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Abstract

We show that the one-loop quantum deformation of the universal hypermultiplet
provides a family of complete 1/4-pinched negatively curved quaternionic Kähler
(i.e. half conformally flat Einstein) metrics gc, c ≥ 0, on R4. The metric g0 is the
complex hyperbolic metric whereas the family (gc)c>0 is equivalent to a family of
metrics (hb)b>0 depending on b = 1/c and smoothly extending to b = 0 for which
h0 is the real hyperbolic metric. In this sense the one-loop deformation interpolates
between the real and the complex hyperbolic metrics. We also determine the (sin-
gular) conformal structure at infinity for the above families.
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curvature, quarter pinching
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Introduction

Einstein deformations of rank one symmetric spaces of non-compact type have been con-

sidered by various authors, see [P, L, B1, B2] and references therein. In particular, LeBrun

has shown that the quaternionic hyperbolic metric on the smooth manifold R4n admits

deformations by complete quaternionic Kähler metrics. These metrics are constructed

using deformations of the twistor data and depend on functional parameters. However,

the sectional curvature of the deformed metrics does not seem to have been studied.
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In previous work [ACM, ACDM] a geometric construction of a class of quaternionic

Kähler manifolds of negative scalar curvature was described. The manifolds in this class

are obtained from projective special Kähler manifolds and come in one-parameter families.

In string theory, such families can be interpreted as perturbative quantum corrections to

the hypermultiplet moduli space metric [RSV]. The one-parameter families are known as

one-loop deformations of the supergravity c-map metrics. The simplest example corre-

sponds to the case when the initial projective special Kähler manifold is a point. In that

case one obtains the family of metrics

gc =
1

4ρ2

[
ρ+ 2c

ρ+ c
dρ2 +

ρ+ c

ρ+ 2c
(dφ̃+ ζ0dζ̃0 − ζ̃0dζ0)2

+2(ρ+ 2c)
(

(dζ̃0)2 + (dζ0)2
)]
,

(0.1)

where (ρ, φ̃, ζ0, ζ̃0) are standard coordinates on the manifold M := R>0 × R3 ∼= R4 and

c ≥ 0. This is a deformation of the complex hyperbolic metric g0 (known as the universal

hypermultiplet metric in the physics literature [RSV]) by complete quaternionic Kähler1

metrics, see [ACDM, Remark 8]. Using the c-map and its one-loop deformation it is

also possible to deform higher rank quaternionic Kähler symmetric spaces and, more

generally, quaternionic Kähler homogeneous spaces by families of complete quaternionic

Kähler metrics depending on one or several parameters [CDS, CDJL].

In this paper we prove that the metrics (0.1) are all negatively curved and 1
4
-pinched,

see Theorem 8. By similar calculations, we also show that Pedersen’s deformation of the

real hyperbolic 4-space2, which depends on a parameter m2 ≥ 0, has negative curvature if

m2 < 1, see Theorem 11. These are presumably the first examples of non-locally symmet-

ric complete Einstein four-manifolds of negative curvature. For the family (0.1), we show

in Section 1 that the limit c → ∞ is well-defined after a suitable change of coordinates

and parameter, and that it is given by the real hyperbolic metric. Furthermore, we per-

form another change of coordinates in order to analyze the conformal structure at infinity.

We find in Section 2 that the conformal structure induced by gc (for 0 < c < ∞) on the

boundary sphere S3 is singular precisely at a single point p∞, which we can consider as the

south pole, where it has a double pole. The point p∞ is also a special point with respect

to the asymptotic behaviour of the metric. In fact, the metric gc (considered as a metric

on the 4-ball B4 with boundary S3) is asymptotic to the real hyperbolic metric on the

complement in B4 of any neighborhood of p∞ but it is not near p∞. These observations

show that the family of metrics gc cannot be obtained as an Einstein deformation induced

1Recall that in dimension four quaternionic Kähler manifolds are defined as half conformally flat
Einstein manifolds.

