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Abstract. Photon emission by an electron embedded in a strong external field of general form is studied theoretically.
The external field considered is a plane wave electromagnetic field of any number of components, period and polar-
isation. Exact, Volkov solutions of the Dirac equation with the 4-potential of the general external field are obtained.
The photon emission is considered in the usual perturbation theory using the Volkov solutions to represent the elec-
tron. An expression for the transition probability of this process is obtained after the usual spin and polarisation sums,
trace calculation and phase space integration. The final transition probability in the general case contains a single sum
over contributions from external field photons, an integration over one of the phase space components and the Fourier
transforms of the Volkov phases. The validity of the general expression is established by considering specific external
fields. Known specific analytic forms of the transition probability are obtained after substitution of the 4-potential for a
circularly polarised and constant crossed external field. As an example usage of the general result for the transition prob-
ability, the case of two circularly polarised external fields separated by a phase difference is studied both analytically
and numerically.

PACS. 12.20.Ds QED Specific calculations

1 Introduction

The High Intensity Compton Scattering (HICS) is the radiation
of a single photon by an electron in an external electromag-
netic field. If the external field is sufficiently intense, multi-
photon interactions between the electron and the external field
become likely and many terms in the usual perturbation series
describing the overall interaction, contribute to the final transi-
tion probability. Consequently, an interaction picture in which
the interaction with the external field, considered to be classi-
cal, is calculated exactly and in which the interaction with the
quantised boson field is perturbative - the Furry picture - is usu-
ally employed [1].

The HICS process is currently the subject of much study
largely because new experimental facilities are being planned
which will be able to test specific non-linear features of the the-
ory [2,3]. A variety of experimental conditions can be created
each of which require a specific analytic form of the HICS tran-
sition probability in order to study. The aim of this paper is to
provide a shortcut to this theoretical work by generalising the
theoretical description of the transition probability of the HICS
process and to illustrate its specific usage in cases of practical
interest.

Much theoretical work on the HICS process, using the Furry
picture and Volkov solutions, was spurred by the construction
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of the first LASER in 1960 and the possibility of laboratory
tests of the theory. The transition amplitude of the HICS pro-
cess was found to be dependent on the state of polarisation of
the external field. For the case of a linearly polarised exter-
nal electromagnetic field, the HICS transition probability con-
tained an infinite summation of complicated functions which
were evaluated in limiting cases only [4]. In contrast, a circu-
larly polarised external field results in a transition probability
containing Bessel functions, the properties of which are well
known [5,6]. A circularly polarised external field introduces
an azimuthal symmetry into the HICS process which results
in an analytically less complicated HICS transition probability
[7]. The HICS process for the case of an elliptically polarised
external electromagnetic field and for the case of two orthogo-
nal, linearly polarised fields was considered by [8].

An important effect emerging from all this theoretical work
was a dependency of the energy of the radiated photon (a fre-
quency shift) on the intensity of the external field [6,9]. The
existence of this frequency shift mechanism allows the HICS
process to be used as a generator of high energy photons [10,
11,12]. The polarisation properties of high energy photons pro-
duced by the HICS process are of fundamental importance in
nuclear physics applications, for instance in the study of abnor-
mal parity components in the deuteron wavefunction [13,14].
The polarisation state of the emitted HICS photon, as a function
of initial polarisation states, for a circularly polarised external
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field, was studied by [13,15].

In experimental work on the HICS process, a 1.053 µm
laser focused to a 5 µm spot size to generate a peak laser inten-
sity of ∼ 1018 Wcm−2 interacted with electrons resulting in a
longitudinal shift in scattered electron momenta due to multi-
photon contributions from the laser field. Also observed was
the predicted electron mass shift due to the presence of the ex-
ternal field [16,17]. The HICS process and another strong field
process, the one photon pair production process, were studied
at SLAC in the 1990s by interacting a Nd:glass laser of peak
intensity 0.5×1018 W cm−2 with a 46 GeV electron beam [18]

The prospect in the near future of extreme light sources pro-
ducing laser pulses with intensities exceeding those of previ-
ous experiments has prompted new theoretical work in pulsed
background fields. The HICS process was studied in a circu-
larly polarised field with pulse envelope given by a general
function [19]. The trident process was studied using the Weiz-
sacker Williams approximation [20] and a complete calculation
using pulsed laser field was performed by [21]. One photon pair
annihilation in a pulsed laser field with specific attention to op-
erating parameters at the future XFEL was also studied recently
[22].

