a
smaller maximum degree than H.

If n` ď
tn

t`1 this follows from

R

m` ` p`´ 1q
t

V

ď
1
t

ˆ

n{pt` 1q
rt

˙

`Op1q ď 1
t

ˆ

t

t` 1

˙rt ˆ
n{t

rt

˙

`Opnrt´1
q

ď
4m
9t `Opn

rt´1
q ă

mn̂pn,mq

n
´ 3r2t3nrt´1

ď |S1
| .
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The case tn
t`1 ă n`, however, is impossible, because due to n` ď n´ crvpS

1q ă
`

1´ 2
5t

˘

n it
would entail

m “

`´1
ÿ

i“1

`

| crepS
i
q| ` |F i

|
˘

`m` ď

`´1
ÿ

i“1

ˆ

| crvpS
iq|

rt

˙

`

ˆ

tn`{tu

rt

˙

`Opnrt´1
q

ď

ˆ

n´ n`

rt

˙

`

ˆ

n`{t

rt

˙

`Opnrt´1
q ă

ˆ

tn{tu

rt

˙

,

where for the last estimate we used that p1 ´ xqrt ` px{tqrt ă p1{tqrt holds for all real
x P

“

t
t`1 , 1´

2
5t

‰

. But the above estimate contradicts our initial hypothesis about m. �

Notice that taken together Fact 3.4 (b ) and Claim 3.6 show that part (ii ) of the theorem
holds for a sufficiently large choice of c2 and an approriate star S` Ď H`. Let s` be the
centre of S`.

In order to verify part (iii ) let us observe first that each star Si consists of at most
ˆ

| crvpSiq|

rt

˙

`Opnrt´1
q

edges. It may be helpful to recall each of the sets crvpS
1q, . . . , crvpS

`´1q has size Ωpnq. We
do not know the same about the last star, but at least we may suppose that crvpS

`q is
sufficiently large for otherwise we may ignore this star and proceed. Now let us assume
that there are two stars, Si and Sj, 1 ď i ă j ď `, which do not have disjoint centres.
Then we construct a new hypergraph H 1 P J pr, tq out of H P EpJ pr, tq;n,mq in the
following way. We delete all the edges of the stars Si and Sj, say of m1

i and m1
j edges

respectively, and on the vertex set crvpS
iq Y crvpS

jq we create an
`

rtpt ´ 1q
˘

-star Sij

which has m1
i `m

1
j ´ 1 ă ∆pHq edges and which uses as few vertices as possible. Due to

| crvpS
iq| ě Ωpnq and | crvpS

jq| ě Op1q we have
ˆ

| crvpS
iq|

rt

˙

`

ˆ

| crvpS
jq|

rt

˙

`Opnrt´1
q ă

ˆ

| crvpS
iq| ` | crvpS

jq| ´ 8rt4
rt

˙

,

and hence Sij uses fewer than | crvpS
iq|`| crvpS

jq|´7rt4 vertices. Now we remove one edge
from each of the existing stars St, where t “ 1, 2, . . . , `, and t ‰ i, j, and add `´ 1 ď 7t2

disjoint edges to the hypergraph. Such a hypergraph H 1 P J pr, tq has a smaller maximum
degree than H, which contradicts the fact that H P EpJ pr, tq;n,mq. Thus, the centres of
the stars Si, i “ 1, 2, . . . , `, are pairwise disjoint, as claimed in clause (iii ) of the theorem.
For later use we record that using Fact 3.4 (c ) one can show that si X crvpS

jq “ ∅ holds
whenever i, j P r`s.

Finally, we need to argue that we can delete from H P EpJ pr, tq;n,mq at most c3n
pr´1qt

additional edges to make S1, . . . , S` vertex disjoint. We contend that it suffices for this
purpose to delete all edges intersecting the setW “

Ť`
i“1 crvpS

iq in at most pr´1qt vertices.
Notice that due to (ii ) the resulting hypergraph rH differs in at most crt2

