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Abstract. We formulate an orbifold construction directly at the level of non-extended topological
field theories, i.e. we associate to an equivariant topological field theory an ordinary topological field
theory. The construction is functorial. It is based on a reformulation of equivariant topological field
theories, followed by taking invariants or, in a geometric formulation, parallel sections.
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1 Introduction and summary

In several contexts, the following strategy has proven to be appropriate to construct new mathematical objects
from a given one: For a fixed (and for our purposes always finite) group G find an embedding of the given object
into a G-equivariant one. In the terminology of of physics, this is is often referred to as the addition of twisted
sectors. Then taking invariants in the appropriate sense yields a new object, the orbifold object. In [DVVV89,
p. 495], this has been phrased as follows: “First the idea of an orbifold clearly implies that we keep only the
G-invariant states in the original Hilbert space H0. However, [...] we also have to include twisted sectors.”
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2 1 Introduction and summary

Examples include the construction of Frobenius algebras from G-equivariant Frobenius algebras, see [Kau02],
and the construction of modular tensor categories from G-equivariant modular tensor categories, see [Kir04]. A
prominent special case of the latter is the orbifoldization of the trivial modular tensor category, i.e. of the category
of finite-dimensional vector spaces. One way of adding twisted sectors yields a category of finite-dimensional G-
graded vector spaces; taking invariants in the appropriate sense gives the representation category of the Drinfeld
double of G, see [Kir04, Example 5.2], which is an algebraic object of independent interest.
The study of these algebraic structures can be rather involved. However, they are often accessible from a different

point of view in the sense that they define a topological field theory in a certain dimension. Since topological
field theories are sometimes easier to manipulate than the mere algebraic objects, this perspective can lead to to
conceptual insights or simplifications of proofs. We will see some examples in this article.
A topological field theory is a symmetric monoidal functor

Cob(n) −→ VectC

from (some version of) the n-dimensional bordism category to the category of (complex) vector spaces or, more
generally, to any symmetric monoidal category. Results exhibiting the strong relation between topological field
theories and algebraic objects include the classification of two-dimensional topological field theories by commutative
Frobenius algebras, see [Kock03], and the classification of extended three-dimensional topological field theories by
modular tensor categories, see [BDSPV15].
Adding twisted sectors to a topological field theory Y : Cob(n) −→ VectC amounts to a factorization

Y : Cob(n)
triv
−−→ G-Cob(n)

Z
−→ VectC

into symmetric monoidal functors, where G-Cob(n) is a G-equivariant version of the bordism category, in which
the bordisms are equipped with principal G-bundles, and triv : Cob(n) −→ G-Cob(n) equips all manifolds with
the trivial G-bundle. The symmetric monoidal functor Z : G-Cob(n) −→ VectC is a so-called G-equivariant
topological field theory and a special case of a homotopy quantum field theory in the sense of [Tur10b], see also
Section 2 of this article.
Hence, we set up our construction, taking the equivariant theory Z as an input. More precisely, we have to

assign to a G-equivariant topological field theory

Z : G-Cob(n) −→ VectC

in a natural way an ordinary topological field theory

Z

G
: Cob(n) −→ VectC,

called the orbifold theory of Z. The operation Z 7−→ Z/G should correspond to a sum over twisted sectors and
taking invariants.
We make this precise for a class of models: This article is a first step and uses the framework of monoidal cate-

gories and non-extended topological field theories. However, the essential ideas should not depend on orientability
and should generalize to extended topological field theories. For our main result, no assumptions on the dimension
are necessary.
We formulate the orbifold construction at the level of topological field theories as a two-step procedure. This is

the content of Section 3:

(1) In the first step we produce from the equivariant theory Z a symmetric monoidal functor Ẑ : Cob(n) −→
VecBunCGrpd from the cobordism category to an auxiliary symmetric monoidal category defined using flat
vector bundles over essentially finite groupoids (alternatively, representations of essentially finite groupoids)

and spans of groupoids (Section 3.2-3.4). The functor Ẑ still remembers the relevant aspects of the G-
equivariance of Z.

(2) By taking parallel sections (in other words, invariants) of these flat vector bundles and using integrals over
homotopy fibers, we define a symmetric monoidal functor Par : VecBunCGrpd −→ VectC (Section 3.5-
Section 3.6).

This allows us to define the orbifold theory in Section 3.7 as the concatenation

Z

G
: Cob(n)

Ẑ
−→ VecBunCGrpd

Par
−−→ VectC.

In this way, we obtain a functor Z 7−→ Z/G from the groupoid of G-equivariant topological field theories to the
groupoid of topological field theories. Contrary to a possible guess, this functor cannot be obtained as an adjoint
of the pullback along the forgetful functor G-Cob(n) −→ Cob(n) as explained in Example 3.48. To a closed
oriented n-dimensional manifold the orbifold theory Z/G assigns the invariant

Z

G
(M) =

ˆ

PBunG(M)

Z(M,P ) dP,
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where Z(M, ?) is seen as an invariant function on the groupoid of G-bundles over M that can be integrated with
respect to groupoid cardinality (Proposition 3.47) over the groupoid of G-bundles on M and hence over all twisted
sectors. The concept of integrating over all twisted sectors is also reflected in the definition of the orbifold theory
on objects (Proposition 3.45 and 3.46) and morphisms (Proposition 3.45) in the bordism category.
The subsequent sections the article are devoted to the computation of orbifold theories in various cases:

• The orbifold theory of the primitive homotopy quantum field theory twisted by a cocycle (in the sense of
[Tur10b], I.2.1) is the Dijkgraaf-Witten theory twisted by this cocycle (Example 3.48). The corresponding
extended topological field theory provides the twisted Drinfeld double.

• The orbifold construction for one-dimensional equivariant theories amounts to taking invariants of group
representations, see Section 4.1. As a byproduct, we obtain orthogonality relations for characters.

• For two-dimensional G-equivariant theories a classification by G-crossed Frobenius algebras due to [Tur10b]
is available. We describe in Section 4.2 the orbifold construction in dimension two on the level of Frobenius
objects by using the notion of an orbifold Frobenius algebra in the sense of [Kau02].

• In Section 5.2 we prove that we can associate to a morphism between two presheaves in groupoids fulfilling
certain additional requirements an equivariant topolological field theory. The corresponding orbifold theory
is computed in Section 5.4. As a special case we find the orbifold theory of the J-equivariant Dijkgraaf-

Witten theory Zλ constructed in [MNS12] from a short exact sequence 0 −→ G −→ H
λ
−→ J −→ 0 of finite

groups: The orbifold theory of Zλ is proven to be isomorphic to the Dijkgraaf-Witten theory ZH for the
group H , i.e.

Zλ
J
∼= ZH . (∗)

Considered at the level of invariants this result is a particular incarnation of Cavalieri’s principle for groupoids
(Proposition A.14).

Finally in Section 6 we construct a pushforward operation for equivariant topological field theories along a group
morphism and identify the orbifoldization of G-equivariant topological field theories with the pushforward along
the unique group morphism G −→ 1 to the trivial group.
In view of the continuation of this work we remark that it is obviously desirable to have an extension of the

geometric orbifold construction to extended equivariant topological field theories. In particular, in the 3-2-1-
dimensional case this should yield a geometric underpinning of the algebraic orbifold construction in [Kir04].
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2 Homotopy quantum field theories and equivariant topological field

theories

In this introductory section we define topological field theories with arbitrary target following [Tur10b] and explain
how they give rise to representations of mapping groupoids. In Section 2.3 we specialize to aspherical targets to
obtain equivariant topological field theories.

2.1 Topological field theories with arbitrary target space

Topological field theories are symmetric monoidal functors on the bordism categoryCob(n), see [Kock03]. Replac-
ing bordisms by bordisms together with a map into some fixed topological space T , yields a natural generalization
of the bordism category. This leads to the notion of an (oriented) topological field theory with target space T ,
which is essentially taken from [Tur10b]:

Definition 2.1 – Bordism category for arbitrary target space. Let n ≥ 1. For a non-empty topological
space T the category T -Cob(n) of n-dimensional bordisms carrying maps with target space T is defined in the
following way:
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(1) Objects are pairs (Σ,ϕ), where Σ is an n − 1-dimensional oriented closed manifold (hence an object in
Cob(n)) and ϕ : Σ −→ T a continuous map. By manifold we always mean smooth finite-dimensional
manifold. A continuous map will often just be referred to as map.

(2) A morphism (M,ψ) : (Σ0, ϕ0) −→ (Σ1, ϕ1) is an equivalence class of pairs of oriented compact bordisms
M : Σ0 −→ Σ1 and continuous maps ψ : M −→ T such that the diagram of continuous maps

Σ0

M

Σ1

T
ϕ0 ϕ1

ψ

commutes. The unlabeled arrows are the embeddings of the boundary components into M . Two such
pairs (M,ψ) and (M ′, ψ′) are defined to be equivalent if there is an orientation-preserving diffeomorphism
Φ :M −→M ′ making the diagram

Σ0

M

Σ1

M ′

Φ

commute such that additionally ψ = ψ′ ◦ Φ.

The identity of (Σ,ϕ) is represented by the cylinder over Σ carrying the trivial homotopy ϕ ≃ ϕ. Composition is
by gluing of bordisms and maps, respectively. Just like Cob(n), the category T -Cob(n) carries the structure of
a symmetric monoidal category with duals.

Definition 2.2 – Topological field theory with target space and homotopy quantum field theory. An
n-dimensional topological field theory over a field K with target space T is a symmetric monoidal functor

Z : T -Cob(n) −→ VectK .

Again, the target space is always assumed to be non-empty. If Z is additionally homotopy invariant, i.e.
Z(M,ψ0) = Z(M,ψ1) for morphisms (M,ψ0), (M,ψ1) in T -Cob(n) with ψ0 ≃ ψ1 relative ∂M , we call Z, following
[Tur10b], an n-dimensional homotopy quantum field theory with target space T .

Remarks 2.3.

(a) If T is the one-point-space (the terminal object in the category Top of topological spaces), then T -Cob(n) ∼=
Cob(n) and we obtain an ordinary topological field theory.

(b) Here and in the sequel the manifolds involved in the definition of Cob(n) or T -Cob(n) are always oriented.
Therefore, one could specify all theories as oriented. Since we only consider this case, we will drop this
additional adjective.

(c) Every object (Σ,ϕ) in T -Cob(n) has a dual. More precisely, the dual of an object (Σ,ϕ) is (Σ,ϕ), where
Σ is Σ with orientation reversed and ϕ is ϕ now seen as a map Σ −→ T . Since Z is monoidal, Z(Σ,ϕ) also
has a dual. This implies that Z(Σ,ϕ) is finite-dimensional.

(d) If M is a closed oriented n-dimensional manifold and ϕ :M −→ T a continuous map, then an n-dimensional
topological field theory Z : T -Cob(n) −→ VectK assigns to (M,ϕ) a number in K since (M,ϕ) can be
seen as morphism (∅, •) −→ (∅, •), with • the unique map ∅ −→ T , and (∅, •) is sent to K (up to natural
isomorphism). This number is a diffeomorphism invariant of M . If Z is a homotopy quantum field theory,
it is also an invariant of the homotopy class of ϕ.

(e) In the above definition, VectC can be replaced by any other symmetric monoidal category.

(f) The homotopy invariance property can be built into the source category: Denote by T -Cob(n)/≃ the
symmetric monoidal category, which arises from T -Cob(n) by identifying morphisms (M,ψ) and (M,ψ′) if
ψ ≃ ψ′ relative ∂M . Then a homotopy quantum field theory with target T can be equivalently described as
a symmetric monoidal functor T -Cob(n)/≃ −→ VectC.

We can consider monoidal natural transformations between different topological field theories with the same target
space. According to the following well-known result these are always isomorphisms:

Proposition 2.4. Let F : C −→ D be a symmetric monoidal functor between symmetric monoidal categories,
where C has duals. Then every monoidal natural transformation between F and G is an isomorphism. Con-
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sequently, the category Sym(C,D) of symmetric monoidal functors with monoidal natural transformations as
morphisms is a groupoid.

Definition 2.5 – Category of homotopy quantum field theories. For any target space T we define the
category HSym(T -Cob(n),VectK) of n-dimensional homotopy quantum field theories with target T to be the
full subcategory of Sym(T -Cob(n),VectK) consisting of those functors having the homotopy invariance property
from Definition 2.2.

By Remark 2.3, (c) T -Cob(n) has duals, so Proposition 2.4 implies:

Corollary 2.6. For any target space T the category HSym(T -Cob(n),VectK) of homotopy quantum field
theories with target T is a groupoid.

Remark 2.7. In [Tur10b] a pointed version T∗-Cob(n) of the category T -Cob(n) is used for a fixed basepoint
t0 ∈ T : Objects are pairs of a closed oriented n − 1-dimensional pointed manifold Σ (pointed means that all
components are equipped with a basepoint) and a pointed map ϕ : Σ −→ T . The morphisms, their composition
and the monoidal structure are defined just as in T -Cob(n), i.e. the forgetful functor

U : T∗-Cob(n) −→ T -Cob(n)

is a symmetric monoidal embedding. We will prove now that U is even an equivalence in case T is path-connected:
To show essential surjectivity in that case, let (Σ,ϕ) be an object in T -Cob(n). It suffices to show that for any
choice of basepoints on the components of Σ there is a pointed map ψ : Σ −→ T which is homotopic to ϕ (not
necessarily pointed homotopic). For this we may assume that Σ is connected. Denote by x0 the basepoint on the
single component of Σ and equip the unit interval I = [0, 1] with the basepoint {0}. Then the wedge sum (the
coproduct in the category of pointed spaces) of Σ and I can be identified with

Σ ∨ I = (Σ × {0}) ∪ ({x0} × I) ⊂ Σ × I.

Since the inclusion {x0} −→ Σ is a cofibration, there is a retraction r : Σ×I −→ Σ∨I by [Bre93, VII, Theorem 1.3].
This allows us to define a map

µ : Σ −→ Σ ∨ I, x 7−→ r(x, 1).

By path-connectedness of T we can choose a path γ : [0, 1] −→ T from t′ := ϕ(x0) to t0 and define the map

ψ : Σ
µ
−→ Σ ∨ I

(ϕ,γ)
−−−→ T

sending x0 to t0. This map is homotopic to ϕ by the homotopy defined by

ht(x) := (ϕ, γ) ◦ r(x, 1 − t) for all t ∈ I, x ∈ Σ.

This concludes the proof that the forgetful functor U : T∗-Cob(n) −→ T -Cob(n) is a symmetric monoidal
equivalence. It induces a symmetric monoidal equivalence

T∗-Cob(n)/≃ −→ T -Cob(n)/≃

between the corresponding categories which identify morphisms which consist of maps homotopic relative boundary
on the same underlying bordism, see Remark 2.3, (f). This shows that the category of pointed homotopy quantum
field theories with target space T in the sense of [Tur10b] is equivalent to the category of homotopy quantum field
theories with target space T used in this article if T is path-connected.

2.2 Groupoid representations from evaluation on the cylinder

Evaluating an ordinary topological field theory on the cylinder, seen as the identity in the bordism category, yields
the identity map. For a homotopy quantum field theory, however, we can place maps into T on the cylinder
representing a homotopy between the maps on the incoming and outgoing boundary; and the theory assigns maps
to these homotopies, which might be non-trivial. To be more precise, we get representations of groupoids. Here,
a representation of a groupoid Γ (on vector spaces over a field K) is a functor ρ : Γ −→ VectK . The groupoids
we want to represent are of the following form:

Definition 2.8 – Mapping groupoid. For topological spaces X and Y we denote by Π(X,Y ) the mapping
groupoid of X and Y which has continuous maps X −→ Y as objects and equivalence classes of homotopies of
such maps as morphisms. Here, we consider homotopies h, h′ : X × [0, 1] −→ Y between f and g to be equivalent
if they are homotopic relative the boundary X × {0, 1} of the cylinder X × [0, 1].
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Remarks 2.9.

(a) We could also define Π(X,Y ) to be the fundamental groupoid Π(C (X,Y )) of the mapping space C (X,Y )
equipped with the compact-open topology.

(b) For the one-point-space ⋆ the groupoid Π(⋆,X) is the fundamental groupoid of X .

(c) For a continuous map ϕ : X −→ Y the group Aut(ϕ) of automorphisms of ϕ in Π(X,Y ) is the group of
equivalence classes of homotopies h : X × [0, 1] −→ Y from ϕ to ϕ. Since h0 = h1, h gives rise to a map
h̄ : X×S1 −→ Y . Obviously, two homotopies h, h′ : X× [0, 1] −→ Y from ϕ to itself are equivalent iff h̄ ≃ h̄′

relative X × {0} ⊂ X × S1, where 0 ∈ S1 is some basepoint.

(d) A morphism h : f −→ g in Π(X,Y ), i.e. an equivalence class of homotopies f
h
≃ g, has an inverse denoted

by h− : g −→ f . It is obtained by reading h backwards.

Many of the constructions discussed in this paper will rely on the following elementary observation.

Proposition 2.10. A homotopy quantum field theory Z : T -Cob(n) −→ VectK provides for each object Σ in
Cob(n) a representation

̺Σ : Π(Σ, T ) −→ VectK

(ϕ : Σ −→ T ) 7−→ Z(Σ,ϕ),

(ϕ
h
≃ ψ) 7−→ Z(Σ × [0, 1], h).

of the mapping groupoid Π(Σ, T ). In particular, Z provides a representation Aut(ϕ) −→ Aut(Z(Σ,ϕ)) of the
automorphism group Aut(ϕ) of any continuous map ϕ : Σ −→ T . Its character is given by

Aut(ϕ) −→ K, (ϕ
h
≃ ϕ) 7−→ Z(Σ × S

1, h̄).

Proof. The only non-trivial point is the well-definedness of Z(Σ× [0, 1], h), but this follows from the homotopy
invariance of Z. For the character formula observe that

trZ(Σ × [0, 1], h) = Z(Σ × S
1, h̄) (∗)

for ϕ
h
≃ ϕ, where Z(Σ × S1, h̄) ∈ K is the invariant that Z assigns to the closed n-dimensional manifold Σ × S1

together with the map h̄ : Σ × S1 −→ T induced by h, see Remark 2.9, (c). �

A homotopy quantum field theory with target T assigns to two morphisms (M,ψ) and (M, ξ) in T -Cob(n) the
same linear map if ψ ≃ ξ relative ∂M . If ψ and ξ are homotopic, but possibly not relative boundary, we have the
following result:

Proposition 2.11. Let Z : T -Cob(n) −→ VectK be a homotopy quantum field theory with target T . If

ψ
h
≃ ξ :M −→ T for two morphisms (M,ψ) and (M, ξ) in T -Cob(n), then the square

Z(Σ0, ψ|Σ0) Z(Σ0, ξ|Σ0)

Z(Σ1, ψ|Σ1) Z(Σ1, ξ|Σ1)

Z(Σ0 × [0, 1], h|Σ0) = ̺Σ0 (h|Σ0)

Z(M,ψ)

Z(Σ1 × [0, 1], h|Σ1) = ̺Σ1 (h|Σ1)

Z(M, ξ)

commutes.

Proof. We construct a homotopy H : M × [0, 1] −→ T relative ∂M starting at ψ. In order to define the maps
Ht :M −→ T , we choose (Σ1 × [0, 1]) ∪Σ1 M ∪Σ1 (Σ0 × [0, 1]) as a representative for the bordism class M , where
∪? denotes the gluing of manifolds (we are gluing in two cylinders). Now let Ht be the map (Σ1× [0, 1])∪Σ1M ∪Σ0

(Σ0 × [0, 1]) −→ T obtained by gluing together the maps

αt : Σ0 × [0, 1] −→ T, (x, s) 7−→ h(x, st),

ht :M −→ T, (x, s) 7−→ h(x, t),

βt : Σ1 × [0, 1] −→ T, (x, s) 7−→ h(x, (1 − s)t).
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Hence, H is a homotopy relative boundary from ψ to the map

M ∼= (Σ1 × [0, 1]) ∪Σ1 M ∪Σ0 (Σ0 × [0, 1]) −→ T

obtained by gluing h|−Σ1
, ξ and h|Σ0 . Using homotopy invariance and functoriality, we obtain

Z(M,ψ) = Z(Σ1 × [0, 1], h|−Σ1
) ◦ Z(M, ξ) ◦ Z(Σ0 × [0, 1], h|Σ0).

From Proposition 2.10 we deduce that Z(Σ1 × [0, 1], h|−Σ1
) = Z(Σ1 × [0, 1], h|Σ1)

−1. �

2.3 Aspherical targets

One particular choice for a target space of a homotopy quantum field theory is the classifying space of a finite
group. This leads to equivariant topological field theories as discussed in [Tur10b, I.3]. In this subsection we
explain how maps to the classifying space and homotopies between them can be understood as principal fiber
bundles and gauge transformations.

Definition 2.12 – Equivariant topological field theory. Let G be a group, which, if needed, is always seen
as discrete topological group. Then we define a G-equivariant topological field theory to be a homotopy quantum
field theory with the classifying space BG of G as a target (hence by definition, an equivariant topological field
theory is homotopy invariant).

Remark 2.13. If we set G-Cob(n) := BG-Cob(n), a G-equivariant topological theory is a symmetric monoidal
functor

Z : G-Cob(n) −→ VectK

fulfilling the homotopy invariance property.