The HICS process is also fundamentally important in ac-
celerator physics where it is known as the Beamstrahlung and
where it constitutes the main source of background photons due
to beam-beam effects at the interaction point of a collider [23].
The external field in the Beamstrahlung is provided by an on-
coming relativistic charge bunch and is a constant crossed elec-
tromagnetic field described by a 4-potential of infinite period.
Interactions within a constant crossed field permit the radiation
of vanishingly soft photons and the differential transition rate
is divergent [24].

In order to study the general properties of the HICS pro-
cess it would be useful to have an analytic expression valid for
all external fields for which exact solutions of the Dirac equa-
tion are possible and of which those external fields described
hitherto in this section are specific examples. The advantage of
such a general analytic expression is that not only known ex-
pressions for particular external fields could be written down
immediately from a single source, but also the HICS transition
probability for new external fields not yet studied theoretically
would be readily available. The purpose of this paper, then, is
to derive an expression for the HICS transition rate in a general
external plane wave electromagnetic field and to illustrate its
usage with particular examples.

2 The Volkov Solution for a general plane
wave external field

In terms of notation, we employ a metric with signature
(1,−1,−1,−1) and write the time and 3-vector part of a
4-vector by xµ = (x0,x). Conventionally, we work in natural
units ~ = c = 1.

x

kp
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i

Fig. 1: The HICS process Feynman diagram.

A general plane wave electromagnetic field with wavevec-
tor k directed along the x3 axis of a Cartesian coordinate sys-
tem (figure 2) is described by a 4-potential Aeµ which can be
decomposed into two 4-vectors a1µ = (0,a1), a2µ = (0,a2)
whose 3 vector parts are parallel to the x1,x2 axes and whose
co-factors Ae,1i , Ae,2i are general functions of arbitrary period
described by a sum of N terms,

Aeµ(k · x) ≡
N∑
i=1

a1µA
e,1
i (k · x) + a2µA

e,2
i (k · x) (1)

The strength of the external field is an important factor de-
termining the extent of multi-photon interactions, and is char-
acterised by the dimensionless parameter ν which is a ratio (in
natural units) of the fermion charge e, mass m and field poten-
tial,

ν ≡ ea

m
, a ≡ |a1| = |a2| (2)

In the Furry picture the Dirac equation containing the 4-
potential Aeµ for a fermion of mass m and momentum p =
(εp,p),

(i/∂ +Aeµ −m)ΨVp = 0 (3)

can be solved exactly, resulting in wavefunctions ΨVp first
obtained by Volkov [25]. These Volkov solutions are a product
of the normal free fermion solution including the bispinor up
and normalisation factor, with an extra phase Sp and a term
containing /Ae/k,

ΨVp (k · x) =
1√

(2π)32εp
Ep(k · x)up (4)

where Ep(k · x) ≡
(

1− e /A
e/k

2(k · p)

)
� exp

(
−i
(
p+

e2a2ξ

2(k · p)
k

)
· x− iSp(k · x)

)
Sp(k · x) ≡

∫ (k·x)

0

[
e(Ae(φ) · p)

(k · p)
− e2Ae(φ)2

2(k · p)
− e2a2ξ

2(k · p)

]
dφ

In the Volkov solution above we have anticipated a
quasi-momentum term containing the parameter ξ which
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has a linear dependence on the scalar product (k · x). The
quasi-momentum is physically due to the average change in
motion of the electron embedded in an external, oscillatory
external electromagnetic field. The precise form of ξ depends
on the specific external field the HICS process takes place in.
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Fig. 2: The HICS coordinate system.

The Volkov wavefunctions are used within the normal
S-matrix theory to study interactions between the fermion
embedded in the external field and the quantised boson field.

In order to calculate a transition probability, the depen-
dence on the scalar product (k · x) must be simplified. The
natural way of doing this is to write down a matrix element
from a Feynman diagram (figure 1, with double straight lines
representing Volkov wavefunctions) and gathering the depen-
dence on space-time around the diagram vertices. The result
is a modified vertex γeµ which can be transformed from posi-
tion space to momentum space using a Fourier transform for a
function of arbitrary period 2πL,

γeµ(pf , pi, k · x) ≡ Ēpf (k · x)γµEpi(k · x)

γeµ(pf , pi, k · x) =

∞∑
r=−∞

∫ πL

−πL

dφv
2πL

(5)

� exp
(
i
r

L
[φv − (k · x)]

)
γeµ(pf , pi, φv)

3 The HICS transition probability for a
general external field

The HICS transition probability is calculated in the usual fash-
ion, writing down a matrix element, squaring it, performing a
trace and integrating over the phase space.

