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Abstract. In this letter we prove that the unrolled small quantum group, appearing in
quantum topology, is a Hopf subalgebra of Lusztig’s quantum group of divided powers. We do
so by writing down non-obvious primitive elements with the right adjoint action.

We also construct a new larger Hopf algebra that contains the full unrolled quantum group.
In fact this Hopf algebra contains both the enveloping of the Lie algebra and the ring of
functions on the Lie group, and it should be interesting in its own right.

We finally explain how this gives a realization of the unrolled quantum group as operators
on a conformal field theory and match some calculations on this side.

Our result extends to other Nichols algebras of diagonal type, including super Lie algebras.
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1. Introduction

Unrolled quantum groups are certain Hopf algebras that are important in quantum topology
[GPT09][CGP15][GP16]. They are used to construct topological invariants from non-semisimple
tensor categories, here the representation category of versions of quantum groups at an even root
of unity. This approach is in particular able to recover the Reshetikhin-Turaev invariant [RT91].
The basic idea of unrolling is to decompose in every representation the eigenspaces Vψ of the
group elements in the quantum group into different weight space

⊕
qλ=ψ Vλ. This is done by

taking the semidirect product of the quantum group with the Cartan part of the corresponding
Lie algebra. The theory is successfully worked out for sl2, the concept of unrolling has been
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generalized to higher rank Lie algebras in [GP16] and the unrolling construction has been cate-
gorically conceptualized and generalized to Nichols algebras of diagonal type in [AS17].

The main result of this letter is to realizes the unrolled small quantum group inside Lusztig’s
quantum group of divided powers ULq (g). This is an infinite-dimensional Hopf algebras con-
structed by specialization. It fits into a Hopf algebra extension, see [Lus90][A96] for q odd and
for G2 not divisible by 3, which was generalized in [Len14] to divisible cases (as in this article)
where the dual Lie algebra appears:

0 −→ uq(g) −→ ULq (g) −→ U(g∨) −→ 0

From a mathematical perspective, realizing the unrolled small quantum group uq(g)oU(h) inside
ULq (g) means to construct for this sequence a good section U(h) of the Cartan part U(g∨)0 i.e.
to find (non-obvious) Cartan generator preimages Hα ∈ ULq (g) that are primitive elements and
have the right adjoint action on uq(g).

From a physical perspective, part of the Lusztig quantum group ULq (g) is expected to act by
screening charges on a free field theory, more precisely on the lattice vertex algebra associated
to a rescaled root lattice Λ of g, see e.g. [FGST06, NT11, Len17]. Realizing the unrolled small
quantum group inside ULq (g) means to realize it as operators on this conformal field theory.
We can indeed present Hα as Λ∗-grading operators, whereas the group elements Kα ∈ uq(g) act
as exponentiated grading operators. The grading operators Hα literally “unroll” any vertex alge-
bra module into its Λ∗-eigenspaces, whereas Kα acts on each irreducible vertex algebra module
as a single scalar. It is widely expected that a vertex subalgebra of this lattice vertex algebra
(kernel of short screenings) should have a non-semisimple representation theory equivalent to
uq(g)-representations, so the two unrolling constructions should be closely related.

Besides this main result we construct a curious Hopf algebra UKLq (g) that acts as a “hybrid”: It
contains the Kac-DeConcini-Procesi quantum group UKq (g) and surjects to the Lusztig quantum
group ULq (g). We can realize the full unrolled quantum group UKq (g)oU(h) inside this new Hopf
algebra. The representation category of UKq (g) fibres over the points of the Lie group G (resp. G∨)
and becomes non-semisimple over points of the subvariety of non-regular conjugacy classes of G.
The fibre over the unit is the representation category of the small quantum group. Construct-
ing topological invariants depending on the point by unrolling the entire UKq (g) is very interesting.