Let us recall the most elementary facts about classifying spaces, as a reference see e.g. [tD08]: For a topological
group G, there is a space BG, called the classifying space, and a numerable G-bundle EG −→ BG over it, called
the universal G-bundle, such that for any space X the map

[X,BG] −→ π0(PBunnum
G (X)), [f ] 7−→ [f∗EG] (∗)

is a natural bijection between homotopy classes of maps X −→ BG and the isomorphism classes of the groupoid
PBunnum

G (X) of numerable G-bundles over X . Equivalently, BG represents the cofunctor π0(PBunnum
G (?)) from

the category of topological spaces and homotopy classes of maps to the category of sets, which also implies that
BG is unique up to homotopy equivalence. If G is discrete, an elegant way to obtain a model for BG is to
see G as groupoid ⋆//G with one object ⋆ and automorphism group G. We can now apply the nerve functor
B : Cat −→ sSet from the category of small categories to the category of simplicial sets and the geometric
realization |?| : sSet −→ Top. The result |B(⋆//G)| is a model for BG, see [GJ99]. Since BG is an Eilenberg-
MacLane space K(G, 1), and therefore aspherical, G-equivariant topological field theories are said to have an
aspherical target.
The bijections (∗) suggest that we have to understand the maps into BG occuring in the definition of G-Cob(n)

as G-bundles (canonically equipped with a connection since G is discrete). This point of view has a clearer
geometric motivation than the approach from Definition 2.12 following [Tur10b]. The latter, however, has technical
advantages since it makes sense to require classifying maps to be equal, whereas equality of bundles is problematic.
In order to reconcile both approaches, (∗) is not enough because these bijections do not take gauge transformations
into account. Instead, we need natural equivalences of groupoids

Π(M,BG) ∼= PBunG(M) (‡)

for all manifolds M .
In order to define the equivalence (‡) for a discrete group G we use the canonical flat connection on the bundle

EG −→ BG:

Theorem 2.14. Let G be a discrete group. Then for any manifold M there is a canonical equivalence

K : Π(M,BG) −→ PBunG(M),

ϕ 7−→ ϕ∗EG,

(ϕ
H
≃ ψ) 7−→ (K(H) : ϕ∗EG −→ ψ∗EG),

where K(H) : ϕ∗EG −→ ψ∗EG is the isomorphism of G-bundles sending for x ∈ M a point (x, p) ∈ (ϕ∗EG)x =
EGϕ(x) to the point (x, ℘Hx(p)) ∈ (ψ∗EG)x = EGψ(x) obtained by parallel transport ℘Hx in EG along the path
Hx : [0, 1] ∋ t 7−→ Ht(x).
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Proof. Since the parallel transport operators of a flat connection are invariant under homotopy of the path
relative to the endpoints, K is well-defined. The functoriality is obvious. By the universal property of π : EG −→
BG, the functor K yields a bijection on isomorphism classes. In particular, K is essentially surjective. It remains
to show that K is fully faithful. For this consider maps ϕ, ψ :M −→ BG and the map

HomΠ(M,BG)(ϕ, ψ) −→ HomPBunG(M)(ϕ
∗EG,ψ∗EG) (∗)

induced by K. By

Φ : ϕ∗EG = {(x, p) ∈M × EG | p ∈ EGϕ(x)} −→ EG, (‡)

Ψ : ψ∗EG = {(x, p) ∈M × EG | p ∈ EGψ(x)} −→ EG

we denote the canonical G-equivariant maps coming from the projection to the second factor.

• First we prove surjectivity of (∗). If f : ϕ∗EG −→ ψ∗EG is a morphism of G-bundles over M , we obtain
two G-equivariant maps Φ, Ψ ◦ f : ϕ∗EG −→ EG, which by the properties of EG are homotopic through G-
equivariant maps Λt : ϕ

∗EG −→ EG. These equivariant maps cover the maps Ht :M −→ BG constituting
a homotopy H from ϕ to ψ. We find

K(H)(x, p) = (x, ℘Hx(p)) = (x, Λ1(x, p)) = (x, Ψ ◦ f(x, p)) = f(x, p)

for all (x, p) ∈ ϕ∗EG,

where in the last step we used that the first component of f(x, p) is x. This proves K(H) = f and hence
surjectivity of (∗).

• In order to prove injectivity of (∗), it suffices to prove that a homotopy H from ϕ to ϕ with K(H) = idϕ∗EG

is homotopic relative boundary to the identity homotopy of ϕ. Equivalently, we have to show that [0, 1] ∋
t 7−→ Ht represents the trivial element in π1(CP (M,BG), ϕ) for P := ϕ∗EG, where CP (M,BG) is the space
of maps M −→ BG classifying P (as all mapping spaces in this article CP (M,BG) is equipped with the
compact-open topology). To this end, we use Theorem 3.4 in Chapter 7 of [Hus94], which states that the
map

Ξ : C (P,EG)G −→ CP (X,BG)

from G-equivariant maps P −→ EG to classifying maps of P = ϕ∗EG assigning to a G-equivariant map
P −→ EG the corresponding classifying map is a universal Aut(P )-bundle. In particular, the total space
C (P,EG)G is contractible. In the next step observe Ξ(Φ) = ϕ for the map Φ which already appeared in
(‡). Given the contractibility of C (P,EG)G, we only need to give a closed Ξ-lift of [0, 1] ∋ t 7−→ Ht to a
path in C (P,EG)G starting and ending at Φ. Such a lift is given by [0, 1] ∋ t 7−→ H∗

t , where we define
H∗
t : P −→ EG by

H∗
t (x, p) := ℘[0,t]∋s7−→Hs(t)(p) for all p ∈ Eϕ(x), x ∈M. �

Remarks 2.15.

(a) Note that although, to the knowledge of the authors, this result is not formulated in the above way in the
literature, it is known as indicated in [Hei04, 1]. The statement can also be proven using simplicial methods
and the adjunction between nerve and homotopy category.

(b) The above result may be wrong if G is non-discrete. For example, the infinite-dimensional complex projective
space CP∞ is a model for BU(1). Since CP∞ is a K(Z, 2), we obtain in the case that M is the one-
point space ⋆ that Π(⋆,BU(1)) ∼= Π(BU(1)) ∼= •//1, where •//1 is the groupoid with one object and
trivial automorphism group. But the groupoid PBunU(1)(⋆) of U(1)-bundles over the one-point-space is the
groupoid U(1)-Tor of U(1)-torsors, which is equivalent to •//U(1). The reason behind this failure is that
homotopies can only be turned into isomorphisms of U(1)-bundles if a connection is specified.

In the sequel we will, having Theorem 2.14 in mind, jump back and forth between the description of G-bundles
using the total space perspective, classifying maps or parallel transport operators.

3 Orbifold construction

To set up the orbifold construction we follow the plan outlined in the introduction: After discussing vector bundles
over groupoids and their parallel sections in Section 3.1, we define a symmetric monoidal categoryVecBunKGrpd

that comprises all representations of essentially finite groupoids in Section 3.2 and a certain type of preaheaves in
Section 3.3 to give a reformulation of the notion of an equivariant topological field theory in Section 3.4. Using the
pushforward maps introduced in Section 3.5 we define the parallel section functor in Section 3.6. In Section 3.7
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all these ingredients are put together to yield the orbifold construction.

3.1 Parallel sections of vector bundles on groupoids

For a representation ̺ : G −→ Aut(V ) of a group G on a K-vector space V the invariants of V form the subspace

V G := {v ∈ V | g.v := ̺(g)v = v for all g ∈ G},

whereas the coinvariants of V form the quotient

VG :=
V

span{v − g.v | v ∈ V, g ∈ G}
.

Obviously, we can see ̺ as a functor from the groupoid ⋆//G with one object and automorphism group G to
VectK . Now V G is a limit for ̺, and VG is a colimit of ̺. For groupoid representations an obvious and well-known
generalization is true.

Proposition 3.1. Let Γ be a small groupoid and ̺ : Γ −→ VectK a representation. Then its limit and colimit
are given by

lim ̺ ∼=
∏

[x]∈π0(Γ )

̺(x)Aut(x),

colim ̺ ∼=
⊕

[x]∈π0(Γ )

̺(x)Aut(x),

respectively. There is a canonical map lim ̺ −→ colim̺. If Γ is essentially finite (Definition A.5) and K of
characteristic zero, this map is an isomorphism.

The formulae from Proposition 3.1 are very explicit, but not too useful since they use chosen representatives of the
isomorphism classes. We will now discuss a very convenient realization of the limit of a representation by seeing a
groupoid representation as a vector bundle over a groupoid (see Proposition 3.6 below). All the notions occuring
in the following definition are directly transferred from the ordinary theory of vector bundles with connection.
They also appear in the context of groupoid representations in [Wil05].

Definition 3.2 – Vector bundle over a groupoid. Let K be a field and Γ a small groupoid. We will view
a representation ̺ : Γ −→ FinVectK of Γ on finite-dimensional K-vector spaces as a K-vector bundle ̺ over Γ
(with flat connection). We call the vector space ̺(x) the fibre over x ∈ Γ . We will not define directly what a
connection on ̺ is, but we will define its parallel transport: For a morphism g : x −→ y in Γ we call the operator
̺(g) : ̺(x) −→ ̺(y) the parallel transport of ̺ along g. A morphism η : ̺ −→ ξ of vector bundles over Γ is a
natural transformation of the corresponding functors Γ −→ VectK (this means that η is an intertwiner for the
parallel transport operators). The category of K-vector bundles over Γ is denoted by VecBunK(Γ ). It coincides,
of course, with the functor category [Γ,FinVectK ].

Remarks 3.3.

(a) So whenever it is convenient, we will see groupoid representations as vector bundles over groupoids and
morphisms of representations (also called intertwiners) as vector bundle morphisms.

(b) The categoryVecBunK(Γ ) ofK-vector bundles over some groupoid Γ inherits from FinVectK the structure
of a symmetric monoidal category with duals. The monoidal unit IΓ assigns to every x ∈ Γ the vector space
K and to every morphism in Γ the identity on K.

For a vector bundle over a groupoid there is the notion of a parallel section, sometimes also called invariant or flat
sections, see [Wil05]. The relation to parallel sections in the geometric sense is obvious.

Definition 3.4 – Parallel section of a vector bundle over a groupoid. Let ̺ be a K-vector bundle over
a groupoid Γ . A parallel section of ̺ is a function s on Γ with s(x) ∈ ̺(x) for x ∈ Γ such that for any morphism
g : x −→ y the equation

s(y) = ̺(g)s(x)

holds. By

Par̺ := {s : Γ −→ K | s parallel section}

we denote the vector space of parallel sections of ̺.
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Remark 3.5. The following well-known reformulation of the above definition is useful: The vector space Par ̺
coincides with the vector space HomVecBunK(Γ )(IΓ , ̺) of morphisms (i.e. vector bundle morphisms) from the
monoidal unit IΓ to ̺. Hence, we obtain

Par̺ = HomVecBunK(Γ )(IΓ , ̺) =

ˆ

Γ

HomVectK
(IΓ (x), ̺(x)) dx,

where in the last step we have used that we can express the space of natural transformations between functors via
an end, see [ML98, IX.5].

The following result is the analogue of the well-known holonomy principle from the theory of vector bundles with
connection.

Proposition 3.6 – Holonomy principle. Let ̺ be a K-vector bundle over a small groupoid Γ . Then the
vector space Par̺ of parallel sections of ̺ is the limit of ̺. By the functoriality of the limit, taking parallel
sections extends to a functor

ParΓ : VecBunK(Γ ) −→ VectK .

Proof. By using IΓ (x) = K for all x ∈ Γ in Remark 3.5 we see that the end describing Par̺ is mute in the first
variable and hence reduces to a limit. �

Remarks 3.7.

(a) Note that ParΓ is not (yet) the parallel section functor needed for the orbifold construction, which will be
introduced in Section 3.6 and which is defined on a different category.

(b) Let λ : ̺ −→ ξ be a morphism of K-vector bundles over a small groupoid Γ . Then the image of λ under
ParΓ will be denoted by

λ∗ : Par̺ −→ Par ξ, s 7−→ λ∗s,

and is explicitly given by (λ∗s)(x) := λxs(x) for x ∈ Γ .

Just like vector bundles over topological spaces, vector bundles over groupoids admit pullbacks.

Proposition 3.8 – Pullback of vector bundles over groupoids. Let Φ : Γ −→ Ω be a functor between
small groupoids and ̺ a K-vector bundle over Ω. Then Φ∗̺ := ̺ ◦ Φ : Γ −→ VectK is a vector bundle over Γ .
This provides a pullback functor

Φ∗ : VecBunK(Ω) −→ VecBunK(Γ )

(a) The pullback functors obey the composition law (Ψ ◦ Φ)∗ = Φ∗ ◦ Ψ∗, where Ψ : Ω −→ Λ is another functor
between small groupoids.

(b) Let Φ′ : Γ −→ Ω be another functor between small groupoids and η : Φ⇒ Φ′ a natural isomorphism. Then
η induces an isomorphism ̺(η) : Φ∗̺ −→ Φ′∗̺ consisting of the maps (̺(ηx))x∈Γ .

(c) The functor Φ induces a linear map

Φ∗ : Par̺ −→ ParΦ∗̺, s 7−→ Φ∗s,

where (Φ∗s)(x) = s(Φ(x)) for all x ∈ Γ . Such a map is called a pullback map.

(d) Just like the pullback functors the pullback maps obey the composition law (Ψ ◦ Φ)∗ = Φ∗ ◦ Ψ∗.

(e) The pullback maps are natural in the sense that they provide a natural transformation

ParΩ −→ ParΓ ◦ Φ
∗,

i.e. for any morphism λ : ̺ −→ ξ of vector bundles over Ω the square

Par̺ ParΦ∗̺

Par ξ ParΦ∗ξ

Φ∗

λ∗

Φ∗

(Φ∗λ)∗

commutes.

Proof. It is obvious that Φ yields a functor Φ∗ : VecBunK(Ω) −→ VecBunK(Γ ), and so is the composition
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law (a). The remaining assertions all follow immediately from the definitions. As an illustration let us prove (e):
For the map Φ∗ : Par̺ −→ ParΦ∗̺ to be well-defined we need to check that Φ∗s is again parallel if s is. Indeed,
for a morphism g : x −→ y in Γ we obtain

(Φ∗s)(y) = s(Φ(y)) = ̺(Φ(g))s(x) = (Φ∗̺)(g)s(x)

since s is parallel. �

Remark 3.9. We denoted both a functor and a linear map by Φ∗. But as long as source and target are specified,
there should be no confusion.

3.2 The symmetric monoidal category VecBunKGrpd

The symmetric monoidal category VecBunKGrpd is a crucial ingredient for the generalization of equivariant
topological field theories in Section 3.4. It can be seen as an equivariant version of the span category in [Mor11]
and [Mor15].
In order to define VecBunKGrpd we need the notion of a homotopy pullback.

Definition 3.10 – Span and cospan of groupoids. A span of groupoids is a diagram

Γ ←− Λ −→ Ω

of groupoids and functors between them. Dually, a cospan of groupoids is a diagram

Γ −→ Λ←− Ω

of groupoids and functors between them.

A prescription of how to compute homotopy pullbacks can be extracted from the theory of homotopy limits, see
for instance [Rie14]. For our purposes, the following model for the homotopy pullback of groupoids suffices:

Definition 3.11 – Homotopy pullback. To every cospan Γ
Φ
−→ Ω

Ψ
←− Λ of groupoids we can associate a

groupoid Γ ×Ω Λ, called the weak pullback or weak pullback of Γ
Φ
−→ Ω

Ψ
←− Λ: Objects are triples (x, y, ηx,y),

where x ∈ Γ , y ∈ Λ and Φ(x)
ηx,y
∼= Ψ(y). A morphism (x, y, ηx,y) −→ (x′, y′, ηx′,y′) is a pair (g, h) of morphisms

g : x −→ x′ and h : y −→ y′ such that the square

Φ(x) Ψ(y)

Φ(x′) Ψ(y′)

Φ(g)

ηx,y

Ψ(h)

ηx′,y′

commutes. We have the obvious projection functors πΓ : Γ ×Ω Λ −→ Γ and πΛ : Γ ×Ω Λ −→ Λ. The assignment
Γ ×Ω Λ ∋ (x, y, ηx,y) 7−→ ηx,y defines a natural isomorphism Φ ◦ πΓ ⇒ Ψ ◦ πΛ, i.e. the square

Γ ×Ω Λ Γ

Λ Ω

πΓ

πΛ Φ

Ψ

η

weakly commutes.

Definition 3.12 – The category VecBunKGrpd. For a field K define the category VecBunKGrpd as
follows:

(a) Objects are pairs (Γ, ̺), where ̺ : Γ −→ FinVectK is a vector bundle over an essentially finite groupoid Γ .

(b) A morphism (Γ, ̺) −→ (Ω, ξ) is a equivalence class of pairs (Λ, λ), where Γ
r0←− Λ

r1−→ Ω is a span of
essentially finite groupoids and λ : r∗0̺ −→ r∗1ξ is a morphism in VecBunK(Λ). Here, an equivalence



12 3 Orbifold construction

(Λ, λ) −→ (Λ′, λ′) of spans from Γ to Ω is an equivalence Φ : Λ −→ Λ′ together with natural isomorphisms

η0 : r0 =⇒ r′0 ◦ Φ,

η1 : r1 =⇒ r′1 ◦ Φ,

such that the diagram

Γ

Λ

Ω

Λ′

r0 r1

r′0 r′1

Φ
η0 η1

weakly commutes up to η0 and η1 and such that the square

r∗0̺ r∗1ξ

(r′0 ◦ Φ)
∗̺ = Φ∗r′0

∗
̺ (r′1 ◦ Φ)

∗ξ = Φ∗r′1
∗
ξ

λ

̺(η0)

Φ∗λ′

ξ(η1)

commutes (note that the operations from Proposition 3.8 enter here). So we can write (the representative

of) a morphism (Γ
r0←− Λ

r1−→ Ω, λ : r∗0̺ −→ r1ξ) as

Γ

VectK

Ω

Λ

̺ ξ

r0 r1

λ

.

(c) The composition of the morphisms (Γ, ρ)
r0←− (Λ, λ)

r1−→ (Ω, ξ) and (Ω, ξ)
r′1←− (Λ′, λ′)

r′2−→ (Ξ, ν) is defined
to be equivalence class of the span Γ ←− Λ×Ω Λ

′ −→ Ω defined by the diagram

Γ

Λ

Ω

Λ′

Ξ

Λ×Ω Λ
′

r0 r1 r′1 r′2

p p′

η

,

where Λ ×Ω Λ′ is the weak pullback coming with the projections p and p′ and the natural isomorphism
η : r1 ◦ p⇒ r′1 ◦ p

′. The needed morphism λ′ ×Ω λ : (r0 ◦ p)
∗̺ −→ (r2 ◦ p

′)∗ν is defined as the composition

(r0 ◦ p)
∗̺ = p∗r∗0̺

p∗λ
−−→ p∗r∗1ξ = (r1 ◦ p)

∗ξ
ξ(η)
−−→ (r′1 ◦ p

′)∗ξ = p′
∗
r′1

∗
ξ
p′∗λ′

−−−→ p′
∗
r′2

∗
ν = (r2 ◦ p

′)∗ν.

Here ξ(η) : (r1 ◦ p)
∗ξ −→ (r′1 ◦ p

′)∗ξ is the morphism of vector bundles induced from η : r1 ◦ p ⇒ r′1 ◦ p
′

according to Proposition 3.8, (b). Note that λ′×Ω λ : (r0 ◦ p)
∗̺ −→ (r2 ◦ p

′)∗ν is the natural transformation
of functors Λ×Ω Λ

′ −→ VectK obtained by composing all the natural transformations in the diagram
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Γ

Λ

Ω

VectK

Λ′

Ξ

Λ×Ω Λ
′

r0 r1 r′1 r′2

p

̺ ξ ν

p′

η

λ λ′

.

The category VecBunKGrpd carries in a natural way the structure of a monoidal category. The tensor product
is analogous to the external product known from K-theory, see [Hat09].

Definition 3.13. We define the structure of a symmetric monoidal category on VecBunKGrpd as follows:

(a) For objects (Γ, ̺) and (Ω, ξ) the tensor product (Γ, ̺) ⊗ (Ω, ξ), which we will also denote as ̺ ⊗̂ ξ in case
we want to suppress the groupoids, is the vector bundle over Γ ×Ω given by

(̺ ⊗̂ ξ)(x, y) := ̺(x) ⊗ ξ(y) for all x ∈ Γ, y ∈ Ω

and

(̺ ⊗̂ ξ)(g, h) := ̺(g)⊗ ξ(h) for all g : x −→ x′, h : y −→ y′.

The fiberwise tensor products occuring in these definitions are tensor products over the fieldK. The definition
of the tensor product

⊗ : VecBunKGrpd×VecBunKGrpd −→ VecBunKGrpd

on morphisms is obtained in an analogous way (Cartesian products on the span level combined with tensor
products of vector bundles). The monoidal unit I of VecBunKGrpd is the vector bundle over the groupoid
⋆//1 with one object and trivial automorphism group on K.

(b) The category VecBunKGrpd also inherits a symmetric braiding. Explicitly, the braiding isomorphism
(Γ, ̺)⊗ (Ω, ξ) −→ (Ω, ξ)⊗ (Γ, ̺) is the class of the span

Γ ×Ω ←− Γ ×Ω
T
−→ Ω × Γ,

where the first functor is the identity and the second switches the factors, together with the morphism
̺ ⊗̂ ξ −→ T ∗(ξ ⊗̂ ̺) consisting of the obvious flip maps

̺(x)⊗ ξ(y) −→ ξ(y)⊗ ̺(x).