2 npr´1qt edges
from H. Owing to of Fact 3.4 (c ) and (iii ) there is for every edge e P rH a unique i P r`s
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with e P Si; for this i we have |eX crvpS
iq| ě pr ´ 1qt` 1 and, hence, e has at most t´ 1

vertices outside si Y crvpS
iq. These vertices cannot belong to the centre sj of another star,

for then e would have a forbidden intersection with every edge in crepS
jq. Now assume that

one of the vertices in er
`

si Y crvpS
iq
˘

, say v, would belong in rH to another star as well.
This means that there are an index j ‰ i and an edge f P Sj X rH with v P eX f . Due to
f P rH at most t´1 vertices of f are outside sjYcrvpS

jq and thus we have 1 ď |eXf | ď t´1,
which is absurd. Thus rH is indeed a union of ` vertex disjoint stars. �

Let us comment briefly on the structure of H P EpJ pr, tq;n,mq described in Theorem 3.5.
Once we know Theorem 3.5 the estimate for the number of stars ` can be easily improved
to the optimal ` ď rtrt{prt´1qs (see [9], where a similar argument is used for r “ 1, t “ 2).
However, we cannot significantly decrease the number of edges needed to make the stars
vertex disjoint. To see this, let us consider the rt2-graph H̃ P EpJ pr, tq;n,mq with vertex
set V “ U1 Ÿ U2 Ÿ C1 Ÿ C2 Ÿ T , where |U1| “ |U2| “ u, |C1| “ |C2| “ rtpt ´ 1q, |T | “ t,
whose set of edges consists of:

‚
`

u
rt

˘

subsets which are unions of C1 and some rt-element subset of U1,
‚
`

u
rt

˘

subsets which are unions of C2 and some rt-element subset of U2,
‚
`

u
pr´1qt

˘

subsets which are unions T , C1 and some pr ´ 1qt-element subset of U1,
‚
`

u
pr´1qt

˘

subsets which are unions T , C2 and some pr ´ 1qt-element subset of U2,
‚ and a thick clique on T Y C1 Y C2 whose teams are T and partitions of C1, C2.

It is easy to see that H̃ P EpJ pr, tq;n,mq with n “ 2u ` 2rtpt ´ 1q ` t and the
appropriate m. On the other hand H̃ consists of two stars with centres C1 and C2 and to
make them vertex disjoint one must delete at least Ωpnpr´1qtq edges.

Finally, let us notice that from Theorem 3.5 it follows that almost all the edges of dense
extremal graphs from EpJ pr, tq;n,mq are contained in at most ` stars among which `´ 1
are roughly equal and only one can be a bit smaller than the others. Having this is mind
one can easily compute the scaled extremal function

frtpxq “ lim
nÑ8

fpJ pr, tq;n, x
`

n´rtpt´1q
rt

˘

q
`

n´rtpt´1q
rt

˘ .

From Theorems 3.1 and 3.5 we know that the function is well defined for x P r0, 1sr tt´tru.
Furthermore, besides the point x “ t´tr where it jumps from 0 to some value which is
at least t´t2r2{prt´1q, it is continuous everywhere. It is also smooth everywhere except the
points x “ j1´tr for j “ 2, 3, . . . , rttr{prt´1qs´ 1 (see [9] where details are worked out for the
case r “ 1, t “ 2).
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§4. Tools

The purpose of this section is to gather three statements that will turn out to be useful
in the proof of the Structure Theorem. While the first two of them are fairly well known,
the third one (see Lemma 4.4 below) could very well be new.

4.1. Divisible set systems. Given a natural number t ě 2 we shall say that a set
system pV, Eq is t-divisible if for any two distinct edges e, e1 P E the size |e X e1| of their
intersection is a multiple of t. The problem to study upper bounds on the size of such set
systems with additional assumptions on the behaviour of the sizes of the edges modulo t
was first studied, in the particular case t “ 2, by Berlekamp [1], who realised that ideas
from linear algebra can be applied in such contexts. At a later occasion we will need a
variant of one of his result that was first observed, in more general form, by Babai and
Frankl (see [2, Theorem 1]).

Lemma 4.1. Let pV, Eq be a t-divisible set system for some natural number t ě 2. If
|e| ” 1 pmod tq holds for all e P E, then |E | ď |V |.

