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Abstract

We define the operations of conformal change and elementary defor-
mation in the setting of generalized complex geometry. Then we apply
Swann’s twist construction to generalized (almost) complex and Her-
mitian structures obtained by these operations and establish necessary
and sufficient conditions for the Courant integrability of the resulting
twisted structures. In particular, we associate to any appropriate gen-
eralized Kähler manifold (M,G,J ) with a Hamiltonian Killing vector
field a new generalized Kähler manifold, depending on the choice of a
pair of non-vanishing functions and compatible twist data. We study
this construction when (M,G,J ) is (diagonal) toric, with emphasis
on the four-dimensional case. In particular, we apply it to defor-
mations of the standard flat Kähler metric on C

n, the Fubini-Study
Kähler metric on CP 2 and the so called admissible Kähler metrics
on Hirzebruch surfaces. As a further application, we recover the KK
(Kähler-Kähler) correspondence, which is obtained by specializing to
the case of an ordinary Kähler manifold.
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1 Introduction

Swann’s twist construction is a powerful method to construct new manifolds

with geometrical structures from given ones [19]. It was applied successfully

to construct explicit examples of compact SKT, hyper-complex and HKT

manifolds. Combined with the so-called elementary deformation of hyper-

Kähler structures, it provides an elegant approach to the HK/QK (hyper-

Kähler/quaternionic-Kähler) correspondence [18]. The HK/QK correspon-

dence basically associates to a hyper-Kähler manifold with a certain type of

Killing vector field a quaternionic-Kähler manifold of the same dimension. It

was introduced by Haydys in [13] (see also [15] for recent related work) and

was extended to allow for indefinite hyper-Kähler metrics in [1, 2], without

losing control over the signature of the resulting quaternionic-Kähler met-

rics, for which a simple formula was given in [2]. This result was applied in

[2] to prove that the one-loop quantum correction of the supergravity c-map

metric is quaternionic-Kähler, leading to the first completeness results for

the quaternionic-Kähler metric in the HK/QK correspondence (see [6] for

the state of the art). The approach from [1, 2] yields also the so-called KK

(Kähler-Kähler) correspondence. This is a method to associate to a Kähler

manifold with a Hamiltonian Killing vector field a new Kähler manifold, of

the same dimension.

Despite a rich literature on the twist construction in complex and Her-

mitian geometry, applications in generalized complex geometry seem to be

missing in the literature. In this paper we fill this gap, by studying how

various notions from generalized complex geometry behave under the twist

construction. Our main goal is to extend, in the spirit of [18], the KK corre-

spondence to the setting of generalized Kähler geometry.

The plan of the paper is the following. Section 2 is mainly intended to

fix notation. Here we recall Swann’s twist construction (see Section 2.1) and

the material we need from generalized complex geometry (see Section 2.2).

In Section 3 we define two basic algebraic tools for this paper: the confor-

mal change and elementary deformation in the setting of generalized complex

geometry (see Definitions 2 and 6). Our definition of elementary deformation
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is inspired by [18], where elementary deformations of hyper-Kähler structures

were introduced. The integrability of a generalized Kähler structure is en-

coded in the Courant integrability of L1 and of the intersections L1 ∩ L2

and L1 ∩ L̄2, where Li (i = 1, 2) are the (1, 0)-bundles of its two generalized

complex structures. We study how these intersections vary under elementary

deformations of generalized almost Hermitian structures (see Lemma 9).

In Section 4 we study how the Courant bracket behaves under the twist

construction and we determine conditions on the twist data which ensure

that a generalized almost complex structure J becomes integrable under

this construction (see Theorem 16). In Section 4.1 we present various partic-

ular cases: when J is a symplectic structure (this was already considered in

[19]); when J is the deformation of a complex structure by a Poisson bivector

Π (when Π = 0 this was also considered in [19]); when J is the interpolation

between a complex and a symplectic structure; and finally, when J is a con-

formal change of a generalized almost complex structure (we shall encounter

this situation later in the paper).

In Section 5 we develop what we call the generalized KK correspondence.

Its statement in highest generality is Theorem 23. Let (M,G,J ) be a gen-

eralized Kähler manifold with a Hamiltonian Killing vector field X0. Let

f, h ∈ C∞(M) be two non-vanishing functions, (G′,J ) the elementary de-

formation of (G,J ) by X0 and f and τh(G
′,J ) the conformal change of

(G′,J ) by h. Theorem 23 expresses the conditions which ensure that the

twist [τh(G
′,J )]W of τh(G

′,J ) is generalized Kähler. The idea of the proof

is the following. As a first stage, we determine in Section 5.1 conditions which

ensure that the twist of a generalized almost Hermitian manifold is gener-

alized Kähler (see Theorem 22). Then we compute various useful Courant

brackets in Section 5.2.1, using in an essential way that X0 is a Hamiltonian

Killing vector field. In Sections 5.2.2 and 5.2.3 we apply Theorem 22 to the

generalized almost Hermitian manifold τh(G
′,J ) and we conclude the proof

of Theorem 23.

In Section 6 we develop examples of the generalized KK correspondence.

As a first particular case of Theorem 23 we recover in our setting the KK

correspondence of [1] (see Proposition 40). After a short discussion on vari-
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ous conditions from Theorem 23 and their impact on the generalized Kähler

manifold (M,G,J ), we apply the generalized KK correspondence under the

additional assumption that J3X0 ∈ Ω1(M) (see Proposition 43). In Section

6.1, after a brief review of the theory of toric generalized Kähler manifolds

developed in [4], we show that examples of (non-Kähler) generalized Kähler

manifolds with such Hamiltonian Killing vector fields exist in the toric set-

ting (see Examples 46). In Section 6.2 we treat in detail the generalized KK

correspondence when (M,G,J ) is toric and four-dimensional (see Propo-

sition 47, Corollaries 50 and 51). In particular, we apply it to a suitable

1-parameter family of deformations of the Fubini-Study Kähler structure on

CP 2 and of the class of admissible Kähler structures on Hirzebruch surfaces

Fk (see Examples 53 and 54).

It would be interesting to study the properties of the generalized Kähler

structures produced by the generalized KK correspondence. Owing to the

length of this paper, this will be postponed for a future project. Some pre-

liminary observations in this direction are presented in Remark 55.

Acknowledgements: We warmly thank Paul Gauduchon for sharing

with us his unpublished manuscripts [9, 10, 11] and for drawing our atten-

tion to reference [4]. This work was partly supported by the German Science

Foundation (DFG) under the Research Training Group 1670 “Mathematics

inspired by String Theory”. Part of this work was done during the Hum-

boldt Research Fellowship of L.D. at the University of Hamburg. She thanks

Alexander von Humboldt Foundation for financial support and the University

of Hamburg for hospitality and great working conditions.

2 Preliminaries

We begin by fixing various conventions we shall use in the paper. We work

in the smooth setting. All our manifolds, vector bundles, functions, tensor

fields, etc. are smooth. We denote by Γ(E) the space of (smooth) sections of a

vector bundle E → M. For every manifold M , we denote by prT and prT ∗ the

natural projections from the generalized tangent bundle TM = TM ⊕ T ∗M
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onto its components TM and T ∗M . The Lie derivative in the direction of a

vector field X is denoted by LX . For a real form α ∈ Ωk(M), we use the same

notation α for its complex linear extension to any (subbundle) of (TM)C. For

a non-degenerate 2-form ω ∈ Ω2(M), ω : TM → T ∗M is the map X → iXω.

Similarly, g : TM → T ∗M , X → g(X, ·) denotes the Riemannian duality

defined by a Riemannian metric g. In our conventions, J∗α := α ◦ J , for any

1-form α and almost complex structure J .

2.1 Twist construction

Swann’s twist construction associates to a manifold M with a circle action a

new manifold W . Following [19], we now recall this construction. The start-

ing point is a twist data: a tuple (X0, F, a) with the following properties:

•X0 ∈ X(M) is a vector field which generates a circle action on M . Along

the paper by an invariant tensor field, we mean a tensor field invariant under

this action. We denote by Γ(E)inv the space of invariant sections of a tensor

bundle E → M ;

• F ∈ Ω2(M) is an invariant closed 2-form. It is the curvature of a con-

nection H on a principal S1-bundle π : P → M . We denote by XP ∈ X(P )

the principal vector field of π and by θ ∈ Ω1(M) the connection form of H.

We denote by X̃ ∈ X(P ) the H-horizontal lift of any X ∈ X(M);

• a ∈ C∞(M) is non-vanishing and satisfies

da = −iX0
F. (1)

In this setting, we assume that the vector field X ′
0 := X̃0 + π∗(a)XP

generates a free and proper group action of a 1-dimensional Lie group. Let

W := P/〈X ′
0〉 be the quotient manifold and πW : P → W the natural

projection. Since a is non-vanishing, X ′
0 is transversal to H. We denote

by X̂ ∈ H the horizontal lift of any X ∈ X(W ). Identifying (by means of
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the projections π∗ : Hp → Tπ(p)M and (πW )∗ : Hp → TπW (p)W ), Tπ(p)M

and TπW (p)W with Hp, we can transfer any invariant tensor field A on M

to a tensor field (of the same type) AW on W (the invariance of A ensures

that AW is well-defined). We say that A and AW are H-related and we

write AW ∼H A. The tensor field AW is called the twist of A. In particular,

X̃ = X̂W and, for any invariant form α ∈ Ωk(M), π∗(α)|H = π∗
W (αW )|H. In

fact, as proved in [19],

π∗
W (αW ) = π∗(α)−

1

a
θ ∧ π∗(iX0

α). (2)

The exterior derivative behaves under twist as :

dαW ∼H dWα := dα−
1

a
F ∧ iX0

α, (3)

for any invariant form α ∈ Ωk(M). In particular, if α is closed, then its twist

αW is also closed if and only if F ∧ iX0
α = 0.

Similarly, the Lie bracket behaves under twist as:

[XW , YW ] ∼H [X, Y ] +
1

a
F (X, Y )X0, (4)

for any invariant vector fields X, Y ∈ X(M). Using (4), one can show that

the twist JW of an invariant complex structure J on M is integrable if and

only if F is of type (1, 1) with respect to J (see [19]).

2.2 Generalized complex geometry

Generalized almost complex structures. A generalized almost complex

structure on a manifold M is a field of endomorphisms J ∈ ΓEnd(TM) of

the generalized tangent bundle TM = TM ⊕ T ∗M which satisfies J 2 = −Id

and is skew-symmetric with respect to the canonical metric 〈·, ·〉 of TM of

neutral signature, defined by

〈X + ξ, Y + η〉 =
1

2
(η(X) + ξ(Y )) , X + ξ, Y + η ∈ TM.

The (1, 0)-bundle L ⊂ (TM)C (the i-eigenbundle) of a generalized almost

complex structure J is maximal isotropic with respect to 〈·, ·〉, satisfies L⊕

L̄ = (TM)C, and (when J is of constant type), has the form

L = L(E, ǫ) = {X + ξ ∈ E ⊕ (T ∗M)C, ξ|E = iXǫ}
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where E ⊂ (TM)C is a complex subbundle and ǫ ∈ Γ(Λ2E∗) is a (complex)

2-form, such that Im(ǫ|∆) is non-degenerate, where ∆ ⊂ TM is defined by

∆C := E ∩ Ē. The corank of E ⊂ (TM)C is called the type of J . For later

use, we note that

ǫ(X, Y ) = 2〈X + ξ, Y 〉 = ξ(Y ), (5)

for X + ξ ∈ L and Y ∈ E.

Usual almost complex and almost symplectic structures define generalized

almost complex structures by

JJ :=

(
J 0
0 −J∗

)
, Jω :=

(
0 −ω−1

ω 0

)

with (1, 0)-bundles L(T 1,0M, 0) and L((TM)C,−iω) respectively. For any

generalized almost complex structure J and 2-form B ∈ Ω2(M), exp(B) ·

J := exp(B) ◦ J ◦ exp(−B) is also a generalized almost complex structure,

where exp(B) ∈ Aut(TM) is given by exp(B)(X + ξ) := X + ξ + iXB, for

any X + ξ ∈ TM. The generalized almost complex structure exp(B) · J is

called the B-field transformation of J . If L = L(E, ǫ) is the (1, 0)-bundle of

J , then L(E,B + ǫ) is the (1, 0)-bundle of exp(B) · J .

Generalized complex structures. A generalized almost complex struc-

ture J is integrable (i.e. is a generalized complex structure) if its (1, 0)-

bundle L ⊂ (TM)C is closed under the Courant bracket, given by

[X + ξ, Y + η] = [X, Y ] + LXη − LY ξ −
1

2
d (η(X)− ξ(Y )) .

This reduces to the usual notions of integrability of almost complex and

almost symplectic structures. If J is integrable and dB = 0, then exp(B) ·

J is also integrable. In terms of the (1, 0)-bundle L, a generalized almost

complex structure is integrable if and only if E ⊂ (TM)C is involutive and

dǫ = 0. As in the case of ordinary complex structures, a generalized almost

complex structure J gives rise to a tensor field NJ ∈ Γ(Λ2T∗M ⊗ TM)

(called the Nijenhuis tensor) defined by

NJ (u, v) := [J u,J v]− [u, v]−J ([J u, v] + [u,J v]) (6)
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and J is integrable if and only if NJ = 0.

The Courant bracket does not satisfy the Jacobi identity but has the

following properties which we shall use in our computations (see e.g. [14]):

[u, fv] = f [u, v] + prT (u)(f)v − 〈u, v〉df (7)

and

prT (u)〈v, w〉 = 〈[u, v], w〉+ 〈v, [u, w]〉+ 〈d〈u, v〉, w〉+ 〈v, d〈u, w〉〉, (8)

for all u, v, w ∈ Γ(TM). Also, the Courant bracket LX := [X, ·] is related to

the Lie bracket LX by

LX(Y + η) = LX(Y + η)−
1

2
d(η(X)) = LX(Y + η)− d〈X, Y + η〉 (9)

for any X ∈ X(M) and Y + β ∈ Γ(TM).

Generalized almost Hermitian structures. A generalized almost

Hermitian structure [12] on a manifold M is a Hermitian structure (G,J )

on the bundle TM , such that J is skew symmetric with respect to 〈·, ·〉 (i.e.

is a generalized almost complex structure on M) and Gend ∈ ΓEnd(TM),

defined by

G(u, v) = 〈Gendu, v〉, (10)

satisfies (Gend)2 = Id. The endomorphism Gend commutes with J and is of

the form [12]

Gend =

(
A g−1

σ A∗

)
, (11)

where g and σ are Riemannian metrics, A ∈ ΓEnd(TM) is skew-symmetric

with respect to both g and σ = g − bg−1b, where b := −gA ∈ Ω2(M). It

has eigenvalues ±1 and its associated eigenbundles C± are the graphs of

b ± g : TM → T ∗M . By means of the isomorphism prT |C+
: C+ → TM ,

the metric g and the 2-form b correspond to 〈·, ·〉|C+×C+
and, respectively, to

(·, ·)|C+×C+
, where

(X + ξ, Y + η) :=
1

2
(ξ(Y )− η(X)).

9



Let J± ∈ ΓEnd(TM) be the g-orthogonal almost complex structures, which

correspond to J |C±
via the isomorphisms prT |C±

: C± → TM . The gener-

alized almost Hermitian structure (M,G,J ) is uniquely determined by the

data (J+, J−, g, b).

On a generalized almost Hermitian manifold (M,G,J ) there is a second

generalized almost complex structure J2 := GendJ , which commutes with

J1 := J . The generalized almost complex structures J1 and J2 are on equal

footing: one can alternatively define a generalized almost Hermitian structure

as a pair of commuting generalized almost complex structures (J1,J2), such

that the metric G defined by (10) with Gend := −J1J2 is positive definite. In

analogy with the quaternionic case, we shall use the notation J3 := J1J2 =

−Gend. Note that the structures J1,J2,J3 commute and that

J 2
1 = J 2

2 = −J 2
3 = −Id. (12)

Any almost Hermitian structure (g, J) determines a generalized almost

Hermitian structure with generalized almost complex structures J1 := JJ ,

J2 := Jω (where ω := g ◦J is the Kähler form), metric G and endomorphism

Gend given by

G(X + ξ, Y + η) =
1

2

(
g(X, Y ) + g−1(ξ, η)

)
, Gend =

(
0 g−1

g 0

)
. (13)

Generalized Kähler structures. A generalized Kähler structure [12]

is a generalized almost Hermitian structure (G,J ) on a manifold M for

which J1 and J2 (defined as above) are generalized complex structures. As

proved by Gualtieri [12], a generalized almost Hermitian structure (G,J ) is

generalized Kähler if and only if J1 (or L1) is Courant integrable and the

bundles L1 ∩ L2 and L1 ∩ L̄2 are also Courant integrable, where Li are the

(1, 0)-bundles of Ji (i = 1, 2). In terms of the data (J+, J−, g, b) associated

to (G,J ), the generalized Kähler condition is equivalent to the integrability

of the almost complex structures J±, together with the relation

db(X, Y, Z) = dω+(J+X, J+Y, J+Z) = −dω−(J−X, J−Y, J−Z),

for all X, Y, Z ∈ X(M), where ω± := g(J±·, ·) are the Kähler forms.
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The generalized almost Hermitian structure (JJ ,Jω) defined by an almost

Hermitian structure (g, J), with Kähler form ω, is generalized Kähler, if and

only if (g, J) is Kähler. The B-field transformation (exp(B) · J1, exp(B) · J2)

(with dB = 0) of a generalized Kähler structure (J1,J2) is generalized

Kähler.