Remarks 3.14.

(a) In order to write down the braiding we could also use the span Γ×Ω
T
←− Ω×Γ −→ Ω×Γ with the associated

intertwiner changed accordingly. Both spans (and the intertwiners) represent the same morphism. Hence,
the definition of the braiding does not make any choices on where to apply the switch functor.

(b) The category VecBunKGrpd admits a functor U : VecBunKGrpd −→ SpanGrpd to the category of
spans of essentially finite groupoids as defined in [Mor11] which forgets the vector bundles and morphisms
between them. We will refer to this functor as projection to the span part.

The duality is inherited from FinVectK .

Proposition 3.15. The symmetric monoidal category VecBunKGrpd has coinciding left and right duals.

Proof. For an object ̺ : Γ −→ VectC in VecBunKGrpd the left and right dual object is given by the object
̺∗ : Γ −→ VectC, where ̺

∗(x) is the dual vector space ̺(x)∗ and ̺∗(g) for a morphism g : x −→ y is the dual
map ̺

(
g−1

)∗
: ̺(x)∗ −→ ̺(y)∗ of ̺

(
g−1

)
: ̺(y) −→ ̺(x). The right evaluation d : ̺ ⊗̂ ̺∗ = (Γ, ̺) ⊗ (Γ, ̺∗) −→ I

has span part Γ × Γ
∆
←− Γ −→ ⋆//1, where ∆ is the diagonal. To fully specify d we need to exhibit a morphism

∆∗(̺ ⊗̂ ̺∗) = ̺⊗ ̺∗ −→ IΓ in VecBunK(Γ ). Note that ̺⊗ ̺∗ is now the tensor product in VecBunK(Γ ) and
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IΓ the respective monoidal unit. We choose this needed intertwiner to be the one from VecBunK(Γ ), i.e. the
obvious evaluation map. The other dualities are defined similarly. The snake identities are easily verified. �

3.3 Homotopy invariant presheaves

We will introduce now a certain type of presheaves in groupoids that will be used in Section 3.4 to implement
equivariance in topological field theories. Usually, a presheaf in groupoids is defined as a (weak) cofunctor from
the category of smooth manifolds and smooth maps to the bicategory of (small) groupoids, functors and natural
transformations, see for instance [KS06] and [NS11]. We will use a similar notion, but we will require that the
presheaf is also defined on homotopies.

Definition 3.16 – Homotopy invariant presheaf. Let Man be the 2-category of smooth manifolds (possibly
with boundary), smooth maps and equivalence classes of homotopies between such maps. A homotopy invariant
presheaf is a weak functor Γ : Manopp −→ Grpd into the 2-category of (essentially) small groupoids, functors and
natural isomorphisms. Every homotopy invariant presheaf is, in particular, a presheaf. A morphism of homotopy
invariant presheaves is a morphism of the underlying presheaves, i.e. a weak natural transformation of functors.

Remarks 3.17.

(a) We write also f∗ = Γ (f) for any smooth map f . If ι : Σ −→ M is an inclusion, we sometimes write x|Σ
instead of ι∗x for x ∈ Γ (M).

(b) We call a homotopy invariant presheaf a homotopy invariant stack if its underlying presheaf is a stack (with
respect to open covers). The stack property means that for a manifold M the groupoid Γ (M) can be
computed from local data. We will, however, not need the notion of a stack too much, but instead a much
simpler gluing condition, see below in Definition 3.18. For the proper definition of a stack using the descent
condition we refer to [KS06] and [NS11].

Definition 3.18. We define the following properties of a homotopy invariant presheaf Γ : Manopp −→ Grpd:

(a) We call Γ additive if for all manifolds Σ and Σ′ the inclusions ι : Σ −→ Σ
∐
Σ′ and ι′ : Σ′ −→ Σ

∐
Σ′

induce an equivalence

Γ
(
Σ
∐

Σ′
)

ι∗×ι′∗

−−−−→ Γ (Σ)× Γ (Σ′).

and if Γ (∅) is naturally equivalent to the trivial groupoid with one object.

(b) We call Γ essentially finite if Γ (K) is essentially finite for every compact manifold (with boundary).

(c) We say that Γ satisfies the gluing property (with respect to bordisms) if for morphisms M : Σ0 −→ Σ1 and
M ′ : Σ1 −→ Σ2 in Cob(n) for n ≥ 1 the inclusions j : M −→ M ′ ◦M and j′ : M ′ −→ M ′ ◦M induce an
equivalence of groupoids

Γ (M ′ ◦M)
j∗×j′∗

−−−−→ Γ (M)×Γ (Σ1) Γ (M
′),

where Γ (M)×Γ (Σ1) Γ (M
′) is the homotopy pullback of the cospan Γ (M) −→ Γ (Σ1)←− Γ (M

′).

Remarks 3.19.

(a) The gluing property implies additivity. However, for the construction of n-dimensional topological field
theories, the additivity will be important for n−1-dimensional manifolds (it will correspond to the monoidal
structure), whereas the gluing will be relevant for n-dimensional manifolds. Therefore, we keep these axioms
separated.

(b) If a homotopy invariant presheaf is a stack, then it satisfies the gluing condition. In fact, in this case the
gluing condition is just the descent condition for M ′ ◦ M and the cover {M,M ′} with intersection Σ1.
Strictly speaking, M and M ′ are not open in M ′ ◦M , but there is an open cover with strong deformation
retraction onto {M,M ′}. To see this, extendM andM ′ in direction of some unit normal of Σ. By homotopy
invariance, evaluating the presheaf on this open cover yields the same as evaluating it on {M,M ′}.

Example 3.20. The well-known properties of the bundle stack now give us a very important example fitting into
the framework set up in Definition 3.18: For a discrete group G the homotopy invariant stacks

PBunG(?), Π(?, BG), [Π(?), G-Tor] : Manopp −→ Grpd

are canonically equivalent. All three are additive and satisfy the gluing condition. If G is finite, they are essentially
finite. For the proof we recall that the descent condition for stacks formalizes the description of bundles in terms
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of transition functions, which entails that PBunG(?) is a stack. The equivalences from Theorem 2.14 yield an
equivalence of presheaves

PBunG(?) ∼= Π(?, BG),

which, in particular, implies that Π(?, BG) is a stack as well. Another classical result, namely the classification
of flat bundles, yields an equivalence PBunG(?) ∼= [Π(?), G-Tor] of presheaves, which proves that [Π(?), G-Tor]
is also a stack. The stacks Π(?, BG) and [Π(?), G-Tor] are homotopy invariant (it is clear how they have to be
defined on homotopies). Using Theorem 2.14 the homotopy invariance carries over to PBunG(?). The additivity
is clear, the gluing condition can be derived using (b). It remains to show that for a compact manifold K and a
finite group G the groupoid [Π(K), G-Tor] is essentially finite, but this follows from Corollary A.10.
There should be generalizations of this example involving twisted and relative bundles. In the present paper we

refrain from developing this point.

3.4 Equivariant topological field theories – a reformulation

Having introduced the symmetric monoidal categoryVecBunKGrpd in Section 3.2 we can reformulate equivariant
topological field theories.
According to Remark 2.3, (e) an n-dimensional topological field theory with values in the symmetric monoidal

category VecBunKGrpd is a symmetric monoidal functor

Z : Cob(n) −→ VecBunKGrpd.

By Proposition 2.4 the category Sym(Cob(n),VecBunKGrpd) of VecBunKGrpd-valued topological field the-
ories is a groupoid.
Note that a VecBunKGrpd-valued topological field theory Z : Cob(n) −→ VecBunKGrpd associates to a

boundary component a vector bundle over a groupoid and to a bordism a morphism between pullback bundles.
We will now describe the case where the equivariance data, i.e. the vector bundles over groupoids and the vector
bundle morphisms, comes from a fixed additive, essentially finite homotopy-invariant presheaf Γ satisfying the
gluing property (see Section 3.3):

Definition 3.21. Let Γ be an additive, essentially finite homotopy-invariant presheaf satisfying the gluing
property and Z : Cob(n) −→ VecBunKGrpd a VecBunKGrpd-valued topological field theory. We call Z an
n-dimensional Γ -equivariant topological field theory if the concatenation

Cob(n)
Z
−→ VecBunKGrpd

U
−→ SpanGrpd

with the projection to the span part (Remark 3.14, (b)) is naturally equivalent to the functor

Cob(n) −→ SpanGrpd

induced by Γ , i.e. if there are natural equivalences UZ(Σ) ∼= Γ (Σ) for every object inCob(n) and UZ(M) ∼= Γ (M)
for every morphism M : Σ0 −→ Σ1 in Cob(n) such that the diagram of groupoids

UZ(Σ0) UZ(M) UZ(Σ1)

Γ (Σ0) Γ (M) Γ (Σ1)

∼= ∼= ∼=

weakly commutes.

Remark 3.22. Whenever Z : Cob(n) −→ VecBunKGrpd is Γ -equivariant, we can assume without loss of
generality that for any morphism M : Σ0 −→ Σ1 in Cob(n) the Cob(n) the strict equality

UZ(M) = (Γ (Σ0)←− Γ (M) −→ Γ (Σ1))

holds.

For a finite group G the stacks Π(?, BG) and PBunG(?) are equivalent and fulfill the requirements on Γ in
the above definition (see Example 3.20). So it makes sense to consider a Π(?, BG)- or PBunG(?)-equivariant
equivariant topological field theory. This is just a symmetric monoidal functor Z : Cob(n) −→ VecBunKGrpd
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such that the span part of Z(M) for a morphism M : Σ0 −→ Σ1 is given by

Π(Σ0, BG)←− Π(M,BG) −→ Π(Σ1, BG)

or, equivalently,

PBunG(Σ0)←− PBunG(M) −→ PBunG(Σ1),

where the arrows are restriction functors. For the new notion to be justified we should be able to relate such
Π(?, BG)- or PBunG(?)-equivariant equivariant topological field theories to G-equivariant topological field theo-
ries according to Definition 2.12.

Theorem 3.23. Let G be a finite group. Then the notion of a G-equivariant topological field theory in the sense
of Definition 2.12 is equivalent to the notion of a Π(?, BG)-equivariant (or equivalently PBunG(?)-equivariant)
topological field theory in the sense of Definition 3.21 in the following way:

(a) To aG-equivariant topological field theory Z : G-Cob(n) −→ VectC in the sense of Definition 2.12 we can as-

sociate in a canonical way a Π(?, BG)-equivariant topological field theory Ẑ : Cob(n) −→ VecBunKGrpd

which assigns to an object Σ in Cob(n) the vector bundle ̺Σ from Proposition 2.10.

(b) To a Π(?, BG)-equivariant topological field theory Y : Cob(n) −→ VecBunKGrpd in the sense of Defi-
nition 3.21 we can associate in a canonical way a G-equivariant topological field theory Z : G-Cob(n) −→
VectC.

Up to isomorphism the procedures are inverse to each other.

Remarks 3.24.

(a) The statement is not meant to be an equivalence between the category of G-equivariant topological field
theories and some other functor category. At this point we only observe that a G-equivariant topological
field theory in the sense of Definition 2.12 consists of the same data and properties as a Π(?, BG)-equivariant
topological field theory in the sense of Definition 3.21. So far we have ignored morphisms between different
theories (which in both cases are natural monoidal transformations). We address this issue in Proposi-
tion 3.26.

(b) In the rest of this article we will freely change between the description of a G-equivariant topological field
theory as a symmetric monoidal functor G-Cob(n) −→ VectK or a Π(?, BG)-equivariant symmetric functor
Cob(n) −→ VecBunKGrpd.

Proof. This is a trick!

(a) First let Z : G-Cob(n) −→ VectK be a G-equivariant topological field theory. We need to prove that

Z gives rise to a Π(?, BG)-equivariant topological field theory Ẑ : Cob(n) −→ VecBunKGrpd. For an

object Σ in Cob(n) we define Ẑ(Σ) to be the representation ̺Σ : Π(Σ,BG) −→ VectK obtained from Z in

Proposition 2.10. IfM : Σ0 −→ Σ1 is a morphism in Cob(n), we define Ẑ(M) to be the spanΠ(Σ0, BG)
r0←−

Π(M,BG)
r1−→ Π(Σ1, BG) together with the morphism r∗0Ẑ(Σ0) = r∗0̺Σ0 −→ r∗1Ẑ(Σ1) = r∗1̺Σ1 given by

the maps Z(M,ψ) : Z(Σ0, ψ|Σ0) −→ Z(Σ1, ψ|Σ1). This is really an intertwiner for the given representations

as follows from Proposition 2.11. We will denote this intertwiner by Z(M, ?). The functoriality of Ẑ follows
from the functoriality of Z. More precisely, let M : Σ0 −→ Σ1 and M ′ : Σ1 −→ Σ2 be two morphisms in
Cob(n). The span part of Ẑ(M ′) ◦ Ẑ(M) is by definition the outer span of

Π(Σ0, BG)

Π(M,BG)

Π(Σ1, BG)

Π(M ′, BG)

Π(Σ2, BG)

Π(M,BG)×Π(Σ1,BG) Π(M ′, BG)

r0 r1 r′1 r′2

p p′

η

together with

λ : (r0 ◦ p)
∗̺Σ0

p∗Z(M,?)
−−−−−−→ (r1 ◦ p)

∗̺Σ1

̺Σ1 (η)−−−−→ (r′1 ◦ p
′)∗̺Σ1

p′∗Z(M ′,?)
−−−−−−−→ (r2 ◦ p

′)∗̺Σ2. (∗)

We need to show that this coincides with Ẑ(M ′ ◦M). For this we can use that Π(?, BG) satisfies the gluing
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property. It entails that the span part of Ẑ(M ′) ◦ Ẑ(M) can also be represented by

Π(Σ0, BG)
s0←− Π(M ′ ◦M,BG)

s2−→ Π(Σ2, BG)

with the arrows coming from restriction. The relation between these spans is given by the restriction
equivalence

R : Π(M ′ ◦M,BG) −→ Π(M,BG)×Π(Σ1,BG) Π(M ′, BG) (‡)

appearing in the diagram

Π(M ′ ◦M,BG)

Π(Σ0, BG)

Π(M,BG)

Π(Σ1, BG)

Π(M ′, BG)

Π(Σ2, BG)

Π(M,BG)×Π(Σ1,BG) Π(M ′, BG)

R

s0 s2

r0 r1 r′1 r′2

p p′

η

,

in which the triangles containing s0 and s2 strictly commute. We will now use the rules from Definition 3.12
to compute the intertwiner corresponding to (∗), but now with respect to the span (‡). We claim that this

intertwiner is Z(M ′ ◦M, ?), which would yield the gluing law Ẑ(M ′ ◦M) = Ẑ(M ′) ◦ Ẑ(M). We only have
to show that the diagram

s∗0̺Σ0 s∗2̺Σ2

(r0 ◦ p ◦R)
∗̺Σ0 = R∗(r0 ◦ p)

∗̺Σ0 (r′2 ◦ p
′ ◦R)∗̺Σ2 = R∗(r′2 ◦ p

′)∗̺Σ2

Z(M ′ ◦M, ?)

=

R∗λ

=

commutes, where

R∗λ = R∗(p′
∗
Z(M ′, ?) ◦ ̺Σ1(η) ◦ p

∗Z(M, ?)) = Z(M ′, ?) ◦R∗(̺Σ1(η)) ◦ Z(M, ?).

By functoriality of Z this is Z(M ′ ◦M, ?) if we can prove that

R∗(̺Σ1(η)) : R
∗(r1 ◦ p)

∗̺Σ1 −→ R∗(r′1 ◦ p
′)∗̺Σ1

is the identity intertwiner of s∗1̺Σ1 for the restriction functor s1 : Π(M ′ ◦M,BG) −→ Π(Σ1, BG). This
follows from the fact that the pullback of η along R is the identity transformation. In summary, the
functoriality from Ẑ follows from the functoriality of Z. Moreover, the monoidal structure of Z yields a
monoidal structure for Ẑ in a natural way if we take into account that Π(?, BG) is additive.

(b) If we are given a Π(?, BG)-equivariant topological field Y : Cob(n) −→ VecBunKGrpd, we just have to
read backwards the steps given in (a) to obtain a G-equivariant field theory Z : G-Cob(n) −→ VectK . First
note that Π(?, BG)-equivariance of Y means that for an object Σ in Cob(n) we get a representation Y (Σ)
of Π(Σ,BG). Evaluation at a map ϕ : Σ −→ BG yields a vector space, which we define to be Z(Σ,ϕ).

To a morphism M : Σ0 −→ Σ1 the theory Y assigns the span Π(Σ0, BG)
r0←− Π(M,BG)

r1−→ Π(Σ1, BG)
together with a morphism r∗0Y (Σ0) −→ r∗1Y (Σ1) consisting of linear maps

Z(M,ψ) : Z(Σ0, ψ|Σ0) = Y (Σ0)(ψ|Σ0) −→ Z(Σ1, ψ|Σ1) = Y (Σ1)(ψ|Σ1)

for all maps ψ : M −→ BG. This defines Z on morphisms. Functoriality and monoidality of Z follow from
the properties of Y by the same arguments as in (a). Again, the gluing property of Π(?, BG) is crucial. The
given constructions are inverse to each other. �

Remark 3.25. Looking at the above proof we see that a functor Cob(n) −→ VecBunCGrpd with span part
being Π(?, BG) is really just a reformulation of the concept of a G-equivariant topological field theory. Let us
give advantages of the new formulation:

• Given a G-equivariant topological field theory Z : G-Cob(n) −→ VectC, we can only glue maps into BG if
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they strictly coincide at the boundary. If they coincide only up to homotopy, we can glue in cylinders by
hand to put the homotopy on it, but this is not properly formalized. In the category VecBunCGrpd this
is done by allowing the natural isomorphisms in the weak pullback square to give a contribution.

• We will see later, for instance in the proof of Theorem 3.40, that using VecBunCGrpd allows us to work
diagrammatically rather than exclusively with formulae.

Proposition 3.26. For any finite group G the correspondence of Theorem 3.23 extends to a functor

?̂ : HSym(G-Cob(n),VectK) −→ Sym(Cob(n),VecBunKGrpd)

from the category of G-equivariant topological field theories to the category of symmetric monoidal functors from
Cob(n) to VecBunKGrpd. All objects in the image are Π(?, BG)-equivariant.

Remark 3.27. Note that on the left hand side we impose separately the requirement that all functors are homotopy
invariant. This is not the case of the right hand side because the homotopy invariance property has been built in.
It enters in the naturality squares in Proposition 2.11 that form the intertwiners needed for the right hand side,
see the proof of Theorem 3.23.

Proof. Let η be a morphism Z −→ Z ′ between G-equivariant topological field theories, i.e. a natural monoidal
transformation. We have to specify how η gives rise to a natural monoidal transformation of the functors Ẑ, Ẑ ′ :
Cob(n) −→ VecBunKGrpd which correspond to Z and Z ′ in the sense of (the proof of) Theorem 3.23. To this
end, we have to define a morphism (Π(Σ,BG), ̺Σ) −→ (Π(Σ,BG), ̺′Σ) in VecBunKGrpd for all Σ in Cob(n),
where ̺Σ and ̺′Σ are the representations of Π(Σ,BG) coming from Z and Z ′ respectively. Such a morphism has
a span part, but we choose it to be trivial, i.e. the identity span Π(Σ,BG)←− Π(Σ,BG) −→ Π(Σ,BG). Now a
morphism (Π(Σ,BG), ̺Σ) −→ (Π(Σ,BG), ̺′Σ) having this span part is just an intertwiner ̺Σ −→ ̺′Σ . We define
it to be the intertwiner having the components (η(Σ,ϕ))ϕ∈Π(Σ,BG). It is easy to see that this yields a morphism

Ẑ −→ Ẑ ′. The functoriality and monoidality of these assignments is obvious. �

Remark 3.28. The functor HSym(G-Cob(n),VectK) −→ Sym(Cob(n),VecBunKGrpd) is not going to be an
embedding (it is not fully faithful) because in the image we only find morphisms which are the identity in the span
part. Of course, not all morphisms will be of that type. However, the functor is faithful, i.e. injective on morphism
spaces. So if we define Sym′(Cob(n),VecBunKGrpd) to be the category Sym(Cob(n),VecBunKGrpd), but
now only with morphisms being identities in the span part, then

HSym(G-Cob(n),VectK) −→ Sym′(Cob(n),VecBunKGrpd)

is an embedding. If moreover we denote by

Sym′
G(Cob(n),VecBunKGrpd) ⊂ Sym′(Cob(n),VecBunKGrpd)

the full subcategory consisting of all Π(?, BG)-equivariant theories, then

HSym(G-Cob(n),VectK) −→ Sym′
G(Cob(n),VecBunKGrpd)

is an equivalence. This restriction in the codomain, however, is not needed in the context of the orbifold construc-
tion.

The following two examples illustrate the advantages of the reformulation of equivariant topological field theories
given in this section. These examples will be used to illustrate the orbifold construction in low dimensions
(Section 5).

