
Tangle-tree duality:
in graphs, matroids and beyond⇤

Reinhard Diestel
Mathematisches Seminar, Universität Hamburg

Sang-il Oum
KAIST, Daejeon, 34141 South Korea

January 10, 2017

Abstract

We apply a recent duality theorem for tangles in abstract separation
systems to derive tangle-type duality theorems for width-parameters in
graphs and matroids. We further derive a duality theorem for the exis-
tence of clusters in large data sets.

Our applications to graphs include new, tangle-type, duality theorems
for tree-width, path-width, and tree-decompositions of small adhesion.
Conversely, we show that carving width is dual to edge-tangles. For ma-
troids we obtain a duality theorem for tree-width.

Our results can be used to derive short proofs of all the classical duality
theorems for width parameters in graph minor theory, such as path-width,
tree-width, branch-width and rank-width, as well as of a general bramble-
type duality theorem of Amini, Mazoit, Nisse, and Thomassé which unifies
these classical theorems.

1 Introduction

There are a number of theorems in the structure theory of sparse graphs that
assert a duality between high connectivity present somewhere in the graph and
an overall tree structure. For example, a graph has small tree-width if and only
if it contains no large-order bramble. Amini, Mazoit, Nisse, and Thomassé [1]
generalized the notion of a bramble to give similar duality theorems for other
width parameters, including branch-width, rank-width and matroid tree-width.
The highly cohesive substructures, or HCSs, dual to low width in all these cases
are what we call concrete HCSs: like brambles, they are sets of edges that hang
together in a certain specified way.

In [9] we introduced another type of HCSs for graphs and matroids, which
we call abstract HCS. These are modelled on the notion of a tangle introduced
by Robertson and Seymour [18] for the proof of the graph minor theorem. They
are orientations of all the separations of a graph or matroid, up to some given
order, that are ‘consistent’ in a way specified by a set F . This F can be varied
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to give di↵erent notions of consistency, leading to di↵erent notions of F-tangles.
We then proved a general duality theorem for F-tangles [9, Theorem 4.3], which
says that graphs or matroids not containing an F-tangle have a certain type of
tree structure, the type depending on the choice of F . In each case, this tree
structure clearly precludes the existence of an F-tangle, and thus provides an
easily checked certificate for their possible nonexistence.

Our first aim in this paper is to show that our duality theorem for abstract
HCSs from [9] implies the known duality theorems for tangles: the classical
Robertson-Seymour one for tangles and branch-width in graphs [18], and its
analogue for matroids derived from [18] by Geelen, Gerards and Whittle [11].

As a tool for proving an Erdős-Pósa-type theorem for edge-disjoint immer-
sions of graphs, Liu [14] recently introduced the notion of edge-tangles. We ob-
tain a duality theorem for these, too. Interestingly, the tree structures dual to
edge-tangles have been studied before [20], but their duality was never observed.

Our next aim will be to derive new duality theorems, in terms of F-tangles,
for the classical graph width parameters of tree-width and path-width, as well
as for some lesser known ones such as rank-width [16] and carving-width [20].
By tweaking F , we can obtain tailor-made duality theorems also for particular
kinds of tree-decompositions as desired, such as those of some specified adhesion.

Matroid tree-width was introduced only more recently, by Hliněný and Whit-
tle [12], and we shall obtain a tangle-type duality theorem for this too.

Our results will imply, and hence o↵er new proofs for, the bramble-type du-
ality theorem for tree-width of Seymour and Thomas [19] and their duality the-
orem for path-width with Bienstock and Robertson [2]. We also find an F that
expresses the generalized brambles of Amini, Mazoit, Nisse, and Thomassé [1]
as F-tangles, and are thus able to deduce their unified theorem too.

We first proved the duality theorem of [9] that we keep applying here for
‘separations of sets’: a common generalization of graph and matroid separations.
This version already implied all the results mentioned so far. However we then
noticed that we needed much less to express, and to prove, this duality theorem.
This had some interesting consequences, so let us briefly explain what happened.

The oriented separations in a graph or matroid are partially ordered in a
natural way, as (A,B)  (C,D) whenever A ✓ C and B ◆ D. This partial
ordering is inverted by the involution (A,B) 7! (B,A). Let us call any poset
(~S,) with an order-reversing involution !s 7!  s an abstract separation system.
If this poset is a lattice, we call it a separation universe. It is submodular if there
is a real order function !s 7! |!s | satisfying |!s | = | s | and

��!r _ !s
��+ ��!r ^ !s

�� ��!r ��+ |!s | for all !r , !s 2 ~S.
All the necessary ingredients of F-tangles in graphs, and of their dual tree

structures, can be expressed in terms of (~S,). Indeed, two separations are
nested if and only if they have orientations that are comparable under . And
the consistency requirement for classical tangles is, essentially, that if !r and !s
‘lie in’ the tangle (i.e., if the tangle orients r as !r and s as !s ) then so does !r _ !s
if it is in ~S. It turned out that this was not a special case: we could express the
entire duality theorem in its proof in this abstract setting.1 Put more pointedly,
we never need that our separations actually ‘separate’ anything: all we ever use
is how they relate to each other in terms of (~S,).