Finally we mention how our results actually hold for quantum doubles of arbitrary Nichols
algebras of diagonal type. As most prominent examples this allows us to cover also quantum
groups associated to super-Lie algebras, where divided powers appear only for bosonic root
vectors.
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2. Preliminaries

Let g a complex semisimple finite-dimensional Lie algebra with a choice of simple roots α1, . . . αrank

and positive roots Φ+, with Cartan matrix aij and symmetrized Cartan matrix dαiaij = (αi, αj),
where dα = (α, α)/2 ∈ {1, 2, 3} for all α ∈ Φ. We will usually not denote the dependence on g.

Let q be a primitive `-th root of unity and denote as usual qα := qdα and `α := ord(q2
α) =

`/(`, 2dα). Let v be an indeterminant and denote again vα := vdα . We use the notion of quantum
numbers and quantum factorials dating back to Gauss

[n]vα :=
vnα − v−nα
vα − v−1

α

[n]vα ! := [n]vα · · · [1]vα

[
n

k

]
vα

:=
[n]vα !

[k]vα ![n− k]vα !

which after polynomial division all lay in Z[v, v−1]. The crucial property for us is [`α]qα = 0.

Let us mention that for our application we usually require all 2dα | `, while literature (in partic-
ular [Lus90] from Sec. 8.4 on) usually requires them to be relatively prime. Hence the orders `α
become different from each other and from `, which causes slightly unusual behaviour: Namely,
the appearance of the dual root system g∨ in the exact sequence below and problems with the
existence of the standard R-matrix. The algebra structure and the exact sequence for general `
are established in [Len14] and alternative R-matrices are determined in [LO16].

To avoid degeneracies in this article we exclude small values ` 6= 1, 2, and also ` 6= 4 if some
dα = 2 and ` 6= 3, 4, 6 if some dα = 3.

To this data the following Hopf algebras are associated by [Lus90]

• Rational form U
Q(v)
q (g): An infinite-dimensional Hopf algebra over the field of rational

functions in an indeterminant Q(v) defined by Drinfeld and Jimbo. It is generated by
the root lattice Λ (or a different lattice between root- and weight-lattice) considered as
an abelian group with group elements Kλ, λ ∈ Λ, together with elements Eαi , Fαi for
each simple root, and the following relations:

KλEαiK
−1
λ = v(λ,αi)Eαi , ∀λ ∈ Λ (group action)

KλFαiK
−1
λ = v−(λ,αi)Fαi , ∀λ ∈ Λ (group action)

[Eαi , Fαj ] = δi,j ·
Kαi −K−1

αi

vαi − v−1
αi

(linking)

and two sets of quantum Serre-relations for any i 6= j ∈ I
1−aij∑
r=0

(−1)r

[
1− aij
r

]
vαi

E1−aij−r
αi EαjE

r
αi = 0

1−aij∑
r=0

(−1)r

[
1− aij
r

]
v−1
αi

F 1−aij−r
αi FαjF

r
αi = 0
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The coproduct, the counit and the antipode are on the group-algebra C[Λ] as usual and
on the additional generators Eαi , Fαi as follows:

∆(Eαi) = Eαi ⊗Kαi + 1⊗ Eαi ∆(Fαi) = Fαi ⊗ 1 +K−1
αi ⊗ Fαi

S(Eαi) = −EαiK−1
αi S(Fαi) = −KαiFαi

ε(Eαi) = 0 ε(Fαi) = 0

Using Lusztig reflection operators, one can construct root vectors Eα, Fα for all α ∈ Φ+

such that multiplication in the algebra gives a bijective linear map (PBW-basis):(⊗
α∈Φ+

C[Eα])

)
⊗ C[Λ]⊗

(⊗
α∈Φ+

C[Fα]

)
∼−→ UQ(v)

q

The three subalgebras generated by Eαi ,Kλ, Fαi respectively are called U+
q , U

0
q , U

−
q .

• Lusztig integral form of divided powers U
Z[v,v−1],L
q (g) ([Lus90] Thm 6.7): An

infinite-dimensional Hopf algebra over the commutative ring of Laurent polynomials
Z[v, v−1], generated by all

E(t)
α :=

Etα
[t]vα !

, F (t)
α :=

F tα
[t]vα !