Example 3.29 – Classification of one-dimensional equivariant topological field theories. Using our reformulation
of equivariant topological field theories in this section we can give a very short proof of the classification result
for one-dimensional equivariant topological field theories mentioned in [Tur10b, I.1.4]. This result refers to the
pointed version of the theory, but is also valid for the unpointed one by Remark 2.7.
First denote by core(C) the core of category C. It has the same objects as C and the isomorphisms of C as

morphisms.
Now for a finite group G the groupoid of G-equivariant topological field theories G-Cob(1) −→ VectK is

equivalent to the core of the category of finite-dimensional K-representations of G.
Indeed, by Theorem 3.23G-equivariant topological field theories G-Cob(1) −→ VectK correspond to symmetric

monoidal functors Z : Cob(1) −→ VecBunKGrpd, for which the groupoid part is given by the restriction of
Π(?, BG). Such symmetric monoidal functors are classified by evaluation on the positively oriented point, where
they give a representation of Π(⋆,BG) = Π(BG) ∼= ⋆//G, so a representation ̺Z of G on a finite-dimensional
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complex vector space. From Remark 3.28 we know that the assignment Z 7−→ ̺Z yields an equivalence between
HSym(G-Cob(1),VectK) to the groupoid of functors ⋆//G −→ FinVectK . A morphism between two such
functors ̺, ̺′ : ⋆//G −→ FinVectK is the identity span ⋆//G ←− ⋆//G −→ ⋆//G together with an equivalence
between ̺ and ̺′ seen as representations. This yields the claim.

Example 3.30 – Crossed FrobeniusG-algebras. We use the reformulation ofG-equivariant topological field theories
of Theorem 3.23 and Proposition 3.26 to motivate the notion of a crossed Frobenius G-algebra as appearing
in [Tur10b, II, 3.2]: For this note that [Kock03, Theorem 3.6.19] applied to the symmetric monoidal category
VecBunKGrpd yields an equivalence

Sym(Cob(2),VecBunKGrpd) ∼= cFrob(VecBunKGrpd)

between the groupoid of two-dimensional VecBunKGrpd-valued topological field theories and the groupoid of
commutative Frobenius algebras in cFrob(VecBunKGrpd).
Concatenating with the functor from Proposition 3.26 we obtain a functor

HSym(G-Cob(2),VectK) −→ Sym(Cob(2),VecBunKGrpd) ∼= cFrob(VecBunKGrpd) (∗)

assigning to a two-dimensional G-equivariant topological field theory a commutative Frobenius algebra in the
symmetric monoidal category VecBunKGrpd. It remains to describe the commutative Frobenius objects in the
image explicitly: For a finite group G let Z : G-Cob(2) −→ VectK be a two-dimensional G-equivariant topological
field theory. Then the image of Z under (∗) is a commutative Frobenius algebra A in VecBunKGrpd admitting
of the following form: As a functor A is of the form

̺A : Π(S1, BG) ∼= G//G −→ VectK .

By A we denote the direct sum A =
⊕

g∈G Ag, where Ag := ̺A(g) for an object g ∈ G. For g ∈ G and v ∈ Ah

we use the abbreviation g.v := ̺A(g)v ∈ Aghg−1 . We see A and hence also A ⊗ A as a G-representation. We
can specify the Frobenius structure by giving the multiplication and the pairing (for a detailed account on the
equivalent ways to describe Frobenius structures see [FS08]):

(a) The multiplication is a linear map

µ : A⊗ A −→ A, v ⊗ w 7−→ vw

carrying Ag ⊗ Ah to Agh. It is associative, unital with unit in A1 and intertwines with the G-action.

(b) The pairing is a linear map

κ : A⊗ A −→ K,

which is also an intertwiner and hence G-invariant (G acts trivially on K). We have κ|Ag⊗Ah
= 0 if h 6= g−1.

The pairing is non-degenerate, i.e. κ(v, w) = 0 for all v ∈ A implies w = 0.

This summarizes the Frobenius structure on A.

(c) The commutativity constraint is given by

vw = (g.w)(g.v) for all v ∈ Ag, w ∈ A.

For the proof of the above statements we also have to evaluate the stack of G-bundles on various morphisms in
Cob(2), see [Mor15, 4.2] for all the spans of groupoids needed. Moreover, let us fix notation for the multiplication
functor M : (G × G)//G −→ G//G, the flip of factors T : G//G × G//G −→ G//G × G//G and the obvious
functor B : (G × G)//G −→ G//G × G//G. A discussion of all the span of groupoids needed can be found in
[Mor15, 4.2].
We now obtain the multiplication in (a) by evaluation Z on the pair of pants P : S1

∐
S1 −→ S1. This yields

the span

G//G×G//G
B
←− (G×G)//G

M
−→ G//G

together with a vector bundle morphism, i.e. an intertwiner B∗̺A −→ M∗̺A of representations consisting of
linear maps Ag ⊗ Ah −→ Agh giving us the multiplication. The multiplication is associative and unital (this is
always true for Frobenius objects). The intertwiner property implies that the multiplication intertwines with the
G-action. The unit and the pairing are obtained in a similar way. It is necessarily non-degenerate because it
belongs to a Frobenius structure.
We have given the multiplication and the pairing, hence the Frobenius structure is completely specified. Since

we are only interested in commutative Frobenius objects (commutativity is defined here with respect to a certain
braiding; A need not be commutative as an algebra), we still have to spell out explicitly the commutativity
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constraint. To this end, we consider the braiding isomorphism

C : S1
∐

S
1 −→ S

1
∐

S
1.

It is sent to the span

G//G×G//G
idG//G×G//G
←−−−−−−−−− G//G×G//G

T
−→ G//G×G//G

together with the usual flip maps τ : Ag ⊗ Ah −→ Ah ⊗ Ag. We have to compose this span with the span for
the pair of pants already encountered above. Since on the level of bordisms the result is again a pair of pants, a
convenient representative in the class of the weak pullback is

G//G×G//G

G//G×G//G

G//G×G//G

(G×G)//G

G//G

(G×G)//G

id T B M

B F

η

,

where F is the functor sending (g, h) to (ghg−1, g) and being the identity on morphisms seen as group elements.
The natural isomorphism η relates TB(g, h) = (h, g) and BF (g, h) = (ghg−1, g) by (g, g). The representative is
convenient since the outer span is the span assigned to the pair of pants (observe MF =M). By the definition of
the composition in VecBunKGrpd we read off that the commutativity constraint is given by the commutativity
of the square

Ag ⊗ Ah Agh

Ah ⊗ Ag Aghg−1 ⊗ Ag

τ

µ

g ⊗ g

µ

,

which is just our claim.
We will call a commutative Frobenius object in VecBunKGrpd of this special form a pre-crossed Frobenius G-

algebra. We also get the suitable notion of morphism: The image of a natural monoidal transformation η : Z −→ Z ′

of two-dimensional G-equivariant topological field theories under

HSym(G-Cob(2),VectC) −→ Sym(Cob(2),VecBunKGrpd) ∼= cFrob(VecBunKGrpd)

amounts to a morphism of their pre-crossed Frobenius G-algebras A and A′. The explicit description of such a
morphism is as follows: It is an isomorphism ϕ : A −→ A′ of unital algebras preserving the grading, the pairing
and intertwining with the G-action.
We could ask whether the functor from two-dimensional G-equivariant topological field theories to pre-crossed

Frobenius G-algebras is an equivalence. Rephrasing Theorem 3.1 in [Tur10b] in the language of this section, it
will be an equivalence once we restrict in range to those pre-crossed Frobenius G-algebras satisfying the following
additional properties:

(F1) Self-invariance of twisted sectors: Any element g ∈ G acts trivially on Ag, i.e. g.v = v for v ∈ Ag. This
entails that the commutativity constraint takes the form

vw = (g.w)v for all v ∈ Ag, w ∈ A.

(F2) Trace property: For g, h ∈ G and v ∈ Aghg−1h−1 the equality

trAg vh = trAh
g−1v

holds, where v is the multiplication map by v from the left and g and h denote the automorphisms coming
from the action with these elements.

If a pre-crossed Frobenius G-algebra satisfies these axioms, it is called crossed Frobenius G-algebra. In summary,
Theorem 3.1 in [Tur10b] implies that

HSym(G-Cob(2),VectC) −→ Sym(Cob(2),VecBunKGrpd) ∼= cFrob(VecBunKGrpd)

becomes an equivalence once restricted in range to crossed Frobenius G-algebras.
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3.5 Pushforward maps via integration over homotopy fibers

We continue the preparation for the definition of the parallel section functor Par : VecBunKGrpd −→ VectC by
defining pushforward maps. Recall first that a functor Φ : Γ −→ Ω between small groupoids and a vector bundle
̺ over Ω yield a pullback map

Φ∗ : Par̺ −→ ParΦ∗̺

by Proposition 3.8, (e). For the orbifold construction we will need another natural map running in the opposite
direction. It will be constructed using integrals with respect to groupoid cardinality over homotopy fibers.
The concept of the groupoid cardinality

|Γ | :=
∑

[x]∈π0(Γ )

1

|Aut(x)|

of an essentially finite groupoid Γ is recalled in Appendix A. Seen as a measure on the set π0(Γ ) of isomorphism
classes of Γ , it gives rise to the following notion of an integral:

Definition 3.31 – Integral of invariant functions over groupoids with respect to groupoid cardinality.

An invariant function f on a groupoid Γ with values in a vector space V over a field of characteristic zero is the
assignment of a vector f(x) ∈ V to each x ∈ Γ such that f(x) = f(y) if x ∼= y in Γ . If Γ is essentially finite, we
define by

ˆ

Γ

f =

ˆ

Γ

f(x) dx :=
∑

[x]∈π0(Γ )

f(x)

|Aut(x)|
∈ V

the integral of f over Γ .

The properties of this integral are collected in Appendix A.
The groupoids over which we need to integrate arise as homotopy fibers.

Definition 3.32 – Homotopy fiber. For a functor Φ : Γ −→ Ω and y ∈ Ω the homotopy pullback (Defini-
tion 3.11)

Φ−1[y] Γ

⋆ Ω

Φ

y

is called the homotopy fiber over y. Here ⋆ is the terminal object in the category of simplicial sets. The natural
transformation contained in the square is suppressed in the notation.

Remark 3.33. It is worth writing out the definition of the homotopy fiber Φ−1[y]: Objects are pairs (x, g), where
x ∈ Γ and g : Φ(x) −→ y. A morphism (x, g) −→ (x′, g′) in Φ−1[y] is a morphism h : x −→ x′ in Γ such that the
triangle

Φ(x) Φ(x′)

y

Φ(h)

g g′

commute. So Φ−1[y] is the groupoid consisting of ‘preimages of y up to isomorphism’ and could therefore also be
called preimage groupoid of y. There is an obvious forgetful functor Φ−1[y] −→ Γy to the full subgroupoid Γy of
Γ consisting of objects x with Φ(x) ∼= y. This forgetful functor is a |Aut(y)|-fold covering, see Appendix A for the
proof and the definition of coverings of groupoids.

We can now finally define the pushforward map.

Definition 3.34 – Pushforward map. Let Φ : Γ −→ Ω be a functor between essentially finite groupoids and
K a field of characteristic zero. Then for any K-vector bundle ̺ over Ω we define the pushforward map

Φ∗ : ParΦ∗̺ −→ Par̺
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by

(Φ∗s)(y) =
∑

[x,g]∈π0(Φ−1[y])

̺(g)s(x)

|Aut(x, g)|
=

ˆ

Φ−1[y]

̺(g)s(x) d(x, g) ∈ ̺(y)

for any parallel section s of Φ∗̺ and y ∈ Ω.

Remarks 3.35.

(a) Obviously, Aut(x, g) ∼= Aut0(x) := ker(Aut(x) −→ Aut(Φ(x))) and hence

(Φ∗s)(y) =
∑

[x,g]∈π0(Φ−1[y])

̺(g)s(x)

|Aut0(x)|
.

(b) If Ω = Γ and Φ = idΓ , then Φ
−1[y] is connected and |Aut0(x)| = 1. This implies idΓ ∗ = idPar ̺.

For pushforward maps we can derive another formula that will be useful in the sequel.

Corollary 3.36. Let Φ : Γ −→ Ω be a functor between essentially finite groupoids and K a field of characteristic
zero. Then for any K-vector bundle ̺ over Ω and any parallel section s of Φ∗̺ the formula

(Φ∗s)(y) =
∑

[x]∈π0(Γ )

Φ(x)
h
∼=y

∑

g∈Aut(y)

̺(g)̺(h)s(x)

|Aut(x)|
for all y ∈ Ω

holds. Here in the first sum Φ(x)
h
∼= y expresses the condition that such an isomorphism exists. Its choice is

irrelevant. Note that we do not sum over all h.

Proof. For x ∈ Γ denote by Φ−1
x [y] the full subgroupoid of all (x′, g′) ∈ Φ−1[y] with x′ ∼= x. Then

Φ−1[y] =
∐

[x]∈π0(Γ )

Φ−1
x [y].

By Definition 3.34 it suffices to show
ˆ

Φ−1
x [y]

̺(g′)s(x′) d(x′, g′) =
∑

g∈Aut(y)

̺(g)̺(h)s(x)

|Aut(x)|

for some arbitrary h : Φ(x) −→ y. For this we can assume that all objects in Φ−1
x [y] are of the form (x, g′) for

some g′ : Φ(x) −→ y. Hence, they can all be uniquely written as (x, gh) for g ∈ Aut(y) and some arbitrary, but
fixed h : Φ(x) −→ y. This entails

ˆ

Φ−1
x [y]

̺(g′)s(x′) d(x′, g′) =
∑

[x′,g′]=[x,gh]∈π0(Φ
−1
x [y])

̺(g)̺(h)s(x)

|Aut0(x)|
.

Obviously, Φ−1
x [y] is the action groupoid of the action

(x, gh).a := (x, ghΦ(a)) for all a ∈ Aut(x)

of Aut(x) on the object set of Φ−1
x [y]. Hence, we obtain

ˆ

Φ−1
x [y]

̺(g′)s(x′) d(x′, g′) =
∑

g∈Aut(y)

̺(g)̺(h)s(x)

|Aut0(x)||[x, gh]|
,

where the factor |[x, gh]| corrects the overcounting resulting from the summation over all objects in contrast to
the summation over all isomorphism classes. Since Aut0(x) is the stabilizer group of (x, gh), the orbit theorem
yields |Aut0(x)||[x, gh]| = |Aut(x)| and hence the claim. �

The formulae for pushforward maps simplify significantly for equivalences.

Corollary 3.37. Let Φ : Γ −→ Ω be an equivalence between essentially finite groupoids and K a field of
characteristic zero. Then for any K-vector bundle ̺ over Ω and any parallel section s of Φ∗̺ the formula

(Φ∗s)(y) = ̺(h)s(x) for all y ∈ Ω

holds, where x ∈ Γ is any object and h : Φ(x) −→ y any isomorphism.
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For pullback maps we derived a composition law and a naturality condition in Proposition 3.8. Both results have
analogues for pushforward maps.

Proposition 3.38. Let Φ : Γ −→ Ω be a functor between essentially finite groupoids and K a field of charac-
teristic zero.

(a) The pushforward maps obey the composition law (Ψ ◦ Φ)∗ = Ψ∗ ◦ Φ∗, where Ψ : Ω −→ Λ is another functor
between essentially finite groupoids.

(b) The pushforward maps are natural in the sense that they provide a natural transformation

ParΓ ◦ Φ
∗ −→ ParΩ,

i.e. for any morphism λ : ̺ −→ ξ of vector bundles over Ω the square

ParΦ∗̺ Par̺

ParΦ∗ξ Par ξ

Φ∗

(Φ∗λ)∗

Φ∗

λ∗

commutes.

Proof. This is a trick!

(a) For a vector bundle ̺ on Λ, s ∈ Par(Ψ ◦ Φ)∗̺ and z ∈ Λ we find

((Ψ ◦ Φ)∗s)(z) =

ˆ

(Ψ◦Φ)−1[z]

̺(g)s(x) d(x, g)

=
∑

[y,h]∈π0(Ψ−1[z])

ˆ

(Ψ◦Φ)−1
(y,h)

[z]

̺(g)s(x) d(x, g)

=

ˆ

Ψ−1[z]

|Aut0(y)|

ˆ

(Ψ◦Φ)−1
(y,h)

[z]

̺(g)s(x) d(x, g) d(y, h), (∗)

where (Ψ ◦Φ)−1
(y,h)[z] is the full subgroupoid of (Ψ ◦Φ)−1[z] consisting of all (x, g) such that (Φ(x), g) ∼= (y, h).

For a fixed (y, h) ∈ Ψ−1[z] we define the functor

Q : Φ−1[y] −→ (Ψ ◦ Φ)−1
(y,h)[z],

(x, a) 7−→ (x, hΨ(a)),

which is the identity on morphisms (if these are seen as morphisms in Γ ). A direct computations shows that
Q is a |Aut0(y)|-fold covering. Now application of Proposition A.16 to the invariant function

f : (Ψ ◦ Φ)−1
(y,h)[z] −→ ̺(z), (x, g) 7−→ ̺(g)s(x)

yields

|Aut0(y)|

ˆ

(Ψ◦Φ)−1
(y,h)

[z]

̺(g)s(x) d(x, g) =

ˆ

Φ−1[y]

(Q∗f)(x, a) d(x, a) =

ˆ

Φ−1[y]

̺(hΨ(a))s(x) d(x, a).

In view of (∗) this entails

((Ψ ◦ Φ)∗s)(z) =

ˆ

Ψ−1[z]

ˆ

Φ−1[y]

̺(hΨ(g))s(x) d(x, g) d(y, h)

=

ˆ

Ψ−1[z]

̺(h)

ˆ

Φ−1[y]

̺(Ψ(g))s(x) d(x, g) d(y, h)

=

ˆ

Ψ−1[z]

̺(h)(Φ∗s)(y) d(y, h)

= ((Ψ∗ ◦ Φ∗)s)(z).

(b) For s ∈ ParΦ∗̺ and y ∈ Ω we use Definition 3.34 and the naturality of λ to find

(Φ∗(Φ
∗λ)∗s)(y) =

ˆ

Φ−1[y]

ξ(g)λΦ(x)s(Φ(x)) d(x, g) =

ˆ

Φ−1[y]

λy̺(g)s(Φ(x)) d(x, g) = (λ∗Φ∗s)(y). �



24 3 Orbifold construction

3.6 The parallel section functor

Finally, as the crucial ingredient of the orbifold construction, we will now define the symmetric monoidal functor

Par : VecBunCGrpd −→ VectC.

It sends vector bundles to their spaces of parallel sections. On morphisms it uses a summation inspired by
Dijkgraaf-Witten theories. The crucial result needed for the proof is an equivariant Beck-Chevalley condition.
The name is justified since it reduces in the non-equivariant case to the well-known Beck-Chevalley condition. For
a dicussion in the context of Dijkgraaf-Witten theory see [Mor11, Appendix A.2] or Section 5.1 of this article.

Proposition 3.39 – Equivariant Beck-Chevalley condition. Let K be a field of characteristic zero. For
the homotopy pullback

Γ ×Ω Λ Γ

Λ Ω

πΓ

πΛ Φ

Ψ

η

of a cospan Λ
Ψ
−→ Ω

Φ
←− Γ of essentially finite groupoids and any K-vector bundle ̺ over Ω the pentagon relating

different pull-push combinations

ParΦ∗̺ Par̺

Parπ∗
ΓΦ

∗̺

Parπ∗
ΛΨ

∗̺ ParΨ∗̺

Φ∗

π∗
Γ

̺(η)∗

πΛ∗

Ψ∗

commutes.

Proof. For s ∈ ParΦ∗̺ and y ∈ Λ we compute

(πΛ∗̺(η)∗π
∗
Γ s)(y) =

ˆ

π−1
Λ [y]

̺(Ψ(g))(̺(α)π∗
Γ s)(x, y

′, α) d(x, y′, α, g) =

ˆ

π−1
Λ [y]

̺(Ψ(g)α)s(x) d(x, y′, α, g). (∗)

and

(Ψ∗Φ∗s)(y) =

ˆ

Φ−1[Ψ(y)]

̺(h)s(x) d(x, h). (‡)

By the fiberwise characterization of homotopy pullbacks in [CPS06, 5.2] we find the weakly commutative diagram

Γ ×Ω Λ Γ

Λ ΩΨ−1[Φ(y)]

π−1
Γ [y]

πΛ

πΓ

Θ

Ψ

Φ

containing the equivalence Θ. Applying the transformation formula (Proposition A.13) to this equivalence shows
that the integrals in (∗) and (‡) are equal. �

Finally, we introduce the symmetric monoidal functor needed for the orbifold construction.
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Theorem 3.40 – Parallel section functor. For a field K of characteristic zero the assignment

Par : VecBunKGrpd −→ VectK

(Γ, ̺) 7−→ Par̺
(
(Γ0, ̺0)

r0←− (Λ, λ)
r1−→ (Γ1, ̺1)

)
7−→ (r1∗λ∗r

∗
0 : Par̺0 −→ Par̺1)

yields a symmetric monoidal functor. We will refer to this functor as parallel section functor.

Proof. This is a trick!

(i) It follows directly from the definitions that Par sends identities to identities (see Remark 3.35, (b)). To
conclude the proof of functoriality we verify the composition law

Par((Λ′, λ′) ◦ (Λ, λ)) = Par(Λ′, λ′) ◦ Par(Λ, λ) (∗)

for morphisms

(Γ0, ̺0)
r0←− (Λ, λ)

r1−→ (Γ1, ̺1)

and

(Γ1, ̺1)
r′1←− (Λ′, λ′)

r′2−→ (Γ2, ̺2)

inVecBunKGrpd: By definition of composition inVecBunKGrpd the composed morphism (Λ′, λ′)◦(Λ, λ)
is the class of the outer span in

Γ0

Λ

Γ1

Λ′

Γ2

Λ×Ω Λ
′

r0 r1 r′1 r′2

π π′

η

together with the intertwiner

(r0 ◦ π)
∗̺0 = π∗r∗0̺0

π∗λ
−−→ π∗r∗1̺1

̺1(η)
−−−→ π′∗r′1

∗
̺1

π′∗λ′

−−−→ π′∗r′2
∗
̺2 = (r′2 ◦ π

′)∗̺2.