1Despite the increase in generality, this reduction to the essential also made the proof more
readable.
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The fact that our duality theorem works in abstract separation systems
makes it applicable to contexts that are quite far from graphs and matroids. For
example, the bipartitions of the set D of pixels of an image form a separation
system: they are partially ordered by inclusion of their sides, and the involution
of flipping the sides of the bipartition inverts this ordering. Depending on the
application, some ways of cutting the image in two will be more natural than
others, which gives rise to a cost function on these separations of D. Taking
this cost of a separation as its ‘order’ then gives rise to tangles: abstract HCSs
signifying regions of the image. Unlike regions defined by simply specifying a
subset of D, regions defined by tangles are allowed to be fuzzy in terms of which
pixels they ‘contain’ – much like regions in real-world images.

If the cost function on the separations of our image is submodular – which
in practice is not a severe restriction – the abstract duality theorem from [9]
can be applied to these tangles. For every integer k, our application of this
theorem will either find a region of order at least k or produce a nested ‘tree’
set of bipartitions, all of order < k, which together witness that no such region
exists [10]. This information could be used, for example, to assess the quality of
an image, eg. after sending it through a noisy channel.

Our paper is organized as follows. We begin in Section 2 with a brief descrip-
tion of abstract separation systems, just enough to state in Section 3, as Theo-
rem 3.2, the main duality theorem of [9] that we shall be applying throughout.

In Section 4 we prove a duality theorem for classical tangles as introduced by
Robertson and Seymour [18]. Our result di↵ers from their tangle-branchwidth
duality theorem in the way we describe the tree-like structure that graphs with-
out large tangles must have. But the theorems are similar and interderivable,
and so our result may be seen as just a new proof of tangle-branchwidth duality.

In Section 5 we apply Theorem 3.2 to set partitions: of the vertex set of a
graph, the ground set of a matroid, or any set with a natural submodular order
function on its bipartitions. By specifying this order function we obtain duality
theorems for rank-width, edge-tangles, and carving-width in graphs, for tangles
in matroids and, as an example of an application beyond graphs and matroids,
for coherent features in pixellated images.

In Sections 6 and 7 we obtain our new duality theorems for tree-width and
path-width, and show how to derive from these the existing but di↵erent duality
theorems for these parameters. In Section 8 we prove our duality theorem for
matroid tree-width. In Section 9 we derive duality theorems for tree-decompo-
sitions of bounded adhesion.

In Section 10, finally, we show how our duality theorem for abstract tangles,
Theorem 3.2, implies the duality theorem for abstract brambles of Amini, Maz-
oit, Nisse, and Thomassé [1].

2 Abstract separation systems

In this section we introduce abstract separation systems – just enough to state
the main duality theorem from [9] in Section 3, and thus make this paper self-
contained.

A separation of a set V is a set {A,B} such that A [ B = V . The ordered
pairs (A,B) and (B,A) are its orientations. The oriented separations of V are
the orientations of its separations. Mapping every oriented separation (A,B) to
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its inverse (B,A) is an involution that reverses the partial ordering

(A,B)  (C,D) :, A ✓ C and B ◆ D.

Note that this is equivalent to (D,C)  (B,A). Informally, we think of (A,B)
as pointing towards B and away from A. Similarly, if (A,B)  (C,D), then
(A,B) points towards {C,D}, while (C,D) points away from {A,B}.

Generalizing these properties of separations of sets, we now give an axio-
matic definition of ‘abstract’ separations. A separation system (~S, ,⇤) is a
partially ordered set ~S with an order-reversing involution *. Its elements are
called oriented separations. When a given element of ~S is denoted as !s , its
inverse !s ⇤ will be denoted as  s , and vice versa. The assumption that * be
order-reversing means that, for all !r , !s 2 ~S,

!r  !s ,  r �  s . (1)

A separation is a set of the form {!s ,  s }, and then denoted by s. We call !s
and  s the orientations of s. The set of all such sets {!s ,  s } ✓ ~S will be denoted
by S. If !s =  s , we call both !s and s degenerate.

When a separation is introduced ahead of its elements and denoted by a
single letter s, its elements will then be denoted as !s and  s .2 Given a set
S0 ✓ S of separations, we write

!
S0 :=

S
S0 ✓ ~S for the set of all the orientations

of its elements. With the ordering and involution induced from ~S, this is again
a separation system.3

Separations of sets, and their orientations, are clearly an instance of this if
we identify {A,B} with {(A,B), (B,A)}.

If there are binary operations _ and ^ on our separation system ~S such
that !r _ !s is the supremum and !r ^ !s the infimum of !r and !s in ~S, we call
(~S, ,⇤,_,^) a universe of (oriented) separations. By (1), it satisfies De Mor-
gan’s law:

(!r _ !s )⇤ =  r ^  s . (2)

The oriented separations of a set V form such a universe: if !r = (A,B) and
!s = (C,D), say, then !r _ !s := (A [ C,B \D) and !r ^ !s := (A \ C,B [D)
are again oriented separations of V, and are the supremum and infimum of !r
and !s . Similarly, the oriented separations of a graph form a universe. Its
oriented separations of order < k for some fixed k, however, form a separation
system inside this universe that may not itself be a universe with respect to
_ and ^ as defined above.

A separation !r 2 ~S is trivial in ~S, and  r is co-trivial , if there exists s 2 S
such that !r < !s as well as !r <  s . Note that if !r is trivial in ~S then so is every
!
r0  !r . If !r is trivial, witnessed by !s , then !r < !s <  r by (1). Separations !s
such that !s   s , trivial or not, will be called small .

The trivial oriented separations of a set V , for example, are those of the
form !r = (A,B) with A ✓ C\D and B ◆ C[D = V for some s = {C,D} 6= r.
The small separations (A,B) of V are all those with B = V .