2This deformation is induced by a deformation of the standard conformal structure of S3 at the
boundary of the real hyperbolic space by a rescaling along the fibres of the Hopf fibration [P].
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by a deformation of the conformal structure at the boundary in the spirit of [B1].
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1 The limit c→∞

We introduce a second one-parameter family of metrics given by

hb =
1

4ρ′2

[
bρ′ + 2

bρ′ + 1
dρ′2 +

bρ′ + 1

bρ′ + 2
(dφ̃′ + bζ ′0dζ̃ ′0 − bζ̃ ′0dζ ′0)2

+2(bρ′ + 2)
(

(dζ̃ ′0)2 + (dζ ′0)2
)]
,

(1.1)

where b > 0. This is in fact equivalent to the one-loop deformation gc for c > 0 under the

identifications c = 1/b and (ρ, φ̃, ζ0, ζ̃0) = (ρ′, φ̃′,
√
b ζ ′0,

√
b ζ̃ ′0). But now the family can

be extended to the b = 0 case. This implies that after the above parameter-dependent

coordinate transformation the c → ∞ limit of the one-loop deformation gc is indeed

well-defined and is given by the metric

h0 =
1

4ρ′2

[
2 dρ′2 +

1

2
dφ̃′2 + 4(dζ̃ ′0)2 + 4(dζ ′0)2

]
, (1.2)

which has constant curvature −2.

2 Asymptotics and conformal structure at infinity

We would like to determine the conformal structure of the family of metrics (gc)c≥0 on

the sphere at the boundary of M . In our coordinates, this consists of the hyperplane at

ρ = 0, along with a point at infinity p∞. In order to be able to directly see the singularity

at p∞, we consider the following change of coordinates:

ρ = <
(

1− z1

1 + z1

)
−
∣∣∣∣ z2

z1 + 1

∣∣∣∣2 =
1− |z1|2 − |z2|2

|z1 + 1|2
,

φ̃ = −=
(

1− z1

1 + z1

)
, ζ := ζ0 + iζ̃0 =

√
2 z2

1 + z1

.

(2.1)
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This is indeed a diffeomorphism from M = R>0 ×R3 = R>0 ×R×C to the unit ball B2
C

in C2, as it admits the following (smooth) inverse:

z1 =
1−

(
ρ+ |ζ|2/2− iφ̃

)
1 +

(
ρ+ |ζ|2/2− iφ̃

) , z2 =

√
2 ζ

1 +
(
ρ+ |ζ|2/2− iφ̃

) . (2.2)

As a result of the above change of coordinates, the boundary is mapped to the unit sphere

S3 ⊂ C2, and p∞ is mapped to the south pole (z1, z2) = (−1, 0). We have the following

proposition.

Proposition 1. In the coordinates introduced in (2.1), the conformal structure at the

boundary [gc|∂M ], for c > 0 is singular at p∞ (z1 = −1) and away from the singularity is

given by the nondegenerate conformal structure:

[gc|∂M ] =

[(
2<
(

d

(
1− z1

1 + z1

)
−
(

2 z2

1 + z1

)
d

(
z2

1 + z1

))2

+
1

2
=
(

d

(
1− z1

1 + z1

)
−
(

2 z2

1 + z1

)
d

(
z2

1 + z1

))2

+ 4c

∣∣∣∣d( z2

1 + z1

)∣∣∣∣2
)∣∣∣∣∣

∂M

]
.

(2.3)

Meanwhile the conformal structure for c = 0 is supported only on the CR distribution D

on S3 and is given by [
g0|D×D

]
=

[(∣∣∣∣d( z2

1 + z1

)∣∣∣∣2
)∣∣∣∣∣

D×D

]
. (2.4)

Proof. For any c ≥ 0, the metric gc in the new coordinates is given by

gc =
1

4ρ2

[
ρ+ 2c

ρ+ c
<
(

d

(
1− z1

1 + z1

)
−
(

2 z2

1 + z1

)
d

(
z2

1 + z1

))2

+
ρ+ c

ρ+ 2c
=
(

d

(
1− z1

1 + z1

)
−
(

2 z2

1 + z1

)
d

(
z2

1 + z1

))2

+ 2(ρ+ 2c)

∣∣∣∣d( z2

1 + z1

)∣∣∣∣2
]
,

(2.5)

where now ρ = 1−|z1|2−|z2|2
|z1+1|2 is considered as a function of (z1, z2). The above metric is

well-defined and nondegenerate when |z1|2 + |z2|2 < 1. Moreover we see that for c > 0,

the conformal structure at the boundary [gc|∂M ] = [(4ρ2gc)|∂M ] is singular at z1 = −1.