, Kαi ,

[
Kα; 0

t

]
:=

t∏
s=1

Kαv
1−s
α −K−1

α v−1+s
α

vsα − v−sα
, t ∈ N

such that multiplication in the algebra gives a bijective Z[v, v−1]-linear map (PBW-basis): ⊗
t∈N,α∈Φ+

E(t)
α C

⊗
⊗
t≤1,i

Kt
αi

⊗(⊗
t∈N

[
Kα; 0

t

]
C

)
⊗

 ⊗
t∈N,α∈Φ+

F (t)
α C

 ∼−→ UZ[v,v−1],L
q

where we take {1,Kαi} instead of full Λ because Kαi −K−1
αi is a multiple of

[
Kαi ; 0

1

]
.

The Lusztig integral form is a Hopf subalgebra of the rational form and has the
property that extension of scalars gives an isomorphism of Hopf algebras over Q(v):

UQ(v)
q

∼= UZ[v,v−1],L
q ⊗Z[v,v−1] Q(v)

• Lusztig quantum group of divided powers ULq (g) (or restricted specialization): An
infinite-dimensional Hopf algebra over C obtained for every choice of an element q ∈ C×,
defined by specialization

ULq := UZ[v,v−1],L
q ⊗Z[v,v−1] Cq

where the indeterminant v acts on Cq by multiplication with the number q. So essentially
we plug in v = q. This does not change the linear basis, but the algebra relations due to
possible zeroes in Z[v, v−1]-coefficients , which depends very much on the choices made
in the integral form. For q a primitive `-th root of unity we get explicitly

E`αα = [`α]! · E(`α)
α = 0, K

2`αi
αi = 1, F `αα = 0



5

Multiplication in the algebra gives a bijective linear map (PBW-basis):(⊗
α∈Φ+

C[Eα]/(E`αα )⊗ C[E(`α)
α ])

)
⊗C[Λ/Λ′]⊗

(⊗
α∈Φ+

C[

[
Kα; 0

`α

]
])

)
⊗

(⊗
α∈Φ+

C[Fα]/(F `αα )⊗ C[F (`α)
α ])

)
∼−→ ULq

where Λ′ is the sublattice of the root lattice Λ generated by all K2`i
αi .

• An exact sequence of Hopf algebras

0 −→ uq(g) −→ ULq (g) −→ U(g∨) −→ 0

Here U(g∨) is the universal enveloping algebra of the Lie algebra with the dual root
system; a basis of the Lie algebra are the images of

E(`α)
α ,

[
Kα; 0

`α

]
, F (`α)

α

The original result [Lus90] requires ` prime to all 2dα and has no g∨. The extended
result [Len14] for arbitrary ` modifies the Lie algebras on the left and right hand side
accordingly. Here we have written out the result under the assumptions we have in place
for ` in this article (divisibility by 2dα and excluded small degenerate values).

The kernel in this exact sequence is:
• Small quantum group uq(g): A finite-dimensional Hopf algebra over C generated by

the elements Eα,Kλ, Fα, such that multiplication in the algebra gives a bijective linear
map (PBW-basis):(⊗

α∈Φ+

C[Eα]/(E`αα )

)
⊗ C[Λ/Λ′]⊗

(⊗
α∈Φ+

C[Fα]/(F `αα )

)
∼−→ uq

Similarly, the Kac-Procesi-DeConcini integral form U
Z[v,v−1],K
q (g) is be defined by elements

Etα, F tα, Kλ, t ∈ N

This (maybe more obvious) choice, which is properly contained in Lusztig’s integral form, spe-
cializes to a Hopf algebra UKq (unrestricted specialization) with a large center properly containing
E`αα , F `αα ,K2`α

α . Conjecturally the following exact sequence holds:1

0←− uq(g)←− ULq (g)←− O(G∨)←− 0

where O(G∨) is the commutative algebra of functions on the Lie group dual to the Lie group
underlying g (and the choice of Λ).
Note that similar to these two specializations one studies two versions of universal enveloping of a
Lie algebra over a field in finite characteristic. In the obvious version one gets a large center with

1This is proven if ` is relatively prime to the 2dα without g∨ appearing, but in the case of general ` one would
need an analog result to [Len14] for this integral form and specialization
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more primitive elements, in the non-obvious version one gets additional generators (divided pow-
ers) generating a new Lie algebra enveloping, which in this cases however again gets truncated etc.