Proof. Let p denote a prime factor of t. We identify the members of E with vectors from
the |V |-dimensional vector space FV

p via characteristic functions and contend that the
stronger conclusion that E is linearly independent holds. To see this, one looks at a
hypothetical linear dependency α1e1 ` ¨ ¨ ¨ ` αnen “ 0 with distinct ei P E and certain
numbers αi P Fp r t0u, where n ě 1. Taking the standard scalar product with e1 we obtain

0 “ xe1, 0y “ xe1, α1e1 ` ¨ ¨ ¨ ` αneny “

n
ÿ

i“1
αixe1, eiy “ α1,

which is absurd. �

4.2. Delta systems. A set system F is called a sunflower (or a ∆-system) if there exists
a (possibly empty) set S of vertices such that the intersection of any two distinct edges
of F is equal to S. This constant intersection S is called the kernel of the sunflower.

In 1960 Erdős and Rado [5] proved their “sunflower lemma” saying that any sufficiently
large collection of finite sets of bounded size contains big sunflowers.

Theorem 4.2. For all positive integers a and b, any collection of more than b!ab`1 sets of
cardinality at most b contains a ∆-system with more than a elements.

It should perhaps be pointed out that b!ab`1 is not the least number fpa, bq for which
this statement is true. In fact, Erdős and Rado themselves stated a marginally better but
less clean upper bound on this number in [5, Theorem III], but despite the considerable
attention that the problem to improve our understanding of the growth behaviour of this
function has received (see e.g., [8]) the progress on this problem has been rather slow. For
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the purposes of the present article, however, even knowing the exact value of fpa, bq would
be quite immaterial.

4.3. Divisible pairs of set systems. The next result makes use of the following concept.

Definition 4.3. Let F and G denote two set systems with the same vertex set V and let q
be a positive integer. We say that the pair pF ,Gq is q-divisible if for all f P F and g P G
the size |f X g| of their intersection is divisible by q.

The result that follows will often help us to analyse the structure of divisible pairs.

Lemma 4.4 (Decomposition lemma). Suppose that k, q are positive integers and that F ,G
are two set systems with the same vertex set V such that

‚ all members of F Y G have size at most k,
‚ and the pair pF ,F Y Gq is q-divisible.

Then there is a set system H on V with the following properties:
(i ) ∆pHq ď k2k;
(ii ) H is an antichain (that is, x Ę y holds for all distinct x, y P H);
(iii ) Every edge of F is a disjoint union of edges from H;
(iv ) The pair pH,H Y Gq is q-divisible.

Proof. Without loss of generality we may assume that given k, q, and G, the set system F
is maximal with respect to inclusion, i.e., that for every set system F˚ Ś F with |f | ď k

for all f P F˚ the pair pF˚,F˚ Y Gq fails to be q-divisible.
Now we define H to be the collection of those members of F r t∅u that are minimal

with respect to inclusion, i.e., we set

H “ th P F r t∅u : if f P F and f ‰ ∅, h, then f Ę hu .

This choice of H makes part (ii ) obvious and (iv ) follows directly from H Ď F .
Assuming that (iii ) would be false let f P F be chosen with |f | minimum such that f is

not expressible as a disjoint union of appropriate edges from H. Since the empty set is equal
to the empty union, we have f ‰ ∅. Moreover, f cannot belong to H and, consequently,
there exists some h P H with h Ď f and 0 ă |h| ă |f |. Notice that for every g P F Y G the
number |pf r hq X g| “ |f X g| ´ |hX g| is divisible by q. Owing to the maximality of F it
follows that pf r hq P F . But in view of our minimal choice of f this means that f r h is
a disjoint union of edges from H and, hence, so is f . Hence, H must satisfy (iii ).

Now it remains to show that H has bounded maximum degree. Assume for the sake of
contradiction, that there exists a vertex v P V contained in more than k2k edges of H and
look at the set system

Fv “ th P H : v P hu .
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Then |Fv| ą k2k ě k!kk`1 and Theorem 4.2 reveals that Fv contains a ∆-system F˚ with
more than k elements. Denote the kernel of F˚ by e and observe that, since |F˚| ą k, for
all edges g P F Y G, the size of the intersection |eX g| is divisible by q. Together with the
maximality of F this implies e P F . Due to |F˚| ě 2 there must exist some h P F˚ Ď H
properly containing e and by our definition of H this is only possible if e “ ∅. But, on the
other hand, we certainly have v P e. This contradiction concludes the proof (i ) and, hence,
the proof of the decomposition lemma. �

§5. Proof of the Structure Theorem

This entire section is dedicated to the proof of Theorem 2.2. Let integers r ě 1 and t ě 2
as well as an rt2-uniform hypergraph H “ pV,Eq with |V | “ n be given such that the size
of the intersection of any two edges of H belongs to the set

I “ ts : t | s or s ě rtpt´ 1qu ,

which means H P J pr, tq. We will show that H P F
`

t, rt, prt2qr
3t6˘.