Away from the singularity, it may be computed to be the following:

[gc|∂M ] =

[(
2<
(

d

(
1− z1

1 + z1

)
−
(

2 z2

1 + z1

)
d

(
z2

1 + z1

))2

+
1

2
=
(

d

(
1− z1

1 + z1

)
−
(

2 z2

1 + z1

)
d

(
z2

1 + z1

))2

+ 4c

∣∣∣∣d( z2

1 + z1

)∣∣∣∣2
)∣∣∣∣∣

∂M

]
.
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Meanwhile, in the case c = 0, the (rescaled) metric in (2.5) becomes:

2ρg0 =
1

2ρ

∣∣∣∣d(1− z1

1 + z1

)
−
(

2 z2

1 + z1

)
d

(
z2

1 + z1

)∣∣∣∣2 +

∣∣∣∣d( z2

1 + z1

)∣∣∣∣2 . (2.6)

The second term stays finite at the boundary but the first term blows up, except on its

kernel, which may be verified to be spanned by the following two vector fields:

z2
∂

∂z1

−
(

1− |z2|2 + z1

1 + z1

)
∂

∂z2

, z2
∂

∂z1

−
(

1− |z2|2 + z1

1 + z1

)
∂

∂z2

.

At the boundary, the above become vector fields spanning the CR distribution D on S3:

z2
∂

∂z1

− z1
∂

∂z2

, z2
∂

∂z1

− z1
∂

∂z2

.

The conformal structure at the boundary [g0|D×D] is defined as the nondegenerate confor-

mal structure on D obtained by keeping only the finite term in the above decomposition

(2.6), see [B1]. Thus the conformal structure [g0|∂M ] is supported only on the CR distri-

bution D and is given by

[
g0|D×D

]
:=
[
(2ρg0)|D×D

]
=

[(∣∣∣∣d( z2

1 + z1

)∣∣∣∣2
)∣∣∣∣∣

D×D

]
.

We would also like to determine the conformal structure of the family of metrics (hb)b≥0

on the sphere at the boundary of M . As in the case of gc above, in order to directly see

the singularity at the point at infinity p∞, we again carry out a change of coordinates

that maps M = R>0 × R3 to the unit ball B4
R in R4:

ρ′ =
1− w2 − x2 − y2 − z2

(1 + w)2 + x2 + y2 + z2
, φ̃′ =

4x

(1 + w)2 + x2 + y2 + z2
,

ζ ′0 =

√
2 y

(1 + w)2 + x2 + y2 + z2
, ζ̃ ′0 =

√
2 z

(1 + w)2 + x2 + y2 + z2
.

(2.7)

This is indeed a diffeomorphism, with (smooth) inverse given by

w =
1− ρ′2 − φ̃′2/4− 2 (ζ ′0)

2 − 2 ζ̃ ′20
(1 + ρ′)2 + φ̃′2/4 + 2 (ζ ′0)2 + 2 ζ̃ ′20

, x =
φ̃′

(1 + ρ′)2 + φ̃′2/4 + 2 (ζ ′0)2 + 2 ζ̃ ′20
,

y =
2
√

2 ζ ′0

(1 + ρ′)2 + φ̃′2/4 + 2 (ζ ′0)2 + 2 ζ̃ ′20
, z =

2
√

2 ζ̃ ′0
(1 + ρ′)2 + φ̃′2/4 + 2 (ζ ′0)2 + 2 ζ̃ ′20

.

(2.8)

As a result of the above change of coordinates, the boundary is mapped to the unit

sphere S3 ⊂ R4, and the point at infinity p∞ is mapped to the south pole (w, x, y, z) =

(−1, 0, 0, 0).
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Proposition 2. In the coordinates introduced in (2.7), the conformal structure [hb|∂M ]

on the boundary sphere for b > 0 is singular at w = −1 and away from the singularity is

given by

[
hb|∂M

]
=

[(
1

2

(
d

(
2x

1 + w

)
+
b

2

(
y

1 + w

)
d

(
z

1 + w

)
− b

2

(
z

1 + w

)
d

(
y

1 + w

))2

+2

((
d

(
y

1 + w

))2

+

(
d

(
z

1 + w

))2
))∣∣∣∣∣

∂M

]
.

(2.9)

Moreover, for b = 0, the conformal structure [h0|∂M ] is the standard conformal structure

on S3.