Generalized Kähler structures of symplectic type. Let (M,ω) be a

symplectic manifold. The map J → J+ is a one to one correspondence from

the space of generalized Kähler structures (G,J ) with second generalized

complex structure J2 = Jω, and the space of (integrable) complex structures

J+ which tame ω, which means that ω(X, J+X) > 0, for all X 6= 0, and the

ω-adjoint of J+, given by J∗ω
+ = ω−1 ◦ J∗

+ ◦ ω, is integrable [8]. The complex

structure J−, Hermitian metric g and 2-form b associated to (G,J ) are given

by:

J− = −J∗ω
+ , g = −

1

2
ω ◦ (J+ + J−), b = −

1

2
ω ◦ (J+ − J−). (14)

A generalized Kähler structure with J2 = Jω is called of symplectic type.

Hamiltonian vector fields on generalized Kähler manifolds. This

is a particular case of the more general notion of Hamiltonian (real) actions

of groups on generalized Kähler manifolds [16].

Definition 1. Let (M,G,J ) be a generalized Kähler manifold, with general-

ized complex structures J1 := J and J2 := GendJ . A vector field X0 is called

Hamiltonian Killing if LX0
(J ) = 0, LX0

(G) = 0, and there is a function

fH : M → R (called the Hamiltonian function) such that J2X0 = dfH.

Let (M,J , G) be a generalized Kähler manifold with J2 = Jω determined

by a symplectic form ω. Any Hamiltonian Killing vector field X0 on (M,ω),

with LX0
(J ) = 0, is Hamiltonian Killing on the generalized Kähler manifold

(M,J , G).

11



3 Algebraic operations in generalized com-

plex geometry

Let M be a manifold and τ ∈ Isom(TM, 〈·, ·〉). If J is a generalized almost

complex structure on M , then so is τ(J ) := τ ◦ J ◦ τ−1. Similarly, if (G,J )

is a generalized almost Hermitian structure on M , then τ(G,J ) := (G′ :=

(τ−1)∗(G),J ′ = τ ◦J ◦τ−1) is also a generalized almost Hermitian structure,

with endomorphism (G′)end = τ ◦ Gend ◦ τ−1 and second generalized almost

complex structure J ′
2 = τ ◦ J2 ◦ τ−1. We apply these remarks to define

the conformal change and elementary deformation in generalized complex

geometry.

3.1 Conformal change

Any non-vanishing function h ∈ C∞(M) defines τh ∈ Isom(TM, 〈·, ·〉), by

τh(X) = hX , τh(ξ) =
1
h
ξ, for any X + ξ ∈ TM.

Definition 2. The generalized almost complex structure τh(J ) is called the

conformal change of J by h ∈ C∞(M). The generalized almost Hermitian

structure τh(G,J ) is called the conformal change of (G,J ) by h.

Remark 3. i) If J is a generalized almost complex structure with (1, 0)-

bundle L = L(E, ǫ), then the (1, 0)-bundle of τh(J ) is Lh = L(E, 1
h2 ǫ). In

particular, the conformal change preserves the type of a generalized almost

complex structure. Notice that τh(JJ) = JJ for every almost complex struc-

ture J and τh(Jω) = J 1

h2
ω for every almost symplectic form ω.

ii) If (G,J ) is the generalized almost Hermitian structure defined by a

usual almost Hermitian structure (g, J), then τh(G,J ) is defined by ( 1
h2g, J).

3.2 Elementary deformation

Let (G,J ) be a generalized almost Hermitian structure on a manifold M ,

X0 ∈ X(M) a non-vanishing vector field and f ∈ C∞(M) a non-vanishing

function. In this section we associate to this data a new generalized almost

Hermitian structure on M and we study some of its properties. Define

S := span{X0,J1X0,J2X0,J3X0},

12



where, as usual, J1 = J , J2 = GendJ and J3 = −Gend = J1J2. Since G is

positive definite, X0, J1X0, J2X0, J3X0 are linearly independent. Moreover,

S = spanR{X0,JX0}+ spanR{J2X0,J3X0}

is a direct sum decomposition into two isotropic planes, which are inter-

changed by J2 and J3. The restriction of 〈·, ·〉 to S is non-degenerate and

the orthogonal complements of S with respect to G and 〈·, ·〉 coincide and will

be denoted by S⊥. For u ∈ TM we shall denote by uS and u⊥ its components

on S and S⊥, with respect to the decomposition TM = S ⊕ S⊥.

Let τSf ∈ Aut(S) be given by

X0 7→ fX0, JX0 7→ fJX0, J2X0 7→
1

f
J2X0, J3X0 7→

1

f
J3X0.

Lemma 4. The automorphism τSf ∈ Aut(S) is an isometry with respect to

〈·, ·〉.

Decompose TM := S⊥ ⊕ S and let τ := IdS⊥ + τSf ∈ Aut(TM).

Proposition 5. Define a metric G′ := (τ−1)∗(G) on TM . Then (G′,J ) is

a generalized almost Hermitian structure.

Proof. The claim follows from the fact that τ is an isometry for 〈·, ·〉 (using

Lemma 4) and commutes with J .

Definition 6. The generalized almost Hermitian structure (G′,J ) is called

the elementary deformation of (G,J ) by X0 and f .

Remark 7. i) If a generalized almost Hermitian structure is defined by a

usual almost Hermitian structure with metric g and almost complex struc-

ture J , then its elementary deformation by X0 and f is also defined by a

usual almost Hermitian structure, with the same almost complex structure

J and metric g′, such that spanR{X0, JX0} and spanR{X0, JX0}
perp are g′-

orthogonal and

g′ =
1

f 2
g|spanR{X0,JX0} + g|spanR{X0,JX0}perp.

13



Here “perp” refers to the g-orthogonal complement.

ii) More generally, elementary deformations preserve the class of general-

ized almost Hermitian structures which are B-field transformations of usual

almost Hermitian structures. This follows from the fact that elementary de-

formations leave the first generalized almost complex structure unchanged,

together with the fact that any generalized almost Hermitian structure (G,J )

for which J is the B-field transformation of a usual almost complex structure

is the B-field transformation of a usual almost Hermitian structure (this is a

consequence of relation (6.3), page 76, of [12]).

The next lemma can be checked directly, from the definition of elementary

deformation and Lemma 4.

Lemma 8. The second generalized almost complex structure J ′
2 and the en-

domorphism (Gend)′ of (G′,J ) coincide, respectively, with J2 and Gend on

S⊥. On S, J ′
2 is given by

X0 7→
1

f 2
J2X0, JX0 7→

1

f 2
J3X0,

J2X0 7→ −f 2X0, J3X0 7→ −f 2JX0 (15)

and (Gend)′ by

X0 7→ −
1

f 2
J3X0, JX0 7→

1

f 2
J2X0,

J2X0 7→ f 2JX0, J3X0 7→ −f 2X0.

The vector fields {X0,JX0,J2X0,J3X0} are G′-orthogonal and

G′(X0, X0) = G′(JX0,JX0) =
1

f 2
G(X0, X0)

G′(J2X0,J2X0) = G′(J3X0,J3X0) = f 2G(X0, X0).

An important role for the integrability of a generalized almost Hermitian

structure (G,J ) is played by the intersections L1∩L2 and L1∩ L̄2, where Li

are the (1, 0)-bundles of Ji (recall Section 2.2). The next lemma describes

these intersections for elementary deformations. Let

vf := X0 − iJX0 −
1

f 2
(J3X0 + iJ2X0)

vif := X0 − iJX0 +
1

f 2
(J3X0 + iJ2X0). (16)
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Lemma 9. Let (M,G,J ) be a generalized almost Hermitian manifold, X0 ∈

X(M) a non-vanishing vector field and f ∈ C∞(M) a non-vanishing function.

Denote by Li the (1, 0)-bundles of Ji (i = 1, 2). Let (G′,J ) be the elementary

deformation of (G,J ) by X0 and f . Let L′
2 = L(E ′

2, ǫ
′
2) be the (1, 0)-bundle

of the second generalized almost complex structure J ′
2 = (Gend)′J of (G′,J ).

Then

L1 ∩ L′
2 = spanC{vf}+ L1 ∩ L2 ∩ S⊥

C
,

L1 ∩ L̄′
2 = spanC{vif}+ L1 ∩ L̄2 ∩ S⊥

C
(17)

and

prT (L1 ∩ L′
2) = spanC{prT (vf )}+ prT (L1 ∩ L2 ∩ S⊥

C )

prT (L1 ∩ L̄′
2) = spanC{prT (vif )}+ prT (L1 ∩ L̄2 ∩ S⊥

C
) (18)

are all direct sum decompositions, where SC is the complexification of S.

Proof. We only prove the statements about L1∩L
′
2, i.e. the first relation (17)

and the first relation (18) (the statements about L1 ∩ L̄′
2 can be proved in a

similar way). Since J ′
2 preserves S and S⊥, L′

2 = L′
2 ∩ SC + L′

2 ∩ S⊥
C
. Since

J commutes with J ′
2, it preserves L

′
2. It also preserves S and its orthogonal

complement S⊥. Therefore,

L1 ∩L′
2 = L1 ∩L′

2 ∩SC +L1 ∩L′
2 ∩ S⊥

C
= L1 ∩L′

2 ∩SC +L1 ∩L2 ∩S⊥
C

(19)

(direct sums) since L1 ∩ L′
2 ∩ S⊥

C
= L1 ∩ L2 ∩ S⊥

C
(because J ′

2 = J2 on S⊥).

On S, J ′
2 is given by (15), from where we deduce that

L′
2 ∩ SC = spanC{X0 −

i

f 2
J2X0,JX0 −

i

f 2
J3X0},

L1 ∩ L′
2 ∩ SC = spanC{vf}. (20)

Combining the second relation (20) with (19) we obtain the first relation

(17).

We now check the first relation (18). By projecting the first relation

(17) onto the tangent bundle, we obtain that prT (vf ) and prT (L1 ∩L2 ∩S⊥
C
)
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generate prT (L1 ∩L2). We will show that they are also transverse. Suppose,

by contradiction, that this is not true. Then there is ξ ∈ (T ∗M)C such that

vf + ξ ∈ L1 ∩ L2 ∩ S⊥
C
. (21)

The condition vf + ξ ∈ L1 together with vf ∈ L1 implies that ξ ∈ L1. On the

other hand, from the definition of vf ,

J2vf = J2X0 − iJ3X0 +
1

f 2
(iX0 + JX0). (22)

From (22) and J2(vf + ξ) = i(vf + ξ) (recall that vf + ξ ∈ L2), we obtain

J2ξ = iξ + (
1

f 2
− 1)(J2X0 − iJ3X0) + (1−

1

f 2
)(iX0 + JX0). (23)

But J ξ = iξ implies J2ξ = iGend(ξ) and relation (23) becomes

Gend

(
ξ + (1−

1

f 2
)(X0 − iJX0)

)
= ξ + (1−

1

f 2
)(X0 − iJX0),

i.e. ξ + (1 − 1
f2 )(X0 − iJX0) ∈ C+ (the +1-eigenbundle C+ of Gend). But

C+ is the graph of (b + g), where b and g are the 2-form, respectively the

metric of the bi-Hermitian structure associated to (G,J ) (see Section 2.2).

We obtain that ξ is given by

ξ = i(1−
1

f 2
)prT ∗(JX0) + (1−

1

f 2
)(b+ g)(X0 − iprTJX0). (24)

To summarize: we proved that vf + ξ ∈ L1 ∩ L2 implies that ξ is given by

(24). We now show that the additional condition vf +ξ ∈ S⊥
C
from (21), with

ξ given by (24), leads to a contradiction. Indeed, suppose, by contradiction,

that vf + ξ ∈ S⊥
C
. In particular, 〈vf + ξ,X0〉 = 0. Taking the real part of

this equality and using (24) we obtain

1

f 2
G(X0, X0) +

1

2
(1−

1

f 2
)g(X0, X0) = 0. (25)

But, using (11),

G(X0, X0) =
1

2

(
g(X0, X0) + g−1(b(X0), b(X0))

)
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and the left hand side of (25) is equal to

1

2f 2
g−1(b(X0), b(X0)) +

1

2
g(X0, X0),

which is non-zero (because g is positive definite and X0 is non-vanishing).

We obtain a contradiction.

Remark 10. i) From (17), the bundle E ′
2 decomposes as

E ′
2 = prT (L̄1 ∩ L′

2) + prT (L1 ∩ L′
2) (26)

= spanC{prT (vf), prT (v̄if )}+ prT (L̄1 ∩ L2 ∩ S⊥
C
) + prT (L1 ∩ L2 ∩ S⊥

C
).

The 2-forms ǫ′2 and ǫ2 coincide, when both arguments belong to prT (L2∩S⊥
C
)

(the sum of the last two components in the second decomposition (26)). From

(5), for any X ∈ E ′
2,

ǫ′2(prT (vf), X) = 2〈vf , X〉, ǫ′2(prT (v̄if ), X) = 2〈v̄if , X〉

and

ǫ′2(prT (vf), prT (v̄if )) = 2〈vf , prT (v̄if)〉 = −2〈v̄if , prT (vf )〉.

ii) The intersections L1 ∩ L2 and L1 ∩ L̄2 have similar decompositions as in

Lemma 9, with vf replaced by

v1 := X0 − iJX0 − (J3X0 + iJ2X0) (27)

and vif replaced by

vi := X0 − iJX0 + J3X0 + iJ2X0. (28)

That is,

L1 ∩ L2 = spanC{v1}+ L1 ∩ L2 ∩ S⊥
C

L1 ∩ L̄2 = spanC{vi}+ L1 ∩ L̄2 ∩ S⊥
C
. (29)

From Lemma 9 and Remark 10, we obtain:

Corollary 11. The elementary deformations preserve the rank of the bundles

L1 ∩ L2, L1 ∩ L̄2 and of their projections to (TM)C.
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4 Twist of generalized almost complex struc-

tures

From now on, we fix twist data (X0, F, a) on a manifold M .

Lemma 12. For any invariant vector field X ∈ X(M) and invariant form

α ∈ Ωk(M),

LXW
αW ∼H LXα−

1

a
(iXF ) ∧ iX0

α. (30)

Proof. Using relation (2), X̃ = X̂W and θ(X̃) = 0, we obtain

π∗
W (iXW

(αW )) = π∗
W (αW )(X̂W , ·) = π∗

W (αW )(X̃, ·)

=

(
π∗(α)−

1

a
θ ∧ π∗(iX0

α)

)
(X̃, ·)

= π∗(iXα) +
1

a
θ ∧ π∗(iX iX0

α). (31)

Thus,

π∗
W (iXW

αW ) = π∗(iXα) +
1

a
θ ∧ π∗(iX iX0

α). (32)

Pulling back by πW the Cartan formula

LXW
αW = iXW

(dαW ) + d(iXW
αW )

and using (32), we can write

π∗
W (LXW

(αW )) = π∗
W (iXW

(dαW )) + dπ∗
W (iXW

αW )

= iX̂W
π∗
W (dαW ) + d

(
π∗(iXα) +

1

a
θ ∧ π∗(iXiX0

α)

)
. (33)

Recall from relation (3) that dαW ∼H dWα. From this fact, together with

(2), we obtain

π∗
W (dαW ) = π∗(dWα)−

1

a
θ ∧ π∗(iX0

dWα).

Replacing this relation into (33) and using da = −iX0
F and dθ = π∗F , we

obtain

π∗
W (LXW

αW ) = π∗(LXα)−
1

a
π∗((iXF ) ∧ iX0

α)

+
1

a
θ ∧ π∗(iXiX0

dα− d(iX iX0
α))−

F (X0, X)

a2
θ ∧ π∗(iX0

α).
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This relation, restricted to H, gives

π∗
W (LXW

αW )|H = π∗(LXα)|H −
1

a
π∗((iXF ) ∧ iX0

α)|H (34)

which is (30).

