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ABSTRACT. We construct explicit families of right coideal subalgebras of quantum
groups, where all irreducible representations are one-dimensional and which are max-
imal with this property. We have previously called such a right coideal subalgebra a
Borel subalgebra.

Conversely we can prove that any tringular Borel subalgebra fulfilling a certain
non-degeneracy property is of the form we construct; this classification requires a key
assertion about Weyl groups which we could only prove in type A,,. Borel subalgebras
are interesting for structural reasons, but also because the induced representations give
interesting unfamiliar analoga of category O.
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1. INTRODUCTION

The quantum group Uy (g) is a deformation of the universal enveloping algebra U(g) of
a semisimple Lie algebra. For Lie algebras, a theorem by Sophus Lie states that the Borel
subalgebras are the maximal solvable Lie-subalgebras and that they are all conjugate.

In [HLVI7] we ask for quantum groups the same question: Which are the maximal
right coideal subalgebras with the representation theoretic property, that all irreducible
finite-dimensional representations are one-dimensional. We call this a Borel subalgebra of
U,(g). Besides the standard Borel subalgebra U,(g)™ and its reflections, there is already
for g = sly a new family of Borel subalgebras, generated by elements

q2

EK '+ MK~', F+XNK! M=
(1-¢)(g—q")

which are isomorphic to the quantized Weyl algebra. Note that they are not defined
for ¢ = 1 and interpolate between Uq+ and U, . We have conjectured (and proven for
type A,) a main structural result on the graded algebra associated to any right coideal
subalgebra that has a triangular decomposition. As a second conjecture, this suggests
an explicit description of all triangular Borel subalgebras.

The goal of the present article is to directly construct and classify triangular Borel
subalgebras fulfilling an additional non-degeneracy condition . The algebras we con-
struct consist of copies of the quantized Weyl algebra, as well as a subset of the remaining
standard Borel subalgebra. In type A, we can prove that all triangular non-degenerate
Borel subalgebras are of this form. We also discuss some degenerate examples for type A,,.

Our main reason for studying Borel subalgebras is to gain more knowledge on the
theory of arbitrary right coideal subalgebras. Another curious application is that for
a given Borel subalgebra one may look at induced modules from one-dimensional rep-
resentations. For the new Borel subalgebras of U,(sly) this yields infinite-dimensional
reprentations isomophic as a vector space to C[K, K~!], on which K acts by multiplica-
tion. We could prove that most of these induced modules are irreducible, while a discrete
family has as quotients the irreducible finite-dimensional representations of Uy(sly). It
would be interesting to study an analogue of category O for these Borel subalgebras.

After preliminaries on right coideal subalgebras in Section 2 we proceed as follows:

In Section [3] we prepare a strategy to construct non-one-dimensional irreducible rep-
resentations of right coideal subalgebras by restricting suitable U,(g)-modules and de-
tecting non-one-dimensional composition factors.

In Section 4] we study a curious questions about Weyl groups, namely about "filling
up” two given Weyl group elements to maximal Weyl group elements that retain the
same property. This theorem later-on precisely tells us how far an interesting coideal
subalgebra can be filled up until it is maximal. In this paper we were only able to prove
this Weyl group assertion for type A,.
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In Section [5| we construct Borel subalgebras that consist of several quantized Weyl
algebras associated to a set of pairwise orthogonal simple roots, together with a suitable
subset of the remaining positive roots, see Main Theorem Then we can prove that
under the additional nondegeneracy condition these are in fact all Borel subalgebras for
type A,. Finally we determine the induced representations of one-dimensional repre-
sentations of the Borel subalgebra; these are infinite-dimensional representations with a
non-diagonal action of the Cartan part of Ug(g).

In Section [6] we also treat the next-difficult step, which are Borel subalgebras, where
the degeneracy height is 1 in some sense. The degeneracy causes extensions of the Weyl
algebras. In this case we first derive necessary conditions for the Weyl group elements
and then again construct for type A, right coideal subalgebras where all irreducible
representations are one-dimensional.

In Section [7] we discuss as examples all Borel subalgebras for sly, sl3 by-hand to com-
pare this with our conjectures and results. Moreover we determine all triangular Borel
subalgebras for sly, which is the first case where a degeneracy of height 2 appears. This
is worked out thoroughly by the second author in [Vockel6], using a generating system
for an arbitrary right coideal subalgebra.

2. PRELIMINARIES

Let g be a finite-dimensional semisimple Lie algebra of rank n over the field of complex
numbers K = C.

We denote by II = {aq,...a,} a set of positive simple roots, by @ the root lattice,
and by ®* C @ the set of all positive roots. We denote by (,) the symmetric bilinear
(ai,a;

(aj,a;))'

Our article is concerned with the quantum group U, (g) where ¢ is not a root of unity.
There are algebra automorphisms due to Lusztig T, for each Weyl group element w € W,
and with these one constructs root vectors E,, for all u € T, see [Jan96] Chapter 8.

A subalgebra C of a Hopf algebra H is called a right coideal subalgebra (RCS) if
A(C) Cc C ® H. Three essential results in the theory of coideal subalgebras of quantum
groups are:

form on R™ with the Cartan matrix cij =2

Call a right coideal subalgebra C' C U,(g) homogeneous iff U° C C (in particular C
is then homogeneous with respect to the @Q-grading).

Theorem 2.1 ([HIS09] Theorem 7.3). For every w € W there is an RCS Ut[w]|UY,
where Ut [w] is generated by the root vectors Eg, for all B; in the subset of roots

T (w)={ac® |wla<0}={8|ic{l,....Lw)}}
In particular |+ (w)| = £(w), and
(1) v<w iff T (v) C T (w)

and for the longest element ®+(wy) = ®T.
Conwversely, every homogeneous RCS C C Uqu(g)UO is of this form for some w.
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Theorem 2.2 ([HKIIa] Theorem 3.8). The homogeneous RCS C C Uy(g) are of the
form
C = Ut wlUU[v]
for a certain subset of pairs v,w € W.
Non-homogeneous RCS are only classified on U, U° (or USu 0):

Theorem 2.3 ([HK11b] Theorem 2.15). Forw € W, let ¢ : U, [w] — K be a character
and define

supp(¢) := {8 € Q | Fzp € U, [w] with ¢(x5) # 0}
Take any subgroup L C supp(¢)*, then there exists a character-shifted RCS

Uy [l = {6 ®)a® | var € Uy ]}

and an RCS U, [w]yTL with group ring T, = K[L] C U°.
Conversely, every RCS C C Uq_(g)U0 if of this form

To construct non-homogeneous RCS C' C U,(g) we shall in the following restrict our
attention to:

Definition 2.4. We call a right coideal subalgebra triangular, if each element splits into
elements in CZ° and C=0:

C=(CnUz%CnU=Y
We denote CZ0:=CNUZ, C20:=CNUS and CT:=CNUT and C~:=CNU".
Our main interest is

Definition 2.5. We call an algebra ede iff every finite-dimensional irreducible repre-
sentation is one-dimensional. We call an RCS of Uy(g) a Borel subalgebra iff it is ede
and it is a mazimal RCS with this property.

Example 2.6. All homogeneous Borel subalgebras are isomorphic (via some T,,) to the
Standard Borel subalgebra UTUY. The fact that this is a Borel subalgebra is not entirely
trivial, see [HLV1T7].

Example 2.7. There is a family of non-homogeneous Borel subalgebras of Uy(slz) gen-

erated by

q2

(1-¢*)(g—q7")
Different choices of \,\' are isomophic via some Hopf automorphism E +— tE, F
t7'F.

{EK"'4+ A KL F+ NK™1}, AN =

As an algebra, this is isomorphic to a quantized Weyl algebra
EX,)Y)/(XY —qYX —1)

Proof. We want to prove the ede property of the quantized Weyl algebra: Let V be a
finite dimensional irreducible representation. Consider the eigenvector v of the element
T := Y X with eigenvalue ¢t. One can easily see, that Yv is an eigenvector with the
eigenvalue qt + 1:

YX(Yv)=Y(qYX +1)v= (¢t +1)Yv



Similarly, one can show that Xwv is an eigenvector of T with eigenvalue %(t —1):

Lxvx - x)po =t -1xv

YX(Xv) =
q q

Thus the eigenvectors of T are a basis of V', as V is irreducible. On the other hand for
each i there are eigenvectors Y'v of T. As V is finite dimensional, they cannot have
pairwise distinct eigenvalues. If T' has eigenvalue 0, 1 would thus be an eigenvalue too
and there would be an infinite number of different eigenvalues, as ¢ is not a root of unity.
Thus the eigenvalue 0 is not possible, and so each two eigenvectors must be equal and
thus each two eigenvalues must be equal. Then follows ¢t = 1%(1. With this ¢ we get:

1 1-—
XYv=(@YX+1)v=(-—q+1 UZM’UZW
1—gq 1—gq

As T has only the eigenvalue t, it acts as a scalar on V', the same is true for XY . Thus X
and Y commute on all of V' and then each finite dimensional irreducible representation
is 1- dimensional. (]

A main structure theory of general Borel subalgebras stems from:

Conjecture 2.8 ([HLV1T7]). The map f : gr(U~[w]g) — U=C, sending all elements to
their leading terms is an injektive homomorphism of Z-graded right coideal subalgebras.
The image D of f has the following form.:

e Do =: M is the monoid (!) M := (Kljl | v € supp(¢))
e for the quotient group L of M we get DTy, = U~ [w'|T}y, for the following w' € W :

w' = ( H sgw, where w = Sq, Say, - - - Say,, €W
BEsupp(e)

As all elements in supp(¢) are pairwise orthogonal, w' is the element, which
arises from w by deleting all factors sq,, for all i with B; € supp(¢).

Theorem 2.9. [[HLV17]] Conjecture[2.§ holds for A,.
This conjecture has implications to the representation theory of the RCS:

Conjecture 2.10. [[HIV17]] Let C = U~ [w]y,-Trp(UT [w]) g+ be a triangular right
coideal subalgebra with supp(¢p*) = supp(¢~) and L = supp(¢™)t, where (zp) =
q*(ﬁ’ﬁ)/Qx[gKﬂ_l for all elements xg of degree B, which is essentially the antipode. Then
C is a Borel subalgebra, if and only if whw'=! = wy.

At least we could prove:

Lemma 2.11. [[HIV17]/ In the case A, holds: Given w and w' as in conjecture
and given a triangular right coideal subalgebra C' = U~ [w]s-Trp(UT [wT]) g+ with L C
(supp(¢™) Nsupp(¢™)) L. If L(w' " wt) < L(w') 4+ £(w™T) then C is not ede.



3. COUNTER INDICATORS FOR EDE PROPERTY

Corollary 3.1. For all one-dimensional representations V' of Uy(sla) follows in particu-

lar E(V)=F(V) =0 and K(V) = £1. This can be seen directly from the relations: Due
to the relation EF — FE = I;:f:ll we get that in any one dimensional representation
K has to act as 1. From EK = ¢?KE and FK = ¢ 2KF thus follows, that E and F
have to act trivial.

This gives a first method to detect non-one-dimensional composition factors in repre-
sentations restricted to RCS. A direct application is that RCS containing the semisimple
subalgebra U,(sly) are not ede as follows. Later we will deal with restrictions to non-
semisimple subalgebras:

Lemma 3.2. Let B C U be a Borelsubalgebra. If for 5 € Q the element Kg lies in B,
then the element Kﬁ_1 lies in B too.

Proof. Assume Kgl ¢ B, consider A := (Kﬁfl,B> C U: This is an RCS as both B and

k[Kg 1] are RCS. Due to the assumed maximality of B C A there exists an irreducible
representation V' of A with dim (V) > 1. As B is ede, the representation V'|p has a one
dimensional subrepresentation (v) and with Kg € B we get Kgv = Av for some A € k.
But this already gives a one-dimensional subrepresentation of V' which contradicts the
maximality of B. O

Theorem 3.3. Let A resp. A’ be subalgebras of U with E,, Fo, Ko, K1 € A resp.
E K ' F,, K2, K;? € A for some a € II. Then A resp. A’ has a multidimensional

[e%
wrreducible representation.

