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Abstract. We construct explicit families of right coideal subalgebras of quantum
groups, where all irreducible representations are one-dimensional and which are max-
imal with this property. We have previously called such a right coideal subalgebra a
Borel subalgebra.

Conversely we can prove that any tringular Borel subalgebra fulfilling a certain
non-degeneracy property is of the form we construct; this classification requires a key
assertion about Weyl groups which we could only prove in type An. Borel subalgebras
are interesting for structural reasons, but also because the induced representations give
interesting unfamiliar analoga of category O.
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1. Introduction

The quantum group Uq(g) is a deformation of the universal enveloping algebra U(g) of
a semisimple Lie algebra. For Lie algebras, a theorem by Sophus Lie states that the Borel
subalgebras are the maximal solvable Lie-subalgebras and that they are all conjugate.

In [HLV17] we ask for quantum groups the same question: Which are the maximal
right coideal subalgebras with the representation theoretic property, that all irreducible
finite-dimensional representations are one-dimensional. We call this a Borel subalgebra of
Uq(g). Besides the standard Borel subalgebra Uq(g)+ and its reflections, there is already
for g = sl2 a new family of Borel subalgebras, generated by elements

EK−1 + λK−1, F + λ′K−1, λλ′ =
q2

(1− q2)(q − q−1)

which are isomorphic to the quantized Weyl algebra. Note that they are not defined
for q = 1 and interpolate between U+

q and U−q . We have conjectured (and proven for
type An) a main structural result on the graded algebra associated to any right coideal
subalgebra that has a triangular decomposition. As a second conjecture, this suggests
an explicit description of all triangular Borel subalgebras.

The goal of the present article is to directly construct and classify triangular Borel
subalgebras fulfilling an additional non-degeneracy condition (5). The algebras we con-
struct consist of copies of the quantized Weyl algebra, as well as a subset of the remaining
standard Borel subalgebra. In type An we can prove that all triangular non-degenerate
Borel subalgebras are of this form. We also discuss some degenerate examples for type An.

Our main reason for studying Borel subalgebras is to gain more knowledge on the
theory of arbitrary right coideal subalgebras. Another curious application is that for
a given Borel subalgebra one may look at induced modules from one-dimensional rep-
resentations. For the new Borel subalgebras of Uq(sl2) this yields infinite-dimensional
reprentations isomophic as a vector space to C[K,K−1], on which K acts by multiplica-
tion. We could prove that most of these induced modules are irreducible, while a discrete
family has as quotients the irreducible finite-dimensional representations of Uq(sl2). It
would be interesting to study an analogue of category O for these Borel subalgebras.

After preliminaries on right coideal subalgebras in Section 2 we proceed as follows:

In Section 3 we prepare a strategy to construct non-one-dimensional irreducible rep-
resentations of right coideal subalgebras by restricting suitable Uq(g)-modules and de-
tecting non-one-dimensional composition factors.

In Section 4 we study a curious questions about Weyl groups, namely about ”filling
up” two given Weyl group elements to maximal Weyl group elements that retain the
same property. This theorem later-on precisely tells us how far an interesting coideal
subalgebra can be filled up until it is maximal. In this paper we were only able to prove
this Weyl group assertion for type An.
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In Section 5 we construct Borel subalgebras that consist of several quantized Weyl
algebras associated to a set of pairwise orthogonal simple roots, together with a suitable
subset of the remaining positive roots, see Main Theorem 5.1. Then we can prove that
under the additional nondegeneracy condition these are in fact all Borel subalgebras for
type An. Finally we determine the induced representations of one-dimensional repre-
sentations of the Borel subalgebra; these are infinite-dimensional representations with a
non-diagonal action of the Cartan part of Uq(g).

In Section 6 we also treat the next-difficult step, which are Borel subalgebras, where
the degeneracy height is 1 in some sense. The degeneracy causes extensions of the Weyl
algebras. In this case we first derive necessary conditions for the Weyl group elements
and then again construct for type An right coideal subalgebras where all irreducible
representations are one-dimensional.

In Section 7 we discuss as examples all Borel subalgebras for sl2, sl3 by-hand to com-
pare this with our conjectures and results. Moreover we determine all triangular Borel
subalgebras for sl4, which is the first case where a degeneracy of height 2 appears. This
is worked out thoroughly by the second author in [Vocke16], using a generating system
for an arbitrary right coideal subalgebra.

2. Preliminaries

Let g be a finite-dimensional semisimple Lie algebra of rank n over the field of complex
numbers K = C.

We denote by Π = {α1, . . . αn} a set of positive simple roots, by Q the root lattice,
and by Φ+ ⊂ Q the set of all positive roots. We denote by (, ) the symmetric bilinear

form on RΠ with the Cartan matrix cij = 2
(αi,αj)
(αj ,αj)

.

Our article is concerned with the quantum group Uq(g) where q is not a root of unity.
There are algebra automorphisms due to Lusztig Tw for each Weyl group element w ∈W ,
and with these one constructs root vectors Eµ for all µ ∈ Φ+, see [Jan96] Chapter 8.

A subalgebra C of a Hopf algebra H is called a right coideal subalgebra (RCS) if
∆(C) ⊂ C ⊗H. Three essential results in the theory of coideal subalgebras of quantum
groups are:

Call a right coideal subalgebra C ⊂ Uq(g) homogeneous iff U0 ⊂ C (in particular C
is then homogeneous with respect to the Q-grading).

Theorem 2.1 ([HS09] Theorem 7.3). For every w ∈ W there is an RCS U+[w]U0,
where U+[w] is generated by the root vectors Eβi for all βi in the subset of roots

Φ+(w) = {α ∈ Φ+ | w−1α ≺ 0} = {βi | i ∈ {1, . . . , `(w)}}

In particular |Φ+(w)| = `(w), and

v < w iff Φ+(v) ⊆ Φ+(w)(1)

and for the longest element Φ+(w0) = Φ+.
Conversely, every homogeneous RCS C ⊂ U+

q (g)U0 is of this form for some w.
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Theorem 2.2 ([HK11a] Theorem 3.8). The homogeneous RCS C ⊂ Uq(g) are of the
form

C = U+[w]U0U−[v]

for a certain subset of pairs v, w ∈W .

Non-homogeneous RCS are only classified on U−q U
0 (or U+

q U
0):

Theorem 2.3 ([HK11b] Theorem 2.15). For w ∈W , let φ : U−q [w]→ K be a character
and define

supp(φ) := {β ∈ Q | ∃xβ ∈ U−q [w] with φ(xβ) 6= 0}
Take any subgroup L ⊂ supp(φ)⊥, then there exists a character-shifted RCS

U−q [w]φ := {φ(x(1))x(2) | ∀x ∈ U−q [w]}

and an RCS U−q [w]φTL with group ring TL = K[L] ⊂ U0.

Conversely, every RCS C ⊂ U−q (g)U0 if of this form

To construct non-homogeneous RCS C ⊂ Uq(g) we shall in the following restrict our
attention to:

Definition 2.4. We call a right coideal subalgebra triangular, if each element splits into
elements in C≥0 and C≤0:

C = (C ∩ U≥0)(C ∩ U≤0)

We denote C≥0 := C ∩ U≥0, C≥0 := C ∩ U≤0 and C+ := C ∩ U+ and C− := C ∩ U−.

Our main interest is

Definition 2.5. We call an algebra ede iff every finite-dimensional irreducible repre-
sentation is one-dimensional. We call an RCS of Uq(g) a Borel subalgebra iff it is ede
and it is a maximal RCS with this property.

Example 2.6. All homogeneous Borel subalgebras are isomorphic (via some Tw) to the
Standard Borel subalgebra U+U0. The fact that this is a Borel subalgebra is not entirely
trivial, see [HLV17].

Example 2.7. There is a family of non-homogeneous Borel subalgebras of Uq(sl2) gen-
erated by

{EK−1 + λK−1, F + λ′K−1}, λλ′ =
q2

(1− q2)(q − q−1)

Different choices of λ, λ′ are isomophic via some Hopf automorphism E 7→ tE, F 7→
t−1F .

As an algebra, this is isomorphic to a quantized Weyl algebra

k〈X,Y 〉/(XY − qY X − 1)

Proof. We want to prove the ede property of the quantized Weyl algebra: Let V be a
finite dimensional irreducible representation. Consider the eigenvector v of the element
T := Y X with eigenvalue t. One can easily see, that Y v is an eigenvector with the
eigenvalue qt+ 1:

Y X(Y v) = Y (qY X + 1)v = (qt+ 1)Y v
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Similarly, one can show that Xv is an eigenvector of T with eigenvalue 1
q (t− 1):

Y X(Xv) =
1

q
(XYX −X)v =

1

q
(t− 1)Xv

Thus the eigenvectors of T are a basis of V , as V is irreducible. On the other hand for
each i there are eigenvectors Y iv of T . As V is finite dimensional, they cannot have
pairwise distinct eigenvalues. If T has eigenvalue 0, 1 would thus be an eigenvalue too
and there would be an infinite number of different eigenvalues, as q is not a root of unity.
Thus the eigenvalue 0 is not possible, and so each two eigenvectors must be equal and
thus each two eigenvalues must be equal. Then follows t = 1

1−q . With this t we get:

XY v = (qY X + 1)v =

(
1

1− q
q + 1

)
v =

(q + 1− q)
1− q

v = tv

As T has only the eigenvalue t, it acts as a scalar on V , the same is true for XY . Thus X
and Y commute on all of V and then each finite dimensional irreducible representation
is 1- dimensional. �

A main structure theory of general Borel subalgebras stems from:

Conjecture 2.8 ([HLV17]). The map f : gr(U−[w]φ) → U≤0, sending all elements to
their leading terms is an injektive homomorphism of Z-graded right coideal subalgebras.
The image D of f has the following form:

• D0 =: M is the monoid (!) M := 〈K−1
µ | µ ∈ supp(φ)〉

• for the quotient group L of M we get DTL = U−[w′]TL for the following w′ ∈W :

w′ := (
∏

β∈supp(φ)

sβ)w, where w = sαk1
sαk2

. . . sαkm ∈W

As all elements in supp(φ) are pairwise orthogonal, w′ is the element, which
arises from w by deleting all factors sαi, for all i with βi ∈ supp(φ).

Theorem 2.9. [[HLV17]] Conjecture 2.8 holds for An.

This conjecture has implications to the representation theory of the RCS:

Conjecture 2.10. [[HLV17]] Let C = U−[w]φ−TLψ(U+[w+])φ+ be a triangular right

coideal subalgebra with supp(φ+) = supp(φ−) and L = supp(φ+)⊥, where ψ(xβ) =

q−(β,β)/2xβK
−1
β for all elements xβ of degree β, which is essentially the antipode. Then

C is a Borel subalgebra, if and only if w+w′−1 = w0.

At least we could prove:

Lemma 2.11. [[HLV17]] In the case An holds: Given w and w′ as in conjecture 2.8
and given a triangular right coideal subalgebra C = U−[w]φ−TLψ(U+[w+])φ+ with L ⊂
(supp(φ+) ∩ supp(φ−))⊥. If `(w′−1w+) < `(w′) + `(w+) then C is not ede.
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3. Counter indicators for ede property

Corollary 3.1. For all one-dimensional representations V of Uq(sl2) follows in particu-
lar E(V ) = F (V ) = 0 and K(V ) = ±1. This can be seen directly from the relations: Due

to the relation EF − FE = K−K−1

q−q−1 we get that in any one dimensional representation

K has to act as ±1. From EK = q2KE and FK = q−2KF thus follows, that E and F
have to act trivial.

This gives a first method to detect non-one-dimensional composition factors in repre-
sentations restricted to RCS. A direct application is that RCS containing the semisimple
subalgebra Uq(sl2) are not ede as follows. Later we will deal with restrictions to non-
semisimple subalgebras:

Lemma 3.2. Let B ⊂ U be a Borelsubalgebra. If for β ∈ Q the element Kβ lies in B,

then the element K−1
β lies in B too.

Proof. Assume K−1
β /∈ B, consider A := 〈K−1

β , B〉 ⊂ U : This is an RCS as both B and

k[K−1
β ] are RCS. Due to the assumed maximality of B ( A there exists an irreducible

representation V of A with dim(V ) > 1. As B is ede, the representation V |B has a one
dimensional subrepresentation 〈v〉 and with Kβ ∈ B we get Kβv = λv for some λ ∈ k.
But this already gives a one-dimensional subrepresentation of V which contradicts the
maximality of B. �

Theorem 3.3. Let A resp. A′ be subalgebras of U with Eα, Fα,Kα,K
−1
α ∈ A resp.

EαK
−1
α , Fα,K

2
α,K

−2
α ∈ A′ for some α ∈ Π. Then A resp. A′ has a multidimensional

irreducible representation.

Proof. Let M be a representation of A. Consider first the restriction of A on Uq(sl2) ⊂ A
generated by Eα, Fα and Kα,K

−1
α . Due to Corollary 3.1 we know, that in each finite

dimensional representation of Uq(sl2) the element K2
α acts as 1. We know that restricted

to the semisimple algebra Uq(sl2) the representation M decomposes into irreducible
representations. Assume each finite dimensional irreducible representation of A is one
dimensional, then M |Uq(sl2) decomposes in one-dimensional representations, thus K2

α acts
as 1 on M . It suffices to prove that there is a finite-dimensional representation on U , for
which K2

α does not act as 1. We know, that for all dominant weights λ ∈ Λ the U -module
L(λ, σ) is one dimensional. With the fundamental dominant weights we can find for all
α a λ with (λ, α) 6= 0, and for this λ the element K2

α does not act as 1 on L(λ, σ). This
proves the assertion.

In the second case: EαK
−1
α , Fα,K

2
α,K

−2
α ∈ A′ the proof is completely analogous: We

would suspect that A′-modules decomposing into their K2
α-eigenspaces are semisimple

with irreducible modules L(λ). This is however not necessary for the proof: The restric-
tion of an U -module M = L(λ, σ) decomposes in Uq(sl2) semisimple into Lsl2(λi, σi).
Apparently, the restriction of any irreducible Uq(sl2)-module Lsl2(λi, σi) on A′ is still
irreducible. M |A′ still decomposes into its irreducible representations and as the element
K2
α does not act as 1, by choice of λ, again we can find a multidimensional representa-

tion. �
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Corollary 3.4. Let A ⊂ U be an RCS with EαK
−1
α , Fα ∈ A for α ∈ Π, then A is not a

Borel subalgebra.