2It is meaningless here to ask which is which: neither !s nor  s is a well-defined object
just given s. But given one of them, both the other and s will be well defined. They may be
degenerate, in which case s = {!s } = { s }.

3For S0 = S, our definition of
!
S0 is consistent with the existing meaning of ~S. When we

refer to oriented separations using explicit notation that indicates orientation, such as !s or
(A, B), we sometimes leave out the word ‘oriented’ to improve the flow of words. Thus, when
we speak of a ‘separation (A, B)’, this will in fact be an oriented separation.
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Two separations r, s are nested if they have comparable orientations; other-
wise they cross. Two oriented separations !r , !s are nested if r and s are nested.4
We say that !r points towards s, and  r points away from s, if !r  !s or !r   s .
Then two nested oriented separations are either comparable, or point towards
each other, or point away from each other. A set of separations is nested if every
two of its elements are nested.

A set O ✓ ~S of oriented separations is antisymmetric if it does not contain
the inverse of any of its nondegenerate elements. It is consistent if there are no
distinct r, s 2 S with orientations !r < !s such that  r , !s 2 O. (Informally: if it
does not contain orientations of distinct separations that point away from each
other.) An orientation of S is a maximal antisymmetric subset of ~S: a subset
that contains for every s 2 S exactly one of its orientations !s ,  s .

Every consistent orientation of S contains all separations !r that are trivial
in ~S, because it cannot contain their inverse  r : if the triviality of !r is witnessed
by s 2 S, say, then  r would be inconsistent with both !s and  s .

Given a set F , a consistent orientation of S is an F-tangle if it avoids F ,
i.e., has no subset F 2 F . We think of F as a collection of ‘forbidden’ subsets
of ~S. Avoiding F adds another degree of consistency to an already formally
consistent orientation of S, one that can be tailored to specific applications by
designing F in di↵erent ways. The idea is always that the oriented separations
in a set F 2 F collectively point to an area (of the ground set or structure which
the separations in S are thought to ‘separate’) that is too small to accommodate
some particular type of highly cohesive substructure.

A set � of nondegenerate oriented separations, possibly empty, is a star of
separations if they point towards each other: if !r   s for all distinct !r , !s 2 �
(Fig. 1). Stars of separations are clearly nested. They are also consistent: if
 r , !s lie in the same star we cannot have !r < !s , since also !s  !r by the star
property. A star � need not be antisymmetric; but if {!s ,  s } ✓ �, then any
other !r 2 � will be trivial.

E
F

C
D

A

B

B ∩ D ∩ F

A ∩ B

Figure 1: The separations (A,B), (C,D), (E,F ) form a 3-star

Let S be a set of separations. An S-tree is a pair (T,↵) of a tree5 T and a
function ↵ : ~E(T ) ! ~S from the set

~E(T ) := { (x, y) : {x, y} 2 E(T ) }

of the orientations of its edges to ~S such that, for every edge xy of T , if ↵(x, y) =
!s then ↵(y, x) =  s . It is an S-tree is over F ✓ 2~S if, in addition, for every

4Terms introduced for unoriented separations may be used informally for oriented separa-
tions too if the meaning is obvious, and vice versa.

5Trees have at least one node [6].
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node t of T we have ↵(~Ft) 2 F , where

~Ft := {(x, t) : xt 2 E(T )}.

We shall call the set ~Ft ✓ ~E(T ) the oriented star at t in T (even if it is empty).
Its image ↵(~Ft) 2 F is said to be associated with t in (T,↵).

An important example of S-trees are irredundant S-trees over stars: those
over some F all of whose elements are stars of separations. In such an S-tree
(T,↵) the map ↵ preserves the natural partial ordering on ~E(T ) defined by
letting (x, y) < (u, v) if {x, y} 6= {u, v} and the unique {x, y}–{u, v} path in T
joins y to u (see Figure 2):

x
y

u v

A B

C D

Figure 2: Edges (x, y) < (u, v) and separations (A,B) = ↵(x, y)  ↵(u, v) = (C,D)

3 Tangle duality in abstract separation systems

The tangle duality theorem for abstract separation systems, the result from [9]
which we seek to apply in this paper to various di↵erent contexts, says the
following. Let (~S,) be a separation system and F a collection of ‘forbidden’
sets of separations. Then, under certain conditions, either S has an F-tangle
or there exists an S-tree over F . We now define these conditions and state the
theorem formally. We then prove a couple of lemmas that will help us apply it.

Let !r be a nontrivial and nondegenerate element of a separation system
(~S, ,⇤) contained in some universe (~U, ,⇤,_,^) of separations, the ordering
and involution on ~S being induced by those of ~U . Consider any !s0 2 ~S such
that !r  !s0. As !r is nontrivial and nondegenerate, so is !s0.

Let S�!r be the set of all separations s 2 S that have an orientation !s � !r .
Since !r is nontrivial, only one of the two orientations !s of every s 2 S�!r r{r}
satisfies !s � !r . Letting

f#
!r
!s0

(!s ) := !s _ !s0 and f#
!r
!s0

( s ) := (!s _ !s0)⇤

for all !s � !r in ~S�!r r{ r} thus defines a map ~S�!r ! ~U , the shifting map f#!r!s0

(Fig. 3, right). Note that f#!r!s0
(!r ) = !s0, since !r  !s0. Shifting maps preserve

the partial ordering on a separation system, and in particular map stars to stars:

Lemma 3.1. [9] The map f = f#!r!s0
preserves the ordering  on ~S�!r r { r}.