Proof. Let M be a representation of A. Consider first the restriction of A on Uy(slp) C A
generated by E,, F, and K, K;!. Due to Corollary we know, that in each finite
dimensional representation of U,(slz) the element K2 acts as 1. We know that restricted
to the semisimple algebra U,(sly) the representation M decomposes into irreducible
representations. Assume each finite dimensional irreducible representation of A is one
dimensional, then M|, (s1,) decomposes in one-dimensional representations, thus K, 2 acts
as 1 on M. It suffices to prove that there is a finite-dimensional representation on U, for
which K2 does not act as 1. We know, that for all dominant weights A € A the U-module
L(\,0) is one dimensional. With the fundamental dominant weights we can find for all
a a XA with (A, a) # 0, and for this A the element K2 does not act as 1 on L(\, o). This
proves the assertion.

In the second case: E,K !, F,, K2, K2 € A’ the proof is completely analogous: We
would suspect that A’-modules decomposing into their K2-eigenspaces are semisimple
with irreducible modules L(\). This is however not necessary for the proof: The restric-
tion of an U-module M = L(A,0) decomposes in Uy(slp) semisimple into L, (A, 03).
Apparently, the restriction of any irreducible Uy(slz)-module Lg, (N, 03) on A’ is still
irreducible. M| 4 still decomposes into its irreducible representations and as the element
K2 does not act as 1, by choice of ), again we can find a multidimensional representa-
tion. ([
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Corollary 3.4. Let A C U be an RCS with E,K_ ', F, € A for a € II, then A is not a
Borel subalgebra.

Proof. This follows from the previous theorem, but we need to get the K,, K, inside
A: Assume A was a Borelsubalgebra. Consider the g-commutator of E, K L with Fy:

2
(BaK3' Falp = (1 - K32 —la
oo — qa

Thus K2 and due to Lemma also K2 lie in A. Then applying Theorem proves
the claim. O

Corollary 3.5. Let C = (Ut [wH])y+TLU [w™ )4~ be an arbitrary triangular RCS. If
there ezists an o € IIN®F (wt)N®T (w™) with a ¢ supp(¢™) Nsupp(¢p~), then C is not
a Borel subalgebra.

Lemma 3.6. If for an o € II the character-shifted elements Eo Kt + MoK 1, Fy +

MoK with Ao, # % lie in a subalgebra A C U, then A is not a Borel

subalgebra.
If however for two elements E,K,' + MoK 1, Fy + MK, € A holds A\, =
2
(l_(ﬁ)ﬁﬁ they form a Weyl algebra as in Example thus they can be part of

a Borel subalgebra.

Proof. Considering the ¢2-commutator of the two elements yields:

2
[BaK ' + MKy Fo+ MKy 2 = —29 (1 - K32) 4 (1= @2) AN, K2
o — qu
We can see, that for A\, # S S— again K ? lies in A.

(1-2)(ga—qa ")

Assume A was a Borel subalgebra, then due to Lemma also K2 € A. Then similar
to Corollary also E,, Fy, Ko, K ' € A follows, which is a contradiction by Theorem
B.3l a

Even without the ede property follows quickly:

Lemma 3.7. In a triangular right coideal subalgebra C' = (U™ [w1]) p+ TU ~ [wa] p— with
L C (supp(¢t) Nsupp(¢~))* holds for all a € supp(¢t) N supp(¢p~) NII the relation

2
_ da
¢+(Ea)¢ (Fa) = -
(1-a3)(da —ga")
Proof. From ¢ (E,)¢™ (Fa) = % we can follow as in Lemmaagain K% e
C which is a contradiction to L C (supp(¢™) N supp(¢~))*. O

We now consider the restriction of Ug,(g)-representations to C' (which is in general
nonsemisimple) in order to construct non-one-dimensional irreducible C-representations
as composition factors. This works particularly smooth for minuscule representations,
which is sufficient for type A,.



Notation 3.8. For the roots u in A, we use the notation pu = [u1, u2] for 1 < pg <
o <moif p=> " ;. All roots in A, are of this form.

m=p1

Lemma 3.9. Let g = sl, and E,, F, be two character-shifted root vectors in C' =
YU wH )+ TLU [w™ ]y~ C Uylg) for a root p = [y, po] € @F(wh) M@ (w™) such
that for all v € supp(¢™) N supp(¢~) with v < u holds (v, ) = 0, then C is not ede.

Proof. Our general strategy for constructing irreducible representations of dimension
greater 1 is the following: We consider the action of the commutator [E, F]; € C on a
suitable finite-dimensional U,(g)-representation V' = L(\), which we restrict to C. The
commutator acts trivial on any finite dimensional irreducible representation of C' and
thus nilpotent on all representations of C', whose series of compositions contains only
one-dimensional representations.

In our case we get from (v,u) = 0 for all k' < po and j' > uy that [, pol, [, K] ¢
(supp(¢*) Nsupp(¢™)). Due to this restriction for supp(¢™*) the element E, acts on the
minuscule representation M (A1) with highest weight A\; equal to £, K 1 and F), acts
equal to F},.

If for a given g, we can find a \,v € V()), such that [EMKQI,FM]LU = cv with
¢ # 0, the commutator cannot act nilpotent and thus V| must have an irreducible com-
position factor of dimension greater 1, so C' is not ede. For Example this condition is for
p € 11 fulfilled for the highest weight vector v, but in general we don’t know [E, K " LB

In the case of A,, we can calculate the condition explicitly on the minuscule represen-

tation V.= V(A1) . Let pu = [u1, u2] = gim ag. Then the action of the simple root
vectors is:

(2) Fak-ﬁ-l'v)\l*al*m*ak ~ UN—a1—...—agt1

(3) Faj-v)\lfalf...fak = 07 j 7& E+1

and all weight spaces are one dimensional. Consider v := UM\ —a1——apy —1 then Equl.v
is trivial, F,.v is a non trivial multiplier of VX —a1 = —apy s because only the summand
Fa% -+ Py, can act nontrivial, and with the same argumentation also £, K " IFM.U is a

nontrivial multiplier of v. Thus v is a nontrivial eigenvector of the commutator. Thus,
according to the above explanation, the assertion follows. O

Corollary 3.10. Let g = sl, and E“, Fy be two character-shifted root vectors in C =
YU wH ) g+ TLU ™ [w™]g- € Ug(g) for a root pu = [p1,po] € supp(¢™) N supp(¢™)
such that for all p # v € supp(¢™) N supp(¢p~) with v < u holds (v,u) = 0, and
GHELKY) =\, 67 (F) = N with AN # b5, then C is not ede.

Proof. As in the proof of Lemma we can see that, on the minuscule representation
with highest weight A, the element E,, acts equal to EMK/;1 +(1-— q2))\Kljl and F),
equal to F},+ (' =g NK " 1 Thus the representation has a multidimensional irreducible
subrepresentation. O
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Lemma 3.11. Let C = (U™ [w])y+ TLU ™ [w]y- C Uy(sly) such that supp(¢*) = supp(¢™)
supp(¢) and given two character-shifted root vectors Ey,, F,, for a root p = [u1, o) ¢ 11
with p ¢ supp(9), but o, # a5 € supp(¢) NIL. If there are two different reduced expres-
sions w1 and wy of w with E, = Ty, (Es) and F,, = T, }(F3),such that

E,=EK, '+ Xy 0K, Fy=F,+Y, oK.

for two elements X, _q, € Uutas

and Y,—q, €U, _,, , then C is not ede.

Proof. If (ay, ) = 0 and (as, 1) = 0 then the situation is a special case of the preceding
Lemma Thus it is enough to consider the case r = pp (resp. r = ug): Then E,
acts on the minuscule representation with highest weight A1 equal to E, K 1 Thus the
requirements of the proof of Lemma [3.9] are fulfilled and we can find a multidimensional
irreducible representation as factor of the decomposition of V' (A1)|c. O

On the other hand, a method of finding one-dimensional subrepresentations and
thereby proving the ede property is:

Theorem 3.12. Let A be an algebra with a generating system Z and with the following

property: There is an element X € A such that for all generators Y € Z the commutator

[X,Y]. =0 for some constant ¢ € K*, and there is an element K € A with [K,X]s =0

for a constant ¢ € K*, which is not a root of unity, and K has a non-trivial eigenvector.
Then X.V =0 for any finite dimensional irreducible representation V of A.

Proof. Assume there is an eigenvector of X with eigenvalue 0, then all elements w € V'
with X.w = 0 span a subrepresentation V', because by assumption after acting with any
generator Y:

X.(Yw)=cY.(Xw)=0
Because V is assumed irreducible, the existence of an eigenvalue 0 thus implies X.v = 0
for all v e V.

Assume now there is no eigenvector of X with eigenvalue 0, then let us consider the
assumed eigenvector w # 0 of K, with associated eigenvalue some A. As X.w # 0 we get
X.w is again an eigenvector of K:

K(Xw)=dX(Kw)=d\Xw

As ¢ is assumed to be not a root of unity and as X7.w # 0 for all 5 > 0, the elements
X7 w are eigenvectors of K with pairwise distinct eigenvalues. As V' is finite dimensional,
only a finite number of these values can exist, this yields a contradiction. O

4. A THEOREM ON WEYL GROUP ELEMENTS
For w € W consider as in Theorem the subset of roots:
& (w) = {5 € & | w(4) < O}y € B

The goal of this section is to prove, how to supplement two Weyl group elements
w1, we € W in a special way to two elements w], w), such that &+ (w}) U ®F(w})) = &.

Theorem 4.1. Fiz wi,wy € W and assume B := ®F(wy) N &1 (wq) is not empty and
consists of pairwise orthogonal roots. Then:
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(1) There exist elements wi,why € W with ®*(wy) C &1 (w)), ®T(wa) C &T(wh),
such that the following relations hold:
O (w)) N @ (wh) =B and T (w)) U T (wh) = &
(2) There exists an element w] € W such that ®*(wy) C T (w}) and w| has a
reduced expression wy = Sq, .. S, with B = {Byw)—|Bl+1s - - - » Bew!r) -
We can prove this Theorem for type A,.

The rest of this section is devoted to prove Theorem In fact most steps are always
true, but a key property of root systems[4.12] we did only prove for A,, and for rank 2.

We consider two orderings on the root lattice:

Definition 4.2. For a :=ajaq + ...+ aman), and b:=bjoq + ...+ byoy € Q with
a;,b; € Nlet a < b if and only if a; < b; for all i < n.

We define, depending on the choice of the reduced expression of w, a total ordering <
on ®T(w) by
B@'<ﬁj€q)+(w)<:>i<j
This ordering is conver, i.e. for p <v € ®*(w) we get u < p+v <v, if u+v € ®+(w)
see therefore [PA] s.662.
On W we use the weak ordering. From the strong exchange property follows:

Corollary 4.3. Let w € W and o € ®t(w) N1II, then there exists a reduced expression
of w of the form w = sqx for a v € W with £(x) = {(w) — 1.

Definition 4.4.

T := {0 C T (w) | © pairwise orthogonal roots and £( H sgw) = L(w) — |O]}
BeO
~——
we

Remark 4.5 ([HKI11D] s.12). In explicit examples of small rank the set T" is easy to
caleulate: If J C {1,...,l(w)} is a subset, such that the elements in © := {f; | i € J}
are pairwise orthogonal, then © belongs to TV if and only if after deleting all reflections
Sq; for i € J the resulting expression w = Sq, c e Saygy 18 still a reduced expression.

Lemma 4.6. Fach k roots in ® can be reflected to a rank k root system, i.e. for any
set of roots B = {u1,... ,,u|B|} C ® there is a x € W and a rank |B| root system g with
w(p;) € Qg for all i

A proof can be found e.g. in [Lenl4] Theorem 6.3 a).
Lemma 4.7. For a p € ®T not simple, there exists a 3 € Il such that u— 3 € ®+.
The proof is found in [Hum70] Lemma 10.2 A.

Corollary 4.8. Given a w € W. For all u € ®*(w) there exists a f € 1N & (w) such
that B < .