Proof. This follows from the previous theorem, but we need to get the Kα,K
−1
α inside

A: Assume A was a Borelsubalgebra. Consider the q-commutator of EαK
−1
α with Fα:

[EαK
−1
α , Fα]q2

α
= (1−K−2

α )
q2
α

qα − q−1
α

Thus K−2
α and due to Lemma 3.2 also K2

α lie in A. Then applying Theorem 3.3 proves
the claim. �

Corollary 3.5. Let C = ψ(U+[w+])φ+TLU
−[w−]φ− be an arbitrary triangular RCS. If

there exists an α ∈ Π∩Φ+(w+)∩Φ+(w−) with α /∈ supp(φ+)∩ supp(φ−), then C is not
a Borel subalgebra.

Lemma 3.6. If for an α ∈ Π the character-shifted elements EαK
−1
α + λαK

−1
α , Fα +

λ′αK
−1
α with λαλ

′
α 6=

q2
α

(1−q2
α)(qα−q−1

α )
lie in a subalgebra A ⊂ U , then A is not a Borel

subalgebra.

If however for two elements EαK
−1
α + λαK

−1
α , Fα + λ′αK

−1
α ∈ A holds λαλ

′
α =

q2
α

(1−q2
α)(qα−q−1

α )
they form a Weyl algebra as in Example 2.7, thus they can be part of

a Borel subalgebra.

Proof. Considering the q2
α-commutator of the two elements yields:

[EαK
−1
α + λαK

−1
α , Fα + λ′αK

−1
α ]q2

α
=

q2
α

qα − q−1
α

(1−K−2
α ) + (1− q2

α)λαλ
′
αK
−2
α

We can see, that for λαλ
′
α 6=

q2
α

(1−q2
α)(qα−q−1

α )
again K−2

α lies in A.

Assume A was a Borel subalgebra, then due to Lemma 3.2 also K2
α ∈ A. Then similar

to Corollary 3.5 also Eα, Fα,Kα,K
−1
α ∈ A follows, which is a contradiction by Theorem

3.3. �

Even without the ede property follows quickly:

Lemma 3.7. In a triangular right coideal subalgebra C = ψ(U+[w1])φ+TLU
−[w2]φ− with

L ⊂ (supp(φ+) ∩ supp(φ−))⊥ holds for all α ∈ supp(φ+) ∩ supp(φ−) ∩Π the relation

φ+(Eα)φ−(Fα) =
q2
α

(1− q2
α)(qα − q−1

α )

Proof. From φ+(Eα)φ−(Fα) = q2
α

(1−q2
α)(qα−q−1

α )
we can follow as in Lemma 3.6 againK−2

α ∈
C which is a contradiction to L ⊂ (supp(φ+) ∩ supp(φ−))⊥. �

We now consider the restriction of Uq(g)-representations to C (which is in general
nonsemisimple) in order to construct non-one-dimensional irreducible C-representations
as composition factors. This works particularly smooth for minuscule representations,
which is sufficient for type An.



8

Notation 3.8. For the roots µ in An we use the notation µ = [µ1, µ2] for 1 ≤ µ1 ≤
µ2 ≤ n if µ =

∑µ2
m=µ1

αi. All roots in An are of this form.

Lemma 3.9. Let g = sln and Ēµ, F̄µ be two character-shifted root vectors in C =
ψ(U+[w+])φ+TLU

−[w−]φ− ⊂ Uq(g) for a root µ = [µ1, µ2] ∈ Φ+(w+) ∩ Φ+(w−) such

that for all ν ∈ supp(φ+) ∩ supp(φ−) with ν ≺ µ holds (ν, µ) = 0, then C is not ede.

Proof. Our general strategy for constructing irreducible representations of dimension
greater 1 is the following: We consider the action of the commutator [E,F ]1 ∈ C on a
suitable finite-dimensional Uq(g)-representation V = L(λ), which we restrict to C. The
commutator acts trivial on any finite dimensional irreducible representation of C and
thus nilpotent on all representations of C, whose series of compositions contains only
one-dimensional representations.

In our case we get from (ν, µ) = 0 for all k′ < µ2 and j′ > µ1 that [j′, µ2], [µ1, k
′] /∈

(supp(φ+)∩ supp(φ−)). Due to this restriction for supp(φ+) the element Ēµ acts on the
minuscule representation M(λ1) with highest weight λ1 equal to EµK

−1
µ , and F̄µ acts

equal to Fµ.

If for a given g, µ we can find a λ, v ∈ V (λ), such that [EµK
−1
µ , Fµ]1.v = cv with

c 6= 0, the commutator cannot act nilpotent and thus V |C must have an irreducible com-
position factor of dimension greater 1, so C is not ede. For Example this condition is for
µ ∈ Π fulfilled for the highest weight vector v, but in general we don’t know [EµK

−1
µ , Fµ]1.

In the case of An we can calculate the condition explicitly on the minuscule represen-
tation V = V (λ1) . Let µ = [µ1, µ2] =

∑µ2

k=µ1
αk. Then the action of the simple root

vectors is:

Fαk+1
.vλ1−α1−...−αk ∼ vλ1−α1−...−αk+1

(2)

Fαj .vλ1−α1−...−αk = 0, j 6= k + 1(3)

and all weight spaces are one dimensional. Consider v := vλ1−α1−...−αµ1−1 , then EµK
−1
µ .v

is trivial, Fµ.v is a non trivial multiplier of vλ1−α1−...−αµ2
, because only the summand

Fαµ2
· · ·Fαµ1

can act nontrivial, and with the same argumentation also EµK
−1
µ Fµ.v is a

nontrivial multiplier of v. Thus v is a nontrivial eigenvector of the commutator. Thus,
according to the above explanation, the assertion follows. �

Corollary 3.10. Let g = sln and Ēµ, F̄µ be two character-shifted root vectors in C =
ψ(U+[w+])φ+TLU

−[w−]φ− ⊂ Uq(g) for a root µ = [µ1, µ2] ∈ supp(φ+) ∩ supp(φ−)

such that for all µ 6= ν ∈ supp(φ+) ∩ supp(φ−) with ν ≺ µ holds (ν, µ) = 0, and

φ+(EµK
−1
µ ) = λ, φ−(Fµ) = λ′ with λλ′ 6= q2

(1−q2)(q−q−1)
, then C is not ede.

Proof. As in the proof of Lemma 3.9 we can see that, on the minuscule representation
with highest weight λµ1 the element Ēµ acts equal to EµK

−1
µ + (1 − q2)λK−1

µ and F̄µ
equal to Fµ+(q−1−q)λ′K−1

µ . Thus the representation has a multidimensional irreducible
subrepresentation. �
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Lemma 3.11. Let C = ψ(U+[w])φ+TLU
−[w]φ− ⊂ Uq(sln) such that supp(φ+) = supp(φ−) =:

supp(φ) and given two character-shifted root vectors Ēµ, F̄µ for a root µ = [µ1, µ2] /∈ Π
with µ /∈ supp(φ), but αr 6= αs ∈ supp(φ) ∩ Π. If there are two different reduced expres-
sions w1 and w2 of w with Eµ = Tw1(Eα) and Fµ = T−1

w2
(Fβ),such that

Ēµ = EµK
−1
µ +Xµ−αrK

−1
µ F̄µ = Fµ + Yµ−αsK

−1
αs

for two elements Xµ−αs ∈ U+
µ−αs and Yµ−αr ∈ U−µ−αr , then C is not ede.

Proof. If (αr, µ) = 0 and (αs, µ) = 0 then the situation is a special case of the preceding
Lemma 3.9. Thus it is enough to consider the case r = µ1 (resp. r = µ2): Then Ēµ
acts on the minuscule representation with highest weight λ1 equal to EµK

−1
µ . Thus the

requirements of the proof of Lemma 3.9 are fulfilled and we can find a multidimensional
irreducible representation as factor of the decomposition of V (λ1)|C . �

On the other hand, a method of finding one-dimensional subrepresentations and
thereby proving the ede property is:

Theorem 3.12. Let A be an algebra with a generating system Z and with the following
property: There is an element X ∈ A such that for all generators Y ∈ Z the commutator
[X,Y ]c = 0 for some constant c ∈ K∗, and there is an element K ∈ A with [K,X]c′ = 0
for a constant c′ ∈ K∗, which is not a root of unity, and K has a non-trivial eigenvector.

Then X.V = 0 for any finite dimensional irreducible representation V of A.

Proof. Assume there is an eigenvector of X with eigenvalue 0, then all elements w ∈ V
with X.w = 0 span a subrepresentation V , because by assumption after acting with any
generator Y :

X.(Y.w) = cY.(X.w) = 0

Because V is assumed irreducible, the existence of an eigenvalue 0 thus implies X.v = 0
for all v ∈ V .

Assume now there is no eigenvector of X with eigenvalue 0, then let us consider the
assumed eigenvector w 6= 0 of K, with associated eigenvalue some λ. As X.w 6= 0 we get
X.w is again an eigenvector of K:

K(X.w) = c′X(K.w) = c′λX.w

As c′ is assumed to be not a root of unity and as Xj .w 6= 0 for all j > 0, the elements
Xj .w are eigenvectors of K with pairwise distinct eigenvalues. As V is finite dimensional,
only a finite number of these values can exist, this yields a contradiction. �

4. A theorem on Weyl group elements

For w ∈W consider as in Theorem 2.1 the subset of roots:

Φ+(w) = {β ∈ Φ+ | w−1(µ) ≺ 0}µ ∈ Φ+

The goal of this section is to prove, how to supplement two Weyl group elements
w1, w2 ∈W in a special way to two elements w′1, w

′
2, such that Φ+(w′1) ∪Φ+(w′2) = Φ+.

Theorem 4.1. Fix w1, w2 ∈ W and assume B := Φ+(w1) ∩ Φ+(w2) is not empty and
consists of pairwise orthogonal roots. Then:
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(1) There exist elements w′1, w
′
2 ∈ W with Φ+(w1) ⊆ Φ+(w′1), Φ+(w2) ⊆ Φ+(w′2),

such that the following relations hold:

Φ+(w′1) ∩ Φ+(w′2) = B and Φ+(w′1) ∪ Φ+(w′2) = Φ+

(2) There exists an element w′′1 ∈ W such that Φ+(w1) ⊆ Φ+(w′′1) and w′′1 has a
reduced expression w′′1 = sα1 . . . sα`(w′′1 )

with B = {β`(w′′1 )−|B|+1, . . . , β`(w′′1 )}.

We can prove this Theorem for type An.

The rest of this section is devoted to prove Theorem 4.1. In fact most steps are always
true, but a key property of root systems 4.12 we did only prove for An and for rank 2.

We consider two orderings on the root lattice:

Definition 4.2. For a := a1α1 + . . .+ a|Π|α|Π|, and b := b1α1 + . . .+ b|Π|α|Π| ∈ Q with
ai, bi ∈ N let a ≺ b if and only if ai < bi for all i ≤ n.

We define, depending on the choice of the reduced expression of w, a total ordering <
on Φ+(w) by

βi < βj ∈ Φ+(w)⇔ i < j

This ordering is convex, i.e. for µ < ν ∈ Φ+(w) we get µ < µ+ ν < ν, if µ+ ν ∈ Φ+(w)
see therefore [PA] s.662.

On W we use the weak ordering. From the strong exchange property follows:

Corollary 4.3. Let w ∈ W and α ∈ Φ+(w) ∩ Π, then there exists a reduced expression
of w of the form w = sαx for a x ∈W with `(x) = `(w)− 1.

Definition 4.4.

Tw := {Θ ⊂ Φ+(w) | Θ pairwise orthogonal roots and `(
∏
β∈Θ

sβw︸ ︷︷ ︸
wΘ

) = `(w)− |Θ|}

Remark 4.5 ([HK11b] s.12). In explicit examples of small rank the set Tw is easy to
calculate: If J ⊆ {1, . . . , `(w)} is a subset, such that the elements in Θ := {βi | i ∈ J}
are pairwise orthogonal, then Θ belongs to Tw if and only if after deleting all reflections
sαi for i ∈ J the resulting expression w = sα1 . . . sα`(w)

is still a reduced expression.

Lemma 4.6. Each k roots in Φ can be reflected to a rank k root system, i.e. for any
set of roots B = {µ1, . . . , µ|B|} ⊂ Φ there is a x ∈W and a rank |B| root system Φ|B| with
x(µi) ∈ Φ|B| for all i.

A proof can be found e.g. in [Len14] Theorem 6.3 a).

Lemma 4.7. For a µ ∈ Φ+ not simple, there exists a β ∈ Π such that µ− β ∈ Φ+.

The proof is found in [Hum70] Lemma 10.2 A.

Corollary 4.8. Given a w ∈W . For all µ ∈ Φ+(w) there exists a β ∈ Π ∩ Φ+(w) such
that β ≺ µ.
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Proof. We prove this by induction on the height ht(µ):

For ht(µ) = 1 follows µ ∈ Π and the claim is trivial. Let ht(µ) > 1. Due to Lemma
4.7 there exists a β ∈ Π such that µ − β ∈ Φ+. Due to the convexity of the ordering
< on Φ+(w) we get either β ∈ Π ∩ Φ+(w) or µ − β ∈ Φ+(w). In the first case the
claim is already proven. In the second case there exists from the induction assumption
an α ∈ Π ∩ Φ+(w) with α ≺ µ− β ≺ µ, thus the claim is true. �

Definition 4.9. Let µ, ν ∈ Φ be orthogonal (µ ⊥ ν), that is (µ, ν) = 0. We call µ and ν
strongly orthogonal, if there exists a x ∈W such that x(µ), x(ν) ∈ Π.

Using Lemma 4.6 we can reduce to the rank 2 situation. Then clearly

Remark 4.10. Two orthogonal roots µ, ν ∈ Φ are strongly orthogonal, if mµ+ nν /∈ Φ
for all m,n ∈ Q\{0}.

In the following we study for two Weyl group elements w1, w2 ∈ W the intersection
B := Φ+(w1) ∩Φ+(w2) more closely. In particular we want to make some statements on
possible supplements of w1 and w2 for B consisting of orthogonal elements.

Lemma 4.11. Assume all elements in B are pairwise orthogonal. Then all the elements
in B are pairwise strongly orthogonal.

Proof. Given two arbitrary elements µ, ν ∈ B. Assume µ + ν ∈ Φ, we get from the
convexity of < on Φ+(w1) resp. Φ+(w2) already µ+ν ∈ Φ+(w1)∩Φ+(w2), so in particular
(µ+ν, µ) = 0. That is a contradiction to the pairwise orthogonality of the elements in B.
Now we use a projection x ∈W from µ and ν in a rank 2 root system. From µ+ν /∈ Φ+,
i.e. x(µ) + x(ν) /∈ Φ the only options for the root systems are A1 × A1 and G2, in the
first case the claim is proven. In the second case g = G2 with a long root µ and a short
root ν orthogonal to each other, also the roots between µ and ν with respect to the total
ordering for an arbitrary reduced expression of w0 lie in Φ+(w1) ∩ Φ+(w2) as is easily
shown, these are however not orthogonal on µ, which leads us to a contradiction. �

Vermutung 4.12. Assume all elements in B are pairwise orthogonal. Then there exists
either an element α ∈ Π ∩ Φ+(w1) with α /∈ B or |Π ∩ Φ+(w1)| = |B|.

