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Abstract

We show that pseudo-Riemannian almost quaternionic homogeneous spaces with index
4 and an H-irreducible isotropy group are locally isometric to a pseudo-Riemannian
quaternionic Kähler symmetric space if the dimension is at least 16. In dimension 12
we give a non-symmetric example.
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1 Introduction

In [AZ] Ahmed and Zeghib studied pseudo-Riemannian almost complex homogeneous

spaces of index 2 with a C-irreducible isotropy group. They showed that these spaces are

already pseudo-Kähler if the dimension is at least 8. If furthermore the Lie algebra of the

isotropy group is C-irreducible then the space is locally isometric to one of five symmetric

spaces.

There are two different quaternionic analogues of Kähler manifolds, namely hyper-Kähler

and quaternionic Kähler manifolds. In the first case, the complex structure is replaced by

three complex structures assembling into a hyper-complex structure (I, J,K), in the sec-

ond by the more general notion of a quaternionic structure Q ⊂ EndTM on the underlying

manifold M . Riemannian as well as pseudo-Riemannian quaternionic Kähler manifolds

are Einstein and therefore of particular interest in pseudo-Riemannian geometry.

In [CM] the authors investigated the hyper-complex analogue of the topic studied by

Ahmed and Zeghib, namely pseudo-Riemannian almost hyper-complex homogeneous spaces
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of index 4 with an H-irreducible isotropy group. It turned out that these spaces of dimen-

sion greater or equal than 8 are already locally isometric to the flat space H1,n except in

dimension 12, where non-symmetric examples exist.

In this article we study the quaternionic analogue, that is we consider pseudo-Riemannian

almost quaternionic homogeneous spaces of index 4 with an H-irreducible isotropy group.

The main result of our analysis is the following theorem.

Theorem 1.1. Let (M,g,Q) be a connected almost quaternionic pseudo-Hermitian man-

ifold of index 4 and dimM = 4n+4 ≥ 16, such that there exists a connected Lie subgroup

G ⊂ Iso(M,g,Q) acting transitively on M . If the isotropy group H := Gp, p ∈ M ,

acts H-irreducibly, then (M,g,Q) is locally isometric to a quaternionic Kähler symmetric

space.

Here Iso(M,g,Q) denotes the subgroup of the isometry group Iso(M,g) which preserves

the almost quaternionic structure Q of M . A consequence of the theorem is that the

homogeneous space M itself is quaternionic Kähler and locally symmetric. Notice that

pseudo-Riemannian quaternionic Kähler symmetric spaces have been classified in [AC]. In

Section 3.2 we show, by construction of a non-symmetric example in dimension 12, that

the hypothesis dimM ≥ 16 in Theorem 1.1 cannot be omitted. Moreover, we classify

in Proposition 3.1 all examples with the same isotropy algebra h = so(1, 2) ⊕ so(3) ⊂

so(1, 2) ⊕ so(4) ⊂ gl(R1,2 ⊗ R4) ∼= gl(12,R) in terms of the solutions of a system of four

quadratic equations for six real variables.

The strategy of the proof of Theorem 1.1 is as follows. We consider the H-irreducible

isotropy group H as a subgroup of Sp(1, n)Sp(1) and classify the possible Lie algebras.

Then we consider the covering G/H0 of M = G/H and show by taking into account the

possible Lie algebras that it is a reductive homogeneous space. Finally, we show that the

universal covering M̃ is a symmetric space. The invariance of the fundamental 4-form

under G then implies that the symmetric space is quaternionic Kähler.

Acknowledgments. This work was partly supported by the German Science Foundation

(DFG) under the Collaborative Research Center (SFB) 676 Particles, Strings and the Early

Universe.

2 About subgroups of Sp(1,n)Sp(1)

Lemma 2.1 (Goursat’s theorem). Let g1, g2 be Lie algebras. There is a one-to-one cor-

respondence between Lie subalgebras h ⊂ g1 ⊕ g2 and quintuples Q(h) = (A,A0, B,B0, θ),

with A ⊂ g1 B ⊂ g2 Lie subalgebras, A0 ⊂ A, B0 ⊂ B ideals and θ : A/A0 → B/B0 is a

Lie algebra isomorphism.