The proof of the composition law is now rather short because by using the properties of the pullback and
pushforward maps previously established we find

Par((Λ′, λ′) ◦ (Λ, λ)) = (r′2 ◦ π
′)∗(π

′∗λ′)∗̺1(η)∗(π
∗λ)∗(r0 ◦ π)

∗

= r′2∗π
′
∗(π

′∗λ′)∗̺1(η)∗(π
∗λ)∗π

∗r∗0

(
Proposition 3.8, (d) and
Proposition 3.38, (a)

)

= r′2∗π
′
∗(π

′∗λ′)∗̺1(η)∗π
∗λ∗r

∗
0 (Proposition 3.8, (e))

= r′2∗λ
′
∗π

′
∗̺1(η)∗π

∗λ∗r
∗
0 (Proposition 3.38, (b))

= r′2∗λ
′
∗r

′
1
∗
r1∗λ∗r

∗
0 (Proposition 3.39)

= Par(Λ′, λ′) ◦ Par(Λ, λ).

This proves (∗) and hence the functoriality of Par. It is worth noting that this proof uses a strategy quite
similar to the one used in the proof of Theorem 5.6.

(ii) We still have to endow Par with the structure of a symmetric monoidal functor. Recall for this the monoidal
structure of VecBunKGrpd from Definition 3.12. The parallel sections of the monoidal unit I are obviously
functions ⋆ −→ K, which proves that Par I is naturally isomorphic to K. For vector bundles ̺ over Γ and ξ
over Ω we need a natural isomorphism

Par̺⊗ Par ξ −→ Par(̺ ⊗̂ ξ) = Par ((Γ, ̺)⊗ (Ω, ξ)) . (‡)

We find this morphism by observing that for parallel sections s and r of ̺ and ξ, respectively, s⊗r is a parallel
section of ̺⊗ ξ. This yields the map (‡), which is obviously a natural monomorphism. Using the holonomy
principle (Proposition 3.6) we can reduce the proof that (‡) is an isomorphism to the statement that for finite
groups G and H acting on vector spaces V and W over K, respectively, we have V G ⊗WH ∼= (V ⊗W )G×H

by the obvious inclusion map. Indeed, this can directly be verified, which concludes the proof of monoidality.
It is straightforward to verify that the symmetry requirement is fulfilled. �
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Remarks 3.41.

(a) Writing out the above definition of the parallel section functor explicitly yields for a parallel section s of ̺0
and x1 ∈ Γ1

(Par(Λ, λ)s)(x1) =

ˆ

r−1
1 [x1]

̺1(g)λys(r0(y)) d(y, g).

Using Corollary 3.36 we can also write

(Par(Λ, λ)s)(x1) =
∑

[y]∈π0(Λ)

r1(y)
h
∼=x1

∑

g∈Aut(x1)

̺(g)̺(h)s(r0(y))

|Aut(y)|
,

where the choice of h is irrelevant and we do not sum over h.

(b) In the following case a strictification of (a) is possible: Let us assume that r1 : Λ −→ Γ1 is an isofibration
(Remark A.2), then for y ∈ Λ with r1(y) ∼= x1 we can find y′ ∈ Λ with r1(y

′) = x1, i.e. we can turn equalities
holding up to isomorphism into strict ones. Using the identity as morphism r1(y

′) −→ x1 we find in this
case the strict version of the formula from (a)

(Par(Λ, λ)s)(x1) =
∑

[y]∈π0(Λ)
r1(y)=x1

∑

g∈Aut(x1)

̺(g)s(r0(y))

|Aut(y)|
,

where r1(y) = x1 means that the representatives are chosen such that this equality holds, but the result does
not depend on the representatives.

(c) The isofibration property is always fulfilled in the cases we are interested in because for G-equivariant
topological field theories all relevant functors between groupoids will be restriction functors

ι∗ : Π(M,BG) −→ Π(Σ,BG)

for the inclusion ι : Σ −→ M of a collection of boundary components of some oriented compact manifold
M with boundary. Since ι is a cofibration, we can extend homotopies of maps Σ −→ BG to homotopies of
maps M −→ BG. This implies that ι∗ automatically has the needed lifting property.

3.7 The orbifold construction

We have now established all the ingredients of the orbifold construction. Although the construction works for any
field of characteristic zero, we restrict from now on to K = C.

Definition 3.42 – Orbifold construction for G-equivariant topological field theories. Let

Z : G-Cob(n) −→ VectC

be a G-equivariant topological field theory. Then the orbifold theory Z/G of Z is defined as the concatenation of
symmetric monoidal functors

Z

G
: Cob(n)

Ẑ
−→ VecBunCGrpd

Par
−−→ VectC,

where Ẑ : Cob(n) −→ VecBunCGrpd is the Π(?, BG)-equivariant topological field theory corresponding to Z
in the sense of Proposition 3.26.

Remark 3.43. The process of forming the orbifold theory will be understood as the functor

?

G
: HSym(G-Cob(n),VectC)

?̂
−→ Sym(Cob(n),VecBunCGrpd)

Par∗−−−→ Sym(Cob(n),VectC).

The functor ?̂ : HSym(G-Cob(n),VectC) −→ Sym(Cob(n),VecBunCGrpd) comes from Proposition 3.26. So
the orbifold construction is itself functorial: It is a functor between groupoids of field theories.

This finishes the construction of an orbifold theory Z/G : Cob(n) −→ VectC for a G-equivariant theory
Z : G-Cob(n) −→ VectC. We now give a very explicit description of the orbifold theory and derive its most
important properties. First of all, the following result holds by construction:

Proposition 3.44. For a G-equivariant theory Z : G-Cob(n) −→ VectC the orbifold theory Z/G associates to
an object Σ in Cob(n) the vector space Par̺Σ of parallel sections of the vector bundle ̺Σ over Π(Σ,BG) given
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by Z and Proposition 2.10, i.e.

Z

G
(Σ) = Par̺Σ .

Explicitly,

Z

G
(Σ) ∼=

⊕

[ϕ]∈[Σ,BG]

Z(Σ,ϕ)Aut(ϕ) ∼=
⊕

[ϕ]∈[Σ,BG]

Z(Σ,ϕ)Aut(ϕ). (∗)

This realizes the old idea of summing over twisted sectors and taking invariants that was mentioned in the
introduction.
The next result is a description of the orbifold construction on morphisms:

Proposition 3.45. Let G be a finite group and Z : G-Cob(n) −→ VectC an n-dimensional G-equivariant
topological field theory. Then for a morphism M : Σ0 −→ Σ1 the formula

(
Z

G
(M)s

)
(ϕ1) =

ˆ

r−1
1 [ϕ1]

Z((Σ1 × [0, 1]) ◦M,h ∪ ψ)s(ψ|Σ0) d(ψ, h)

for all s ∈
Z

G
(Σ0) = Par̺Σ0 , ϕ1 : Σ1 −→ BG

holds. It expresses Z/G(M) as an integral with respect to groupoid cardinality. Here r1 : Π(M,BG) −→
Π(Σ1, BG) is the restriction functor, h ∪ ψ : (Σ1 × [0, 1]) ◦M −→ BG is the function on M with a cylinder glued

to it obtained from ψ : M −→ BG and a homotopy ψ|Σ1

h
≃ ϕ1. As an alternative we can use the formula

(
Z

G
(M)s

)
(ϕ1) =

∑

[ψ]∈[M,BG]
ψ|Σ1=ϕ1

∑

ϕ1
h
≃ϕ1∈Aut(ϕ1)

Z((Σ1 × [0, 1]) ◦M,h ∪ ψ)s(ψ|Σ0)

|Aut(ψ)|
,

where for the first sum the representatives are chosen such that ψ|Σ1 = ϕ1 holds strictly, but the result is
independent of the representatives.

Proof. The first formula is an immediate consequence of Remark 3.41, (a). For the second formula we use
Remark 3.41, (b), which is justified by Remark 3.41, (c). �

Taking into account Remark 3.5 and the fact that Z(∅) is canonically isomorphic to the ground field, we can
express the orbifold construction on objects:

Proposition 3.46. Let G be a finite group and Z : G-Cob(n) −→ VectC an n-dimensional G-equivariant
topological field theory. To a closed n − 1-dimensional oriented manifold Σ the orbifold theory Z/G assigns the
vector space given by the end

Z

G
(Σ) =

ˆ

Π(Σ,BG)

HomVectC
(Z(∅), Z(Σ,ϕ)) dϕ.

Finally, we can compute the n-manifold invariants of Z/G by using Proposition 3.45 or Remark 3.41, (b):

Proposition 3.47. Let G be a finite group and Z : G-Cob(n) −→ VectC an n-dimensional G-equivariant
topological field theory. For a closed oriented n-dimensional manifold the invariant Z/G(M) is given by the
integral of the invariant function

Π(M,BG) ∋ ψ 7−→ Z(M,ψ) ∈ C

over Π(M,BG) with respect to groupoid cardinality, i.e.

Z

G
(M) =

ˆ

Π(M,BG)

Z(M,ψ) dψ.

Note how in the preceding result the sum over all twisted sectors is realized by an integral with respect to groupoid
cardinality.

Example 3.48 – Twisted version of the orbifold construction. Let G be a finite group and BGθ be the n-
dimensional primitive G-equivariant theory associated to a cocycle θ ∈ Zn(BG; U(1)) as defined in [Tur10b,
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I.2.1]. We can now define the functor

HSym(G-Cob(n),VectC)
?⊗BGθ−−−−−→ HSym(G-Cob(n),VectC)

?/G
−−→ Sym(Cob(n),VectC)

which first takes the tensor product of a given equivariant topological field theory with the primitive theory
associated to θ and then orbifoldizes. We call this functor the θ-twisted orbifold construction.
Let us make the following observations:

(1) If we apply the θ-twisted orbifold construction to the trivial G-equivariant theory, which assigns identities
between complex lines to all morphisms with maps into BG, then we obtain the orbifold theory BGθ/G
of BGθ. The ordinary topological field theory BGθ/G is commonly referred to as θ-twisted Dijkgraaf-
Witten theory (see e.g. [FQ93], [Mor15] or Remark 5.7, (c) of this article). It assigns to a closed oriented
n-dimensional manifold M the number

BGθ
G

(M) =

ˆ

Π(M,BG)

〈ψ∗θ, µM 〉 dψ,

where µM ∈ Hn(M) is the fundamental class of M . For an object Σ in Cob(n) we obtain

BGθ
G

(Σ) ∼=
⊕

[ϕ]∈[Σ,BG]

BGθ(Σ,ϕ)
Aut(ϕ).

(2) If we denote by U : G-Cob(n) −→ Cob(n) the forgetful functor, then

?

G
◦ U∗ ∈ End(Sym(Cob(n),VectC))

assigns to the trivial n-dimensional topological field theory the Dijkgraaf-Witten theory for the group G as
follows from (1) in the case θ = 0. For general G this implies that (?/G) ◦U∗ is not naturally isomorphic to
the identity. So ?/G cannot be an adjoint to the pullback along U because a pair of adjoint functors between
groupoids always form an equivalence.

4 Example: The orbifold construction in low dimensions

In low dimensions, by which we mean dimension one and two, classification results for topological field theories are
well-known. The same is true for equivariant topological field theories, see [Tur10b]. In this section we compute
the orbifold theory in low dimensions in terms of classifying objects.

4.1 One-dimensional equivariant topological field theories

In Example 3.29 we recalled that the groupoid of one-dimensional G-equivariant equivariant topological field
theories is equivalent to the core of the representation category of G on finite vector spaces. If Z : G-Cob(1) −→
VectC is an equivariant topological field theory classified by a representation ̺ of G on a finite-dimensional complex
vector space V , then its orbifold theory, which is an ordinary topological field theory, is classified by the vector
space, which it assigns to the positively oriented point. Using Proposition 3.44 we obtain:

Theorem 4.1 – Orbifold construction for one-dimensional equivariant topological field theories. Let
G be a finite group and Z : G-Cob(1) −→ VectC a one-dimensional G-equivariant topological field theory with
classifying representation ̺ : G −→ Aut(V ) in the sense of Example 3.29. Then the orbifold theory Z/G is
determined by the evaluation on the positively oriented point, where it yields the space V G of invariants.

Remark 4.2. Maybe more interesting than the one-dimensional orbifold construction itself is the insight it pro-
vides on why the orbifold construction cannot be obtained as adjoint of the pullback along the forgetful functor
U : G-Cob(n) −→ Cob(n): Using Example 3.29 and Theorem 4.1 we see that the one-dimensional orbifold
construction is the functor

(?)G : core (FinRepC(G)) −→ core (FinVectC) (∗)

taking invariants. If we forgot about taking the core, we would be left with

(?)G : FinRepC(G) −→ FinVectC,

which would be the two-sided adjoint of the functor FinVectC −→ FinRepC(G) forming the trivial repre-
sentation for a given vector space (this would correspond to the pullback functor along the forgetful functor
G-Cob(1) −→ Cob(1)). This adjunction, however, does not persist if we take cores because the natural bijections
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of the adjunction do not take isomorphisms to isomorphisms. Hence, (∗) is not an adjoint for the pullback along
the forgetful functor G-Cob(1) −→ Cob(1) – which is what we have seen more generally in Example 3.48.

Example 4.3. As an application of Theorem 4.1 we recover the orthogonality relations for characters: Let ̺ :
G −→ Aut(V ) be a representation of a finite group G on some finite-dimensional complex vector space V . Then the
character χ of ̺ provides an invariant function on the action groupoid G//G. Observe further that by Theorem 4.1
̺ classifies a one-dimensional G-equivariant topological field theory Z. By Proposition 3.47 its orbifold theory
assigns to S

1 the invariant

Z

G
(S1) =

ˆ

Π(S1,BG)

Z(S1, ϕ) dϕ =

ˆ

G//G

tr ̺(g) dg =

ˆ

G//G

χ,

where we have applied the transformation formula (Proposition A.13) to an equivalence Π(S1, BG) ∼= G//G and
used Example 3.29 and the character formula from Proposition 2.10. But a general well-known argument shows
that any one-dimensional topological field theory assigns to S

1 the dimension of the vector space assigned to a
point. Together with Theorem 4.1 this yields Z/G(S1) = dimV G, which proves

ˆ

G//G

χ = dim V G.

4.2 Orbifold construction for two-dimensional equivariant topological field theories

For two-dimensional equivariant topological field theories we can write down the orbifold construction on the
level of classifying objects as well, i.e. by using the classification of G-equivariant topological field theories by
crossed Frobenius G-algebras due to [Tur10b] as recalled in Example 3.30. The orbifold theory is an ordinary
two-dimensional topological field theory and hence equivalent to a commutative Frobenius algebra. Our goal in
this subsection is to determine this Frobenius algebra.

Definition 4.4 – Parallel sections of a crossed Frobenius G-algebra. Let G be a finite group and A be
a crossed Frobenius G-algebra. A parallel section of A is a parallel section of the underlying vector bundle over
G//G, i.e. a family s = (s(g))g∈G of vectors s(g) ∈ Ag with s(hgh−1) = h.s(g) for all g, h ∈ G. We denote the
vector space of parallel sections of A by A/G.

Theorem 4.5 – Orbifold construction for two-dimensional equivariant topological field theories.

Let G be a finite group, Z : G-Cob(2) −→ VectC a two-dimensional G-equivariant topological field theory and
A its crossed Frobenius G-algebra. Then the orbifold theory Z/G : G-Cob(2) −→ VectC is classified by the
commutative Frobenius algebra which, as a vector space, is given by the vector space of parallel section A/G of
A. The multiplication is given by

(ss′)(g) =
∑

a,b∈G
ab=g

s(a)s′(b) for all s, s′ ∈ A/G, g ∈ G,

the unit is the parallel section with s(1) = 1 and s(g) = 0 for g 6= 1, and the pairing is given by

κ(s, s′) =
1

|G|

∑

g∈G

κ(s(g), s(g−1)) for all s, s′ ∈ A/G.

The Frobenius algebra A/G is called the orbifold Frobenius algebra of A.

Remarks 4.6.

(a) To reduce notational complexity we refrain from introducing additional symbols for the multiplication, pairing
etc. of the orbifold algebra.

(b) The term orbifold algebra is not only justified by the above assertion, but also used in the literature:
By [Kau02, Proposition 2.1.3] the invariants of a crossed Frobenius G-algebra naturally form a Frobenius
algebra. This is exactly the idea underlying Definition 4.4 because the holonomy principle allows us to
identify invariants with parallel sections. In fact, on the level of vector spaces we have the non-canonical
isomorphism

A/G ∼=
⊕

[g]∈G/G

A
Aut(g)
g .
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In summary, the orbifold construction is designed in such a way that it relates in dimension two to known
orbifold constructions for Frobenius algebras.

Proof. We know that the orbifold theory is a two-dimensional topological field theory. By the classification
result for two-dimensional topological field theories it can be equivalently described by the commutative Frobenius
algebra obtained by evaluation on the circle. Since the orbifold theory on objects is given by forming spaces of
parallel sections, we deduce that this commutative Frobenius algebra, as a vector space, is A/G. The multiplication
is obtained by evaluation on the pair of pants. In Example 3.30 we have seen that the application of the stack of
G-bundles to this bordism yields the span

G//G×G//G
B
←− (G×G)//G

M
−→ G//G,

where B is the obvious functor and M the multiplication. Using the explicit formula for the orbifold construction
(Proposition 3.45) we find

(ss′)(g) =
∑

[a,b]∈(G×G)//G
ab=g

h∈Aut(g)

h.(s(a)s′(b))

|Aut(a, b)|
for all s, s′ ∈ A/G, g ∈ G,

where the representatives are chosen such that ab = g holds strictly. Now denote by Γg the full subgroupoid of
(G×G)//G of all (a, b) with ab = g (in fact, this is equivalent to the full subgroupoid of all (a, b) with ab = cgc−1

for some c ∈ G), define

f(s, s′, g)(a, b) :=
∑

h∈Aut(g)

h.(s(a)s′(b)) for all (a, b) ∈ Γg

and observe that f(s, s′, g) : Γg −→ Ag is an invariant function on Γg. Having introduced this notation we obtain

(ss′)(g) =

ˆ

Γg

f(s, s′, g) =
∑

[a,b]∈Γg

1

|Aut(a, b)|

∑

h∈Aut(g)

s(hah−1)s′(hbh−1). (‡)

The groupoid Γg is the action groupoid of the action of Aut(g) on the underlying object set by conjugation.
Recalling the classical orbit theorem stating that the map

Aut(g) ∋ h 7−→ (hah−1, hbh−1) ∈ O(a, b)

induces a bijection Aut(g)/Aut(a, b) ∼= O(a, b) we see that we can replace the inner sum by
∑

h∈Aut(g)

s(hah−1)s′(hbh−1) = |Aut(a, b)|
∑

(x,y)∈O(a,b)

s(x)s′(y).

Using this together with (‡) proves the formula

(ss′)(g) =
∑

[a,b]∈Γg

∑

(x,y)∈O(a,b)

s(x)s′(y) =
∑

a,b∈G
ab=g

s(a)s′(b)

for the multiplication. The formula for the pairing can be derived by first computing the counit of the orbifold
Frobenius algebra. For this we have to use the span G//G ←− ⋆//G −→ ⋆//1, see Example 3.30. Using again
the explicit formula for the orbifold construction (Proposition 3.45) we find ε(s) = ε(s(1))/|G|. Concatenating
multiplication and counit we obtain the formula for the pairing. We still have to compute the unit. We could do
this by considering another span and using our formula for the orbifold construction, but we can also argue that,
by the general construction, we already know that the multiplication has a unit – and hence a unique one. An
easy computation shows that the unit described in the above assertion is indeed a unit. �

5 Applications to equivariant Dijkgraaf-Witten theories

As another class of examples we will now investigate the equivariant Dijkgraaf-Witten theories constructed in
[MNS12]. In Section 5.2 we give an alternative, slightly generalized construction of this theory. The relation to
the results of [MNS12] will be made precise in Section 5.3. The rest of the chapter is devoted to the computation
of the orbifold theory for the equivariant Dijkgraaf-Witten theory. The final result is given in Theorem 5.14. It is
applied to the case treated in [MNS12] in Corollary 5.15 and can be seen as a preparatory step towards relating
the geometric orbifold construction developed in this article to the algebraic orbifoldization of modular tensor
categories in the sense of [Kir04].
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5.1 Topological field theories from presheaves – the Dijkgraaf-Witten model

Before turning to the equivariant case let us recall (a slight generalization of) the non-equivariant Dijkgraaf-Witten
model: The stack of bundles for a finite group gives rise to a topological field theory, the so-called Dijkgraaf-Witten
theory based on the ideas in [DW90]. Over the years the theory has seen numerous conceptional clarifications and
extensions ranging from e.g. [FQ93] to [Mor15].
The definition of the Dijkgraaf-Witten theory relies on the following state space functor and the linearizat-

ion of spans of essentially finite groupoids, see for instance [BHW10]. The state space functor takes values in
finite-dimensional Hilbert spaces and hence allows us to reverse arrows by forming adjoint maps.