The Kac-Procesi-DeConcini quantum group will not be used in the main construction of this
article, but it is crucial for the application to quantum topology, see section 4.

3. Main result

We already claimed that the images of the divided powers E(`α)
α , F

(`α)
α together with the rather

unpleasant expression

[
Kα; 0

`α

]
map to a basis of the (dual) Lie algebra in the exact sequence

0 −→ uq(g) −→ ULq (g) −→ U(g∨) −→ 0

A different (even more unpleasant) preimage of the Cartan generators in g∨ would be the com-
mutator of the preimages [E

(`α)
α , F

(`α)
α ]. We wish to find a nice preimage Hα of the Cartan

generators, that has already appeared in our proof of [Len14] Thm. 4.1:

Theorem 3.1.

a) The following elements2 of the rational form are contained in the integral form

Hα :=
K2`α
α − 1

Φ`α(v2
α)
∈ UZ[v,v−1],L

q

where Φk(X) denotes the irreducible cyclotomic polynomial.

The Hα are

[
Kα; 0

`α

]
plus additional non-obvious Kα-terms made explicit in the proof.

b) The elements Hα are skew-primitive in UZ[v,v−1],L
q and have a nice adjoint action

∆(Hα) = K2`α
α ⊗Hα +Hα ⊗ 1

[Hα, Eβ ] = EβK
2`α
α · v

2`α· 2(α,β)(α,α)
α − 1

Φ`α(v2
α)

Hence in Lusztig’s quantum group ULq (after specialization) the elements are primitive and
have the adjoint action we would expected from the image in U(g∨):

∆(Hα) = 1⊗Hα +Hα ⊗ 1

[Hα, Eβ ] = Eβ ·
2(α, β)

(α, α)
· q

2`α
α − 1

Φ`α(q2
α)

where after polynomial division the evaluation q2`αα −1
Φ`α (q2α) is a well-defined nonzero complex num-

ber. It can be removed by rescaling Hα.
c) We hence find the unrolled small quantum group inside ULq (g):

uq(g)ULq (g)
0 ∼= uq(g) o U(h)

2Morally the reader should have in mind K2`
α −1

v
2`α
α −1

, which differs in the specialization by a nonzero scalar.
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where the abelian Lie algebra h is a preimage of the Cartan part (g∨)0 under the exact se-
quence, spanned by the primitive elements Hα ∈ ULq

0 constructed above.

This unrolled small quantum group is the quantum group is the unrolled quantum group appearing
in [GPT09, CGP15, GP16] modulo the relation K`i

αi = 1, i.e. it’s representation category is the
non-semisimple fibre C0. We will discuss this in section 4.
This unrolled small quantum group is the same as in [AS17]. We will discuss the suitable gener-
alization of our results to arbitrary Nichols algebras of diagonal type in section 5.

Proof.

a) The following similar element from [Lus90] is by definition clearly contained in UZ[v,v−1],L
q

K+`α
α

[
Kα; 0

`α

]
= K+`α

α

`α∏
s=1

Kαv
1−s
α −K−1

α vs−1
α

vsα − v−sα
= v
− `α(`α−1)

2
α ·

∏`α
s=1K

2
α − v

2(s−1)
α∏`α

s=1 v
s
α − v−sα

,

Subtracting a suitable Z[v, v−1]-rescaling of this element from our element Hα gives

K2`α
α − 1

Φ`α(v2
α)
− v

+
`α(`α−1)

2
α

∏`α
s=1 v

s
α − v−sα

Φ`α(v2
α)

·K+`α
α

[
Kα; 0

`α

]
=

(K2`α
α − 1)− (

∏`α
s=1K

2
α − v

2(s−1)
α )

Φ`α(v2
α)

This is a polynomial in K2
α, v

2
α, because the numerator has a zero at v2

α = q2
α, so if we write

the numerator as
∑
n cn(v2

α)K2n
α then each polynomial cn(v2

α) is divisible by Φ`α(v2
α).