Let us start by colouring all those subsets f Ď V with |f | ď rtpt´ 1q ` 1 red that are
kernels of sunflowers consisting of at least rt2 edges of H. Recall that the latter condition
means that there are to exist at least rt2 disjoint sets f1, . . . , frt2 Ď V of size rt2 ´ |f | such
that f Y fi P H holds for every i P rrt2s. We denote the set system on V whose edges are
the red sets by Hred. By H˚

red we mean the
`

rtpt´ 1q ` 1
˘

-uniform hypergraph on V whose
edges are the red

`

rtpt´ 1q ` 1
˘

-sets and finally we put pHred “ Hred rH˚
red.

Observe that
for any f, f 1 P H YHred we have |f X f 1| P I . (5.1)

This is because we can first extend f to an edge e of H with eX f 1 “ f X f 1 and proceeding
similarly with f 1 we get an edge e1 P H with eX e1 “ f X f 1, so that |f X f 1| “ |eX e1| P I
follows from the assumption that H be I-intersecting.

As a consequence of this observation we learn that for any distinct f, f 1 P H˚
red the

number |f X f 1| is divisible by t and in view of Lemma 4.1 it follows that

|H˚
red| ď n . (5.2)

Moreover, (5.1) reveals that the pair
`

pHred, pHred YH
˚
red YH

˘

is t-divisible, which allows
us to apply the decomposition lemma (Lemma 4.4) to rt2, t, pHred, and H˚

red YH here in
place of k, q, F , and G there. We thus infer the existence of a set system G on V with the
following properties:

(a ) ∆pGq ď prt2q2rt2 ;
(b ) G is an antichain;
(c ) Every edge of pHred is a disjoint union of edges from G;
(d ) The pair pG,GYH˚

red YHq is t-divisible.
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We imagine that the edges of G have been coloured green. The green sets of cardinality t
will be referred to as teams. Notice that due to condition (d ) the teams are inseparable
in H and, moreover, by (b ) and (d ) each team is disjoint to any other green set.

Now we are ready to decompose V and H in the envisioned way. We start by defining VT

to be the union of all teams and setting HT “ HrVT s, which guarantees part (i ) of
Definition 2.1.

Preparing the definition of HS we colour a set consisting of rtpt´ 1q vertices purple if it
is the kernel of a Delta system in H˚

red of size at least rt2. Imitating the proof of (5.1) one
checks easily that

if Y, Y 1 are purple and f P H˚
red YH, then |Y X Y 1|, |Y X f | P I . (5.3)

Now we define HS to be the collection of all edges h P H which contain a purple
set Yh Ď h such that Yh Y tvu P H

˚
red holds for each v P hr Yh. Moreover, we set

VS “
ď

hPHS

phr Yhq ,

which is clearly a subset of V r VT . Provided we can show

Yh X VS “ ∅ for each h P HS (5.4)

it will be clear that HS is a union of stars with centres Yh Ď pV r VSq and their bodies in
VS, as required by Definition 2.1 (ii ).

For the proof of (5.4) we assume indirectly that for some h P HS there is a vertex
v P Yh X VS. This means that there exists an edge h1 P HS with v P h1 r Yh1 . But now
|Yh X Yh1 | and |Yh X pYh1 Y tvuq| are two consecutive integers belonging to I by (5.3) and
both are at most |Yh| “ rtpt´ 1q, contrary to t ě 2. Thereby (5.4) is proved.

Next we observe that if for some f P H and h P HS there is a vertex v P f X h X VS,
then the consecutive integers |f X Yh| and |f X pYh Y tvuq|, again by (5.3), are both in I.