11

Proof. We prove this by induction on the height ht(u):

For ht(u) = 1 follows p € II and the claim is trivial. Let ht(x) > 1. Due to Lemma
there exists a 3 € II such that u — 3 € ®*. Due to the convexity of the ordering
< on ®T(w) we get either 8 € I N ®F(w) or p — B € & (w). In the first case the
claim is already proven. In the second case there exists from the induction assumption
an a € IIN @1 (w) with & < p — B < p, thus the claim is true. O

Definition 4.9. Let p,v € ® be orthogonal (i L v), that is (p,v) = 0. We call u and v
strongly orthogonal, if there exists a © € W such that x(p), x(v) € I1.

Using Lemma we can reduce to the rank 2 situation. Then clearly

Remark 4.10. Two orthogonal roots p,v € ® are strongly orthogonal, if mu +nv ¢ ®
for all m,n € Q\{0}.

In the following we study for two Weyl group elements wy,wy € W the intersection
B:= & (wy) N ®*(wy) more closely. In particular we want to make some statements on
possible supplements of w; and we for B consisting of orthogonal elements.

Lemma 4.11. Assume all elements in B are pairwise orthogonal. Then all the elements
in B are pairwise strongly orthogonal.

Proof. Given two arbitrary elements pu,v € B. Assume p + v € ¢, we get from the
convexity of < on @1 (wy) resp. @1 (ws) already p+v € @1 (w1)NP+(w3), so in particular
(u+v, 1) = 0. That is a contradiction to the pairwise orthogonality of the elements in B.
Now we use a projection z € W from g and v in a rank 2 root system. From p+v ¢ ®*,
ie. z(p) + z(v) ¢ ® the only options for the root systems are A; x A; and Go, in the
first case the claim is proven. In the second case g = G2 with a long root 1 and a short
root v orthogonal to each other, also the roots between p and v with respect to the total
ordering for an arbitrary reduced expression of wq lie in ®*(wq) N ®T (wy) as is easily
shown, these are however not orthogonal on p, which leads us to a contradiction. U

Vermutung 4.12. Assume all elements in B are pairwise orthogonal. Then there exists
either an element o € IIN @ (wy) with a ¢ B or [ILN & (w)| = |B|.

Example 4.13. In the small cases of rank 2 the assumption is true, as we know
from Lemma[{.11, that the elements in B are even pairwise strongly orthogonal. Thus in
the case of rank 2 only |B| =1 is possible and the claim follows directly.

In the following we will restrict our considerations to A,, but we conjecture, that the
theorems are also true in general.

Lemma 4.14. In type A, conjecture holds.

Proof. Assume there exists no element o € I1N ®*(w) with « ¢ B, i.e.:
(4) & (wy) NI C B

We want to show B C II:



12

A) For all € ®*+(w;) we get from Lemma[d.8la 8 € ®*(w) NII with 8 < p. Due to
even 3 € B holds.

B) Assume there is a p1 € B with p ¢ 1. We look at the minimal root p = [u1, o] of this
type with respect to the ordering <. Let ap,,...ap, € BNII with u1 <by < ... < b < po
be the elements < p in B. Due to A) there exists at least one such element and from the
pairwise orthogonality of the elements in B we even get pu; < by < ... < by < po. We
define the following types of roots for 0 < j <1 —1:

Xj = [p1, bi—j]
Y = [p1, b5 — 1]
Here for all 0 < j <1 —1 holds X;,Yj, u — Xj,u —Y; ¢ B because (Xj,ap,_,) =1 and
(Yj,ap,_;) = —1 and because the elements in B are pairwise orthogonal.

We want to show now for all 0 < j <1 —1 holds Y; € ®*(w;). For this purpose, we
use the following considerations:
(1) Yj € @ (w1) = Xj € @ (wy), as ap,_, € DT (w1). As well for ws.
p—X; €@ (w) = p—Y; € ¥ (w), as ap,_, € & (wy). As well for ws.
(2) X; ¢ ®F(wy) = pu— X; € T (w), this is due to the convexity of <. As well for
wo and Y.
p—X; ¢ ot (w) = X; € dT(wy), this is due to the convexity of <. As well for
wo and Y.
(3) X; € 2T (wy) = X; ¢ T (we), as X;,Y; ¢ B. As well for Y.
p—X; €0t (w) = p—X; ¢ & (ws), as u— X;,u—Y; ¢ B. As well for Y.
With these considerations we can prove the claim inductively on 0 < j <[ — 1:

Yy lies in @ (wy ), because:
A - Xo¢ T (w) 2 Xo € T (wy) 2 Xo ¢ OF(wa) 2 p— X € DT (ws)
D p—Yoedt(wy) 2 u—Yy ¢ ®F(wy) =Yy € B (wy)
Let Y; € @1 (wy). Assume Y1 ¢ T (w):

Vi1 € 05 (w1) 21— Vi1 € 0F(w1) 2 — Vi ¢ & (wo)

= = Xjp1 & O (wn) 2 X1 € B (ws) 2 X1 ¢ O (wn)

2 = X € 0T (w) 2 p—Y; € 0 (wn) D p— Y ¢ 07 (wy)

2 Y; € ®F(wy) £ asY; € &1 (wy) and Y, ¢ B

The induction yields Y; € ®*(w;) for all 0 < j <1 — 1. This is a contradiction to A) for
7 =1 — 1. This proves the assertion.
U

Corollary 4.15. Let B consist of pairwise orthogonal roots and let B # (). Then wy has
a reduced expression of the form wy = Say - .. Say,,, end 1 < i <i+ |B|—1 < l(wy) with

B = {Bi,..-BiyB|-1}- As well for ws.
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Proof. We prove this claim with an induction on the length £(w;):

For ¢(w;) = |B| we get ®"(wy) C II and the claim is trivial. Let now w be with
¢(wy) > |B|. Assume B C II then, due to Corollary and as the elements in B are
pairwise orthogonal, we can write all elements in B in the beginning of w. Then the
claim is true for ¢ = 1 and j = |B|.

If an element p € B with p ¢ II exists, then due to Lemma there is a 8 €
@ (wy) NII with 8 < p and B ¢ B. So there is a reduced expression of w; with sg
in the beginning, due to Corollary Then we look at the two Weyl group elements
wy = sgwp and wi = sgwi. Here the claim is already proven, as £(sgwi) < ¢(wq) and
for B’ := sg(B) we can bring the element w| in the desired form. With this reduced
expression of w), as f ¢ B also w; = sgw] is in the right form. O

Now we want to prove our main Theorem which gives us an supplement of wy, wo
to w), wh. We will do this in several steps.

Lemma 4.16. Under the assumptions of Theorem the two assertions 1) and 2) are
equivalent.

Proof. ”*="" Let w},w], fulfilling 1) be given i.e. ®T(wh) N d+(w}) = B and &1 (wh) U
Pt (w)) = @*. Now we construct for w/ := w} a reduced expression of the required form.

For this we look at w := whwo:
¢T(w) C 7 (w))

Because for u € ®F(w) already @' (1) < 0 = wy 'wh () < 0 = wh ' () = 0 is true,
so u ¢ & (wh) and from & (wh) U ®T(w)) = ®T it follows, that p € &+ (w}). Due to
the relation [I| we can choose now the following reduced expression of w}: w] = wz for
some z € W with ¢(z) = ¢(w}) — ¢(w). It only remains to prove:

w(®"(z)) =B

”C”: This is true, because the elements in B are exactly the elements which lie in both
®+(wh) and ®T(w)). The elements on the left hand side lie in ®* (w}) by construction
and for v € ®F(z) holds wj 'w(v) = wo(v) < 0, so they also lie in ®F(wh). Thus we
have found a suitable reduced expression and 2) holds.

”D”: This is true, because ®*(wz) = &+ (w}) D B, on the other hand for all ele-
ments u € ®T(wh), so in particular for all elements y € B we have p ¢ &+ (w), i.e.
BN+ (w) = 0. So we get T (wx) D B, but BN T (w) =0, so w(P*t(z)) DB.

7¢«="" Assume there exists a w} = sq, ... Sq, With B={8;,..., Bk} for an i.

Then we choose w)] := w] and w) := s4, ...Sq, ,wo and show that these elements
fulfil 1): We know

& (wh) U D (wh) = &
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as for p ¢ ®F(wh) we have wy 'say_y -+ Say (1) = 0 = Sa;_y -+ S0y (1) < 0, 50 p €
o+ (w)). Moreover we know

T (wy) N@T (wp) =B
as for all 8; € @ (w)) is B; € PT(wh) & j > i< B €B. O

To prove Theorem we look at some special cases for B and will then combine the
methods of the proofs.

Corollary 4.17 (B = {a} C Il). For B = {a} C Il Theorem/[{.1] is true.

Proof. If @1 (w1) U®T (we) = ®T, then the claim is trivial. Assume & (wq) U™ (wy) #
®*. Then we construct elements w} and w) with ®(wy) C &F(w)), T (we) C O (w))
inductively as follows: We enlarge w; until for w}** and wy either 1) or 2) in the Theorem
is fulfilled: Let w! be the following sequence of elements in W with associated reduced
expressions, such that wy =: w} < w? < ...w! is true for all 4, that is ®* (w;) C & (w?)
for all i:

i _
Wy = Sali W2 = Sa¥Y

for elements z;,y € W with £(w!) = f(z;) + 1 and f(ws) = £(y) + 1. These re-
duced expressions exist due to Corollary Then in particular ws 1w§ = y~lx; with
Uy~ tazy) = £(y) + £(x;). As ®F(wy) U PF(wa) # ®F there exists at least a v € II with
y~tai(y) = 0, so with £(y~tz;) = £(y) + £(x;) also x;(y) = 0 is true. Now we distinguish
two cases for w? (7):

1. Case wi(v) = 0: Then we define wit! := wis, and we get ®+(w!i!)N®+(ws) = a.
By induction we can enlarge wy, until either ®*(w?) U ®F(wy) = &7, i.e. 1) is fulfilled,
or for some 7 the 2. case occurs.

2. Case wi(y) < 0: Then we get from x;(7) = 0 already z;(7) = a. In this case there
is a reduced expression of wj of the form:

wi =54, ... with /Bz(wi) =«

Sa(&(w'i)

and 2) is fulfilled for w) := wy and w} := w}, because wi(y) = s47i(7) = sa(a) < 0,

i.e. we know from Lemma applied to (w?!)~1, that there exists a reduced expression

of w? of the form w% = s4,...8¢ . _S-. In this reduced expression we can see, that
1 1 1 owi)—157

in particular holds: w}(y) = sq, . . . Sal(wi)flsw(’y) = —Bywi) = —, i.e. Byyiy = . Thus

the claim is proven. O
Corollary 4.18 (B C II). For B C II the Theorem 15 true.

Proof. We want to prove this Corollary analogous to the proof of Corollary From

B = {ai,...,ap} and Lemma we know, that there exists a reduced expression
[B|

of wy of the form: wy = [] so;x for a x € W with {(z) = f(w;1) — [B|, the same
j=1

for we. As above we construct again elements w/, w/, inductively: Let therefore w! be
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the following sequence'of elements in W with associated reduced expression, such that
wy =: wi < w? < ...wt holds for all i, so ®F(wy) C &+ (w?) for all 4

[B| IB| [B|

7
wy = Hsajxi Wy = Hsa].y wWp = HS%'
j=1 j=1 j=1

for elements z;,y € W with E( ;) = £(w?) — |B] and with £(y) = £(w2) — |B|]. Again we

get wy twt = y~lo; with £(y~'a;) = £(y) + £(z;). As in the proof above we search for

elements ; € II with 0 < wl(%) ¢ ®*(wq). Le. with y~lz;(y;) = 0. For these elements
) =

we get x;(7y;) = 0, from E(y x; (y) + £(x;). If we find such elements we define
with = wis,, until ®F(wi) U+ (we) = B or there exists an i, for which w} fulfils the
property 2) from the Theorem This works as follows:

1. Case: There exists a v; with wi(v;) = 0 and y~tz;(y;) = 0.

Then the requirements for the induction are fulfilled, as from y~1z;(v;) = 0 follows
wy 'wi(v;) = 0 and therefore w}(v;) ¢ ®F(w2). Then we define again wi™ := wis.,. We
get ®+(wi™) N @+ (wy) = B. So we can continue the induction with this +; until either

in the Theorem assertion 1) is fulfilled or the second case occurs.
2. Case: For all v; with y~1z;(7;) = 0 holds wi(v;) < 0.