In particular, f maps stars to stars.

Let us say that !s0 emulates !r in ~S if !s0 � !r and every !s 2 ~S r { r} with
!s � !r satisfies !s _ !s0 2 ~S. We call ~S separable if for every two nontrivial
and nondegenerate !r ,

 
r0 2 ~S such that !r  !

r0 there exists an s0 2 S with an
orientation !s0 that emulates !r and its inverse  s0 emulating  r0.
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→r

→r

r

→s

→s

→e

→s0

s →s ∨ →s0

s0

Figure 3: Shifting !s to !s _ !s0

Given a set F 2 2~U of stars of separations, we say that !s0 2 ~S emulates !r 2 ~S
in ~S for F if !s0 emulates !r in ~S and for any star � ✓ ~S�!r r { r} in F that has
an element !s � !r we also have f#!r!s0

(�) 2 F .
Let us say that a set F forces the separations !s 2 ~S for which { s } 2 F .

And that ~S is F-separable if for all nontrivial and nondegenerate !r ,
 
r0 2 ~S

that are not forced by F and satisfy !r  !
r0 there exists an s0 2 S with an

orientation !s0 that emulates !r in ~S for F and such that  s0 emulates  r0 in ~S
for F . (As earlier, any such !s0 will also be nontrivial and nondegenerate.)

Recall that an orientation O of S is an F-tangle if it is consistent and
avoids F . We call F standard for ~S if it forces all !s 2 ~S that are trivial
in ~S. The ‘strong duality theorem’ from [9] now reads as follows.

Theorem 3.2 (Tangle duality theorem for abstract separation systems).
Let (~U, ,⇤,_,^) be a universe of separations containing a separation system
(~S, ,⇤). Let F ✓ 2~U be a set of stars, standard for ~S. If ~S is F-separable,
exactly one of the following assertions holds:

(i) There exists an F-tangle of S.
(ii) There exists an S-tree over F .

Often, the proof that ~S is F-separable can be split into two easier parts,
a proof that ~S is separable and one that F is closed under shifting in ~S: that
whenever !s0 2 ~S emulates (in ~S) some nontrivial and nondegenerate !r  !s0 not
forced by F , then it does so for F . Indeed, the following lemma is immediate
from the definitions:

Lemma 3.3. If ~S is separable and F is closed under shifting in ~S, then ~S is
F-separable.

The separability of ~S will often be established as follows. Let us call a real
function !s 7! |!s | on a universe (~U, ,⇤,_,^) of oriented separations an order
function if it is non-negative, symmetric and submodular, that is, if 0  |!s | =
| s | and ��!r _ !s

��+ ��!r ^ !s
��  ��!r ��+ |!s |

for all !r , !s 2 ~U . We then call |s| := |!s | the order of s and of !s . For every
positive integer k,

~Sk := {!s 2 ~U : |!s | < k}
is a separation system (though not necessarily a universe). A universe with an
order function will be called submodular .
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Lemma 3.4. Every such ~Sk is separable.

Proof. Given nontrivial and nondegenerate !r ,
 
r0 2 ~Sk such that !r  !

r0, we
have to find an !s0 2 ~Sk such that !s0 emulates !r in ~Sk and  s0 emulates  r0 in ~Sk.
We choose !s0 2 ~U of minimum order with !r  !s0  !

r0. Since !r is a candidate
for !s0, we have |!s0| 

��!r �� and hence !s0 2 ~Sk. We show that !s0 emulates !r ; by
symmetry, this will imply also that  s0 emulates  r0.

Let us show that every !s � !r in ~Sk satisfies !s _ !s0 2 ~Sk. We prove this by
showing that |!s _ !s0|  |!s |, which will follow from submodularity once we have
shown that |!s ^ !s0| � |!s0|. This, however, holds since !s ^ !s0 was a candidate
for the choice of !s0: we have !r  !s ^ !s0 since !r  !s and !r  !s0, while
!s ^ !s0  !s0  !

r0.

For the rest of this paper except in Sections 5 and 10, whenever we consider
a graph G = (V,E) it will have at least one vertex, and we consider the sub-
modular universe ~U of its (oriented) vertex separations, the separations (A,B)
of V such that G has no edge between ArB and BrA, with the order function

|A,B| := |A \B| .

Note that A and B are allowed to be empty. For each positive integer k, the set
~Sk = {!s 2 ~U : |!s | < k} will be a separable separation system, by Lemma 3.4.

4 Tangle duality in graphs

A tangle of order k in a finite graph G = (V,E), as introduced by Robertson
and Seymour [18], is (easily seen to be equivalent to) an orientation of Sk that
avoids

T :=
�
{(A1, B1), (A2, B2), (A3, B3)} ✓ ~U : G[A1] [G[A2] [G[A3] = G

 
.

(The three separations (A1, B1), (A2, B2), (A3, B3) need not be distinct.) Clearly,
T forces all the small separations in ~U , those of the form (A,V ). Hence T \ ~Sk

is a standard subset of ~Sk, for every integer k > 0.
Notice that any T -avoiding orientation O of Sk is consistent, and therefore

an T -tangle in our sense, since for any pair of separations (C,D)  (A,B) we
have G[D][G[A] ◆ G[B][G[A] = G and hence {(D,C), (A,B)} 2 T . Similarly,
O must contain all (A,B) with |A| < k: it cannot contain (B,A), as (A,V ) 2 O
by {(V,A)} 2 T but {(B,A), (A,V )} 2 T .

