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Abstract

We classify all complete projective special real manifolds with reducible cubic po-
tential, obtaining four series. For two of the series the manifolds are homogeneous,
for the two others the automorphism group acts with co-homogeneity one. We show
that, for each dimension n ≥ 3, each of the two homogeneous examples can be de-
formed by a family depending on n − 2 parameters of complete projective special
real manifolds that are pairwise inequivalent. The two homogeneous examples are
the boundary points of a curve which lies in the union of the two families. Complete
projective special real manifolds give rise to complete quaternionic Kähler manifolds
via the supergravity q-map which is the composition of the supergravity c-map and
r-map. We develop curvature formulas for manifolds in the image of the q-map.
Applying the q-map to one of the above series of projective special real manifolds
we obtain a series of complete quaternionic Kähler manifolds, which are shown to
be inhomogeneous (of co-homogeneity one) based on our curvature formulas.
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Introduction

In this paper we are concerned with hypersurfaces H ⊂ Rn+1 contained in the level set

{h = 1} of a homogeneous cubic polynomial h. The hypersurface is equipped with the

symmetric tensor field gH on H induced by −1
3
∂2h. We require that gH is a Rieman-

nian metric. Then (H, gH) is called a projective special real manifold, see Definition 5,

h is called its cubic potential and gH is called the projective special real metric. The

polynomials h which admit such a hypersurface are called hyperbolic, cf. Definition 4.

Projective special real manifolds occur in the physics literature as the scalar manifolds

of 5-dimensional supergravity coupled to vector multiplets, see [GST]. These manifolds

are related to projective special Kähler manifolds by a construction known as the r-map

[DV], which is induced by the dimensional reduction of the supergravity theory from 5

to 4 space-time dimensions. Similarly projective special Kähler manifolds are related to

quaternionic Kähler manifolds of negative scalar curvature by the c-map, which is induced
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by dimensional reduction to 3 dimensions [FS]. It is known [CHM] that the r- and c-map

preserve the completeness of the underlying Riemannian metrics. It follows that the same

is true for their composition, the q-map. In this way the study of the completeness of

quaternionic Kähler manifolds obtained by the q-map is reduced to the study of the com-

pleteness of the initial projective special real manifold. Complete projective special real

manifolds are characterized as follows, see [CNS, Thm. 2.5].

Theorem 1. A projective special real manifold H ⊂ R
n+1 is complete with respect to the

metric gH if and only if H is closed as a subset of Rn+1.

It follows from Theorem 1 that the classification of complete projective special real

manifolds is equivalent to the solution of the following two problems:

(i) Classification of all hyperbolic homogeneous cubic polynomials h, up to linear trans-

formations.

(ii) For each such polynomial determine all locally strictly convex components of the

level set {h = 1}, up to linear transformations.

While it is certainly possible to solve these problems in low dimensions, see [CDL] for

the solution up to polynomials in 3 variables, we do not expect a simple solution valid

in all dimensions. A very rough idea about problem (i) is obtained by observing that

the dimension of the space of homogeneous cubic polynomials grows cubically whereas

the dimension of the general linear group grows only quadratically with the number of

variables. Notice that the hyperbolic polynomials form an open subset in the space of

homogeneous cubic polynomials in a given number of variables. An interesting class of

projective special real manifolds is provided by considering those with reducible cubic

potentials h, that is h is a product of polynomials of lower degree. Applying the q-map

to the complete manifolds in this class we obtain a class of complete quaternionic Kähler

manifolds, as follows from the general result [CHM, Thm. 6]. In this way one obtains, in

particular, the series of symmetric spaces

SO0(4, m)

SO(4)× SO(m)
, m ≥ 3, (0.1)

as well as the series of homogeneous non-symmetric spaces T(p), p ≥ 1, of rank 3, see

[DV, C]. One of the results of this paper is that one also obtains a series of complete

quaternionic Kähler manifolds that are not locally homogeneous, see Theorem 24. In fact,

we show that there are precisely 4 series of complete projective special real manifolds with

reducible cubic potential, three of which correspond to the 3 series of quaternionic Kähler

manifolds mentioned above. More precisely, by solving the above problems (i) and (ii)

under the assumption that h is reducible we will obtain the following result.
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Theorem 2. Every complete projective special real manifold H ⊂ {h = 1} ⊂ Rn+1

of dimension n ≥ 2 for which h is reducible is linearly equivalent to exactly one of the

following complete projective special real manifolds:

a) {xn+1(
∑n−1

i=1 x2
i − x2

n) = 1, xn+1 < 0, xn > 0},

b) {(x1 + xn+1)(
∑n

i=1 x
2
i − x2

n+1) = 1, x1 + xn+1 < 0},

c) {x1(
∑n

i=1 x
2
i − x2

n+1) = 1, x1 < 0, xn+1 > 0},

d) {x1(x
2
1 −

∑n+1
i=2 x2

i ) = 1, x1 > 0}.

Notice that in the case n = 2 the result follows from [CDL, Thm. 1] and that the above

list is also valid in the case n = 1 but then the curves a) and b) are linearly equivalent,

as well as c) and d), see [CHM, Cor. 4].

Under the q-map the series a) with n ≥ 1 corresponds to the series (0.1) of symmetric

quaternionic Kähler manifolds with m = n + 2. Similarly, b) corresponds to the series

T(p) of homogeneous quaternionic Kähler manifolds with p = n − 1 ≥ 0, where only

the first member T(0) = SO0(4,3)
SO(4)×SO(3)

of the series is symmetric. The quaternionic Kähler

manifolds obtained from the series c) and d) admit a Lie group acting isometrically with

co-homogeneity one. For d) we will prove the following stronger result.

Theorem 3. The quaternionic Kähler manifolds associated with the projective special

real manifolds {(x1, . . . , xn+1) ∈ R
n+1 | x1(x

2
1 −

∑n+1
i=2 x2

i ) = 1, x1 > 0}, n ≥ 1, are

complete of negative scalar curvature and the isometry group acts with co-homogeneity

one.

The claim that the quaternionic Kähler manifolds in Theorem 3, and similarly the ones

obtained from the series c) in Theorem 2, admit a subgroup of the isometry group acting

with an orbit of codimension one follows from the fact that the automorphism group of

the initial projective special real manifolds acts with an orbit of codimension one. In fact,

every automorphism of a projective special real manifold extends to an isometry of the

corresponding quaternionic Kähler manifold under the q-map and the r-map as well as

the c-map each produce a freely acting additional solvable Lie group of automorphisms,

see [DV, CHM]. The dimensions of the latter groups coincide with the number of extra

dimensions created by the r- and c-map, respectively. Therefore the co-homogeneity does

not increase under these constructions.

The main difficulty is to prove that the quaternionic Kähler manifolds of Theorem 3

are not of co-homogeneity zero, this is the content of Theorem 24. The proof proceeds
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by computing the point-wise norm of the curvature tensor and showing that for each of

these manifolds it is a non-constant rational function depending only on one coordinate

x out of a system of 4n+8 global coordinates. It relies on general curvature formulas for

quaternionic Kähler manifolds obtained by the q-map, which constitute another important

result of this paper, see Theorem 22 and Corollary 23. Incidentally, we expect that the

isometry groups of the quaternionic Kähler manifolds corresponding to the remaining

series c) in Theorem 2 do likewise have co-homogeneity precisely one. The corresponding

curvature calculations are more involved in that case.

Another result of this paper is the construction of two multi-parameter families, de-

pending on (n−2) parameters, of n-dimensional complete projective special real manifolds

that are pairwise inequivalent, see Theorem 9. Until now, only a one-parameter family of

pairwise inequivalent projective special real surfaces was known, where the corresponding

cubic potentials are the (homogenised) Weierstraß cubics with positive discriminant, cf.

[CDL, Thm. 1]. We use these multi-parameter families to define a curve (parametrised

over a compact interval) in the vector space of homogeneous cubic polynomials, such that

each interior point of the curve is contained in one of the two multi-parameter families

and the endpoints are, up to equivalence, the potentials corresponding to the symmetric

spaces (0.1) and the homogeneous non-symmetric spaces T(p), respectively. Furthermore,

we determine the automorphism group of each element in the two multi-parameter fami-

lies, see Corollary 13.
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1 Classification of complete projective special real

manifolds with reducible cubic potential

In this section we will classify all complete projective special real manifolds with reducible

cubic potential up to linear transformations. After giving some basic definitions we will

first classify up to equivalence all non-degenerate reducible homogeneous cubic polynomi-

als in Section 1.1 and among these all hyperbolic ones in Section 1.2. In the same section

we determine, for each of the resulting hyperbolic polynomials h, those connected compo-

nents (up to linear transformations) of the level sets {h = 1} which contain a hyperbolic

point. In particular we determine all such components which are locally strictly convex
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or, equivalently, consist solely of hyperbolic points. As a consequence of Theorem 1 these

components give precisely all complete projective special real manifolds with reducible

cubic potential (up to linear transformations).

Definition 4. Let h : Rn+1 → R be a homogeneous cubic polynomial. We will call h

non-degenerate if there exists p ∈ Rn+1, such that det ∂2hp 6= 0. It is called hyperbolic if

there exists a hyperbolic point p ∈ Rn+1, that is a point such that h(p) > 0 and ∂2hp is

of signature (1, n). Two homogeneous cubic polynomials are called equivalent if they are

related by a linear transformation.

Notice that the notions of non-degeneracy and hyperbolicity are invariant under linear

transformations and that det ∂2hp 6= 0 implies h(p) 6= 0.

Definition 5. A hypersurface H ⊂ Rn+1 is called a projective special real manifold if

there exists a homogeneous cubic polynomial h : Rn+1 → R, such that

(i) H ⊂ {x ∈ Rn+1 | h(x) = 1} and

(ii) gH := −1
3
∂2h|TH×TH > 0.

The hypersurface H ⊂ Rn+1 is endowed with the Riemannian metric gH which is called

the projective special real metric1 or centroaffine metric, see [CNS] for an explanation of

this terminology. Two projective special real manifolds are called isomorphic if there is a

linear transformation inducing a bijection between them.

Remark 6. It is easy to see that for every projective special real manifold H the sym-

metric tensor ∂2hp is of signature (1, n) for all p ∈ H and that H is perpendicular to the

position vector p with respect to ∂2hp. In particular, h is hyperbolic. Notice also that

a linear transformation mapping a projective special real manifold H ⊂ Rn+1 to another

projective special real manifold H′ ⊂ Rn+1 is automatically an isometry with respect to

the centroaffine metrics. In particular, isomorphic projective special real manifolds are

isometric.

In order to avoid special cases in low dimensions, and since the case n ≤ 2 has already

been studied [CDL], we will always assume that n ≥ 3 in the following classifications.

1For practical reasons, we prefer to work with − 1

2
∂2h instead of − 1

3
∂2h below.
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1.1 Classification of non-degenerate reducible homogeneous po-

lynomials

For m ∈ N and k ∈ {0, . . . , m}, we introduce the following quadratic polynomials on R
m:

Qm
k :=

k∑

i=1

x2
i −

m∑

i=k+1

x2
i .

Proposition 7. Any non-degenerate reducible homogeneous cubic polynomial h on Rn+1,

n ≥ 3, is equivalent to precisely one of the following:

I) xn+1Q
n
k ,

n
2
≤ k ≤ n,

II) x1Q
n+1
k , 1 ≤ k ≤ n+ 1,

III) (x1 + xn+1)Q
n+1
k , n+1

2
≤ k ≤ n.

Proof. Let h = LQ be a non-zero reducible cubic polynomial on Rn+1, where L is a linear

and Q a quadratic factor. Up to a linear transformation, we can assume that Q = Qm
k ,

1 ≤ m ≤ n+ 1, m
2
≤ k ≤ m. In the following, let

L :=

n+1∑

j=1

ajxj .

Next we examine for which choices of Qm
k and L the polynomial h = LQm

k is non-

degenerate.

Notice that m = n or m = n+ 1, since otherwise 0 6= ker dL ∩ ker ∂2Q ⊂ ker ∂2hp for

all p ∈ R
n+1. In the case m = n the non-degeneracy of h clearly implies that an+1 6= 0

and without loss of generality we can assume that L = xn+1. We compute

∂2h = 2




xn+1 x1

. . .
...

xn+1 xk

−xn+1 −xk+1

. . .
...

−xn+1 −xn

x1 . . . xk −xk+1 . . . −xn 0




,

where the remaining entries are zero. The determinant is given by

det ∂2h = 2n+1(−1)n−k+1xn−2
n+1h,

which shows that h = xn+1Q
n
k is non-degenerate for all n

2
≤ k ≤ n. These are precisely

the polynomials listed in I).
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It remains to check the case m = n + 1, that is, h = LQn+1
k , n+1

2
≤ k ≤ n + 1.

Using the transitive action of the pseudo-orthogonal group of the quadratic form Qn+1
k on

each pseudo-sphere and on the cone of non-zero light-like vectors we can assume up to a

positive rescaling that L = x1 (L space-like), L = xn+1 (L time-like), or L = x1+xn+1 (L

light-like), where the latter two cases need only to be considered for k ≤ n. Since xn+1

is space-like with respect to −Qn+1
k for n+1

2
≤ k ≤ n and −Qn+1

k is equivalent to Qn+1
n+1−k,

1 ≤ n+ 1− k ≤ n+1
2
, we are left with the two cases II) and III).

In case II), h = x1Q
n+1
k with 1 ≤ k ≤ n + 1 and

∂2h = 2




3x1 x2 . . . xk −xk+1 . . . −xn+1

x2 x1
...

. . .

xk x1

−xk+1 −x1
...

. . .

−xn+1 −x1




.