Example 4.13. In the small cases of rank 2 the assumption 4.12 is true, as we know
from Lemma 4.11, that the elements in B are even pairwise strongly orthogonal. Thus in
the case of rank 2 only |B| = 1 is possible and the claim follows directly.

In the following we will restrict our considerations to An, but we conjecture, that the
theorems are also true in general.

Lemma 4.14. In type An conjecture 4.12 holds.

Proof. Assume there exists no element α ∈ Π ∩ Φ+(w) with α /∈ B, i.e.:

Φ+(w1) ∩Π ⊂ B(4)

We want to show B ⊂ Π:
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A) For all µ ∈ Φ+(w1) we get from Lemma 4.8 a β ∈ Φ+(w1)∩Π with β ≺ µ. Due to
(4) even β ∈ B holds.

B) Assume there is a µ ∈ B with µ /∈ Π. We look at the minimal root µ = [µ1, µ2] of this
type with respect to the ordering ≺. Let αb1 , . . . αbl ∈ B∩Π with µ1 ≤ b1 ≤ . . . ≤ bl ≤ µ2

be the elements ≺ µ in B. Due to A) there exists at least one such element and from the
pairwise orthogonality of the elements in B we even get µ1 < b1 < . . . < bl < µ2. We
define the following types of roots for 0 ≤ j ≤ l − 1:

Xj = [µ1, bl−j ]

Yj = [µ1, bl−j − 1]

Here for all 0 ≤ j ≤ l − 1 holds Xj , Yj , µ −Xj , µ − Yj /∈ B because (Xj , αbl−j ) = 1 and
(Yj , αbl−j ) = −1 and because the elements in B are pairwise orthogonal.

We want to show now for all 0 ≤ j ≤ l − 1 holds Yj ∈ Φ+(w1). For this purpose, we
use the following considerations:

(1) Yj ∈ Φ+(w1)⇒ Xj ∈ Φ+(w1), as αbj−l ∈ Φ+(w1). As well for w2.

µ−Xj ∈ Φ+(w1)⇒ µ− Yj ∈ Φ+(w1), as αbj−l ∈ Φ+(w1). As well for w2.

(2) Xj /∈ Φ+(w1)⇒ µ−Xj ∈ Φ+(w1), this is due to the convexity of <. As well for
w2 and Yj .
µ−Xj /∈ Φ+(w1)⇒ Xj ∈ Φ+(w1), this is due to the convexity of <. As well for
w2 and Yj .

(3) Xj ∈ Φ+(w1)⇒ Xj /∈ Φ+(w2), as Xj , Yj /∈ B. As well for Yj .
µ−Xj ∈ Φ+(w1)⇒ µ−Xj /∈ Φ+(w2), as µ−Xj , µ− Yj /∈ B. As well for Yj .

With these considerations we can prove the claim inductively on 0 ≤ j ≤ l − 1:

Y0 lies in Φ+(w1), because:

A⇒ µ−X0 /∈ Φ+(w1)
2⇒ X0 ∈ Φ+(w1)

3⇒ X0 /∈ Φ+(w2)
2⇒ µ−X0 ∈ Φ+(w2)

1⇒ µ− Y0 ∈ Φ+(w2)
3⇒ µ− Y0 /∈ Φ+(w1)

2⇒ Y0 ∈ Φ+(w1)

Let Yj ∈ Φ+(w1). Assume Yj+1 /∈ Φ+(w1):

Yj+1 /∈ Φ+(w1)
2⇒ µ− Yj+1 ∈ Φ+(w1)

3⇒ µ− Yj+1 /∈ Φ+(w2)

1⇒ µ−Xj+1 /∈ Φ+(w2)
2⇒ Xj+1 ∈ Φ+(w2)

3⇒ Xj+1 /∈ Φ+(w1)

2⇒ µ−Xj+1 ∈ Φ+(w1)
A⇒ µ− Yj ∈ Φ+(w1)

3⇒ µ− Yj /∈ Φ+(w2)

2⇒ Yj ∈ Φ+(w2) E as Yj ∈ Φ+(w1) and Yj /∈ B

The induction yields Yj ∈ Φ+(w1) for all 0 ≤ j ≤ l− 1. This is a contradiction to A) for
j = l − 1. This proves the assertion.

�

Corollary 4.15. Let B consist of pairwise orthogonal roots and let B 6= ∅. Then w1 has
a reduced expression of the form w1 = sα1 . . . sα`(w1)

and 1 ≤ i ≤ i+ |B|−1 ≤ `(w1) with

B = {βi, . . . βi+|B|−1}. As well for w2.
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Proof. We prove this claim with an induction on the length `(w1):

For `(w1) = |B| we get Φ+(w1) ⊂ Π and the claim is trivial. Let now w be with
`(w1) > |B|. Assume B ⊂ Π then, due to Corollary 4.3 and as the elements in B are
pairwise orthogonal, we can write all elements in B in the beginning of w. Then the
claim is true for i = 1 and j = |B|.

If an element µ ∈ B with µ /∈ Π exists, then due to Lemma 4.14 there is a β ∈
Φ+(w1) ∩ Π with β ≺ µ and β /∈ B. So there is a reduced expression of w1 with sβ
in the beginning, due to Corollary 4.3. Then we look at the two Weyl group elements
w′2 = sβw2 and w′1 = sβw1. Here the claim is already proven, as `(sβw1) < `(w1) and
for B′ := sβ(B) we can bring the element w′1 in the desired form. With this reduced
expression of w′1, as β /∈ B also w1 = sβw

′
1 is in the right form. �

Now we want to prove our main Theorem 4.1 which gives us an supplement of w1, w2

to w′1, w
′
2. We will do this in several steps.

Lemma 4.16. Under the assumptions of Theorem 4.1 the two assertions 1) and 2) are
equivalent.

Proof. ”‘⇒”’ Let w′2, w
′
1, fulfilling 1) be given i.e. Φ+(w′2) ∩ Φ+(w′1) = B and Φ+(w′2) ∪

Φ+(w′1) = Φ+. Now we construct for w′′1 := w′1 a reduced expression of the required form.

For this we look at w̄ := w′2w0:

Φ+(w̄) ⊂ Φ+(w′1)

Because for µ ∈ Φ+(w̄) already w̄−1(µ) ≺ 0 ⇒ w−1
0 w′−1

2 (µ) ≺ 0 ⇒ w′−1
2 (µ) � 0 is true,

so µ /∈ Φ+(w′2) and from Φ+(w′2) ∪ Φ+(w′1) = Φ+ it follows, that µ ∈ Φ+(w′1). Due to
the relation 1 we can choose now the following reduced expression of w′1: w′1 = w̄x for
some x ∈W with `(x) = `(w′1)− `(w̄). It only remains to prove:

w̄(Φ+(x)) = B

”⊂”: This is true, because the elements in B are exactly the elements which lie in both
Φ+(w′2) and Φ+(w′1). The elements on the left hand side lie in Φ+(w′1) by construction

and for ν ∈ Φ+(x) holds w′−1
2 w̄(ν) = w0(ν) ≺ 0, so they also lie in Φ+(w′2). Thus we

have found a suitable reduced expression and 2) holds.

”⊃”: This is true, because Φ+(w̄x) = Φ+(w′1) ⊃ B, on the other hand for all ele-
ments µ ∈ Φ+(w′2), so in particular for all elements µ ∈ B we have µ /∈ Φ+(w̄), i.e.
B ∩ Φ+(w̄) = ∅. So we get Φ+(w̄x) ⊃ B, but B ∩ Φ+(w̄) = ∅, so w̄(Φ+(x)) ⊃ B.

”‘⇐”’ Assume there exists a w′′1 = sα1 . . . sαk with B = {βi, . . . , βk} for an i.

Then we choose w′1 := w′′1 and w′2 := sα1 . . . sαi−1w0 and show that these elements
fulfil 1): We know

Φ+(w′1) ∪ Φ+(w′2) = Φ+
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as for µ /∈ Φ+(w′2) we have w−1
0 sαi−1 . . . sα1(µ) � 0 ⇒ sαi−1 . . . sα1(µ) ≺ 0, so µ ∈

Φ+(w′1). Moreover we know

Φ+(w′1) ∩ Φ+(w′2) = B

as for all βj ∈ Φ+(w′1) is βj ∈ Φ+(w′2)⇔ j > i⇔ βj ∈ B. �

To prove Theorem 4.1 we look at some special cases for B and will then combine the
methods of the proofs.

Corollary 4.17 (B = {α} ⊂ Π). For B = {α} ⊂ Π Theorem 4.1 is true.

Proof. If Φ+(w1)∪Φ+(w2) = Φ+, then the claim is trivial. Assume Φ+(w1)∪Φ+(w2) 6=
Φ+. Then we construct elements w′1 and w′2 with Φ+(w1) ⊆ Φ+(w′1), Φ+(w2) ⊆ Φ+(w′2)
inductively as follows: We enlarge w1 until for wneu1 and w2 either 1) or 2) in the Theorem
4.1 is fulfilled: Let wi1 be the following sequence of elements in W with associated reduced
expressions, such that w1 =: w1

1 < w2
1 < . . . wi1 is true for all i, that is Φ+(w1) ⊂ Φ+(wi1)

for all i:

wi1 = sαxi w2 = sαy

for elements xi, y ∈ W with `(wi1) = `(xi) + 1 and `(w2) = `(y) + 1. These re-

duced expressions exist due to Corollary 4.3. Then in particular w−1
2 wi1 = y−1xi with

`(y−1xi) = `(y) + `(xi). As Φ+(w1) ∪ Φ+(w2) 6= Φ+ there exists at least a γ ∈ Π with
y−1xi(γ) � 0, so with `(y−1xi) = `(y) + `(xi) also xi(γ) � 0 is true. Now we distinguish
two cases for wi1(γ):

1. Case wi1(γ) � 0: Then we define wi+1
1 := wi1sγ and we get Φ+(wi+1

1 )∩Φ+(w2) = α.
By induction we can enlarge w1, until either Φ+(wn1 ) ∪ Φ+(w2) = Φ+, i.e. 1) is fulfilled,
or for some i the 2. case occurs.

2. Case wi1(γ) ≺ 0: Then we get from xi(γ) � 0 already xi(γ) = α. In this case there
is a reduced expression of wi1 of the form:

wi1 = sα1 . . . sα`(wi1)
with β`(wi1) = α

and 2) is fulfilled for w′2 := w2 and w′1 := wi1, because wi1(γ) = sαxi(γ) = sα(α) ≺ 0,
i.e. we know from Lemma 4.3 applied to (wi1)−1, that there exists a reduced expression
of wi1 of the form wi1 = sα1 . . . sα`(wi1)−1

sγ . In this reduced expression we can see, that

in particular holds: wi1(γ) = sα1 . . . sα`(wi1)−1
sγ(γ) = −β`(wi1) = −α, i.e. β`(wi1) = α. Thus

the claim is proven. �

Corollary 4.18 (B ⊂ Π). For B ⊂ Π the Theorem 4.1 is true.

Proof. We want to prove this Corollary analogous to the proof of Corollary 4.17. From
B = {α1, . . . , α|B|} and Lemma 4.3 we know, that there exists a reduced expression

of w1 of the form: w1 =
|B|∏
j=1

sαjx for a x ∈ W with `(x) = `(w1) − |B|, the same

for w2. As above we construct again elements w′1, w
′
2 inductively: Let therefore wi1 be
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the following sequence of elements in W with associated reduced expression, such that
w1 =: w1

1 < w2
1 < . . . wi1 holds for all i, so Φ+(w1) ⊂ Φ+(wi1) for all i:

wi1 =

|B|∏
j=1

sαjxi w2 =

|B|∏
j=1

sαjy wB =

|B|∏
j=1

sαj

for elements xi, y ∈ W with `(xi) = `(wi1) − |B| and with `(y) = `(w2) − |B|. Again we

get w−1
2 wi1 = y−1xi with `(y−1xi) = `(y) + `(xi). As in the proof above we search for

elements γi ∈ Π with 0 ≺ wi1(γi) /∈ Φ+(w2). I.e. with y−1xi(γi) � 0. For these elements
we get xi(γi) � 0, from `(y−1xi) = `(y) + `(xi). If we find such elements we define
wi+1

1 := wi1sγi until Φ+(wi1) ∪ Φ+(w2) = B or there exists an i, for which wi1 fulfils the
property 2) from the Theorem 4.1. This works as follows:

1. Case: There exists a γi with wi1(γi) � 0 and y−1xi(γi) � 0.

Then the requirements for the induction are fulfilled, as from y−1xi(γi) � 0 follows
w−1

2 wi1(γi) � 0 and therefore wi1(γi) /∈ Φ+(w2). Then we define again wi+1
1 := wi1sγi . We

get Φ+(wi+1
1 ) ∩ Φ+(w2) = B. So we can continue the induction with this γi until either

in the Theorem 4.1 assertion 1) is fulfilled or the second case occurs.

2. Case: For all γj with y−1xi(γj) � 0 holds wi1(γj) ≺ 0.

Then we take a closer look at the following elements:

w̄i := x−1
i yw0 and x−1

i wB

For these elements the requirements from Lemma 4.14 are fulfilled, because:

• B′ := Φ+(w̄i) ∩ Φ+(x−1
i wB) = x−1

i (B). This can be seen as follows:

– x−1
i (B) ⊂ Φ+(w̄i), because For all x−1

i (b) ∈ x−1
i (B) we get

w̄−1
i (x−1

i (b)) = w−1
0 y−1xix

−1
i (b) = w−1

0 y−1(b)︸ ︷︷ ︸
�0

≺ 0

– For all µ ∈ Φ+(x−1
i ) holds µ /∈ Φ+(w̄i), because:

Assume µ ∈ Φ+(w̄i)⇒ w̄−1
i (µ) ≺ 0⇒ w−1

0 y−1xi(µ) ≺ 0⇒ y−1xi(µ) � 0⇒
xi(µ) � 0⇒ µ /∈ Φ+(x−1

i )

• B′ = x−1
i (B) consists of pairwise strongly orthogonal roots, as B consists of pair-

wise strongly orthogonal roots
• For all γj ∈ Φ+(w̄i)∩Π we know that γj lies in x−1i (B), because we get wi1(γj) ≺ 0

and xi(γj) � 0, so γj ∈ Φ+(x−1
i wB) and γj /∈ Φ+(x−1

i ).