Then we take a closer look at the following elements:
w; = a;i_lywo and wi_le
For these elements the requirements from Lemma [4.14] are fulfilled, because:

e B := (I)*( ;) N @+ (z; twg) = 2; 1(B). This can be seen as follows:
— ;7 %(B) C ®F(w;), because For all z;*(b) € 2; ' (B) we get
w; (27 (0) = wy ty e (b) = wy y (D) <0
—

=0

— For all 4 € ®*(z; ') holds ,u ¢ ®T(w;), because:
Assume p € <I>+( D) = w; (1) < 0= wyty T a(n) < 0=y la(p) = 0=
2ili) - 0= 1 ¢ O (a7
e B = a;i_l(B) consists of pairwise strongly orthogonal roots, as B consists of pair-
wise strongly orthogonal roots
e For all y; € ®F(w;)NII we know that ~; lies in x; *(B), because we get wi () < 0
and 2;(v;) = 0, so v; € & (2; twg) and v; ¢ &F(x;1).
Thus we can apply Lemma this provides that there exist exactly |B| elements
in ®* (w;) NII. We call these elements o, .. they are pairwise strongly orthogonal
and we define:

IBI

[B|

wpg! ‘= H O[’/L
=1
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For all 1 < j < [B| we get wj(a}) € —B, because wi(a}) = wgzi(z; (b)) for some b € B
with o = z;H(b), then we;(x; (b)) = we(b) = —b € —B.

Due to o € &7 ( (wi)~1) and as the o’; are pairwise orthogonal there exist by Lemma

a reduced expression of (w?)~! beginning with wg/. The associated reduced expression
of w} fulfils the requirements of Theorem u This follows analogously to Corollary m
and the claim is proven. O

Proof of Theorem[/.1 The general case of arbitrary B C ®* can be reduced to the
special case in Corollary [£.18| with Corollary Let therefore be a reduced expression
of wy given as in Corollary @ Wi = Sqy ---Sa,, and i < j < m with B : {f;,...05;}.
Then we look at the elements v1 = sS4, ,...5q,w1 and v2 = S, | ...Sq, w2. For these
elements B’ := &1 (vy) N &+ (vy) C 11, i.e. the requirements of Corollary are fulfilled
and we can apply the Theorem Now we choose for wi and ws the following elements:
WY = Say -+ - Say_, V] and wh = 84, ... Sq, V5, we get for the intersection:

O (w)) N®T(wh) = 84y - - - Sa;_, (B')
because T (v]) U ®T(v)) = & and further we get:
O (w)) N®T(wh) = Say - - Sa;_1 (Say_y - - - 5ayB) =B
Moreover by induction on the length 4, we get for the union of ®*(w/) and ®(w}):
O (w)) U B (uf) = @+

Thus the Theorem [4.1]is proven for an arbitrary B.

5. TRIANGULAR BOREL SUBALGEBRAS WITH NON-DEGENERATE CHARACTER SHIFTS

In this section we construct a large family of Borel subalgebras associated to a choice
(¢, ¢) of an orthogonal subset of simple roots ¢ (i.e. a coclique in a Dynkin diagram) and
an associated character ¢, which is uniquely given by a family of scalars A : ¢ — K*.
These Borel subalgebras look like a disjoint family of Weyl algebras for each element in
¢, filled up with a suitable maximal set of remaining positive roots.

The Borel subalgebras we construct are by construction triangular and fulfil an addi-
tional non-degeneracy property:

(5) T (wh)N®"(w™) = supp(¢™) N supp(¢)

where for an arbitrary triangular RCS the relation O holds by construction. In the next
section we will then prove that all triangular nondegenerate Borel subalgebras are of the
type constructed here (assumed type A,,).
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5.1. Main construction theorem. Consider now the right coideal subalgebra
C = (U™ [wo]) g+ TLU ™[] -

where wg € W is the longest element of the Weyl group, x € W is a choice of a Weyl group
element such that ¢ = ®* () C II consists of pairwise orthogonal roots; i.e. =[], ¢, Sa-
Furthermore let ¢1, ¢~ be characters with supp(¢™) = supp(¢~) = ®*(x). Any such
character is defined by: ¢ (Y(E,)) = A\ € k* for a € supp(¢™) and 0 otherwise and

¢~ (Fy) = A, € k* and 0 otherwise with the condition

MoAa = o
“ (1-¢2*)(ga —ga")

Moreover let L = supp(¢)=*; this choice is for maximality, there is an ede RCS for any
choice L C supp(¢)=.

Using the commutation relations in C' we will show first, that C is a triangular right
coideal subalgebra, that means closed under multiplication.

Afterwards we will show, that right coideal subalgebras of this form are ede, that
means they have the property, that each finite dimensional irreducible representation is
one dimensional, and if furthermore L = supp(¢)* we show, that C'is a Borel subalgebra.

Main Theorem 5.1. The right coideal subalgebra
C = 1/J(U+ [wo])¢+TLU7[‘T]¢7
with data x,¢",¢~, L as discussed above, is a Borel subalgebra of Uy(g).

In the rest of the section we will work out the proof of this theorem.

First we take a closer look at the commutation relations in C'. For this purpose we first
generalize known results on the description of first terms in the comupltiplication via
technical maps 7,77, that are of utmost importance. Then we apply this knowledge to
show that for all « € ®T(z) the character-shifted root vectors F, € U~ [z] ¢~ Q-commute
with all character-shifted root vectors in (U [wo])4+ except Eq.

5.2. Generalizations of r,. For calculating the commutators we utilize the maps 7,
and r/, due to Lusztig and the following definition and Lemmata can be found in [Jan96]
chapter 6. The aim of the subsection is to generalize Lemma [5.3] which describes the
first nontrivial term (containing a simple root vector) in the coproduct of any element,
stepwise until Lemma [5.10] which gives the same information for certain non-simple root
vectors. Last we apply Lemma which describes T, (U™ [sqwp]) as zeroes of 7, to the
specific situation of a non-simple root vector in Lemma [5.11
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Definition 5.2. Let x € Ulf. For all a € 11 there exist elements ro(x) and rl,(x) in
Ut such that:

(6) Alx) =z 1+ Z ro(z) Ko ® Eo + (rest)
a€ell
(7) Al@) =K, @2+ Y BaKy o®r(z)+ (rest)
acll

where (rest) contains terms in Uy_, K, @ U5 forv =0 and v ¢ IL in (6]) resp. p—v = 0
and p—v ¢ I in (7). In particular ro(1) = 0 = rl(1) and ro(Eg) = riy(Eg) = dag for
all B € 11.

Lemma 5.3. For these ro and v, the following relations hold:
a) For all x € U and 2’ € U;:

ro(za') = zro(z’) + ¢“* ) ro(2)2 and v (x2') = M ar! (2)) + 1 ()2

b) For allx € U andy € U™ :
(Fay, o) = (Fo, Ea)(y, 7o (x)) and (yFo,x) = (Fo, Ea)(y, 7a(2))
¢) We have r,,(z) = 1ro7(x) for all z € U;S with 7 the Cartan involution

Lemma 5.4. Let a« € II and pp € Q4. Then for ally € UZ,, and x € U;r:
Eoy —yEq = (Qa - qczl)_l(Ko/ra(y) - T:;v(y K;1)7
rFy — For = (g — QJI)_I(Ta(iU)Ka - K_lr:x z))
See [Jan96|] chapter 6.
Lemma 5.5 ([Jan96| p.166). For a € II and with wy a longest element:

To(Ut[sqwo]) = {z € UT | ro(z) = 0}
Ut [sqwo] = {x € U |7l (x) =0}

where T, are the Lusztig automorphisms.
First we prove some generalizations of the Lemmata [5.3] and

Lemma 5.6. Let o € Il and ), as in Deﬁm’tion then we get for any X, € UJ n
degree 1 € Q4+ and any B € 11:

ra(XuBg) = ng(u’a)rgil(Xu)Ta(Eﬁ) + 70 (X,) Es
for the constant ¢!, = ¢t ~[i], € k.

Proof. We prove the claim by induction over ¢. From Lemma we get rl (xa') =
g ar! () + vl (x)2’ for € U and r/,(Eg) = dap. This proves the claim for i = 1.
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From the induction assertion follows easily:
ra(XuBp) =ra " ro (X, Ep)
:Tg_l(q(a’u)Xur/a(Eﬁ) + 1o (X Ep)
:Tgil(q(a’”)Xuéaﬂ +10(Xu) Ep)
P (XS0 + g (X (Bg) + (X)) B
=i (X () (g ) 4 ci gl ) 4 (X, E

That is, it is sufficient to show that: ¢(®*) 4 ci-lglen=a) = glem)ci  This holds if and
only if 1+ ¢ 1g~(®®) = ¢ . So it only remains to prove: g2~ [i]o = q,i_(z_l)[i —1]agq;?+1

which works as follows:
Qé_i[i]a -1~ q(i_(i_l)[i - 1]aQa_2
1_(i_1)qa‘1 —d45 ' o

=q, — 3 -1-¢q ——7 4
do — qa da — qa

=gt (@ —aa) —dat it '@ - ) ———

=(Ga — 2 —qa+aat — @t + i)

=0
This proves the Lemma. O

Lemma 5.7. For o € II let rl, be the element as in Definition and X, € U:[ mn
degree 1 € Q4+ then:
A(Xy) = Ky @ Xy + Z Z EoKy—ia ® so(Xy) + (rest)
a€cll ¢
where (rest) contains terms in U, @ U for any v € Q+ ‘which is not a multiple of a.

. . . . i—1 i—1
Here s!(x) = 2%, - rlt(x) € UT for the constant z!, = qQéiI)ci = qz‘j - € k.
@ «@

Proof. Both sides are k-linear. We prove the statement inductively over the height ht ()
of X,,. We look at words in the generators E,,a € II. For ht(p) = 1, i.e. X, = E, for
an « € II, the claim is trivial. Assume the claim is true for elements X,, € U,, then we
prove the claim for X, FEg for an arbitrary 3 € II:

A(XuEg) =A(X,)A(Ep)
(K ® X+ 3 N Ky i @ 54(X,0) + (rest)) (K © By + By 1)
a€cll i
=Ky B @ Xy + K, Kp @ X, B + Z Z BoKu-iaBp ® 50,(X,)
a€cll 1
+ Z Z E'K, inKs® s.(X,)Ep + (rest)
a€ll 1

Where (rest)’ contains terms of (rest) and (rest)Eg. We want to prove, that:
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8) KuBs © X+ D Y BoKyuiaBp © sh(X,)
a€ll 1
(9) + Z Z E(ixKM—iaKB ® Six(Xu)E,B + (rest)’
a€ll 1
(10) = Z Z Ech,u—i-ﬁ—ia ® Sg(XuEﬁ) + (rest)new
acll i

Let us first consider the case o # 3, here
K,Ez® X, + Z Z EgKﬂ_iaE/g ® sg(Xu) + (rest) € (rest)new
acll 1
It remains to prove that
Z Z EL K iaKp © s0(X,)Ep = Z Z EL K, 5—ia @ st (X, Ep)
a€ell ¢ a€ell 1

This holds if and only if s',(X,)Es = s%,(X,Eg). The latter, however, follows from the
corresponding property of /.

Now we consider the case § = . Here: X, = X, 54(Eq). So we can rewrite the left
hand side of equation @ as:

KBa ® XpsalBa)+ 3 S a0 00 B R @ 7 (X, )0 B
a€cll j2>2

+ Z Z E'K,—ioKo ® s (X,)Es + (rest)’
a€ll 1

= Y q# UV EI Ky ja @ s (X sa(Eo)
a€ll j>1

+ Z Z EiuKlHrafia & Sfx (XH)Eﬁ + (7’6875)’
a€cll ¢

Comparing this to the right hand side of equation @D, it remains to prove that for all 7:
SQ(XM)EB + q(ui(iil)a’a)sgjl(Xu)sa(Ea) = Sfx(Xquc)
This in turn follows directly from the definition of s, and Lemma [5.6 U

Lemma 5.8. For all v}, and ro as in Deﬁm’tion the following equations hold:
a) For all o, 8 € 11:

ol = TTa
b) For «, B € 1 with either « = 8 or o L 3

TalB = T8Ta
¢) For a, 8 € 11 with either oo = 8 or o L f3:

A,
Tarﬁ—rﬁra
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Proof. We prove the statements again by induction on ht(u) for elements X,, € U™ for
pE Q4
a) For p € II both sides are 0. Consider now for an arbitrary «v € II, u € @+ the product
X, E,:
rars(XuEy) =ra(qP" X85, + 13(X ) Ey)
:q(ﬁ#)ra (Xu)(sﬁ’y + Tlﬁ (Xu)éa'y + q(%a)rar,lb’ (X,u)E'Y
On the other side:
ora(XuEy) =rs(Xuay + 410 (X,) Ey)
:%(XM)(;OZ7 + q(ﬁ,a)q(ﬁw—a)m(Xu)gm + q(%a)r/ﬁ'ra(Xu)E'y
1.A.