Proof: Let h ⊂ g1 ⊕ g2 be a Lie subalgebra and denote by πi : g1 ⊕ g2 → gi, i = 1, 2,

the natural projections. Set A := π1(h) ⊂ g1, B := π2(h) ⊂ g2, A0 := ker(π2|h) and

B0 := ker(π1|h). It is not hard to see that A0 and B0 can be identified with ideals in A
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and B respectively. Now we can define a map θ̃ : A → B/B0 as follows. For X ∈ A

take any Y ∈ B such that X + Y ∈ h and define θ̃(X) := Y + B0. It is easy to check

that this map is well defined. Its kernel is A0 so θ̃ induces a Lie algebra isomorphism

θ : A/A0 → B/B0. This defines a map h 7→ Q(h).

Conversely, a quintupleQ = (A,A0, B,B0, θ) as above defines a Lie subalgebra h = G(Q) ⊂

g1 ⊕ g2 by setting

h := {X + Y ∈ A⊕B | θ(X +A0) = Y +B0}.

It is not hard to see that the maps G and Q are inverse to each other. �

We will use the following two classification results for H-irreducible subgroups of Sp(1, n).

Theorem 2.1 ([CM, Corollary 2.1]). Let H ⊂ Sp(1, n) be a connected and H-irreducible

Lie subgroup. Then H is conjugate to one of the following groups:

(i) SO0(1, n), SO0(1, n) · U(1), SO0(1, n) · Sp(1) if n ≥ 2,

(ii) SU(1, n), U(1, n),

(iii) Sp(1, n),

(iv) U0 = {A ∈ Sp(1, 1) | AΦ = ΦA} ∼= Spin0(1, 3) with Φ =
(

0 −1

1 0

)

if n = 1.

Proposition 2.1 ([CM, Proposition 2.4]). Let H ⊂ Sp(1, n) be an H-irreducible subgroup.

Then one of the following is true.

(i) H is discrete.

(ii) H0 = U(1) · 1n+1 or H0 = Sp(1) · 1n+1.

(iii) H0 is H-irreducible.

(iv) n = 1 and H0 is one of the groups SO0(1, 1), SO0(1, 1) · U(1), SO0(1, 1) · Sp(1) or

S =

{

eibt
(
cosh(at) sinh(at)
sinh(at) cosh(at)

)∣
∣
∣
∣
t ∈ R

}

,

for some non-zero real numbers a, b.

We denote by π1 : sp(1, n) ⊕ sp(1) → sp(1, n) and π2 : sp(1, n) ⊕ sp(1) → sp(1) the

canonical projections.

Proposition 2.2. Let n ≥ 2 and H ⊂ Sp(1, n)Sp(1) be an H-irreducible closed subgroup.

Then the Lie algebra h is one of the following:

(i) h = h0⊕ c with h0 ∈ {{0}, so(1, n)}, c ⊂ sp(1) ·1n+1⊕ sp(1) and π1(c) = sp(1) ·1n+1,

π2(c) = sp(1), c ∩ sp(1, n) = {0}, c ∩ sp(1) = {0},

(ii) h = h0 ⊕ c with h0 ∈ {{0}, so(1, n), su(1, n)}, c ⊂ u(1) · 1n+1 ⊕ u(1) and π1(c) =

u(1) · 1n+1, π2(c) = u(1), c ∩ sp(1, n) = {0}, c ∩ sp(1) = {0},
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(iii) h = h0 ⊕ c where h0 ⊂ sp(1, n) is one of the following Lie algebras

sp(1, n), u(1, n), su(1, n), so(1, n)⊕ sp(1) · 1n+1, so(1, n)⊕ u(1) · 1n+1,

so(1, n), sp(1) · 1n+1, u(1) · 1n+1, {0},

and c ⊂ sp(1) is {0}, u(1) or sp(1).