The next lemma describes the behaviour of the Courant bracket under

twists.

Lemma 13. For any invariant sections X + ξ, Y + η ∈ Γ(TM), the Courant

bracket [(X + ξ)W , (Y + η)W ] is H-related to

[X + ξ, Y + η] +
F (X, Y )

a
X0 −

η(X0)

a
iXF +

ξ(X0)

a
iY F.

Proof. Recall the expression of the Courant bracket:

[(X + ξ)W , (Y + η)W ] = [XW , YW ] + LXW
ηW − LYW

ξW

−
1

2
d (ηW (XW )− ξW (YW )) . (35)

From (4), [XW , YW ] ∼H [X, Y ] + F (X,Y )
a

X0. From (30), LXW
ηW ∼H LXη −

η(X0)
a

iXF and LYW
ξW ∼H LY ξ − ξ(X0)

a
iY F. From (31), π∗

W (ηW (XW )) =

π∗(η(X)). Taking the exterior derivative, we obtain d(ηW (XW )) ∼H d(η(X)).

A similar argument shows that d(ξW (YW )) ∼H d(ξ(Y )). Combining these

facts with (35) we obtain the claim.

To simplify terminology, we introduce the following definition.

Definition 14. A subbundle E ⊂ (TM)C is called (F, a)-involutive if, for

any sections X, Y ∈ Γ(E), the complex vector field

[X, Y ](F,a) := [X, Y ] +
F (X, Y )

a
X0

is also a section of E.

If E is (F, a)-involutive and α ∈ Γ(Λ2E∗) then its twisted exterior differ-

ential d(F,a)α ∈ Γ(Λ3E∗) is defined by

(d(F,a)α)(X, Y, Z) := X(α(Y, Z)) + Z(α(X, Y )) + Y (α(Z,X))

+ α(Z, [X, Y ](F,a)) + α(X, [Y, Z](F,a)) + α(Y, [Z,X ](F,a)), (36)

for any X, Y, Z ∈ Γ(E). Remark that, if E = (TM)C, then d(F,a)α = dWα

(the latter defined in (3)).
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Definition 15. A form α ∈ Γ(Λ2E∗) defined on an (F, a)-involutive bundle

E is called (F, a)-closed if d(F,a)α = 0.

Using this preliminary material, we now find conditions which ensure that

the twist JW of an invariant generalized almost complex structure J on M

is integrable. Recall that JW is defined by

JW (uW ) = (J u)W , u ∈ Γ(TM)inv. (37)

Let L = L(E, ǫ) be the (1, 0)-bundle of J .

Theorem 16. In this setting, JW is integrable if and only if one of the

following equivalent conditions holds:

i) for any invariant sections X + ξ, Y + η of L, the section

F (X, Y )X0 − η(X0)iXF + ξ(X0)iY F + a[X + ξ, Y + η] (38)

of (TM)C is a section of L;

ii) the bundle E is (F, a)-involutive and ǫ ∈ Γ(Λ2E∗) is (F, a)-closed.

Proof. A straightforward computation which uses Lemma 13 and relation

(37) shows that NJW
(uW , vW ), with u, v ∈ Γ(TM)inv, is H-related to

E(u, v) := NJ (u, v) +
1

a
F (prT (J u), prT (J v))X0 −

prT ∗(J v)(X0)

a
iprT (Ju)F

+
prT ∗(J u)(X0)

a
iprT (J v)F −

1

a
F (prT (u), prT (v))X0 +

(prT ∗v)(X0)

a
iprT (u)F

−
prT ∗(u)(X0)

a
iprT (v)F −

1

a
F (prT (J u), prT (v))JX0 +

prT ∗(v)(X0)

a
J iprT (J u)F

−
prT ∗(J u)(X0)

a
J iprT (v)F −

1

a
F (prT (u), prT (J v))JX0

+
prT ∗(J v)(X0)

a
J iprT (u)F −

prT ∗(u)(X0)

a
J iprT (J v)F.

We obtain that JW is integrable if and only if

E(u, v) = 0, ∀u, v ∈ Γ(TM)inv. (39)

We now consider in (39) various cases: a) u, v ∈ Γ(L)inv; b) u ∈ Γ(L)inv,

v ∈ Γ(L̄)inv; c) u, v ∈ Γ(L̄)inv. In case b) relation (39) is automatically

20



satisfied. In case a) relation (39) with u = X + ξ and v = Y + η becomes

− F (X, Y )(X0 + iJX0) + η(X0)(iXF + iJ iXF )− ξ(X0)(iY F + iJ iY F )

= a([X + ξ, Y + η] + iJ [X + ξ, Y + η]), (40)

for any X+ξ, Y +η ∈ Γ(L)inv, and in case c) it is equivalent (by conjugation)

to (40). But relation (40) is equivalent to claim i).

We now prove claim ii). The (1, 0)-bundle of JW is LW := L(EW , ǫW ),

where EW ⊂ (TW )C is generated (locally) by sections XW , where X ∈

Γ(E)inv, and ǫW ∈ Γ(Λ2E∗
W ) is given by

ǫW (XW , YW ) = ǫ(X, Y )W , ∀X, Y ∈ Γ(E)inv.

The generalized almost complex structure JW is integrable if and only if EW

is involutive, i.e. E is (F, a)-involutive (from (4)) and ǫW is closed. Using

(4) and XW (fW ) = (Xf)W , for any invariant vector field X ∈ X(M) and

invariant function f ∈ C∞(M) (see Lemma 12), we obtain: for any X, Y, Z ∈

Γ(E)inv,

XW (αW (YW , ZW )) = XW (α(Y, Z)W ) = (Xα(Y, Z))W

αW (XW , [YW , ZW ]) = αW (XW , ([Y, Z](F,a))W ) = α(X, [Y, Z](F,a))W

and similarly for cyclic permutations of X , Y and Z. We deduce that

dǫW (XW , YW , ZW ) = (d(F,a)ǫ(X, Y, Z))W , ∀X, Y, Z ∈ Γ(E)inv.

In particular, ǫW is closed if and only if ǫ is d(F,a)-closed.

Remark 17. The invariance of X + ξ and Y + η is not essential in Theorem

16 i), which can be formulated also without this condition. This is true as

TM admits local frames formed by invariant sections, from relation (7), and

from the fact that L is isotropic with respect to 〈·, ·〉.

4.1 Examples

In this subsection we apply Theorem 16 to various particular cases.
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4.1.1 Twist of symplectic and (deformations) of complex struc-
tures

The conditions which ensure that the integrability of a complex or symplectic

structure is preserved under twist were determined in [19] (see Section 2.1).

In this section we rediscover these conditions using Theorem 16. We begin

with the symplectic case.

Corollary 18. Let ω be an invariant symplectic form on M and Jω the

associated generalized complex structure. Then (Jω)W is integrable (i.e. ωW

is symplectic) if and only if F ∧ iX0
ω = 0.

Proof. For any X ∈ TM and ξ ∈ (TM)∗, JωX = iXω , Jωξ = −ω−1(ξ)

and the (1, 0)-bundle of Jω is L = L((TM)C,−iω). The sections of L are

of the form X − i(iXω), for any X ∈ (TM)C. From Theorem 16, (Jω)W is

integrable if and only if, for any complex vectors X , Y ,

F (Y,X)(X0 + i(iX0
ω)) + iω(X0, Y )(iXF − iω−1(iXF ))

+ iω(X,X0)(iY F − iω−1(iY F )) = 0. (41)

Identifying the TM and T ∗M components in (41) we obtain F ∧ iX0
ω = 0,

as required.

We now turn to the complex case. We consider a more general setting,

namely a complex structure J on M and Π ∈ Γ(Λ2TM), viewed as a homo-

morphism from T ∗M to TM . Assume that

J ◦ Π = Π ◦ J∗. (42)

From (42), (the complexification) of Π maps Λ1,0M to T 1,0M and Λ0,1M to

T 0,1M (the type (1, 0) and (0, 1) of forms/vectors are with respect to J). Let

σ := i
2
Π0,2, i.e.

σ : Λ1,0M → T 1,0M, σ(ξ) :=
i

2
Π(ξ), ∀ξ ∈ Λ1,0M.

From (42),

JJ,σ :=

(
J Π
0 −J∗

)
(43)
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is a generalized almost complex structure, with (0, 1)-bundle given by

L̄ = {X + σ(ξ) + ξ, X ∈ T 0,1M, ξ ∈ Λ1,0M}.

It is well-known that JJ,σ is integrable if and only if σ is a holomorphic Pois-

son structure on (M,J) (see [10, 14]). We assume that this holds. Moreover,

we assume that J and Π are invariant.

Corollary 19. i) In the above setting, (JJ,σ)W is integrable if and only if

iXF ∈ σ−1(spanC{X0 − iJX0}), ∀X ∈ T 0,1M. (44)

In particular, if (JJ,σ)W is integrable then F is of type (1, 1).

ii) If JJ is the generalized complex structure associated to an invariant

complex structure J , then (JJ)W is integrable if and only if F is of type (1, 1).

Proof. i) From Theorem 16 i), JJ,σ is integrable if and only if, for any X +

σ(ξ) + ξ, Y + σ(η) + η ∈ L̄ (where X, Y ∈ T 0,1M and ξ, η ∈ Λ1,0M),

F (X + σ(ξ), Y + σ(η))(X0 − iJJ,σX0)

− η(X0)(iX+σ(ξ)F − iJJ,σiX+σ(ξ)F )

+ ξ(X0)(iY+σ(η)F − iJJ,σiY+σ(η)F ) = 0. (45)

Using the definition (43) of JJ,σ and identifying the vector and covector parts

in the above relation, we obtain that (45) is equivalent to

η(X0)iX+σ(ξ)(F )− ξ(X0)iY+σ(η)F ∈ Λ1,0M (46)

together with

F (X + σ(ξ), Y + σ(η))(X0 − iJX0) = iΠ
(
ξ(X0)iY+σ(η)F − η(X0)iX+σ(ξ)F

)
.

(47)

Taking in (46) η = 0 we obtain iY F ∈ Λ1,0M , i.e. F is of type (1, 1). This,

together with σ(ξ), σ(η) ∈ T 1,0M , imply that iσ(ξ)F and iσ(η)F are of type

(0, 1). Relation (46) is equivalent to

F |Λ2T 1,0M = 0, η(X0)iσ(ξ)F = ξ(X0)iσ(η)F. (48)
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From (48), relation (47) becomes

(F (σ(ξ), Y )− F (σ(η), X)) (X0− iJX0) = iΠ(ξ(X0)iY F −η(X0)iXF ). (49)

We proved that (JJ,σ)W is integrable if and only if (48) and (49) hold. We

now study these relations. Relation (49) with ξ = 0 and η(X0) = 0 gives

F = 0 on T 0,1M ∧ σ(Ann(X0) ∩ Λ1,0M). (50)

If F is of type (1, 1), then relation (50) implies the second relation (48),

because η(X0)ξ − ξ(X0)η ∈ Ann(X0) ∩ Λ1,0M. Thus, (JJ)W is integrable if

and only if F is of type (1, 1) and relation (49) holds. We assume that F is

of type (1, 1) and we consider in more detail relation (49):

a) for ξ = 0 and η(X0) = 0, we saw that it gives (50);

b) for ξ = 0 and η(X0) 6= 0 it gives

Π(iXF ) = iF (X, σ(
η

η(X0)
))(X0 − iJX0), ∀X ∈ T 0,1M. (51)

Remark that relation (51) implies that

iXF ∈ Π−1(spanC{X0 − iJX0}), ∀X ∈ T 0,1M (52)

and an easy argument shows that the converse is also true, i.e. (51) and (52)

are equivalent.

The remaining cases in (49), namely: c) ξ, η ∈ Λ1,0M both non-zero with

ξ(X0) = 0 and η(X0) 6= 0; d) ξ, η ∈ Ann(X0) ∩ Λ1,0M both non-zero; e)

ξ, η ∈ Λ1,0M with ξ(X0) 6= 0 and η(X0) 6= 0, all follow from (50) and (51).

To summarize: we proved that (JJ,σ)W is integrable if and only if F is

of type (1, 1) and relations (50), (51) hold. It is easy to show that these

conditions are equivalent to (44). This concludes claim i). Claim ii) follows

from claim i), by taking Π = 0.

4.1.2 Twist of interpolation between complex and symplectic struc-
tures

We now apply Theorem 16 to a family of generalized complex structures,

which interpolate between complex and symplectic structures. Let (g, I, J,K)
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be an invariant hyper-Kähler structure on M , with Kähler forms ωI , ωJ and

ωK . For any t ∈ [0, π
2
), let Jt := sin(t)JI + cos(t)JωJ

. Then Jt is an (inte-

grable) generalized complex structure (see [12], page 55).

Corollary 20. The generalized almost complex structure (Jt)W is integrable

if and only if F = f(iX0
ωK) ∧ (iX0

ωJ), where f ∈ C∞(M) is invariant and

df ∧ (iX0
ωK) ∧ (iX0

ωJ) = 0.

Proof. Let Bt := tan(t)ωK . As proved in [12], eBtJte
−Bt = Jsec(t)ωJ

. We

deduce that the (1, 0)-bundle of Jt is L((TM)C,−Bt − isec(t)ωJ). From

Theorem 16, we deduce that (Jt)W is integrable if and only if d(F,a)(B +

isec(t)ωJ) = 0. Using that B and ωJ are closed, and the formula

d(F,a)α = dα−
1

a
F ∧ iX0

α, ∀α ∈ Ωk(M), (53)

we obtain that Jt is integrable if and only if iX0
(Bt + isec(t)ωJ)∧F = 0, i.e.

(iX0
ωK) ∧ F = 0, (iX0

ωJ) ∧ F = 0. (54)

Relations (54) together with dF = 0 imply our claim.

4.1.3 Twist and conformal change

For the KK correspondence developed later in the paper, we need to under-

stand when the twist of the conformal change of a generalized almost complex

structure is integrable. This is done in the next proposition.

Proposition 21. Let J be an invariant generalized almost complex structure

on M , with (1, 0)-bundle L = L(E, ǫ), and h ∈ C∞(M) an invariant non-

vanishing function.Then the twist [τh(J )]W of the conformal change τh(J )

of J by h is integrable if and only if one of the following conditions hold:

i) for any invariant sections X + ξ, Y + η of L, the expression

− F (X, Y )X0 + η(X0)iXF − ξ(X0)iY F +
2a

h
(X(h)η − Y (h)ξ)

−
a

h
(η(X)− ξ(Y ))dh− a[X + ξ, Y + η] (55)

is a section of L;
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ii) the bundle E is (F, a)-involutive and

d(F,a)ǫ =
2

h
ǫ ∧ dh|E. (56)

Proof. Let Lh be the (1, 0)-bundle of τh(J ) and h̃ := 1
h2 . Then X + ξ ∈ L if

and only if X + h̃ξ ∈ Lh. From Theorem 16 i), [τh(J )]W is integrable if and

only if, for any X + ξ, Y + η ∈ Γ(L)inv,

−F (X, Y )X0 + (h̃η)(X0)iXF − (h̃ξ)(X0)iY F − a[X + h̃ξ, Y + h̃η] ∈ Γ(Lh),

or

− F (X, Y )X0 + η(X0)iXF − ξ(X0)iY F −
a

h̃
prT ∗ [X + h̃ξ, Y + h̃η]

− aprT [X + h̃ξ, Y + h̃η] ∈ Γ(L). (57)

On the other hand,

[X + h̃ξ, Y + h̃η] = [X, Y ] +X(h̃)η − Y (h̃)ξ + h̃(LXη − LY ξ)

−
1

2
h̃d(η(X)− ξ(Y ))−

1

2
(η(X)− ξ(Y ))dh̃. (58)

Replacing this relation in (57) we obtain (55), as needed. Relation (56)

follows from Theorem 16 ii) and Lh = L(E, h̃ǫ), using that d(F,a)(h̃ǫ) =

(dh̃)|E ∧ ǫ+ h̃d(F,a)ǫ.