The matrix element for the HICS process can be written
down directly from the Feynman diagram in figure 1. The ma-
trix element is essentially the Fourier transform of the Volkov
vertex with a Dirac delta function expressing the conservation
of momenta, including a contribution r

Lk from the external
field and the quasi-momentum term. Denoting initial and final

fermion 4-momenta (εi,pi), (εf ,pf ) and the radiated photon
4-momentum (ωf ,kf ), the matrix element is

Mfi =
−ie√

16πεiεfωf

∞∑
r=−∞

∫ πL

−πL

dφv

2πL

� ūpf γ
eµ(pf , pi, φv)εµ(kf )upi exp

(
i
r

L
φv

)
� δ

(
pf + kf − pi −

(
r

L
− e2a2ξ(k · kf )

2(k · pi)(k · pf )

)
k

)
(6)

Squaring the matrix element results in a double summation
(over indicies r, r′). The subsequent product of delta functions
will yield zero for r 6= r′ and otherwise the product of space-
time volume V T in which the process takes place and a single
delta function in index r. The spin sums yield the usual pro-
jection operators Λp = /p + m and trace, and there is a double
integration over variables φv, φw

∑
if

|Mfi|2

V T
= − e2

32πεiεfωf

∞∑
r=−∞

∫ πL

−πL

dφv dφw

(2πL)2

� Tr
[
Λpf γ

eµ(pf , pi, φv)Λpiγ
e
µ(pi, pf , φw)

]
� exp

(
i
r

L
(φv − φw)

)
� δ

(
pf + kf − pi −

(
r

L
− e2a2ξ(k · kf )

2(k · pi)(k · pf )

)
k

)
(7)

The trace calculation is lengthy but straightforward. A sim-
plification was obtained by grouping terms in order to separate
the derivative with respect to the integration variables φv, φw.
The result of the trace is,

4m2

{
2− e2

2m2

(
(k · pi)
(k · pf )

+
(k · pf )
(k · pi)

)
[Ae(φv)−Ae(φw)]

2

}
� exp

(
i
[
Spf (φv)− Spi(φv)

]
− i
[
Spf (φw)− Spi(φw)

])
(8)

The integration over phase space is carried out as usual with
the aid of the delta function. It is convenient to transform to in-
tegrations over 4-vectors and perform the integration over the
final electron momentum leaving the integration over the pho-
ton 4-momentum,

∫
dkf dpf

4εf ωf
δ

(
pf + kf − pi −

(
r

L
− e2a2ξ(k · kf )

2(k · pi)(k · pf )

)
k

)
=

∫
d4kf δ(k

2
f )

� δ

(
2

(
r

L
− e2a2ξ(k · kf )

2(k · pi)(k · pf )

)
(k · pf )− 2(pi · kf )

)
(9)

In performing the integration over final photon momentum
it proved useful to transform to light-cone coordinates,

d4kf →
1

2
dk+f dk

−
f dk

1
f dk

2
f (10)

where k+f = k0f + k3f , k
−
f = k0f − k3f
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Choosing the reference frame in which pi = 0 for sim-
plicity, the integration over dk+f is performed using the sec-
ond delta function in equation (9). The integration over dk−f is
transformed to one over u = (k · kf )/(k · pf ) and is retained.
The interim result for the transition probability is

W = − e
2m

4π

∞∑
r=−∞

∫ πL

−πL

dφv dφw

(2πL)2

∫ ∞
0

du

(1 + u)2

∫ ∞
−∞

dk1f dk
2
f

� δ

(
2

(
r

L
− m2ν2u

2(k · pi)
ξ

)
(k · kf )(k · pf )

(k · pi)
− k− 2

f − k1 2
f − k2 2

f

)

�

{
2− e2

2m2

1 + (1 + u)2

1 + u
[Ae(φv)−Ae(φw)]

2

}

� exp

(
i

[(
r

L
− m2ν2u

2(k · pi)
ξ

)
(φv − φw)

− e

(k · pf )