Proof. At the boundary and away from the south pole, we have w2 + x2 + y2 + z2 = 1

and w 6= −1. So, the restrictions of the coordinate functions ρ′, φ̃′, ζ ′0, ζ̃ ′0 to ∂M are given

as functions of w, x, y, z as follows:

ρ′|∂M = 0, φ̃′|∂M =
2x

1 + w
, ζ ′0|∂M =

y√
2 (1 + w)

, ζ̃ ′0|∂M =
z√

2 (1 + w)
. (2.10)

A straightforward substitution therefore yields

(4ρ′2hb)|∂M =

(
1

2

(
d

(
2x

1 + w

)
+
b

2

(
y

1 + w

)
d

(
z

1 + w

)
− b

2

(
z

1 + w

)
d

(
y

1 + w

))2

+ 2

((
d

(
y

1 + w

))2

+

(
d

(
z

1 + w

))2
))∣∣∣∣∣

∂M

.

(2.11)

The conformal structure is nondegenerate with a double pole at the south pole (i.e. w =

−1) for b > 0. When b = 0, the above becomes:

[
h0|∂M

]
=

[(
2

(
d

(
x

1 + w

))2

+ 2

(
d

(
y

1 + w

))2

+ 2

(
d

(
z

1 + w

))2
)∣∣∣∣∣

∂M

]

=

[(
2(dx2 + dy2 + dz2)

(1 + w)2
+

2(x2 + y2 + z2) dw2

(1 + w)4
− 4(x dx+ y dy + z dz) dw

(1 + w)3

)∣∣∣∣
∂M

]
=

[(
2(dx2 + dy2 + dz2)

(1 + w)2
+

2(1− w2) dw2

(1 + w)4
+

4(w dw) dw

(1 + w)3

)∣∣∣∣
∂M

]
=

[(
2(dw2 + dx2 + dy2 + dz2)

(1 + w)2

)∣∣∣∣
∂M

]
=
[(

dw2 + dx2 + dy2 + dz2
)∣∣
∂M

]
.

(2.12)

This is the standard conformal structure on S3 i.e. the conformal class to which the

restriction of the Euclidean metric on R4 to S3 belongs.
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3 Computation of the curvature tensor

In order to compute the curvature associated with the metric in (0.1), we make use of

the Cartan formalism. In this formalism, we choose an orthonormal frame (eI)I=1,...,4 and

denote the dual co-frame by (θI) so that gc =
∑

I θ
I ⊗ θI . The way we have presented

the metric in (0.1) suggests an obvious choice, namely

θ1 := F (ρ) dρ, θ2 := G(ρ)(dφ̃+ ζ0dζ̃0 − ζ̃0dζ0),

θ3 := H(ρ) dζ̃0, θ4 := H(ρ) dζ0.
(3.1)

where F (ρ), G(ρ), H(ρ) are functions of ρ given by

F (ρ) =
1

2ρ

√
ρ+ 2c

ρ+ c
, G(ρ) =

1

2ρ

√
ρ+ c

ρ+ 2c
, H(ρ) =

√
2(ρ+ 2c)

2ρ
. (3.2)

The so(4)-valued connection 1-form ω = (ωIJ) and curvature 2-form Ω = (ΩI
J) correspond-

ing to the Levi-Civita connection ∇ and its curvature tensor R are defined by

∇veI =
∑
J

ωJI (v)eJ , ΩJ
I (v, w) = gc(R(v, w)eI , eJ), (3.3)

for any vector vector fields v and w. The forms ωJI and ΩJ
I can be calculated through the

Cartan structural equations:

dθI =
∑
J

θJ ∧ ωIJ , dωIJ = ΩI
J +

∑
K

ωKJ ∧ ωIK . (3.4)

In fact, the first equation is equivalent to the vanishing of torsion and determines the

forms ωJI = −ωIJ uniquely. We now gather together the results of the calculation in the

following two lemmata. We omit the proofs, which consist of just checking the structure

equations.

Lemma 3. The connection 1-forms ωIJ in (3.4) are given by

ω1
2 = −ω2

1 =
1

F (ρ)

2ρ2 + 5cρ+ 4c2

2ρ(ρ+ c)(ρ+ 2c)
θ2, ω1

3 = −ω3
1 =

1

F (ρ)

ρ+ 4c

2ρ(ρ+ 2c)
θ3,

ω1
4 = −ω4

1 =
1

F (ρ)

ρ+ 4c

2ρ(ρ+ 2c)
θ4, ω2

3 = −ω3
2 = − 1

F (ρ)

1

2(ρ+ 2c)
θ4,

ω2
4 = −ω4

2 =
1

F (ρ)

1

2(ρ+ 2c)
θ3, ω3

4 = −ω4
3 =

1

F (ρ)

1

2(ρ+ 2c)
θ2.