Proof: The idea is to apply Goursat’s theorem (Lemma 2.1) to h ⊂ sp(1, n)⊕ sp(1). The

Lie subalgebras A, A0, B and B0 are given by π1(h), h ∩ sp(1), π2(h) and h ∩ sp(1). Let

p : Sp(1, n) × Sp(1) → Sp(1, n) be the natural projection. Notice that H ⊂ Sp(1, n)Sp(1)

is H-irreducible if and only if p(Ĥ) ⊂ Sp(1, n) is H-irreducible, where Ĥ is the preimage

of H under the two-fold covering Sp(1, n) × Sp(1) → Sp(1, n)Sp(1). By Proposition 2.1

and Theorem 2.1 we know that p(Ĥ) is either discrete or (p(Ĥ))0 is one of the following

subgroups of Sp(1, n):

Sp(1, n), U(1, n), SU(1, n), SO0(1, n) (Sp(1) · 1n+1) , SO0(1, n) (U(1) · 1n+1) ,

SO0(1, n), Sp(1) · 1n+1, U(1) · 1n+1.

Since dp = π1 we immediately obtain all possibilities for π1(h). Furthermore h ∩ sp(1, n)

is an ideal of the Lie algebra π1(h). We can read off from the above list a decomposition

of π1(h) into ideals, which gives us all possibilities for h ∩ sp(1, n). The resulting list of

pairs (A,A0) is displayed in a table below.

On the other side there are only three Lie subalgebras of sp(1), namely sp(1) itself, u(1)

and {0}. It follows that π2(h) is one of these three. Again, h ∩ sp(1) is an ideal of π2(h).

It follows that the only possibilites for h ∩ sp(1) are the same as for π2(h).

By Goursat’s theorem we have a Lie algebra isomorphism θ : A/A0 → B/B0. Since we

know all possibilities for B and B0, it follows that A/A0 is isomorphic to sp(1), u(1) or

{0}. Therefore we need to consider all possibilities for A and A0, as listed in the following

table, and keep only those for which A/A0 is isomorphic to sp(1), u(1) or {0}.

A A0

sp(1, n)
sp(1, n)
{0}

su(1, n) ⊕ u(1)

su(1, n) ⊕ u(1)
su(1, n)
u(1)
{0}

su(1, n)
su(1, n)
{0}

so(1, n)⊕ sp(1)

so(1, n)⊕ sp(1)
so(1, n)
sp(1)
{0}

so(1, n)⊕ u(1)

so(1, n) ⊕ u(1)
so(1, n)
u(1)
{0}
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so(1, n)
so(1, n)
{0}

sp(1)
sp(1)
{0}

u(1)
u(1)
{0}

{0} {0}

If B/B0
∼= sp(1) then B = sp(1) and B0 = {0}. The possibilities for (A,A0) are

(so(1, n)⊕ sp(1) · 1n+1, so(1, n)) and (sp(1) · 1n+1, {0}).

This gives us case (i). Analogously we get the remaining Lie algebras in (ii) and (iii). �

3 Main results

3.1 Proof of the main theorem

Lemma 3.1 ([CM, Lemma 3.1]). Let n ≥ 3 and α ∈ ⊗3V ∗, where V = H1,n is considered

as real vector space. If α is SO0(1, n)-invariant, then α = 0.

Remark 3.1. The SO0(1, n)-invariant elements of ⊗3V ∗ are in one-to-one correspondence

to the SO0(1, n)-equivariant bilinear maps from V × V to V . It follows from Lemma 3.1

that the corresponding bilinear maps also vanish.

Proof of Theorem 1.1: Let ρ : H → GL(TpM) be the isotropy representation. We iden-

tify H with its image ρ(H). Since H preserves the metric g and the almost quaternionic

structure Q, we can consider H as a subgroup of Sp(1, n)Sp(1).

In our first step we consider the covering G/H0 of M = G/H and show that it is a re-

ductive homogeneous space, i.e. there exists an H0-invariant subspace m ⊂ g such that

g = h⊕m.