We obtain

det ∂2h = (−1)n+1−k2n+1xn−2
1 (4x3

1 − h),

which, for all 1 ≤ k ≤ n + 1, is not the zero polynomial. Hence, all polynomials listed in

II) are non-degenerate.

In case III), that is h = (x1 + xn+1)Q
n+1
k , n+1

2
≤ k ≤ n, it is convenient to change the

coordinates the following way:

x1 + xn+1 = ξ,

x1 − xn+1 = η.

h is now of the form

h = ξ

(
ξη +

k∑

i=2

x2
i −

n∑

i=k+1

x2
i

)
.

In the coordinates (ξ, η, x2, . . . , xn) we have

∂2h = 2




η ξ x2 . . . xk −xk+1 . . . −xn

ξ 0
x2 ξ
...

. . .

xk ξ
−xk+1 −ξ

...
. . .

−xn −ξ




.
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It is now easy to see that

det ∂2h = (−1)n+1−kξn+1.

We conclude that all polynomials considered in III) are non-degenerate.

1.2 Classification of hyperbolic reducible homogeneous polyno-
mials and complete projective special real manifolds

Let h : Rn+1 → R be a hyperbolic homogeneous cubic polynomial. We consider the open

subset H(h) of the hypersurface {h = 1} consisting of the hyperbolic points of h:

H(h) = {p ∈ R
n+1 | h(p) = 1,−∂2hp has Lorentzian signature (n, 1)}.

Proposition 8. Let h : Rn+1 → R, n ≥ 3, be a reducible hyperbolic homogeneous cubic

polynomial and let (x1, . . . , xn+1) denote the standard coordinates of Rn+1. Then h is

equivalent to one of the following polynomials and the corresponding hypersurface H(h)

endowed with the Riemannian metric −1
2
∂2h|TH(h)×TH(h) has the following properties:

a) h = x1

(
x2
1 −

n+1∑
i=2

x2
i

)
, H(h) = {h = 1, x1 > 0} has one connected component and it

is closed.

b) h = x1

(
x2
1 + x2

2 −
n+1∑
i=3

x2
i

)
, H(h) = {h = 1} ∩ { 1

3
√
4
> x1 > 0} has two connected

components. They are isomorphic and not closed.

c) h = x1

(
n∑

i=1

x2
i − x2

n+1

)
, H(h) = {h = 1, x1 < 0} has two connected components, both

closed and isomorphic.

d) h = xn+1

(
n−1∑
i=1

x2
i − x2

n

)
, H(h) = {h = 1, xn+1 < 0} has two connected components,

both closed and isomorphic.

e) h = (x1 + xn+1)

(
n∑

i=1

x2
i − x2

n+1

)
, H(h) = {h = 1, x1 + xn+1 < 0} has one connected

component and it is closed.

In particular, the closed connected components of the respective H(h) are complete pro-

jective special real manifolds.

Proof. In Proposition 7 we have listed all non-degenerate cubic homogeneous polynomials

up to equivalence. It remains to determine which ones are hyperbolic and to analyse the

properties of the connected components of H(h). In the following we treat each of the

cases I-III) of Proposition 7.

9



I) Recall that the family I) of Proposition 7 contains the polynomials h = xn+1Q
n
k ,

n
2
≤ k ≤ n, with

−1

2
∂2h = −xn+1

(
k∑

i=1

dx2
i −

n∑

i=k+1

dx2
i

)
− 2

(
k∑

i=1

xidxi −
n∑

i=k+1

xidxi

)
dxn+1.

To check that a point p ∈ Rn+1 is hyperbolic it suffices to construct an orthogonal basis

of TpR
n+1 with respect to −1

2
∂2h and to check that the Gram matrix has Lorentzian

signature. Note that the vectors {∂x1
, . . . , ∂xn

} are orthogonal at each point:

−1

2
∂2h(∂xi

, ∂xj
) =





−δji xn+1, 1 ≤ i, j ≤ k,

δjixn+1, k + 1 ≤ i, j ≤ n,
0, otherwise.

Now the restrictions n ≥ 3, k ≥ n
2
, allow us to limit the possibility of hyperbolic points

to the cases k = n − 1 and k = n and we obtain the requirement xn+1 < 0. Other-

wise we would have at least two time-like vectors in an orthogonal basis of the form

(v, ∂x1
, . . . , ∂xn

). For v =
∑n+1

i=1 vi∂xi
to be orthogonal to ∂xi

for all 1 ≤ i ≤ n it has to

fulfil

xn+1vi + xivn+1 = 0 ∀1 ≤ i ≤ n.

Hence, vi = −xivn+1

xn+1
for 1 ≤ i ≤ n and v = vn+1

(
−∑n

i=1
xi

xn+1
∂xi

+ ∂xn+1

)
. Since xn+1 <

0, we might choose v =
∑n

i=1 xi∂xi
− xn+1∂xn+1

and obtain

−1

2
∂2h(v, v) = xn+1

(
k∑

i=1

x2
i −

n∑

i=k+1

x2
i

)
= h.

Hyperbolic points need to fulfil h(p) > 0 by definition, which implies −1
2
∂2h(v, v) >

0. Hence, h = xn+1Q
n
k ,

n
2
≤ k ≤ n, is hyperbolic if and only if k = n − 1, that is

h = xn+1

(
n−1∑
i=1

x2
i − x2

n

)
is the polynomial d) of this proposition. The hypersurface H(h)

consists of the connected components

H1 :=
{
(x1, . . . , xn+1) ∈ R

n+1 | h(x1, . . . , xn+1) = 1, xn < 0, xn+1 < 0
}

and

H2 :=
{
(x1, . . . , xn+1) ∈ R

n+1 | h(x1, . . . , xn+1) = 1, xn > 0, xn+1 < 0
}
.

One can easily verify thatH1 andH2 are both closed in Rn+1 and related by the involution

(x1, . . . , xn, xn+1) 7→ (x1, . . . ,−xn, xn+1).

10



II) The family II) of Proposition 7 contains polynomials of the form h = x1Q
n+1
k , 1 ≤

k ≤ n+1. We will construct an orthogonal basis for each p ∈ {h > 0}, p = (x1, . . . , xn+1),

with respect to

−1

2
∂2h = x1

(
−3dx2

1 −
k∑

i=2

dx2
i +

n+1∑

i=k+1

dx2
i

)
− 2dx1

(
k∑

i=2

xidxi −
n+1∑

i=k+1

xidxi

)
.

We define

v = x1∂x1
−

n+1∑

i=2

xi∂xi
.

Then one can check, for x1 6= 0, that (v, ∂x2
, . . . , ∂xn+1

) is an orthogonal basis with respect

to −1
2
∂2h and that

−1

2
∂2h(v, v) = −4x3

1 + h.

Thus, the possible values for k that do not exclude the possibility for h to be hyperbolic,

the respective requirements for the possibly hyperbolic points, and the corresponding

polynomials are (recall n ≥ 3):

A) k = 1, x1 > 0, h < 4x3
1

(
−1

2
∂2h(v, v) < 0

)
; h = x1

(
x2
1 −

∑n+1
i=2 x2

i

)
,

B) k = 2, x1 > 0, h > 4x3
1

(
−1

2
∂2h(v, v) > 0

)
; h = x1

(
x2
1 + x2

2 −
∑n+1

i=3 x2
i

)
,

C) k = n, x1 < 0, h > 4x3
1

(
−1

2
∂2h(v, v) > 0

)
; h = x1

(∑n
i=1 x

2
i − x2

n+1

)
,

D) k = n + 1, x1 < 0, h < 4x3
1

(
−1

2
∂2h(v, v) < 0

)
; h = x1

(∑n+1
i=1 x2

i

)
.

The polynomials in A), B), and C) are, in fact, hyperbolic, as seen by specifying a hyper-

bolic point:
A) pA = (1, 0, . . . , 0), h(pA) = 1,

B) pB = (1, 2, 0, . . . , 0), h(pB) = 5,

C) pC = (−1, 0, . . . , 0, 2), h(pC) = 3.

These three series of polynomials are, in the same order, the first three cases a), b), and

c) of this proposition. The polynomials in D) are not hyperbolic, since the specified

conditions are not compatible with h > 0. We will now describe the sets H(h).

In case A), the set of hyperbolic points of Rn+1 with respect to h was described

by the inequalities x1 > 0 and h < 4x3
1. The second inequality follows from the first

since Qn+1
1 ≤ x2

1. This shows that H(h) = {h = 1, x1 > 0}, which has one connected

component. To see this consider for fixed u = (x2, . . . , xn+1) ∈ R
n the function

(ρ,∞) → R, x1 7→ h(x1, u),

11



where ρ = |u| and notice that it is a strictly monotonously increasing diffeomorphism

onto (0,∞). In particular, for all u ∈ Rn there is a unique x1(u) ∈ (ρ,∞) such that

h(x1(u), u) = 1. We obtain a bijection

R
n → H(h), u 7→ (x1(u), u),

which is a diffeomorphism by the implicit function theorem. In particular, H(h) is con-

nected. This implies that it is a connected component of {h = 1} and, thus, closed in

Rn+1.

In case B), the requirement for hyperbolicity on {h = x1

(
x2
1 + x2

2 −
∑n+1

i=3 x2
i

)
= 1} is

1
3
√
4
> x1 > 0, which implies x2 6= 0. Observe that

h = 1 ⇔ x2
2 =

1

x1

(1− x3
1) +

n+1∑

i=3

x2
i .

Hence, H(h) = {h = 1} ∩ { 1
3
√
4
> x1 > 0} has two connected components, namely

{h = 1} ∩ { 1
3
√
4
> x1 > 0} ∩ {x2 > 0} and {h = 1} ∩ { 1

3
√
4
> x1 > 0} ∩ {x2 < 0}. They

are related by the involution x2 7→ −x2, which preserves the polynomial h. The two

components of H(h) are not closed in Rn+1, since its boundary is given by

∂H(h) =

{
h = 1, x1 =

1
3
√
4
, det ∂2h = 0

}
=

{
h = 1, x1 =

1
3
√
4

}
=

{
x2
2 −

n+1∑

i=3

x2
i =

3

4
2

3

}
.

In case C), the requirement x1 < 0 automatically implies the second requirement h >

4x3
1 on {h = x1

(∑n
i=1 x

2
i − x2

n+1

)
= 1} and, hence, H(h) = {h = 1, x1 < 0}. Note that

{h = 1}∩{x1 = 0} = ∅ implies that the connected components of H(h) are also connected

components of {h = 1}, and thus are closed. x1 < 0 and h = x1

(∑n
i=1 x

2
i − x2

n+1

)
= 1

implies
∑n

i=1 x
2
i −x2

n+1 < 0, which implies xn+1 6= 0. Hence, the connected components of

H(h) are given by the two graphs {h = 1, x1 < 0, xn+1 > 0} and {h = 1, x1 < 0, xn+1 <

0}. They are related by the involution xn+1 7→ −xn+1.

III) Recall that each h = (x1 + xn+1)Q
n+1
k contained in family III) of Proposition 7 is

equivalent to h = ξ
(
ξη +

∑k
i=2 x

2
i −

∑n
i=k+1 x

2
i

)
. In these coordinates

−1

2
∂2h = − ηdξ2 − 2ξdηdξ +

(
−2

k∑

i=2

xidxi + 2

n∑

i=k+1

xidxi

)
dξ

+ ξ

(
−

k∑

i=2

dx2
i +

n∑

i=k+1

dx2
i

)
.
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The set
{
h = ξ

(
ξη +

∑k
i=2 x

2
i −

∑n
i=k+1 x

2
i

)
= 1
}
consists of exactly two connected com-

ponents:

H1 :=



(ξ, η, x2, . . . , xn) ∈ R

n+1

∣∣∣∣∣∣
η =

1− ξ
(∑k

i=2 x
2
i −

∑n
i=k+1 x

2
i

)

ξ2
, ξ > 0





and

H2 :=



(ξ, η, x2, . . . , xn) ∈ R

n+1

∣∣∣∣∣∣
η =

1− ξ
(∑k

i=2 x
2
i −

∑n
i=k+1 x

2
i

)

ξ2
, ξ < 0



 .

In order to determine which of the polynomials in this family are hyperbolic, we will pull

back −1
2
∂2h to H1 and H2, respectively. We will use that h is hyperbolic if and only if

the pullback is Riemannian at least at one point contained in {h = 1}. We first determine

the differential of η = η(ξ, x2, . . . , xn):

dη =
−2 + ξ

(∑k
i=2 x

2
i −

∑n
i=k+1 x

2
i

)

ξ3
dξ +

−2
∑k

i=2 xidxi + 2
∑n

i=k+1 xidxi

ξ
.

Hence, the pullback of −1
2
∂2h to Hj which we denote by gj, j ∈ {1, 2}, is of the following

form:

gj =
3− ξ

(∑k
i=2 x

2
i −

∑n
i=k+1 x

2
i

)

ξ2
dξ2 + 2

(
k∑

i=2

xidxi −
n∑

i=k+1

xidxi

)
dξ

+ ξ

(
−

k∑

i=2

dx2
i +

n∑

i=k+1

dx2
i

)
.

For each n+1
2

≤ k ≤ n there exists exactly one k̃ with 1 ≤ k̃ ≤ n+1
2
, such that H1

corresponding to h = (x1 + xn+1)Q
n+1
k is isometric to H2 corresponding to h̃ = (x1 +

xn+1)Q
n+1

k̃
, namely k̃ = n−(k−1). In the coordinates (ξ, η, x2, . . . , xn) the corresponding

isometry is given by ξ 7→ −ξ, xℓ 7→ xn−(ℓ−2) for 2 ≤ ℓ ≤ n. Hence, we can reduce our

analysis to H1, that is ξ > 0, but need to increase the range for k to 1 ≤ k ≤ n.