(3.5)

Lemma 4. The curvature 2-forms ΩI
J in (3.4) are given by

Ω1
2 = −Ω2

1 = −AI(ρ) θ1 ∧ θ2 + 2AIII(ρ) θ3 ∧ θ4,

Ω1
3 = −Ω3

1 = −AII(ρ) θ1 ∧ θ3 + AIII(ρ) θ2 ∧ θ4,

Ω1
4 = −Ω4

1 = −AII(ρ)θ1 ∧ θ4 − AIII(ρ) θ2 ∧ θ3,

Ω2
3 = −Ω3

2 = −AIII(ρ) θ1 ∧ θ4 − AII(ρ) θ2 ∧ θ3,

Ω2
4 = −Ω4

2 = AIII(ρ) θ1 ∧ θ3 − AII(ρ) θ2 ∧ θ4,

Ω3
4 = −Ω4

3 = 2AIII(ρ) θ1 ∧ θ2 − AI(ρ) θ3 ∧ θ4,

(3.6)
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where AI, AII, and AIII are given by

AI(ρ) :=
4ρ3 + 12cρ2 + 24c2ρ+ 16c3

(ρ+ 2c)3
,

AII(ρ) :=
ρ3 + 12cρ2 + 24c2ρ+ 16c3

(ρ+ 2c)3
,

AIII(ρ) := − ρ3

(ρ+ 2c)3
.

(3.7)

4 Eigenspaces of the curvature operator

In this section we consider the curvature operator R : Λ2TM → Λ2TM which is defined

by

gc(RX ∧ Y, Z ∧W ) = gc(R(X, Y )W,Z),

where on the left-hand side gc denotes the scalar product on bi-vectors which is induced

by the Riemannian metric gc:

gc(X ∧ Y, Z ∧W ) = gc(X,Z)gc(Y,W )− gc(X,W )gc(Y, Z).

Identifying vector with co-vectors by means of the metric, we will consider the curvature

operator as a map

R : Λ2T ∗M → Λ2T ∗M. (4.1)

As such it maps θI ∧ θJ to ΩI
J . The endomorphism R is self-adjoint with respect to (the

metric on Λ2T ∗M induced by) gc. It follows, that all eigenvalues are real and that there

exists an orthonormal eigenbasis.

Proposition 5. The following (anti-)self-dual 2-forms

α±JKL = θ1 ∧ θJ ± θK ∧ θL, (4.2)

where (J,K, L) is a cyclic permutation of (2, 3, 4), form an eigenbasis of the curvature

operator (4.1) of the one-loop deformation (0.1). The corresponding eigenvalues λ±JKL are

λ+
234 = −6ρ3 + 12cρ2 + 24c2ρ+ 16c3

(ρ+ 2c)3
,

λ−234 = λ−342 = λ−423 = −2ρ3 + 12cρ2 + 24c2ρ+ 16c3

(ρ+ 2c)3
,

λ+
342 = λ+

423 = −12cρ2 + 24c2ρ+ 16c3

(ρ+ 2c)3
.

(4.3)
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In particular, when c 6= 0, the above depends only on the ratio ρ̃ := ρ/c:

λ+
234 = −6ρ̃3 + 12ρ̃2 + 24ρ̃+ 16

(ρ̃+ 2)3
,

λ−234 = λ−342 = λ−423 = −2ρ̃3 + 12ρ̃2 + 24ρ̃+ 16

(ρ̃+ 2)3
,

λ+
342 = λ+

423 = −12ρ̃2 + 24ρ̃+ 16

(ρ̃+ 2)3
.