5 KK correspondence in generalized complex

geometry

5.1 Twist of generalized almost Hermitian structures

Let (G,J ) be an invariant generalized almost Hermitian structure on M . As

usual, we denote by Li = L(Ei, ǫi) the (1, 0)-bundles of its generalized almost

complex structures J1 = J and J2 = GendJ . We define a 2-form

ǫ ∈ Γ(prT (L1 ∩ L2)
∗ ∧ (E1 + E2)

∗)

by

ǫ(X, ·)|E1
:= ǫ1(X, ·), ǫ(X, ·)|E2

:= ǫ2(X, ·), (59)
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for any X ∈ prT (L1 ∩ L2). The form ǫ is well defined: from (5), ǫ1(X, ·) :=

ξ|E1
, where ξ ∈ (T ∗M)C is arbitrary, such that X + ξ ∈ L1; similarly,

ǫ2(X, ·) = η|E2
, where η ∈ (T ∗M)C is arbitrary, such that X + η ∈ L2; since

X ∈ prT (L1 ∩ L2), we can take ξ = η and we obtain that ǫ1(X, ·)|E1∩E2
=

ǫ2(X.·)|E1∩E2
as claimed. Similarly, the 2-form

ǫ̃ ∈ Γ(prT (L1 ∩ L̄2)
∗ ∧ (E1 + Ē2)

∗)

given by

ǫ̃(X, ·)|E1
:= ǫ1(X, ·), ǫ̃(X, ·)|Ē2

:= ǭ2(X, ·), (60)

for any X ∈ prT (L1 ∩ L̄2), is well defined. Above ǭ2 ∈ Γ(Λ2Ē∗
2) is defined by

ǭ2(X̄, Ȳ ) := ǫ2(X, Y ), X, Y ∈ E2.

Let h ∈ C∞(M) be an invariant, non-vanishing function.

Theorem 22. In the above setting, the twist [τh(G,J )]W of the conformal

change τh(G,J ) of (G,J ) by h is generalized Kähler if and only if the fol-

lowing conditions hold:

i) the bundles E1, prT (L1 ∩ L2) and prT (L1 ∩ L̄2) are (F, a)-involutive.

Moreover, for any X ∈ ΓprT (L1 ∩ L2) and Y ∈ ΓprT (L̄1 ∩ L2),

[X, Y ](F,a) ∈ Γ(E1 + E2) (61)

and for any X ∈ ΓprT (L1 ∩ L̄2) and Y ∈ ΓprT (L̄1 ∩ L̄2),

[X, Y ](F,a) ∈ Γ(E1 + Ē2). (62)

ii) the forms ǫ1, ǫ and ǫ̃ satisfy the relations

d(F,a)ǫ1 =
2

h
ǫ1 ∧ dh|E1

d(F,a)ǫ =
2

h
ǫ ∧ dh on Λ2prT (L1 ∩ L2) ∧ prT (L̄1 ∩ L2)

d(F,a)ǫ̃ =
2

h
ǫ̃ ∧ dh on Λ2prT (L1 ∩ L̄2) ∧ prT (L̄1 ∩ L̄2) (63)

(which, owing to i), are well-defined).
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Proof. Let J h
i = τh ◦ Ji ◦ τ−1

h (i = 1, 2) be the generalized almost complex

structures of the conformal change τh(G,J ). The (1, 0)-bundle of J h
i is

Lh
i = L(Ei, h̃ǫi), where h̃ := 1

h2 . Let (Lh
i )W be the (1, 0)- bundle of (J h

i )W .

It is generated by sections of the form uW , where u is an invariant section

of Lh
i . From Gualtieri’s characterization of generalized Kähler structures (see

Section 2.2), [τh(G,J )]W is generalized Kähler if and only if the following

conditions hold:

a) (J h
1 )W is a generalized complex structure;

b) (Lh
1)W ∩ (Lh

2)W is Courant integrable;

c) (Lh
1)W ∩ (L̄h

2)W is Courant integrable.

From Proposition 21, condition a) is equivalent to the (F, a)-involutivity

of E1 and to the first relation (63). From now on we assume that a) holds.

Since X + ξ ∈ Γ(Li) if and only if X + h̃ξ ∈ Γ(Lh
i ), we obtain that condition

b) is equivalent to

[(X + h̃ξ)W , (Y + h̃η)W ] ∈ Γ((Lh
1)W ∩ (Lh

2)W ), ∀X + ξ, Y + η ∈ Γ(L1∩L2)
inv.

(64)

Using Lemma 13, relation (58) and (Lh
1)W ∩ (Lh

2)W = (Lh
1 ∩ Lh

2)W , we see

that (64) becomes

[X, Y ] +
F (X, Y )

a
X0 +

1

h̃
(X(h̃)η − Y (h̃)ξ) + LXη − LY ξ −

1

2
d(η(X)− ξ(Y ))

−
1

2h̃
(η(X)− ξ(Y ))dh̃−

η(X0)

a
iXF +

ξ(X0)

a
iY F ∈ Γ(L1 ∩ L2), (65)

for any X + ξ, Y + η ∈ Γ(L1∩L2)
inv, which is equivalent to the following two

conditions:

• [X, Y ](F,a) is a section of prT (L1 ∩ L2), for any X, Y ∈ ΓprT (L1 ∩ L2),

i.e. prT (L1 ∩ L2) is (F, a)-involutive;

• the left hand side of (65) is a section of L2, i.e. for any V ∈ Γ(E2),

1

h̃
(X(h̃)η(V )− Y (h̃)ξ(V )) + (LXη)(V )− (LY ξ)(V )−

1

2
V (η(X)− ξ(Y ))

−
1

2h̃
(η(X)− ξ(Y ))V (h̃)−

η(X0)

a
F (X, V ) +

ξ(X0)

a
F (Y, V )

= ǫ2([X, Y ](F,a), V ). (66)
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(From a), the left-hand side of (65) belongs to Γ(L1) as well). Assume now

that prT (L1 ∩ L2) is (F, a)-involutive. Under this assumption we prove that

(66) is equivalent to (61) together with the second relation (63). For this,

we remark, from Y + η ∈ Γ(L1 ∩L2) (in particular, Y + η is a section of L2)

and V ∈ Γ(E2),

(LXη)(V ) = X(η(V ))− η([X, V ]) = X(ǫ2(Y, V ))− η([X, V ]).

Similarly,

(LY ξ)(V ) = Y (ǫ2(X, V ))− ξ([Y, V ]).

With these relations, (66) becomes

−
2

h
(X(h)ǫ2(Y, V ) + Y (h)ǫ2(V,X) + V (h)ǫ2(X, Y ))

+X(ǫ2(Y, V )) + Y (ǫ2(V,X)) + V (ǫ2(X, Y ))

+ η([V,X ](F,a)) + ξ([Y, V ](F,a)) + ǫ2(V, [X, Y ](F,a)) = 0. (67)

Since X + ξ, Y + η ∈ Γ(L1 ∩ L2), the 1-forms ξ and η are determined by

X and, respectively, by Y , on E1 + E2, but outside this bundle they take

arbitrary values. Therefore, relation (67) implies that

[V,X ](F,a) ∈ Γ(E1 + E2), ∀X ∈ ΓprT (L1 ∩ L2), V ∈ Γ(E2), (68)

which is equivalent to (61), when prT (L1 ∩ L2) is (F, a)-involutive (by de-

composing E2 = prT (L1 ∩ L2) + prT (L̄1 ∩ L2)). Moreover, if prT (L1 ∩ L2) is

(F, a)-involutive and (61) holds, then d(F,a)ǫ is defined on Λ2prT (L1∩L2)∧E2

and (67) is equivalent to

d(F,a)ǫ =
2

h
ǫ ∧ dh on Λ2prT (L1 ∩ L2) ∧ E2. (69)

Decomposing E2 = prT (L1 ∩ L2) + prT (L̄1 ∩ L2) again and using the first

relation (63) (which holds because condition a) holds) we obtain that (69) is

equivalent to the second relation (63).

We proved that if condition a) holds, then condition b) is equivalent to

the (F, a)-involutivity of prT (L1 ∩ L2), together with relation (61) and the

second relation (63). A similar argument shows that if condition a) holds,

then condition c) is equivalent to the (F, a)-involutivity of prT (L1 ∩ L̄2),

together with relation (62) and the third relation (63).
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5.2 Statement of the KK correspondence

Let (G,J ) be an invariant generalized Kähler structure on M , J1 = J ,

J2 = GendJ its generalized complex structures with (1, 0)-bundles Li =

L(Ei, ǫi) (i = 1, 2). Assume that the vector field X0 is Hamiltonian Killing

on (M,G,J ), with Hamiltonian function fH , and let f, h ∈ C∞(M) be in-

variant, non-vanishing functions. Let (G′,J ) be the elementary deformation

of (G,J ) by X0 and f . We assume that f 2 − 1 is non-vanishing and denote

by α the 1-form

α := −d

(
ln

|f 2 − 1|

f 2G(X0, X0)

)
. (70)

Theorem 23. The twist [τh(G
′,J )]W of the conformal change τh(G

′,J ) of

(G′,J ) by h is generalized Kähler if and only if the following conditions i) -

v) hold:

i) The curvature F vanishes on

Λ2prT (L1 ∩ L2 ∩ S⊥
C
)⊕ Λ2prT (L1 ∩ L̄2 ∩ S⊥

C
)

and

F (X, Y )X0 ∈ Γ(E1), ∀X ∧ Y ∈ Λ2E1. (71)

ii) For any X ∈ ΓprT (L1 ∩ L2 ∩ S⊥
C
),

[prT (J3X0), X ] + α(X)prT (J3X0) +
f 2F (prT (vf ), X)

a(f 2 − 1)
X0

∈ ΓprT (L1 ∩ L2 ∩ S⊥
C
) (72)

and for any X ∈ ΓprT (L1 ∩ L̄2 ∩ S⊥
C
),

[prT (J3X0), X ] + α(X)prT (J3X0)−
f 2F (prT (vif), X)

a(f 2 − 1)
X0

∈ ΓprT (L1 ∩ L̄2 ∩ S⊥
C ). (73)

iii) For any X ∈ prT (S
⊥),

X(af 2h2) = 0. (74)
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iv) The following algebraic conditions on ǫ1 and ǫ2 hold:

(iX0
ǫ1) ∧ F = −

2a

h
ǫ1 ∧ dh on Λ3E1 (75)

ǫ2 ∧ dh = 0 on prT (L1 ∩ L2 ∩ S⊥
C
) ∧ prT (L̄1 ∩ L2 ∩ S⊥

C
) ∧ prT (L2 ∩ S⊥

C
).

v) On Λ2prT (L2 ∩ S⊥
C
),

d

(
1− f 2

f 2G(X0, X0)
prT ∗(J3X0)

)
+

f 2 − 1

f 2G(X0, X0)
DprT (J3X0)ǫ2 +

2

af 2
F

=
2

hG(X0, X0)
(prT (vf )(h)ǫ2 + prT ∗(vf) ∧ dh) , (76)

where, for any X ∧ Y ∈ Λ2prT (L2 ∩ S⊥
C
),

(DJ3X0
ǫ2)(X, Y ) := (prTJ3X0)(ǫ2(X, Y ))

− ǫ2([prTJ3X0, X ] + α(X)prTJ3X0, Y )

− ǫ2(X, [prTJ3X0, Y ] + α(Y )prTJ3X0). (77)

Now we give more detailed explanations for some of the relations from

the above theorem.

Remark 24. i) Relation (71) does not imply, a priori, that X0 ∈ Γ(E1) (the

form F could vanish on Λ2E1), but it does imply that the 3-form (iX0
ǫ1)∧F ,

which appears in the first relation (75), is well defined (in the usual way).

ii) The form DprT (J3X0)ǫ2, as given in (77), is well-defined, owing to con-

dition ii) from Theorem 23: this condition implies that

[prT (J3X0), X ] + α(X)prT (J3X0) ∈ Γ(E2), ∀X ∈ ΓprT (L2 ∩ S⊥
C
)

(decompose prT (L2 ∩ S⊥
C
) into the sum of prT (L1 ∩ L2 ∩ S⊥

C
) and prT (L̄1 ∩

L2 ∩ S⊥
C
) and use that X0 ∈ Γ(E2), which holds since X0 − iJ2X0 ∈ Γ(L2)

and J2X0 ∈ Ω1(M)).

The next sections are devoted to the proof of Theorem 23. The plan

is the following. Section 5.2.1 is a preliminary part of the proof. Here we

compute various Courant brackets, which will be useful in our argument.

In order to prove Theorem 23, we apply Theorem 22 to the generalized
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almost Hermitian structure (G′,J ) and the conformal function h. Namely,

in Section 5.2.2 we prove that the generalized almost Hermitian structure

(G′,J ) satisfies condition i) from Theorem 22 if and only if conditions i) and

ii) from Theorem 23 are satisfied. In Section 5.2.3 we assume that conditions

i) and ii) from Theorem 23 are satisfied, and we prove that condition ii)

from Theorem 22 (applied to the generalized almost Hermitian structure

(G′,J ) and function h) is equivalent to the remaining conditions iii) - v)

from Theorem 23.

5.2.1 Various Courant brackets

We begin by computing the Courant brackets of the canonical basis of S.

Lemma 25. i) The Courant bracket of X0 with JiX0 (i = 1, 3) is given by

LX0
(JX0) = LX0

(J2X0) = 0, LX0
(J3X0) = dG(X0, X0). (78)

ii) The Courant bracket of JX0 with J2X0 and J3X0 is given by

[JX0,J2X0] = dG(X0, X0), [JX0,J3X0] = 2J dG(X0, X0). (79)

iii) The Courant bracket of J2X0 with J3X0 is trivial:

[J2X0,J3X0] = 0. (80)

Proof. We use relation (9) and LX0
(J ) = 0, LX0

(Gend) = 0 (see Definition

1). The first relation (78) follows from

LX0
(JX0) = LX0

(JX0)− d〈X0,JX0〉 = 0.

In a similar way we obtain the other relations (78). Let us prove (79): from

the definition of the Courant bracket and J2X0 = dfH ,

[JX0,J2X0] = [JX0, df
H] = LprTJX0

(dfH)−
1

2
d
(
(dfH)(prTJX0)

)

=
1

2
d
(
dfH(prTJX0)

)
= d〈dfH,JX0〉 = dG(X0, X0), (81)

which is the first relation (79). For the second relation (79) we use that

NJ (X0,J2X0) = 0, i.e.

[JX0,J3X0]− [X0,J2X0] = J ([JX0,J2X0] + [X0,J3X0]). (82)
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The Courant brackets [X0,J2X0] and [X0,J3X0] were computed in (78) and

the Courant bracket [JX0,J2X0] in (81). Using (82) we obtain the second

relation (79). Relation (80) can be proved equally easy.

Corollary 26. i) The Courant bracket [vf , v̄if ] is given by

[vf , v̄if ] = −2iprT (vf)(
1

f 2
)J2X0 + 4G(X0, X0)d(

1

f 2
). (83)

ii) The following relation holds:

[prT (vf), v̄if ]− [prT (v̄if), vf ] = −2iprT (vf )(
1

f 2
)J2X0 + 4G(X0, X0)d(

1

f 2
).

(84)

Proof. From the definition of vif and the property (7) of the Courant bracket,

we obtain

[vf , v̄if ] = −[X0, vf ]− i[JX0, vf ]−
1

f 2
[J3X0, vf ] + π(vf)(

1

f 2
)J3X0

+ 2G(X0, X0)d(
1

f 2
) +

i

f 2
[J2X0, vf ]− iπ(vf)(

1

f 2
)J2X0. (85)

From Lemma 25 we obtain

[X0, vf ] = −d

(
G(X0, X0)

f 2

)
;

[JX0, vf ] = −
1

f 2
(2J dG(X0, X0) + idG(X0, X0))− π(JX0)(

1

f 2
)(J3X0 + iJ2X0)

+ iG(X0, X0)d(
1

f 2
);

[J2X0, vf ] = idG(X0, X0);

[J3X0, vf ] = −dG(X0, X0) + 2iJ dG(X0, X0)− prT (J3X0)(
1

f 2
)(J3X0 + iJ2X0).

Replacing these relations in (85) we obtain (83). In order to prove (84) we

remark, from (83), that [prT (vf), prT (v̄if)] = 0. Since the Courant bracket

of any 2-forms is trivial, we obtain that the left hand side of (84) is equal to

[vf , v̄if ]. From (83) again, we obtain (84).