Returning to the study of g1, we obtain

g1(∂xi
, ∂xj

) =

{
−δji ξ, 2 ≤ i, j ≤ k,

δji ξ, k + 1 ≤ i, j ≤ n.

For g1 to be Riemannian, this implies that k = 1. Hence, the only possibly hyperbolic

polynomial is h = ξ (ξη −∑n
k=2 x

2
i ) and the corresponding metric g1 reads

g1 =
3

ξ2
dξ2 +

1

ξ

n∑

i=2

(xidξ − ξdxi)
2 ,

13



which is indeed Riemannian at all points of H1. Hence, the only hyperbolic polynomial

of the form h = (x1 + xn+1)Q
n+1
k , n+1

2
≤ k ≤ n, is given by

h = (x1 + xn+1)

(
n∑

i=1

x2
i − x2

n+1

)
.

The corresponding H(h) = {h = 1, x1 + xn+1 < 0} has a single connected component. It

is closed in Rn+1, since {h = 1}∩{x1+xn+1 = 0} = ∅ implies thatH(h) is also a connected

component of {h = 1}. This polynomial is the polynomial e) of this proposition.

2 Two multi-parameter families of complete projec-

tive special real manifolds

Let n ≥ 3, n ∈ N. We will give two examples of (n− 2)-parameter families in S3(Rn+1)∗,

each consisting of pairwise inequivalent hyperbolic cubic polynomials which define a com-

plete projective special real manifold of dimension n. We will use this result to find a

curve in S3(Rn+1)∗, such that each point in the curve is a hyperbolic polynomial which

defines a complete projective special real manifold and that the endpoints of that curve

are linearly equivalent to the polynomials a) and b) in Theorem 2.

In the following we will denote z = (z1, . . . , zn−1)
T and by 〈·, ·〉 the standard Euclidean

scalar product on Rn−1 ⊂ Rn+1 =
{(

z
w
x

)∣∣∣ z ∈ Rn−1, w, x ∈ R

}
.

Theorem 9. The (n− 2)-parameter families

F :=

{
h = x(−w2 + 〈z, z〉) + w

n−1∑

i=1

biz
2
i

∣∣∣∣∣ 1 = b1 ≥ . . . ≥ bn−1 ≥ 0

}

and

G :=

{
h = x

(
−w2 +

n−1∑

i=1

biz
2
i

)
+ w〈z, z〉

∣∣∣∣∣ 1 = b1 ≥ . . . ≥ bn−1 ≥ 0

}

consist of pairwise inequivalent hyperbolic cubic polynomials. The corresponding projective

special real manifolds

H(h) =
{
h = 1

∣∣ h ∈ F, x < 0, w < 0, w2 > 〈z, z〉
}

and

H(h) =

{
h = 1

∣∣∣∣∣ h ∈ G, x < 0, w < 0, w2 >

n−1∑

i=1

biz
2
i

}
,

respectively, are complete.
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Proof. Let M,N ∈ Mat((n−1)×(n−1),R) be symmetric positive semi-definite matrices,

such that rk(M) = (n−1) or rk(N) = (n−1), and denote by M(z, z) = zTMz, N(z, z) =

zTNz. We will show that

h = x
(
−w2 +N(z, z)

)
+ wM(z, z)

is hyperbolic for any suchM andN on the setH := {h = 1 | x < 0, w < 0, w2 > N(z, z)}.
Consider the vector fields ∂w and w∂w−x∂x, which are both non-vanishing along H. One

can check that they are orthogonal to each other with respect to

g = −1

2
∂2h

= −xN(dz, dz) − wM(dz, dz) + xdw2 − 2M(z, dz)dw − 2N(z, dz)dx+ 2wdwdx,

and that g(∂w, ∂w) = x < 0, g(w∂w−x∂x, w∂w −x∂x) = −xw2 > 0 along H. In the above

formula dz is considered as column vector with components dzi. We will now show that g

is positive definite on the orthogonal complement of spanR{∂w, w∂w − x∂x} along H with

respect to g and thereby prove our claim. One can easily verify that every vector field Y

along H which is perpendicular to spanR{∂w, w∂w − x∂x} can be written as

Y = X +
N(z,X)

w
∂w +

wM(z,X)− xN(z,X)

w2
∂x,

where X =
n−1∑
i=1

X i∂zi . Note that Y = 0 if and only if X = 0. We obtain

g(Y, Y ) =
1

w2

(
−xw2N(X,X)− w3M(X,X)− 2wM(z,X)N(z,X) + xN(z,X)2

)
.

If 0 6= X ∈ kerN it follows by assumption that M > 0 and, hence, g(Y, Y ) > 0 along

H. Assume now that N(X,X) 6= 0. Observe that h = 1 is equivalent to −xw2 =

1− wM(z, z)− xN(z, z). Hence, along H we have

− xw2N(X,X) + xN(z,X)2

= N(X,X)︸ ︷︷ ︸
>0

−x(N(X,X)N(z, z) −N(z,X)2︸ ︷︷ ︸
≥0

)− wM(z, z)N(X,X)

> − wM(z, z)N(X,X).

Using this estimate and w2 > N(z, z), we obtain

g(Y, Y ) >
1

−w
(M(z, z)N(X,X) + 2M(z,X)N(z,X) +M(X,X)N(z, z))

along H. If z ∈ kerN , it follows that g(Y, Y ) > 0. Assume that z /∈ kerN . Consider

Q(z,X, z̃, X̃) := M(z̃, z̃)N(X,X) + 2M(z̃, X̃)N(z,X) +M(X̃, X̃)N(z, z).
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One observes that Q(z,X, z̃, X̃) ≥ 0 for all z,X, z̃, X̃ ∈ Rn−1 if M(z̃, z̃)M(X̃, X̃) ≥
M(z̃, X̃)2 for all z̃, X̃ ∈ Rn−1. The latter estimate is true since M is positive semi-

definite. Hence, Q(z,X, z,X) ≥ 0 for all z,X ∈ Rn−1, which shows that g(Y, Y ) > 0 for

Y 6= 0. This proves that the pullback of g to H is a Riemannian metric, so that H is a

projective special real manifold.

We will now show that H ⊂ Rn+1 is closed in the subspace topology. Notice that

H can be written as a graph over U := {w < 0, w2 > N(z, z)} ⊂ Rn by rewriting the

equation h = 1 as x = 1−wM(z,z)
−w2+N(z,z)

. We need to check that x → −∞ for (w, z) → ∂U .

Observe that ∂U = {w ≤ 0, −w2 +N(z, z) = 0}. For (z, w) ∈ U we have

x =
1− wM(z, z)

−w2 +N(z, z)
≤ 1

−w2 +N(z, z)

and the right-hand side goes to −∞ for all sequences in {(z(j), w(j)), j ∈ N} ⊂ U with

the property lim
j→∞

(−w(j)2 +N(z(j), z(j))) = 0. This shows that ∂H is empty and, hence,

that H is closed in Rn+1. By [CNS, Thm. 2.5] this implies that the projective special real

manifold H is complete.

Summarizing, we have shown that H(h) is a complete projective special real manifold

for all h ∈ F and all h ∈ G. It remains to show that F and G each consist of pairwise

inequivalent polynomials.

We will start with the family F. We define

K := {x(−w2 + 〈z, z〉) + wM(z, z) | 0 6= M ≥ 0}

and see that for all h ∈ K, H(h) = {h = 1 | h ∈ K, x < 0, w < 0, w2 > 〈z, z〉} is a

complete special real manifold. This follows from setting N(·, ·) = 〈·, ·〉. Furthermore,

F ⊂ K. In order to study equivalence classes of elements of K, it turns out that we have

to study the cases (i) dim kerM 6= 1 and (ii) dim kerM = 1 separately. In both cases

we will make use of properties of the singularity set {dh = 0}. For a given h ∈ K we

will determine all possible A ∈ GL(n + 1), such that h ◦ A ∈ K. In case (i) we will see

that this set of transformations is independent of the chosen h. In case (ii) it will turn

out that this set of transformations will depend on the chosen h. We will then use the

results to show that F ⊂ K consists of pairwise inequivalent polynomials and that for

each polynomial h ∈ K there is a unique representative in F of the GL(n+ 1)-orbit of h.

For case (i) we will employ the following lemma.

Lemma 10. Let h ∈ K and M the corresponding positive semi-definite bilinear form,

such that dimkerM 6= 1. Then for A ∈ GL(n + 1), h ◦ A ∈ K if and only if A is of the
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form

A =




r−
1

2E

r−
1

2

r


 , r > 0, E ∈ O(n− 1).

Proof. (of Lemma 10) Observe that for all A ∈ GL(n + 1), dhp = 0 if and only if d(h ◦
A)A−1p = 0, i.e. {d(h ◦ A) = 0} is precisely the image of {dh = 0} under A−1. First we

describe {dh = 0} explicitly. We have

dh = 2x〈z, dz〉+ 2wM(z, dz) + (−2xw +M(z, z))dw + (−w2 + 〈z, z〉)dx.

To determine the points p = (z, w, x) such that dhp = 0 we distinguish the cases w = 0

and w 6= 0. If w = 0 then dhp = 0 if and only if z = 0. If w 6= 0 then dhp = 0 if and only

if w2 = 〈z, z〉, z ∈ kerM , and x = 0. To see this it suffices to substitute 2xw = M(z, z)

and w2 = 〈z, z〉 into 2xw〈z, dz〉 + 2w2M(z, dz) = 0 and insert the position vector z on

the left hand side of the latter equation. We have thus determined the set {dh = 0} and

see that the cone {dh = 0} \ {0} has the following components :

{dh = 0} \ {0} = {z = 0, w = 0, x > 0}∪̇{z = 0, w = 0, x < 0}
∪̇{z ∈ kerM \ {0}, w =

√
〈z, z〉, x = 0}

∪̇{z ∈ kerM \ {0}, w = −
√

〈z, z〉, x = 0}.

The latter two sets are either smooth manifolds of dimension dim kerM in the case that

dim kerM 6= 0, or empty if M > 0. By assumption they are not of dimension 1 and,

hence, connected. Since A−1 maps connected components of {dh = 0} \ {0} to connected

components of {d(h◦A) = 0}\{0}, we see that if h̄ = h◦A is contained in K and, hence,

associated with some M ≥ 0, then M and M have the same rank and A maps the line

{z = 0, w = 0, x ∈ R} to itself. Note that it is precisely at this point that we have used

the condition dim ker M 6= 1. This means that A has the following form:

A =

(
B

(αT , β) r

)
, B ∈ Mat(n× n, R), α ∈ R

n−1, β ∈ R, r ∈ R \ {0}.

By writing down (h ◦ A)(z, w, x), one can easily verify that r > 0 and B = r−
1

2C,

C ∈ O(n − 1, 1), are necessary for h ◦ A to be contained in K. Here O(n − 1, 1) is

the automorphism group of the quadratic form −w2 + 〈z, z〉 on Rn. Using the notation

C ( z
w ) = ( z̃

w̃ ) we obtain

(h ◦ A)(z, w, x) = x(−w2 + 〈z, z〉) + r−
3

2 ((〈r 1

2α, z〉+ r
1

2βw)(−w2 + 〈z, z〉) + w̃M(z̃, z̃)).

C is of the form

C =

(
E ξ
ηT µ

)
, E ∈ Mat((n− 1)× (n− 1), R), η, ξ ∈ R

n−1, µ ∈ R,
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and fulfils

CT

(
1

−1

)
C =

(
1

−1

)
.

The left hand side of the above equation equals
(

ETE − η ⊗ 〈η, ·〉 ET ξ − µη
ξTE − µηT 〈ξ, ξ〉 − µ2

)
,

which in particular implies that µ 6= 0 and rk E = n− 1. To see the latter, assume that

there exists a 0 6= v ∈ kerE. Since ET ξ − µη = 0, it follows that η = µ−1ET ξ. Hence,

(ETE − η ⊗ 〈η, ·〉)v = ETEv − µ−2ET ξ〈ET ξ, v〉
= −µ−2ET ξ〈ξ, Ev〉 = 0,

which contradicts the assumption that ETE−η⊗〈η, ·〉 = 1. With κ := r
1

2α and ρ := r
1

2β,

(h ◦ A)(z, w, x) = x(−w2 + 〈z, z〉)
+ r−

3

2 (w3(µM(ξ, ξ)− ρ) (1)

+ w2(2µM(Ez, ξ) + 〈η, z〉M(ξ, ξ)− 〈κ, z〉) (2)

+ w(µM(Ez,Ez) + 2〈η, z〉M(Ez, ξ) + ρ〈z, z〉)
+ 〈η, z〉M(Ez,Ez) + 〈κ, z〉〈z, z〉). (3)

The requirements for h ◦ A to be contained in K are (1) = (2) = (3) = 0 and

µM(Ez,Ez) + 2〈η, z〉M(Ez, ξ) + ρ〈z, z〉 ≥ 0 ∀z ∈ R
n−1. (4)

We will show that this implies κ = 0 and ρ = 0 and, consequently, α = 0 and β = 0.

Firstly, we will show that ρ = 0 implies κ = 0, and secondly that a transformation with

ρ 6= 0 contradicts the requirement C ∈ O(n− 1, 1).

Assume ρ = 0. Then (1) is equivalent to M(ξ, ξ) = 0. Since M ≥ 0, this implies

ξ ∈ kerM . Equation (2) is thus equivalent to 〈κ, z〉 = 0 for all z ∈ Rn−1. This shows

κ = 0.

Now assume that ρ 6= 0. Then by equation (1)

M(ξ, ξ) = µ−1ρ.