For example `α = 2 gives:

Hα = vα(vα − v−1
α )(1− v−2

α )K2
α

[
Kα; 0

`α

]
+ (K2

α − 1)

b) The aspired relations are clearly true in the rational form, almost by construction:

∆(Hα) =
∆(K2`i

α − 1)

Φ`α(v2
α)

=
K2`α
α ⊗ (K2`i

α − 1) + (K2`i
α − 1)⊗ 1

Φ`α(v2
α)

= K2`α
α ⊗Hα +Hα ⊗ 1

[Hα, Eβ ] = Eβ


K2`α
α

(
v

2(α,β)
(α,α)
α

)2`α

− 1

Φ`α(v2
α)

− K2`α
α − 1

Φ`α(v2`α
α )


= EβK

2`α
α · v

2`α· 2(α,β)(α,α)
α − 1

Φ`α(v2
α)
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The last q-factor may be rewritten as q-number or as a geometric series

v
2`α· 2(α,β)(α,α)
α − 1

Φ`α(v2
α)

= (v`αα )
2(α,β)
(α,α)

−1

[
2(α, β)

(α, α)

]
v`αα

v2`α
α − 1

Φ`α(v2
α)

=


0, 2(α,β)

(α,α) = 0(∑ 2(α,β)
(α,α)

−1

k=0 (v2
α)k
)

v2`αα −1
Φ`α (v2α) ,

2(α,β)
(α,α) > 0(

−
∑− 2(α,β)

(α,α)
−1

k=0 (v2
α)k
)
v

2`α· 2(α,β)(α,α)
α

v2`αα −1
Φ`α (v2α) ,

2(α,β)
(α,α) < 0

so this obviously specializes for q2`α
α = 1 to

2(α, β)

(α, α)
· v

2`α
α − 1

Φ`α(v2
α)

c) The claim that uq and the Hα generate all of uqULq follows from the PBW basis. The fact that
the elements Hα commute is trivial. The structure as an algebra being a semidirect product
uqoU(h), and as a coalgebra being a tensor product, follows directly from the explicit results
in b). .

�

4. Unrolled quantum groups and categories

In this section we will show the applications of our results to the constructions in [GPT09,
CGP15, GP16] by which it has been inspired and for which it has been intended:

In these articles, the authors construct quantum invariants for manifolds and knots from non-
semisimple categories by “modified traces”, which solves the problem that invariants obtained
from nonsemisimple tensor categories tend to vanish. The first example in mind might be repre-
sentations of a small quantum group uq but for an even root of unity this does not have a braiding.

To get a modular tensor category, they instead consider the unrestricted quantum group UKq , and
then impose relations Er = F r = 0 (this is dropped in [GP16]) while K remains of infinite order;
let us call this quotient ŪKq . Then they unroll this quantum group to ŪKq o U(h) and consider
the category of modules C where K acts as eH .

The author believes that there are two disjoint mechanisms at work here:

• The unrolling seems to be intended to get a modular tensor category, because it removes
ambiguities in the weight λ associated to a K-eigenvalue qλ. This should work and should
be sufficient already in the case of the unrolled small quantum group treated above.

Besides unrolling there are several attempts to construct modular tensor categories
for small quantum groups at even roots of unity. The author would assume that they all
can in principle be used for the same purpose:
– Accept that the braiding is only up to an outer automorphism as in [Tan92, Res95].
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– Consider larger lattices Λ and then accept that the monodromy matrix is only fac-
torizable on a sub-Hopf algebra as in [RT91]. This seems like a small-scale unrolling,
just enough to remove the Z2-obstruction

– Consider larger lattices Λ and modularize the larger category. This produces the
representation category of a quasi-Hopf algebra with a 3-cocycle encapsulating the
ambiguity in choices of λ in the braiding (the CFT side directly produces a 3-
cocycle). This approach is currently pursued by the author, see [LO16].