Since our duality theorems, so far, only work with sets F consisting of stars
of separations, let us consider the set T ⇤ of those sets in T that are stars.

Theorem 4.1 (Tangle duality theorem for graphs).
For every k > 0, every graph G satisfies exactly one of the following assertions:

(i) G has a T ⇤-tangle of Sk.
(ii) G has an Sk-tree over T ⇤.

Proof. By Theorem 3.2 and Lemmas 3.3–3.4, all we need to show is that T ⇤ is
closed under shifting in ~S = ~Sk. This is easy from the definitions. Informally,
if (X,Y ) 2 ~S emulates some !r  (X,Y ) not forced by T and we shift a star

� = {(A1, B1), (A2, B2), (A3, B3)} ✓ ~S�!r r { r}
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with !r  (A1, B1), say, then we replace (A1, B1) with (A1 [ X,B1 \ Y ), and
(Ai, Bi) with (Ai \ Y,Bi [ X) for i � 2. As any vertex or edge that is not
in G[Y ] lies in G[X], this means that

S
i G[Ai] = G remains unchanged.

Our tangle duality theorem can easily be extended to include the classical
duality theorem of Robertson and Seymour [18] for tangles and branch-width.
In order to do so, we first show that all T ⇤-tangles are in fact T -tangles, so
these two notions coincide. Secondly, we will check that our tree structure
witnesses for the non-existence of a tangle coincide with those used by Robertson
and Seymour: that a graph has an Sk-tree over T ⇤ if and only it has branch-
width < k.

Using the submodularity of our order function {A,B} 7! |A,B|, we can
easily show that T ⇤-tangles of Sk are in fact T -tangles:

Lemma 4.2. Every consistent T ⇤-avoiding orientation O of Sk avoids T , as
long as |G| � k.

Proof. Suppose O has a subset � 2 T . We show that as long as this set is not
an inclusion-minimal nested set in T , we can either delete one of its elements,
or replace it by a smaller separation in O, so that the resulting set �0 ✓ O is
still in T but is smaller or contains fewer pairs of crossing separations. Iterating
this process, we eventually arrive at a minimal nested set in T that is still a
subset of O. By its minimality, this set is an antichain (compare the definition
of T ), and all consistent nested antichains are stars.6 Our subset of O will thus
lie in T ⇤, contradicting our assumption that O avoids T ⇤.

If � has two comparable elements, we delete the smaller one and retain a
subset of O in T . We now assume that � is an antichain, but that it con-
tains two crossing separations, !r = (A,B) and !s = (C,D) say. As these
and their inverses lie in ~Sk, submodularity implies that one of the separations
(A \ D,B [ C)  (A,B) and (B \ C,A [ D)  (C,D) also lies in ~Sk. Let us
assume the former; the other case is analogous.

Let �0 be obtained from � by replacing !r with !
r0 := (A \D,B [ C) 2 ~Sk.

Then �0 is still in T , since any vertex or edge of G[A] that is not in G[A \D]
lies in G[C], and (C,D) is still in �0. Moreover, while !r crosses !s , clearly !

r0

does not. To complete the proof, we just have to show that !r0 cannot cross any
separation

!
t 2 �0 that was nested with !r .

If !r  !
t or !r   

t , then !
r0  !r is nested with

!
t , as desired. If not then

!
t  !r , since {!r ,

!
t } ✓ O is consistent. This contradicts our assumption that

� is an antichain.

The following elementary lemma provides the link between our S-trees and
branch-decompositions as defined by Robertson and Seymour [18]:

Lemma 4.3. For every integer k � 3,7 our graph G has branch-width < k if
and only if G has an Sk-tree over T ⇤.

Proof. If |E(G)|  1, then the branch-width is 0 by definition, and G has an
Sk-tree over T ⇤ with two nodes and a single edge mapped to (V, V ) both ways.
We now assume that G has at least 2 edges.

6Here we use that |G| � k: otherwise {(V, V )} 2 T rT ⇤ lies in O.
7See the remark after Theorem 4.4.
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Let us prove the forward implication first. We may assume that G has no
isolated vertices, because we can easily add a leaf in an Sk-tree corresponding
to an isolated vertex.

Suppose (T,L) is a branch-decomposition of width < k. For each edge e = st
of T , let Ts and Tt be the components of T � e containing s and t, respectively.
Let As,t and Bs,t be the sets of vertices incident with an edge in L�1(V (Ts)) and
L�1(V (Tt)), respectively, except that if As,t contains only two vertices we always
put both these also in Bs,t (and similarly vice versa). Note that Bs,t = At,s.

For all adjacent nodes s, t 2 T let ↵(s, t) := (As,t, Bs,t). Since G has no
isolated vertices these ↵(s, t) are separations, and since (T,L) has width < k
they lie in ~Sk. For each internal node t of T and its three neighbours s1, s2, s3,
every edge of G has both ends in one of the G[Asi,t], so

↵(~Ft) = {↵(s1, t),↵(s2, t),↵(s3, t)} 2 T .