Note that this implies µ−1ρ > 0 and in particular ξ /∈ kerM . Inserting the above equation

in (2) yields

2µM(Ez, ξ) + 〈η, z〉µ−1ρ = 〈κ, z〉.

Using that, (3) becomes

〈η, z〉(M(Ez,Ez) + µ−1ρ〈z, z〉) + 2µM(Ez, ξ)〈z, z〉 = 0.
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Since C ∈ O(n− 1, 1), we have η = µ−1ET ξ and, hence,

〈z, ET ξ〉(M(Ez,Ez) + µ−1ρ〈z, z〉︸ ︷︷ ︸
>0 ∀z 6=0

) + 〈z, ETMξ〉 2µ2〈z, z〉︸ ︷︷ ︸
>0 ∀z 6=0

= 0.

An immediate consequence is that ET ξ and ETMξ are linearly dependent. Since kerET =

{0} and ξ /∈ kerM this is equivalent to ETMξ = sET ξ for some s ∈ R \ {0}, which shows

that Mξ = sξ, that is ξ needs to be an eigenvector of M . This also shows s > 0. Hence,

〈z, ET ξ〉(M(Ez,Ez) + (µ−1ρ+ 2µ2s)〈z, z〉︸ ︷︷ ︸
>0 ∀z 6=0

) = 0.

This shows that ET ξ = 0 which contradicts kerE = {0}. This proves ρ = 0, κ = 0, and

ξ ∈ kerM .

Summarizing, we have shown that A needs to be of the form

A =

(
r−

1

2C
r

)
, C ∈ O(n− 1, 1), r > 0.

For such A, equations (1) and (2) are automatically fulfilled, and equation (3) becomes

〈η, z〉M(Ez,Ez) = 0. (3)

Since rk E = n−1 we know that M(Ez,Ez) is a non-vanishing quadratic polynomial.

Hence, (3) is true if and only if η = 0. As we have seen before, η = 0 implies ξ = 0 since

C ∈ O(n − 1, 1). Observe that ξ = 0 and C ∈ O(n − 1, 1) also imply −µ2 = −1. The

inequality (4) becomes µM(Ez,Ez) ≥ 0, from which we deduce that µ = 1. Hence, all

possible transformations such that h ◦ A ∈ K with

h = x(−w2 + 〈z, z〉) + wM(z, z), M ≥ 0, M 6= 0, dim kerM 6= 1,

can be written as

A =




r−
1

2E

r−
1

2

r


 , E ∈ O(n− 1), r > 0, (2.1)

independent of the choice of h ∈ K.

Next, we will deal with case (ii).

Lemma 11. Let A ∈ GL(n+1), h ∈ K and M the corresponding positive semi-definite

bilinear form, such that dimkerM = 1. Then h ◦ A ∈ K if and only if M has at least 2
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distinct positive eigenvalues and A is of the form (2.1) or, if M has precisely 1 positive

eigenvalue, A can be written as a product of transformations of the form (2.1) and




1
1
2

−1
2

1
−1
2

1
2

1
1
2

1
2

0


 .

Furthermore, in the case when M has precisely 1 positive eigenvalue the sets

{h ◦ A | A ∈ GL(n+ 1), h ◦ A ∈ K} and {h ◦ A | A is of the form (2.1)} coincide.

Proof. (of Lemma 11) In case (ii), that is dim kerM = 1, {dh = 0} consists of 3 distinct

lines that intersect at 0 ∈ Rn+1,

{dh = 0} ={z = 0, w = 0, x ∈ R}
∪{z ∈ kerM, w =

√
〈z, z〉, x = 0}

∪{z ∈ kerM, w = −
√

〈z, z〉, x = 0}.

Note that each of the latter two sets is not a line, but their union is a union of two distinct

lines. Contrary to case (i) we can no longer assume that a transformation mapping

h = x(−w2 + 〈z, z〉) + wM(z, z) ∈ K to h = x(−w2 + 〈z, z〉) + wM(z, z) ∈ K preserves

the line {z = 0, w = 0, x ∈ R}, since all connected components of {dh = 0} \ {0} are

of dimension one. Note that we can, after a possible orthogonal transformation of the

z-coordinates, assume that

M =




λ1

. . .

λn−2

0


 , M =




λ1

. . .

λn−2

0


 ,

which in particular implies kerM = kerM . Thus in addition to the transformations (2.1),

considered in case (i), we need to consider transformations of the form

A =




E ξ v
ηT µ ±‖v‖
αT β 0


 , v ∈ kerM \ {0},

which map {z = 0, w = 0, x ∈ R} to either {z = rv, w = r‖v‖, x = 0 | r ∈ R} or

{z = rv, w = −r‖v‖, x = 0 | r ∈ R}, and are required to preserve {dh = 0} = {dh = 0}.
By calculating (h ◦ A)(z, w, x), we obtain the following system of equations, which is
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equivalent to h ◦ A = h̄:

∓2‖v‖β〈η, z〉+ 2β〈Ez, v〉 ± 2‖v‖M(Ez, ξ)∓ 2‖v‖µ〈α, z〉+ 2〈ξ, v〉〈α, z〉 = 0 (1)

β(−µ2 + 〈ξ, ξ〉) + µM(ξ, ξ) = 0 (2)

〈α, z〉(−µ2 + 〈ξ, ξ〉) + 〈η, z〉(−2βµ+M(ξ, ξ)) + 2β〈Ez, ξ〉+ 2µM(Ez, ξ) = 0 (3)

−〈α, z〉〈η, z〉2 + 〈α, z〉〈Ez,Ez〉+ 〈η, z〉M(Ez,Ez) = 0 (4)

∓2‖v‖βµ+ 2β〈ξ, v〉 ± ‖v‖M(ξ, ξ) = −1 (5)

〈α, z〉(∓2‖v‖〈η, z〉+ 2〈Ez, v〉)± ‖v‖M(Ez,Ez) = 〈z, z〉 (6)

−2µ〈α, z〉〈η, z〉+ 2〈α, z〉〈Ez, ξ〉 − β〈η, z〉2

+β〈Ez,Ez〉+ 2〈η, z〉M(Ez, ξ) + µM(Ez,Ez) = M(z, z) (7)

We will show that such a transformation exists if and only if λ1 = . . . = λn−2.

Claim 1: dim kerE ≤ 1.

Proof. In general, dim ker〈α, ·〉 ≥ n − 2. Assume dim kerE > 1. Then there exists

Y ∈ Rn−1 \ {0}, such that Y ∈ ker〈α, ·〉 ∩ kerE. Hence, by equation (6), 0 = 〈Y, Y 〉,
which is a contradiction to Y 6= 0.

Claim 2: dim kerE = 1 ⇒ kerE 6⊂ ker〈α, ·〉.

Proof. Assume dim kerE = 1 and kerE ⊂ ker〈α, ·〉, and let 0 6= Y ∈ kerE. Again,

equation (6) implies 0 = 〈Y, Y 〉 and, hence, contradicts Y 6= 0.

Claim 3: dim kerE = 1 ⇒ kerE ⊂ ker〈η, ·〉.

Proof. Let 0 6= Y ∈ kerE. Equation (4) reads

−〈α, Y 〉︸ ︷︷ ︸
6=0

〈η, Y 〉2 = 0,

which shows that Y ∈ ker〈η, ·〉.

Claim 4: dim kerE = 0.

Proof. Assume that dim kerE 6= 0. We have shown that the only other possible case

would be dim kerE = 1. For 0 6= Y ∈ kerE, we have also shown that Y ∈ ker〈η, ·〉. Now
equation (6) implies 0 = 〈Y, Y 〉, which, again, contradicts Y 6= 0. Hence, we have shown

that kerE = {0}, i.e. E ∈ GL(n− 1).
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Claim 5: α 6= 0.

Proof. Assume α = 0. Equation (6) is now equivalent to

±‖v‖ETME = 1.

Since E ∈ GL(n− 1), this implies that M is invertible, which contradicts the assumption

dim kerM = 1.

Claim 6: η = sα, s 6= 0.

Proof. If η 6∈ Rα \ {0} then there exists Y ∈ ker〈η, ·〉, such that 〈α, Y 〉 6= 0. Together

with E ∈ GL(n−1) this implies 〈α, Y 〉〈EY,EY 〉 6= 0, which contradicts equation (4).

Claim 7: A
(

0
0
1

)
=
( v

‖v‖
0

)
.

Proof. Assume on the contrary that A
(

0
0
1

)
=
( v

−‖v‖
0

)
. Then for all Y ∈ ker〈α, ·〉 equation

(6) implies −‖v‖M(EY,EY ) = 〈Y, Y 〉. But M is positive semi-definite, hence this is a

contradiction. Note that this means that in equations (1)-(7), every “±” needs to be “+”,

and every “∓” needs to be “−”.

Claim 8: ξ ∈ kerM .

Proof. By construction, A is required to map the set {dh = 0} = {dh = 0} onto itself,

that is induces a permutation of the three lines R



0
0
1


, R




v
‖v‖
0


, and R




v
−‖v‖
0


. We

already know that the first line is mapped to the second. Therefore, either

A




v
‖v‖
0


 ∈ R



0
0
1


 and A




v
−‖v‖
0


 ∈ R




v
−‖v‖
0


 , (a)

or

A




v
−‖v‖
0


 ∈ R



0
0
1


 and A




v
‖v‖
0


 ∈ R




v
−‖v‖
0


 . (b)

In case (a), Ev + ‖v‖ξ = 0, and, hence, using the second equation in (a), Ev − ‖v‖ξ =

−2‖v‖ξ ∈ Rv = kerM . Similarly, in case (b) we have Ev − ‖v‖ξ = 0, showing that

Ev + ‖v‖ξ = 2‖v‖ξ ∈ Rv.

In the following we will write ξ = kv, k ∈ R.
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Claim 9: β 6= 0.

Proof. This follows from the previous claim and equation (5).

Claim 10: ξ = − 1
4β〈v,v〉v, µ = 1

4β‖v‖ , s = − 1
4β2‖v‖ , α = 4β2ETv.

Proof. We have shown that β 6= 0 and ξ = kv ∈ kerM . Hence, (2) implies µ = ±k‖v‖.
Furthermore the previous results imply that (5) is equivalent to −2‖v‖βµ+ 2βk〈v, v〉 =
−1. This shows that µ = −k‖v‖ and, hence,

k = − 1

4β〈v, v〉 , µ =
1

4β‖v‖ .

One can easily check that equation (3) is equivalent to 〈α, z〉(−2βµs) + 2β〈Ez, ξ〉 = 0,

which shows that

〈α, z〉 = − 1

s‖v‖〈Ez, v〉.

Using this, equation (1) is equivalent to

s =
k‖v‖
β

= − 1

4β2‖v‖ .

Hence, 〈α, z〉 = 4β2〈Ez, v〉.

The restrictions derived from the equations (1)–(7) in the above series of claims already

imply the equations (1), (2), (3), and (5). With the above results, one can show that the

remaining equations (4), (6), and (7) are equivalent to

− 1

〈v, v〉〈Ez, v〉2 + 〈Ez,Ez〉 − 1

4β2‖v‖M(Ez,Ez) = 0, (4′)

16β2〈Ez, v〉2 + ‖v‖M(Ez,Ez) = 〈z, z〉, (6′)

− β

〈v, v〉〈Ez, v〉2 + β〈Ez,Ez〉+ 1

4β‖v‖M(Ez,Ez) = M(z, z), (7′)

respectively.

Claim 11: M(z, z) = 1
2β〈v,v〉〈z, z〉 −

8β
〈v,v〉〈Ez, v〉2.

Proof. By multiplying both sides of equation (4′) with −β and adding them to (7′) we

obtain
1

2β‖v‖M(Ez,Ez) = M(z, z).

By considering equation (6′) we see that 1
2β‖v‖M(Ez,Ez) = 1

2β〈v,v〉〈z, z〉 −
8β

〈v,v〉〈Ez, v〉2,
which proves the claim.
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Claim 12: E is of the form E =

(
B

± 1
4β‖v‖

)
, B ∈ GL(n− 2).

Proof. By the assumption M(z, z) =
∑n−2

i=1 λiz
2
i , it follows that either v = ‖v‖∂zn−1

, or

v = −‖v‖∂zn−1
. Note that the sign does not depend on the cases (a) and (b) described in

Claim 8. Using this, one can easily check that Claim 11 restricts E to be of the form

E =

( ∗ ∗
0 ± 1

4β‖v‖

)
.

Recall that by Claim 8, Ev = −‖v‖ξ = 1
4β‖v‖v in case (a), or Ev = ‖v‖ξ = − 1

4β‖v‖v in

case (b). This shows that E needs to be of the form

E =

( ∗ 0
∗ ± 1

4β‖v‖

)
,

where “+” corresponds to case (a) and “−” to case (b). This and the requirement E ∈
GL(n− 1) show that E is of the claimed form.

This shows that under our assumptions the equations (1)-(7) can only be satisfied if

M has precisely one positive eigenvalue, i.e.

M(z, z) =
1

2β〈v, v〉

n−2∑

i=1

z2i .

This also shows that β > 0 is a necessary requirement.

Claim 13: E is of the form E = 1
2β‖v‖

(
C

±1
2

)
, C ∈ O(n− 2).