Thus we can apply Lemma 4.14, this provides that there exist exactly |B| elements
in Φ+(w̄i) ∩Π. We call these elements α′1, . . . α

′
|B|, they are pairwise strongly orthogonal

and we define:

wB′ :=

|B|∏
i=1

α′i



16

For all 1 ≤ j ≤ |B| we get wi1(α′j) ∈ −B, because wi1(α′j) = wBxi(x
−1
i (b)) for some b ∈ B

with α′j = x−1
i (b), then wBxi(x

−1
i (b)) = wB(b) = −b ∈ −B.

Due to α′j ∈ Φ+((wi1)−1) and as the α′j are pairwise orthogonal there exist by Lemma

4.3 a reduced expression of (wi1)−1 beginning with wB′ . The associated reduced expression
of wi1 fulfils the requirements of Theorem 4.1. This follows analogously to Corollary 4.17
and the claim is proven. �

Proof of Theorem 4.1. The general case of arbitrary B ⊂ Φ+ can be reduced to the
special case in Corollary 4.18 with Corollary 4.15. Let therefore be a reduced expression
of w1 given as in Corollary 4.15: w1 = sα1 . . . sαm and i ≤ j ≤ m with B : {βi, . . . βj}.
Then we look at the elements v1 = sαi−1 . . . sα1w1 and v2 = sαi−1 . . . sα1w2. For these
elements B′ := Φ+(v1) ∩Φ+(v2) ⊂ Π, i.e. the requirements of Corollary 4.18 are fulfilled
and we can apply the Theorem 4.1. Now we choose for w1 and w2 the following elements:
w′1 = sα1 . . . sαi−1v

′
1 and w′2 = sα1 . . . sαi−1v

′
2, we get for the intersection:

Φ+(w′1) ∩ Φ+(w′2) = sα1 . . . sαi−1(B′)

because Φ+(v′1) ∪ Φ+(v′2) = Φ+ and further we get:

Φ+(w′1) ∩ Φ+(w′2) = sα1 . . . sαi−1(sαi−1 . . . sα1B) = B

Moreover by induction on the length i, we get for the union of Φ+(w′1) and Φ+(w′2):

Φ+(w′1) ∪ Φ+(w′2) = Φ+

Thus the Theorem 4.1 is proven for an arbitrary B.
�

5. Triangular Borel subalgebras with non-degenerate character shifts

In this section we construct a large family of Borel subalgebras associated to a choice
(c, φ) of an orthogonal subset of simple roots c (i.e. a coclique in a Dynkin diagram) and
an associated character φ, which is uniquely given by a family of scalars λ : c → K×.
These Borel subalgebras look like a disjoint family of Weyl algebras for each element in
c, filled up with a suitable maximal set of remaining positive roots.

The Borel subalgebras we construct are by construction triangular and fulfil an addi-
tional non-degeneracy property:

Φ+(w+) ∩ Φ+(w−) = supp(φ+) ∩ supp(φ−)(5)

where for an arbitrary triangular RCS the relation ⊇ holds by construction. In the next
section we will then prove that all triangular nondegenerate Borel subalgebras are of the
type constructed here (assumed type An).
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5.1. Main construction theorem. Consider now the right coideal subalgebra

C = ψ(U+[w0])φ+TLU
−[x]φ−

where w0 ∈W is the longest element of the Weyl group, x ∈W is a choice of a Weyl group
element such that c = Φ+(x) ⊂ Π consists of pairwise orthogonal roots; i.e. x =

∏
α∈c sα.

Furthermore let φ+, φ− be characters with supp(φ+) = supp(φ−) = Φ+(x). Any such
character is defined by: φ+(ψ(Eα)) = λα ∈ k∗ for α ∈ supp(φ+) and 0 otherwise and
φ−(Fα) = λ′α ∈ k∗ and 0 otherwise with the condition

λ′αλα =
q2
α

(1− q−2
α )(qα − q−1

α )

Moreover let L = supp(φ)⊥; this choice is for maximality, there is an ede RCS for any
choice L ⊆ supp(φ)⊥.

Using the commutation relations in C we will show first, that C is a triangular right
coideal subalgebra, that means closed under multiplication.

Afterwards we will show, that right coideal subalgebras of this form are ede, that
means they have the property, that each finite dimensional irreducible representation is
one dimensional, and if furthermore L = supp(φ)⊥ we show, that C is a Borel subalgebra.

Main Theorem 5.1. The right coideal subalgebra

C = ψ(U+[w0])φ+TLU
−[x]φ−

with data x, φ+, φ−, L as discussed above, is a Borel subalgebra of Uq(g).

In the rest of the section we will work out the proof of this theorem.

First we take a closer look at the commutation relations in C. For this purpose we first
generalize known results on the description of first terms in the comupltiplication via
technical maps rα, r

′
α, that are of utmost importance. Then we apply this knowledge to

show that for all α ∈ Φ+(x) the character-shifted root vectors F̄α ∈ U−[x]φ− q-commute

with all character-shifted root vectors in ψ(U+[w0])φ+ except Ēα.

5.2. Generalizations of rα. For calculating the commutators we utilize the maps rα
and r′α due to Lusztig and the following definition and Lemmata can be found in [Jan96]
chapter 6. The aim of the subsection is to generalize Lemma 5.3, which describes the
first nontrivial term (containing a simple root vector) in the coproduct of any element,
stepwise until Lemma 5.10, which gives the same information for certain non-simple root
vectors. Last we apply Lemma 5.5, which describes Tα(U+[sαw0]) as zeroes of rα to the
specific situation of a non-simple root vector in Lemma 5.11.
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Definition 5.2. Let x ∈ U+
µ . For all α ∈ Π there exist elements rα(x) and r′α(x) in

U+
µ−α such that:

∆(x) = x⊗ 1 +
∑
α∈Π

rα(x)Kα ⊗ Eα + (rest)(6)

∆(x) = Kµ ⊗ x+
∑
α∈Π

EαKµ−α ⊗ r′α(x) + (rest)(7)

where (rest) contains terms in Uµ−νKν ⊗U+
ν for ν � 0 and ν /∈ Π in (6) resp. µ− ν � 0

and µ − ν /∈ Π in (7). In particular rα(1) = 0 = r′α(1) and rα(Eβ) = r′α(Eβ) = δαβ for
all β ∈ Π.

Lemma 5.3. For these rα and r′α the following relations hold:
a) For all x ∈ U+

µ and x′ ∈ U+
µ′:

rα(xx′) = xrα(x′) + q(α,µ′)rα(x)x′ and r′α(xx′) = q(α,µ)xr′α(x′) + r′α(x)x′

b) For all x ∈ U+
µ and y ∈ U−:

(Fαy, x) = (Fα, Eα)(y, r′α(x)) and (yFα, x) = (Fα, Eα)(y, rα(x))

c) We have r′α(x) = τrατ(x) for all x ∈ U+
µ with τ the Cartan involution

Lemma 5.4. Let α ∈ Π and µ ∈ Q+. Then for all y ∈ U−−µ and x ∈ U+
µ :

Eαy − yEα = (qα − q−1
α )−1(Kαrα(y)− r′α(y)K−1

α ),

xFα − Fαx = (qα − q−1
α )−1(rα(x)Kα −K−1

α r′α(x))

See [Jan96] chapter 6.

Lemma 5.5 ([Jan96] p.166). For α ∈ Π and with w0 a longest element:

Tα(U+[sαw0]) = {x ∈ U+ | rα(x) = 0}
U+[sαw0] = {x ∈ U+ | r′α(x) = 0}

where Tα are the Lusztig automorphisms.

First we prove some generalizations of the Lemmata 5.3 and 5.4:

Lemma 5.6. Let α ∈ Π and r′α as in Definition 5.2, then we get for any Xµ ∈ U+
µ in

degree µ ∈ Q+ and any β ∈ Π:

r′iα(XµEβ) = ciαq
(µ,α)r′i−1

α (Xµ)rα(Eβ) + r′iα(Xµ)Eβ

for the constant ciα = q1−i
α [i]α ∈ k.

Proof. We prove the claim by induction over i. From Lemma 5.3 we get r′α(xx′) =

q(α,µ)xr′α(x′) + r′α(x)x′ for x ∈ U+
µ and r′α(Eβ) = δαβ. This proves the claim for i = 1.
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From the induction assertion follows easily:

r′iα(XµEβ) =r′i−1
α r′α(XµEβ)

=r′i−1
α (q(α,µ)Xµr

′
α(Eβ) + r′α(Xµ)Eβ)

=r′i−1
α (q(α,µ)Xµδαβ + r′α(Xµ)Eβ)

I.A.
= q(α,µ)r′i−1

α (Xµ)δαβ + ci−1
α q(α,µ−α)r′i−1

α (Xµ)r′α(Eβ) + r′iα(Xµ)Eβ

=r′i−1
α (Xµ)r′α(Eβ)(q(α,µ) + ci−1

α q(α,µ−α)) + r′iα(Xµ)Eβ

That is, it is sufficient to show that: q(α,µ) + ci−1
α q(α,µ−α) = q(α,µ)ciα. This holds if and

only if 1+ci−1
α q−(α,α) = ciα. So it only remains to prove: q1−i

α [i]α = q
1−(i−1)
α [i−1]αq

−2
α +1

which works as follows:

q1−i
α [i]α − 1− q1−(i−1)

α [i− 1]αq
−2
α

=q1−i
α

qiα − q−iα
qα − q−1

α
− 1− q1−(i−1)

α

qi−1
α − q1−i

α

qα − q−1
α

q−2
α

=(q1−i
α (qiα − q−iα )− qα + q−1

α − q−iα (qi−1
α − q1−i

α ))
1

qα − q−1
α

=(qα − q1−2i
α − qα + q−1

α − q−1
α + q1−2i

α )
1

qα − q−1
α

=0

This proves the Lemma. �

Lemma 5.7. For α ∈ Π let r′α be the element as in Definition 5.2 and Xµ ∈ U+
µ in

degree µ ∈ Q+ then:

∆(Xµ) = Kµ ⊗Xµ +
∑
α∈Π

∑
i

EiαKµ−iα ⊗ siα(Xµ) + (rest)

where (rest) contains terms in Uν ⊗ U for any ν ∈ Q+ which is not a multiple of α.

Here siα(x) = ziα · r′iα(x) ∈ U+ for the constant ziα = zi−1
α

q
2(i−1)
α ciα

= zi−1
α

qi−1
α [i]

∈ k.

Proof. Both sides are k-linear. We prove the statement inductively over the height ht(µ)
of Xµ. We look at words in the generators Eα, α ∈ Π. For ht(µ) = 1, i.e. Xµ = Eα for
an α ∈ Π, the claim is trivial. Assume the claim is true for elements Xµ ∈ Uµ, then we
prove the claim for XµEβ for an arbitrary β ∈ Π:

∆(XµEβ) =∆(Xµ)∆(Eβ)

=(Kµ ⊗Xµ +
∑
α∈Π

∑
i

EiαKµ−iα ⊗ siα(Xµ) + (rest))(Kβ ⊗ Eβ + Eβ ⊗ 1)

=KµEβ ⊗Xµ +KµKβ ⊗XµEβ +
∑
α∈Π

∑
i

EiαKµ−iαEβ ⊗ siα(Xµ)

+
∑
α∈Π

∑
i

EiαKµ−iαKβ ⊗ siα(Xµ)Eβ + (rest)′

Where (rest)′ contains terms of (rest) and (rest)Eβ. We want to prove, that:
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KµEβ ⊗Xµ +
∑
α∈Π

∑
i

EiαKµ−iαEβ ⊗ siα(Xµ)(8)

+
∑
α∈Π

∑
i

EiαKµ−iαKβ ⊗ siα(Xµ)Eβ + (rest)′(9)

=
∑
α∈Π

∑
i

EiαKµ+β−iα ⊗ siα(XµEβ) + (rest)new(10)

Let us first consider the case α 6= β, here

KµEβ ⊗Xµ +
∑
α∈Π

∑
i

EiαKµ−iαEβ ⊗ siα(Xµ) + (rest) ∈ (rest)new

It remains to prove that∑
α∈Π

∑
i

EiαKµ−iαKβ ⊗ siα(Xµ)Eβ =
∑
α∈Π

∑
i

EiαKµ+β−iα ⊗ siα(XµEβ)

This holds if and only if siα(Xµ)Eβ = siα(XµEβ). The latter, however, follows from the
corresponding property of r′iα.