Definition 5.1 – State space functor. The state space functor

H : FinGrpdopp −→ FinHilb

is a cofunctor from the category of essentially finite groupoids to the category of finite-dimensional complex Hilbert
spaces (morphisms in the latter category are linear maps, not necessarily isometries). It assigns to an essentially
finite groupoid Γ the complex vector space of complex-valued invariant functions on Γ (they can be seen as
functions π0(Γ ) −→ C). The scalar product of invariant functions f and g on Γ is defined by

〈f, g〉 :=

ˆ

Γ

fg =
∑

[x]∈π0(Γ )

f(x)g(x)

|Aut(x)|
.

A functor Φ : Γ −→ Ω is sent to the pullback map Φ∗ = H (Φ) : H (Ω) −→H (Γ ) given by

(Φ∗f)(x) := f(Φ(x)) for all f ∈H (Ω), x ∈ Γ.

We call H (Γ ) the state space of the essentially finite groupoid Γ .

Remarks 5.2.

(a) Let x be an object of an essentially finite groupoid Γ . Then we denote by δ[x] ∈H (Γ ) the invariant function
on Γ with

δ[x](x
′) =

{
1, if x ∼= x′

0, else
for all x′ ∈ Γ.

The family (δ[x])[x]∈π0(Γ ) forms a canonical basis of H (Γ ).

(b) Naturally isomorphic functors between essentially finite groupoids induce the same maps between the state
spaces.

(c) The key point about the scalar products on the state spaces is that they give us the possibility to reverse
arrows by forming adjoint maps, which crucially enters in Theorem 5.6. We will denote an adjunction by a †.
Additionally, we use the following notation: If Φ : Γ −→ Ω is a functor between essentially finite groupoids,
we write

Φ∗ := H (Φ)† = (Φ∗)† : H (Γ ) −→H (Ω).

A direct computation shows

(Φ∗f)(y) = |Aut(y)|
∑

[x]∈π0(Γ )
Φ(x)∼=y

f(x)

|Aut(x)|
.

Using Remark 5.2, (b) we can easily prove the following result:

Lemma 5.3. The state space functor maps an equivalence Φ : Γ −→ Ω of essentially finite groupoids to a
unitary map Φ∗ : H (Ω) −→ H (Γ ). The adjoint (and inverse) preserves the canonical basis in the sense that it
satisfies Φ∗δ[x] = δ[Φ(x)] for all x ∈ Γ .

Adjunction and homotopy fibers are closely related.

Proposition 5.4. Let Φ : Γ −→ Ω a functor between essentially finite groupoids. For any invariant function
f : Γ −→ C the formula

(Φ∗f)(y) =

ˆ

Φ−1[y]

Q∗
yf
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holds, where Qy : Φ
−1[y] −→ Γy is the |Aut(y)|-fold forgetful covering associated to the homotopy fiber Φ−1[y].

Proof. From the adjunction formula given in Remark 5.2, (c) we already know

(Φ∗f)(y) = |Aut(y)|

ˆ

Γy

f.

Now Proposition A.16 yields the assertion. �

In the original paper [DW90], the Dijkgraaf-Witten theory is not explicitly described as a symmetric monoidal
functor. The categorical description was worked out in [FQ93] and [Mor15]. The strategy is to see morphisms
M : Σ0 −→ Σ1 in Cob(n) as cospans Σ0 −→M ←− Σ1 and feed them into the stack PBunG(?) for some finite
group G. The spans of groupoids we obtain are linearized using the state space functor. It makes sense to replace
PBunG(?) be any presheaf satisfying the properties in Definition 3.18. This will allow for a very elegant proof of
the functoriality of Dijkgraaf-Witten theory. Some of the essential ideas in the proof of Theorem 3.40 are inspired
by this.
For the proof of the functoriality of Dijkgraaf-Witten type topological field theories we will use a Beck-Chevalley

condition, see [Mor11, Appendix A.2] for a discussion in the context of Dijkgraaf-Witten theories. A generalization
was given in Proposition 3.39.

Corollary 5.5 – Beck-Chevalley condition. For any homotopy pullback

Γ ×Ω Λ Γ

Λ Ω

πΓ

πΛ Φ

Ψ

η

of a cospan Λ
Ψ
−→ Ω

Φ
←− Γ of essentially finite groupoids, the equality of linear maps

Ψ∗Φ∗ = πΛ∗π
∗
Γ : H (Γ ) −→H (Λ)

holds.

Theorem 5.6 – Untwisted Dijkgraaf-Witten theory. Every additive, essentially finite homotopy-invariant
presheaf Γ satisfying the gluing condition with respect to bordisms gives rise to a topological field theory ZΓ of
arbitrary dimension n ≥ 1: For any object Σ in Cob(n) set

ZΓ (Σ) := H Γ (Σ),

and for every morphism Σ0
ι0−→M

ι1←− Σ1 in Cob(n) define ZΓ (M) to be the pull-push map

ZΓ (M) : H Γ (Σ0)
Γ (ι0)

∗=H Γ (ι0)
−−−−−−−−−−→H Γ (M)

Γ (ι1)∗=H Γ (ι1)
†

−−−−−−−−−−−→H Γ (Σ1),

where the adjunction is taken with respect to the scalar products on the state spaces.

Proof. This is a trick!

(i) As a first step we prove that ZΓ is a functor. In order to show that it maps identities to identities, we
observe that the inclusion of both the top and the bottom of the cylinder Σ × [0, 1] over some object Σ in
Cob(n) is a homotopy equivalence inducing a equivalence Γ (Σ × [0, 1]) ∼= Γ (Σ). Hence, from Lemma 5.3
we get immediately ZΓ (Σ × [0, 1]) = idH (Γ (Σ)). Next we prove

ZΓ (M
′ ◦M) = ZΓ (M

′) ◦ ZΓ (M)

for morphisms M : Σ0 −→ Σ1 and M ′ : Σ1 −→ Σ2 in Cob(n). These give us the commutative diagram

Σ0

M

Σ1

M ′

Σ2

M ′ ◦M

ι0 ι1 ι′1 ι2

j j′

of embeddings between manifolds, which upon applying Γ yields the diagram of groupoids
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Γ (Σ0)

Γ (M)

Γ (Σ1)

Γ (M ′)

Γ (Σ2)

Γ (M ′ ◦M)

Γ (ι0) Γ (ι1) Γ (ι′1) Γ (ι2)

Γ (j) Γ (j′)

commutative up to natural isomorphism. From the gluing property of Γ we deduce that the diagram

Γ (Σ0)

Γ (M)

Γ (Σ1)

Γ (M ′)

Γ (Σ2)

Γ (M ′ ◦M)

Γ (M)×Γ (Σ1) Γ (M
′)

Γ (ι0) Γ (ι1) Γ (ι′1) Γ (ι2)

Γ (j)

∼=

πM πM′

Γ (j′)

commutes up to natural isomorphism, where ∼= denotes the canonical equivalence

Γ (j)× Γ (j′) : Γ (M ′ ◦M) −→ Γ (M)×Γ (Σ1) Γ (M
′)

and πM and πM ′ are the projection functors. Application of the state space functor yields the commutative
diagram

H Γ (Σ0)

H Γ (M)

H Γ (Σ1)

H Γ (M ′)

H Γ (Σ2)

H Γ (M ′ ◦M)

H (Γ (M)×Γ (Σ1) Γ (M
′))

H Γ (ι0) H Γ (ι1) H Γ (ι′1) H Γ (ι2)

H Γ (j)

φ

H (πM ) H (πM′)

H Γ (j′)

,

(∗)

in which the map φ induced by Γ (j)×Γ (j′) : Γ (M ′ ◦M) −→ Γ (M)×Γ (Σ1) Γ (M
′) is unitary by Lemma 5.3.

Using the equality

H (πM ′ )†H (πM ) = H Γ (ι′1)H Γ (ι1)
† (‡)
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following from Corollary 5.5 we obtain

ZΓ (M
′ ◦M)

(∗)
= (H Γ (j′)H Γ (ι2))

†
H Γ (j)H Γ (ι0)

= H Γ (ι2)
†
H Γ (j′)†H Γ (j)H Γ (ι0)

(∗)
= H Γ (ι2)

†
H (πM ′)†φ†φH (πM )H Γ (ι0)

= H Γ (ι2)
†
H (πM ′)†H (πM )H Γ (ι0) (φ is unitary)

(‡)
= H Γ (ι2)

†
H Γ (ι′1)H Γ (ι1)

†
H Γ (ι0)

= ZΓ (M
′)ZΓ (M).

(ii) Finally, using the fact that Γ is additive, we obtain the data to turn ZΓ into a monoidal functor. It is easily
seen to be symmetric. �

Remarks 5.7.

(a) The topological field theory ZΓ : Cob(n) −→ VectC assigns to a closed oriented n-dimensional manifold M
the invariant |Γ (M)|.

(b) The original Dijkgraaf-Witten theory corresponds to the case Γ = PBunG(?) for some finite group G.

(c) There is a little more sophisticated version of the n-dimensional G-Dijkgraaf-Witten theory using a twist
by a cocycle θ ∈ Hn(BG; U(1)) playing the role of an action functional. This version of the theory is also
described in [FQ93] and [Mor15]. The above version corresponds to the theory with trivial cocycle and is
therefore sometimes called untwisted.

(d) For a morphism M : Σ0 −→ Σ1 in Cob(n), x0 ∈ Γ (Σ0) and x1 ∈ Γ (Σ1) we find the formula

(ZΓ (M)δ[x0])(x1) = |Aut(x1)||Γx0,x1(M)|,

where Γx0,x1(M) is the full subgroupoid of Γ (M) of all x ∈ Γ (M) with x|Σ0
∼= x0 and x|Σ1

∼= x1.

Example 5.8. Let Γ be an additive, essentially finite homotopy invariant presheaf Γ satisfying the gluing con-
dition with respect to bordisms and Ω a finitely generated groupoid, then the presheaf [Ω,Γ ] also meets these
requirements. Hence it gives rise to a topological field theory Z[Ω,Γ ] : Cob(n) −→ VectC.

5.2 Equivariant topological field theories from morphisms of homotopy invariant

presheaves

In Section 5.1 it was explained how to associate a topological field theory of Dijkgraaf-Witten type to a certain
type of homotopy invariant presheaves. We will now construct an equivariant field theory from a morphism of
such homotopy invariant presheaves.

Definition 5.9 – Vector bundles over groupoids constructed from transport functors. Let Φ : Γ −→
Ω be a functor between small groupoids. For a morphism g : y0 −→ y1 in Ω we define a transport functor
℘Φ(g) : Φ−1[y0] −→ Φ−1[y1] between the corresponding homotopy fibers by sending an object (x0, h0) in Φ

−1[y0]
to (x0, gh0). A morphism k : (x0, h0) −→ (x′0, h

′
0) is sent to k seen as morphism (x0, gh0) −→ (x′0, gh

′
0). This

allows us to define a functor

℘Φ : Ω −→ Grpd

y 7−→ Φ−1[y]

(g : y0 −→ y1) 7−→ (℘Φ(g) : Φ−1[y0] −→ Φ−1[y1]),

which we will also refer to as transport functor. Assume now that Γ and Ω are essentially finite, then ℘Φ is a
functor ℘Φ : Ω −→ FinGrpd, and we get a vector bundle of Ω by

̺Φ : Ω
℘Φ

−−→ FinGrpd
H
−→ FinHilbopp †

−→ FinHilb,

where H is the state space functor (Definition 5.1) and the dagger is the adjunction endocofunctor in the category
of finite-dimensional Hilbert spaces.

Let Γ and Ω be additive, essentially finite homotopy invariant presheaves satisfying the gluing condition and
Φ : Γ −→ Ω a morphism of presheaves. We intend to associate to Φ an Ω-equivariant topological field theory

ZΦ : Cob(n) −→ VecBunCGrpd.
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Let us specify the ingredients:

• To an object Σ in Cob(n) we assign the vector bundle

ZΦ(Σ) := ̺Φ(Σ) : Ω(Σ) −→ FinHilb

over Ω(Σ) that the functor Φ(Σ) : Γ (Σ) −→ Ω(Σ) gives rise to in the sense of Definition 5.9.

• To a morphism M : Σ0 −→ Σ1 in Cob(n) we assign the span Ω(Σ0)
r0←− Ω(M)

r1−→ Ω(Σ1), where the
restriction functors come from Ω. Additionally, we need a morphism λ(M) : r∗0Z(Σ0) −→ r∗1Z(Σ1) of vector
bundles over groupoids. It is given by family (λ(M))y∈Ω(M) of pull-push maps

λ(M)y : ZΦ(Σ0)(r0(y)) = H (Φ−1[r0(y)])
r∗0−→H (Φ−1[y])

r1∗−−→ ZΦ(Σ1)(r1(y)) = H (Φ−1[r1(y)]),

where H is the state space functor from Definition 5.1. Note that by a slight abuse of notation we use the
same symbol for the restriction functor r0 : Ω(M) −→ Ω(Σ) and the functor Φ−1[y] −→ Φ−1[r0(y)] induced
by it in an obvious way.

To prove that λ(M) : r∗0Z(Σ0) −→ r∗1Z(Σ1) is in fact a morphism of vector bundles, we need to show that
for any morphism g : y −→ y′ in Ω(M) the diagram

H Φ−1[r0(y)] H Φ−1[y] H Φ−1[r1(y)]

H Φ−1[r0(y
′)] H Φ−1[y′] H Φ−1[r1(y

′)]

r∗0 r1∗

℘Φ(Σ0)(r0(g))∗ = ℘Φ(Σ0)(r0(g
−1))∗

r∗0 r1∗

℘Φ(Σ1)(r1(g))∗ (∗)

commutes. Indeed, consider the equivalence of spans

Φ−1[r0(y)]

Φ−1[y]

Φ−1[r1(y
′)]

Φ−1[y′]

r0
℘Φ(Σ1)(r1(g)) ◦ r1

℘Φ(Σ0)(r0(g
−1)) ◦ r0 r1

℘Φ(M)(g)

and observe that the linearization of the upper span is

℘Φ(Σ1)(r1(g))∗r1∗r
∗
0 ,

whereas the linearization of the lower span is

r1∗r
∗
0℘

Φ(Σ1)(r1(g
−1))∗ = r1∗r

∗
0℘

Φ(Σ1)(r1(g))∗.

This proves the commutativity of (∗).

Theorem 5.10. Let Γ and Ω be additive, essentially finite homotopy invariant presheaves satisfying the gluing
condition and Φ : Γ −→ Ω a morphism of presheaves. Then the associated

ZΦ : Cob(n) −→ VecBunCGrpd

is an Ω-equivariant topological field theory.

Proof. This is a trick!

(i) In the first step we prove functoriality of ZΦ. To this end, we observe that for y ∈ Ω(Σ × [0, 1]) the map
λ(Σ × [0, 1]) given by

Z(Σ)(r0(y)) = H (Φ−1[r0(y)])
r∗0−→H (Φ−1[y])

r1∗−−→ Z(Σ)(r1(y)) = H (Φ−1[r1(y)])

is the identity, since the inclusion of top and bottom of the cylinder are homotopy equivalences turning, by
homotopy invariance of Ω, the restriction functors r0 and r1 into equivalences and hence r∗0 into a unitary
operator adjoint to r1∗. Consequently, ZΦ preserves identities. To prove the composition law consider two
morphisms M : Σ0 −→ Σ1 and M ′ : Σ0 −→ Σ1 in Cob(n). The morphism ZΦ(M

′ ◦M) is given by an
equivalence class of a span of groupoids and a vector bundle morphism. Since Ω satisfies the gluing property,
we can represent this span by the outer span of the diagram
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Ω(Σ0)

Ω(Σ1)

Ω(Σ2)

Ω(M)

Ω(M ′)

Ω(M)×Ω(Σ1) Ω(M ′)

r0 r1 r′1 r′2

p p′

η

.

The second part of ZΦ(M
′ ◦M), namely the vector bundle morphism

λ(M ′ ◦M) : (r0 ◦ p)
∗ZΦ(Σ0) −→ (r′2 ◦ p

′)∗ZΦ(Σ2),

consists of the linear maps

λ(M ′ ◦M)(y,y′,y) : ZΦ(Σ0)(r0(y)) −→ ZΦ(Σ2)(r
′
2(y

′)) for all (y, y′, g) ∈ Ω(M)×Ω(Σ1) Ω(M ′)

obtained, as we will show below in part (ii) of this proof, by linearizing the outer span of

Φ−1[r0(y)]

Φ−1[y]

Φ−1[r′1(y
′)]

Φ−1[r1(y)]

Φ−1[y′]

Φ−1[r′2(y
′)]

Φ−1[x]×Φ−1[r′1(y
′)] Φ

−1[y′]

r0

r1

℘Φ(Σ1)(g)

r′1 r′2

q q′

.

(‡)

The weak pullback square commutes, as usual, up to natural isomorphism. Now the computation

λ(M ′ ◦M)(y,y′,g) = (r′2 ◦ q
′)∗(r0 ◦ q)

∗

= r′2∗q
′
∗q

∗r∗0

= r2∗r
′
1
∗
℘Φ(Σ1)(g)∗r1∗r

∗
0 (Beck-Chevalley condition, Corollary 5.5)

= λ(M)y℘
Φ(Σ1)(g)∗λ(M

′)y′

concludes the proof of functoriality.

(ii) In order to prove that we can use (‡) for the computation of λ, we observe that, since the square

Γ (M ′ ◦M) Γ (M)×Γ (Σ1) Γ (M
′)

Ω(M ′ ◦M) Ω(M)×Ω(Σ1) Ω(M ′)

∼=

Φ

∼=

Φ× Φ

containing the gluing equivalences coming from restriction is (weakly) commutative, we can compute λ by
linearizing the span

Φ−1[r0(y)]
r0←− Φ−1[y]←− (Φ× Φ)−1[y, y′, g] −→ Φ−1[y′]

r′2−→ Φ−1[r′2(y
′)]

with the inner unlabeled arrows being projections. This span is equivalent to the one given in (‡). To see this,
we will just write down explicitly the definition of (Φ× Φ)−1[y, y′, g] and observe that it can be canonically
identified with Φ−1[y] ×Φ−1[r′1(y

′)] Φ
−1[y′]. Indeed, an object of (Φ × Φ)−1[y, y′, g] is an object (x, x′, k) in
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Γ (M)×Γ (Σ1) Γ (M
′), i.e. x|Σ1

k
∼= x′|Σ1 , together with a morphism

(h, h′) :

(
Φ(x), Φ(x′), Φ(x|Σ1 )

Φ(k)
∼= Φ(x′|Σ1)

)
−→ (y, y′, g),

i.e. h : Φ(x) −→ y and h′ : Φ(x′) −→ y′ such that the square

Φ(x|Σ1 ) Φ(x′|Σ1)

y|Σ1 y′|Σ1

Φ(k)

h|Σ1

g

h′|Σ1

commutes. Writing out the definition of Φ−1[y]×Φ−1[r′1(y
′)] Φ

−1[y′] yields just the same. Hence, it is justified
to linearize (‡) to obtain λ.

(iii) The monoidal structure of ZΦ comes from the requirement that Γ and Ω are additive. �

5.3 Specializing to bundle stacks – equivariant Dijkgraaf-Witten theory

In this subsection we apply Theorem 5.10 to an imprtant class of examples: Consider the bundle stacks PBunH(?)
and PBunJ(?) for two finite groups H and J . Given a morphism λ : H −→ J we can extend any H-bundle along
λ to a J-bundle. This yields an extension functor

λM∗ : PBunH(M) −→ PBunJ (M)

for every manifold (we will write λ∗ instead of λM∗ if the manifold is clear). It assigns to an H-bundle Q over M
the J-bundle λM∗ (Q) which is defined as the associated bundle Q×H J , where H acts on J by h.j := λ(h)j for all
h ∈ H and j ∈ J .
These extension functors are natural in the sense that they yield a morphism

λ∗ : PBunH(?) −→ PBunJ(?) (∗)

of stacks. The diagram

Π(M,BH) Π(M,BJ)

PBunH(M) PBunJ(M)

Bλ∗

∼=

λ∗

∼=

containing the canonical equivalences from Theorem 2.14 and the functor obtained from the continuous map
Bλ : BH −→ BJ given by λ and the functoriality of the classifying space construction is easily seen to commute
weakly. The following result suggests to concentrate on the morphisms of stacks arising in this way from group
morphisms.

Proposition 5.11. For discrete groups H and J denote by Hom(H, J)//J the action groupoid of the action of J
on morphisms H −→ J by conjugation. Then for the corresponding stacks Π(?, BH) and Π(?, BJ) on topological
spaces there is an equivalence

Hom(H, J)//J ∼= Hom(Π(?, BH), Π(?, BJ))

of groupoids sending a group morphism λ : H −→ J to the morphism Bλ∗ : Π(?, BH) −→ Π(?, BJ). Hence,
morphisms Π(?, BH) −→ Π(?, BJ) are classified up to isomorphism by conjugacy classes of group morphisms
H −→ J .

Proof. There is an obvious functor Π(BH,BJ) −→ Hom(Π(?, BH), Π(?, BJ)) sending a continuous map f :
BH −→ BJ to the morphism f∗ : Π(?, BH) −→ Π(?, BJ). This functor is an equivalence (even an isomorphism)
of groupoids by a (generalization of) Yoneda’s Lemma. The assertion follows now from

Π(BH,BJ) ∼= PBunJ(BH) ∼= Hom(π1(BH), J)//J ∼= Hom(H, J)//J,

where we succesively used Theorem 2.14, the holonomy classification of flat bundles and π1(BH) ∼= H . �

Applying Theorem 5.10 to the extension morphism (∗) we obtain an equivariant field theory.