Proof. Observe that Claim 12 shows ETv = Ev, which implies 〈Ez, v〉2 =
z2n−1

16β2 . Hence,

equation (6′) is equivalent to

‖v‖M(Ez,Ez) =

n−2∑

i=1

z2i , (6”)

and equation (4′) is equivalent to

‖v‖M(Ez,Ez) = 4β2〈v, v〉
〈
B

( z1
...

zn−2

)
, B

( z1
...

zn−2

)〉
. (4”)

On the right-hand side of (4′′), 〈·, ·〉 denotes the standard scalar product on Rn−2. Note

that, since E is invertible, (4′′) shows that

M(z, z) = 4β2‖v‖
n−2∑

i=1

z2i ,

so M also has exactly one positive eigenvalue. By comparing (4′′) and (6′′) we see that

B = 1
2β‖v‖C for some C ∈ O(n−2). This proves that E = 1

2β‖v‖

(
C

± 1

2

)
, C ∈ O(n−2).
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SinceM(z, z) is a positive scalar multiple of
n−2∑
i=1

z2i , h is invariant under transformations

of the form

Ĉ =




C−1

1
1

1


 , C ∈ O(n− 2).

Replacing A by the matrix ĈA, we can assume without restriction of generality that

E = 1
2β‖v‖

(
1

± 1

2

)
. Summarizing, we have shown that in case (a), depending on the

choice of the sign of v = ±‖v‖∂zn−1
,

A =




1

2β‖v‖
1

4β‖v‖
∓1

4β‖v‖ ±‖v‖
∓1

4β‖v‖
1

4β‖v‖ ‖v‖
±β β 0


 ,

and in case (b)

A =




1

2β‖v‖
−1

4β‖v‖
∓1

4β‖v‖ ±‖v‖
±1

4β‖v‖
1

4β‖v‖ ‖v‖
∓β β 0


 ,

which again depends on the sign of v = ±‖v‖∂zn−1
.

Since both h and h are invariant under the transformation

K :=




1
−1

1
1


 ,

we see that, up to automorphisms of h and h̄, in each of the 4 possible cases we only need

to consider

A =




1

2β‖v‖
1

4β‖v‖
−1

4β‖v‖ ‖v‖
−1

4β‖v‖
1

4β‖v‖ ‖v‖
β β 0


 .

We set λ := 4β2‖v‖, so that M(z, z) = λ
n−2∑
i=1

z2i , M(z, z) = 8β3

λ2

n−2∑
i=1

z2i , and

A =




2β
λ
1

β
λ

−β
λ

λ
4β2

−β
λ

β
λ

λ
4β2

β β 0


 .
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We define

Rr :=




r1
r

r
1
r2


 , Â :=




1
1
2

−1
2

1
−1
2

1
2

1
1
2

1
2

0


 .

One can now verify that A = R
λ−

1
3
ÂR 2β

λ
2
3

. Note that Â2 = 1 and that Â is an automor-

phism of the polynomial h1 := x(−w2 + 〈z, z〉) + w
n−2∑
i=1

z2i .

Claim 13 shows that the additional transformations obtained in the special case that

h is equivalent to h1 when compared to the other considered cases are all conjugated to

a composition of the additional automorphism Â of h1 and transformations of the form

(2.1). This shows that

{h ◦ A | A ∈ GL(n + 1), h ◦ A ∈ K} = {h ◦ A | A is of the form (2.1)}.

Hence, for choosing a representative of an h in F when h has the property that the

corresponding M has exactly one positive eigenvalue and dimkerM = 1, it suffices to

consider transformations of the form (2.1). This finishes the proof of Lemma 11.

With the help of Lemma 10 and Lemma 11 we will now choose a unique representative

in F for the GL(n+1)-orbit of an element h ∈ K. For a given positive semi-definite bilinear

form M there is a unique bilinear form

M̂ =



λ1

. . .

λn−1


 , λ1 ≥ . . . ≥ λn−1 ≥ 0,

such that there exists E ∈ O(n − 1) with the property that ETME = M̂ . The λi

are the eigenvalues of M . M 6= 0 implies that M has at least one positive eigenvalue

λ1 > 0. Applying the corresponding transformation (2.1) with r = λ
2

3

1 , we see that

h = x(−w2 + 〈z, z〉) + wM(z, z) is equivalent to

ĥ ∈ F, ĥ = x(−w2 + 〈z, z〉) + w

n−1∑

i=1

biz
2
i , b1 = 1, b1 ≥ . . . ≥ bn−1 ≥ 0,

and the bi’s thus uniquely determined by M . Summarizing up to this point, we have

shown that the (n − 2)-parameter family F consists of pairwise inequivalent hyperbolic

homogeneous polynomials, all of which define a complete projective special real manifold

of dimension n.

We will now consider the family G and proceed similarly as for the family F. Consider

the set of homogeneous cubic polynomials

L := {x(−w2 +N(z, z)) + w〈z, z〉 | 0 6= N ≥ 0}.
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It is clear that G ⊂ L and that any element in L is contained in the GL(n + 1)-orbit of

some element in G. For a given h = x(−w2 +N(z, z)) +w〈z, z〉 we want to determine all

possible A ∈ GL(n + 1), such that (h ◦ A)(z, w, x) ∈ L. We will see that the answer is

independent of the chosen h.

For dim kerN = 0, h is equivalent to some h̃ = x(−w2 + 〈z, z〉) + wM(z, z) ∈ K with

the property M > 0. In this case we know that there is a unique representative of h̃ under

the GL(n + 1)-action in F of the form

ĥ = x(−w2 + 〈z, z〉) + w
n−1∑

i=1

biz
2
i , b1 = 1, b1 ≥ . . . ≥ bn−1 > 0,

which can easily be checked to be equivalent to

ȟ = x

(
−w2 +

n−1∑

i=1

bn−1

bn−i
z2i

)
+ w〈z, z〉, 1 =

bn−1

bn−1
≥ . . . ≥ bn−1

b1
> 0.

Hence, ȟ ∈ G. The uniqueness property can be shown the following way. Assume

that h = x
(
−w2 +

∑n−1
i=1 ciz

2
i

)
+ w〈z, z〉 ∈ G, c1 = 1, c1 ≥ . . . ≥ cn−1 > 0, and

h = x
(
−w2 +

∑n−1
i=1 ciz

2
i

)
+ w〈z, z〉 ∈ G, c1 = 1, c1 ≥ . . . ≥ cn−1 > 0, are equivalent. h

and h are equivalent to

h′ = x(−w2 + 〈z, z〉) + w
n−1∑

i=1

cn−1

cn−i
z2i ∈ F

and

h
′
= x(−w2 + 〈z, z〉) + w

n−1∑

i=1

cn−1

cn−i
z2i ∈ F,

respectively. We have shown that h′ and h
′
are equivalent if and only if cn−1

cn−i
= cn−1

cn−i
for

all 1 ≤ i ≤ n − 1. Since c1 = c1 = 1, this shows that cn−1 = cn−1. Hence, ci = ci must

hold for all 1 ≤ i ≤ n− 1.

Thus, we can reduce this question and assume that the h ∈ L we are starting with

has the property that N ≥ 0, N 6= 0, and dimkerN 6= 0.

Lemma 12. Let h ∈ L \ {x(−w2 + N(z, z)) + w〈z, z〉 | N > 0}. Then h ◦ A ∈ L,

A ∈ GL(n + 1), if and only if

A =




r
1

4F

r−
1

2

r


 , F ∈ O(n− 1), r > 0.

In particular the possible choices for A do not depend on h.
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Proof. Let h = x(−w2 +N(z, z)) + w〈z, z〉. We obtain

dh = 2xN(z, dz) + 2w〈z, dz〉+ (−2wx+ 〈z, z〉)dw + (−w2 +N(z, z))dx.

We will determine the set {dh = 0}. Observe that for w = 0 it follows that 〈z, z〉 = 0

and, hence, z = 0. Then all entries of dh are 0 for all x ∈ R. For w 6= 0, substitute the

equations 2wx = 〈z, z〉 and w2 = N(z, z) into 2wxN(z, ·) + 2w2〈z, ·〉 = 0, which is the

first equation in dh = 0 multiplied by w. We obtain 〈z, z〉N(z, ·) + 2〈z, ·〉N(z, z) = 0,

which in particular implies 3〈z, z〉N(z, z) = 0. This shows that z ∈ kerN . But then

w2 = N(z, z) = 0, which is a contradiction to the assumption w 6= 0. Summarizing, we

have shown that for all N ≥ 0

{dh = 0} = {z = 0, w = 0, x ∈ R}.

Hence, A needs to be of the form

A =

(
B

(αT , β) r

)
, B ∈ Mat(n× n, R), α ∈ R

n−1, β ∈ R, r ∈ R \ {0}.

Let h = x(−w2+N(z, z)) +w〈z, z〉 and assume that h
(
A
(

z
w
x

))
= h

((
z
w
x

))
. Denote by

(
z̃
w̃
x̃

)
= A

(
z
w
x

)
. We obtain

h
(
A
(

z
w
x

))
= (〈α, z〉+ βw + rx)(−w̃2 +N(z̃, z̃)) + w̃〈z̃, z̃〉.

Since w̃〈z̃, z̃〉 does not depend on the variable x, this shows that −w̃2 + N(z̃, z̃) =

r−1(−w2 +N(z, z)). Hence, B = r−
1

2C with

CT

(
N

−1

)
C =

(
N

−1

)
, C ∈ GL(n).

For C =

(
E ξ
ηT µ

)
the above equation is equivalent to

(
ETNE − η ⊗ 〈η, ·〉 ETNξ − µη

ξTNE − µηT N(ξ, ξ)− µ2

)
=

(
N

−1

)
.

Note that this shows µ 6= 0. This is equivalent to

µ2 = 1 +N(ξ, ξ), (I)

ETNξ = µη, (II)

ETNE − η ⊗ 〈η, ·〉 = N. (III)

In particular µ 6= 0. Up to this point, we have shown that

A =




r−
1

2E r−
1

2 ξ

r−
1

2ηT r−
1

2µ
α β r


 .
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We calculate

h
(
A
(

z
w
x

))
= x(−w2 +N(z, z))

+ w3
(
−βr−1 + r−

3

2µ〈ξ, ξ〉
)

+ w2
(
−r−1〈α, z〉+ r−

3

2 〈η, z〉〈ξ, ξ〉+ 2r−
3

2µ〈Ez, ξ〉
)

+ w
(
βr−1N(z, z) + r−

3

2µ〈Ez,Ez〉 + 2r−
3

2 〈η, z〉〈Ez, ξ〉
)

+ r−1〈α, z〉N(z, z) + r−
3

2 〈η, z〉〈Ez,Ez〉.

By assumption, the entries of A need to fulfil the equations

−βr−1 + r−
3

2µ〈ξ, ξ〉 = 0, (1)

−r−1〈α, z〉+ r−
3

2 〈η, z〉〈ξ, ξ〉+ 2r−
3

2µ〈Ez, ξ〉 = 0, (2)

βr−1N(z, z) + r−
3

2µ〈Ez,Ez〉 + 2r−
3

2 〈η, z〉〈Ez, ξ〉 = 〈z, z〉, (3)

r−1〈α, z〉N(z, z) + r−
3

2 〈η, z〉〈Ez,Ez〉 = 0. (4)

Claim 1: E ∈ GL(n− 1).

Proof. Substituting (III) into (3) yields

βr−1(N(Ez,Ez) − 〈η, z〉2) + r−
3

2µ〈Ez,Ez〉 + 2r−
3

2 〈η, z〉〈Ez, ξ〉 = 〈z, z〉. (3′)

We multiply both sides of (3′) by µ2 and substitute (II) to obtain

βr−1(µ2N(Ez,Ez)−N(Ez, ξ)2) + r−
3

2µ3〈Ez,Ez〉 + 2r−
3

2µN(Ez, ξ)〈Ez, ξ〉 = µ2〈z, z〉.
(3′′)

Assume y ∈ kerE. Then (3′′) implies 0 = µ2〈y, y〉. Since µ 6= 0 this implies y = 0. This

proves our claim.

Claim 2: α = 0.

Proof. Assume α 6= 0. Substituting (III) into (4), we obtain

r−1〈α, z〉(N(Ez,Ez) − 〈η, z〉2) + r−
3

2 〈η, z〉〈Ez,Ez〉 = 0. (4′)

Multiply both sides of (4′) by rµ2 and substitute (II) to obtain

〈α, z〉(µ2N(Ez,Ez) −N(Ez, ξ)2) + r−
1

2µN(Ez, ξ)〈Ez,Ez〉 = 0. (4′′)
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Claim 2.1: α 6= 0 ⇒ ETNξ = sα.

Proof. Equation (4′′) and E ∈ GL(n − 1) show that y ∈ ker〈α, ·〉 implies N(Ey, ξ) = 0.

Hence, N(E·, ξ) = s〈α, ·〉.

Claim 2.2: α 6= 0 ⇒ s 6= 0, ξ /∈ kerN .

Proof. Assume that s = 0. Then (4′′) becomes 〈α, z〉N(Ez,Ez) = 0 for all z ∈ Rn−1. But

E ∈ GL(n− 1), N 6= 0, and α 6= 0, so this is a contradiction. Since ETNξ = sα 6= 0, it

immediately follows that ξ /∈ kerN .

Claim 2.3: ET ξ = tα, t 6= 0.

Proof. Equation (2) implies that α, η, and ET ξ are linearly dependent. Since η =

µ−1ETNξ = µ−1sα, it follows that ET ξ = tα. Then t 6= 0 follows from ET ∈ GL(n− 1)

and ξ 6= 0.

Claim 2.4: sgn(µ) = sgn(−s) and dim kerN = 1.

Proof. Observe that Claim 2.1-2.3 and α 6= 0 show that (4′′) is equivalent to

µ2N(Ez,Ez) − s2〈α, z〉2 + r−
1

2µs〈Ez,Ez〉 = 0.

Thus, for all y ∈ ker〈α, ·〉 we have

µ2N(Ey,Ey) + r−
1

2µs〈Ey,Ey〉 = 0.