As Asi,t ✓ At,sj = Bsj ,t for all i 6= j, the set ↵(~Ft) is a star. For leaves t of T ,
the associated star ↵(~Ft) has the form {(V,A)} with |A| = 2, which is in T ⇤

since k � 3. This proves that (T,↵) is an Sk-tree over T ⇤.
Now let us prove the converse. We may again assume that G has no isolated

vertex. Let (T,↵) be an Sk-tree over T ⇤. For each edge e of G, let us orient the
edges st of T towards t whenever ↵(s, t) = (A,B) is such that B contains both
ends of e. If e has its ends in A \ B, we choose an arbitrary orientation of st.
As T has fewer edges then nodes, there exists a node t =: L(e) such that every
edge at t is oriented towards t.

Let us choose an Sk-tree (T,↵) and L : E ! V (T ) so that the number
of leaves in L(E) is maximized, and subject to this with |V (T )| minimum. We
claim that, for every edge e of G, the node t = L(e) is a leaf of T . Indeed, if not,
let us extend T to make L(e) a leaf. If t has degree 2, we attach a new leaf t0 to t
and put ↵(t0, t) = (V (e), V ) and L(e) = t0, where V (e) denotes the set of ends
of e. If t has degree 3 then, by definition of T , there is a neighbour t0 of t such
that e 2 G[A] for (A,B) = ↵(t0, t). As t = L(e), this means that e has both ends
in A \B. Subdivide the edge tt0, attach a leaf t⇤ to the subdividing vertex t00,
put ↵(t0, t00) = ↵(t00, t) = (A,B) and ↵(t⇤, t00) = (V (e), V ), and let L(e) = t⇤. In
both cases, (T,↵) is still an Sk-tree over T ⇤.

In the same way one can show that L is injective. Indeed, if L(e0) = t = L(e00)
for distinct e0, e00 2 E, we could increase the number of leaves in L(E) by
joining two new leaves t0, t00 to the current leaf t, letting ↵(t0, t) = (V (e0), V )
and ↵(t00, t) = (V (e00), V ), and redefine L(e0) as t0 and L(e00) as t00.

By the minimality of |V (T )|, every leaf of T is in L(E), since we could
otherwise delete it. Finally, no node t of T has degree 2, since contracting an
edge at t while keeping ↵ unchanged on the remaining edges would leave an Sk-
tree over T ⇤. (Here we use that G has no isolated vertices, and that L(e) 6= t
for every edge e of G.)

Hence L is a bijection from E to the set of leaves of T , and T is a ternary tree.
Thus, (T,L) is a branch-decomposition of G, clearly of width less than k.

We can now derive, and extend, the Robertson-Seymour [18] duality theorem
for tangles and branch-width:
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Theorem 4.4 (Tangle duality theorem for graphs, extended).
The following assertions are equivalent for all finite graphs G 6= ; and k � |G| :

(i) G has a tangle of order k.
(ii) G has a T -tangle of Sk.
(iii) G has a T ⇤-tangle of Sk.
(iv) G has no Sk-tree over T ⇤.
(v) G has branch-width at least k, or k  2 and G is a disjoint union of stars

and isolated vertices and has at least one edge.

Proof. If k = 1, then all statements are true. If k = 2, they are all true if G has
an edge, and all false if not. Assume now that k � 3.

(i)$(ii) follows from the definition of a tangle at the start of this section,
and our observation that they are consistent.

(ii)!(iii) is trivial; the converse is Lemma 4.2.
(iii)$(iv) is an application of Theorem 3.2.
(iv)$(v) is Lemma 4.3.

The exception in (v) for k  2 is due to a quirk in the notion of branch-width,
which results from its emphasis on separating individual edges. The branch-
width of all nontrivial trees other than stars is 2, but it is 1 for stars K1,n. For a
clean duality theorem (even one just in the context of [18]) it should be 2 also for
stars: every graph with at least one edge has a tangle of order 2, because we can
orient all separations in S2 towards a fixed edge. Similarly, the branch-width of
a disjoint union of edges is 0, but its tangle number is 2.

5 Tangle duality for set partitions: rank-width,
carving-width and edge-tangles in graphs,
matroid tangles, and image segmentation

The concepts of branch-width and tangles were introduced by Robertson and
Seymour [18] not only for graphs but more generally for hypergraphs. They
proved all their relevant lemmas more generally for arbitrary order functions
(A,B) 7! |A,B| rather than just |A,B| = |A\B|. Geelen, Gerards, Robertson,
and Whittle [11] applied this explicitly to the submodular connectivity function
in matroids.

Our first aim in this section is to derive from Theorem 3.2 a duality theorem
for tangles in arbitrary submodular universes of set separations.8 This will
imply the above branch-width duality theorems for hypergraphs and matroids,
as well as their cousins for carving width [20] and rank-width of graphs [16].
It will also yield a duality theorem for edge-tangles, tangles of bipartitions of
the vertex set of a graph whose order is the number of edges across. We shall
then recast the theorem in the language of cluster analysis to derive a duality
theorem for the existence of clusters in data sets.

Recall that an oriented separation of a set V is a pair (A,B) such that
A [ B = V . Often, the separations considered will be bipartitions of V, but

8Recall that these are more general than set partitions: the two sides may overlap.
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in general we allow A \ B 6= ;. We also allow A and B to be empty. Recall
that order functions are non-negative, symmetric and submodular functions on
a separation system.

Let ~U be any submodular universe of separations of a set V of at least
two elements, with an order function (A,B) 7! |A,B|. Given k > 0, call an
orientation of

Sk = { {A,B} 2 U : |A,B| < k }
a tangle of order k if it avoids

F =
�
{(A1, B1), (A2, B2), (A3, B3)} ✓ ~Sk : A1 [A2 [A3 = V

 
[ { {(A,B)} ✓ ~Sk : |B| = 1 }.