Theorem 5.12. To n ≥ 1 and any morphism λ : H −→ J of finite groups the construction of Theorem 5.10
associates a J-equivariant n-dimensional topological field theory Zλ.
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In order to compare Zλ to the (untwisted, non-extended version of the) J-equivariant Dijkgraaf-Witten theory
constructed in [MNS12] from a short exact sequence

0 −→ G −→ H
λ
−→ J −→ 0

of finite groups, we observe that the groupoid of P -twisted H-bundles introduced in [MNS12, Definition 3.5] is
canonically equivalent to the homotopy fiber λ−1

∗ [P ]. Upon linearization and adjunction these equivalences yield:

Theorem 5.13. Let 0 −→ G −→ H
λ
−→ J −→ 0 be a short exact sequence of finite groups. Then the

J-equivariant topological field theory Zλ from Theorem 5.12 is canonically isomorphic (by a monoidal natural
isomorphism) to the J-equivariant Dijkgraaf-Witten theory J-Cob(n) −→ VectC associated to this sequence in
[MNS12].

Note that in Theorem 5.12, in contrast to [MNS12], surjectivity of λ is not needed.

5.4 Orbifold construction for Dijkgraaf-Witten theories

The equivariant Dijkgraaf-Witten theory provides another opportunity to relate the geometric orbifold construction
of this article to existing concepts of orbifoldization. In [MNS12] the J-equivariant Dijkgraaf-Witten theory

associated to a short exact sequence 0 −→ G −→ H
λ
−→ J −→ 0 of finite groups is constructed as a three-

dimensional extended topological field theory. Upon evaluation on the circle, this theory yields an J-equivariant
modular category; for this category, a (purely algebraic) orbifold construction is available, see [Kir04]. It can be
shown [MNS12] that the orbifold category is the modular category associated to the Dijkgraaf-Witten theory for
the group H . We now demonstrate that the geometric orbifold construction of this article yields, at the level of
non-extended topological field theories, the same orbifold theory.
For the invariants assigned by the orbifold theory Zλ/J to a closed oriented manifold M of top dimension, this

is a consequence of Cavalieri’s principle: By Proposition 3.47 this invariant is given by

Zλ
J

(M) =

ˆ

PBunJ (M)

Zλ(M,P ) dP =

ˆ

PBunJ (M)

|λ−1
∗ [P ]| dP = |PBunH(M)|,

where Cavalieri’s principle (Proposition A.14) enters in the last step. On the right hand side we see the invariant
the Dijkgraaf-Witten theory for the group H would assign to M .
To show that this result holds beyond invariants, we compute the orbifold theory of the equivariant theory from

Theorem 5.12.

Theorem 5.14. Let Γ and Ω be additive, essentially finite homotopy invariant presheaves satisfying the gluing
condition and Φ : Γ −→ Ω a morphism of presheaves. Then the orbifold theory ZΦ/Ω of the Ω-equivariant
topological field theory ZΦ is canonically isomorphic (by a monoidal natural isomorphism) to the topological field
theory ZΓ from Theorem 5.6, i.e.

ZΦ
Ω
∼= ZΓ .

Proof. This is a trick!

(i) We begin by defining the isomorphism η : ZΓ −→ ZΦ/Ω. It consists of the maps

ηΣ : ZΓ (Σ) = H Γ (Σ) −→ Par̺Φ(Σ) =
ZΦ
Ω

(Σ)

defined as follows: Let f : Γ (Σ) −→ C be an invariant function and y ∈ Ω(Σ). Then the forgetful covering

qy : Φ−1[y] −→ Γy(Σ) and the inclusion ιy : Γy(Σ) −→ Γ (Σ) yield a functor ℓy : Φ
−1[y]

qy
−→ Γy(Σ)

ιy
−→ Γ (Σ)

and hence, by pullback, a map

ℓ∗y : H Γ (Σ) −→H Φ−1[y].

Set now

(ηΣf)(y) := ℓ∗yf ∈H Φ−1[y]

to define ηΣf . An easy computation shows that the section ηΣf is parallel. At the end of the proof η
will be a morphism η : ZΓ −→ ZΦ/Ω, i.e. a natural monoidal transformation, and hence automatically an
isomorphism. The explicit form of the inverse, however, will simplify the rest of the proof: For a parallel
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section s of the vector bundle ̺Φ(Σ) and x ∈ Γ (Σ) we set

(νΣs)(x) := s(Φ(x))(x, idΦ(x)).

Note that s(Φ(x)) ∈ H Φ−1[Φ(x)], so it makes sense to evaluate s(Φ(x)) at (x, idΦ(x)) ∈ Φ
−1[Φ(x)]. This

defines an invariant function on Γ (Σ), as is easily verified. Another direct computation shows that νΣ is the
inverse of ηΣ .

(ii) To prove naturality of η consider a morphism M : Σ1 −→ Σ1 in Cob(n). To show that the square

ZΓ (Σ0) ZΓ (Σ1)

ZΦ
Ω

(Σ0)
ZΦ
Ω

(Σ1)

ηΣ0

ZΓ (M)

ZΦ

Ω
(M)

ηΣ1 (∗)

commutes, let x0 ∈ Γ (Σ0) and x1 ∈ Γ (Σ1). Then
(
νΣ1 ◦

ZΦ
Ω

(M) ◦ ηΣ0δ[x0]

)
(x1) =

(
ZΦ
Ω

(M) ◦ ηΣ0δ[x0]

)
(Φ(x1))(x1, idΦ(x1)). (‡)

The map ZΦ/Ω(M) is given by
(
ZΦ
Ω

(M)s

)
(Φ(x1)) =

∑

[y]∈π0(Ω(M))

y|Σ1

a
∼=Φ(x1)

g∈Aut(Φ(x1))

℘Φ(Σ1)(g)∗℘
Φ(Σ1)(a)∗ZΦ(M, y)s(y|Σ0)

|Aut(y)|

=
∑

[y]∈π0(Ω(M))

y|Σ1

a
∼=Φ(x1)

g∈Aut(Φ(x1))

℘Φ(Σ1)
(
a−1g−1

)∗
ZΦ(M, y)s(y|Σ0)

|Aut(y)|

=
∑

[y]∈π0(Ω(M))

y|Σ1

a
∼=Φ(x1)

g∈Aut(Φ(x1))

℘Φ(Σ1)
(
a−1g

)∗
ZΦ(M, y)s(y|Σ0)

|Aut(y)|

for every s ∈ ZΦ/Ω(Σ), where the morphism a : y|Σ1 −→ Φ(x1) is arbitrary, see Remark 3.41, (a). By the
definition of ZΦ(M, y) we obtain for (x1, k) ∈ Φ

−1[y|Σ1 ]

ZΦ(M, y)s(y|Σ0)(x1, k) = |Aut(x1, k)|
∑

[x,h]∈π0(Φ
−1(y))

(x,h)|Σ1
∼=(x1,k)

s(y|Σ0)((x, h)|Σ0 )

|Aut(x, h)|
.

Specializing to s = ηΣ0δ[x0] we find

(
(ηΣ0δ[x0](y|Σ0))

)
((x, h)|Σ0) =

(
ℓ∗y|Σ0

δ[x0]

)
((x, h)|Σ0) = δ[x0],[x|Σ0 ]

.

Taking all this into account (‡) simplifies to
(
νΣ1 ◦

ZΦ
Ω

(M) ◦ ηΣ0δ[x0]

)
(x1) =

∑

[y]∈π0(Ω(M))
y|Σ1

∼=Φ(x1)

g∈Aut(Φ(x1))

|Aut(x1, g)|

|Aut(y)|

∑

[x,h]∈π0(Φ
−1(y))

(x,h)|Σ1
∼=(x1,g)

x|Σ0
∼=x0

1

|Aut(x, h)|
.

The morphism a : y|Σ1 −→ Φ(x1) does not appear anymore because ℘Φ(Σ)(a) is an equivalence and does
not change the size of automorphism groups. Note that in the outer sum we can drop the requirement
y|Σ1

∼= Φ(x1) since in the inner sum we require anyway that y|Σ1
∼= Φ(x)|Σ1

∼= Φ(x|Σ1)
∼= Φ(x1). Moreover,

for g ∈ Aut(Φ(x1)) the equivalence ℘Φ(Σ1)(g) : Φ−1[Φ(x1)] −→ Φ−1[Φ(x1)] maps the pair (x1, idΦ(x1)) to
(x1, g), which implies |Aut((x1, idΦ(x1)))| = |Aut(x1, g)| and hence

(
νΣ1 ◦

ZΦ
Ω

(M) ◦ ηΣ0δ[x0]

)
(x1) =

∑

[y]∈π0(Ω(M))
g∈Aut(Φ(x1))

|Aut(x1, idΦ(x1))|

|Aut(y)|

∑

[x,h]∈π0(Φ
−1(y))

(x,h)|Σ1
∼=(x1,g)

x|Σ0
∼=x0

1

|Aut(x, h)|
.
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Every [x, h] ∈ π0(Φ
−1[y]) with x|Σ0

∼= x0 occurs in the sum because (x, h)|Σ1
∼= (x1, g) for suitable g is

definitely true. The number of objects (x1, g
′) isomorphic to this (x1, g) determines how often this particular

[x, h]-contribution is counted. Let Πx1 be the full subgroupoid of Φ−1[Φ(x1)] of all objects of the form
(x1, g), where x1 is fixed and g ∈ Aut(Φ(x1)). The counting number for [x, h] is the number of objects in
Πx1 isomorphic to (x1, h|Σ1). As above, we can argue that this number does not depend on h, so it is given
by |[x1, idΦ(x1)]|. But Πx1 is the action groupoid for the action

k.(x1, g) := (x1, gΦ(k)
−1) for all k ∈ Aut(x1), g ∈ Aut(Φ(x1))

of Aut(x1) on (the object set of) Πx1 . Therefore, by the orbit theorem

|[x1, idΦ(x1)]| =
|Aut(x1)|

|Aut(x1, idΦ(x1))|
.

Using this we find
(
νΣ1 ◦

ZΦ
Ω

(M) ◦ ηΣ0δ[x0]

)
(x1) =

∑

[y]∈π0(Ω(M))

|Aut(x1)|

|Aut(y)|

∑

[x,h]∈π0(Φ
−1(y))

x|Σ1
∼=x1

x|Σ0
∼=x0

1

|Aut(x, h)|

︸ ︷︷ ︸
=:I

.

The inner sum I is the cardinality of the groupoid Φ−1
x0,x1

[y] having the forgetful |Aut(y)|-fold covering onto
Γx0,x1,y(M) by Lemma A.4, where by the subscripts we indicate the obvious requirements on the restrictions
on the boundary, i.e. Γx0,x1,y(M), for instance, is the full subgroupoid of Γ (M) consisting of all x ∈ Γ (M)
with x|Σ0

∼= x0 and x|Σ1
∼= x1 and Φ(x) ∼= y. Using now the covering property of the groupoid cardinality

we see I = |Aut(y)||Γx0,x1,y(M)| and hence
(
νΣ1 ◦

ZΦ
Ω

(M) ◦ ηΣ0δ[x0]

)
(x1) =

∑

[y]∈π0(Ω(M))

|Aut(x1)||Γx0,x1,y(M)| = |Aut(x1)||Γx0,x1(M)|.

Recalling the definition of the Dijkgraaf-Witten model in Theorem 5.6, see also Remark 5.7, (d), this entails
the commutativity of (∗). Hence, η : ZΓ −→ ZΦ/Ω is a natural isomorphism. It is clearly monoidal. �

The above result and Theorem 5.13 immediately imply the following:

Corollary 5.15. The orbifold theory of the equivariant Dijkgraaf-Witten theory

Zλ : J-Cob(n) −→ VectC

associated to a short exact sequence 0 −→ G −→ H
λ
−→ J −→ 0 is canonically isomorphic to the Dijkgraaf-Witten

theory ZH : Cob(n) −→ VectC for the group H , i.e.

Zλ
J
∼= ZH .

Remark 5.16. By Theorem 3.23 the equivariant Dijkgraaf-Witten theory Zλ gives us a functor Cob(n) −→
VecBunCGrpd which assigns to an object Σ in Cob(n) a representation of Π(Σ,BJ) ∼= PBunJ(Σ) sending
a J-bundle P over Σ to H λ−1

∗ [P ]. Hence, the representation naturally takes values in Hilbert spaces, and all
morphisms in PBunJ(Σ) are easily seen to act as unitary maps. In this case we naturally obtain a Hilbert
space structure on the space Zλ/J(Σ) of parallel sections as well. We can assign such a representation and a
Hilbert space of parallel section not only to objects in Cob(n), but to all manifolds and therefore in particular to
morphisms in Cob(n).
If we are given now a morphism M : Σ0 −→ Σ1 in Cob(n), the restriction of bundles to the boundaries yields

linear maps

Zλ
J

(Σ0)
u0−→

Zλ
J

(M)
u1←−

Zλ
J

(Σ1).

The pull-push map u†1u0, where the adjunction is taken with respect to the scalar products just specified, can be
shown to be equal to the map the orbifold theory Zλ/J assigns to M . Thus, in the case where the equivariant
theory arises from a linearization process of spans of groupoids, the orbifold construction can be seen as a second
linearization process. This implies that the orbifold theory is obtained by interweaving two linearization processes
for spans of groupoids.
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6 A generalized orbifold construction

A morphism λ : G −→ H of finite groups yields a symmetric monoidal functor G-Cob(n) −→ H-Cob(n) and
hence a pullback functor

λ∗ : HSym(H-Cob(n),VectC) −→ HSym(G-Cob(n),VectC).

However, it is less obvious how to get a functor in the opposite direction, i.e. a pushforward along a group
morphism. In this section we construct such a pushforward operation and explain how it generalizes the orbifold
construction.

6.1 The pushforward of equivariant topological field theories along group

morphisms

As for the orbifold construction we use a two-step procedure: The first step is a generalization of the techniques
from Section 3.4, the second step uses the parallel section functor we already know.
For the first step, i.e. the generalization of the techniques from Section 3.4, let λ : G −→ H be a morphism of

finite groups and

λ∗ : Π(?, BG) −→ Π(?, BH)

the induced stack morphism. From a G-equivariant topological field theory Z : G-Cob(n) −→ VectC we would

like to construct a homotopy invariant symmetric monoidal functor Ẑλ : H-Cob(n) −→ VecBunCGrpd. In the
second step we concatenate with the parallel section functor to obtain the H-equivariant topological field theory
λ∗Z := Par Ẑλ.
Given Z, the functor Ẑλ is defined as follows:

• To an object (Σ,ϕ) in H-Cob(n) we assign the homotopy fiber λ−1
∗ [ϕ] defined by the homotopy pullback

square

λ−1
∗ [ϕ] Π(Σ,BG)

⋆ Π(Σ,BH)

q

λ∗

ϕ ,

and the pullback vector bundle q∗̺Σ : λ−1
∗ [ϕ] −→ VectC, where ̺Σ is the vector bundle that Z gives rise to

in the sense of Proposition 2.10.

• To a morphism (M,ψ) : (Σ0, ϕ0) −→ (Σ1, ϕ1) in H-Cob(n) we assign

⊲ the span

λ−1
∗ [ϕ0]

r0←− λ−1
∗ [ψ]

r1−→ λ−1
∗ [ϕ1],

in which the needed functors are induced by restriction, i.e. the functors

q0 : λ−1
∗ [ϕ0] −→ Π(Σ0, BG),

q : λ−1
∗ [ψ] −→ Π(M,BG),

q1 : λ−1
∗ [ϕ0] −→ Π(Σ1, BG)

and the restriction functors

Π(Σ0, BG)
s0←− Π(M,BG)

s1−→ Π(Σ1, BG)

fulfill q0r0 = s0q and q1r1 = s1q,

⊲ and the intertwiner

q∗Z(M, ?) : r∗0q
∗
0̺Σ0 = q∗s∗0̺Σ0 −→ q∗s∗1̺Σ1 = r∗1q

∗
1̺Σ1

obtained as the pullback of the intertwiner Z(M, ?) : s∗0̺Σ0 −→ s∗1̺Σ1 that the functor Ẑ : Cob(n) −→
VecBunCGrpd assigns to M : Σ0 −→ Σ1, see Theorem 3.23.

We can now generalize Theorem 3.23 and Proposition 3.26:

Theorem 6.1. For any morphism λ : G −→ H of finite groups the assignment Z 7−→ Ẑλ extends to a functor

?̂
λ
: HSym(G-Cob(n),VectC) −→ HSym(H-Cob(n),VecBunCGrpd).
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Proof. We will only prove that for a given G-equivariant topological field theory Z : G-Cob(n) −→ VectC the

definitions above make Ẑλ into a homotopy invariant symmetric monoidal functorH-Cob(n) −→ VecBunCGrpd.

Once this is established, the functoriality of ?̂
λ
will be clear.

(i) Clearly, Ẑλ respects identities, so we turn directly to the gluing law: For morphisms (M,ψ) : (Σ0, ϕ0) −→

(Σ1, ϕ1) and (M ′, ψ′) : (Σ1, ϕ1) −→ (Σ2, ϕ2) in H-Cob(n) the span part of the composition of Ẑλ(M,ψ)

and Ẑλ(M ′, ψ′) in VecBunCGrpd is the homotopy pullback of

λ−1
∗ [ψ]

r1−→ λ−1
∗ [ϕ1]

r′1←− λ−1
∗ [ψ′],

which by the universal property of the homotopy pullback can be seen to be naturally equivalent to λ−1
∗ [ψ∪ψ′],

where ψ ∪ ψ′ : M ′ ◦M −→ BG is the map that ψ and ψ′ give rise to since they coincide on Σ1. Next we
observe that the span

λ−1
∗ [ψ]←− λ−1

∗ [ψ ∪ ψ′] −→ λ−1
∗ [ψ′]

coming from restriction is the span part of the image of the composition of (M,ψ) and (M,ψ′) under Ẑλ.
The gluing law can now be verified as in the proof of Theorem 3.23.

(ii) The monoidal structure and the symmetry requirement is defined and checked, respectively, as in the proof
of Theorem 3.23 by using the additivity of Π(?, BG).

(iii) For the proof of the homotopy invariance consider two morphisms (M,ψ), (M,ψ′) : (Σ0, ϕ0) −→ (Σ1, ϕ1).
A homotopy ψ ≃ ψ′ relative ∂M induces an isomorphism λ−1

∗ [ψ] −→ λ−1
∗ [ψ′], see Definition 5.9, making the

diagram

λ−1
∗ [ϕ0]

λ−1
∗ [ψ]

λ−1
∗ [ϕ1]

λ−1
∗ [ψ′]

commute. This together with the homotopy invariance of Z implies the homotopy invariance of Ẑλ. �

Definition 6.2 – Pushforward of an equivariant topological field theory along a group morphism.

For a morphism λ : G −→ H of finite groups we define the pushforward of G-equivariant topological field theories
along λ as the functor

λ∗ : HSym(G-Cob(n),VectC)
?̂
λ

−→ HSym(H-Cob(n),VecBunCGrpd)
Par∗−−−→ HSym(H-Cob(n),VectC).

The orbifold construction corresponds to the case H = 1. The description of the pushforward generalizes the
description of the orbifold theory in Section 3.7:

Proposition 6.3. For a morphism λ : G −→ H and a G-equivariant topological field theory Z : G-Cob(n) −→
VectC the pushforward λ∗Z : H-Cob(n) −→ VectC admits the following description:

(a) For any object (Σ,ϕ) in H-Cob(n)

(λ∗Z)(Σ,ϕ) := Par(Φ−1[ϕ] −→ Π(Σ,BG)
̺Σ
−−→ VectC).

(b) For any morphism (M,ψ) : (Σ0, ϕ0) −→ (Σ1, ϕ1) in H-Cob(n)

(λ∗Z)(M,ψ)(α1, a1) =

ˆ

r−1
1 [α1,a1]

Z(Σ1 × [0, 1], g)Z(M,β)s(β|Σ0, b|Σ0) d(β, b, g)

for all s ∈ (λ∗Z)(Σ0, ϕ0), (α1, a1) ∈ λ
−1
∗ [ϕ1].

In the particular case Σ0 = Σ1 = Σ and M = Σ × [0, 1], i.e. if ψ is a homotopy ϕ0
h
≃ ϕ1, this reduces to

(λ∗Z)(M,h)(α1, a1) = s(α1, h
− ∗ a1),

where ∗ denotes the composition of homotopies.
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(c) For any n-dimensional closed oriented manifold M and a map ψ :M −→ BH

(λ∗Z)(M,ψ) =

ˆ

λ−1
∗ [ψ]

Z(M,φ) d(φ, h).

Example 6.4. For a finite group G denote by λ : 1 −→ G the unique group morphism from the trivial group to G.
Then for any topological field theory Z : Cob(n) −→ VectC seen as a 1-equivariant theory we get a G-equivariant
theory λ∗Z. For any object (Σ,ϕ) in G-Cob(n) we find

(λ∗Z)(Σ,ϕ) = Par

(
λ−1
∗ [ϕ] −→ ⋆

Z(Σ)
−−−→ VectC

)
.

If we see ϕ as a G-bundle over Σ, then the homotopy fiber λ−1
∗ [ϕ] is discrete with the object set being the

trivializations of ϕ (so the fiber is empty if ϕ is not trivial), which implies

(λ∗Z)(Σ,ϕ) =
⊕

#trivializations of ϕ

Z(Σ).