Now we consider the case β = α. Here: Xµ = Xµsα(Eα). So we can rewrite the left
hand side of equation (9) as:

KµEα ⊗Xµsα(Eα)+
∑
α∈Π

∑
j≥2

q(µ−(j−1)α,α)EjαKµ+α−jα ⊗ sj−1
α (Xµ)sα(Eα)

+
∑
α∈Π

∑
i

EiαKµ−iαKα ⊗ siα(Xµ)Eβ + (rest)′

=
∑
α∈Π

∑
j≥1

q(µ−(j−1)α,α)EjαKµ+α−jα ⊗ sj−1
α (Xµ)sα(Eα)

+
∑
α∈Π

∑
i

EiαKµ+α−iα ⊗ siα(Xµ)Eβ + (rest)′

Comparing this to the right hand side of equation (9), it remains to prove that for all i:

siα(Xµ)Eβ + q(µ−(i−1)α,α)si−1
α (Xµ)sα(Eα) = siα(XµEα)

This in turn follows directly from the definition of sα and Lemma 5.6. �

Lemma 5.8. For all r′α and rα as in Definition 5.2 the following equations hold:
a) For all α, β ∈ Π:

rαr
′
β = r′βrα

b) For α, β ∈ Π with either α = β or α ⊥ β:

rαrβ = rβrα

c) For α, β ∈ Π with either α = β or α ⊥ β:

r′αr
′
β = r′βr

′
α
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Proof. We prove the statements again by induction on ht(µ) for elements Xµ ∈ U+ for
µ ∈ Q+:
a) For µ ∈ Π both sides are 0. Consider now for an arbitrary γ ∈ Π, µ ∈ Q+ the product
XµEγ :

rαr
′
β(XµEγ) =rα(q(β,µ)Xµδβγ + r′β(Xµ)Eγ)

=q(β,µ)rα(Xµ)δβγ + r′β(Xµ)δαγ + q(γ,α)rαr
′
β(Xµ)Eγ

On the other side:

r′βrα(XµEγ) =r′β(Xµδαγ + q(α,γ)rα(Xµ)Eγ)

=r′β(Xµ)δαγ + q(β,α)q(β,µ−α)rα(Xµ)δβγ + q(γ,α)r′βrα(Xµ)Eγ
I.A.
= r′β(Xµ)δαγ + q(β,α)q(β,µ−α)rα(Xµ)δβγ + q(γ,α)rαr

′
β(Xµ)Eγ

b) Here for µ ∈ Π both sides are 0. For µ ∈ Q+, γ ∈ Π and arbitrary α, β ∈ Π we
consider first rαrβ:

rαrβ(XµEγ) =rα(Xµδβγ + q(β,γ)rβ(Xµ)Eγ)

=rα(Xµ)δβγ + q(β,γ)rβ(Xµ)δαγ + q(β,γ)q(γ,α)rαrβ(Xµ)Eγ

On the other side we get for rβrα:

rβrα(XµEγ) = rβ(Xµ)δαγ + q(γ,α)rα(Xµ)δβγ + q(β,γ)q(γ,α)rβrα(Xµ)Eγ

By the induction hypothesis, the two sides are equal, if:

rα(Xµ)δβγ + q(β,γ)rβ(Xµ)δαγ = rβ(Xµ)δαγ + q(γ,α)rα(Xµ)δβγ

This is true if and only if α = β or (α, β) = 0. c) The proof is analogous to b). �

Lemma 5.9. We expand the definition of rα to rᾱ for elements: ᾱ =
∑

k ikαk ∈ Q with
ik ∈ N and pairwise orthogonal roots αk ∈ Π as follows: Let x be a homogeneous element
in U+. Then we define:

rᾱ(x) :=
∏
k

rikαk(x) ∈ U+

Due to Lemma 5.8 this is well defined. Moreover let supp(ᾱ) := {k ∈ N | ik 6= 0}.
Now we get for arbitrary Xµ ∈ U+

µ for µ ∈ Q and Eγ ∈ U+
γ for γ ∈ Π:

rᾱ(XµEγ) =
∑

k∈supp(ᾱ)

cikαkq
(µ,αk)rᾱ−αk(Xµ)rαk(Eβ) + rᾱ(Xµ)Eβ

Proof. We prove the statement with induction on |supp(ᾱ)|. For n = 1 the claim follows
from Lemma 5.6. Consider a root as above ᾱ =

∑
k ikαk, then for an arbitrary j with

ij 6= 0 in particular we get rᾱ = r
ij
αj

∏
k 6=j r

ik
αk

. We call
∑

k 6=j ikαk = ᾱ′, so ᾱ = ᾱ′ + ijαj
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and for the root ᾱ′ the claim follows from the induction hypothesis.

rᾱ(XµEγ) =r
ij
αjrᾱ′(XµEγ)

=r
ij
αj (

∑
k∈supp(ᾱ′)

cikαkq
(µ,αk)rᾱ′−αk(Xµ)rαk(Eβ) + rᾱ′(Xµ)Eβ)

=
∑

k∈supp(ᾱ′)

cikαkq
(µ,αk) rᾱ′+ijαj−αk︸ ︷︷ ︸

rᾱ−αk

(Xµ)δαkβ + c
ij
αjq

(αj ,µ) rᾱ′r
(ij−1)
αj︸ ︷︷ ︸

rᾱ−αj

(Xµ)rαj (Eβ)

+ rᾱ′+ijαj (Xµ)Eβ

=
∑

k∈supp(ᾱ)

cikαkq
(µ,αk)rᾱ−αk(Xµ)δαkβ + rᾱ(Xµ)Eβ

Thus the claim is proven. �

Now we can prove the strongest generalization of the technical Lemma 5.3.

Lemma 5.10. Let ᾱ =
∑

k ikαk ∈ Q and rᾱ =
∏
k r

ik
αk

as above and zᾱ =
∏
k z

ik
αk
∈ k

for the elements zαk from Lemma 5.7. Then we get for Xµ ∈ Uµ for a root µ ∈ Q+:

∆(Xµ) = Kµ ⊗Xµ +
∑
ᾱ

EᾱKµ−ᾱ ⊗ sᾱ(Xµ) + (rest)

Where (rest) contains terms in Uν ⊗Uµ−ν , such that ν ∈ Q is not a linear combination
of pairwise orthogonal roots αk ∈ Π.

Proof. The proof works similar to the proof of Lemma 5.7 together with Lemma 5.9. �

Having finished this we close this technical subsection by applying Lemma 5.5:

Lemma 5.11. Let w0 ∈ W be the longest element of the Weyl group with a reduced
expression w0 = sα1sα2 . . . sα`(w0)

. Let Φ+(w) = {β1, . . . , β`(w0)} with respect to this

reduced expression. For an α ∈ Π let βj = α. For the root vectors Eβi the following
relations hold:
a) For i < j:

r′α(Eβi) = 0

b) For i > j:

rα(Eβi) = 0

Proof. According to Lemma 5.5 we know:

Tα(U+[sαw0]) = {x ∈ U+ | rα(x) = 0}
U+[sαw0] = {x ∈ U+ | r′α(x) = 0}

a) For i < j in particular Eβi lies in U+[sαw0], thus r′α(Eβi) = 0.
b) For i > j in particular Eβi lies in Tα(U+[sαw0]), thus rα(Eβi) = 0. �
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5.3. Commutator relations of character-shifted root vectors. We use the results
of the preceding subsection to calculate commutator relations of character-shifted root
vectors.

Lemma 5.12. Let φ be a character on a right coideal subalgebra A of U+ and Aφ be the
character-shifted subalgebra. We define the character-shifted elements of Aφ as follows:

X̄µ := (φ⊗ id)∆(Xµ) for Xµ ∈ Aµ
Let φ be a character whose support contains only pairwise orthogonal roots in Π, i.e.
supp(φ) = {α1, . . . , αk} ⊂ Π with φ(αi) = λi ∈ k. We define ᾱ =

∑
k ikαk as above and

λᾱ =
∏
k λ

ik
k . Then:

X̄µ = Xµ +
∑

0≺ᾱ≺µ
λᾱsᾱ(Xµ)

Proof. From Lemma 5.10 this follows directl, because (rest) is zero. �

Lemma 5.13. Given C = ψ(U+[w0])φ+TLU
−[x]φ− ⊂ U as from in the beginning, i.e. for

x ∈W a Weyl group element such that Φ+(x) ⊂ Π consists of pairwise orthogonal roots.
Further let φ+, φ− be the characters with supp(φ+) = supp(φ−) = Φ+(x) defined as
follows: φ+(ψ(Eα)) = λα ∈ k∗ for α ∈ supp(φ+) and 0 otherwise and φ−(Fα) = λ′α ∈ k∗

and 0 otherwise, with λ′αλα = q2
α

(1−q−2
α )(qα−q−1

α )
.

Then for any α ∈ supp(φ+) and µ 6= α for elements X̄µ ∈ (ψ(U+[w0])φ+)µ and

F̄α ∈ (U−[x]φ−)α the following q-commutator relation holds:

[Fα + λ′αK
−1
α , X̄µ]q−(µ,α) = 0(11)

Proof. Consider an element r′α(sᾱ(Xµ)). Then:

r′α(sᾱ(Xµ)) =
xi−1
α

xiα
sᾱ+α(Xµ)

for i = (ᾱ,α)
(α,α) + 1. That is:

r′α(sᾱ(Xµ)) = sᾱ+α(Xµ)q−1
α [i] = sᾱ+α(Xµ)(q−i−1

α

q2i
α − 1

qα − q−1
α

)

Inserting 5.12 in (11), yields:

[Fα + λ′αK
−1
α , X̄µ]q−(µ,α) =

∑
04ᾱ

λᾱ([Fα, sᾱ(Xµ)K−1
µ ]q−(µ,α) + λ′α[K−1

α , sᾱ(Xµ)K−1
µ ]q−(µ,α))

For (11) it remains to prove, that:∑
04ᾱ

λᾱ[Fα, sᾱ(Xµ)K−1
µ ]q−(µ,α) = −

∑
04ᾱ

λᾱλ
′
α[K−1

α , sᾱ(Xµ)K−1
µ ]q−(µ,α)(12)

To see this we use Lemma 5.4, this yields for α ∈ Π and x ∈ U+
µ :

xFα − Fαx = (qα − q−1
α )−1(rα(x)Kα −K−1

α r′α(x))(13)
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Consider first the left hand side of (12):∑
04ᾱ

λᾱ[Fα, sᾱ(Xµ)K−1
µ ]q−(µ,α) =

∑
04ᾱ

λᾱ(Fαsᾱ(Xµ)K−1
µ − q−(µ,α)sᾱ(Xµ)K−1

µ Fα)

=
∑
04ᾱ

λᾱ(Fαsᾱ(Xµ)− sᾱ(Xµ)Fα)K−1
µ

(13)
= −

∑
04ᾱ

λᾱ(qα − q−1
α )−1(rα(sᾱ(Xµ))Kα −K−1

α r′α(sᾱ(Xµ)))K−1
µ

Lm.5.11
=

∑
04ᾱ

λᾱ(qα − q−1
α )−1q−(α,µ−ᾱ−α)r′α(sᾱ(Xµ))K−1

µ K−1
α

=
∑
04ᾱ

λᾱsᾱ+α(Xµ)K−1
µ K−1

α q−i−1
α

q2i
α − 1

qα − q−1
α

(qα − q−1
α )−1q−(α,µ)qiα

=
∑
α4ᾱ

λᾱλ
−1
α sᾱ(Xµ)K−1

µ K−1
α q−1

α

q2i−2
α − 1

qα − q−1
α

(qα − q−1
α )−1q−(α,µ)

On the right hand side of the equation (12) we have:

−
∑
04ᾱ

λᾱλ
′
α[K−1

α , sᾱ(Xµ)K−1
µ ]q−(µ,α) =−

∑
04ᾱ

λᾱλ
′
α(K−1

α sᾱ(Xµ)K−1
µ − q−(µ,α)sᾱ(Xµ)K−1

µ K−1
α

=−
∑
α4ᾱ

λᾱλ
′
αsᾱ(Xµ)K−1

µ K−1
α q−(µ,α)(q2i−2

α − 1)

Comparing both sides we get:∑
α4ᾱ

λᾱλ
−1
α sᾱ(Xµ)K−1

µ K−1
α q−1

α

q2i−2
α − 1

qα − q−1
α

(qα − q−1
α )−1q−(α,µ)q2

α

= −
∑
α4ᾱ

λᾱλ
′
αsᾱ(Xµ)K−1

µ K−1
α q−(µ,α)(q−2i

α − 1)

It remains to prove that:

λ−1
α q−1

α

q2i−2
α − 1

qα − q−1
α

(qα − q−1
α )−1q2

α = −λ′α(q2i−2
α − 1)

Rearranging yields:

λ′αλα =
q2
α

(1− q−2
α )(qα − q−1

α )

Thus the claim is proven. �

Corollary 5.14. Given C = ψ(U+[w0])φ+TLU
−[x]φ− ⊂ U as from the beginning, i.e.

for x ∈ W a Weyl group element such that Φ+(x) ⊂ Π consists of pairwise orthogonal
roots. Further let φ+, φ− be characters with supp(φ+) = supp(φ−) = Φ+(x) defined as
follows: φ+(ψ(Eα)) = λα ∈ k∗ for α ∈ supp(φ+) and 0 otherwise and φ−(Fα) = λ′α ∈ k∗

and 0 otherwise, with λ′αλα = q2
α

(1−q−2
α )(qα−q−1

α )
and let L = Φ+(x)perp.

Then C is a triangular right coideal subalgebra, i.e. closed under multiplication.
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Proof. This follows directly from the commutator relation of Lemma 5.13:

[Ēβ, F̄α] = 0

for all α ∈ supp(φ+), β ∈ Φ+\supp(φ+). On the other hand we know:

[Ēα, Ēβ] = [Ēα, F̄β] = [F̄α, F̄β] = 0,

[Ēα, F̄α] = 1
q2
α

qα − q−1
α

for all α 6= β ∈ supp(φ+) and of course

[Ēµ, Ēν ] ⊂ ψ(U+[w0])φ+ [Ēµ,Kγ ] = 0

for all µ, ν ∈ Φ+ and γ ∈ Φ+ with Kγ ∈ C. So the ordered product of subalgebras C is
closed under multiplication and therefore a subalgebra. As a product of right coideals,
it is in particular also a right coideal subalgebra. �

Remark 5.15. Let C = ψ(U+[w0])φ+TLU
−[x]φ− be the right coideal subalgebra as from

the beginning. If C ⊂ Uq(sln), then for a maximal root µ ∈ Φ+ the root vector Ēµ ∈
ψ(U+[w0])φ+ we obtained in Lemma [Vocke16] Lemma 3.36 q-commutes with all root
vectors in C.

Due to Lemma 5.13 Ēµ q-commutes with all root vectors in TLU
−[x]φ− . From Lemma

[Vocke16] Lemma 3.36 we know, that Eµ q-commutes with all root vectors in U+. As
U+[w0] ∼= U+[w0]φ for characters φ on U+[w0], we already know, that all root vectors
in ψ(U+[w0])φ+ q-commute with Ēµ and thus the claim is proven.

5.4. On representation theory of triangular coideal subalgebras. Recall how we
have proven in [HLV17] that the standard Borel subalgebras are indeed ede:

Lemma 5.16. Given a Weyl group element w ∈W and the corresponding right coideal
subalgebra U−[w]. Each finite dimensional irreducible representation V , on which all el-
ements in U−[w] ∩ kerε act nilpotent is one dimensional.

In particular U−[w] is always weak ede. The same is true for U+[w].

Corollary 5.17. Given a Weyl group element w ∈W , L a subgroup of Q and the corre-
sponding right coideal subalgebra C = TLU

−[w] with the property, that for all µ ∈ Φ+(w)
there exists a ν ∈ L such that (µ, ν) 6= 0, then C is ede.

In particular U0U−[w] is ede, as well as the right coideal subalgebra U0U+[w].

From now on let C = ψ(U+[w0])φ+TLU
−[x]φ− be as in the previous subsections,

i.e. let x ∈ W be the Weyl group element such that Φ+(x) ⊂ Π consists of pairwise
orthogonal roots. Further let φ+, φ− be characters with supp(φ+) = supp(φ−) = Φ+(x),

and φ+(Eα)φ−(Fα) = q2
α

(1−q−2
α )(qα−q−1

α )
and L ⊆ Φ+(x)⊥.