Consequently,

if f P H and h P HS satisfy f X hX VS ‰ ∅, then Yh Ď f . (5.5)

Hence, all stars in HS must be semi-disjoint and we may associate with each vertex v P VS

the set Yv P H
˚
red containing v and the centre of the star to which v belongs. With this

notation, (5.5) rewrites as

if f P H and v P f X VS, then Yv Ď f . (5.6)

Condition (iii ) of Definition 2.1 is an immediate consequence of this statement and it
also follows that HS Ě th P H : |h X VS| “ rtu. The reverse inclusion is implied by (5.4)
and thereby condition (ii ) is proved as well.

It remains to establish (iv ), i.e., that for

VR “ V r pVT Y VSq and HR “ H r pHT YHSq
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we have
|HR| ď |VT ||VS|n

rt´3
` prt2qr

3t6
|VR|n

rt´2 . (5.7)

The first step in the proof of this result is to split HR into the two subhypergraphs HST

and pHR with the intention of proving |HST | ď |VT ||VS|n
rt´3 and | pHR| ď prt

2qr
3t6
|VR|n

rt´2.
The family HST is defined as

HST “
 

h P HR : there are v P hX VS and a team g Ď h with Yv X g “ ∅
(

.

Observe that if h P HST and v, g are as in the above definition, then Yv Ď h follows
from (5.6) and we have |h r pYv Y gq| “ rt2 ´ 1 ´ t ´ rtpt ´ 1q ď rt ´ 3. As there are
at most |VS| possibilities for v, |VT | possibilities for g, and nrt´3 possibilities for the set
hr pYv Y gq, it follows that we have indeed

|HST | ď |VT ||VS|n
rt´3 .

Thus to conclude the argumnt we need to show that the hypergraph pHR “ HR rHST

satisfies
| pHR| ď prt

2
q

r3t6
|VR|n

rt´2 . (5.8)

In the special case VR “ ∅ this can only be true if pHR “ ∅ holds as well. For that
reason it will certainly help us to establish

HR r VR Ď HST . (5.9)

To verify this, consider any edge f P HR not meeting VR. Owing to f R HT there must
exist a vertex v P f X VS and (5.6) tells us that Yv Ď f . Now f r Yv cannot be a subset
of VS because (5.6) would then yield f P HS. Together with f Ď pVS Y VT q this shows
that there must be a vertex x P VT X pf r Yvq. This vertex must in turn belong to some
team g P G, which is in fact a subset of f r Yv. Thereby (5.9) is proved.

Due to the discussion preceeding (5.9) we may henceforth suppose that VR ‰ ∅. Now
the idea for proving (5.8) is that we can mark in every edge h P pHR at least one vertex
from hXVR in such a way that every vertex in VR gets marked at most prt2qr3t6

nrt´2 many
times. The marking procedure we use depends on the red and green sets contained in h
and thus it involves several case distinctions.

In view of property (c ) of the green sets, we may write

pHR “ pH1
R Y

pH2
R Y

pH3
R (5.10)

with

pH1
R “

 

h P pHR : h cannot be written as a union of red and green sets
(

,

pH2
R “

 

h P pHR : h is the union of its green subsets
(

,

and pH3
R “

 

h P pHR : h R pH1
R and there is some f P H˚

red with f Ď h
(

.
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Regarding the first of these three hypergraphs, we note that if h P pH1
R and v P h is not

contained in any red or green subset of h, then v P VT is impossible due to the inseparability
of the teams, v P VS is impossible by (5.6), and hence we must have v P VR. In other words,
if we set

Hv “
 

h P pHR : v P h
(

and
pH1
pvq “

 

h P Hv : there is no f P Hred with v P f Ď h
(

for every v P VR, then
pH1

R Ď
ď

vPVR

pH1
pvq . (5.11)

According to our plan the hypergraphs pH1pvq should be of size at most Opnrt´2q and
this is indeed what we prove next.

Fact 5.1. For every v P VR we have
ˇ

ˇ pH1
pvq

ˇ

ˇ ă prt2q2rt2
nrt´2 .