We apply Proposition 2.2 to H0. The existence of a subspace m is clear if h is one of

the semi-simple Lie algebras in the list. If h is one of the abelian Lie algebras contained

in u(1) · 1n+1 ⊕ u(1), then the closure of Ad(H0) ⊂ GL(g) is compact and hence there

exists an Ad(H0)-invariant subspace m. The remaining Lie algebras in the list have the

form h = s ⊕ z where s is semi-simple containing so(1, n) and z is the non-trivial centre.

Then g decomposes into g = s⊕ z⊕ m with respect to the action of s. If we consider the

action of s on m ∼= H1,n as a complex representation, then m is either C-irreducible or

decomposes into two C-irreducible subrepresentations. Since the elements of z commute

with s, they preserve the sum of all non-trivial s-submodules, which is precisely m. Thus

we have shown that G/H0 is a reductive homogeneous space.

Next we show that g = h ⊕ m is a symmetric Lie algebra. It is sufficient to show that

[m,m] ⊂ h. We restrict the Lie bracket [·, ·] to m × m and denote its projection to m by

β. It is an antisymmetric bilinear map which is Ad(H)-equivariant. Since m ∼= H1,n, we
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can consider β as an element of ⊗3(H1,n)∗. It is also HZar-invariant, where HZar denotes

the Zariski closure. Since HZar is an algebraic group, it has only finitely many connected

components, see [Mi]. Now we show that (HZar)0 is non-compact.

Assume that (HZar)0 is compact. Since HZar has only finitely many connected com-

ponents it follows that HZar is compact and therefore contained in a maximal compact

subgroup of Sp(1, n)Sp(1). Hence, HZar is conjugate to a subgroup of (Sp(1)×Sp(n))Sp(1)

but this contradicts the H-irreducibility of HZar. So we have shown that (HZar)0 is non-

compact.

Now we apply Proposition 2.2 to HZar. Since HZar is non-compact we see from the list

there that (HZar)0 contains SO0(1, n). Hence, β is SO0(1, n)-equivariant. Since n ≥ 3

it follows from Remark 3.1 that β vanishes. This shows that g = h ⊕ m is a symmetric

Lie algebra and that the universal covering M̃ = G̃/G̃p of M is a symmetric space. The

fundamental 4-form Ω of M̃ is G̃-invariant and since M̃ is a symmetric space Ω is parallel.

In particular Ω is closed. It is known that for dimension ≥ 12 an almost quaternionic

Hermitian manifold is quaternionic Kähler if dΩ = 0, see [S]. This shows that M̃ is fur-

thermore a quaternionic Kähler manifold. Summarizing, we have shown that M is locally

isometric to a quaternionic Kähler symmetric space. �

3.2 A class of non-symmetric examples in dimension 12

In Theorem 1.1 we did not consider the dimension 12. This is because the arguments

used in the proof to show that M is a reductive homogeneous space do not apply in this

dimension, although still SO0(1, n) ⊂ HZar holds. In fact, the proof relies on Lemma 3.1

which holds for dimension 4n + 4 ≥ 16. If dimM = 12 then n = 2 and then there exist

non-trivial anti-symmetric bilinear forms H1,2 × H1,2 → H1,2 which are invariant under

SO0(1, 2). Therefore in dimension 12 we cannot be sure if the manifolds are symmetric.

In the following we will give a non-symmetric example by specifying a Lie algebra g = h⊕m

where h is a Lie algebra of the list in Proposition 2.2. The pair (g, h) defines a simply

connected homogeneous space M = G/H where G is a connected and simply connected

Lie group with Lie algebra g and H is the closed connected Lie subgroup of G with Lie

algebra h.