Lemma 27. The Courant bracket LX0
preserves Γ(S⊥), Γ(Li ∩ S⊥

C
) and

Γ(L̄i ∩ S⊥
C
) (i = 1, 2).
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Proof. We prove the statements which involve S⊥ and Li (the statements

which involve L̄i can be obtained similarly). Let w ∈ Γ(S⊥). Then 〈X0, w〉 =

0 and, from (9), LX0
(w) = LX0

(w). From relation (8) applied to u := X0,

v := w and w := x ∈ Γ(S), together with LX0
(x) = LX0

(x) − d〈X0, x〉, we

obtain

〈LX0
(w), x〉+ 〈w,LX0

(x)〉 = 0. (86)

For x ∈ {X0,JX0,J2X0,J3X0}, LX0
(x) = 0 and from (86) we deduce that

〈LX0
(w), x〉 = 0. We proved that LX0

preserves Γ(S⊥). We now prove that

LX0
preserves Γ(Li ∩ S⊥

C
). Without loss of generality, we take i = 1 (the

argument for i = 2 is similar). Let w ∈ Γ(L1 ∩ S⊥
C
). As LX0

(w) ∈ Γ(S⊥
C
)

(from claim i)), we need to show that LX0
(w) ∈ Γ(L1). Since LX0

(J1) = 0,

LX0
(J1w) = J1LX0

(w). But w,J1w ∈ Γ(S⊥
C
) which implies that LX0

(w) =

LX0
(w), LX0

(J1w) = LX0
(J1w). We obtain that LX0

(J1w) = J1LX0
(w).

Since w ∈ Γ(L1), J1w = iw and iLX0
(w) = J1LX(w), i.e. LX(w) ∈ Γ(L1),

as required.

Lemma 28. i) For any X ∈ ΓprT (L1 ∩ L2 ∩ S⊥
C
), and

[prT (v1), X ] +
XG(X0, X0)

G(X0, X0)
prT (v1) ∈ ΓprT (L1 ∩ L2 ∩ S⊥

C ). (87)

ii) For any X ∈ ΓprT (L1 ∩ L̄2 ∩ S⊥
C
),

[prT (vi), X ] +
XG(X0, X0)

G(X0, X0)
prT (vi) ∈ ΓprT (L1 ∩ L̄2 ∩ S⊥

C ). (88)

Proof. Let E(X) be the left hand side of (87). Since L1 and L2 are Courant

integrable and v1 ∈ Γ(L1∩L2), we deduce that E(X) is a section of prT (L1∩

L2). Since 〈E(X), dfH〉 = 0 (easy check), we obtain (87). Relation (88) can

be proved similarly.

5.2.2 Involutivity of the bundles

Consider the setting from Theorem 23 and let L′
2 = L(E ′

2, ǫ
′
2) be the (1, 0)-

bundle of the second generalized almost complex structure J ′
2 of (G′,J ).

Proposition 29. Condition i) from Theorem 22, applied to the generalized

almost Hermitian structure (G′,J ), holds, if and only if conditions i) and ii)

from Theorem 23 hold.
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Part of the statement of Proposition 29 is obvious: since J is integrable,

the bundle E1 is involutive. We deduce that E1 is (F, a)-involutive if and

only if F (X, Y )X0 ∈ Γ(E1), for any X, Y ∈ Γ(E1), i.e. relation (71) holds.

The remaining part of the proof of Proposition 29 is divided into several

lemmas, as follows.

Lemma 30. i) The bundle prT (L1 ∩ L′
2) is (F, a)-involutive if and only if

F = 0 on Λ2prT (L1 ∩ L2 ∩ S⊥
C
) and relation (72) holds.

ii) The bundle prT (L1 ∩ L̄′
2) is (F, a)-involutive if and only if F = 0 on

Λ2prT (L1 ∩ L̄2 ∩ S⊥
C
) and relation (73) holds.

Proof. Owing to the decomposition of prT (L1∩L′
2) given by the first relation

(18), the (F, a)-involutivity of prT (L1 ∩ L′
2) involves two cases: when both

arguments X and Y of [X, Y ](F,a) are sections of prT (L1 ∩ L2 ∩ S⊥
C
) and,

respectively, when one is a section of this bundle and the other is prT (vf).

We begin with the first case. From Lemma 2.1 of [16], {dfH}⊥ is Courant

integrable. Since Li are Courant integrable, we obtain that also L1∩L2∩S
⊥
C
=

{dfH}⊥∩L1∩L2 is Courant integrable, and, in particular, prT (L1∩L2∩S⊥
C
)

is involutive. If prT (L1 ∩ L′
2) is (F, a)-involutive, then

F (X, Y )X0 ∈ prT (L1 ∩ L′
2), ∀X, Y ∈ prT (L1 ∩ L2 ∩ S⊥

C
). (89)

We will show that this relation implies that F = 0 on Λ2prT (L1 ∩ L2 ∩ S⊥
C
).

Suppose that this is not true. Then X0 ∈ prT (L1 ∩L′
2) (at least at one point

of M ; for simplicity, this point will be omitted in our notation) and there is

λ ∈ C, w ∈ L1 ∩ L2 ∩ S⊥
C

and ξ ∈ (T ∗M)C, such that X0 = λvf + w + ξ, or

(from the definition of vf ),

(1− λ)X0 + λiJX0 +
λ

f 2
(J3X0 + iJ2X0)− ξ ∈ L1 ∩ L2 ∩ S⊥

C
. (90)

In particular, the inner product 〈·, ·〉 of the left hand side of (90) with J2X0 =

dfH vanishes and we obtain λG(X0, X0) = 0, i.e. λ = 0 (because G is positive

definite). We deduce that X0 − ξ ∈ L1 ∩ L2 ∩ S⊥
C
. We will now show that

this leads to a contradiction. Indeed, since X0 − ξ ∈ L1 ∩ L2, we obtain

that X0 − ξ ∈ C+ (the 1-eigenbundle of Gend). Recall now that C+ is the
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graph of b+ g (where b and g are the 2-forms, respectively the metric of the

bi-Hermitian structure associated to (G,J )). This implies ξ = −(b+g)(X0).

But then 〈X0 − ξ,X0〉 = −1
2
g(X0, X0) 6= 0 (because g is positive definite)

and X0 − ξ /∈ S⊥
C
. We obtain a contradiction and we conclude that the first

case of the (F, a)-involutivity of prT (L1 ∩ L′
2) is equivalent to F = 0 on

Λ2prT (L1 ∩ L2 ∩ S⊥
C
).

We now prove that the second case mentioned above, of the (F, a)-

involutivity of prT (L1 ∩ L′
2), is equivalent to relation (72). For any X ∈

ΓprT (L1 ∩ L2 ∩ S⊥
C
), let

Ff(X) := [prT (vf ), X ](F,a) +
XG(X0, X0)

G(X0, X0)
prT (vf ) (91)

By a standard computation, which uses relation (8), we obtain that Ff(X)

is related to the left hand side E(X) of (87) by

Ff(X) = E(X) + (1−
1

f 2
){[prT (J3X0), X ] + α(X)prT (J3X0)}

+
F (prT (vf), X)

a
X0. (92)

We obtain that [prT (vf), X ](F,a) ∈ Γ(L1 ∩ L′
2) if and only if Ff(X) ∈ Γ(L1 ∩

L′
2), if and only if (from Lemma 28)

[prT (J3X0), X ] + α(X)prT (J3X0) +
f 2F (prT (vf), X)

a(f 2 − 1)
X0 ∈ ΓprT (L1 ∩ L′

2).

(93)

In order to conclude the proof of claim i), it remains to show that (93) is

equivalent to (72). In order to prove this, let u ∈ Γ(L1 ∩ L2 ∩ S⊥
C
) which

projects to X. From (93), there is a 1-form ξ and λ ∈ C such that

[J3X0, u] + α(X)J3X0 +
f 2F (prT (vf), X)

a(f 2 − 1)
X0 + λvf + ξ ∈ Γ(L1 ∩ L2 ∩ S⊥

C ).

In particular, the 〈·, ·〉-inner product of the above expression with dfH van-

ishes. From 〈[J3X0, u], df
H〉 = 0 (which follows from relation (8), with

u replaced by J3X0, v replaced by u and w replaced by dfH, by using

[dfH ,J3X0] = 0, from Lemma 25), we obtain that λ = 0, which implies

(72). Claim i) follows. Claim ii) can be proved in a similar way. More
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precisely, one shows that the condition [X, Y ](F,a) ∈ ΓprT (L1 ∩ L̄′
2), for any

X, Y ∈ ΓprT (L1 ∩ L̄2 ∩ S⊥
C
) is equivalent to F = 0 on Λ2prT (L1 ∩ L̄2 ∩ S⊥

C
).

Then, for any X ∈ ΓprT (L1 ∩ L̄2 ∩ S⊥
C
), one defines

F ′
f(X) := [prT (vif ), X ](F,a) +

XG(X0, X0)

G(X0, X0)
prT (vif ) (94)

and shows that it is related to the left hand side E ′(X) of (88) by

F ′
f(X) = E ′(X) + (

1

f 2
− 1){[prT (J3X0), X ] + α(X)prT (J3X0)}

+
F (prT (vif ), X)

a
X0. (95)

From Lemma 28, E ′(X) ∈ ΓprT (L1 ∩ L̄2 ∩ S⊥
C
). Thus, [prT (vif), X ](F,a) ∈

ΓprT (L1 ∩ L̄′
2) if and only if

[prT (J3X0), X ] + α(X)prT (J3X0)−
f 2F (prT (vif), X)

a(f 2 − 1)
X0 ∈ ΓprT (L1 ∩ L̄′

2)

(96)

and as before one can show that this is equivalent to (73).

Remark 31. The proof of the above lemma shows that if prT (L1 ∩ L′
2) and

prT (L1 ∩ L̄′
2) are (F, a)-involutive, then, for every X ∈ ΓprT (L1 ∩ L2 ∩ S⊥

C
),

[prT (vf), X ](F,a) +
XG(X0, X0)

G(X0, X0)
prT (vf) ∈ ΓprT (L1 ∩ L2 ∩ S⊥

C ) (97)

and for every X ∈ ΓprT (L1 ∩ L̄2 ∩ S⊥
C
),

[prT (vif ), X ](F,a) +
XG(X0, X0)

G(X0, X0)
prT (vif ) ∈ ΓprT (L1 ∩ L̄2 ∩ S⊥

C
). (98)

Next, we assume that the bundles prT (L1∩L
′
2) and prT (L1∩L̄

′
2) are (F, a)-

involutive. Under these assumptions, we will prove that the conditions (61)

and (62) from Theorem 22, applied to L1 and L′
2, are satisfied. That is, we

aim to show that for any X ∈ ΓprT (L1 ∩ L′
2) and Y ∈ ΓprT (L̄1 ∩ L′

2),

[X, Y ](F,a) ∈ Γ(E1 + E ′
2) (99)

and for any X ∈ ΓprT (L1 ∩ L̄′
2) and Y ∈ ΓprT (L̄1 ∩ L̄′

2),

[X, Y ](F,a) ∈ Γ(E1 + Ē ′
2). (100)
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This will be done in Lemma 32 and in Corollary 33 below, by analysing

how the map (X, Y ) → [X, Y ](F,a) behaves with respect to the decompositions

of prT (L1 ∩ L′
2), prT (L̄1 ∩ L′

2) and E1 + E ′
2 (for condition (99)) and how it

behaves with respect to the decompositions of prT (L1 ∩ L̄′
2), prT (L̄1 ∩ L̄′

2)

and E1 + Ē ′
2 (for condition (100)). Recall the decompositions (18) of the

bundles prT (L1 ∩ L′
2) and prT (L1 ∩ L̄′

2). By conjugation, prT (L̄1 ∩ L̄′
2) and

prT (L̄1 ∩ L′
2) decompose similarly:

prT (L̄1 ∩ L̄′
2) = spanC{prT (v̄f )}+ prT (L̄1 ∩ L̄2 ∩ S⊥

C )

prT (L̄1 ∩ L′
2) = spanC{prT (v̄if )}+ prT (L̄1 ∩ L2 ∩ S⊥

C
) (101)

(direct sum decompositions). From Remark 10 i) and vf , vif ∈ L1, we obtain

E1 + E ′
2 = E1 + prT (L2 ∩ S⊥

C
) + spanC{prT (v̄if)}

E1 + Ē ′
2 = E1 + prT (L̄2 ∩ S⊥

C
) + spanC{prT (v̄f)}. (102)

Also,

X0 =
1

2
prT (vf + v̄if ) ∈ E ′

2 ∩ Ē ′
2 (103)

and, from Corollary 26 i),

[prT (vf), prT (v̄if)]
(F,a) =

F (prT (vf ), prT (v̄if ))

a
X0. (104)

Lemma 32. Suppose that prT (L1∩L
′
2) and prT (L1∩L̄

′
2) are (F, a)-involutive.

The following statements hold:

i) For any X ∈ ΓprT (L1 ∩ L2 ∩ S⊥
C
),

[prT (v̄if ), X ](F,a) −
XG(X0, X0)

G(X0, X0)
prT (vf)−

2F (X0, X)

a
X0

∈ ΓprT (L1 ∩ L2 ∩ S⊥
C
). (105)

ii) For any X ∈ ΓprT (L̄1 ∩ L2 ∩ S⊥
C
),

[prT (vf ), X ](F,a) −
XG(X0, X0)

G(X0, X0)
prT (v̄if)−

2F (X0, X)

a
X0

∈ ΓprT (L̄1 ∩ L2 ∩ S⊥
C
). (106)
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Proof. Let X ∈ ΓprT (L1 ∩ L2 ∩ S⊥
C
) and Rf(X) be the expression from the

left hand side of (105). Recall the expression Ff(X) defined in (91). A

straightforward computation shows that

Rf (X) = −Ff(X) + 2[X0, X ].

From Lemmas 27 and (the first relation of) Remark 31, [X0, X ] and Ff(X)

are sections of prT (L1 ∩ L2 ∩ S⊥
C
). Relation (105) follows. Relation (106)

is obtained similarly, by comparering the the left hand side of (106) with

the conjugate of F ′
f(X), defined in (94), and using (the second relation of)

Remark 31.

Corollary 33. Suppose that prT (L1 ∩ L′
2) and prT (L1 ∩ L̄′

2) are (F, a)-

involutive. Then (99) and (100) are satisfied.

Proof. From relations (97), (98), (104), (105), (106), their conjugates, and

the decompositions (18), (101), (102), it remains to prove two more state-

ments:

a) [X, Y ](F,a) is a section of E1 + E ′
2, for any X ∈ Γ(L1 ∩ L2 ∩ S⊥

C
) and

Y ∈ Γ(L̄1 ∩ L2 ∩ S⊥
C
);

b) [X, Y ](F,a) is a section of E1 + Ē ′
2, for any X ∈ Γ(L1 ∩ L̄2 ∩ S⊥

C
) and

Y ∈ Γ(L̄1 ∩ L̄2 ∩ S⊥
C
).

To prove these claims, we will show that

[X, Y ](F,a) = prT ([w1, w2]
⊥) +

(
G([w1, w2], X0)

G(X0, X0)
+

F (X, Y )

a

)
X0, (107)

for any w1 ∈ Γ(L1 ∩ L2 ∩ S⊥
C
) and w2 ∈ Γ(L̄1 ∩ L2 ∩ S⊥

C
). Let X := prT (w1)

and Y := prT (w2). In order to prove relation (107), we remark that [w1, w2] ∈

Γ(L2 ∩ {dfH}⊥) (as L2 and {dfH}⊥ are Courant integrable). This implies,

using dfH = J2X0,

G([w1, w2],JX0) = G([w1, w2],J3X0) = 0;

G([w1, w2],J2X0) = −G(J2[w1, w2], X0) = −iG([w1, w2], X0). (108)

From (108) we deduce that

[w1, w2] = [w1, w2]
⊥ +

G([w1, w2], X0)

G(X0, X0)
(X0 − iJ2X0), (109)
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which implies (107). Note that prT ([w1, w2]
⊥) ∈ ΓprT (L2 ∩ S⊥

C
). From (103)

and (107) we obtain

[X, Y ](F,a) ∈ Γ(prT (L2 ∩ S⊥
C
) + E ′

2 ∩ Ē ′
2). (110)

As prT (L2 ∩ S⊥
C
) ⊂ E ′

2, the statements a) and b) follow from (110) (and its

conjugate).

The proof of Proposition 29 is now completed.