N ≥ 0 and E ∈ GL(n − 1) imply that µs < 0, which shows sgn(µ) = sgn(−s). Since

〈E·, E·〉|ker〈α,·〉 > 0 it follows that N(E·, E·)|ker〈α,·〉 > 0. Hence, N is of rank n−2 or n−1,

the latter being excluded by the assumption that N ≥ 0 but not N > 0.

Claim 2.5: sgn(s) = sgn(t).

Proof. We have α = s−1ETNξ and α = t−1ET ξ. The invertibility of E shows Nξ = st−1ξ.

Since ξ /∈ kerN and N ≥ 0, it follows that sgn(st−1) = 1.

To conclude the proof of Claim 2, multiply both sides of equation (2) by rµ and

substitute (II) to obtain

−µ〈α, z〉+ r−
1

2 〈ξ, ξ〉N(Ez, ξ) + 2r−
1

2µ2〈Ez, ξ〉 = 0. (2′)
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Claim 2.1-2.3 and α 6= 0 show that (2′) is equivalent to

−µ+ r−
1

2 〈ξ, ξ〉s+ 2r−
1

2µ2t = 0. (2′′)

We have shown that all terms are non-vanishing and, by Claim 2.4-2.5, have the same

sign. Hence, (2′′) cannot be true. This completes the proof of Claim 2, that is α = 0.

Claim 3: ξ = η = 0.

Proof. Since α = 0, using (I) and (II) shows that equation (4) is equivalent to N(E·, ξ) =
0. But E ∈ GL(n − 1), thus it follows that ξ ∈ kerN and η = 0. Equation (2) and

E ∈ GL(n− 1) now show that ξ = 0.

Claim 4: β = 0, µ = 1, and E = r
3

4F , F ∈ O(n− 1).

Proof. Equation (1), ξ = 0, and r > 0 imply β = 0. Using ξ = 0 we see that equation

(3′′) is equivalent to

r−
3

2µ〈Ez,Ez〉 = 〈z, z〉. (3′′′)

Equations (I) and (3′′′) are satisfied if and only if µ = 1 and r−
3

4E ∈ O(n − 1), that is

E = r
3

4F with F ∈ O(n− 1).

This finishes the proof of Lemma 12.

Now one can show in the exact same way as for the family F that each element of

L has a unique representative in G. Hence, the (n − 2)-parameter family G consists of

pairwise inequivalent hyperbolic homogeneous cubic polynomials, each defining a complete

projective special real manifold of dimension n. This concludes the proof of Theorem

9.

A consequence of the Lemmata 10, 11, and 12 is the following corollary.

Corollary 13. The automorphism groups of elements h ∈ G and h ∈ F, h 6= h1 :=

x(−w2 + 〈z, z〉) + w
n−2∑
i=1

z2i , are of the form

Aut(h) = O(m1)× . . .×O(mk), 1 ≤ k ≤ n− 1,

k∑

j=1

mk = n− 1.

The automorphism group of h1 is generated by O(n− 2) and Â defined as

Â :=




1
1
2

−1
2

1
−1
2

1
2

1
1
2

1
2

0


 ,
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i.e.

Aut(h1) ∼= O(n− 2)⋊ Z2.

Recall that the projective special real manifolds associated to the polynomials a) and

b) in Theorem 2 are homogeneous. Theorem 9 now implies the following.

Corollary 14. For n ≥ 3 there exists a smooth curve γ : [0, 1] → S3 (Rn+1)
∗
, such that

γ(0) = x(−w2 + 〈z, z〉), that is the polynomial a) in Theorem 2, and γ(1) = x(−w2) +

w〈z, z〉, which is equivalent to the polynomial b) in Theorem 2, with the property that

for each t ∈ (0, 1), the level set {γ(t) = 1} contains a complete projective special real

manifold.

Note that the above corollary is also true for n = 1 and n = 2. For n = 1, the

polynomials a) and b) in Theorem 2 are equivalent, cf. [CHM, Cor. 4]. For n = 2, one

choice for γ is

γ(t) = x(−w2 + (1− t)z2) + twz2.

If we compare these polynomials with [CDL, Thm. 1], we see that γ(0) is equivalent to

a), that is xyz, γ(1) is equivalent to b), that is x(xy − z2), and γ(t) for all t ∈ (0, 1) is

equivalent to e), that is x(y2 − z2) + y3.

3 Curvature formulas for the q-map

In this section, we introduce the supergravity r- and c-map and derive curvature formulas

for their composition, the q-map. Note that compared to the last section, the dimension

n is shifted by one: In this section, the projective special real manifold H is defined by a

cubic polynomial h in n variables and has dimension dimH = n− 1. The corresponding

projective special Kähler manifold M̄ in the image of the supergravity r-map has real

dimension 2n and the quaternionic Kähler manifold N̄ in the image of the q-map has real

dimension 4m = 4(n+ 1).

3.1 Conical affine and projective special Kähler geometry

First, we recall the definitions of conical affine and projective special Kähler manifolds

[ACD, CM]:

Definition 15. A conical affine special Kähler manifold (M, gM , J,∇, ξ) is a pseudo-

Kähler manifold (M, gM , J) endowed with a flat torsionfree connection ∇ and a vector

field ξ such that
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i) ∇ωM = 0, where ωM := gM(J ·, ·) is the Kähler form,

ii) (∇XJ)Y = (∇Y J)X for all X, Y ∈ Γ(TM),

iii) ∇ξ = Dξ = Id, where D is the Levi-Civita connection,

iv) gM is positive definite on D = span{ξ, Jξ} and negative definite on D⊥.

Let (M,J, gM ,∇, ξ) be a conical affine special Kähler manifold of complex dimension

n + 1. Then ξ and Jξ are commuting holomorphic vector fields that are homothetic and

Killing respectively [CM]. We assume that the holomorphic Killing vector field Jξ induces

a free S1-action and that the holomorphic homothety ξ induces a free R>0-action on M .

Then (M, gM) is a metric cone over (S, gS), where S := {p ∈ M |gM(ξ(p), ξ(p)) = 1},
gS := gM |S; and −gS induces a Riemannian metric gM̄ on M̄ := S/S1

Jξ. (M̄,−gM̄) is

obtained from (M,J, g) via a Kähler reduction with respect to Jξ and, hence, gM̄ is a

Kähler metric (see e.g. [CHM]). The corresponding Kähler form ωM̄ is obtained from ωM

by symplectic reduction. This determines the complex structure JM̄ .

Definition 16. The Kähler manifold (M̄, gM̄ , JM̄) is called a projective special Kähler

manifold.

Locally, there exist so-called conical special holomorphic coordinates z = (zI) =

(z0, . . . , zn) : U
∼→ Ũ ⊂ Cn+1 such that the geometric data on the domain U ⊂ M is en-

coded in a holomorphic function F : Ũ → C that is homogeneous of degree 2 [ACD, CM].

Namely, we have [CM]

gM |U =
∑

I,J

NIJdz
Idz̄J , NIJ(z, z̄) := 2ImFIJ(z) := 2Im

∂2F (z)

∂zI∂zJ
(I, J = 0, . . . , n)

and ξ|U =
∑

zI ∂
∂zI

+ z̄I ∂
∂z̄I

. The Kähler potential for gM |U is given by r2|U = gM(ξ, ξ)|U =∑
zINIJ z̄

J .

The C∗-invariant functions Xµ := zµ

z0
, µ = 1, . . . , n, define a local holomorphic coordi-

nate system on M̄ . The Kähler potential for gM̄ isK := − log
∑n

I,J=0X
INIJ(X)X̄J , where

X := (X0, . . . , Xn) with X0 := 1. Note that for every function fU(z) on U , we define

a function fŪ(X) on the corresponding subset Ū ⊂ M̄ by fŪ(X) := fU(1, X
1, . . . , Xn).

In most cases, we will suppress the subscripts U and Ū and use the same notation for

corresponding functions on U and Ū .

3.2 The supergravity c-map

Let (M̄, gM̄) be a projective special Kähler manifold of complex dimension n which is glob-

ally defined by a single holomorphic function F . The supergravity c-map [FS] associates
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with (M̄, gM̄) a quaternionic Kähler manifold (N̄, gN̄) of dimension 4n+4. Following the

conventions of [CHM], we have N̄ = M̄ × R>0 × R2n+3 and

gN̄ = gM̄ + gG,

gG =
1

4ρ2
dρ2 +

1

4ρ2
(dφ̃+

∑
(ζIdζ̃I − ζ̃Idζ

I))2 +
1

2ρ

∑
IIJ(m)dζIdζJ

+
1

2ρ

∑
IIJ(m)(dζ̃I + RIK(m)dζK)(dζ̃J + RJL(m)dζL),

where (ρ, φ̃, ζ̃I , ζ
I), I = 0, 1, . . . , n, are standard coordinates on R>0 × R2n+3. The real-

valued matrices I(m) := (IIJ(m)) and R(m) := (RIJ(m)) depend only on m ∈ M̄ and

I(m) is invertible with the inverse I−1(m) =: (IIJ(m)). More precisely,

NIJ := RIJ + iIIJ := F̄IJ + i

∑
K NIKz

K
∑

LNJLz
L

∑
IJ NIJzIzJ

, NIJ := 2 ImFIJ , (3.1)

where F is the holomorphic prepotential with respect to some system of special holomor-

phic coordinates zI on the underlying conical special Kähler manifold M → M̄ . Notice

that the expressions are homogeneous of degree zero and, hence, well defined functions

on M̄ . It is shown in [CHM, Cor. 5] that the matrix I(m) is positive definite and hence

invertible and that the metric gN̄ does not depend on the choice of special coordinates

[CHM, Thm. 9]. It is also shown that (N̄ , gN̄) is complete if and only if (M̄, gM̄) is

complete [CHM, Thm. 5].

Using (pa)a=1,...,2n+2 := (ζ̃I , ζ
J)IJ=0,...,n and (Ĥab) :=

(
I−1 I−1R

RI−1 I+ RI−1R

)
, we can

combine the last two terms of gG into 1
2ρ

∑
dpaĤ

abdpb, i.e. the quaternionic Kähler metric

is given by

gFS := gN̄ = gM̄ +
1

4ρ2
dρ2 +

1

4ρ2
(dφ̃+

∑
(ζIdζ̃I − ζ̃Idζ

I))2 +
1

2ρ

∑
dpaĤ

abdpb. (3.2)

3.3 The supergravity r-map

Let (H := {x ∈ U | h(x) = 1}, gH := −∂2h
∣∣
H
) be a projective special real manifold defined

by a real homogeneous cubic polynomial h and an R
>0-invariant domain U ⊂ R

n\{0}.
Let M̄ := Rn + iU ⊂ Cn be endowed with the standard complex structure JM̄ induced

from Cn and with holomorpic coordinates (Xµ = yµ + ixµ)µ=1,...,n ∈ Rn + iU . We define

a Kähler metric

gM̄ =
n∑

µ,ν=1

∂2K

∂Xµ∂X̄µ
dXµdX̄ν (3.3)

on M̄ with Kähler potential

K(X, X̄) := − log 8h(x), (3.4)
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where x = (ImX1, . . . , ImXn) ∈ U .

Definition 17. The correspondence (H, gH) 7→ (M̄, gM̄ , JM̄) is called the supergravity

r-map.

Remark 1. Note that any manifold (M̄, gM̄ , JM̄) in the image of the supergravity r-map

is a projective special Kähler manifold (see Section 3.1). The corresponding conical affine

special Kähler manifold is the trivial C∗-bundle

M := {z = z0 · (1, X) ∈ C
n+1 | z0 ∈ C

∗, X ∈ M̄ = R
n + iU} → M̄

endowed with the standard complex structure J and the metric gM defined by the holo-

morphic function

F : M → C, F (z0, . . . , zn) =
h(z1, · · · , zn)

z0
.

Note that in general, the flat connection2 ∇ on M is not the standard one induced from

Cn+1 ≈ R2n+2. The homothetic vector field ξ is given by ξ =
∑n

I=0(z
I ∂
∂zI

+ z̄I ∂
∂z̄I

). To

check that gM̄ is the corresponding projective special Kähler metric, one uses the fact

that

8|z0|2h(x) =
n∑

I, J=0

zINIJ(z, z̄)z̄
J , (3.5)

where as above, x = (ImX1, . . . , ImXn) = (Im z1

z0
, . . . , Im zn

z0
) ∈ U (see [CHM]).

3.4 Curvature formulas for the supergravity r-map

Under the assumptions of Section 3.3, let (eaµ)a, µ=1, ..., n be a real n × n matrix-valued

function on some open subset in M̄ such that
∑n

a=1 e
a
µē

a
ν =

∑n
a=1 e

a
µe

a
ν = Kµν̄ , where

Kµν̄ = −∂2 log h(x)

∂Xµ∂X̄ν
= −hµν(x)

4h(x)
+

hµ(x)hν(x)

4h2(x)
. (3.6)

Here, subscripts of the cubic polynomial h denote derivatives with respect to the standard

coordinates on U , e.g. hµ(x) =
∂h(x)
∂xµ . The holomorphic one-forms

σa :=
n∑

µ=1

eaµdX
µ (3.7)

constitute a unitary coframe (σa)a=1, ..., n, i.e. the metric can locally be written as

gM̄ =

n∑

a=1

σaσ̄a =
1

2

n∑

a=1

(σa ⊗ σ̄a + σ̄a ⊗ σa). (3.8)

2∇ is defined by xI = Re zI and yI = ReFI(z) being flat for I = 0, . . . , n (see [ACD]).
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Let (σa :=
∑n

µ=1 e
µ
a

∂
∂Xµ )a=1, ..., n denote the corresponding local frame in T 1, 0M̄ dual

to (σa)a=1, ..., n, i.e. (e
µ
a) = (eaµ)

−1. Then σa = 2gM̄(σ̄a, ·) and σa(σb) = σ̄a(σ̄b) = δab,

σa(σ̄b) = σ̄a(σb) = 0.