Let h = so(1, 2) ⊕ c with c = {(X · 13,X) ∈ sp(1) · 13 ⊕ sp(1) | X ∈ sp(1)}, see Proposi-

tion 2.2 (i). Then we consider the vector space direct sum g := h⊕m with m = H1,2 and

define a Lie bracket on g in the following way. For elements A,B ∈ h we take the standard

Lie bracket of h, i.e. [A,B] = AB −BA. Then we define [A, x] = − [x,A] = Ax for A ∈ h

and x ∈ m. Note that, as an h-module, we can decompose m = H1,2 = R1,2⊗H = R1,2⊗R4,

where the action of so(1, 2) is by the defining representation on the first factor and trivial

on the second and the action of c ∼= so(3) ⊂ so(4) is trivial on the first factor and by the

standard four-dimensional representation H = R⊕ ImH = R⊕R3 on the second. Finally

we have to define the Lie bracket for elements in m = R1,2 ⊗ R4.

Let K : R1,2 → so(1, 2) be an isomorphism of Lie algebras where R1,2 is endowed with
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the Lorentzian cross product, ι : sp(1) → c, X → X · 13 +X, and let η be the standard

Lorentz metric on R1,2. Furthermore denote 〈·, ·〉 the standard inner product on R4. Let

x = u⊗ p, y = v ⊗ q ∈ R1,2 ⊗ R4 and write p = p0 + ~p, q = q0 + ~q, where p0, q0 ∈ R and

~p, ~q ∈ ImH = R3. We set

[x, y] = 〈~p, ~q〉 ·K(u× v)−
1

2
η(u, v)ι(~p × ~q)

︸ ︷︷ ︸

∈ h

+u× v(p0q0 − 〈~p, ~q〉)
︸ ︷︷ ︸

∈R1,2⊂H1,2 =m

,

where ~p× ~q is the Euclidian cross product in ImH = sp(1) and u× v the Lorentzian cross

product in R1,2. This extends the partially defined bracket to an anti-symmetric bilinear

map [·, ·] : g × g → g, which satisfies the Jacobi-identity. Hence g becomes a Lie algebra.

We claim that (g, h) is not a symmetric pair. In fact, every h-invariant complement m′ of

h in g contains R1,2 ⊗R3 (there is no other equivalent h-submodule in g) and thus we see

from the formula for the bracket that [m′,m′] * h.

For a general classification of the homogeneous spaces with h = so(1, 2) ⊕ c we need

to classify all the Lie algebra structures on the vector g = h⊕R1,2 ⊗R4 such that the Lie

bracket restricts to the Lie bracket of h and to the given representation of h on R1,2 ⊗R4.

For this one has to describe all the h-invariant tensors of Λ2m∗⊗g ∼= Λ2m∗⊗h⊕Λ2m∗⊗m

which satisfy the Jacobi-identity. With the above notation, these bilinear maps have the

following form

[x, y] = (a · p0q0 + b 〈~p, ~q〉) ·K(u× v) + η(u, v) (c · ι(~p× ~q) + d (p0~q − q0~p))

+u× v ·
(

a1 · p0q0 + a2 · 〈~p, ~q〉+
a3
2

(p0~q + q0~p)
)

,

where a, b, c, d, a1, a2, a3 ∈ R. The bracket satisfies the Jacobi-identity if and only if the

following equations hold

0 = d,

0 = a+
a1a3
2

−
a23
4
, (1)

0 = b+ 2c+
a2a3
2

, (2)

0 = b+ a1a2 −
a2a3
2

, (3)

0 = −
ba3
2

+ aa2. (4)

Summarizing we obtain the following proposition.

Proposition 3.1. Every solution (a, b, c, a1, a2, a3) of the quadratic system (1)-(4) defines

a connected and simply connected homogeneous almost quaternionic pseudo-Hermitian

manifold G/H with isotropy algebra h = so(1, 2)⊕so(3) ⊂ so(1, 2)⊕so(4) ⊂ gl(R1,2⊗R4) ∼=

gl(12,R). Conversely, every such homogeneous space arises by this construction.

The above example corresponds to a = 0, b = 1, c = −1

2
, d = 0, a1 = 1, a2 = −1 and

a3 = 0.
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