5.2.3 The differential equations on forms

We consider the setting from Theorem 23 and we assume that conditions i)

and ii) from this theorem are satisfied. From the previous section, this means

that condition i) from Proposition 22, applied to the generalized almost com-

plex structure (G′,J ), is satisfied. Let ǫ′ ∈ Γ(prT (L1 ∩L′
2)∧ (E1 +E ′

2)) and

ǫ̃′ ∈ Γ(prT (L1 ∩ L̄′
2) ∧ (E1 + Ē ′

2)) be the two 2-forms associated to (G′,J ),

as at the beginning of Section 5.1. Relations (63) from Theorem 22, applied

to the generalized almost Hermitian structure (G′,J ) and function h, are

d(F,a)ǫ1 =
2

h
ǫ1 ∧ dh|E1

d(F,a)ǫ′ =
2

h
ǫ′ ∧ dh on Λ2prT (L1 ∩ L′

2) ∧ prT (L̄1 ∩ L′
2)

d(F,a)ǫ̃′ =
2

h
ǫ′ ∧ dh on Λ2prT (L1 ∩ L̄′

2) ∧ prT (L̄1 ∩ L̄′
2). (111)

In order to conclude the proof of Theorem 23 it remains to show (using the

material from the previous section) that relations (111) are equivalent to the

remaining conditions iii), iv) and v) from Theorem 23. This will be done

in this section. Since J is integrable, E1 is involutive and dǫ1 = 0. From

relation (53) applied to α := ǫ1, we obtain that the first relation (111) is

equivalent to the first relation (75). From now on we assume that these two

equivalent relations hold.

Proposition 34. In this setting, the second and third relation (111) are

equivalent to relation (74), the second relation (75) and relation (76).
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We divide the proof of the above proposition into several steps. We begin

by computing ǫ′ and ǫ̃′. Recall the decompositions (18) and (102).

Lemma 35. i) The form ǫ′ ∈ Γ((L1 ∩ L2)
∗ ∧ (E1 + E ′

2)
∗) is given by:

ǫ′(prT (vf), X) = prT ∗(vf)(X), ∀X ∈ E1 + prT (L2 ∩ S⊥
C ),

ǫ′(prT (vf), prT (v̄if )) =
4

f 2
G(X0, X0),

ǫ′(X, Y ) = ǫ2(X, Y ), ∀X ∈ prT (L1 ∩ L2 ∩ S⊥
C
), Y ∈ prT (L2 ∩ S⊥

C
),

ǫ′(X, Y ) = ǫ1(X, Y ), ∀X ∈ prT (L1 ∩ L2 ∩ S⊥
C
), Y ∈ E1,

ǫ′(X, prT (v̄if)) = −prT ∗(v̄if )(X), ∀X ∈ prT (L1 ∩ L2 ∩ S⊥
C ).

ii) The form ǫ̃′ ∈ Γ((L1 ∩ L̄′
2)

∗ ∧ (E1 + Ē ′
2)

∗) is given by

ǫ̃′(prT (vif), X) = prT ∗(vif )(X), ∀X ∈ E1 + prT (L̄2 ∩ S⊥
C ),

ǫ̃′(prT (vif), prT (v̄f )) = −
4

f 2
G(X0, X0),

ǫ̃′(X, Y ) = ǭ2(X, Y ), ∀X ∈ prT (L1 ∩ L̄2 ∩ S⊥
C ), Y ∈ prT (L̄2 ∩W⊥

C ),

ǫ̃′(X, Y ) = ǫ1(X, Y ), ∀X ∈ prT (L1 ∩ L̄2 ∩ S⊥
C
), Y ∈ E1,

ǫ̃′(X, prT (v̄f)) = −prT ∗(v̄f )(X), ∀X ∈ prT (L1 ∩ L̄2 ∩ S⊥
C ).

Proof. The proof is straightforward from definitions. Let us compute for

example ǫ′(prT (vf ), prT (v̄if )). Using vf ∈ L1 ∩ L′
2, v̄if ∈ L̄1 ∩ L′

2 and the

definition of ǫ′, we obtain

ǫ′(prT (vf), prT (v̄if)) = ǫ′2(prT (vf ), prT (v̄if) = 2〈vf , prT (v̄if )〉. (112)

On the other hand, for any u, v ∈ TM orthogonal with respect to 〈·, ·〉,

〈prT (u), v〉 + 〈u, prT (v)〉 = 0. Replacing in (112) the definitions of vf and

vif and using this remark for u = v = JX0, u = v = J3X0 and for u =

JX0, v = J3X0, we obtain that 〈vf , prT (v̄if )〉 =
2
f2G(X0, X0). The required

expression for ǫ′(prT (vf ), prT (v̄if )) follows from (112).

For simplicity of notation, let F be the 2-form on prT (L2 ∩ S⊥
C
) defined

by the left hand side of (76).
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Lemma 36. The 3-form d(F,a)ǫ′ on Λ2prT (L1∩L′
2)∧prT (L̄1∩L′

2) is given by:

i) for any X, Y ∈ prT (L1 ∩ L2 ∩ S⊥
C
) and Z ∈ prT (L̄1 ∩ L2 ∩ S⊥

C
),

(d(F,a)ǫ′)(X, Y, Z) = 0; (113)

ii) for any X ∈ prT (L1 ∩ L2 ∩ S⊥
C
),

(d(F,a)ǫ′)(X, prT (vf), prT (v̄if)) = −
4X(af 2)

af 4
G(X0, X0); (114)

iii) for any X ∈ prT (L1 ∩ L2 ∩ S⊥
C
) and Y ∈ prT (L̄1 ∩ L2 ∩ S⊥

C
),

(d(F,a)ǫ′)(X, Y, prT (vf)) = G(X0, X0)F(X, Y ); (115)

iv) for any X, Y ∈ prT (L1 ∩ L2 ∩ S⊥
C
),

(d(F,a)ǫ′)(X, Y, prT (v̄if )) = −G(X0, X0)F(X, Y ). (116)

Proof. For claim i), letX, Y ∈ ΓprT (L1∩L2∩S
⊥
C
) and Z ∈ ΓprT (L̄1∩L2∩S

⊥
C
).

Choose w1, w2 ∈ Γ(L1 ∩ L2 ∩ S⊥
C
) which project to X and Y respectively,

and w3 ∈ Γ(L̄1 ∩ L2 ∩ S⊥
C
) which projects to Z. Since prT (L1 ∩ L2 ∩ S⊥

C
) is

involutive (see the proof of Lemma 30) and F (X, Y ) = 0 (see relation (71))

we obtain that [X, Y ](F,a) = [X, Y ] ∈ ΓprT (L1 ∩ L2 ∩ S⊥
C
). From Lemma 35,

ǫ′([X, Y ](F,a), Z) = ǫ2([X, Y ], Z). (117)

We now compute ǫ′([X,Z](F,a), Y ). From relation (109),

[X,Z](F,a) = prT ([w1, w3]
⊥) +

(
G(X0, [w1, w3])

G(X0, X0)
+

F (X,Z)

a

)
X0. (118)

Since prT ([w1, w3]
⊥) ∈ Γ(L2 ∩ S⊥

C
) and Y ∈ ΓprT (L1 ∩ L2 ∩ S⊥

C
), we obtain

ǫ′([X,Z](F,a), Y ) = ǫ2(prT ([w1, w3]
⊥), Y )

+

(
G([w1, w3], X0)

G(X0, X0)
+

F (X,Z)

a

)
ǫ′(X0, Y ). (119)

From Lemma 35 and Y ∈ ΓprT (L1 ∩ L2 ∩ S⊥
C
),

2ǫ′(X0, Y ) = ǫ′(prT (vf), Y ) + ǫ′(prT (v̄if ), Y ) = 2〈prT ∗(vf + v̄if ), Y 〉 = 0,

(120)
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where in the last equality we used prT ∗(vf + v̄if ) = − 2i
f2J2X0 and Y ∈

ΓprT (S
⊥
C
). We proved that

ǫ′([X,Z](F,a), Y ) = ǫ2([X,Z], Y ). (121)

Similarly,

ǫ′([Y, Z](F,a), X) = ǫ2([Y, Z], X). (122)

From (117), (121), (122) we obtain

(d(F,a)ǫ′)(X, Y, Z) = dǫ2(X, Y, Z) = 0.

Claim i) is proved.

We now prove claim ii). Let X ∈ ΓprT (L1 ∩L2 ∩S⊥
C
). From Corollary 26

i), [prT (vf ), prT (v̄if)] = 0. From relation (120), ǫ′(X0, X) = 0. We obtain

ǫ′([prT (vf ), prT (v̄if )]
(F,a), X) = 0. (123)

Next, we compute ǫ′([prT (vf), X ](F,a), prT (v̄if )). In order to do this, we add

and subtract to [prT (vf), X ](F,a) the term XG(X0,X0)
G(X0,X0)

prT (vf ):

ǫ′([prT (vf), X ](F,a), prT (v̄if )) = −
XG(X0, X0)

G(X0, X0)
ǫ′(prT (vf ), prT (v̄if ))

+ ǫ′([prT (vf), X ](F,a) +
XG(X0, X0)

G(X0, X0)
prT (vf), prT (v̄if )).

From relation (112), ǫ′(prT (vf), prT (v̄if )) = 2〈vf , prT (v̄if )〉. From relation

(97) and Lemma 35, we obtain

ǫ′([prT (vf ), X ](F,a) +
XG(X0, X0)

G(X0, X0)
prT (vf ), prT (v̄if ))

= −2〈[prT (vf), X ](F,a) +
XG(X0, X0)

G(X0, X0)
prT (vf), prT ∗(v̄if )〉.

Combining the above relations and using

〈vf , prT (v̄if )〉+ 〈prT (vf ), prT ∗(v̄if)〉 = 〈vf , v̄if 〉 = 0, (124)

(vf , v̄if ∈ L′
2 which is isotropic), we obtain

ǫ′([prT (vf), X ](F,a), prT (v̄if ))

= −2〈[prT (vf ), X ], prT ∗(v̄if )〉+
2F (prT (vf ), X)

af 2
G(X0, X0). (125)
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A similar computation which uses relation (105) shows that

ǫ′([prT (v̄if ), X ](F,a), prT (vf))

= −2〈[prT (v̄if), X ], prT ∗(vf)〉 −
2F (prT (v̄if), X)

af 2
G(X0, X0). (126)

Using Lemma 35 for ǫ′(prT (vf ), X), ǫ′(prT (v̄if), X) and ǫ′(prT (vf ), prT (v̄if)),

together with relations (123), (125) and (126), we obtain

(d(F,a)ǫ′)(X, prT (vf), prT (v̄if )) = −2〈[prT (v̄if ), vf ]− [prT (vf), v̄if ], X〉

+
4

af 2
F (X0, X)G(X0, X0).

From Corollary 26 ii), iX0
F = −da and X ∈ ΓprT (S

⊥
C
) we obtain claim ii).

Claims iii) and iv) can be proved in a similar way. We only sketch the

proof of claim iii). Let X ∈ ΓprT (L1 ∩ L2 ∩ S⊥
C
) and Y ∈ ΓprT (L̄1 ∩

L2 ∩ S⊥
C
). For computing ǫ′([prT (vf ), Y ](F,a), X) we use relation (106) (by

adding and substracting the term Y G(X0,X0)
G(X0,X0)

prT (v̄if) +
2F (X0,Y )

a
X0), for com-

puting ǫ′([prT (vf), X ](F,a), Y ) we use, as above, relation (97) and for com-

puting ǫ′([X, Y ](F,a), prT (vf )) we use (118). Using Lemma 35 for ǫ′(X, Y ),

ǫ′(X, prT (vf )) and ǫ′(Y, prT (vf )) we finally obtain

(d(F,a)ǫ′)(X, Y, prT (vf )) = −d(prT ∗(vf ))(X, Y ) + (DprT (vf )ǫ2)(X, Y )

− (
dG(X0, X0)

G(X0, X0)
∧ prT ∗(v̄if))(X, Y ) +

2F (X, Y )

af 2
G(X0, X0), (127)

where DprT (vf )(ǫ2)(X, Y ) is defined by

(DprT (vf )ǫ2)(X, Y ) := prT (vf )(ǫ2(X, Y ))

− ǫ2([prT (vf ), X ] +
XG(X0, X0)

G(X0, X0)
prT (vf), Y )

− ǫ2(X, [prT (vf), Y ]−
Y G(X0, X0)

G(X0, X0)
prT (v̄if )). (128)

(Remark that DprT (vf )ǫ2 is well-defined, owing to (97), (106) and X0 ∈ Γ(E2),

which ensure that the maps

ΓprT (L1 ∩ L2 ∩ S⊥
C ) ∋ X → [prT (vf ), X ] +

XG(X0, X0)

G(X0, X0)
prT (vf)
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and

ΓprT (L̄1 ∩ L2 ∩ S⊥
C
) ∋ Y → [prT (vf), Y ]−

Y G(X0, X0)

G(X0, X0)
prT (v̄if)

take values in Γ(E2)). In particular, taking in (127) f := 1 and F := 0, we

obtain

(dǫ2)(X, Y, prT (v1)) = −d(prT ∗(v1))(X, Y ) + (DprT (v1)ǫ2)(X, Y )

− (
dG(X0, X0)

G(X0, X0)
∧ prT ∗(v̄i))(X, Y ), (129)

where (DprT (v1)ǫ2)(X, Y ) is defined by (128), by replacing vf with v1 and v̄if

with v̄i. But since dǫ2 = 0, the right hand side of (129) vanishes. Substracting

the right hand side of (129) from (127) we obtain, after a straightforward

computation, claim iii).

By similar computations we obtain d(F,a)ǫ̃′. Below F̄ is a 2-form on

prT (L̄2∩S⊥
C
), defined by F̄(X, Y ) := F(X̄, Ȳ ), for any X, Y ∈ prT (L2∩S⊥

C
).

Lemma 37. The 3-form d(F,a)ǫ̃′ on Λ2prT (L1 ∩ L̄′
2) ∧ prT (L̄1 ∩ L̄′

2) is given

by:

i) for any X, Y ∈ prT (L1 ∩ L̄2 ∩ S⊥
C
) and Z ∈ prT (L̄1 ∩ L̄2 ∩ S⊥

C
),

(d(F,a)ǫ̃′)(X, Y, Z) = 0; (130)

ii) for any X ∈ prT (L1 ∩ L̄2 ∩ S⊥
C
),

(d(F,a)ǫ̃′)(X, prT (vif ), prT (v̄f)) =
4X(af 2)

af 4
G(X0, X0); (131)

iii) for any X ∈ prT (L1 ∩ L̄2 ∩ S⊥
C
) and Y ∈ prT (L̄1 ∩ L̄2 ∩ S⊥

C
),

(d(F,a)ǫ̃′)(X, Y, prT (vif )) = −G(X0, X0)F̄(X, Y ); (132)

iv) for any X, Y ∈ prT (L1 ∩ L̄2 ∩ S⊥
C
),

(d(F,a)ǫ̃′)(X, Y, prT (v̄f)) = G(X0, X0)F̄(X, Y ); (133)

The next two lemmas collect the exterior products dh ∧ ǫ′ and dh ∧ ǫ̃′.

The proofs are straighforward computations.
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Lemma 38. The 3-form dh ∧ ǫ′ on Λ2prT (L1 ∩ L′
2) ∧ prT (L̄1 ∧ L′

2) is given

by:

i) for any X ∈ prT (L1 ∩ L2 ∩ S⊥
C
),

(dh ∧ ǫ′)(X, prT (vf ), prT (v̄if )) =
4G(X0, X0)

f 2
X(h); (134)

ii) for any X ∈ prT (L1 ∩ L2 ∩ S⊥
C
) and Y ∈ prT (L̄1 ∩ L2 ∩ S⊥

C
),

(dh∧ǫ′)(X, Y, prT (vf)) = prT (vf )(h)ǫ2(X, Y )+(prT ∗(vf)∧dh)(X, Y ); (135)

iii) for any X, Y ∈ prT (L1 ∩ L2 ∩ S⊥
C
),

(dh ∧ ǫ′)(X, Y, prT (v̄if)) = prT (v̄if)(h)ǫ2(X, Y ) + (prT ∗(v̄if ) ∧ dh)(X, Y );

(136)

iv) for any X, Y ∈ prT (L1 ∩ L2 ∩ S⊥
C
) and Z ∈ prT (L̄1 ∩ L2 ∩ S⊥

C
),

(dh ∧ ǫ′)(X, Y, Z) = (dh ∧ ǫ2)(X, Y, Z).

Similarly:

Lemma 39. The 3-form dh ∧ ǫ̃′ on Λ2prT (L1 ∩ L̄′
2) ∧ prT (L̄1 ∩ L̄′

2) is given

by:

i) for any X ∈ prT (L1 ∩ L̄2 ∩ S⊥
C
).