Note that the inverse of the matrix-valued function (Kµν̄)µ,ν=1,...,n (see Eq. (3.6)) is given

by

Kν̄ρ = −4h(x)hνρ(x) + 2xνxρ, (3.9)

where (hµν)µ,ν=1,...,n = (hµν)
−1
µ,ν=1,...,n.

Note that in this section, ∇ denotes the Levi-Civita connection of the projective special

Kähler metric gM̄ . The expressions for the Christoffel symbols

Γρ
σµ := dXρ(∇∂Xσ∂Xµ) =

n∑

κ=1

Kρκ̄∂XσKµκ̄

= − i

2h

(
h

n∑

κ=1

hρκhκµσ − hσδ
ρ
µ − hµδ

ρ
σ +

1

2
xρhµσ

)
(3.10)

and the coefficients

Rρ
σµν̄ := dXρ (R(∂Xµ , ∂X̄ν )∂Xσ) = −∂X̄νΓρ

σµ = − i

2
∂xνΓρ

σµ

= − 1

4h2

[
1

2
xρ(hhµσν − hµσhν) + hµhνδ

ρ
σ + hσhνδ

ρ
µ

− h

(
hσνδ

ρ
µ + hµνδ

ρ
σ −

1

2
hµσδ

ρ
ν

)
− h2

n∑

α,β,γ=1

hραhναβh
βγhγµσ

]

= −δρσKµν̄ − δρµKσν̄ + e2K
n∑

α,β,γ=1

KρᾱhανβK
βγ̄hγµσ (3.11)

of the Riemann curvature tensor

R(X, Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z (X, Y, Z ∈ X(M̄))

have been calculated for instance in [CDL, Theorem 3].

We denote the coefficients of the local Levi-Civita connection one-form associated to the

unitary local coframe (σa)a=1,...,n by ωa
b, i.e. ∇·σ

a =
∑n

b=1 ω
a
b(·)σb. Compatibility with

the metric and torsion-freeness translate into the conditions that the complex one-form

valued matrix (ωa
b)a,b=1,...,n is anti-Hermitian and satisfies dσa +

∑n
b=1 ω

a
b ∧ σb = 0 for

a = 1, . . . , n. These are fulfilled by the following general formula that holds for all Kähler

manifolds3:

ωa
b =

n∑

µ=1

(eaµ∂̄e
µ
b − ēbµ∂ē

µ
a). (3.12)

3Note that for arbitrary Kähler manifolds, the functions eaµ can in general not be chosen to be real.
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In terms of the local connection one-form, the curvature tensor of a Kähler manifold is

given by

R(X, Y )σc =
n∑

d=1

(dωd
c +

n∑

c′=1

ωd
c′ ∧ ωc′

c)(X, Y )σd =:
n∑

d=1

R̃d
c(X, Y )σd. (3.13)

Using Eq. (3.11) and Kµν̄ =
∑n

c=1 e
µ
c ē

ν
c , one gets the following proposition (see [D, Prop.

7.2.1]):

Proposition 18. In terms of the unitary local coframe (σa)a=1, ..., n, the Riemann curva-

ture tensor of a projective special Kähler manifold in the image of the supergravity r-map

reads

R̃a
b = −δab

n∑

c=1

σc ∧ σ̄c − σa ∧ σ̄b + e2K
n∑

c,e,d=1

h̃adch̃cebσ
e ∧ σ̄d, (3.14)

where h̃abc :=
∑n

µ,ν,σ=1 e
µ
ae

ν
b e

σ
chµνσ for a, b, c = 1, . . . , n.

3.5 Levi-Civita connection for quaternionic Kähler manifolds in

the image of the q-map

In this and the following section, we will introduce the quaternionic vielbein formalism,

which was used in [FS] to determine the Levi-Civita connection and the Riemann cur-

vature tensor of manifolds in the image of the supergravity c-map. The formulas in this

formalism arise from well-known formulas in the differential geometry literature expressed

in terms of local frames in the complex vector bundles E and H whose tensor product

is identified with the complexified tangent bundle of a quaternionic Kähler manifold in

Salamon’s E-H formalism [S] (see e.g. [D, Ch. 7] for detailed explanations of the rela-

tion between the formulas used in the physics, respectively mathematics literature). The

q-map is the composition of the supergravity r- and c-map. It assigns a quaternionic

Kähler manifold of dimension 4m = 4(n + 1) to any projective special real manifold of

dimension n − 1. We apply the quaternionic vielbein formalism to quaternionic Kähler

manifolds in the image of the q-map and derive formulas for the Levi-Civita connection

and the Riemann curvature tensor of these manifolds, expressed in terms of the cubic

polynomial h, which defines the initial projective special real manifold. Up to changing

conventions and fixing inaccuracies, these results can also be obtained by restricting the

formulas in [FS] for the c-map to the case of the q-map. The Riemann curvature tensor of

a quaternionic Kähler manifold is determined by its trace-free part, the quaternionic Weyl

tensor. The latter can be expressed in terms of a certain symmetric quartic tensor field

Ω ∈ Γ(S4E∗) in the complex vector bundle E. In addition to the above-mentioned results,

we derive a formula expressing this quartic tensor field in terms of the cubic polynomial
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h for manifolds in the image of the q-map. This result is used in Subsection 3.7 to give a

general formula for the squared pointwise norm of the Riemann curvature tensor of any

quaternionic Kähler manifold in the image of the q-map.

We will restrict ourselves to manifolds in the image of the q-map, which is the com-

position of the supergravity r- and c-map, i.e. we consider the Ferrara-Sabharwal met-

ric (3.2) defined on N̄ = M̄ × R>0 × R2n+3 for a projective special Kähler manifold

(M̄ = Rn + iU, gM̄ , JM̄) in the image of the supergravity r-map, which is defined by a

real homogeneous cubic polynomial h. On N̄ , we define the following complex-valued

one-forms:

β0 := ieK/2 1√
ρ

n∑

I=0

XIAI , βa :=

n∑

I=0

P a
I dX

I = σa, (3.15)

α0 := − 1

2ρ

(
dρ− i(dφ̃+

n∑

I=0

(ζIdζ̃I − ζ̃Idζ
I))

)
, αa :=

i√
ρ
e−K/2

n∑

I,J=0

P
a

IN
IJAJ

for a = 1, . . . , n, where (P a
I )I=0,...,n = (P a

0 , P
a
µ )µ=1,...,n = (−∑n

ν=1X
νeaν , e

a
µ)µ=1,...,n and

AI = dζ̃I +
∑n

J=0 FIJ(X)dζJ for I = 0, . . . , n. In terms of these one-forms, the Ferrara-

Sabharwal metric reads (see e.g. [D, Lemma 7.3.1])

gFS =

n∑

A=0

(βAβ̄A + αAᾱA). (3.16)

The equations J∗
1α

A = iαA, J∗
1β

A = iβA, J∗
2α

A = β̄A for A = 0, . . . , n and J1J2 = J3 define

an almost hyper-complex structure (J1, J2, J3) on N̄ . J1, J2 and J3 span a quaternionic

structure Q on N̄ that is compatible with the quaternionic Kähler metric gFS. Note that

J1 defines an integrable4 complex structure on N̄ .

Direct calculation gives the following expressions for the exterior derivatives of the

above one-forms (see [D, Prop. 7.3.3]):

Proposition 19.

dβ0 =
1

2

(
α0 + ᾱ0 − idcK

)
∧ β0 +

n∑

b=1

αb ∧ βb,

dβa = −
n∑

b=1

ωa
b ∧ βb,

dα0 = −α0 ∧ ᾱ0 + β0 ∧ β̄0 −
n∑

b=1

αb ∧ ᾱb,

4This can either be shown by direct calculation (see [CLST]) or deduced from the fact that all quater-
nionic Kähler manifolds obtained from the HK/QK correspondence admit a globally defined compatible
integrable complex structure (see [D, Rem. 5.5.5]).
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dαa =
1

2
(α0 + ᾱ0 − idcK) ∧ αa + β0 ∧ β̄a −

n∑

b=1

ωa
b ∧ αb − ieK

n∑

b,c=1

h̃abcᾱ
b ∧ βc,

where h̃abc =
∑n

µ,ν,σ=1 e
µ
ae

ν
be

σ
chµνσ for a, b, c = 1, . . . , n and (ωa

b)a,b=1,...,n is the (pullback to

N̄ of the) local connection one-form of the Levi-Civita connection on M̄ with respect to

the local unitary coframe (σa)a=1,...,n on M̄ .

Note that the above proposition uses the following explicit formula for the local Levi-

Civita connection one-form of a projective special Kähler manifold:

ωa
b = e−K

(
(∂̄P a

I )N
IJ P̄ b

J − P a
I N

IJ(∂P̄ b
J )
)

(3.17)

= δab ∂K + e−Kd(P a
I N

IJ)P̄ b
J + ie−KP a

I N
IK dFKL(X)NLJ P̄ b

J , . (3.18)

The components θ̄α of the local Sp(1)-connection one-form of a quaternionic Kähler

manifold (with Levi-Civita connection ∇) with respect to a local oriented orthonormal

frame (J1, J2, J3) in the quaternionic structure are defined by

∇·Jα = 2(θ̄β(·)Jγ − θ̄γ(·)Jβ) (3.19)

for any cyclic permutation (α, β, γ) of (1, 2, 3). The local fundamental two-forms

ωα = g(Jα·, ·) are then given by

ν

2
ωα = dθ̄α − 2θ̄β ∧ θ̄γ , (3.20)

where ν := scal
4m(m+2)

(dimRN̄ = 4m = 4(n + 1)) is the reduced scalar curvature. For

manifolds in the image of the supergravity c-map, we have (see [D, Rem. 5.5.3 and 5.5.4])

ν = −2 and

θ̄1 = − 1

4ρ

(
dφ̃+ ρ dcK−

n∑

I=0

(ζ̃Idζ
I − ζIdζ̃I)

)
= −1

2
Imα0 − 1

4
dcK,

θ̄2 + iθ̄3 = i
1√
ρ
eK/2

n∑

I=0

XIAI = β0. (3.21)

We combine the one-forms defined in Eq. (3.15) into the following quaternionic vielbein,

which is a (4n + 4)× (4n+ 4) matrix of complex-valued one-forms:

(fαΓ)α=1,2;Γ=1,...,2n+2 =

(
f 1A f 1Ã

f 2A f 2Ã

)

A=0,...,n

:=

(
βA αA

−ᾱA β̄A

)

A=0,...,n

. (3.22)

Let βA, αA be complex-valued vector fields on N̄ such that βA = 2g(βA, ·) and

αA = 2g(αA, ·) for A = 0, . . . , n. These vector-fields are combined into the following

local frame in TCN̄ , which is dual to (fαΓ):

(fαΓ)α=1,2;Γ=1,...,2n+2 =

(
f1A f1Ã
f2A f2Ã

)

A=0,...,n

:=

(
βA αA

−ᾱA β̄A

)

A=0, ..., n

. (3.23)
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With respect to the local frame (fαΓ), the components of the Levi-Civita connection

one-form are given by

fαΓ(∇Xfβ∆) = pαβ(X)δΓ∆ + δαβΘ
Γ
∆(X) (3.24)

for α, β = 1, 2 and Γ,∆ = 1, . . . , 2n+ 2, where

p = (pαβ) =

(
p11 p12
p21 p22

)
=

(
−iθ̄1 −θ̄2 − iθ̄3

θ̄2 − iθ̄3 iθ̄1

)
(3.25)

and

Θ = (ΘΓ
∆)Γ=1,...,2n+2 =

(
q t
−t̄ q̄

)
, (3.26)

where q, t are complex 1-form-valued (n+ 1)× (n+ 1) matrices that are anti-Hermitian,

respectively symmetric (q† := q̄t = −q, tt = t) and fulfill

0 = dβA + p11 ∧ βA − p12 ∧ ᾱA +
n∑

B=0

(qAB ∧ βB + tAB ∧ αB), (3.27)

0 = dαA + p11 ∧ αA + p12 ∧ β̄A +

n∑

B=0

(−t̄AB ∧ βB + q̄AB ∧ αB) (3.28)

for A = 0, . . . , n. The following is a straightforward corollary of Proposition 19:

Corollary 20. The Sp(n)-part of the Levi-Civita connection of a quaternionic Kähler

manifold in the image of the q-map is given by (ΘΓ
∆)Γ=1,...,2n+2 =

(
qAB tA

B̃

−t̄ÃB q̄Ã
B̃

)

A,B=0,...,n

,

where

q = (qAB)A,B=0,...,n =




i
4
dcK+ 3

4
(ᾱ0 − α0) −αb

ᾱa ωa
b +

1
4
(−idcK+ (ᾱ0 − α0))δab




a,b=1,...,n

and

t = (tA
B̃
)A,B=0,...,n =

(
0 0

0 ieK
∑n

c=1 h̃abc α
c

)

a,b=1,...,n

.