Proof. Assume for the sake of contradiction that v P VR violates this claim. Then x “ tvu
is an example of a subset of V with v P x and

ˇ

ˇ

 

h P pH1
pvq : x Ď h

(
ˇ

ˇ ě prt2q2prt2´|x|qnrt´2 . (5.12)

Now let x Ď V be a maximal set of vertices with v P x that satisfies (5.12). As x Ď h for
some h P H, we must have |x| ď rt2. Thus

nrt´2
ď prt2q2prt2´|x|qnrt´2

ď
ˇ

ˇ

 

h P pH1
pvq : x Ď h

(
ˇ

ˇ ď

ˆ

n´ |x|

rt2 ´ |x|

˙

ă nrt2´|x|

and it follows that |x| ď rtpt´1q`1. But owing to the definition of pH1pvq it is not possible
for x to be red. This means, in particular, that there is a maximal ∆-system G Ď pH1pvq

with kernel x and |G| ă rt2. The size of the set B “
Ť

hPGph r xq can be bounded
by |B| ď

ř

hPG |h| ă prt
2q2 and the maximality of G implies that every edge h P pH1pvq

with x Ď h intersects B. So by averaging and (5.12) there exists a vertex w P B with
ˇ

ˇ

 

h P pH1
pvq : pxY twuq Ď h

(
ˇ

ˇ ě
prt2q2prt2´|x|q

prt2q2
nrt´2

“ prt2q2prt2´|xYtwu|qnrt´2 .

This inequality tells us that xY twu contradicts the maximality of x. Thereby Fact 5.1
is proved. �

This completes our analysis of pH1
R and we proceed with pH2

R. To this end, we shall use
the trivial decomposition

pH2
R “

ď

vPVR

pH2
pvq , (5.13)
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where
pH2
pvq “

 

h P Hv : h is the union of its green subsets
(

.

Fact 5.2. If v P VR, then
ˇ

ˇ pH2
pvq

ˇ

ˇ ă prt2qr
3t6´7rt2

nrt´2 .

Proof. Consider the auxiliary set system

G “
 

x Ď V : |x| ď rt2 and G|x is connected
(

.

Utilising property (a ) of the green sets and the fact that for every x P G there is a
spanning sub-setsystem of G|x consisting of at most |x| sets we obtain

∆pGq ă p∆pGqrt2qrt2
ď prt2q2prt2q2`rt2

.

As every edge of G has at least t vertices, the same is true about G. Moreover, the only
possibility for x P G to have size exactly t is that it is a team.

Now any given h P pH2pvq can be expressed as a disjoint union of edges of G by looking
at the connected components of G|h. The number of edges from G appearing in such a
decomposition can be at most rt´ 1 because of the remarks from the previous paragraph
and as v cannot belong to a team.

Representing each edge h P pH2pvq by a selection of one vertex from each of its at
most rt´ 2 green components not containing v, we learn that indeed

ˇ

ˇ pH2
pvq

ˇ

ˇ ď ∆pGqrt´1nrt´2
ă prt2qr

3t6´7rt2
nrt´2 . �

It remains to deal with the hypergraph pH3
R, which may be further decomposed as

pH3
R “

pH3,x
R Y pH3,y

R , (5.14)

where
pH3,x

R “
 

h P pH3
R : h is the union of its subsets belonging to H˚

red
(

and pH3,y
R “ pH3

R r pH3,x
R . We will estimate the sizes of these two hypergraphs in the two

facts that follow. In both proofs we will frequently use the inequality |H˚
red| ď n obtained

in (5.2) above without referencing it.

Fact 5.3. We have
ˇ

ˇ pH3,x
R

ˇ

ˇ ď prt2qrt2
|VR|n

rt´2.

Proof. In the light of (5.1) there are only two possibilities for an edge h P pH3,x
R . Either

(i ) there are f, f 1 Ď h in H˚
red such that |f X f 1| ď rtpt´ 1q ´ t,

(ii ) or there is some Yh Ď h of size rtpt´ 1q such that Yh Y tvu P H
˚
red holds for every

vertex v P hr Yh.



STARS AND CLIQUES 21

If h is of type (i ) we have |f Y f 1| “ |f | ` |f 1| ´ |f X f 1| ě rt2 ´ rt ` t ` 2 and hence
|h´ pf Y f 1q| ď rt´ t´ 2 ď rt´ 4. As there are at most n2 possibilities to choose a pair
f, f 1 of two edges from H˚

red and at most nrt´4 possibilities to choose at most rt´ 4 further
vertices in V , there can be at most nrt´2 edges in pH3,x

R to which the description (i ) applies.
Next we note that if h and Yh are as in (ii ), then Yh cannot be purple for otherwise h

would satisfy the requirements for belonging to HS. We will prove below that there are at
most 9|VR| such edges in the special case r “ 1 and t “ 2, and at most

`

rt2

rt

˘

¨ rt2n such
edges if rt ě 3. Due to VR ‰ ∅ this suffices to establish Fact 5.3 in both cases.