(dh ∧ ǫ̃′)(X, prT (vif ), prT (v̄f)) = −
4G(X0, X0)

f 2
X(h); (137)

ii) for any X ∈ prT (L1 ∩ L̄2 ∩ S⊥
C
) and Y ∈ prT (L̄1 ∩ L̄2 ∩ S⊥

C
),

(dh ∧ ǫ̃′)(X, Y, prT (vif)) = prT (vif)(h)ǭ2(X, Y ) + (prT ∗(vif ) ∧ dh)(X, Y );

(138)

iii) for any X, Y ∈ prT (L1 ∩ L̄2 ∩ S⊥
C
),

(dh∧ ǫ̃′)(X, Y, prT (v̄f)) = prT (v̄f )(h)ǭ2(X, Y )+(prT ∗(v̄f)∧dh)(X, Y ); (139)

iv) for any X, Y ∈ prT (L1 ∩ L̄2 ∩ S⊥
C
) and Z ∈ prT (L̄1 ∩ L̄2 ∩ S⊥

C
),

(dh ∧ ǫ̃′)(X, Y, Z) = (dh ∧ ǭ2)(X, Y, Z).
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Using the above lemmas, we now prove Proposition 34 as follows. Suppose

that the second and third relation (111) hold. We apply these relations to

various types of arguments, according to the decomposition of prT (L1 ∩L′
2),

prT (L̄1 ∩L′
2), prT (L1 ∩ L̄′

2) and prT (L̄1 ∩ L̄′
2), and we use Lemmas 36, 37, 38

and 39, to obtain relation (74), the second relation (75) and relation (76).

Let us explain how we obtain relation (74). From the second relation

(111), Lemma 36 ii) and Lemma 38 i), we obtain

X(af 2h2) = 0, (140)

for anyX ∈ prT (L1∩L2∩S
⊥
C
). From the third relation (75), Lemma 37 ii) and

Lemma 39 i), we obtain the same relation (140), with X ∈ prT (L1∩L̄2∩S⊥
C
).

Therefore, (140) holds on

prT (L1 ∩ S⊥
C ) = prT (L1 ∩ L2 ∩ S⊥

C ) + prT (L1 ∩ L̄2 ∩ S⊥
C ).

By conjugation, using that L1 + L̄1 = (TM)C, we obtain (140) for any X ∈

pr(S⊥). Relation (74) follows.

We now prove the second relation (75). From the second and third re-

lations (111), Lemma 36 i) together with Lemma 38 iv), and, respectively,

Lemma 37 i) together with Lemma 39 iv), we obtain

dh ∧ ǫ2 = 0 on Λ2prT (L1 ∩ L2 ∩ S⊥
C
) ∧ prT (L̄1 ∩ L2 ∩ S⊥

C
) (141)

and, respectively,

dh ∧ ǭ2 = 0 on Λ2prT (L1 ∩ L̄2 ∩ S⊥
C ) ∧ prT (L̄1 ∩ L̄2 ∩ S⊥

C ). (142)

Relation (141) and the conjugate of (142) give dh ∧ ǫ2 = 0 on

prT (L1 ∩ L2 ∩ S⊥
C ) ∧ prT (L̄1 ∩ L2 ∩ S⊥

C ) ∧ prT (L2 ∩ S⊥
C ).

The second relation (75) follows. Finally, one can check that the second and

third relation (111) and the remaining statements from Lemmas 36, 37, 38

and 39 give (76). The proof of Proposition 34 and Theorem 23 is completed.
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6 Applications, comments and examples

As a first application of Theorem 23 , we recover the KK correspondence

from the Kähler setting.

Proposition 40. Let (M, g, J) be a Kähler manifold with a Hamiltonian

Killing vector field X0. Assume, for simplicity, that the Hamiltonian function

fH of X0 is positive. Let X♭
0 = g(X0, ·) be the 1-form dual to X0. Then the

data formed by F := ω − 1
2
dX♭

0 together with

a := −

(
fH +

g(X0, X0)

2

)
, f 2 :=

2fH

2fH + g(X0, X0)
, h2 := fH (143)

satisfies all the conditions from Theorem 23 and gives rise to a Kähler man-

ifold [τh(g
′, J)]W . (The assignment (M, g, J,X0) → [τh(g

′, J)]W is known as

the KK correspondence [1, 2].)

Proof. We consider (M, g, J) as a generalized Kähler manifold and we apply

Theorem 23. As J3X0 = −X♭
0 projects trivially on TM and F = 0 on

Λ2T 1,0M (because X0 is Hamiltonian Killing), the first two conditions of

Theorem 23 are satisfied. Since af 2h2 = −(fH)2, its differential annihilates

prT (S
⊥) = Ker{dfH , dfH ◦J} and condition iii) from Theorem 23 is satisfied.

The first relation (75) is trivially satisfied (ǫ1 = 0), and the second relation

(75) is satisfied as well, because h depends only on fH and therefore dh

annihilates prT (S
⊥). Relation (76) follows from the definition of F .

In order to apply Theorem 23 in the generalized (non-Kähler) setting, it

is natural to look, in view of condition i) from this theorem, for examples

with F = 0 on Λ2E1. But when F = 0 on Λ2E1, the first relation (75)

from Theorem 23 becomes ǫ1 ∧ dh = 0 on Λ3E1. When the function h is not

constant, this imposes strong restrictions on the generalized Kähler manifold,

as the next lemma shows.

Lemma 41. Let (M,G,J ) be a generalized Kähler manifold and L(E1, ǫ1)

the (1, 0)-bundle of J . If there is a form β ∈ Ω1(M) (non-trivial at any

point), such that ǫ1 ∧ β = 0 on Λ3E1, then either (G,J ) is the B-field

transformation of a Kähler structure or rank(∆1) = 2, where ∆1 is the set

of real points of (∆1)
C := E1 ∩ Ē1.
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Proof. The proof is simple and we skip the details. Assume that rank(∆1) 6=

2. The condition ǫ1 ∧ β = 0 implies that ∆1 = 0, i.e. J is the B-field

transformation of a complex structure. From Remark 7 ii), (G,J ) is the

B-field transformation of a Kähler structure.

In Proposition 43 below we apply Theorem 23, with h := 1, to produce

new generalized Kähler manifolds from given ones (not necessarily Kähler).

We need the following lemma.

Lemma 42. Let (M,G,J ) be a generalized Kähler manifold, with a Hamil-

tonian Killing vector field X0, such that J3X0 ∈ Ω1(M). Then d(J3X0) = 0

on Λ2E1, where L(E1, ǫ1) is the (1, 0)-bundle of J .

Proof. From the Cartan formula for d(J3X0), we obtain (using J3X0 ∈

Ω1(M)), for any u, v ∈ Γ(TM),

d(J3X0)(prT (u), prT (v)) = −2
(
prT (u)〈df

H,J v〉 − prT (v)〈df
H,J u〉

)

+ 2G(X0, [u, v]). (144)

From (8), with v replaced by dfH and w replaced by J v, we obtain

prT (u)〈df
H,J v〉 = 〈[u, dfH],J v〉+ 〈dfH, [u,J v]〉+ 〈d〈u, dfH〉,J v〉.

On the other hand, from the definition of the Courant bracket, [u, dfH] =
1
2
d(prT (u)(f

H)) and we deduce that

prT (u)〈df
H,J v〉 =

1

2
prT (u)prT (J v)(fH).

Combining this relation with (144) we obtain

d(J3X0)(prT (u), prT (v)) = −prT (u)prT (J v)(fH) + prT (v)prT (J u)(fH)

+ 2〈dfH,J [u, v]〉. (145)

Replacing in (145) u, v by J u, J v and using NJ (u, v) = 0 we obtain

d(J3X0)(prT (J u), prT (J v)) = d(J3X0)(prT (u), prT (v)),

which implies our claim.
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Proposition 43. Let (M,G,J ) be a generalized Kähler manifold with a

Hamiltonian Killing vector field X0, such that J3X0 ∈ Ω1(M). Consider the

elementary deformation (G′,J ) of (G,J ) by the vector field X0 and function

f :=
1

(1 +K(fH)G(X0, X0))1/2
,

where K = K(fH) is any smooth, non-negative function, depending only on

the Hamiltonian function fH of X0. Consider the twist data with curvature

F and function a given by

F := −
1

2
d(K(fH)J3X0), a := 1 +K(fH)G(X0, X0). (146)

Then the twist [(J , G′)]W is generalized Kähler.

Proof. Since J3X0 ∈ Ω1(M), for any u, v ∈ TM ,

(dfH ∧ J3X0)(prT (u), prT (v)) = 4
(
〈dfH , u〉〈J3X0, v〉 − 〈dfH, v〉〈J3X0, u〉

)

and

(dfH ∧ J3X0)(prT (J u), prT (J v)) = (dfH ∧ J3)(prT (u), prT (v)),

i.e. dfH ∧ J3X0 = 0 on Λ2E1. From Lemma 42, also d(J3X0) = 0 on Λ2E1.

We deduce that F = 0 on Λ2E1. The 1-form α defined by (70) is given by

α = −K ′(fH )
K(fH )

dfH , it annihilates prT (S
⊥), and af 2 = 1. The conditions from

Theorem 23 can be checked easily. (We remark that relation (76) holds on

the entire Λ2(TM)C, not only on Λ2prT (L2 ∩ S⊥
C
)).

Examples of generalized Kähler manifolds (M,G,J ) with a Hamiltonian

Killing vector field X0 satisfying J3X0 ∈ Ω1(M) can be found in the toric

setting, which will be treated in the next section (see Example 46).

6.1 Examples: toric generalized Kähler manifolds

Following [4], we briefly recall the local description of diagonal toric gener-

alized Kähler structures, in terms of a strictly convex function τ (the sym-

plectic potential) and a skew-symmetric matrix C. This is a generalization
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of the local description of toric Kähler structures, which can be recovered as

a particular case, when C = 0.

Let (M,ω,Tn) be a 2n-dimensional toric symplectic manifold, that is, a

symplectic manifold M of dimension 2n with a Hamiltonian action of the

torus T
n. Recall from Section 2.2 that generalized complex structures J ,

with the property that (J ,Jω) is a generalized Kähler structure, are in one

to one correspondence with complex structures J+ which tame ω, and whose

ω-adjoint J∗ω
+ is integrable. We assume that J (equivalently, J+) is Tn-

invariant and that J+K = J∗ω
+ K, where K is the distribution tangent to the

orbits of the Tn-action. Such toric generalized Kähler structures are called

diagonal. We restrict to the open subset (also denoted by M) of M where

K has constant rank n. Choose a basis of the Lie algebra of Tn and let

Ki ∈ X(M) be the associated fundamental vector fields generated by the Tn-

action. As {Ki, J+Kj} commute, we may choose local coordinates (ti, ui),

such that

Ki = −
∂

∂ti
, J+Ki =

∂

∂ui
, 1 ≤ i ≤ n.

For any 1 ≤ i ≤ n, let µi be the moment map of Ki: iKi
ω = dµi. As

spanR{dµ
i} = spanR{du

i}, dui =
∑n

j=1Ψijdµ
j, for some functions Ψij which

depend only on the moment coordinates {µi}. In the coordinate system

(ti, µi), ω, J+ and J− = −J∗ω
+ are given by:

ω =

n∑

i=1

dµi ∧ dti, (147)

and

J+ =
n∑

i,j=1

Ψij
∂

∂ti
⊗ dµj −

n∑

i,j=1

Ψij ∂

∂µi
⊗ dtj

J− =

n∑

i,j=1

Ψji
∂

∂ti
⊗ dµj −

n∑

i,j=1

Ψji ∂

∂µi
⊗ dtj , (148)

where (Ψij) := (Ψ−1)ij. Since J± are integrable, Ψ = (Ψij) is of the form

Ψij =
∂2τ

∂µi∂µj
+ Cij , (149)
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where τ = τ(µi) is strictly convex (i.e. has positive definite Hessian) and

C := (Cij) is a (constant) skew-symmetric matrix (see Theorem 6 of [4]).

Conversely, any strictly convex function τ = τ(µi) together with a skew-

symmetric matrix C, define, via (147), (148) and (149), a diagonal generalized

Kähler structure. The function τ is referred to as the symplectic potential.

Notation 44. i) All toric generalized Kähler manifolds we are concerned

with are diagonal. To simplify terminology, from now on we omit the word

‘diagonal’ when referring to them.

ii) The superscripts “s” and “a” used below mean the symmetric, respec-

tively, the skew-symmetric parts of a matrix.

Lemma 45. The Hamiltonian Killing vector field X0 := K1 = − ∂
∂t1

on the

the toric generalized Kähler manifold associated to (M,J+, ω) satisfies

prT (J3X0) =

n∑

r=1

(
(Ψ−1)a[(Ψ−1)s]−1

)
1r

∂

∂tr

prT ∗(J3X0) =
n∑

r=1

(
(Ψ−1)s − (Ψ−1)a[(Ψ−1)s]−1(Ψ−1)a

)
r1
dtr

G(X0, X0) =
1

2

(
Ψ−1 − (Ψ−1)a[(Ψ−1)s]−1(Ψ−1)a

)
11
. (150)

Proof. Recall that J3 = −Gend and that Gend is given by (11), in terms of the

Riemannian metric g and 2-form b of the generalized Kähler structure. The

first two relations (150) follow from the expressions of g and b given by (14),

combined with (147) and (148). The expression of G(X0, X0) is computed

from prT ∗(J3X0), using G(X0, X0) =
1
2
prT ∗(J3X0)(

∂
∂t1

).

Using Lemma 45, we construct examples of toric generalized Kähler (non-

Kähler) manifolds, with a Hamiltonian Killing vector fieldX0, for which J3X0

is a 1-form, as required by Proposition 43. We remark that such examples

do not exist in four dimensions: with X0 = − ∂
∂t1

, we obtain, from the first

relation (150),

prT (J3X0) = −
C12

det(Ψ)− C2
12

(
(Ψ12)

s ∂

∂t1
+Ψ22

∂

∂t2

)
, (151)
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where (Ψjk)
s := (Ψs)jk. We deduce that prT (J3X0) = 0 if and only if

C12 = 0, i.e. the generalized Kähler manifold is Kähler. The four dimensional

case will be treated separately in the next section.

Example 46. i) Let τ : (R>0)n → R, defined by τ =
∑n

j=1 µ
jlog(µj), be

the symplectic potential of the standard Kähler metric on C
n (n ≥ 3). Let

C := (Cij) ∈ Mn(R) be any skew-symmetric matrix, with C1j = Cj1 = 0,

for any 1 ≤ j ≤ n. With these choices, the matrix function Ψ defined by

(149) satisfies (Ψ−1)1i = (Ψ−1)i1 = 0, for any 2 ≤ i ≤ n, and the Hamilto-

nian Killing vector field X0 = − ∂
∂t1

on the toric generalized Kähler manifold

defined by τ and C satisfies prT (J3X0) = 0.

ii) For a six-dimensional toric generalized Kähler manifold, with sym-

plectic potential τ and skew-symmetric matrix C, the vector field X0 = − ∂
∂t1

satisfies prT (J3X0) = 0 if and only if

C12
∂τ

∂µ3
− C13

∂τ

∂µ2
+ C23

∂τ

∂µ1
(152)

depends only on µ1. This is the case if and only if

a) C = 0 or

b) τ admits a separation of variables τ = τ1(µ
1) + τ2(µ

2, µ3) and C12 =

C13 = 0.

For example, the symplectic potential

τ :=

3∑

i=1

(µi + c)log(µi + c) + (c− µ2 − µ3)log(c− µ2 − µ3)

defined on

∆ := {(µ1, µ2, µ3) ∈ R
3 : µ1 + c > 0, µ2 + c > 0, µ3 + c > 0, µ2 + µ3 < c}

(where c > 0), together with any skew-symmetric matrix C for which C12 =

C13 = 0, satisfy b) and hence (152).
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6.2 The four-dimensional case

In this final section we consider the setting formed by a four-dimensional toric

generalized Kähler (non-Kähler) manifold (M,G,J ), defined by a symplectic

potential τ = τ(µ1, µ2), skew-symmetric matrix C = (Cij) and matrix valued

function Ψ = Hess(τ) + C, as in the previous section. As (M,G,J ) is

non-Kähler, C12 6= 0. Let f and h be two non-vanishing functions on M ,

independent of t1. Our aim is to describe all such data, together with the twist

data (X0, F, a) with X0 := − ∂
∂t1

, for which the conditions from Theorem 23

are satisfied. Remark that (G,J ), f and h are X0-invariant. In addition, we

assume that h depends only on µ1 (the moment map of X0). This hypothesis

is natural, in view of the second relation (75).