T/B(Xu)‘sow =+ q(ﬁ’a)q(ﬁ’“ia)ra(Xu)‘sﬁv + q(%a)TaT,IB(XM)EV

b) Here for o € II both sides are 0. For u € Q4,7 € II and arbitrary o, € II we
consider first rorg:

rarg(XuEy) =ra(X.py + q(ﬂ’v)rﬂ(Xu)Ev)
=ra(Xu)86y + 4P rp(X0) 00 + 4P (X, E,
On the other side we get for rgry:
rara(XuEy) = 15(X,)00y + ¢ ra(X0) 08y + ¢P ¢ rgra(X,) By
By the induction hypothesis, the two sides are equal, if:
ra(Xp)0py + q(’Bﬁ)Tﬂ(Xﬂ)(Sm = 78(Xu)00y + q(%a)"”a(Xu)‘sﬁv
This is true if and only if & = 8 or (a, 8) = 0. ¢) The proof is analogous to b). O

Lemma 5.9. We expand the definition of ro to r4 for elements: & =Y, iray € Q with
i € N and pairwise orthogonal roots oy, € 11 as follows: Let x be a homogeneous element
in U". Then we define:

ra(x) == Hr;’“k(x) ceUt
k

Due to Lemma this is well defined. Moreover let supp(a) := {k € N | iy, # 0}.
Now we get for arbitrary X, € U for p € Q and B, € U for vy € 11:

ra(XuBy) = Y b " ra o (Xu)ra, (Ep) + ra(X,.) Eg
kesupp(a)

Proof. We prove the statement with induction on |supp(@)|. For n = 1 the claim follows
from Lemma Consider a root as above & = ), oy, then for an arbitrary j with

. . . 05 i . o _ .
ij # 0 in particular we get ra = ra; [ [, re,- We call 3, ikay = a', so a = &' + ijoy



22
and for the root @' the claim follows from the induction hypothesis.
ra(X,Ey) :rgjro?’(XuEv)
=rd,( Y b d" e, (Xu)ra(Bs) + ra(X,) Ep)

kesupp(a’)
. i ) i—1
- Z Cgckq(mak) Ta/tija;—ag (Xp)dayp + cf)fj q(aﬁu) r@/r(()fj )(Xu)raj (Es)
kesupp(a’) - v - v
+ T@’+ijaj (XH‘)Eﬁ
= > g e (X 0as + ra(X,) Es
kesupp(a)
Thus the claim is proven. ([

Now we can prove the strongest generalization of the technical Lemma 5.3

Lemma 5.10. Let & = ), ipap € Q and rqg = krg’fk as above and zg =[], z,’fk €k
for the elements zq, from Lemma . Then we get for X,, € U, for a root € Q4 :

A(Xy) = Ky ® Xy, + Z EsK, a® sa(X,)+ (rest)

Where (rest) contains terms in U, ® Uy,_,, such that v € Q is not a linear combination
of pairwise orthogonal roots oy, € II.

Proof. The proof works similar to the proof of Lemma [5.7] together with Lemma[5.9] O

Having finished this we close this technical subsection by applying Lemma [5.5

Lemma 5.11. Let wg € W be the longest element of the Weyl group with a reduced
ETPTESSION W0 = SaiSas - - - Saygy,,- Let Ot (w) = {B1,--, Beqwy)} with respect to this
reduced expression. For an o € Il let 3; = a. For the root vectors Eg, the following
relations hold:

a) Fori <j:

T&(Eﬁi) =0
b) Fori> j:
TOA(E&) =0
Proof. According to Lemma [5.5| we know:
To(Ut[squp]) = {z € U | ro(x)
Ut [sqwo) = {x € U | rl(2)

0}
0}

a) For i < j in particular Eg, lies in U™ [sqwo], thus 7/ (Ez,) = 0.
b) For i > j in particular Ep, lies in To (U™ [sqwo]), thus r(Es,) = 0. O
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5.3. Commutator relations of character-shifted root vectors. We use the results
of the preceding subsection to calculate commutator relations of character-shifted root
vectors.

Lemma 5.12. Let ¢ be a character on a right coideal subalgebra A of Ut and Ay be the
character-shifted subalgebra. We define the character-shifted elements of Ay as follows:

= (¢ ®id)A(X,) for X, € A,
Let ¢ be a character whose support contains only pairwise orthogonal roots in II, i.e.
supp( ) = {al, coyapt CIT with ¢(og) = A € k. We define & = ) igoy, as above and
Aa =1 A, Then

Xu =X, + Z Aasa(Xp)
0<a=<pu

Proof. From Lemma this follows directl, because (rest) is zero. O

Lemma 5.13. Given C = (U™ |wo))p+TrU ™[]y~ C U as from in the beginning, i.e. for
x € W a Weyl group element such that ®*(z) C II consists of pairwise orthogonal roots.
Further let ¢*,¢~ be the characters with supp(¢p™) = supp(¢p~) = T (x) defined as
follows: ¢+ (Y(Eq)) = A € k* for a € supp(q5+) and 0 otherwise and ¢~ (Fp) = X, € k*

and 0 otherwise, with N, A, q—a
(1 Qo )(qa Qo )

Then for any o € supp(¢") and p # « for elements X, € (Y(UT[wo])y+)y and
F, € (U™ [z]y-)a the following q-commutator relation holds:

(11) [Fo+ MK Xl gty = 0

Proof. Consider an element 7/, (s5(X,)). Then:

TQ(SQ(XH)): xi So_z—l-a(X,u)

[0}

for i = Eg’zg + 1. That is:
—1r- —7— Q(x
71 (56(Xp)) = sata(Xu)ay '] = sata(Xp) (g ——)

Inserting m 5.12| in m yields:

[Fa +>‘,aKa ,X plg=— (o) = Z)\ [Fo, sa(X, )Kgl]qf(uﬁa)+Xa[KglaSa(Xu)K_l]qf(u»a))

n
Oo<a
For it remains to prove, that:
(12) Z)‘&[Faasd(X,u) q (By0) = Z)‘ )‘/ o ( )K;:l]q*(uya)
0<xa O

To see this we use Lemma this yields for o € II and z € Ulj' :
(13) 2l — Fox = (qa _q(;l)_l(ra(l')Ka —K(;lrg(x))
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Consider first the left hand side of (|12] @:
Z AalFo, sa(Xu) K, q () = Z Aa(Fosa(X, K q*(“’o‘)s&(Xu)KglFa)

0k 0<a

0<a
(3) _ _
= =Y Nalda — a2 ")  (ralsa(Xu) Ko — K3l (sa(Xu)) K,
0<a
PN Al — a2 O (s (X)) K K
0<a
_ Noset (X 1K—1 —2 1 qa -1 —1N—1 —(oup) i
—Z a5a+a( u) 1 (q qa) q 4y
0=<a da — Qo
— qa -1 -1\—-1 —(«
_ZA)‘ lKl ! _1(Qa_qQ1) 1‘](’#)
a<a o — G
On the right hand side of the equation we have:
= AN sa (XK e = — > Aadp (Ko sa(X) K, — ¢ 9s5(X,) K KL
O O
:_Z)\ )\lsa 1K q(ua)( 21— _1)
as

Comparing both sides we get:

21—2
Z - 11, 14 -1 ] —
A&AQIS&(X“)KﬂlKalqalai_l(th _Qal) 16] (a“u)QEM

=-> Nadpsa (X ) K Kt ) (g% — 1)
aa

It remains to prove that:

1141 1y-1 2 r(2i-2
Ao o ﬁ(qa —4o ) qa=Aula 1)
(03 o
Rearranging yields:
2
’ 4a
Aot (1—¢a")(qa — Qal)
Thus the claim is proven. O

Corollary 5.14. Given C = (U™t [wo]) g+ TrU " [z]4- C U as from the beginning, i.e.
for x € W a Weyl group element such that ®*(x) C Il consists of pairwise orthogonal
roots. Further let ¢, ¢~ be characters with supp(¢™) = supp(¢~) = ®T(x) defined as
follows: ¢+ (Y(Ey)) = Aq € k* for a € supp(¢™) and 0 otherwise and ¢~ (F,) = N, € k*
and 0 otherwise, with A, A\ = % and let L = & (x)PerP,

Then C' is a triangular right coideal subalgebra, i.e. closed under multiplication.
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Proof. This follows directly from the commutator relation of Lemma, [5.13
[Eﬂv Fa] =0
for all € supp(¢™), B € @+ \supp(¢'). On the other hand we know:
[Ea, Eg) = [Ea, F3| = [Fa, F5] =0,
— — q2
[Eom Foc] = 17&71
Go — qa

for all a # 8 € supp(¢p') and of course
(B E)) C (U [wol)gr [Bu, Ky] =0

for all p,v € @ and v € T with K, € C. So the ordered product of subalgebras C' is
closed under multiplication and therefore a subalgebra. As a product of right coideals,
it is in particular also a right coideal subalgebra. ([

Remark 5.15. Let C = (Ut [wo)) p+ TrU ™[]y~ be the right coideal subalgebra as from
the beginning. If C C Uy(sly), then for a mazimal root u € ®T the root vector E, €
YU [wo]) g+ we obtained in Lemma [Vockel6] Lemma 3.36 q-commutes with all root
vectors in C.

Due to Lemma E,, g-commutes with all root vectors in T,U~ [x],-. From Lemma
[Vockel6] Lemma 3.36 we know, that E, q-commutes with all root vectors in UT. As
U'tlwo] = Ut{wo)s for characters ¢ on U |wy], we already know, that all root vectors
in Y (U*[wo)) g+ g-commute with £, and thus the claim is proven.

5.4. On representation theory of triangular coideal subalgebras. Recall how we
have proven in [HLV17] that the standard Borel subalgebras are indeed ede:

Lemma 5.16. Given a Weyl group element w € W and the corresponding right coideal
subalgebra U~ [w]. Fach finite dimensional irreducible representation V', on which all el-
ements in U~ [w] N kere act nilpotent is one dimensional.

In particular U~ [w] is always weak ede. The same is true for U™ [w].

Corollary 5.17. Given a Weyl group element w € W, L a subgroup of Q and the corre-
sponding right coideal subalgebra C = T U™~ [w] with the property, that for all p € ®+(w)
there exists a v € L such that (u,v) # 0, then C is ede.

In particular UU~ [w] is ede, as well as the right coideal subalgebra UUT [w].

From now on let C' = ¢(U*[wo])y+TLU [2]4- be as in the previous subsections,
i.e. let x € W be the Weyl group element such that ®*(z) C II consists of pairwise
orthogonal roots. Further let ¢, ¢~ be characters with supp(¢') = supp(¢~) = ®T (),

2
and ¢+ (Eo)¢™ (Fa) = m and L C &*(z)*.

Lemma 5.18. For C' = (U™ [wo]) g+ TLU ™ [z]4- any finite-dimensional irreducible rep-
resentation is one-dimensional.
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Proof. Let V be a finite irreducible representation of C. As the roots in supp(¢™) are
pairwise orthogonal and as L = supp(¢*)*, then due to Lemma the following
commutator relations hold:

[EOHE/B} = [ECHK#] = [EQ’F/B] = [FQ7F,3] =0

for all o # B € supp(¢™") and p € &+ with K, € C. We consider the reduced expression
of the longest element:
wo = ( H Sa; )V

o Esupp(¢T)
Let C” be the subalgebra generated by the elements Ep, for i > |supp(¢™)|. From the
maximal choice L = supp(¢+)+ we get for any Es, € C’ an element K,, € Ty, with
qPir) £ 1. C" is as algebra isomorphic to U™ [v], so we can apply Corollary and
show, that C” is ede and we can thus prove the existence of a vector v € V which is
annihilated by C".