Lemma 5.18. For C = ψ(U+[w0])φ+TLU
−[x]φ− any finite-dimensional irreducible rep-

resentation is one-dimensional.
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Proof. Let V be a finite irreducible representation of C. As the roots in supp(φ+) are
pairwise orthogonal and as L = supp(φ+)⊥, then due to Lemma 5.13 the following
commutator relations hold:

[Ēα, Ēβ] = [Ēα,Kµ] = [Ēα, F̄β] = [F̄α, F̄β] = 0

for all α 6= β ∈ supp(φ+) and µ ∈ Φ+ with Kµ ∈ C. We consider the reduced expression
of the longest element:

w0 = (
∏

αj∈supp(φ+)

sαj )v

Let C ′ be the subalgebra generated by the elements Eβi for i > |supp(φ+)|. From the

maximal choice L = supp(φ+)⊥ we get for any Eβi ∈ C ′ an element Kµ ∈ TL with

q(βi,µ) 6= 1. C ′ is as algebra isomorphic to U+[v], so we can apply Corollary 5.17 and
show, that C ′ is ede and we can thus prove the existence of a vector v ∈ V which is
annihilated by C ′.

Let VC′ be the annihilator of C ′ in V , i.e. VC′ := {v ∈ V |∀x ∈ C ′ : xv = 0}. We claim
that VC′ is a C-submodul of V : We know from Theorem 5.13 that all elements Xµ ∈ C ′
q-commute with all elements in TLU

−[x]φ− .

For degree reasons we know that the q-commutator of the elements in C ′ and ψ(U+[x])φ+

lies in C ′, i.e. vanishes on the representation VC′ . Thus with Theorem 3.12 VC′ is a C-
subrepresentation, and as V is irreducible we get VC′ = V .

Thus we get for the irreducible representation V of C:

C|V ∼= TL ⊗
⊗

α∈supp(φ+)

〈Ēα, F̄α〉

So the ede property follows from the ede property of the components of the tensor
product. TL is abelian, and for any α ∈ supp(φ+) the subalgebras 〈Ēα, F̄α〉 are quantised
Weyl algebras, which are ede by Example 2.7. �

5.5. Proof of the main construction theorem.

Proof. From Lemma 5.18 we already know, that C is ede, it remains to prove the maxi-
mality of C. Let C ′ be an ede right coideal subalgebra with C ⊂ C ′.

Due to the second authors generating system for any RCS in [Vocke16] Lemma 4.11
or [Vocke17] we can choose a generating system of C ′ consisting of elements, whose
E-Leitterms lie in U≥0.As we know that ψ(U+[w0])φ+ ⊂ C ⊂ C ′, all elements with non-

trivial E-Leitterm lie in U≥0: That is, to each additional element X in C ′ we find an
element Y in C ∩ U≥0, such that X and Y have the same E-Leitterms. Thus the differ-
ence has a smaller degree and can be generated as in [Vocke16] Lemma 4.7 by elements
with E-Leitterms in U≥0, which again have smaller degree as before. By induction it
follows that all generators as in [Vocke16] lie either in U≥0 or U≤0 and the right coideal
subalgebra C ′ is triangular generated, i.e. of the form C ′ = ψ(U+[w0])φ+

neu
TL′U

−[xv]φ−neu
for a v ∈W with `(xv) = `(x) + `(v) and characters φ+

neu and φ−neu.

As TL ⊂ C ′, we can consider φ+
neu, φ−neu such that all elements in C ′ are ad-TL-stable.

As C ′ is ede we can conclude: supp(φ+
neu), supp(φ−neu) ⊂ (TL)⊥ = supp(φ+). On the
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other hand Theorem 3.3 yields, that for all elements µ ∈ Φ+(w0) ∩ Φ+(xv) ⊃ Φ+(x)
holds µ ∈ supp(φ+

neu) ∩ supp(φ−neu). Thus we get supp(φ+
neu) = supp(φ−neu) = supp(φ+).

As TL′ ⊂ (supp(φ+
neu) ∩ supp(φ−neu))⊥ = (supp(φ+))⊥ and of course L ⊂ L′, so L′ = L

follows directly.

In the case g = An the claim follows from Lemma 2.11, in general we can prove it as
follows: Assume v 6= 1, then there exists α ∈ Π ∩Φ+(v). Is α orthogonal to all elements
in supp(φ+), then EαK

−1
α , Fα ∈ C ′ and Corollary 3.4 yields a contradiction to C ′ ede.

Is α not orthogonal on all elements in supp(φ+), then there exists a root µ ∈ Φ+(xv)
and a term F̄µ = cFαK

−1
µ−α +

∑
ν�αXνK

−1
µ−ν ∈ C ′ for a constant c ∈ k∗ and terms

Xν ∈ U≤0
ν with α ≺ ν: This claim follows from the fact that the elements in supp(φ+)

are pairwise orthogonal and simple and in the relevant cases A3, C3 resp. D4 resp. B3

one can calculate the coproduct of Fα directly.

On the other hand we know EαK
−1
α ∈ C ′. Considering the action of the 1-commutator

on the lowest weight representation L(λ) to a lowest weight λ with q(α,λ) 6= ±1, we find:

[F̄µ, EαK
−1
α ].vλ = F̄µEαK

−1
α .vλ

= cFαK
−1
µ−αEαK

−1
α .vλ +

∑
ν�α

XνEαK
−1
α .vλ

=
cq−(µ−α,α)

qα − q−1
α

K−1
µ (Kα −K−1

α ).vλ = c′vλ

for a c′ ∈ k∗ by choice of the smallest weight λ. It follows that the commutator has
a non-trivial eigenvalue in the finite-dimensional representation L(λ) and thus not any
finite-dimensional irreducible representation of C ′ can be one-dimensional. So v = 1 and
C ′ = C, i.e. C is maximal and thus a Borel subalgebra.

�

5.6. Classification theorem. A triangular right coideal subalgebra is always of the
form: C = ψ(U+[w+])φ+TLU

−[w−]φ− , where w−, w+ ∈ W are elements in the Weyl

group; be advised that not any choice of w+, w− conversely leads to a well defined alge-
bra. By definition of the character-shift it makes only sense to consider L ⊂ (supp(φ+)∪
supp(φ−))⊥, see Theorem 2.3. In the previous subsection we have constructed Borel sub-
algebras with an additional non-degeneracy property supp(φ+)∩ supp(φ−) = Φ+(w+)∩
Φ+(w−) and supp(φ+) = supp(φ−). Now we conversely prove in the case of An that
we have found indeed all Borel subalgebras with these properties. We use in particular
Theorem 4.1 on Weyl groups, which tells us that an arbitrary triangular ede RCS is
contained in a larger triangular ede RCS which is then isomorphic via some Tw to one
of the Borel subalgebras we constructed. It is this theorem on Weyl groups which we
generally conjecture, but here could only be proven for An.

Main Theorem 5.19. Assume type An. Every triangular Borel subalgebra of Uq(g)

B = ψ(U+[w+])φ+TLU
−[w−]φ−
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with the additional non-degeneracy property Φ+(w+)∩Φ+(w−) = supp(φ+) = supp(φ−)
is isomorphic as algebra to a Borel subalgebra of the form constructed in our Main The-
orem 5.1.

That is: ψ(U+[w0])φ+TLU
−[
∏
α∈c sα]φ−with L = c⊥, where c is a set of pairwise or-

thogonal simple roots and φ+, φ− are characters on ψ(U+[
∏
α∈c sα]) resp. U−[

∏
α∈c sα],

given by an arbitrary choice of the values λα = φ+(EαK
−1
α ), λ′α = φ−(Fα) for α ∈ c

with λ′αλα = q2
α

(1−q−2
α )(qα−q−1

α )
.

In the rest of the section we will give a proof of this classification result.

Lemma 5.20. Let C be a triangular ede right coideal subalgebra of the form C =
ψ(U+[w1])φ+TLU

−[w2]φ− with Φ+(w1) ∩ Φ+(w2) = supp(φ+) = supp(φ−) =: B. Then

there are elements w′1, w
′
2 ∈ W with Φ+(w1) ⊆ Φ+(w′1), Φ+(w2) ⊆ Φ+(w′2), such that

Φ+(w′1) ∩ Φ+(w′2) = B and Φ+(w′1) ∪ Φ+(w′2) = Φ+. For these elements w′1, w
′
2 and

L′ := B⊥ we get:1

C ⊆ ψ(U+[w′1])φ+TL′U
−[w′2]φ− =: C ′

Proof. The existence of such Weyl group elements w′1, w
′
2 is the purpose of Theorem 4.1.

Of course we have U+[w1] ⊂ U+[w′1] and U+[w2] ⊂ U+[w′2]. So it remains to prove,
that φ+ is a character on U+[w′1]. From Theorem 4.1 we already know, that w′1 has
a reduced expression of the form w′1 = sαi1 . . . sαik , such that there is a j ≤ k with

B = {βij , . . . , βik}. Due to Remark 4.5 φ+ is thus a character on U+[w′1]. The same holds

for U−[w′2]. Thus the inclusion C ⊆ ψ(U+[w′1])φ+TL′U
−[w′2]φ− holds. �

Now we take a closer look at C ′ = ψ(U+[w′1])φ+TL′U
−[w′2]φ− . In particular we want

to show, that it is a triangular right coideal subalgebra and ede. For this in particular we
use Theorem 4.1 and the Lusztig automorphisms. We already know that for w′2 there is
a reduced expression w′2 = sαi1 . . . sαi`(w′2)

, such that B = {βi`(w′2)−|B|+1
, . . . , βi`(w′2)

}. We

define: v−1 := sαi1 . . . sαi`(w′2)−|B|
and x := sαi

`(w′2)−|B|+1
. . . sαi

`(w′2)
, such that w′2 = v−1x

and from the choice of w′1 we get vw′1 = w0, as Φ+(w′1)∪Φ+(w′2) = Φ+, moreover Φ+(x)
consists of pairwise orthogonal simple roots, by Definition of B.

In the following Lemma we now prove that in this situation we can apply Lusztigs
automorphism Tv to the chracter-shifted RCS (in general this does not give a character-
shifted RCS!) and show that it has the intended result claimed in the classification:

Lemma 5.21. Let C be a triangular ede right coideal subalgebra of the form C =
ψ(U+[w1])φ+TLU

−[w2]φ− with Φ+(w1) ∩ Φ+(w2) = supp(φ+) = supp(φ−) =: B. Given

the corresponding w′1, w′2 = v−1x with v−1 and x as above, then the Lusztigautomorphism
Tv maps the coideal C ′ constructed in the previous Lemma :

Tv(ψ(U+[w′1])φ+TL′U
−[v−1x]φ−︸ ︷︷ ︸

C′

) = ψ(U+[vw′1])Tv(φ+)Tv(TL′)(U
−[x])Tv(φ−)(14)

1The reader be again advised that C′ is a product of coideals, but at this point not necessarily an
algebra. In our specific situation this follows from the next Lemma
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where Tv(φ
±) is defined as φ± ◦ T−1

v .

Proof. Let us consider the PBW generators of C: As C is triangular, all of them lie in
ψ(U+[w′1])φ+ , U−[v−1x]φ− and TL. Let’s consider first U−[v−1x]φ− . Due to the choice

of the reduced expression of v−1x, the basis elements of U−[v−1x]φ− have the following
form:

F̄µ =

{
Fµ + φ−(Fµ)K−1

µ for µ ∈ supp(φ−)

Fµ otherwise

Thus we get for the Lusztig automorphism Tv:

Tv(F̄µ) =


Tv(Fµ) + φ−(Fµ)Tv(K

−1
µ ) = for µ ∈ supp(φ−)

Tv(Fµ) + Tv(φ
−)(Tv(Fµ))Tv(K

−1
µ ) = Tv(Fµ)

Tv(Fµ) = Tv(Fµ) otherwise

The same is true for the basis elements of U+[w′1]φ+ .

With these considerations, we can argue analogously to non-character-shifted right
coideal subalgebras in [HK11a] and obtain the assertion: As Φ+(w′1)∪Φ+(w′2) = Φ+ and
Φ+(w′1) ∩ Φ+(w′2) = B we get `(xw′1) = `(w0), so:

Tv(ψ(U+[w′1])φ+TL′U
−[v−1x]φ−) =Tv(ψ(U+[w′1])φ+)Tv(TL′)Tv(U

−[v−1]φ−T
−1
v (U−[x]Tv(φ−)))

=ψ(U+[v])Tv(φ−)Tv(ψ(U+[w′1])φ+Tv(TL′)TvU
−[x]Tv(φ−)

=ψ(U+[vw′1])Tv(φ+)Tv(TL′)(U
−[x])Tv(φ−)

=ψ(U+[w0])Tv(φ+)Tv(TL′)(U
−[x])Tv(φ−)

The Lusztig autmorphism Tw is in general not an coalgebra homomorphism, but in
this special case Tv is an algebra homomorphism, sending a right coideal to a right
coideal.

�

The image Tv(C
′) in the previous Lemma is one of the Borel subalgebras we con-

structed in our Main Theorem 5.1; regarding the characters: The relation between φ+

and φ− has to be as asserted in order for C ′ and even C to be ede by Lemma 3.7. Now
also C ′ is an ede right coideal subalgebra, because Tv is an algebra homomorphism, so
in order for C to be maximal we have at least C = C ′.

The remaining problem is: A triangular ede right coideal subalgebra of the form
C = ψ(U+[w1])φ+TL′U

−[w2]φ− which is via Tv isomorphic to the above-constructed
triangular Borel subalgebra, a-priori itself does not have to be maximal, as C could lie
in a bigger ede right coideal subalgebra C ′′ ⊃ C ′ = C, whose reflections to Tv(C

′′) is not
a right coideal subalgebra any more.

However in An we know from Lemma 2.11 and the maximality of L, that C cannot
lie in a bigger triangular ede right coideal subalgebra.
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This concludes the proof of the Main Classification Theorem 5.19

5.7. Induction of one-dimensional modules. In the Main Theorem 5.1 we have
constructed a large family of Borel algebras

B = ψ(U+[w0])φ+TLU
−[x]φ−

where x =
∏
α∈c sα such that c = Φ+(x) ⊂ Π consists of pairwise orthogonal simple roots,

and L = supp⊥, and the characters φ+, φ− on supp := supp(φ+) = supp(φ−) = Φ+(x)
are given as usual by suitable values for α ∈ supp.