(4.4)

Proof: From Lemma 4 we see that R is block diagonal, whereby the bundle Λ2T ∗M of

2-forms decomposes into three invariant subbundles Λ2
234T

∗M , Λ2
342T

∗M , and Λ2
423T

∗M ,

where Λ2
JKLT

∗M denotes the span of θ1 ∧ θJ and θK ∧ θL. By inspection, we may read

off the two eigen-2-forms α±JKL in Λ2
JKLT

?M . The corresponding eigenvalues are

λ+
234 = −AI + 2AIII = −6ρ3 + 12cρ2 + 24c2ρ+ 16c3

(ρ+ 2c)3
,

λ−234 = −AI − 2AIII = −2ρ3 + 12cρ2 + 24c2ρ+ 16c3

(ρ+ 2c)3
,

λ−342 = λ−423 = −AII + AIII = −2ρ3 + 12cρ2 + 24c2ρ+ 16c3

(ρ+ 2c)3
,

λ+
342 = λ+

423 = −AII − AIII = −12cρ2 + 24c2ρ+ 16c3

(ρ+ 2c)3
.

(4.5)

5 Sectional curvature and pinching of the one-loop

deformation

Since any element of Λ2TM can be written as a linear combination of eigenvectors of R,

the sectional curvature

K(Π) = gc(Ru ∧ v, u ∧ v)

of a plane Π ⊂ TM with orthonormal basis (u, v) can be written as a convex linear

combination of the eigenvalues of R. So the spectrum of R, determined in Lemma 5,

shall provide bounds on K.

In order to obtain the pointwise maximum and minimum of the sectional curvature

one has to minimise and maximise gc(Rα, α) subject to the conditions α∧α = 0 (decom-

posability) and gc(α, α) = 1. This leads us to the following lemma

Lemma 6. For any point p ∈M , we have the following bounds for the sectional curvature

9



of the one-loop deformation (0.1):

max
Π⊂TpM

K(Π) =
1

2
(max{λ+

234(p), λ+
342(p), λ+

423(p)}

+ max{λ−234(p), λ−342(p), λ−423(p)}),

min
Π⊂TpM

K(Π) =
1

2
(min{λ+

234(p), λ+
342(p), λ+

423(p)}

+ min{λ−234(p), λ−342(p), λ−423(p)}).

(5.1)

Proof. We consider a general 2-form α written in terms of the eigen-2-forms as follows

α =
∑

ε,(J,K,L)

aεJKLα
ε
JKL, (5.2)

where (J,K, L) runs over the cyclic permutations of (2, 3, 4), and ε runs over the values

±. By decomposing α into its self-dual and anti-self-dual parts, we see that two equations

α ∧ α = 0 and gc(α, α) = 1 are together equivalent to

(a+
234)2 + (a+

342)2 + (a+
423)2 =

1

4
,

(a−234)2 + (a−342)2 + (a−423)2 =
1

4
.

(5.3)

On plugging (5.2) into gc(Rα, α) , we find that

K(Π) =
1

2

[
4(a+

234)2λ+
234 + 4(a+

342)2λ+
324 + 4(a+

423))
2λ+

423

]
+

1

2

[
4(a−234)2λ−234 + 4(a−342)2λ−324 + 4(a−423)2λ−423

]
.

(5.4)

Under the constraint (5.3), the expressions within the square brackets are each convex

combinations of three eigenvalues of R. Therefore in order to maximise or minimise K(Π)

we need to respectively maximise or minimise these convex combinations separately.

In the limit ρ̃ → 0, all the eigenvalues become −2 as for the real hyperbolic space

RH4 with constant negative sectional curvature −2. Meanwhile, in the limit ρ̃→∞, the

pointwise maximum of the sectional curvature is −1 and the pointwise minimum is −4,

giving a pinching of 1/4 as for the complex hyperbolic plane CH2.

The interpolation of the pinching between these two limits is described in the following

proposition.

Proposition 7. The pointwise pinching of the metric gc for c > 0 at a point p =

(cρ̃, φ̃, ζ̃0, ζ
0) ∈M is given by

δp :=
max{K(Π) | Π ⊂ TpM}
min{K(Π) | Π ⊂ TpM}

=
ρ̃3 + 12ρ̃2 + 24ρ̃+ 16

4ρ̃3 + 12ρ̃2 + 24ρ̃+ 16
. (5.5)
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Proof. We note that we have λ+
234 < λ−234 = λ−342 = λ−423 < λ+

342) = λ+
423 for all ρ̃ > 0. So,

we have for all p ∈M

max{λ+
234(p), λ+

342(p), λ+
423(p)} = λ+

342(p) = λ+
423(p),

min{λ+
234(p), λ+

342(p), λ+
423(p)} = λ+

234,

max{λ−234(p), λ−342(p), λ−423(p)} = λ−234(p) = λ−342(p) = λ−423(p),

min{λ−234(p), λ−342(p), λ−423(p)} = λ−234(p) = λ−342(p) = λ−423(p).