Let Vi be the annihilator of C’ in V, i.e. Vv := {v € V|Va € C' : zv = 0}. We claim
that Vv is a C-submodul of V: We know from Theorem that all elements X,, € C’
q-commute with all elements in LU~ [z],-.

For degree reasons we know that the g-commutator of the elements in C" and ¥(U ™ [x]) 4+
lies in C’, i.e. vanishes on the representation Viv. Thus with Theorem Ver is a C-
subrepresentation, and as V' is irreducible we get Vor = V.

Thus we get for the irreducible representation V of C'

C'|V gTL® ® <Ea7Fa>
a€supp(¢T)
So the ede property follows from the ede property of the components of the tensor

product. Ty, is abelian, and for any o € supp(¢™) the subalgebras (E,, F,,) are quantised
Weyl algebras, which are ede by Example O

5.5. Proof of the main construction theorem.

Proof. From Lemma [5.18 we already know, that C' is ede, it remains to prove the maxi-
mality of C. Let C’ be an ede right coideal subalgebra with C c C’.

Due to the second authors generating system for any RCS in [Vockel6] Lemma 4.11
or [Vockel7] we can choose a generating system of C’ consisting of elements, whose
E-Leitterms lie in U=°.As we know that ¢ (U™ [wo])g+ C C C €, all elements with non-
trivial E-Leitterm lie in UZ%: That is, to each additional element X in C’ we find an
element Y in C NUZY, such that X and Y have the same E-Leitterms. Thus the differ-
ence has a smaller degree and can be generated as in [Vockel6] Lemma 4.7 by elements
with E-Leitterms in U=, which again have smaller degree as before. By induction it
follows that all generators as in [Vockel6] lie either in U=? or U= and the right coideal
subalgebra C" is triangular generated, i.e. of the form C" = (U™ [wy]) o T U™ o] -
for a v € W with £(zv) = £(x) 4+ £(v) and characters ¢\, and ¢;,.,,.

As Ty, € C', we can consider ¢, &, such that all elements in C’ are ad-T-stable.
As O’ is ede we can conclude: supp(¢;.,), supp(¢r.,) C (Tr)t = supp(é*). On the
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other hand Theorem (3.3 yields, that for all elements p € &+ (wg) N @F(zv) D T (x)
holds 11 € supp(@y,e,) N SUPP(Ppe,,)- Thus we get supp(dye,) = supP(¢ye,) = supp(¢ ™).
As T C (supp(d;,,) N supp(dne,))t = (supp(¢T))* and of course L € L/, so L' = L
follows directly.

In the case g = A,, the claim follows from Lemma [2.11] in general we can prove it as
follows: Assume v # 1, then there exists o € IIN ®*(v). Is a orthogonal to all elements
in supp(¢™), then E,K!, F, € C' and Corollary yields a contradiction to C’ ede.
Is a not orthogonal on all elements in supp(¢'), then there exists a root u € ®+(zv)
and a term F, = cFaK;_la + 2 e XI,K;_IV € C' for a constant ¢ € k* and terms
X, € Us" with @ < v: This claim follows from the fact that the elements in supp(¢™)
are pairwise orthogonal and simple and in the relevant cases As, C3 resp. Dy resp. Bs
one can calculate the coproduct of F, directly.

On the other hand we know E, K1 € C’. Considering the action of the 1-commutator
on the lowest weight representation L(\) to a lowest weight \ with ¢\ #£ 41, we find:

[F, Ea Koy = FyE K 0y
=PI, B K oy + > Xy Bo Ky oy

Vo

—(/L—Q,Oé)
cq _ _
=K' (Ko— K. ")y = vy
doa — qa

for a ¢ € k* by choice of the smallest weight \. It follows that the commutator has
a non-trivial eigenvalue in the finite-dimensional representation L(A) and thus not any
finite-dimensional irreducible representation of C’ can be one-dimensional. So v = 1 and
C’' = (O, i.e. C is maximal and thus a Borel subalgebra.

O

5.6. Classification theorem. A triangular right coideal subalgebra is always of the
form: C = (Ut |[wH])p+TLU [w™]4-, where w™,w" € W are elements in the Weyl
group; be advised that not any choice of w™,w™ conversely leads to a well defined alge-
bra. By definition of the character-shift it makes only sense to consider L C (supp(¢™)U
supp(¢~))*, see Theorem In the previous subsection we have constructed Borel sub-
algebras with an additional non-degeneracy property supp(¢*)Nsupp(¢~) = &+ (w™)N
®t(w~) and supp(¢p™) = supp(¢~). Now we conversely prove in the case of A, that
we have found indeed all Borel subalgebras with these properties. We use in particular
Theorem on Weyl groups, which tells us that an arbitrary triangular ede RCS is
contained in a larger triangular ede RCS which is then isomorphic via some T, to one
of the Borel subalgebras we constructed. It is this theorem on Weyl groups which we
generally conjecture, but here could only be proven for A,,.

Main Theorem 5.19. Assume type A,. Every triangular Borel subalgebra of U,(g)

B=yp(Ut [wr )+ TLU [w™ ]~
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with the additional non-degeneracy property ®T (wt)N®*(w™) = supp(¢p™) = supp(¢~)
is isomorphic as algebra to a Borel subalgebra of the form constructed in our Main The-

orem [ 1.

That is: (U [wo)) g+ TLU ™ [[Taee Salo- with L = ¢*, where ¢ is a set of pairwise or-
thogonal simple roots and ¢, ¢~ are characters on Y(Ut([],c. sal) resp. U™ [[]aee Sal:
given by an arbitrary choice of the values Ao = ¢T(ELK;Y), N, = ¢~ (Fy) for a € ¢

With Mg = — %
A (1-¢2 %) (ga—da )

In the rest of the section we will give a proof of this classification result.

Lemma 5.20. Let C be a triangular ede right coideal subalgebra of the form C =
V(U w1]) g+ TLU ™~ [wa]p— with ®F(wy) N ®T (ws) = supp(¢t) = supp(¢p~) =: B. Then
there are elements wi,wh € W with ®*(wy) C ®F(w)), ®T(wa) C ®F(w)), such that
Ot (wh) N ®T(w)) = B and T (w)) U @ (wh) = ®+. For these elements w',w) and
L' := Bt we get

CC 1/J(U+[w’1])¢+TL/U*[w§]¢7 = '

Proof. The existence of such Weyl group elements wf, w), is the purpose of Theorem
Of course we have Ut[w;] C Ut[w]] and Ut|ws] C Ut[w)]. So it remains to prove,
that ¢T is a character on Ut[w]]. From Theorem we already know, that w| has
a reduced expression of the form w} = Saj, -+~ Say, » such that there is a j < k with
B={Bi,..., 0B} Dueto Remark ¢ is thus a character on U [w/]. The same holds
for U~ [w}]. Thus the inclusion C' C (U™ [w]])p+ T U~ [wh)s- holds. O

Now we take a closer look at C" = (U™t [w]]) g+ T U~ [wh]s-. In particular we want
to show, that it is a triangular right coideal subalgebra and ede. For this in particular we
use Theorem and the Lusztig automorphisms. We already know that for w), there is
a reduced expression w) = Say, -+ Sa such that B = {ﬁiangBm’ e ’ﬁiaw’z)}' We

and z := s, such that w) = v~z

to(why)’

define: v! := s,. ...Sq4 ... S
Y Yo (wh)— | o(wh)—[B+1 i

and from the choice of w] we get vw| = wy, as D+ (w]) UPT (w)) = ®*, moreover T (x)
consists of pairwise orthogonal simple roots, by Definition of B.

o)’

In the following Lemma we now prove that in this situation we can apply Lusztigs
automorphism 7, to the chracter-shifted RCS (in general this does not give a character-
shifted RCS!) and show that it has the intended result claimed in the classification:

Lemma 5.21. Let C be a triangular ede right coideal subalgebra of the form C =
V(U 1)) p+ TLU ™~ [wa]p— with & (wy) N @ (w2) = supp(¢pT) = supp(¢~) =: B. Given
the corresponding wh, wh = v lz withv™! and x as above, then the Lusztigautomorphism
T, maps the coideal C' constructed in the previous Lemma :

(14)  TEU ) Tp U™ aly- ) = (Ut owi ), o0 To(T) (U [a]) 7, (6-)
o

1The reader be again advised that C’ is a product of coideals, but at this point not necessarily an
algebra. In our specific situation this follows from the next Lemma



29

where T, (¢T) is defined as ¢= o T, L.

Proof. Let us consider the PBW generators of C: As C is triangular, all of them lie in
YU [wi]) g+, U~ [v7 x4~ and Tp. Let’s consider first U~ [v™!a],-. Due to the choice
of the reduced expression of v~'z, the basis elements of U~ [v~'7] o~ have the following
form:

oo F,+ gb_(FM)K;l for p € supp(¢™)
. E, otherwise

Thus we get for the Lusztig automorphism T,:

To(Fu) + ¢~ (F)To(K, ) = for 41 € supp(¢™)
Ty(Fu) _ TU(FM) + Tv(¢_)(Tv(FM))Tv(K;1) = T’U(Fu)
Ty(Fu) = Ty(Fu) otherwise

The same is true for the basis elements of U™ [w]]+.

With these considerations, we can argue analogously to non-character-shifted right
coideal subalgebras in [HK11a] and obtain the assertion: As & (w}) U®t (w)) = T and
Ot (w)) N®F(wh) =B we get £(zw)) = l(wp), s
T (U fwi)) g+ T U™ [0 a4 ) =Tu(w(U+[w1])¢+) () Lo (U™ [0 - T (U [2] 1, (6-))

=(U T [0]) 1, (o) To (WU (w1 ) ot To (T ) LU ™ [2)7, ()
=Y(UT ot D), (1) To(Te) (U [2])7, 67
=(U " [wo]) 1, (6+) To (T ) (U™ [2]) 1, (6

The Lusztig autmorphism T, is in general not an coalgebra homomorphism, but in

this special case T, is an algebra homomorphism, sending a right coideal to a right

coideal.
O

The image T,(C’) in the previous Lemma is one of the Borel subalgebras we con-
structed in our Main Theorem regarding the characters: The relation between ¢T
and ¢~ has to be as asserted in order for C’ and even C to be ede by Lemma Now
also C" is an ede right coideal subalgebra, because T, is an algebra homomorphism, so
in order for C' to be maximal we have at least C = C’.

The remaining problem is: A triangular ede right coideal subalgebra of the form
C = (Ut w1])p+ T U™ [wa]y- which is via T, isomorphic to the above-constructed
triangular Borel subalgebra, a-priori itself does not have to be maximal, as C' could lie
in a bigger ede right coideal subalgebra C” O C’ = C, whose reflections to T,(C") is not
a right coideal subalgebra any more.

However in A,, we know from Lemma and the maximality of L, that C' cannot
lie in a bigger triangular ede right coideal subalgebra.
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This concludes the proof of the Main Classification Theorem [5.19

5.7. Induction of one-dimensional modules. In the Main Theorem [B.1] we have
constructed a large family of Borel algebras

B = (U [wo]) g+ TLU ™ [2]5-

where z =[] ¢, Sa such that ¢ = ®*(z) C II consists of pairwise orthogonal simple roots,
and L = supp', and the characters ¢, ¢~ on supp := supp(¢*) = supp(¢~) = ®*(x)

are given as usual by suitable values for a € supp.

2
SHW(Ea)) = ha €K%, ¢ (Fa) =N, €k, Noha T
(1 — qa )(Qa — Qo )

Now let C, be a one-dimensional representation of B. Since there is a quotient algebra
where all Eg — 0 for all 3 ¢ supp, the one-dimensional representations are in bijection to
one-dimensional representations of the |supp|-fold quantum Weyl algebra generated by
the character-shifted simple root vectors E,, F,, for all o € supp. By Example [2.7] - 7| hence
any one-dimensional representation C, is given though scalars e, fo for all o € supp

2
with again e, f, = HOTQ;(W. It is then clear that:

Lemma 5.22. Let B be a Borel algebra and V a one-dimensional representation as
above. Then the induced representation

V(B,x) := Uq(g) @5 Cx

1 as a graded vectorspace isomorphic to

&R ClEs ®< (09 C[Ka,Ka1]>

BED+\supp aEsupp

The first factor is the space of coinvariants under projection to the Borel part Uy (gsupp) ™t
where here ggupp C g is of type A; x Ay x ---; in fact this is a Nichols algebra in the
non-semisimple category of U,(gsupp)-modules. The second factor makes the induced
module for supp # 0 non-diagonal in Uy(gsupp)? C Uy(g)?, which acts simply by left-
multiplication.