∫ φv

φw

(kf ·Ae(φ))dφ− e2u

2(k · pi)

∫ φv

φw

Ae(φ)2 dφ

])
(11)

In simplifying the interim result above for the HICS transi-
tion probability (equation (11)) there are two ways of proceed-
ing. The first way, which proves useful for constant external
fields, is to transform the delta function to an exponential and
then to use the Fourier transform of a 2πL period function f(φ)
to remove the dependence on r,

∞∑
r=−∞

∫ πL

−πL

dφ

2πL
exp

(
i
r

L
[φ− λ]

)
f(φ) = f(λ) (12)

The integrations over dk1f dk
2
f appear as Gaussian integrals

and are readily carried out to obtain the HICS transition proba-
bility which we label W 1st

HICS. Defining auxillary functions,

F1(φv, φw) ≡ − e2

m2
[Ae(φv)−Ae(φw)]

2

F2(φv, φw) ≡ e

m

∣∣∣∣∣
∫ φv

φw

Ae(φ)dφ

∣∣∣∣∣ (13)

F3(φv, φw) ≡ − e2

m2

∫ φv

φw

Ae(φ)2 dφ

we have,

W 1st
HICS = − e

2m

4π

∫ πL

−πL

dφw

2πL

∫ ∞
0

du

(1 + u)2

∫ ∞
−∞

iπdλ

2λ

�

{
2 +

1 + (1 + u)2

2(1 + u)
F1(λ+φw, φw)

}
�exp

(
i
m2u

2(k · pi)

(
λ− F2(λ+ φw, φw)2

λ
+ F3(λ+φw, φw)

))
(14)

The second route from the HICS interim transition proba-
bility, which proves useful for oscillatory external fields, is to

carry out the dk1f dk
2
f integrations in polar coordinates, zdz dθ.

The delta function from equation (11) becomes,

δ

(
z2 − 2

(
r

L
− m2(1 + ν2ξ)u

2(k · pi)

)
(k · kf )(k · pf )

(k · pi)

)
(15)

and can be used to perform the integration over dz, thereby
setting a range for the summation over r and restricting the up-
per limit of the du integration. The integration over dθ results
in a Bessel function. It proves useful to make a change of inte-
gration variables from dφv dφw to dφ− dφ+. The end result is
labelled W 2nd

HICS and is

W 2nd
HICS = − e

2m

2π

∞∑
r=−∞

Θ(r)

∫ πL

−πL

dφ− dφ+

(2πL)2

∫ ur

0

du

(1 + u)2

�

{
2 +

1 + (1 + u)2

2(1 + u)
F1(φv, φw)

}
J0

(
2zF2(φv, φw)

)
� exp

(
i

(
r

L
− m2ν2u

2(k · pi)
ξ

)
2φ− + i

m2u

2(k · pi)
F3(φv, φw)

)
(16)

where,

z ≡
[

m2u

2(k · pi)

(
r

L
− m2(1 + ν2ξ)u

2(k · pi)

)]1/2
ur ≡ 2

(k.pi)

m2(1 + ν2ξ)

r

L

φ− =
1

2
(φv − φw), φ+ =

1

2
(φv + φw)

Θ(r) = 0 for r ≤ 0, Θ(r) = 1 for r > 0

We now have analytic representations for the HICS transi-
tion probability for a plane-wave electromagnetic field of gen-
eral form. It should be now possible to derive existing results
from the literature and to write down new ones for external field
forms not yet considered.

4 The HICS transition probability for
specific external fields

To illustrate the general expression for the HICS transition
probability obtained in the last section, two analytic results and
a numerical result are obtained for particular external fields of
practical interest. The specific analytic form for the HICS tran-
sition probability can be obtained from either equation (14) or
(16) after substitution of the particular 4-potential Ae of pe-
riod 2πωL into the auxiliary functions F1, F2, F3, choosing a
value for the quasi-momentum parameter ξ in order to simplify
the analytic expression, and by performing further integrations
where possible.