It now follows from Lemma 6 that the pointwise pinching at p = (cρ̃, φ̃, ζ̃0, ζ
0) is given by

δp =
λ+

342(p) + λ−234(p)

λ+
234(p) + λ−234(p)

=
ρ̃3 + 12ρ̃2 + 24ρ̃+ 16

4ρ̃3 + 12ρ̃2 + 24ρ̃+ 16
,

as was to be shown.

Now that we have a concrete expression for the pointwise pinching, we can derive our

main result.

Theorem 8. For the one-loop deformation gc, c > 0, the pinching function p 7→ δp

defined in (5.5) satisfies 1
4
< δ < 1 and attains the boundary values asymptotically when

ρ̃ = ρ/c approaches 0 or ∞, respectively, which is to say, M is everywhere (at least)

“quarter-pinched”.

Proof. For any ρ̃ > 0, we see that

1 > δp =
1

4
+

9ρ̃2 + 18ρ̃+ 12

4ρ̃3 + 12ρ̃2 + 24ρ̃+ 16
>

1

4
, (5.6)

and that both boundary values are attained asymptotically.

6 Pedersen metric

We now consider the Pedersen metric defined on the unit ball B4
R as discussed in [P]:

κm =
1

(1− %2)2

(
1 +m2%2

1 +m2%4
d%2 + %2(1 +m2%2) (σ2

1 + σ2
2) +

%2(1 +m2%4)

1 +m2%2
σ2

3

)
, (6.1)

where the boundary is the sphere at % = 1 and σ1, σ2, σ3 are the three left-invariant

1-forms on S3 satisfying dσi =
∑

j,k εijkσj ∧ σk. As in the case of the 1-loop deformed

universal hypermultiplet metric, there is an obvious choice of an orthonormal co-frame

(θI), given by

θ1 =
%

(1− %2)

√
1 +m2%2 σ1, θ2 =

%

(1− %2)

√
1 +m2%2 σ2,

θ3 =
%

(1− %2)

√
1 +m2%4

1 +m2%2
σ3, θ4 =

1

(1− %2)

√
1 +m2%2

1 +m2%4
d%.

(6.2)
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The steps in the previous sections for the calculation of the eigenvalues and an eigenbasis

of the curvature operator R : Λ2T ∗M → Λ2T ∗M may be repeated for the Pedersen

metric. We summarize the results in the next proposition.

Proposition 9. The following (anti-)self-dual 2-forms

β±IJK := θI ∧ θJ ± θK ∧ θ4 (6.3)

where (I, J,K) is a cyclic permutation of (1, 2, 3), form an eigenbasis of the curvature

operator R of the Pedersen metric (6.1). The corresponding eigenvalues ν±IJK are

ν+
123 = ν+

231 = ν+
312 = −4,

ν−123 = −4

(
1− 2m2 (1− %2)

3

(m2%2 + 1)3

)
,

ν−231 = ν−312 = −4

(
1 +

m2 (1− %2)
3

(m2%2 + 1)3

)
.

(6.4)

In order to obtain the pointwise maximum and minimum of the sectional curvature

one has to minimise and maximise κm(Rβ, β) subject to the conditions β ∧ β = 0 (de-

composability) and κm(β, β) = 1. Again, this calculation proceeds exactly as earlier and

so we just summarise the result in the following proposition.

Proposition 10. The pointwise maximum and pointwise minimum of the sectional

curvature of the Pedersen metric is given by

max
Π⊂TpM

K(Π) = −4

(
1− m2 (1− %2)

3

(m2%2 + 1)3

)
,

min
Π⊂TpM

K(Π) = −4

(
1 +

m2 (1− %2)
3

2 (m2%2 + 1)3

)
.

(6.5)

In particular, a straightforward rearrangement shows that the pointwise maximum

maxΠ⊂TpM K(Π) becomes nonnegative when the following condition holds:

%2 ≤
3
√
m2 − 1

m2 +
3
√
m2

. (6.6)

Note that this condition cannot hold if m2 < 1. As a consequence we have the following

result.

Theorem 11. The Pedersen metric (6.1) has negative sectional curvature if and only

if m2 < 1. For m2 > 1 (respectively m2 = 1) there are negative as well as positive

(respectively zero) sectional curvatures near (respectively at) the origin % = 0.
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