Question 5.23. Similar to the sly-case in [HLVI1T7] we may ask for the decomposition
behaviour of these modules. We expect that they are again largely irreducible up to discrete
series’ in some e, fo. In particular if all eq, fo are of this form, we expect again all
finite-dimensional irreducible modules of Uy(g) as unique quotients.

6. TRIANGULAR BOREL SUBALGEBRAS WITH DEGENERATE CHARACTER SHIFTS

Now we construct and study Borel subalgebras without the non-degeneracy property,
so:
F(w) NdF(w™) 2 supp(¢F) N supp(¢7)
These are not isomorphic as algebra to those of the non degenerated types. o
These Borel subalgebras can contain non trivial character-shifted root vectors E,,, F},
even though p ¢ supp(¢™)Nsupp(¢ ™), if i is not simple and there is a smaller v < p with
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v €€ supp(¢t) Nsupp(¢~). The properly character-shifted root vectors E,, F, generate
again a quantized Weyl algebra and the entire Borel subalgebra contains extensions of
Weyl algebras.

In this section we restrict to the case A,,.

6.1. Some classification results on Borel subalgebras of degenerate type. We
want to give some preliminary classification results for general Borel subalgebras C =
YU wH])p+TLU [w™]4- of the quantum group of type A, with ®*(w*)N &+ (w™) 2
supp(¢™) Nsupp(¢~). To prove the expected result we use two technical restrictions, of
which we conjecture that they are true for general Borel subalgebras:

supp(¢™) = supp(¢™)
w.log ®T(w7)cdF(wh)

Under these assumptions, we can show that every triangular Borel subalgebra is of
the following type.

Definition 6.1. In A, we consider the following types of Weyl group elements:

e For1<i<j<n aladder w(i,j) is the following Weyl group element together
with a reduced expression:

w(i, J) = Sa;8ai41 - - - S
For the associated roots in ®*(w(i,j)) we use the notation
Br(i,5) = Sa;Sais - - Sapsp_s(@ith—1) 0<k <j—i+1
e forl<i<nmnand0<I<n—i,0<k<1—-1 aVék is the following Weyl group
element together with a reduced expression:
Vék "= Sa;Saip1Saips - - Sy Sai_1Sai_g - - Say_p,

Of course ®+(ViF) = {275—0 @it 2?278 iy |0<r<1,0<s<k}.

e For1<i<mnandj < min{i —1,n —i} a diamond o;; is the following Weyl
group element together with a reduced expression:
i
04, = VIV g0

e For 1 < i < n a palm VY, is the following Weyl group element together with a
reduced expression:
V, = vakiyleke

With0 <1l; <n—1,0<k; <i—1 and the property l; > ;11 and kj > kji1.

Theorem 6.2. For C = (Ut |[wh])p+TLU [w]y- ede with ®F(w) C ®F(wh) and if
supp(¢t) = supp(¢p~) =: supp(¢) only the following choices of w are possible:
(1) In the case supp(¢) = {a;} C II:

_ylk ._
W = V;" 1= Sa,;S0; 115049 - - - SoiyySai_1Sai_g -+ Say_y,
for some 0 <i,l,k <n, as in Definition[6.]].
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(2) In the more general case supp(¢) NII = {a;}:

_ . ylikiylake
w =Y, = VMV L

for 1 <1 < n with the property l; > lj 11 and kj > kjq1.

This w is the inverse of a special element in the following sense

Lemma 6.3. [[HLVI7]/ For a Weyl group element w € W and a root o; € 11
the following statements are equivalent:

o the set @ (w™!) contains evactly one simple root, which is «;

o for all j # i holds {(sq,w™) = l(w) + 1, but {(sq,w™ ") = L(w) — 1

o In each reduced expression of w the last factor is s,

Let W; be the (so called parabolic) subgroup of W, which is generated by the
Sa; with j different to ©. Then in the case above w is the unique representative
of the left coset wW; with minimal length.

If i m is the mazimal diamond with ®T(0; ;) C T (Y;), then:

i+l
Supp(¢)={ > akloﬁlém}

k=i—1

(3) In the general case supp(¢) NIl = {;,, s, ...} =: J (pairwise orthogonal) holds:
w is the special element with ®*(w) NI = J. That is w is the generalisation of
the inverse of a special element in the sense of Lemma [6.3,

If C is even a Borel subalgebra, then we conjecture due to the maximality:
w = Hvi
ieJ
For special elements V;, which commute. The support of the character supp(¢) is the

union of the support of the respective palms.

Proof. As the elements in supp(¢) are pairwise orthogonal the claims follows directly
from The form of the support supp(¢) in 2. follows directly from Corollary

If C' is a Borel subalgebra we get from Lemma that only those combinations of
V; are possible which are disjoint, i.e. which commute. O

6.2. Construction of degenerate Borel subalgebras of height 1. In the following
we want to construct non-degenerate ede right coideal subalgebras which correspond to
palms of height 1 in the previous subsection,

supp(¢) = {a;} € 11 w=Y, = ik
for some [,k € Ny. Due to Theorem @ the ede property of C' implies Aq,An; =
7y for ¢ (P(Eq;)) = Ao, and 0 otherwise and ¢~ (Fy,) = A,, and 0 other-

q2
(g—q~")(1—q
wise.
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Lemma 6.4. For type A, the following is an ede right coideal subalgebra: Let 1 < i <n
and 0 <1 <n—1i, 0 <k <1 be arbitrarily chosen, then we consider an arbitrary palm
of height 1 w*,w™ := V¥ which means:

r 0
Ot (wh) =dT(w™) := {Za”j’ Z iy |0<r<1,0<s <k}

7=0 j=-—s
as above
C = (U V¥ )y TLU ™ [VIF] 4

for L ={p | pLla;} and characters ¢ and ¢~ with supp(¢+) = supp(¢~) = {a;}.
More precisely C has the following relations between two character-shifted root vectors
for roots p,v, ' € & (VIF):

_ _ q2
) 7[EaiaFai] j qi_ g
[EWEV] = [Fm FI/] =0

for il = H— Qi Z:fu = Zgzo Qg j
p—is  if =300 g

Proof. The commutator relations follow from the explicit calculations in [Vockel6|] chap-
ter 3.

Now we prove the ede property: Let V' be an arbitrary finite dimensional represen-
tation of C. We consider the restriction to the right coideal subalgebra (E,,, F,),
which is a quantized Weyl algebra as usual by the choice of characters. We know
from Example that on any finite dimensional representation of the Weyl algebra
the commutator [E,,, F,,]1 vanishes. In particular, each finite-dimensional represen-
tation of the Weyl 2;‘;ngeblrau factorizes to a representation of the commutative algebra

Cle, f]/(ef — m)-

We now consider the next-largest subalgebra, which is generated by the Weyl algebra

and all E,, F,, with ¢/ = «;. Due to the commutator relation [E,, F,] = [E,, Fy]y we

get that [EM,FM]q(H,M) acts trivially on V. Due to Theorem (and as ¢*") £ 1) this
implies, that the elements Eu, Fw which g-commute with all elements on V', act trivial.

Consider now inductively the next larger subalgebra with E,,, F), for (1)’ = a;. From
the relation [E,, F,,] = [E,/, Fjy]1 and the just proven trivial action of E,, F,, it fol-
lows that the g-commutator acts trivial on V. Inductively we know that all £, F;, with
u # oy act trivial on V.
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Thus, the category of finite-dimensional representations of C' is equivalent to the
category of finite-dimensional representation of the commutative algebra Cle, f]/(ef —
m) and, in particular, all irreducible finite-dimensional representations of C'
are one-dimensional.

O

7. EXAMPLES

We now present all Borel subalgebras of the examples Uy(sl2), Uy(sl3) and all trian-
gular Borel subalgebras of U,(sls), as discussed in the second authors work [Vockel6]
chapter 9-11 or [Vockel7]. We do this for one to illustrate the results of our present
article. On the other hand it is interesting to know all (potentially non-triangular) ex-
amples with a different method, this is how we arrive at our conjecture that all Borel
subalgebras are triangular.

The strategy to find all maximal ede RCS requires first to get a hold on all RCS:
This is the theorem providing a generating system for an arbitrary RCS in [Vockel6]
chapter 4. Then we disprove the ede property using restrictions of suitable minuscule
Vermamodules as in section 3.

7.1. Borel subalgebras of U,(sly). The standard Borel subalgebras U=? and U=°
and U° are the only homogeneous right coideal subalgebras of Uy(slz). Furthermore
there are the right coideal subalgebras (EK ') in U=% and (F) in U<", and families
of character-shifted right coideal subalgebras (FK _1>¢+ resp. (F)4- for characters on
(EK~Y) resp. (F) given by ¢t (EK™') = X and ¢~ (F) = ). They have the form
(EK Y4 =(EK "4+ XK"Y and (F)y- = (F+ NK™1).

As in example [2.7] the right coideal subalgebra
(EK' 4+ AK L F+ NK™Y

is ede and hence a Borel subalgebra, iff

q2

1-¢*)(g—a)
Note, that different Borel subalgebras B for different choices of A\, \' are mapped onto
each other via the Hopf-automorphism E — tE, F — t~'F.

AN =

Together with the standard Borel subalgebras these are all Borel subalgebras of
Uq(ﬁ[g).

7.2. Borel subalgebras of U,(sl3). For U,(sl3) we found that all Borel subalgebras are
triangular. Besides the standard Borel subalgebra there are two isomorphism classes of
non-degenerate Borel subalgebras as discussed in section [5| and one degenerate of height
1 as discussed in section [Gl

Standard Borel subalgebras. Due to Theorem UZ9 and U= are Borel subalgebras.
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Non-degenerate Borel subalgebras. The Borel subalgebras (Ut [w*]) ;+ T U~ [w™]4- with
Ot (wt) N @ (w™) = supp(¢p™) N supp(¢~) are due to Theorem up to symmetry
isomorphic as algebra to (U™ [wo]) g+ (K281q; K2_61+Q>U*[sa]¢f with ¢T(EK 1) = \F
and 0 otherwise, and ¢~ (F,) = AJ, such that AT\, = %.
there are up to symmetry exactly two such Borel subalgebras. These are

YUt [wo]) g+ (K2 +as K2_6+a>U7 [salg-

with characters as above and
DU [sas8]) gt (Kap K1) U [sp50) 4
with ¥ (EagK | 5) = Al5 and ¢7 (Fap) = A4, such that AT A, =

More precisely

2
=) (=g Dolds.

A degenerate Borel subalgebra (U™ [sa58]) o+ (K28+a; K2_51+Q>U_ [sa8p]e—- The third type
of triangular Borel subalgebras in U, (sl3) is of the form

DU [sasp)) gt (Koprar Kogpo)U [sa58]4-
with ¢t (E,K;') = A} and 0 otherwise, and ¢~ (F,) = A, and 0 otherwise, such that

APAS = % as above. The generating elements of this right coideal subalgebra
are the following;:

E,:= E,K;' + \J K !
F,:=F, —l—)\fK*l
K = Kygro und K ' :i= K}

25+a
Eop = BapK 5+ (1 — ¢ )\ BsK 4
Fpo = Fpo + (¢! — )\, FK,, !

The product of the constants ¢; := (1 —q¢ 2)AL resp. o := (¢71 —¢)A; in the terms E,z
resp. Fga is:
2

caea=0-¢ )\ (@' - s =0-a¢ " -9 1- qz)q(q Y =1

For these ¢; and 02 consider the commutator of the both elements:

[EapK, +B +(l—q ))‘+E6Ka+ﬂ’FBa + (07 — A FsEL g
4

q
—q!