Let us consider the case that r “ 1 and t “ 2 first. If h denotes an edge of type (ii ), then
hr Yh Ď VR by (5.6), and we may mark any vertex v P hr Yh. Since the triples Yh Y tvu

and hrtvu are both in H˚
red, (5.1) implies that v is contained in at most 3 red sets f P H˚

red.
For none of them f r tvu is purple (because v R VS), which in turn means that each of
them can be involved at most 3 times in the marking of v. Altogether each v P VR gets
marked at most 9 times due to edges of type (ii ), wherefore there are indeed at most 9|VR|

such edges.
Now suppose that rt ě 3 and let h again denote an edge of type (ii ). As Yh arises from

a member of H˚
red by the deletion of a vertex, there are at most rt2n candidates for this set

and each of them can be used in at most
`

rt2

rt

˘

edges of type (ii ), for otherwise it would be
purple. This proves the upper bound of

`

rt2

rt

˘

¨ rt2n on the number of such edgses h and
the proof of Fact 5.3 is complete. �

Fact 5.4. We have
ˇ

ˇ pH3,y
R

ˇ

ˇ ď
`

prt2q2rt2
` 1

˘

|VR|n
rt´2.

Proof. Consider any edge h P pH3,y
R . Since h P pH3

R, there is a set f P H˚
red with f Ď h. If

possible let f be chosen in such a way that it contains a vertex from VS.
By h R pH3,x

R there exists a vertex v P hr f that is not contained in any member of H˚
red

which at the same time happens to be a subset of h. Therefore h R pH1
R tells us that there

exists a set pg P pHred YG with v P pg Ď h. Due to property (c ) of G this leads us to a green
set g with v P g Ď h. From (d ) and v P gr f it follows that |gr f | ě t and hence we have

|hr pf Y gq| ď rt´ t´ 1 ď rt´ 3 . (5.15)

By (5.6) and the choice of v we have v R VS and, hence, v is either in VR or in VT . Let
us analyse these two possibilities separately.

If v P VR, then we mark it. Property (a ) of G tells us that v is contained in at most
prt2q2rt2 green sets and, using (5.15), one can conclude that in this way each vertex of VR

is marked at most prt2q2rt2
nrt´2 many times.

On the other hand, if v P VT , then g is a team. Appealing to h R HST and the choice
of f we learn that hX VS “ ∅. But |hr f | ” ´1 pmod tq and therefore it is not possible
that hrf is entirely covered by teams. Consequently there is a vertex w P

`

hrpfYgq
˘

XVR
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that can be marked. Now there are at most n possibilities for f , for g, and for each of the
remaining vertices in hr pg Y f Y twuq. Using (5.15) again, we get that in this way each
vertex is marked at most nrt´2 further times.

Summarising the above estimations one obtains
ˇ

ˇ pH3,y
R

ˇ

ˇ ď |VR|prt
2
q

2rt2
nrt´2

` |VR|n
rt´2 . �

Collecting all the above results we get
ˇ

ˇ pH1
R

ˇ

ˇ ď prt2q2rt2
|VR|n

rt´2

from (5.11) and Fact 5.1,
ˇ

ˇ pH2
R

ˇ

ˇ ď prt2qr
3t6´7rt2

|VR|n
rt´2

from (5.13) and Fact 5.2,
ˇ

ˇ pH3
R

ˇ

ˇ ď 2prt2q2rt2
|VR|n

rt´2

from (5.14), Fact 5.3, Fact 5.4, and finally

| pHR| ď
`

3prt2q2rt2
` prt2qr

3t6´7rt2˘
|VR|n

rt´2
ď prt2qr

3t6
|VR|n

rt´2

from (5.10) and the three previous estimates. This concludes the proof of (5.8) and, hence,
the proof of the Structure Theorem 2.2.
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