φ+(ψ(Eα)) = λα ∈ k∗, φ−(Fα) = λ′α ∈ k∗, λ′αλα =
q2
α

(1− q−2
α )(qα − q−1

α )

Now let Cχ be a one-dimensional representation of B. Since there is a quotient algebra
where all Eβ 7→ 0 for all β 6∈ supp, the one-dimensional representations are in bijection to
one-dimensional representations of the |supp|-fold quantum Weyl algebra generated by
the character-shifted simple root vectors Ēα, F̄α for all α ∈ supp. By Example 2.7 hence
any one-dimensional representation Cχ is given though scalars eα, fα for all α ∈ supp

with again eαfα = q2
α

(1−q−2
α )(qα−q−1

α )
. It is then clear that:

Lemma 5.22. Let B be a Borel algebra and V a one-dimensional representation as
above. Then the induced representation

V (B,χ) := Uq(g)⊗B Cχ
is as a graded vectorspace isomorphic to ⊗

β∈Φ+\supp

C[Eβ]

⊗( ⊗
α∈supp

C[Kα,K
−1
α ]

)

The first factor is the space of coinvariants under projection to the Borel part Uq(gsupp)
+

where here gsupp ⊂ g is of type A1 × A1 × · · · ; in fact this is a Nichols algebra in the
non-semisimple category of Uq(gsupp)-modules. The second factor makes the induced
module for supp 6= 0 non-diagonal in Uq(gsupp)

0 ⊂ Uq(g)0, which acts simply by left-
multiplication.

Question 5.23. Similar to the sl2-case in [HLV17] we may ask for the decomposition
behaviour of these modules. We expect that they are again largely irreducible up to discrete
series’ in some eα, fα. In particular if all eα, fα are of this form, we expect again all
finite-dimensional irreducible modules of Uq(g) as unique quotients.

6. Triangular Borel subalgebras with degenerate character shifts

Now we construct and study Borel subalgebras without the non-degeneracy property,
so:

Φ+(w+) ∩ Φ+(w−) ) supp(φ+) ∩ supp(φ−)

These are not isomorphic as algebra to those of the non degenerated types.
These Borel subalgebras can contain non trivial character-shifted root vectors Ēµ, F̄µ

even though µ /∈ supp(φ+)∩supp(φ−), if µ is not simple and there is a smaller ν ≺ µ with
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ν ∈∈ supp(φ+)∩ supp(φ−). The properly character-shifted root vectors Ēν , F̄ν generate
again a quantized Weyl algebra and the entire Borel subalgebra contains extensions of
Weyl algebras.
In this section we restrict to the case An.

6.1. Some classification results on Borel subalgebras of degenerate type. We
want to give some preliminary classification results for general Borel subalgebras C =
ψ(U+[w+])φ+TLU

−[w−]φ− of the quantum group of type An with Φ+(w+) ∩Φ+(w−) )
supp(φ+) ∩ supp(φ−). To prove the expected result we use two technical restrictions, of
which we conjecture that they are true for general Borel subalgebras:

supp(φ+) = supp(φ−)

w.l.o.g. Φ+(w−) ⊂ Φ+(w+)

Under these assumptions, we can show that every triangular Borel subalgebra is of
the following type.

Definition 6.1. In An we consider the following types of Weyl group elements:

• For 1 ≤ i ≤ j ≤ n a ladder w(i, j) is the following Weyl group element together
with a reduced expression:

w(i, j) := sαisαi+1 . . . sαj

For the associated roots in Φ+(w(i, j)) we use the notation

βk(i, j) := sαisαi+1 . . . sαi+k−2
(αi+k−1) 0 < k ≤ j − i+ 1

• For 1 ≤ i ≤ n and 0 ≤ l ≤ n− i, 0 ≤ k ≤ i− 1 a Vlki is the following Weyl group
element together with a reduced expression:

Vlki := sαisαi+1sαi+2 . . . sαi+lsαi−1sαi−2 . . . sαi−k

Of course Φ+(Vlki ) := {
∑r

j=0 αi+j ,
∑0

j=−s αi+j | 0 ≤ r ≤ l, 0 ≤ s ≤ k}.

• For 1 ≤ i ≤ n and j ≤ min{i − 1, n − i} a diamond �i,j is the following Weyl
group element together with a reduced expression:

�i,j := V
jj
i V

j−1j−1
i . . . V00

i

• For 1 ≤ i ≤ n a palm �i is the following Weyl group element together with a
reduced expression:

�i := Vl1k1
i Vl2k2

i . . .

With 0 ≤ lj ≤ n− i, 0 ≤ kj ≤ i− 1 and the property lj > lj+1 and kj > kj+1.

Theorem 6.2. For C = ψ(U+[w+])φ+TLU
−[w]φ− ede with Φ+(w) ⊂ Φ+(w+) and if

supp(φ+) = supp(φ−) =: supp(φ) only the following choices of w are possible:

(1) In the case supp(φ) = {αi} ⊂ Π:

w = Vlki := sαisαi+1sαi+2 . . . sαi+lsαi−1sαi−2 . . . sαi−k

for some 0 ≤ i, l, k ≤ n, as in Definition 6.1.
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(2) In the more general case supp(φ) ∩Π = {αi}:

w = �i := Vl1k1
i Vl2k2

i . . .

for 1 ≤ i ≤ n with the property lj > lj+1 and kj > kj+1.

This w is the inverse of a special element in the following sense

Lemma 6.3. [[HLV17]] For a Weyl group element w ∈ W and a root αi ∈ Π
the following statements are equivalent:
• the set Φ+(w−1) contains exactly one simple root, which is αi
• for all j 6= i holds `(sαjw

−1) = `(w) + 1, but `(sαiw
−1) = `(w)− 1

• In each reduced expression of w the last factor is sαi
Let Wi be the (so called parabolic) subgroup of W , which is generated by the

sαj with j different to i. Then in the case above w is the unique representative
of the left coset wWi with minimal length.

If �i,m is the maximal diamond with Φ+(�i,j) ⊂ Φ+( �i), then:

supp(φ) =

{
i+l∑

k=i−l
αk | 0 ≤ l ≤ m

}

(3) In the general case supp(φ)∩Π = {αi1 , αi2 . . .} =: J (pairwise orthogonal) holds:
w is the special element with Φ+(w) ∩Π = J . That is w is the generalisation of
the inverse of a special element in the sense of Lemma 6.3.

If C is even a Borel subalgebra, then we conjecture due to the maximality:

w =
∏
i∈J

�i

For special elements �i, which commute. The support of the character supp(φ) is the
union of the support of the respective palms.

Proof. As the elements in supp(φ) are pairwise orthogonal the claims follows directly
from 3.3. The form of the support supp(φ) in 2. follows directly from Corollary 3.10.

If C is a Borel subalgebra we get from Lemma 3.11, that only those combinations of

�i are possible which are disjoint, i.e. which commute. �

6.2. Construction of degenerate Borel subalgebras of height 1. In the following
we want to construct non-degenerate ede right coideal subalgebras which correspond to
palms of height 1 in the previous subsection,

supp(φ) = {αi} ∈ Π w = �i = Vlki

for some l, k ∈ N0. Due to Theorem 3.3 the ede property of C implies λαiλα′i =
q2

(q−q−1)(1−q2)
for φ+(ψ(Eαi)) = λαi and 0 otherwise and φ−(Fαi) = λ′αi and 0 other-

wise.
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Lemma 6.4. For type An the following is an ede right coideal subalgebra: Let 1 ≤ i ≤ n
and 0 ≤ l ≤ n − i, 0 ≤ k ≤ i be arbitrarily chosen, then we consider an arbitrary palm
of height 1 w+, w− := Vlki which means:

Φ+(w+) = Φ+(w−) := {
r∑
j=0

αi+j ,
0∑

j=−s
αi+j | 0 ≤ r ≤ l, 0 ≤ s ≤ k}

as above

C := ψ(U+[Vlki ])φ+TLU
−[Vlki ]φ−

for L = {µ | µ⊥αi} and characters φ+ and φ− with supp(φ+) = supp(φ−) = {αi}.
More precisely C has the following relations between two character-shifted root vectors

for roots µ, ν, µ′ ∈ Φ+(Vlki ):

[Ēαi , F̄αi ] =
q2

q − q−1

[Ēµ, Ēν ] = 0 [F̄µ, F̄ν ] = 0

[Ēµ, F̄ν ] = 0 if µ 6= ν

[Ēµ, F̄µ] = q2[Ēµ′ , F̄µ′ ]1 if µ 6= αi

for µ′ =

{
µ− αi+r if µ =

∑r
j=0 αi+j

µ− αi−s if µ =
∑0

j=−s αi+j

Proof. The commutator relations follow from the explicit calculations in [Vocke16] chap-
ter 3.

Now we prove the ede property: Let V be an arbitrary finite dimensional represen-
tation of C. We consider the restriction to the right coideal subalgebra 〈Ēαi , F̄αi〉,
which is a quantized Weyl algebra as usual by the choice of characters. We know
from Example 2.7, that on any finite dimensional representation of the Weyl algebra
the commutator [Ēαi , F̄αi ]1 vanishes. In particular, each finite-dimensional represen-
tation of the Weyl algebra factorizes to a representation of the commutative algebra

C[e, f ]/(ef − q2

(q−q−1)(1−q2)
).

We now consider the next-largest subalgebra, which is generated by the Weyl algebra
and all Ēµ, F̄µ with µ′ = αi. Due to the commutator relation [Ēµ, F̄µ] = [Ēµ′ , F̄µ′ ]1 we

get that [Ēµ, F̄µ]q(µ,µ) acts trivially on V . Due to Theorem 3.12 (and as q(µ,µ) 6= 1) this

implies, that the elements Ēµ, F̄µ, which q-commute with all elements on V , act trivial.

Consider now inductively the next larger subalgebra with Ēµ, F̄µ for (µ′)′ = αi. From
the relation [Ēµ, F̄µ] = [Ēµ′ , F̄µ′ ]1 and the just proven trivial action of Ēµ′ , F̄µ′ it fol-
lows that the q-commutator acts trivial on V . Inductively we know that all Ēµ, F̄µ with
µ 6= αi act trivial on V .
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Thus, the category of finite-dimensional representations of C is equivalent to the
category of finite-dimensional representation of the commutative algebra C[e, f ]/(ef −

q2

(q−q−1)(1−q2)
) and, in particular, all irreducible finite-dimensional representations of C

are one-dimensional.
�

7. Examples

We now present all Borel subalgebras of the examples Uq(sl2), Uq(sl3) and all trian-
gular Borel subalgebras of Uq(sl4), as discussed in the second authors work [Vocke16]
chapter 9-11 or [Vocke17]. We do this for one to illustrate the results of our present
article. On the other hand it is interesting to know all (potentially non-triangular) ex-
amples with a different method, this is how we arrive at our conjecture that all Borel
subalgebras are triangular.

The strategy to find all maximal ede RCS requires first to get a hold on all RCS:
This is the theorem providing a generating system for an arbitrary RCS in [Vocke16]
chapter 4. Then we disprove the ede property using restrictions of suitable minuscule
Vermamodules as in section 3.

7.1. Borel subalgebras of Uq(sl2). The standard Borel subalgebras U≥0 and U≤0

and U0 are the only homogeneous right coideal subalgebras of Uq(sl2). Furthermore
there are the right coideal subalgebras 〈EK−1〉 in U≥0 and 〈F 〉 in U≤0, and families
of character-shifted right coideal subalgebras 〈EK−1〉φ+ resp. 〈F 〉φ− for characters on

〈EK−1〉 resp. 〈F 〉 given by φ+(EK−1) = λ and φ−(F ) = λ′. They have the form
〈EK−1〉φ+ = 〈EK−1 + λK−1〉 and 〈F 〉φ− = 〈F + λ′K−1〉.

As in example 2.7 the right coideal subalgebra

〈EK−1 + λK−1, F + λ′K−1〉

is ede and hence a Borel subalgebra, iff

λλ′ =
q2

(1− q2)(q − q−1)

Note, that different Borel subalgebras B for different choices of λ, λ′ are mapped onto
each other via the Hopf-automorphism E 7→ tE, F 7→ t−1F .

Together with the standard Borel subalgebras these are all Borel subalgebras of
Uq(sl2).

7.2. Borel subalgebras of Uq(sl3). For Uq(sl3) we found that all Borel subalgebras are
triangular. Besides the standard Borel subalgebra there are two isomorphism classes of
non-degenerate Borel subalgebras as discussed in section 5 and one degenerate of height
1 as discussed in section 6.

Standard Borel subalgebras. Due to Theorem 2.6 U≥0 and U≤0 are Borel subalgebras.
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Non-degenerate Borel subalgebras. The Borel subalgebras ψ(U+[w+])φ+TLU
−[w−]φ− with

Φ+(w+) ∩ Φ+(w−) = supp(φ+) ∩ supp(φ−) are due to Theorem 5.19 up to symmetry
isomorphic as algebra to ψ(U+[w0])φ+〈K2β+α,K

−1
2β+α〉U

−[sα]φ− with φ+(EαK
−1
α ) = λ+

α

and 0 otherwise, and φ−(Fα) = λ−α , such that λ+
αλ
−
α = q2

(1−q2)(q−q−1)
. More precisely

there are up to symmetry exactly two such Borel subalgebras. These are

ψ(U+[w0])φ+〈K2β+α,K
−1
2β+α〉U

−[sα]φ−

with characters as above and

ψ(U+[sαsβ])φ+〈Kα−β,K
−1
α−β〉U

−[sβsα]φ−

with φ+(EαβK
−1
α+β) = λ+

αβ and φ−(Fαβ) = λ−αβ, such that λ+
αβλ

−
αβ = q2

(1−q2)(q−q−1)
holds.

A degenerate Borel subalgebra ψ(U+[sαsβ])φ+〈K2β+α,K
−1
2β+α〉U

−[sαsβ]φ−. The third type

of triangular Borel subalgebras in Uq(sl3) is of the form

ψ(U+[sαsβ])φ+〈K2β+α,K
−1
2β+α〉U

−[sαsβ]φ−

with φ+(EαK
−1
α ) = λ+

α and 0 otherwise, and φ−(Fα) = λ−α and 0 otherwise, such that

λ+
αλ
−
α = q2

(1−q2)(q−q−1)
as above. The generating elements of this right coideal subalgebra

are the following:

Ēα := EαK
−1
α + λ+

αK
−1
α

F̄α := Fα + λ−αK
−1
α

K := K2β+α und K−1 := K−1
2β+α

Ēαβ := EαβK
−1
α+β + (1− q−2)λ+

αEβK
−1
α+β

F̄βα := Fβα + (q−1 − q)λ−αFβK−1
α

The product of the constants c1 := (1− q−2)λ+
α resp. c2 := (q−1− q)λ−α in the terms Ēαβ

resp. F̄βα is:

c1c2 = (1− q−2)λ+
α (q−1 − q)λ−α = (1− q−2)(q−1 − q) q2

(1− q2)(q − q−1)
= 1

For these c1 and c2 consider the commutator of the both elements:

[EαβK
−1
α+β + (1− q−2)λ+

αEβK
−1
α+β, Fβα + (q−1 − q)λ−αFβK−1

α ]q2

= (Fα + λ−αK
−1
α )(EαK

−1
α + λ+

αK
−1
α )(q4 − q2) +

q4

q − q−1
1

Thus the commutators of the generating elements in B are given by:

[K, Ēα]1 = [K, F̄α]1 = [K, Ēαβ]1 = [K, F̄βα]1 = 0

[Ēα, F̄α]q2 =
q2

q − q−1
1 [Ēα, Ēαβ]q = [Ēα, F̄βα]q = 0

[F̄α, Ēαβ]q−1 = [F̄α, F̄βα]q−1 = 0

[Ēαβ, F̄βα]q2 = F̄αĒα(q4 − q2) +
q4

q − q−1
1
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Consider now a representation V of B. We already know, that 〈Ēα, F̄α〉 is ede. As in the
general case of Lemma 6.4 [Ēα, F̄α]1 acts trivial on every finite dimensional V . So the

term F̄αĒα acts as q2

(q−q−1)(1−q2)
1 on V . Inserting this in the q-commutator of Ēαβ and

F̄βα we see that [Ēαβ, F̄βα]q2 acts as 0 on all of V .