Proposition 47. In the above setting, the conditions from Theorem 23 are

satisfied if and only if:

i) the function f depends only on µ1;

ii) the function a and the curvature form F of the twist data are given by

a = k0h
−2 (where k0 ∈ R \ {0}) and

F =
2ah′

h
dµ1 ∧ dt1 +

(
(Ψ12)

s

Ψ22
(λ−

2ah′

h
)dµ1 + λdµ2

)
∧ dt2, (153)

where λ ∈ C∞(M) is independent of t1;

iii) the following relations hold:

∂

∂µ2

(
(Ψ12)

s

Ψ22

)
= −

1

(f 2 − 1)a

(
λ+

2ah′f 2

h

)

(Ψ12)
s

Ψ22

∂λ

∂µ2
−

∂λ

∂µ1
=

1

(f 2 − 1)a

(
λ+

2ah′f 2

h

)(
λ−

2ah′

h

)
. (154)

Proof. We divide the proof of Proposition 47 in several steps. Let L =

L(E1, ǫ1) be the (1, 0)-bundle of J and (J±, ω, g, b) the complex structures,

Riemannian metric and 2-form on M associated to (G,J ), as in Section 2.2.

As E1 = (T 1,0M)J+ + (T 1,0M)J−, cf. Section 2.2,

(T 1,0M)J+ = spanC

{
v+j :=

∂

∂µj
− iΨkj

∂

∂tk
, j = 1, 2

}

(T 1,0M)J− = spanC

{
v−j :=

∂

∂µj
− iΨjk

∂

∂tk
, j = 1, 2

}
(155)
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and C12 6= 0, we obtain that E1 = (TM)C. (Note that here and in the

following we are using Einstein’s summation convention.) More precisely,

∂

∂t1
=

i

2C12
(v+2 − v−2 ),

∂

∂t2
= −

i

2C12
(v+1 − v−1 );

∂

∂µ1
= (1 +

Ψ21

2C12
)v+1 −

Ψ21

2C12
v−1 −

Ψ11

2C12
v+2 +

Ψ11

2C12
v−2 ;

∂

∂µ2
=

Ψ22

2C12

v+1 −
Ψ22

2C12

v−1 + (1−
Ψ12

2C12

)v+2 +
Ψ12

2C12

v−2 . (156)

Lemma 48. i) The form ǫ1 is given by

ǫ1 =
1

C12

(
dt1 ∧ dt2 − det(Ψ)dµ1 ∧ dµ2

)

+ i

(
(1 +

Ψ21

C12
)dt1 ∧ dµ1 +

Ψ22

C12
dt1 ∧ dµ2 −

Ψ11

C12
dt2 ∧ dµ1

)

+ i(1−
Ψ12

C12

)dt2 ∧ dµ2. (157)

ii) A real 2-form F satisfies the first relation (75), with ǫ1 given by (157)

and h, a ∈ C∞(M), if and only if F is of the form (153), for a function

λ ∈ C∞(M).

iii) The relation iX0
F = −da holds if and only if a = k0h

−2, where

k0 ∈ R \ {0} is arbitrary.

Proof. From the definition of J± in Section 2.2 it follows that

L1 ∩ C± = {X + (b± g)(X), X ∈ (T 1,0M)J±}, (158)

which together with v±j ∈ (T 1,0M)J± implies that iv±j
ǫ1 = (b± g)(v±j ). From

the definition of v±j and relations (14), (147) and (148),

b(v+j ) = (Ψkj)
adµk − iΨkj(Ψ

rk)adtr, g(v+j ) = (Ψkj)
sdµk − iΨkj(Ψ

rk)sdtr

b(v−j ) = (Ψkj)
adµk − iΨjk(Ψ

rk)adtr, g(v−j ) = (Ψkj)
sdµk − iΨjk(Ψ

rk)sdtr,

from where we deduce that

iv+j
ǫ1 = Ψkjdµ

k − idtj , iv−j
ǫ1 = −Ψjkdµ

k + idtj . (159)
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Combining (156) with (159) we obtain (157). Claim ii) follows from (157),

by computing

iX0
ǫ1 = −

1

C12
(i(Ψk2)

sdµk + dt2)

and identifying the real and imaginary parts in the first relation (75). Claim

iii) can be checked using the expression (153) of F and that h = h(µ1).

Moreover, k0 6= 0 as the function a is non-vanishing.

With the above preliminary lemma, we now proceed to the proof of Propo-

sition 47. The first relation (75) from the statement of Theorem 23 is satisfied

if and only if F is of the form (153). From now on, we assume that F is of

this form. Then the function a is given as in claim iii) of Lemma 48. Since

prT (L1 ∩ L2 ∩ S⊥
C
) = (T 1,0M)J+ ∩Ker{dµ1}

prT (L1 ∩ L̄2 ∩ S⊥
C ) = (T 1,0M)J− ∩Ker{dµ1}

are of rank one, generated by v+2 and v−2 respectively, and E1 = (TM)C,

condition i) from Theorem 23 is satisfied. We now consider condition ii)

from this theorem.

Lemma 49. Condition ii) from Theorem 23 holds, with F given by (153), if

and only if f depends only on µ1 and the first relation (154) is satisfied.

Proof. Condition ii) from Theorem 23 holds if and only if

E1 := [prT (J3X0), v
+
2 ] + α(v+2 )prT (J3X0) +

f 2F (prT (vf), v
+
2 )

a(f 2 − 1)
X0 (160)

is a multiple of v+2 , and

E2 := [prT (J3X0), v
−
2 ] + α(v−2 )prT (J3X0)−

f 2F (prT (vif), v
−
2 )

a(f 2 − 1)
X0 (161)

is a multiple of v−2 . From (151) and the definitions of v±2 , these conditions

are equivalent to E1 = E2 = 0 (as Ei are linear combinations of ∂
∂t1

and ∂
∂t2

,
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while v±2 involve also ∂
∂µ2 ) or to

∂E1

µ2
− α(v+2 )E1 +

f 2F (prT (vf), v
+
2 )

a(f 2 − 1)
= 0

∂E1

µ2
− α(v−2 )E1 −

f 2F (prT (vif ), v
−
2 )

a(f 2 − 1)
= 0

∂E2

∂µ2
− α(v+2 )E2 =

∂E2

∂µ2
− α(v−2 )E2 = 0, (162)

where

E1 := −
C12(Ψ12)

s

det(Ψ)− C2
12

; E2 := −
C12Ψ22

det(Ψ)− C2
12

(163)

are the coordinates of prT (J3X0). The third relations (162) are equivalent to

α(
∂

∂t1
) = α(

∂

∂t2
) = 0, α(

∂

∂µ2
) =

1

E2

∂E2

∂µ2
. (164)

Let H := f2−1
f2G(X0,X0)

, so that α := −dH
H
. The first two relations (164) are

equivalent to f - independent of ti (recall that G(X0, X0) is independent of

ti) and the third relation (164) is equivalent to HE2 - independent of µ2.

From Lemma 45,

prT ∗(J3X0) =
1

det(Ψ)− C2
12

(Ψ22dt
1 − (Ψ12)

sdt2)

G(X0, X0) =
Ψ22

2(det(Ψ)− C2
12)

. (165)

and from the second relation (165) we obtain that HE2 = −2C12(f2−1)
f2 . We

proved that relations (164) hold if and only if f depends only on µ1, as

required.

We now study the first two relations (162). From (164), α(v+2 ) = α(v−2 ) =
1
E2

∂E2

∂µ2 and the first two relations (162) are equivalent to

ImF (prT (vf), v
+
2 ) = 0, ImF (prT (vif ), v

−
2 ) = 0;

F (prT (vf ), v
+
2 ) = −F (prT (vif), v

−
2 );

∂

∂µ2

(
E1

E2

)
= −

f 2ReF (prT (vf ), v
+
2 )

a(f 2 − 1)E2
. (166)
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To study these relations, we need to find prT (vf ) and prT (vif). Recall that

prT (J3X0) was computed in (151) and prT (J2X0) = 0. We now compute

prT (JX0). Since X0 +Gend(X0) ∈ C+, from the definition of J+ we obtain

J+(X0 + prTG
end(X0)) = prT (JX0 + J2X0) = prT (JX0),

i.e. prT (JX0) = J+(X0 − prT (J3X0)). From this relation and (151), we

obtain

prT (JX0) =
1

det(Ψ)− C2
12

(
Ψ22

∂

∂µ1
− (Ψ12)

s ∂

∂µ2

)
. (167)

The first two relations (166) are equivalent to

F (prT (JX0),
∂

∂µ2
) + Ψk2F (X0 −

1

f 2
prT (J3X0),

∂

∂tk
) = 0

F (prT (JX0),
∂

∂µ2
) + Ψ2kF (X0 +

1

f 2
prT (J3X0),

∂

∂tk
) = 0

and are satisfied (from the expressions of F , prT (JX0) and prT (J3X0)), and

the third relation (166) is equivalent to

2Ψ22F (prT (JX0),
∂

∂t2
) + (Ψ12 +Ψ21)F (prT (JX0),

∂

∂t1
) = 0

and is satisfied as well (again, from the expressions of F and prT (JX0)).

The fourth relation (166) becomes the first relation (154).

According to Lemma 49, we assume that f depends only on µ1 and that

the first relation (154) is satisfied. Since f , h depend only on µ1 and a =

k0h
−2, the function af 2h2 depends only on µ1 as well and X(af 2h2) = 0,

for any X ∈ prT (S
⊥). Therefore, condition iii) from Theorem 23 is satisfied.

Condition iv) from this theorem is also satisfied: the first relation (75) follows

from Lemma 48 ii) and the second relation (75) is a consequence of the fact

that h depends only on µ1. It remains to study condition iv) of Theorem 23.

Since

prT (L2 ∩ S⊥
C ) = prT (L1 ∩ L2 ∩ S⊥

C ) + prT (L̄1 ∩ L2 ∩ S⊥
C )

is generated by v+2 and v−2 , relation (76) holds if and only if it holds when

applied to the pair (v+2 , v
−
2 ). From the first relation (165),

d (prT ∗(J3X0)) (v
+
2 , v

−
2 ) = −2i

∂

∂µ2

(
(Ψ12)

s

Ψ22

)
(Ψ22)

2

det(Ψ)− C2
12

.
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Computations similar to those from the proof of Lemma 49 show that relation

(76) is equivalent to the first relation (154). Moreover, a straightforward

computation shows that F , defined by (153), is closed, if and only if the

second relation (154) holds and λ is independent of t1. This concludes the

proof of Proposition 47.

We now consider the setting of Proposition 47 with λ := λ0 constant.

Under this assumption, relations (154) become

(1− f 2)a
∂

∂µ2

(
(Ψ12)

s

Ψ22

)
= λ0 +

2ah′f 2

h

(λ0 +
2ah′f 2

h
)(λ0 −

2ah′

h
) = 0. (168)

The functions h and a = k0h
−2 depend only on µ1. By Proposition 47,

f has to depend only on µ1. From our hypothesis of the generalized KK

correspondence, f 2 − 1 is non-vanishing. From the first relation (168), we

obtain that ∂
∂µ2

(
(Ψ12)s

Ψ22

)
has to depend only on µ1. On the other hand,

from the second relation (168) we distinguish two cases, according to the

vanishing of the two factors from its left hand side. Corollary 50 and 51

below correspond to λ0 +
2ah′f2

h
= 0, respectively to λ0 =

2ah′

h
. Their proofs

are straightforward, from Proposition 47, and will be omitted.

Corollary 50. Consider a 4-dimensional toric generalized Kähler structure,

determined by a matrix valued function Ψ, such that ∂
∂µ2

(
(Ψ12)s

Ψ22

)
= 0. Let

h = h(µ1) be any smooth non-vanishing function with h′ non-vanishing and

λ0, k0 ∈ R \ {0}, such that λ0h3

k0h′ is (at any point) negative and different from

−1. Choose

X0 := −
∂

∂t1
, a := k0h

−2, f 2 := −
λ0h

3

2k0h′
(169)

and F of the form (153), with λ := λ0. Then all conditions from Theorem

23 are satisfied.

Corollary 51. Consider a 4-dimensional toric generalized Kähler structure,

determined by a matrix valued function Ψ, such that ∂
∂µ2

(
(Ψ12)s

Ψ22

)
depends

59



only on µ1. Choose X0 := − ∂
∂t1

,

a := k0k1 − λ0µ
1, h2 :=

−k0
λ0µ1 − k0k1

, f 2 :=
(µ1 − k0k1

λ0
) ∂
∂µ2

(
(Ψ12)s

Ψ22

)
+ 1

(µ1 − k0k1
λ0

) ∂
∂µ2

(
(Ψ12)s

Ψ22

)
− 1

,

(170)

and F given by (153) with λ := λ0. Then all conditions from Theorem 23 are

satisfied. Above k0, λ0 ∈ R \ {0}, k1 ∈ R, and we assume that the defining

expression for a in (170) is non-vanishing, while the defining expressions for

h2 and f 2 are positive.

The conditions from Proposition 47 (and Corollaries 50 and 51), on the

toric generalized Kähler structure, involve only the symmetric part of Ψ, i.e.

the symplectic potential τ. There are various interesting symplectic potentials

for which ∂
∂µ2 (

τ12
τ22

) depends only on µ1, as required by Corollaries 50 and 51

(here τij :=
∂2τ
∂τ iτ j

):

Example 52. Let c ∈ R and k ∈ R>0. The symplectic potential τ(µ1, µ2) :=

eµ
1

(eµ
2+c + k) defined on R

2 satisfies ∂
∂µ2

(
(Ψ12)s

Ψ22

)
= 0.

Example 53. (Symplectic potential of the Fubini-Study metric).

Consider the symplectic potential of the Fubini Study metric on CP 2, of

constant holomorphic sectional curvature equal to 2:

τ(µ1, µ2) :=

2∑

i=1

(µi +
1

3
)log(µi +

1

3
) + (

1

3
−

2∑

i=1

µi)log(
1

3
−

2∑

i=1

µi) (171)

defined on ∆ := {(µ1, µ2) ∈ R2 : µ1+1/3 > 0, µ2+1/3 > 0, µ1+µ2 < 1/3}.

Then ∂
∂µ2 (

τ12
τ22

) = 1
2/3−µ1 depends only on µ1. In the notation of Corollary 51,

choose k0, k1 ∈ R such that k0 < 0 and k0k1 < −4
3
, and let λ0 := 1. Then

h2 = −
k0

µ1 − k0k1
, f 2 =

2/3− k0k1
2µ1 − (2/3 + k0k1)

. (172)

The choice of k0, k1 ensure that the defining expressions for h2 and f 2 in

(172) are positive on ∆. Also a = −µ1+k0k1 is negative on ∆ (in particular,

non-vanishing).
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Example 54. (Symplectic potential of admissible metrics on Hirze-

bruch surfaces). The k-Hirzebruch surface Fk := P(1⊕O(−k)) (where k is

a positive integer) admits a class of toric Kähler metrics (called admissible),

which generalize Calabi’s extremal Kähler metrics [5]. A detailed description

of these metrics can be found in [3, 9, 11]. They are defined in terms of a

smooth function (the momentum profile) Θ : [a, b] → R, positive on (a, b),

which satisfies the boundary conditions

Θ(a) = 0, Θ(b) = 0, Θ′(a) = 2, Θ′(b) = −2

(where b > a > 0). The symplectic potential

τ : {(µ1, µ2) ∈ R
2 : µ2 > 0, kµ1 − µ2 > 0,−µ1 + b > 0, µ1 − a > 0} → R

of the admissible Kähler metric with momentum profile Θ satisfies

τ11 =
1

Θ(µ1)
+

kµ2

2µ1(kµ1 − µ2)
, τ12 =

−k

2(kµ1 − µ2)
, τ22 =

kµ1

2µ2(kµ1 − µ2)
.

We obtain that ∂
∂µ2 (

τ12
τ22

) = − 1
µ1 depends only on µ1. In the notation of

Corollary 51, let λ0 := 1. Then f and h are given by

f 2 =
−k0k1

2µ1 − k0k1
, h2 =

−k0
µ1 − k0k1

. (173)

Choosing k0, k1 ∈ R>0 with k0k1 > 2b, we obtain that the defining expressions

for f 2, h2 in (173) and a = k0k1 − µ1 are positive.

Remark 55. It would be interesting to study the properties of the gener-

alized Kähler structures [τh(G
′,J )]W produced by Proposition 47. Here we

only remark that they are not of symplectic type. The manifold W inherits

the vector fields ( ∂
∂t1

)W and ( ∂
∂t2

)W , which commute (from (4), as ∂
∂t1

and ∂
∂t2

commute and F ( ∂
∂t1

, ∂
∂t2

) = 0). However, the abelian Lie algebra generated

by ( ∂
∂t1

)W and ( ∂
∂t2

)W does not necessarily preserve the generalized Kähler

structure [τh(G
′,J )]W . Further investigations in this direction are needed.
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