3.6 Riemann curvature tensor for quaternionic Kähler mani-

folds in the image of the q-map

We consider a manifold in the image of the q-map and use the notation introduced in

the last section. In terms of the local frame (3.23), the Riemann curvature tensor of a

quaternionic Kähler manifold reads

fαΓ(R(X, Y )fβ∆) = R̃H
α
β(X, Y )δΓ∆ + δαβR̃E

Γ
∆(X, Y ), (3.29)
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where

R̃H = dp+ p ∧ p

=

(
−idθ̄1 + 2iθ̄2 ∧ θ̄3 −(dθ̄2 + idθ̄3) + 2iθ̄1 ∧ (θ̄2 + iθ̄3)

(dθ̄2 − idθ̄3) + 2iθ̄1 ∧ (θ̄2 − iθ̄3) idθ̄1 − 2iθ̄2 ∧ θ̄3

)

(3.20)
=

ν

2

(
−iω1 −ω2 − iω3

ω2 − iω3 iω1

)
(3.30)

and

R̃E = dΘ+Θ ∧Θ. (3.31)

We write the Sp(n)-part of the curvature tensor as

R̃E =

(
r s
−s̄ r̄

)
, (3.32)

where r, s are complex two-form valued (n + 1) × (n + 1) matrices that fulfill r† = −r,

st = s. In terms of this splitting, Eqs. (3.26) and (3.31) read

rAB = dqAB +

n∑

C=0

(qAC ∧ qCB − tAC ∧ t̄CB) (3.33)

sAB = dtAB +

n∑

C=0

(qAC ∧ tCB + tAC ∧ q̄CB), (3.34)

for A,B = 0, . . . , n.

Since the quaternionic Weyl tensor of a quaternionic Kähler manifold can be expressed

in terms of a quartic symmetric tensor field, the Sp(n)-part (3.31) of the curvature tensor

can be expressed as follows (see e.g. [D, Cor. 7.1.6]):

R̃E
Λ
Ξ =

2∑

α, β=1

2n+2∑

∆=1

ν

4
ǫαβCΞ∆f

αΛ ∧ fβ∆ +

2∑

α, β=1

2n+2∑

Λ′,Γ,∆=1

CΛΛ′

ΩΛ′ΞΓ∆ǫαβf
αΓ ∧ fβ∆, (3.35)

where (CΓ∆)Γ,∆=1,...,2n+2 = −(CΓ∆)Γ,∆=1,...,2n+2 and (ǫαβ)α,β=1,2 are constant real-valued

matrices defined by CAB̃ = −CÃB = δAB, CAB = CÃB̃ = 0 (A, B = 0, . . . , n) and

ǫ12 = −ǫ21 = 1, ǫ11 = ǫ22 = 0, and ΩΛ′ΞΓ∆ are complex-valued functions on N̄ , that are

totally symmetric in all four indices.

Using the expressions for the local Levi-Civita connection one-form given in Corollary

20, one obtains the following result (see [D, Prop. 7.3.5]):

Proposition 21. The Sp(n)-part of the curvature two-form for any quaternionic Kähler
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manifold in the image of the q-map is given by (R̃E
Γ
∆) =

(
rAB sA

B̃

−s̄ÃB r̄Ã
B̃

)

A,B=0,...,n

with5

r = (rAB)

=




1

2

(
α0 ∧ ᾱ0 − β0 ∧ β̄0

+

n∑

C=0

αC ∧ ᾱC − βC ∧ β̄C
) αb ∧ ᾱ0 + β̄b ∧ β0 + ieKh̃bcdᾱ

c ∧ βd

α0 ∧ ᾱa + β̄0 ∧ βa

+ieKh̃acdα
c ∧ β̄d

1

2
δab

n∑

C=0

(αC ∧ ᾱC − βC ∧ β̄C)

− (βa ∧ β̄b + ᾱa ∧ αb)

− e2Kh̃adch̃ceb(α
d ∧ ᾱe + β̄d ∧ βe)




a,b=1,...,n

and

s = (sA
B̃
)

=

(
0 0

0 ieKh̃abc(β
0 ∧ β̄c + ᾱ0 ∧ αc) + e2Kh̃abf h̃fdeᾱ

d ∧ βe − 2Sabcdα
c ∧ β̄d

)

a,b=1,...,n

,

where

Sabcd := −1

2
e2K
(
(h̃bcf h̃fad − 4h̃bch̃ad) + (h̃acf h̃fbd − 4h̃ach̃bd) + (h̃abf h̃fcd − 4h̃abh̃cd)

+ 4h̃ah̃bcd + 4h̃bh̃cda + 4h̃ch̃dab + 4h̃dh̃abc

)
. (3.36)

Remark 2. Note that the vanishing of the symmetric quartic tensor field6

Sabcd σ
a ⊗ σb ⊗ σc ⊗ σd

= −1

2

1

43h2

(
3hτ(µνK

ττ ′hσρ)τ ′ − 12h(µνhσρ) + 16h(µhνσρ)

)
dXµ ⊗ dXν ⊗ dXσ ⊗ dXρ

= −1

2

1

43h2

(
−12hτ(µνh

ττ ′hσρ)τ ′ − 6h(µνhσρ) + 16h(µhνσρ)

)
dXµ ⊗ dXν ⊗ dXσ ⊗ dXρ

=: Sµνσρ dX
µ ⊗ dXν ⊗ dXσ ⊗ dXρ (3.37)

on the projective special Kähler manifold (M̄, gM̄ , JM̄) is a necessary and sufficient con-

dition for (M̄, gM̄) to be symmetric [CV].

Careful comparison of the expressions given in the above proposition with Eq. (3.35)

leads to the following expression for the quartic symmetric tensor field determining the

Riemann curvature tensor of a quaternionic Kähler manifold:

5All repeated lower case indices are summed over 1, . . . , n.
6All repeated indices are summed over 1, . . . , n. Note that the symmetrization denoted by (. . .) over

four indices includes a factor of 1

4!
.
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Theorem 22. [D, Th. 7.3.7]

For manifolds in the image of the q-map, the non-vanishing components of the quartic

symmetric tensor field defined in Eq. (3.35) are given by

Ω000̃0̃ =
1

2
, Ω0b0̃d̃ =

1

4
δbd, Ωabc̃d̃ =

1

4
(δacδbd + δadδbc)−

1

2
e2K

n∑

f=1

h̃abf h̃fcd,

Ω0̃bcd = Ω0b̃c̃d̃ = − i

2
eKh̃bcd, Ωabcd = Ωãb̃c̃d̃ = Sabcd

and symmetrization thereof, where a, b, c, d = 1, . . . , n.

3.7 Pointwise norm of the Riemann curvature tensor for quater-

nionic Kähler manifolds in the image of the q-map

In this section, we give a general formula for a certain curvature invariant SW for all

quaternionic Kähler manifolds N̄ = M̄ × R>0 × R2n+3 in the image of the q-map. SW

is a real-valued scalar function, that (up to a factor of 64) coincides with the squared

pointwise norm of the quaternionic Weyl tensor. We express SW as the linear combination

of three curvature invariants on the corresponding projective special Kähler manifold M̄ .

Its relation to the squared pointwise norm of the Riemann curvature tensor R is given by

(see [D, Rem. 7.4.2])

‖R‖2 = 80(n+ 1)2 + 16(n+ 1) + 64 SW. (3.38)

The scalar curvature of a projective special Kähler manifold M̄ in the image of the

supergravity r-map can be calculated to be (see Theorem 3 in7 [CDL] for the general

formula)

scalM̄ = −2n2 + n− 2h

n∑

α,β,γ=1

n∑

α′,β′,γ′=1

hαβγh
αα′

hββ′

hγγ′

hα′β′γ′

= −2n(n + 1) +
1

32h2

n∑

α,β,γ=1

n∑

α′,β′,γ′=1

hαβγK
αα′

Kββ′

Kγγ′

hα′β′γ′ . (3.39)

The squared pointwise norm of the Riemann tensor of a projective special Kähler

7Note that compared to [CDL] we scaled the projective special Kähler metric gM̄ by a factor of 1

2
,

which leads to a scaling of the scalar curvature scalM̄ by a factor of 2.
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manifold M̄ in the image of the r-map is

‖RM̄‖2 = 16
n∑

µ,ν,ρ,σ=1

n∑

µ′,ν′,ρ′,σ′=1

Rµ̄νσρ̄K
µµ′

Kνν′Kσσ′

Kρρ′Rµ′ν̄′σ̄′ρ′ , (3.40)

= −32 scalM̄ − 32n(n+ 1) (3.41)

+
1

44h4

n∑

µ,ν,σ,ρ=1

n∑

µ′,ν′,σ′,ρ′=1

BρσµνK
ρρ′Kσσ′

Kµµ′

Kνν′Bρ′σ′µ′ν′

where

Rµ̄νσρ̄ =
n∑

α=1

Kµ̄αR
α
νσρ̄ = −Kµ̄νKσρ̄ −Kµ̄σKνρ̄ + e2K

n∑

β,γ=1

hµρβK
βγhγσν (3.42)

and

Bµνσρ :=

n∑

κ,κ′=1

hµνκK
κκ′

hκ′σρ. (3.43)

The third real-valued function on M̄ relevant for this discussion is
n∑

a,b,c,d=1

(Sabcd)
2 =

n∑

µ,ν,σ,ρ=1

n∑

µ′,ν′,σ′,ρ′=1

SµνσρK
µµ′

Kνν′Kσσ′

Kρρ′Sµ′ν′σ′ρ′ , (3.44)

where the respective components are defined in Eqs. (3.36) and (3.37).

Using the quartic tensor field introduced in (3.35), we define the following function on

N̄ :

SW :=

2n+2∑

Γ,Γ′,Γ′′,Γ′′′=1

2n+2∑

∆,∆′,∆′′,∆′′′=1

ΩΓΓ′Γ′′Γ′′′CΓ∆CΓ′∆′

CΓ′′∆′′

CΓ′′′∆′′′

Ω∆∆′∆′′∆′′′. (3.45)

Using the formulas for Ω given in Theorem 22, we find the following expression for SW:

SW = 2ΩABCDΩÃB̃C̃D̃ − 8ΩABCD̃ΩÃB̃C̃D + 6ΩABC̃D̃ΩÃB̃CD

= 2ΩabcdΩãb̃c̃d̃ − 8Ωabc0̃Ωãb̃c̃0 + 6(Ω000̃0̃)
2 + 24Ω0b0̃d̃Ω0̃b̃0d + 6Ωabc̃d̃Ωãb̃cd

= 2SabcdSabcd + 2n(n+ 1) + scalM̄ +
3

2
(n + 1) + 6(

1

43
‖RM̄‖2 + 1

4
scalM̄ +

n2 + n

8
)

= 2SabcdSabcd +
1

4
(11n+ 6)(n+ 1) +

3

32
‖RM̄‖2 + 5

2
scalM̄ . (3.46)

Together with Eq. (3.38), we obtain the following corollary:

Corollary 23. The squared pointwise norm of the Riemann curvature tensor for any

quaternionic Kähler manifold in the image of the q-map, defined by a cubic polynomial h

in n variables, is

‖R‖2 = 64(n+ 1)(4n+ 3) + 160 scalM̄ + 6‖RM̄‖2 + 128

n∑

a,b,c,d=1

(Sabcd)
2. (3.47)
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3.8 Example: A series of inhomogeneous complete quaternionic

Kähler manifolds

For n ∈ N, we consider the following series of projective special real manifolds:

H = {h = 1, x > 0} ⊂ R
n, h := x

(
x2 −

n−1∑

i=1

y2i

)
. (3.48)

The scalar curvature of the corresponding projective special Kähler manifold M̄ in the

image of the supergravity r-map can be calculated using Eq. (3.39) and reads

scalM̄ = −n · (2n− 1) + 3h · n− 2

h− 4x3
+

36x3h2

(h− 4x3)3
. (3.49)

Furthermore, we find

‖RM̄‖2 = 16

(h− 4x3)6

(
h6(n(3n− 8) + 9)− 4h5(n(17n− 46) + 57)x3

+ 4h4(n(161n− 382) + 537)x6 − 64h3(n(51n− 97) + 99)x9

+ 128h2(n(73n− 107) + 78)x12 − 2048h(n(7n− 8) + 3)x15

+ 1024n(9n− 8)x18
)

(3.50)

and

n∑

a,b,c,d=1

(Sabcd)
2 =

n∑

µ,ν,σ,ρ=1

n∑

µ′,ν′,σ′,ρ′=1

SµνσρK
µµ′

Kνν′Kσσ′

Kρρ′Sµ′ν′σ′ρ′

=
3x6

(h− 4x3)6

(
h4(n(n+ 16) + 207)− 16h3(n− 2)(n+ 9)x3 (3.51)

+ 96h2
(
n2 + n− 6

)
x6 − 256h(n− 2)nx9

+ 256(n− 2)nx12
)
.

Using Eq. (3.46), the function SW is calculated to be

SW =
3

2 (h− 4x3)6

(
h6n(n+ 1)− 4h5(n + 1)(5n− 2)x3 + 8h4(n(21n+ 37) + 112)x6

− 256h3(n(3n + 10)− 11)x9 + 256h2(n(8n+ 33)− 20)x12 (3.52)

− 1024h(n(3n+ 11) + 2)x15 + 2048(n+ 1)(n+ 2)x18
)
+

3n

4
(n + 1).

By evaluating the above function in different points, one can check that it is non-constant

for n > 1. Due to Eq. (3.38), this also applies to the squared pointwise norm of the

Riemann curvature tensor, which manifestly is a curvature invariant. This shows that the

quaternionic Kähler metrics obtained from the series of polynomials in Eq. (3.48) are not

locally-homogeneous for n > 1. In total, we have the following:
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Theorem 24. For n > 1, the series of manifolds obtained from the complete projective

special real manifolds in Eq. (3.48) via the q-map consists of complete quaternionic Kähler

manifolds that are not locally homogeneous.

Remark 3. Using computer algebra software, we have calculated the squared pointwise

norm ‖R‖2 of the Riemann tensor for n = 2 and n = 3 and have checked that it agrees

with Eqs. (3.52) and (3.38).
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