Here, (A1, B1), (A2, B2), (A3, B3) need not be distinct. In particular, F is stan-
dard and tangles are consistent, so the tangles of ~U are precisely its F-tangles.

Let F⇤ ✓ F be the set of stars in F . As in the proof of Theorem 4.1, it is
easy to prove that F⇤ is closed under shifting in every ~Sk. We also have the
following analogue of Lemma 4.2, with the same proof:

Lemma 5.1. Every consistent F⇤-avoiding orientation of Sk avoids F , as long
as |V | � k.

By Lemmas 3.4 and 5.1, Theorem 3.2 now specializes as follows:

Theorem 5.2 (Tangle duality theorem for set separations).
Given a submodular universe ~U of separations of a set V and k � V , the fol-
lowing assertions are equivalent:

(i) ~U has a tangle of order k.
(ii) ~U has an F⇤-tangle of Sk.
(iii) ~U has no ~Sk-tree over F⇤.

Applying Theorem 5.2 with the appropriate order functions yields duality
theorems for all known width parameters based on set separations. For example,
let V be the vertex set of a graph G, with bipartitions as separations. Counting
the edges across a bipartition defines an order function whose F-tangles are
known as the edge-tangles of G, so Theorem 5.2 yields a duality theorem for
these. See Liu [14] for an application of edge-tangles to an Erdős-Pósa-type
problem for immersion.

The duals to edge-tangles of order k are Sk-trees over F⇤. These were
introduced by Seymour and Thomas [20] as carvings. The least k such that
G has a carving is its carving-width. We thus have a duality theorem between
edge-tangles and carving-width.

Taking as the order of a vertex bipartition the rank of the adjacency matrix of
the bipartite graph that this partition induces gives rise to a width parameter
called rank-width. In our terminology, G has rank-width < k if and only if
it admits an Sk-tree over F⇤. The corresponding F-tangles of Sk, then, are
necessary and su�cient witnesses for having rank-width � k, and we have a
duality theorem for rank-width.

If V is the vertex set of a hypergraph or the ground set of a matroid, the
F-tangles coincide, just as for graphs, with the hypergraph tangles of [18] or the
matroid tangles of [11]. As in the proof of Lemma 4.3, a hypergraph or matroid
has branch-width < k if and only if it has an Sk-tree over F⇤. Theorem 5.2
thus yields the original duality theorems of [18] and [11] in this case.
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Our tangle duality theorem for set separations can also be applied in contexts
quite di↵erent from graphs and matroids. In [10] we considered the separations
of a pixellated image obtained by cutting it in two. Assigning small integers to
natural cuts and larger integers to less natural ones defines an order function
which makes these cuts into a submodular universe of separations. Its tangles
then correspond to natural regions of this image: parts that cannot be cut into
halves of roughly equal size by natural cuts.

Theorem 5.2 then applies to these regions: if there is no region of some
given order, or ‘coherence’, then this is witnessed by a nested set of separations
which cut the image up, recursively, into single pixels. This nested set of cuts,
therefore, will be an easily checkable witness for the non-existence of a highly
coherent region in the image.

This approach to image segmentation has an important advantage over more
traditional ways of identifying the regions of an image. Real-world pixellated
images tend to be fuzzy, and tangles can capture their regions despite their
fuzziness. Indeed, consider a large grid in a graph. For every low-order sep-
aration, most of the grid will lie on the same side, so the grid ‘orients’ that
separation towards this side. But every single vertex will lie on the ‘wrong’
side for some low-order separation, the side not containing most of the grid; for
example, it may be separated o↵ by its four neighbours. The grid, therefore,
defines a unique k-tangle for some large k, but the ‘location’ of this tangle is
not represented correctly by any one of its vertices – just as for a fuzzy region of
an image it may be impossible to say which pixels exactly belong to that region
and which do not.

The application in [10] of Theorem 5.2 to image analysis reads as follows:

Corollary 5.3. [10] For every picture ⇡ on a canvas and every integer k > 0,
either ⇡ has a non-trivial region of coherence at least k, or there exists a laminar
set of lines of order < k all whose splitting stars are void 3-stars or single pixels.
For no picture do both these happen at once.

6 Tangle duality for tree-width in graphs

We now apply our abstract duality theorem to obtain a new duality theorem for
tree-width in graphs. Its witnesses for large tree-width will be orientations of Sk,
like tangles, and thus di↵erent from brambles (or ‘screens’), the dual objects in
the classical tree-width duality theorem of Seymour and Thomas [19].

This latter theorem, which ours easily implies, says that a finite graph either
has a tree-decomposition of width less than k�1 or a bramble of order at least k,
but not both. The original proof of this theorem is as mysterious as the result
is beautiful. The shortest known proof is given in [5] (where we refer the reader
also for definitions), but it is hardly less mysterious. A more natural, if slightly
longer, proof due to Mazoit is presented in [6]. The proof via our abstract
duality theorem, as outlined below, is perhaps not shorter all told, but it seems
to be the simplest available so far.