On the other hand Ēα has an eigenvector v to the eigenvalue 6= 0 and due to the
coproduct the elements Ēnαβ.v are eigenvectors of Ēα to either eigenvalue 0 or pairwise

distinct eigenvalues. As V is finite, we can find a vector w with Ēαβ.w = 0. As on V
all elements q-commute with Ēαβ we can apply Theorem 3.12 to show, that Ēαβ acts
as 0 on any irreducible representation. The same we can show for F̄βα with the same
argument. Then B|V ∼= 〈K,K−1〉 ⊗ 〈Ēα, F̄α〉 and B is ede.

The maximality of this Borel subalgebra is proven in [Vocke17] by considering any
extension of this RCS. Thus we have found all Borel subalgebras of Uq(sl3).

7.3. Triangular Borel subalgebras of Uq(sl4). We now give all possible triangular
Borel subalgebras of Uq(sl4). We do not consider non-triangular RCS so we can also not
prove the maximality of the degenerate examples we give below. However we do prove
that these are ede RCS, which are maximal among all triangular RCS, and there exist
no other triangular ede Borel subalgebras. We conjecture that these are in fact all Borel
subalgebras of Uq(sl4).

Standard Borel subalgebras. Due to Theorem 2.6 all reflections of the standard Borel
U≥0 and U≤0 are Borel subalgebras.

Non-degenerate Borelsubalgebras. The triangular Borel subalgebras ψ(U+[w+])φ+TLU
−[w−]φ−

with Φ+(w+)∩Φ+(w−) = supp(φ+)∪supp(φ−) are due to Theorem 5.19 all isomorphic
to a Borel subalgebra of the following form:

• ψ(U+[w0])φ+〈K2α2+α1 ,K
−1
2α2+α1

〉U−[sαi ]φ− for i ∈ {1, 2, 3} with φ+(EαiK
−1
αi ) =

λ+
αi and 0 otherwise and φ−(Fαi) = λ−αi , such that λ+

αiλ
−
αi = q2

(1−q2)(q−q−1)
.

• ψ(U+[w0])φ+〈K2α2+α1 ,K
−1
2α2+α1

〉U−[sα1sα3 ]φ− with φ+(Eα1K
−1
α1

) = λ+
α1

, φ+(Eα3K
−1
α3

) =

λ+
α3

and 0 otherwise, and φ−(Fα1) = λ−α1
, such that λ+

α1
λ−α1

= q2

(1−q2)(q−q−1)
, and

φ−(Fα3) = λ−α3
, such that λ+

α3
λ−α3

= q2

(1−q2)(q−q−1)
.

Degenerate Borelsubalgebras. We list all possibilities for w+, w−, supp(φ+), supp(φ−)
from Theorem 6.2. They all contain the degenerate Borel subalgebra from Uq(sl3) in
the previous subsection. Due to Lemma 2.11 we know,that for any triangular ede right
coideal subalgebra

`((w−)′−1w+) = `(w−) + `(w+) or `((w+)′−1w−) = `(w+) + `(w−)

where w′ is calculated via w and supp(φ+).

We want to prove now that the possible non-degenerate triangular right coideal sub-
algebras in sl4 are in fact all ede, i.e. C = ψ(U+[w+])φ+TLU

−[w−]φ− with Φ+(w+) ∩
Φ+(w−) 6⊂ supp(φ+) = supp(φ−) and with w+w′−1 = w0 and L = supp(φ+)⊥. There are
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up to isomorphism and symmetry three such right coideal subalgebras with |supp(φ+)| =
1 and two with |supp(φ+)| = 2.

In each of these cases, we manually compute the q-commutator relations of the gener-
ators of B and show, as the case may be, that an arbitrary finite-dimensional irreducible
representation V of the algebraB is one-dimensional. The strategy for this is as in Lemma
6.4 (General palm of height 1): We find a contained quantized Weyl algebra 〈X,Y 〉, of
which we already know that it acts on finite-dimensional representations commutative,
i.e. the commutator [X,Y ]1 acts trivial. Thus, by means of the respective explicit list of
commutators, we find an element Z ∈ C which q-commutes (on V ) with all generators
of C. By Theorem 3.12 then Z must act on every irreducible representation V trivial,
which inductively induces further commutators to vanish until all elements except the
Weyl algebras act trivial. The details of the calculation differ from case to case, but the
argument is in any case the same.

1. |supp(φ+)| = 1:
1.1. |Φ+(w+)∩Φ+(w−)| = |supp(φ+)|+1. Here, apart from isomorphism and symmetry,
there is exactly one type of maximal triangular and right-coideal subalgebra given by B =
ψ(U+[sα1sα2sα3sα2sα1 ])φ+〈Kα3 ,K

2
α2
Kα1 ,K

−1
α3
,K−2

α2
K−1
α1
〉U−[sα1sα2 ]φ− with φ+(Eα1K

−1
α1

) =

λ otherwise 0 and φ−(Fα1) = λ′, otherwise 0, such that λλ′ = q2

(1−q2)(q−q−1)
.

Consider the q-commutator relations and denote the character-shifted root vectors by
Ēα1 , Ēα1α2 etc., then:

F̄α1 F̄α1α2

Ēα1

q2

q−q−1 0

Ēα1α2 0 q2[Ēα1 , F̄α1 ]1
Ēα1α2α3 0 0
Ēα3 0 0
Ēα3α2 0 0

The quantized Weyl algebra is here 〈Ēα1 , F̄α1〉, and the commutator vanishes on each
finite dimensional representation. The elements Z which thus q-commute on V with all
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generators of C are F̄α1α2 resp. Ēα1α2 , resp. Ēα3α2 , whereas the other generators Ēα3

and Ēα1α2α3 q-commute anyhow with all the other generators.

1.2. |Φ+(w+) ∩ Φ+(w−)| = |supp(φ+)|+ 2.

1.2.1.B = ψ(U+[sα1sα2sα3sα1 ])φ+〈Kα3 ,K
2
α2
Kα1 ,K

−1
α3
,K−2

α2
K−1
α1
〉U−[sα1sα2sα3 ]φ− with

φ+ and φ− as above.

Moreover the following q-commutator relations hold:

F̄α1 F̄α1α2 F̄α1α2α3

Ēα1

q2

q−q−1 0 0

Ēα1α2 0 q2[Ēα1 , F̄α1 ]1 0
Ēα1α2α3 0 0 q2[Ēα1α2 , F̄α1α2 ]1
Ēα3 0 0 q2F̄α1α2

The quantized Weyl algebra is here 〈Ēα1 , F̄α1〉, and the commutator vanishes on each
finite dimensional representation. The elements Z which thus q-commute on V with all
generators of C are F̄α1α2 resp. Ēα1α2 . If these elements vanish, the remaining elements
q-commutate in the next step of the induction with all other generators.

1.2.2.B = ψ(U+[sα2sα1sα3sα2 ])φ+〈K−1
α1
Kα3 ,Kα1+α2+α3 ,Kα1K

−1
α3
,K−1

α1+α2+α3
〉U−[sα2sα1sα3 ]φ−

with the characters φ+(Eα2K
−1
α2

) = λ, otherwise 0 and φ−(Fα2) = λ′, otherwise 0, such

that λλ′ = q2

(1−q2)(q−q−1)
.
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Here the following q-commutator relations hold:

F̄α2 F̄α2α1 F̄α2α3

Ēα2

q2

q−q−1 0 0

Ēα2α1 0 q2[Ēα2 , F̄α2 ]1 0
Ēα2α3 0 0 q2[Ēα2 , F̄α2 ]1

Ēα2α1α3α2 0 −q−1[[Ēα2 , F̄α2 ]1, Ēα3 ]1 −q−1[[Ēα2 , F̄α2 ]1, Ēα1 ]1

The quantized Weyl algebra is here 〈Ēα2 , F̄α2〉. All other elements vanish again by
induction on all irreducible finite dimensional representations V .

2. |supp(φ+)| = 2: Consider now the case that the support of the character con-
tains two elements. In type A3 there are two possibilities for this case and we get
either |Φ+(w+) ∩ Φ+(w−)| = |supp(φ+)|, so B is triangular and non-degenerate or
|Φ+(w+) ∩ Φ+(w−)| = |supp(φ+)|+ 2

2.1. B = ψ(U+[sα1sα2sα3sα1 ])φ+〈Kα3K
2
α2
Kα1 ,K

−1
α3
K−2
α2
K−1
α1
〉U−[sα1sα2sα3sα1 ]φ− . with

characters φ+(Eα1K
−1
α1

) = λα1 and φ−(Fα1) = λ′α1
such that λα1λ

′
α1

= q2

(1−q2)(q−q−1)
,

and φ+(Eα3K
−1
α3

) = λα3 and φ−(Fα3) = λ′α3
such that λα3λ

′
α3

= q2

(1−q2)(q−q−1)
otherwise

0.
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Here the following commutator relations hold:

F̄α1 F̄α1α2 F̄α1α2α3 F̄α3

Ēα1

q2

q−q−1 0 0 0

Ēα1α2 0 q2[Ēα1 , F̄α1 ]α1 0 0
Ēα1α2α3 0 0 q2[Ēα1α2 , F̄α1α2 ]1 Ēα1α2

Ēα3 0 0 q2F̄α1α2

q2

q−q−1

Here there are two Weyl algebras 〈Ēα1 , F̄α1〉 and 〈Ēα3 , F̄α3〉, commuting with each
other. The remaining elements vanish again by induction on any irreducible finite di-
mensional representation.

2.2. B = ψ(U+[sα2sα1sα3sα2 ])φ+〈K−1
α1
Kα3 ,Kα1K

−1
α3
〉U−[sα2sα1sα3sα2 ]φ− . with charac-

ters φ+(Eα2K
−1
α2

) = λα2 and φ−(Fα2) = λ′α2
such that λα2λ

′
α2

= q2

(1−q2)(q−q−1)
, and

φ+(Eα2α1α3α2K
−1
α2α1α3α2

) = λα2α1α3α2 and φ−(Fα2α1α3α2) = λ′α2α1α3α2
such that λα2α1α3α2λ

′
α2α1α3α2

=
q2

(1−q2)(q−q−1)
otherwise 0.

Here the following commutating relations hold:
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F̄α2 F̄α2α1 F̄α2α3 F̄α2α1α3α2

Ēα2

q2

q−q−1 0 0 0

Ēα2α1 0 q2[Ēα2 , F̄α2 ]1 0 [[Ēα2 , F̄α2 ]1, F̄α3 ]1
Ēα2α3 0 0 q2[Ēα2 , F̄α2 ]1 [[Ēα2 , F̄α2 ]1, F̄α1 ]1

Ēα2α1α3α2 0 −q−1[[Ēα2 , F̄α2 ]1, Ēα3 ]1 −q−1[[Ēα2 , F̄α2 ]1, Ēα1 ]1 −[Ēα2α1 , F̄α2α1 ]1
−[Ēα2α3 , F̄α2α3 ]1

+c(1−K−2
α1+α2+α3

)

The first quantized Weyl algebra is here 〈Ēα2 , F̄α2〉, whose commutator again disappears
on each finite dimensional representation. Then the four elements of height 2 q-commute
with all generators and thus act trivially. Modulo these relations 〈Ēα2α1α3α2 , F̄α2α1α3α2〉
is another quantized Weyl algebra commuting with the first quantized Weyl algebra.

Theorem 7.1. Each triangular Borel subalgebra of Uq(sl4) is up to reflections and al-
gebra isomorphism of the following form:

• The standard Borel subalgebra U≥0

• A Borel subalgebra of non-degenerate type:
– ψ(U+[w0])φ+〈K2α2+α1 ,K

−1
2α2+α1

,Kα3 ,K
−1
α3
〉U−[sα1 ]φ−

with supp(φ+) = supp(φ−) = {α1}
– ψ(U+[w0])φ+〈K2α2+α1 ,K

−1
2α2+α1

〉U−[sα1sα3 ]φ−

with supp(φ+) = supp(φ−) = {α1, α3}
• A Borel subalgebra of degenerate type, i.e.:

– ψ(U+[sα1sα2sα3sα2sα1 ])φ+〈Kα3 ,K
2
α2
Kα1 ,K

−1
α3
,K−2

α2
K−1
α1
〉U−[sα1sα2 ]φ−

with supp(φ+) = supp(φ−) = {α1}
– ψ(U+[sα1sα2sα3sα1 ])φ+〈Kα3 ,K

2
α2
Kα1 ,K

−1
α3
,K−2

α2
K−1
α1
〉U−[sα1sα2sα3 ]φ−

with supp(φ+) = supp(φ−) = {α1}
– ψ(U+[sα1sα2sα3sα1 ])φ+〈Kα3K

2
α2
Kα1 ,K

−1
α3
K−2
α2
K−1
α1
〉U−[sα1sα2sα3sα1 ]φ−

with supp(φ+) = supp(φ−) = {α1, α3}
– ψ(U+[sα2sα1sα3sα2 ])φ+〈K−1

α1
Kα3 ,Kα1+α2+α3 ,Kα1K

−1
α3
,K−1

α1+α2+α3
〉U−[sα2sα1sα3 ]φ−

with supp(φ+) = supp(φ−) = {α2}
– ψ(U+[sα2sα1sα3sα2 ])φ+〈K−1

α1
Kα3 ,Kα1K

−1
α3
〉U−[sα2sα1sα3sα2 ]φ−

with supp(φ+) = supp(φ−) = {α2, α1 + α2 + α3}
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