1

= (Fa + M\ K ) (Bo K, + MK (¢ = ) + p

Thus the commutators of the generating elements in B are given by:
[K7Ea]1 - [Kv ch]l == [Kv Ea,@]l - [Kv F,Ba]l =0

— — q — —
[Ea, Folp = — 1 [Ea, Eaglg = [Eas Fgalg =0
[Fo, Eagly—1 = [Fa, Falgq-1 =0
q4




36

Consider now a representation V' of B. We already know, that (Eq, F,) is ede. As in the
general case of Lemma [Eq, Fo]1 acts trivial on every finite dimensional V. So the

term F,E, acts as (q_q,fwl on V. Inserting this in the g-commutator of Eag and
Fso we see that [E,g, Fga]qz acts as 0 on all of V.

On the other hand E, has an eigenvector v to the eigenvalue # 0 and due to the
coproduct the elements E’Zﬂ.v are eigenvectors of E, to either eigenvalue 0 or pairwise
distinct eigenvalues. As V is finite, we can find a vector w with E,g.w = 0. As on V
all elements g-commute with Eaﬂ we can apply Theorem to show, that Eaﬂ acts
as 0 on any irreducible representation. The same we can show for Fj, with the same
argument. Then Bly = (K, K~') ® (E,, F,,) and B is ede.

The maximality of this Borel subalgebra is proven in [Vockel7] by considering any
extension of this RCS. Thus we have found all Borel subalgebras of U,(sl3).

7.3. Triangular Borel subalgebras of U,(sly). We now give all possible triangular
Borel subalgebras of Uj(sls). We do not consider non-triangular RCS so we can also not
prove the maximality of the degenerate examples we give below. However we do prove
that these are ede RCS, which are maximal among all triangular RCS, and there exist
no other triangular ede Borel subalgebras. We conjecture that these are in fact all Borel
subalgebras of Uy(sly).

Standard Borel subalgebras. Due to Theorem all reflections of the standard Borel
UZ% and U= are Borel subalgebras.

Non-degenerate Borelsubalgebras. The triangular Borel subalgebras ¢)(U* [w]) p+ TL U~ [w™] 45—
with @ (wt)N®+(w™) = supp(¢™) Usupp(¢~) are due to Theorem all isomorphic
to a Borel subalgebra of the following form:

o WU [wo)) o+ (Kaagtars Kook 4o YU [Sa:ls- for i € {1,2,3} with ¢+ (Ea, K5)) =

AL and 0 otherwise and ¢~ (Fy,) = A,, such that Af A\, = u—(f)q(%*l)'

hd ¢(U+[w0])¢+ <K2&2+a17K2_a12+a1>U7 [Salsaﬂ(ﬁ* with ¢+(EO<1K0711) = )‘;rp ¢+(EQ3K0731) =
2
A, and 0 otherwise, and ¢~ (F,,) = A,,, such that Af A = TP and

_ _ _ 2
07 (Fag) = Mgy such that AEAS, = =iy

Degenerate Borelsubalgebras. We list all possibilities for w™,w™, supp(¢™), supp(¢~)
from Theorem They all contain the degenerate Borel subalgebra from Uy(sl3) in
the previous subsection. Due to Lemma [2.11| we know,that for any triangular ede right
coideal subalgebra

U(w™) ) = lw™) +Lw?) o ()T wT) = L(w) + f(wT)

where w' is calculated via w and supp(¢™).

We want to prove now that the possible non-degenerate triangular right coideal sub-
algebras in sly are in fact all ede, i.e. C = P(UT[wT])+TU ™ [w™]yp- with @+ (wh) N
dF(w™) ¢ supp(¢pT) = supp(¢~) and with ww'~! = wg and L = supp(¢T)*. There are
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up to isomorphism and symmetry three such right coideal subalgebras with |supp(¢™)| =
1 and two with |supp(¢™)| = 2.

In each of these cases, we manually compute the g-commutator relations of the gener-
ators of B and show, as the case may be, that an arbitrary finite-dimensional irreducible
representation V of the algebra B is one-dimensional. The strategy for this is as in Lemma
(General palm of height 1): We find a contained quantized Weyl algebra (X,Y’), of
which we already know that it acts on finite-dimensional representations commutative,
i.e. the commutator [X,Y]; acts trivial. Thus, by means of the respective explicit list of
commutators, we find an element Z € C' which gq-commutes (on V') with all generators
of C'. By Theorem then Z must act on every irreducible representation V' trivial,
which inductively induces further commutators to vanish until all elements except the
Weyl algebras act trivial. The details of the calculation differ from case to case, but the
argument is in any case the same.

1. |supp(¢™)| = 1:

1.1, | (wt)N®T (w™)| = |supp(¢™)|+ 1. Here, apart from isomorphism and symmetry,

there is exactly one type of maximal triangular and right-coideal subalgebra given by B =

1/}(U+ [5a13a250435a25a1])¢+ (Kas, ngKOm K.} K;fKojll)U_ [504130&2](;5* with ¢+(Ea1K0711) =
2

a3 )

A otherwise 0 and ¢~ (F,,) = X, otherwise 0, such that A\ = O—tﬁ)ll(ﬁfl)'

123
E a2 923

aq a3

Weyl-
algebra

aq

F Qg2

_ Consider the g-commutator relations and denote the character-shifted root vectors by
E.,, E4,a, etc., then:

| [ For [ Faier |
— q2
E., || 2o 0
Ea1a2 0 q2 [Eal ) Fal]l
Eoiasas 0 0
Eo, 0 0
Eozas 0 0

The quantized Weyl algebra is here (Ey,, Fi,, ), and the commutator vanishes on each
finite dimensional representation. The elements Z which thus g-commute on V with all
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generators of C are Foyay 15D Eojay, 168D, Egga,, whereas the other generators Eg,
and E,, a,qs g-commute anyhow with all the other generators.

1.2, |8 (wt) N & (w)| = [supp(6*)] + 2.

+1.2.1. B = (UM [sa; SanSazSar)) o+ (Kas: K2, Koy, K3 Ko 2K U ™ [Say SasSas)p— with
¢ and ¢~ as above.

123
E 12
aq asg
Weyl-
algebra
aq
F @12
@123

Moreover the following gq-commutator relations hold:

’ H Fal ‘ Fa1a2 ‘ Foqazag ‘
— P
Eo, || & 0 0
Eoéwéz 0 (]2 [Eal ) FOq]l 0
EOC10¢20¢3 0 0 q2[E0é10¢27 Foqoaz]l
Eocg 0 O q2Fa1a2

The quantized Weyl algebra is here (E,,, F,,, ), and the commutator vanishes on each
finite dimensional representation. The elements Z which thus g-commute on V with all
generators of C' are F,,q, 1eSp. Faya,- If these elements vanish, the remaining elements
g-commutate in the next step of the induction with all other generators.

1.22. B = ¢(U+[Sa23a1$assa2])¢+ <K0711Ka37 Ka1+az+asv Ka1K07317 K;11+a2+a3>U7[8a28a18a3]¢7
with the characters ¢ (Eq, K!) = A, otherwise 0 and ¢~ (F,,) = X, otherwise 0, such
that AN =

(1-¢*)(g—q¢~ )"
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123
E 12 923

a2

Weyl-
algebra

a2

F 12 23

Here the following g-commutator relations hold:

’ H Fa2 ‘ FCVQCYl ‘ Fa2a3 ‘
— i
Ea, q_qqfl 0 0
Ea2a1 0 q2 [Eaza Faz]l 0
Eazas 0 0 q2 [Eaza FaQ]l
Ea2a1a3a2 0 _q_l[[Eavaoag]l;ang]l _q_l[[EagaFag]luEa1]l

The quantized Weyl algebra is here (E,,, F,,). All other elements vanish again by
induction on all irreducible finite dimensional representations V.

2. |supp(¢t)| = 2: Consider now the case that the support of the character con-
tains two elements. In type As there are two possibilities for this case and we get
either |®T(w™) N ®T(w™)| = |supp(¢™)|, so B is triangular and non-degenerate or
|[@F (w™) N@F (w)| = |supp(¢™)| + 2

2.1. B = w(U+[salsa23a3sa1])¢+<Ka3K§2Kal,K531K522K511>U_[salsa25a3sa1]¢;. with

characters ¢ (Eqo, K3') = Ao, and ¢~ (F,,) = X, such that Ay A, = u_(}g)‘%ﬁ,l),
and ¢t (Eay K1) = Aoy and ¢ (Fay) = X, such that AN, = ==t otherwise

0.
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123
E 12
(€3] a3
Weyl- Weyl-
algebra algebra
(%] a3
F 12
123

Here the following commutator relations hold:

’ H Foy ‘ Fajay ‘ Fajasag ‘ Fay ‘
Ba || L= 0 0 0
Eqia, 0 By Foylay 0 0
Eoiazas 0 0 ¢*[Faras; Forost | Boras
Eo, 0 0 P Fp 0, q_q;_l

Here there are two Weyl algebras (E,,, Fa,) and (Eas, Foy), commuting with each
other. The remaining elements vanish again by induction on any irreducible finite di-
mensional representation.

2.2. B = (U [Say5015a35a2)) g+ (Ko Ko Koy K3 )U ™ [SaySar Sas Saz - - with charac-
ters ¢ (Ea, K,') = Aoy and ¢~ (F,,) = A, such that Ag,A,, = %, and

+ -1 _ — _\/ / _
¢ (EazalasagKagalagag) = Aasarazas and ¢~ (Fayarazan) = /\a2a1a3a2 such that )‘a2a1a3a2)‘a2a1a3a2 =

% otherwise 0.

123
E 12 923

a2

Weyl-
algebra

Q2

F Qg2 Q23

123

Here the following commutating relations hold:



41

H Fag ‘ Fagal Fagag Fazalagag
Ea, L 0 0 0
Eaza, 0 q2{E0127F042]1 0 [[Eavaaz]lvFas]l
EOé2a3 0 0 QZ[EanFOéz]l [[EOQ?Faz]laFOtl]l
Eosarazas 0 ¢ [Bass Fas )1, Easlt | =47 [[Bays Faslts Eayn [Easan s EOQOCI]l
_[Ea20¢37 Fa2a3]1
+C(1 — K0712+a2+a3)

The first quantized Weyl algebra is here (E,,, F,,), whose commutator again disappears
on each finite dimensional representation. Then the four elements of height 2 g-commute
with all generators and thus act trivially. Modulo these relations (Eaya;asas, Fasesasas)
is another quantized Weyl algebra commuting with the first quantized Weyl algebra.

Theorem 7.1. Each triangular Borel subalgebra of Uy(sly) is up to reflections and al-
gebra isomorphism of the following form.:

e The standard Borel subalgebra U=
e A Borel subalgebra of non-degenerate type:
- PU" [wO])¢+ (K2as+as 5 K2_a12+a1  Kay, K&;)Uﬁ [Sal]df
with supp(¢™) = supp(¢~) = {1}
— (U [wo])y+ <K2az+a1vK2_a12+a1>U_ [Sa1 5aslg-
with supp(¢™) = supp(¢~) = {a1, as}
e A Borel subalgebra of degenerate type, i.e.:
- ¢(U+[504150¢2 30438&25&1})(#" <Ka3, KO%QKCH ’ Ka_zgl’
with supp(¢™) = supp(¢~) = {1}
- ¢(U+ [8a1 Sag 50438041])<2§7L (Ka:sv KC%ZKOQ’ K07317
with supp(¢™) = supp(¢~) = {a1}
- w(U+ [Say 3a23a33a1])¢+ <Ka3K§2Ka1 ) K;31K522K0711>U_ £ 3a23a35a1]¢*
with supp(¢™) = supp(¢~) = {a1, as}
- w(UJr[Scm SaiSas Sa2])¢+ <K0711K0é37 Ka1+042+0¢37 KOCIKO;I? K0711+a2+a3>U7 [30%2 Sa15a3]¢*
with supp(¢™) = supp(¢~) = {az}
- w(UJr [SCVQ SaiSas Sa2])¢+ <K0711Ka37 Ka1 K(;;)Ui [SOQ SaiSas 50&2]({)*
with supp(¢h) = supp(¢~) = {ag, a1 + az + as}

KC:22KC:11>U_ [5061 5012](;5—

K;22K0711>U_ [8061 Saz Sa3]¢*
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