For an n-dimensional closed oriented manifold M and a map ψ :M −→ BG we obtain using Proposition 6.3, (c)

(λ∗Z)(M,ψ) = Z(M) ·#trivializations of ψ.

By pulling back along the functor triv : Cob(n) −→ G-Cob(n) equipping all manifolds with the trivial G-bundle
we obtain a topological field theory Y := triv∗ λ∗Z : Cob(n) −→ VectC which assigns to an n-dimensional closed
oriented manifold M the number

Y (M) = Z(M)|G|#number of components of M .

In the case where Z is the trivial invertible topological field theory, Y (M) just gives us the exponentiated number
of components of M .

6.2 The composition law for the pushforward operation

For morphisms λ : G −→ H and µ : H −→ J of finite groups it is reasonable to ask whether the pushforward
operations on equivariant topological field theories obey

(µ ◦ λ)∗ ∼= µ∗ ◦ λ∗.

Since the push operations are not left-adjoint to the pullback functors, such a relation does not hold automatically.
However, we will show below in Theorem 6.6 that this composition law holds. Let us first investigate the situation
at the level of manifold invariants. For this we need the following assertion:

Lemma 6.5. For functors Φ : Γ −→ Ω and Ψ : Ω −→ Λ between groupoids, there is a canonical equivalence

(Ψ ◦ Φ)−1[z] ∼= Ψ−1[z]×Ω Γ.

Proof. This is a consequence of the pasting law for (homotopy) pullback squares. �

If now Z : G-Cob(n) −→ VectC is a G-equivariant field theory and M a closed n-dimensional oriented manifold
together with a map ψ :M −→ BJ , we obtain

((µ ◦ λ)∗Z)(M,ψ) =

ˆ

(µ◦λ)−1
∗ [ψ]

Z(M,φ) d(φ, g)

by Proposition 6.3, (c). Using Lemma 6.5 and the transformation formula (Proposition A.13) we find

((µ ◦ λ)∗Z)(M,ψ) =

ˆ

µ−1
∗ [ψ]×Π(M,BH)Π(M,BG)

Z(M,α) d(β, h, α, g).

Next we apply the generalized Cavalieri’s principle (Proposition A.15) to the projection functor

P : µ−1
∗ [ψ]×Π(M,BH) Π(M,BG) −→ µ−1

∗ [ψ].

Since by the universal property of the homotopy pullback the fiber P−1[β, h] of P over some (β, h) ∈ µ−1
∗ [ψ] is
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just the fiber λ−1
∗ [β] of λ∗ over β we find the desired relation for invariants

((µ ◦ λ)∗Z)(M,ψ) =

ˆ

µ−1
∗ [ψ]

ˆ

λ−1
∗ [β]

Z(M,α)d(α, g) d(β, h) =

ˆ

µ−1
∗ [ψ]

(λ∗Z)(M,β) d(β, h) = ((µ∗ ◦ λ∗)Z)(M,ψ).

We will show now by a rather long computation that this result extends beyond invariants:

Theorem 6.6. For morphisms λ : G −→ H and µ : H −→ J of finite groups the pushforward operations on
equivariant topological field theories obey

(µ ◦ λ)∗ ∼= µ∗ ◦ λ∗ : HSym(G-Cob(n),VectC) −→ HSym(J-Cob(n),VectC).

Proof. For any G-equivariant topological field theory Z we need to specify a monoidal natural transformation

ηZ : (µ ◦ λ)∗Z −→ µ∗λ∗Z.

Its components are linear maps

η
(Σ,ϕ)
Z : ((µ ◦ λ)∗Z)(Σ,ϕ) −→ (µ∗λ∗Z)(Σ,ϕ)

for all objects (Σ,ϕ) in J-Cob(n) which map a parallel section s of the vector bundle defined by Z over (µ◦λ)−1
∗ [ϕ]

to the parallel section η
(Σ,ϕ)
Z s defined as follows: By definition the value of η

(Σ,ϕ)
Z s on (α, a) in µ−1

∗ [ϕ], i.e.

α : Σ −→ BH and Bµ ◦ α
a
≃ ϕ, needs to be a parallel section of λ∗Z(Σ,α). We set

(
η
(Σ,ϕ)
Z s(α, a)

)
(β, b) := s(β, a ∗ (Bµ ◦ b)) for all (β, b) ∈ λ−1

∗ [α],

where ◦ denotes composition of maps and ∗ composition of homotopies. One easily checks that η
(Σ,ϕ)
Z is well-

defined. Once we establish that ηZ is a monoidal natural transformation, this automatically implies its invertibility.

Knowing the inverse already, however, will simplify the proof. In fact, the inverse of η
(Σ,ϕ)
Z is the map ω

(Σ,ϕ)
Z

which sends s ∈ (µ∗λ∗Z)(Σ,ϕ) to
(
ω
(Σ,ϕ)
Z s

)
(γ, c) := (s(Bλ ◦ γ, c))(γ, idBλ◦γ) for all (γ, c) ∈ (µ ◦ λ)−1

∗ [ϕ].

Again, one checks that ω
(Σ,ϕ)
Z is well-defined and the inverse to η

(Σ,ϕ)
Z . In order to verify that the maps η

(Σ,ϕ)
Z

form a natural transformation we consider a morphism (M,ψ) : (Σ0, ϕ0) −→ (Σ1, ϕ1) in J-Cob(n) and show that
the square

((µ ◦ λ)∗Z)(Σ0, ϕ0) ((µ ◦ λ)∗Z)(Σ1, ϕ1)

(µ∗λ∗Z)(Σ0, ϕ0) (µ∗λ∗Z)(Σ1, ϕ1)

ω
(Σ0,ϕ0)

Z

((µ ◦ λ)∗Z)(M,ψ)

(µ∗λ∗Z)(M,ψ)

η
(Σ1,ϕ1)

Z
(∗)

commutes: To this end, let s ∈ (µ∗λ∗Z)(Σ0, ϕ0), (α, a) ∈ µ
−1
∗ [ϕ1] and (β, b) ∈ λ−1

∗ [α]. Then by definition
((
η
(Σ1,ϕ1)
Z (µ ◦ λ)∗Z(M,ψ)ω

(Σ0,ϕ0)
Z s

)
(α, a)

)
(β, b) =

(
(µ ◦ λ)∗Z(M,ψ)ω

(Σ0,ϕ0)
Z s

)
(β, a ∗ (Bµ ◦ b)).

We compute the expression on the right hand side by using Proposition 6.3, (b) and the restriction functor
r1 : (µ ◦ λ)−1

∗ [ψ] −→ (µ ◦ λ)−1
∗ [ϕ1] and obtain

((
η
(Σ1,ϕ1)
Z (µ ◦ λ)∗Z(M,ψ)ω

(Σ0,ϕ0)
Z s

)
(α, a)

)
(β, b)

=

ˆ

r−1
1 [β,a∗(Bµ◦b)]

Z(Σ1 × [0, 1], g)Z(M,γ)
(
ω
(Σ0,ϕ0)
Z s

)
(γ|Σ0 , c|Σ0) d(γ, c, g)

=

ˆ

r−1
1 [β,a∗(Bµ◦b)]

Z(Σ1 × [0, 1], g)Z(M,γ)s(Bλ ◦ γ|Σ0 , c|Σ0)(γ|Σ0 , idBλ◦γ|Σ0
) d(γ, c, g).

To continue the computation we use the restriction functor ℓ1 : µ−1
∗ [ψ] −→ µ−1

∗ [ϕ1] and observe that there is a
functor

F : r−1
1 [β, a ∗ (Bµ ◦ b)] −→ ℓ−1

1 [α, a]

induced by the functor

r−1
1 [β, a ∗ (Bµ ◦ b)] −→ (µ ◦ λ)−1

∗ [ψ] ∼= µ−1
∗ [ψ]×Π(M,BH) Π(M,BG) −→ µ−1

∗ [ψ]
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and the universal property of the homotopy fiber. Here the middle equivalence comes from Lemma 6.5. By the
generalized Cavalieri’s principle (Proposition A.15) we obtain

((
η
(Σ1,ϕ1)
Z (µ ◦ λ)∗Z(M,ψ)ω

(Σ0,ϕ0)
Z s

)
(α, a)

)
(β, b)

=

ˆ

ℓ−1
1 [α,a]

ˆ

F−1[δ,d,h]

Z(Σ1 × [0, 1], g)Z(M,γ)s(Bλ ◦ γ|Σ0, c|Σ0)(γ|Σ0 , idBλ◦γ|Σ0
) d(γ, c, g, u) d(δ, d, h)

=

ˆ

ℓ−1
1 [α,a]

ˆ

F−1[δ,d,h]

Z(Σ1 × [0, 1], g)Z(M,γ)s(δ|Σ0, d|Σ0)(γ|Σ0 , u|Σ0) d(γ, c, g, u) d(δ, d, h),

where in the last step we have used that s is parallel. Next observe that F−1[δ, d, h] is equivalent to the ho-
motopy fiber k−1

1 [β, h− ∗ b] of yet another restriction functor k1 : λ−1
∗ [δ] −→ λ−1

∗ [δ|Σ1 ], which together with the
transformation formula (Proposition A.13) yields

((
η
(Σ1,ϕ1)
Z (µ ◦ λ)∗Z(M,ψ)ω

(Σ0,ϕ0)
Z s

)
(α, a)

)
(β, b)

=

ˆ

ℓ−1
1 [α,a]

ˆ

k−1
1 [β,h−∗b]

Z(Σ1 × [0, 1], v)Z(M, ε)s(δ|Σ0 , d|Σ0)(ε|Σ0 , e|Σ0) d(ε, e, v) d(δ, d, h)

By applying Proposition 6.3, (b) again we find
((
η
(Σ1,ϕ1)
Z (µ ◦ λ)∗Z(M,ψ)ω

(Σ0,ϕ0)
Z s

)
(α, a)

)
(β, b)

=

ˆ

ℓ−1
1 [α,a]

((λ∗Z)(M, δ)s(δ|Σ0 , d|Σ0))(β, h
− ∗ b) d(δ, d, h)

=

ˆ

ℓ−1
1 [α,a]

(λ∗Z)(Σ1 × [0, 1], h)(λ∗Z)(M, δ)s(δ|Σ0 , d|Σ0))(β, b) d(δ, d, h)

= (((µ∗λ∗Z)(M,ψ)s)(α, a)) (β, b).

This proves commutativity of (∗) and ensures that the maps η
(Σ,ϕ)
Z form a natural transformation ηZ : (µ◦λ)∗Z −→

µ∗λ∗Z, which is easily seen to be monoidal. Moreover, the assignment Z 7−→ ηZ is clearly functorial in Z. �

Remark 6.7. The isomorphisms (µ ◦λ)∗ ∼= µ∗ ◦λ∗ appearing in Theorem 6.6 fulfill coherence conditions, i.e. they
are part of the data of a 2-functor

FinGrp −→ Grpd

from the the category of finite groups (seen as a bicategory with only trivial 2-morphisms) to the bicategory
of groupoids, functors and natural isomorphisms. This 2-functor sends a finite group G to the groupoid of G-
equivariant topological field theories and a group morphism λ : G −→ H to the push functor λ∗.

Corollary 6.8. Let G be a finite group. Then the orbifold construction ?/G : HSym(G-Cob(n),VectC) −→
Sym(Cob(n),VectC) is essentially surjective, i.e. any topological field theory can be seen as an orbifold theory of
an equivariant topological field theory for any given group.

Proof. Let Z : Cob(n) −→ VectC be a topological field theory. If ι : 1 −→ G is the unique morphism from
to trivial group to G, then ι∗Z is a G-equivariant field theory (the one discussed in Example 6.4) satisfying by
Theorem 6.6

ι∗Z

G
= π∗ι∗Z ∼= (π ◦ ι)∗Z = Z

with the unique group morphism π : G −→ 1. �

Example 6.9. Using the composition law from Theorem 6.6 we can give a simple computation of the orbifold
theory of the J-equivariant Dijkgraaf-Witten theory Zλ : J-Cob(n) −→ VectC associated to a short exact sequence

0 −→ G −→ H
λ
−→ J −→ 0 of finite groups (Corollary 5.15): If we denote the trivial H-equivariant theory by

BH : H-Cob(n) −→ VectC, then λ∗BH ∼= Zλ by the definition of the pushforward. Using the group morphism
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πJ : J −→ 1 we find

Zλ
J
∼= πJ∗Zλ

∼= πJ∗ λ∗BH

∼= (πJ ◦ λ)∗BH (Theorem 6.6)

= πH∗ BH with πH : H −→ {1}

∼=
BH

H
∼= ZH (Example 3.48),

where ZH is the Dijkgraaf-Witten theory for the group H .

A Groupoid cardinality and its integration theory

The groupoid cardinality is a rational number that is assigned to an essentially finite groupoid. For more back-
ground on the groupoid cardinality we refer to [BHW10].
For the characterization of groupoid cardinality we need the notion of a covering of groupoids. Coverings of

simplicial sets are defined in [GZ67, Appendix I.2]. If we specialize to nerves of groupoids and take into account
that these are always 2-coskeletal we arrive at the definition of covering of groupoids below. By △n we will denote
the standard simplex. Note that △0 = ⋆ is the terminal object in the category of simplicial sets. We also denote
this object by 0 whenever we want to identify it with the zero vertex of △1 via the inclusion 0 −֒→ △1

Definition A.1 – Covering of groupoids. A functor Q : Γ −→ Ω between (small) groupoids is called covering
if it is surjective on objects and if in any commuting square in sSet of the form

0 BΓ

△1 BΩ

BQ
∃!

the indicated lift exists and is unique (unique path lifting property). The latter condition can be reformulated
by requiring that for every morphism g : y0 −→ y1 in Ω and any given x0 with Q(x0) = y0, there is a unique
morphism g∗ : x0 −→ x1 such that Q(g∗) = g. We say that a covering Q : Γ −→ Ω is n-fold or n-sheeted if
Q−1(y) contains n objects for every y ∈ Ω.

Remark A.2. In the so-called canonical model structure on the category of (small) groupoids, see [Bou89, 14.1],
the fibrations are the so-called isofibrations, i.e. functors Q : Γ −→ Ω between groupoids such that the lift in the
diagram

0 BΓ

△1 BΩ

BQ

always exists. Uniqueness is not required. Hence, a covering is a special type of isofibration.

Example A.3. For a manifold M and a Lie group G denote by PBun∇
G(M) the groupoid of G-bundles over M

with connection. Then the functor U : PBun∇
G(M) −→ PBunG(M) forgetting the connection is a covering.

Homotopy fibers (Definition 3.32) give us a source of coverings.

Lemma A.4. Let Φ : Γ −→ Ω be a functor between small groupoids. Then for y ∈ Ω the forgetful functor
Φ−1[y] −→ Γy is a |Aut(y)|-fold covering.

Definition A.5 – Essentially finite groupoid. A groupoid Γ is called essentially finite if π0(Γ ) and Aut(x)
for every x ∈ Γ are finite. By FinGrpd we denote the category of essentially finite groupoids.
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Both the definition as well as the most important properties of groupoid cardinality can be summarized as follows:

Proposition A.6 – Groupoid cardinality. There is exactly one assignment |?| of a rational number to each
essentially finite groupoid satisfying the following conditions:

(N) For the groupoid ⋆ with one object and trivial automorphism group we have | ⋆ | = 1.

(E) For equivalent essentially finite groupoids Γ and Ω the equality |Γ | = |Ω| holds.

(U) For the disjoint union Γ
∐
Ω of essentially finite groupoids we have |Γ

∐
Ω| = |Γ |+ |Ω|.

(C) For any n-fold covering Q : Γ −→ Ω of essentially finite groupoids we have |Γ | = n|Ω|.

This number is called groupoid cardinality. For an essentially finite groupoid Γ it can be computed by

|Γ | =
∑

[x]∈π0(Γ )

1

|Aut(x)|
.

Moreover, for essentially finite groupoids Γ and Ω the product Γ × Ω is also essentially finite and its groupoid
cardinality is given by |Γ ×Ω| = |Γ ||Ω|.

From a given essentially finite groupoid one can construct new essentially finite groupoids using functor groupoids.
To this end, the following notion is helpful:

Definition A.7 – Finitely generated groupoid. A groupoid Γ is called finitely generated if π0(Γ ) is a finite
set and Aut(x) is a finitely generated group for all x ∈ Ω.

Example A.8. For a compact manifold M (with boundary) and any basepoint x ∈ M the fundamental group
π1(M,x) is finitely generated by Lemma 1.2 in [Sa96]. Since M has finitely many connected components, we can
deduce that the fundamental groupoid Π(M) is finitely generated.

The following observation appears in [Mor15]:

Lemma A.9. For an finitely generated groupoid Γ and an essentially finite groupoid Ω the functor groupoid
[Γ,Ω] is essentially finite.

This result and Example A.8 immediately imply:

Corollary A.10. For any compact manifold M (with boundary) and any essentially finite groupoid Ω the
functor groupoid [Π(M), Ω] is essentially finite.

The groupoid cardinality gives rise to a rather primitive, but useful integration theory.

Definition A.11 – Integral of invariant functions over groupoids with respect to groupoid cardinality.

An invariant function f on a groupoid Γ with values in a vector space V over a field of characteristic zero is the
assignment of a vector f(x) ∈ V to each x ∈ Γ such that f(x) = f(y) if x ∼= y in Γ . If Γ is essentially finite, we
define by

ˆ

Γ

f =

ˆ

Γ

f(x) dx :=
∑

[x]∈π0(Γ )

f(x)

|Aut(x)|
∈ V

the integral of f over Γ .

Remarks A.12.

(a) The integral is a linear functional on the vector space of invariant functions.

(b) It is clear that an invariant function f on a groupoid Ω can be pulled back along a functor Φ : Γ −→ Ω
between groupoids. The result Φ∗f is an invariant function on Γ .

We need the following results that we call, in allusion to results known for instance from Lebesgue integration
theory, transformation formula and Cavalieri’s principle. The transformation formula explains how the integral
behaves under pullback along equivalences. Its proof follows directly from the definitions.

Proposition A.13 – Transformation formula. Let Φ : Γ −→ Ω be an equivalence of essentially finite
groupoids and f : Ω −→ V an invariant function taking values in a vector space V over a field of characteristic
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zero. Then the transformation formula
ˆ

Γ

Φ∗f =

ˆ

Ω

f

holds.

Cavalieri’s principle from ordinary integration theory states that we can compute the volume of an object by
summing (or rather integrating) the volume of its slices. The same is possible for groupoid cardinality instead of
the volume.

Proposition A.14 – Cavalieri’s principle. Let Φ : Γ −→ Ω be a functor of essentially finite groupoids. Then

|Γ | =

ˆ

Ω

|Φ−1[y]| dy.

Proof. Since Γ ∼=
∐

[y]∈π0(Ω) Γy, we obtain |Γ | =
∑

[y]∈π0(Ω) |Γy| using the property (U) of the groupoid

cardinality. According to Lemma A.4, the forgetful functor Φ−1[y] −→ Γy is a |Aut(y)|-fold covering, which
together with the property (C) of the groupoid cardinality implies

|Γy| =
|Φ−1[y]|

|Aut(y)|
.

Putting these observations together, we obtain

|Γ | =
∑

[y]∈π0(Ω)

|Γy| =
∑

[y]∈π0(Ω)

|Φ−1[y]|

|Aut(y)|
=

ˆ

Ω

|Φ−1[y]| dy. �

Proposition A.15 – Generalized Cavalieri’s principle. Let Φ : Γ −→ Ω be a functor of essentially finite
groupoids and f : Γ −→ V an invariant function taking values in a vector space over characteristic zero. Then

ˆ

Γ

f =

ˆ

Ω

ˆ

Φ−1[y]

q∗yf dy,

where qy : Φ−1[y] −→ Γ is the canonical functor from the homotopy fiber over y to Γ .

Proof. Without loos of generality we may assume that V is the ground field and f = δ[x] for some x ∈ Γ . Then
we can restrict Φ to the full subgroupoid Γx of objects in Γ isomorphic to x and obtain

ˆ

Γ

f = |Γx| =

ˆ

Ω

∣∣∣(Φ|Γx)
−1 [y]

∣∣∣ dy

by Cavalieri’s principle. But (Φ|Γx)
−1

[y] is the full subgroupoid of Φ−1[y] of all objects projecting under qy :

Φ−1[y] −→ Γ to an object isomorphic to x. This implies
∣∣∣(Φ|Γx)

−1
[y]

∣∣∣ =
´

Φ−1[y]
q∗yf and proves the claim. �

The integral of invariant functions with respect to groupoid cardinality is also compatible with coverings.

Proposition A.16. Let Q : Γ −→ Ω be an n-fold covering of essentially finite groupoids. Then for any invariant
function f : Ω −→ V taking values in a vector space V over a field K of characteristic zero the integral formula

ˆ

Γ

Q∗f = n

ˆ

Ω

f

holds.

Proof. Repeating the argument of the preceding proofs we can assume without loss of generality that V = K
and f = δ[y0] for some y0 ∈ Ω. Let Ω0 be the full subgroupoid of Ω of all objects equal to y0 (this is y0//Aut(y0))
and Q0 : Γ0 −→ Ω0 the restriction of Q (it is also an n-fold covering). Using the covering property of the groupoid
cardinality we obtain

ˆ

Γ

Q∗f = |Γ0| = n|Ω0| =
n

|Aut(y0)|
= n

ˆ

Ω

f. �
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