4.1 A circularly polarised external field

Experiments investigating strong field effects are usually per-
formed with intense lasers which commonly provide a circu-
larly polarised electromagnetic field. Such a field is described
by the 4-potential and resultant auxiliary functions,
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Aeµ(φ) = a1µ cos(φ) + a2µ sin(φ), L = 1, ξ = 1

F1(φv, φw) = 2ν2(1− cos 2φ−)

F2(φv, φw) = 2ν |sinφ−| (17)

F3(φv, φw) = 2ν2φ−

The quasi-momentum parameter ξ = 1, results in a simpli-
fied exponential dependence in the second general form of the
HICS transition rate, equation (16). There is no dependence in
the transition probability integrand on the variable φ+ render-
ing its integration trivial. The dφ− integration can be carried
out with the aid of the Bessel function identity ([26] §2.6),

Jr(z)
2 =

1

2π

∫ π

−π
dφ− J0(2z sinφ−) exp (i 2rφ−) (18)

The final result for the HICS transition probability for a
circularly polarised external field is the same as that found in
the literature ([27], equation 101.15),

W circ
HICS = − e

2m

2π

∞∑
r=1

∫ ur

0

du

(1 + u)2

�

[
2 J2

r(z)−
ν2

2

1 + (1 + u)2

1 + u

(
J2
r+1(z) + J2

r−1(z)− 2 J2
r(z)

)]
z ≡ 2ν

[
m2u

2(k · pi)

(
r − m2(1 + ν2)u

2(k · pi)

)]1/2
, ur ≡

2(k.pi) r

m2(1 + ν2)

(19)

The above expression for the HICS transition probability
has been extensively numerically studied in the literature. How-
ever it is worth noting that a numerical study could proceed
directly from the general expression for the HICS transition
probability in equation (16).

4.2 A constant crossed external field

The Beamstrahlung results from charges within a particle beam
at the interaction point of a collider decelerating and radiating
within the strong field of an oncoming, ultrarelativistic charge
bunch. Such an external field can be described by an infinite pe-
riod, constant crossed electromagnetic field. The first form of
the general HICS transition probability (equation (14)) will al-
low us to directly write the known result for the HICS transition
probability in this field. The 4-potential and resultant auxiliary
functions are,

Aeµ(φ) = a1µφ, L =∞, ξ = 0

F1(λ+φw, φw) = ν2λ2

F2(λ+φw, φw) =
ν

2
λ2 (20)

F3(λ+φw, φw) =
ν2

3
λ3

There is no dependence on the quasi-momentum parameter
ξ, reflecting the fact that the electron does not oscillate in a
constant field. Substitution of the infinite period L =∞, poses
no problem since there is no dependence of the integrand on
the dφw integration and,

∫ πL

−πL

dφw

(2πL)
= 1 (21)

Substitution of the auxillary functions of equation (20)
yields an interim HICS transition probability for a constant
crossed external field,

W const
HICS = − e

2m

4π

∫ ∞
0

du

(1 + u)2

∫ ∞
−∞

i dλ

�

[
1

λ
− ν2

4

1 + (1 + u)2

1 + u
λ

]
� exp

(
i

um2

2(k · pi)

(
λ+

1

12
ν2λ3

))
(22)

We need now only to rescale λ to get the integral repre-
sentation with respect to λ of an Airy function. The final form
of the HICS tranition probability for a constant crossed field,
which is the same as that appearing in the literature [28], is

W const
HICS = − e

2m

2

∫ ∞
0

du

(1 + u)2

[∫
dz +

1 + (1 + u)2

z (1 + u)

d

dz

]
Ai(z)

where z ≡
(

um2

ν(k · pi)

)2/3

(23)

4.3 Two phase offset circularly polarised external
fields

In at least two practical endeavours, namely laser-plasma ac-
celeration of charged particle bunches [29] and laser confine-
ment fusion experiments [30], multiple intense laser interac-
tions with matter take place. In that spirit we examine the HICS
transition probability for the simple multi-field case of two co-
linear circularly polarised external fields of equal energy and
intensity, separated by a variable phase difference denoted by
χ. The 4-potential of the combination of field components and
the resultant auxiliary functions are,

Aeµ(φ) = a1µ(cosφ+ cos(φ+χ)) + a2µ(sinφ+ sin(φ+χ))

L = 1, ξ = 2(1 + cosχ)

F1(φv, φw) = 8ν2 cos2
(
χ

2

)
(1− cos 2φ−) (24)

F2(φv, φw) = 4ν
∣∣∣cos

(
χ

2

)
sinφ−

∣∣∣
F3(φv, φw) = 4ν2(1 + cosχ)φ−

The quasi-momentum parameter ξ in this case depends on
the phase difference between the two fields. After substitution
of the auxillary functions into the second general expression
for the HICS transition probability a transition probability for
two phase-offset circularly polarised fields, W po