• Taking the unrestricted quantum group UKq gives a much larger category fibred over G∨

according to the action of O(G∨) (e.g. according to the action of K2r). The fibres are
known (in the case ` prime to 2dα) to be semisimple on elements in regular conjugacy
classes. On the other hand there are singular points like C0 (all K2r = 1) where we get
the representations of the small quantum group. Studying quantum invariants attached
to this situations is fascinating.

The author’s construction can also be applied to the unrolling of this situation. The
authors suggestion would moreover be that this unrolled is again a subalgebra of a larger
Hopf algebra, which is a curious hybrid of UKq and ULq . Both points are made explicit in
what follows.

The main result of this article realizes the unrolled small quantum group uqoU(h) inside Lusztig’s
quantum group. Moreover, it makes the condition K = eH very natural and thus explains the
category C0 from this point of view.

We wish to extend this to UKq o U(h) and even further:

Lemma 4.1. We regard the integral forms as (very large) complex Hopf algebra and define:

UKLq (g) := UZ[v,v−1],L
q /(v − q)UZ[v,v−1],K

q

This complex Hopf algebra depending on a choice q ∈ C× has the following properties:

a) There are Hopf algebra maps

UKq ↪→ ULKq UKLq � ULq

such that their composition sends Eα, Fα,Kλ to themselves. Probably UKLq is in some sense
universal with this property.

b) There are elements such that multiplication induces a bijection of vectorspaces:(⊗
α∈Φ+

C[Eα]⊗ C[E(`α)
α ])

)
⊗ C[Λ]⊗

(⊗
α∈Φ+

C[Hα])

)
⊗

(⊗
α∈Φ+

C[Fα]⊗ C[F (`α)
α ])

)
∼−→ UKLq (g)

,

Proof. While there is an injection between the integral forms UZ[v,v−1],K
q ↪→ U

Z[v,v−1],L
q , the

respective maps between the specializations UKq → ULq is not injective (e.g. E`αα 7→ 0) because
tensoring with the Z[v, v−1]-module Cq is not left-exact. Let us explicitly chose the obvious
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minimal free resolution

0 −→ (v − q)Z[v, v−1]
⊂−→ Z[v, v−1]

v 7→q−→ Cq

Then tensoring the integral forms with the free modules simply means regarding the integral
forms as complex Hopf algebras with

UKq
∼= UZ[v,v−1],K

q /(v − q)UZ[v,v−1],K
q ULq

∼= UZ[v,v−1],L
q /(v − q)UZ[v,v−1],L

q

so we can easily compute the Tor-Functors and get an exact sequence:

0 −→ UZ[v,v−1],K
q /(UZ[v,v−1],K

q ∩ (v − q)UZ[v,v−1],L
q ) −→ UKq −→ ULq

Then it is natural to define the complex Hopf algebra

UKLq (g) := UZ[v,v−1],L
q /(v − q)UZ[v,v−1],K

q

There is an obvious injection from UKq and an obvious surjection to ULq which are the identity
on the generators of the rational form.

The kernel of the surjection is (v − q)UZ[v,v−1],L
q /(v − q)UZ[v,v−1],K

q and we explicitly know from
the PBW basis of the integral forms that this is the ideal generated by the (v − q)E`αα and
K`α
α − K−`α , which are already in U

Z[v,v−1],K
q . Hence this kernel is the ideal generated by the

kernel UZ[v,v−1],K
q /(U

Z[v,v−1],K
q ∩ (v − q)UZ[v,v−1],L

q ) of the surjection UKq → ULq �

This hybrid Hopf algebra UKLq (g) has the following applications:

• UKLq (g) contains the unrolled UKq as Hopf subalgebra UKq (g)UKLq (g)0.
This is true because we have proven in the rational form in the Main Theorem 3.1:

[Hα, Eβ ] = EβK
2`α
α · v

2`α· 2(α,β)(α,α)
α − 1

v2`α
α − 1

· v
2`α
α − 1

Φ`α(v2
α)

where the difference 2(α,β)
(α,α) −

v
2`α·

2(α,β)
(α,α)

α −1

v2`αα −1
is clearly divisible by (v−q), as this was equal in

the specialization. Then the crucial observation is that the element EβK2`α
α is contained

in UZ[v,v−1],K
q , so the difference still vanishes in UKLq (g).