HICS is obtained.
Apart from the appearance of the phase difference χ the an-
alytic form of the transition probability resembles that for a
single circularly polarised field,
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W po
HICS(χ) = − e

2m

2π

∞∑
r=1

∫ ur

0

du

(1 + u)2

�

[
2 J2

r(z)− 2ν2 cos2
(
χ

2

)
1 + (1 + u)2

1 + u

�
(
J2
r+1(z) + J2

r−1(z)− 2 J2
r(z)

)]
(25)

where

z ≡ 4ν cos
χ

2

[
m2u

2(k · pi)

(
r − m2(1 + 2ν2(1 + cosχ))u

2(k · pi)

)]1/2
ur ≡

2(k.pi)r

m2(1 + 2ν2(1 + cosχ))

A numerical evaluation of equation (25) is straightforward
since the summand converges quickly and the oscillatory na-
ture of the integrand is inhibited. Figure 3 shows the variation
of the HICS transition probability with phase offset for differ-
ent external field intensities. The HICS transition probability is
maximal when the two fields are in phase, and vanishes when
the phase difference is π and the two fields destructively inter-
fere

0.5 1.0 1.5 2.0
ΧHΠL

0.2

0.4

0.6

0.8

1.0

WHICS
po

@ ΧD

WHICS
po

@0D

Ν=4

Ν=1

Ν=0.4

Fig. 3: HICS transition probability for 2 circularly po-
larised fields of momentum 5.11 MeV and phase difference
χ

5 Conclusion

In this paper we have set out to write down a new analytic
expression for the transition probability of the High Intensity
Compton Scattering in an external field of general form. Two
equivalent expressions for the HICS transition probability
were obtained. One of these general expressions is suitable
for obtaining simple, specific analytic expressions for constant
external fields of infinite period and a vanishing quasi-
momentum term, The other general expression is suitable for
oscillatory external fields.

Exact Volkov solutions of the electron in a general plane
wave electromagnetic field whose 4-potential is a sum of N

co-linear components have been used. By choosing such a
representation for a general plane wave, any waveform that
can be expressed by a Fourier series can be studied using
general forms of the HICS transition probability written down
in equations (14) and (16).

The validity of the general HICS transition probability
expressions was established by substituting in particular
4-potentials - that of a circularly polarised and of a constant
crossed electromagnetic field - to obtain the same analytic
forms of the HICS transition probability found in the literature.
Specific numerical studies can, however, be launched directly
from the general HICS transition probability expressions
which is particularly useful for external fields for which no
simple analytic expression for the transition probability is
possible.

A multi-external field case, in which the HICS process
takes place within two co-linear circularly polarised fields of
equal intensity and energy separated by a phase difference,
was examined analytically and numerically. As the phase
difference reaches π, the two fields destructively interfere and
the HICS transition probability vanishes.

New high intensity laser facilities are being planned and
built which will provide the means to experimentally test
physics processes in strong electromagnetic fields. A variety
of experimental conditions involving different configurations
and combinations of external fields will be possible. In the case
of experimental tests of the HICS process we have provided
a general expression for the HICS transition probability from
which, no matter what the experimental configuration, specific
analytic expressions and numerical values can be quickly gen-
erated.
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ichung. Zeitschrift für Physik, 94:250–260, 1935.

26. G.N. Watson. A treatise on the Theory of Bessel Functions. Cam-
bridge University Press, London, 1922.

27. E.M. Berestetskii, V.B. Lifshitz and L.P. Pitaevskii. Quantum
Electrodynamics. Pergamon Press, second edition, 1982.

28. V.I. Ritus. Radiative corrections in quantum electrodynamics with
intense field andtheir analytic properties. Ann Phys, 69:555–582,
1972.

29. N.J. Shvets, G. Fisch and A. Pukhov. Excitation of accelerating
plasma waves by counter-propagating laser beams. Phys Plas-
mas, 9 (5):2383–2392, 2002.

30. S. Nakai and K. Mima. Laser driven inertial fusion energy:
present and perspective. Rep Prog Phys, 67:321, 2004.


	1 Introduction
	2 The Volkov Solution for a general plane wave external field
	3 The HICS transition probability for a general external field
	4 The HICS transition probability for specific external fields
	5 Conclusion