Note that on the other hand there is no more relation K2`α
α = 1, so Hα is (K2`α

α , 1)-
skew primitive in UKLq (g).
• UKLq (g) contains moreover a subalgebra U(g∨), of which the Cartan-generator is respon-

sible for unrolling. It also contains the commutative algebra of functions O(G∨) and we
conjecture that the former acts on the latter as the Lie algebra acts on the function on
the group by derivations. Is this action helpful to understand UKq ?
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Example 4.2. In UKLq (sl2) with ` = 4 the action of E(2) ∈ U(sl2) on the algebra of functions is

[E(2),K4] = (1− q16)E(2)K4

=
1− q16

(q − q−1)(q2 − q−2)
E2K4 6= 0

[E(2), E2] = 0

[E(2), F 2] =
q

(q − q−1)2
(K2 −K−2)

5. Diagonal Nichols algebras

We argue, that the same construction can be done for arbitrary Nichols algebras of diagonal type.

Let (V, qij) be a diagonally braided vector space, then one associates a Nichols algebra B(V ),
which is a braided Hopf algebra.

Example 5.1. For some q ∈ C× the choices

V =

rank⊕
i=1

Eαi , qij = q(αi,αj)

give rise to the Nichols algebra B(V ) = Uq(g)+ respectively B(V ) = uq(g)+ if q a root of unity.

Other examples include the super-Lie algebras with some qii = −1 (fermionic) and for other
qii of small order algebras resembling additional Lie algebras in finite characteristic and a few
unfamiliar algebras (called UFO’s). A complete classification and a striking structure theory by
arithmetic root systems and Weyl groupoids has been given by Heckenberger [Heck09].

Example 5.2 (sl(2|1)). For some v ∈ C× the choices

V = E1C⊕ E2C, qij =

(
−1 v−1

v−1 −1

)
gives rise to the Nichols algebra B(V ) = Uv(sl(2|1))+. In fact for super-Lie algebras there are
different non-equivalent Borel parts. Correspondingly the Weyl groupoid action (an odd reflection)
changes the braiding matrix above to a different type of Weyl chamber:

V = F1C⊕ E12C, qij =

(
−1 v−1

v−1 v

)

Let V be as usual realized as a Yetter-Drinfeld module over an abelian group G, say G = Zrank,
so qij is given by a bicharacter χ(gi, gj). The quantum double construction can be used in the
same way for an arbitrary Nichols algebra of diagonal type to define an analog of the quantum
group U(χ), see [Heck10][AY13].
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Now let us consider U(χ(v)) with braiding matrix q(v)ij = χ(v)(gi, gj) depending on a free
parameter v ∈ C× as above, i.e. over the field Q(v). We can of course proceed precisely as in
[Lus90]:

Definition 5.3. Use the generalizations of Lusztig’s automorphism to construct root vectors
Eα, Fα ∈ U(V, qij) for all roots α as in [Heck10]. Then we can define the Hopf subalgebra and
Z[v, v−1]-submodule A generated by all PBW monomials in the root vectors resp. by all PBW
monomial in divided powers of the root generators.
Then for a specific value q ∈ C×, e.g. a root of unity, specialization ⊗Z[v,v−1]Cq given then two
complex Hopf algebras, which could be seen as generalized versions of the Kac-Procesi-DeConcini
quantum group UK(χ) and the Lusztig quantum group of divided powers UL(χ).

Question 5.4. It is not obvious that these algebras have the properties one would expect. Most
severely, one would like to prove that indeed A is an integral form A ⊗Z[v,v−1] Q(v), so that the
PBW-monomials are a vector space basis of the specialization (a-priori the specialization could be
trivial!). Apparently there are subtleties in the choice of prefactors for each Lusztig isomorphism.

Once these questions are settled, the author conjectures that the Borel parts UK(χ)± resp.
UL(χ)± are the distinguished pre- resp. post-Nichols algebra in [A15] resp. [AAR15]. But we
expect moreover that again the Cartan part of the Lie algebra Hα (with the same formula as
above) gives a realization of the unrolled small quantum group inside Lusztig’s quantum group
of divided powers. Moreover we would also again like to study the hybrid quantum group UKL(χ).

Note that the divided powers of interest are only over those root vectors Eα with no a-priori
relations in place, e.g. in sl(2|1) only for E12 but not for the fermionic generators with E2

1 =

E2
2 = 0. These are the Cartan-like roots, see e.g. [A15]. The set of Cartan like roots forms an

ordinary root system, typically of smaller rank than V , for example sl2 for sl(2|1) above. If we
call this ordinary Lie algebra g and the corresponding Lie group G, then we again expect exact
sequences of Hopf algebras

0 −→ Uq(χ(q)) −→ UL(χ) −→ U(g) −→ 0

0←− Uq(χ(q))←− UK(χ)←− O(G)←− 0

where uq(χ) = Uq(χ(q)) is the (finite-dimensional) Hopf algebra associated to the braiding matrix
with specific value v = q.

6. Conformal field theory

We also wish to point out the connection of our results on unrolling via Lusztig’s quantum group
to logarithmic conformal field theory [FGST06, NT11, FT10, Len17]:

Fix g and ` such that all 2dα|` (i.e. `α = `/2dα) and define p = `/2. Let Λ =
√
pΛR∨ a rescaling

of the root lattice of g∨. Then it has been conjectured that:
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• There exists an action of parts of Lusztig quantum group ULq (g) on the lattice vertex
operator algebra VΛ associated to Λ i.e. on the conformal field theory of a free boson on
Crank/Λ.
• The kernelW ⊂ VΛ of the action of the subalgebra uq(g)+ has as category of representa-

tions a modular tensor category (this follows abstractly in the theory of vertex algebras),
which is as an abelian category equivalent to uq(g)-modules (and as tensor category
equivalent to a similar quasi-Hopf algebra)

The program has been proven for g = sl2 in [FGST06, NT11], in the case p = 2 the quasi-Hopf
algebra is obtained in [GR15]. The quantum group relations for the action of uq(g)+ have been
proven in general by the author in [Len17].

The action of Fα are given by short screening charge operators Res(Y(e−α/
√
p)), the action of

E
(`α)
α by long screening charge operators Res(Y(e+α∨

√
p)), the action of Hα by a scalar charge

operator Res(Y(∂φα∨√p)) and the action of Kα by it’s rescaled exponential eπi Res(Y(∂φα/√p)).
The evaluation of the scalar charge operator Hα on a element in some module vλ with degree
λ/
√
p ∈ Λ∗ is

Hαvλ = (α∨
√
p, λ/

√
p) =

2(α, λ)

(α, α)
vλ

Kαvλ = eπi(α/
√
p,λ/
√
p)vλ = e

2πi
2p (α,λ)vλ

We see that this matches (up to a rescaling due to the dual) the condition K = qH on the
category of the unrolled small quantum group. In this setting we can also recover our formula
for Hα from our Main Theorem 3.1:

Hαvλ = lim
v→q

K2`α
α − 1

v2`α
α − 1

vλ = lim
v→q

v
2(α,λ)
(α,α)

` − 1

v` − 1
vλ =

2(α, λ)

(α, α)
vλ

From a lattice vertex algebra perspective it is natural that a braiding in VΛ comes not easy,
because any module V[λ/

√
p] contains an entire coset [λ/

√
p] ∈ Λ∗/Λ but usually the braiding

q(λ,µ) does not factorize over this quotient, so one has to choose representatives, which is general
causes a 3-cocycle to appear as associator. Note that a coset [λ/

√
p] is precisely the set of degrees

with the same action of all Kα. The effect of “unrolling” is to separate the different elements in
the coset and hence to be able to define the braiding without ambiguities. This is the same effect
we want for unrolling quantum group representations, and it is to expect the two versions are
closely related.
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support. The author receives additional support by the DFG Graduiertenkolleg RTG 1670 at the
University of Hamburg.
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