Given a finite graph G = (V,E), we consider its submodular separation
universe ~U and the separation systems ~Sk ✓ ~U as defined at the end of Section 3.
For every integer k > 0 let

Fk :=
�
� ✓ ~U | � = {(Ai, Bi) : i = 0, . . . , n} is a star with

��Tn
i=0 Bi

�� < k
 
.
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(We take
Tn

i=0 Bi := V if � = ;, so K1 is an Sk-tree over Fk if |G| < k.)
Since Fk forces all the small nondegenerate separations in ~Sk, the separations

(A,V ) 2 ~Sk with A 6= V, it is standard for every Sk. We have also seen that
~Sk is separable (Lemma 3.4). To apply Theorem 3.2 we thus only need the
following lemma (cf. Lemma 3.3) – whose proof contains the only bit of magic
now left in tree-width duality:

Lemma 6.1. For every integer k > 0, the set Fk is closed under shifting in Sk.

Proof. Consider a separation !s0 = (X,Y ) 2 ~Sk =: ~S that emulates, in ~S, some
nontrivial and nondegenerate !r 2 ~S not forced by Fk. Let

� =
�
(Ai, Bi) : i = 0, . . . , n

 
✓ ~S�!r r { r}

be a star in Fk with !r  (A0, B0). Then

!r  (A0, B0)  (Bi, Ai) for all i � 1. (3)

We have to show that

�0 =
�
(A0

i, B
0
i) : i = 0, . . . , n

 
2 Fk

for (A0
i, B

0
i) := f#!r!s0

(Ai, Bi).
From Lemma 3.1 we know that �0 is a star. Since (X,Y ) emulates !r in ~S,

we have �0 ✓ ~S by (3). It remains to show that
��Tn

i=0 B0
i

�� < k. The trick will
be to rewrite this intersection as the intersection of the two sides of a suitable
separation that we know to lie in S = Sk.

By (3) we have (A0
0, B

0
0) = (A0[X,B0\Y ), while (A0

i, B
0
i) = (Ai\Y,Bi[X)

for i � 1. Since the (Ai, Bi) are separations, i.e. in ~U , so is
�Tn

i=1 Bi,
Sn

i=1 Ai

�
.

As trivially (V,B0) 2 ~U , this implies that, for B⇤ :=
Tn

i=1 Bi, also

⇣ n\
i=1

Bi \ V ,
n[

i=1

Ai [B0

⌘
=
(3)

(B⇤, B0) 2 ~U .

Since � 2 Fk we have |B⇤, B0| =
��Tn

i=0 Bi

�� < k, so (B⇤, B0) 2 ~Sk = ~S (Fig. 4).9
As also !r  (B⇤, B0) by (3), the fact that (X,Y ) emulates !r in ~S therefore
implies that (B⇤ [X,B0 \ Y ) 2 ~S = ~Sk. But then

���
n\

i=0

B0
i

��� =
���(B0 \ Y ) \

n\
i=1

(Bi [X)
��� =

��B0 \ Y,B⇤ [X
�� < k ,

which means that �0 2 Fk.

Theorem 6.2 (Tangle-treewidth duality theorem for graphs).
For every k > 0, every graph G satisfies exactly one of the following assertions:

(i) G has an Fk-tangle of Sk.
(ii) G has an Sk-tree over Fk.

Proof. Apply Theorem 3.2 and Lemmas 3.3, 3.4 and 6.1.
9The Ai, of course, are ‘more disjoint’ than they appear in the figure.
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Bn
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B1 ∩ . . . ∩ Bn

X Y

A0

A1

B0

B1

→r

Figure 4: Shifting the separation (B⇤, B0)

Condition (ii) above can be expressed in terms of the tree-width tw(G) of G:

Lemma 6.3. A graph G has an Sk-tree over Fk if and only if tw(G) < k � 1.
More precisely, G has an Sk-tree (T,↵) over Fk if and only if it admits a tree-
decomposition (T,V) of width < k � 1.

Proof. Given any S-tree (T,↵) of G over a set F of stars, let V = (Vt)t2T be
defined by letting

Vt =
\�

B : (A,B) = ↵(s, t), st 2 E(T )
 
. (4)

It is easy to check [4] that (T,V) is a tree-decomposition of G with adhesion
sets Vt \ Vt0 = A \ B whenever (A,B) = ↵(t, t0). If S = Sk and F = Fk, we
have |Vt| < k at all t 2 T , so (T,V) has width less than k � 1.

Conversely, given a tree-decomposition (T,V) with V = (Vt)t2T , say, define
↵ : ~E(T ) ! ~Sk as follows. Given t1t2 2 E(T ), let Ti be the component of
T �t1t2 containing ti, and put Ui :=

S
t2V (Ti)

Vt (i = 1, 2). Then let ↵(t1, t2) :=
(U1, U2). One easily checks [5] that U1 \ U2 = Vt1 \ Vt2 , so ↵ takes its values
in ~Sk if (T,V) has width < k � 1. Moreover, every part Vt satisfies (4), so if
(T,V) has width < k � 1 then (T,↵) is over Fk.

If desired, we can derive from Theorem 6.2 the tree-width duality theorem
of Seymour and Thomas [19]. This is cast in terms of brambles, or ‘screens’, as
they originally called them. (See [6] for a definition and some background.)

Brambles have an interesting history. After Robertson and Seymour had
invented tangles, they looked for a tangle-like type of highly cohesive substruc-
ture, or HCS, dual to low tree-width. Their plan was that this should be a map
� assigning to every set X of fewer than k vertices one component of G � X.
The question, in our language, was how to make these choices consistent: so
that they would define an abstract HCS.

The obvious consistency requirement, that �(Y ) ✓ �(X) whenever X ✓ Y ,
is easily seen to be too weak. Yet asking that �(X)\�(Y ) 6= ; for all X,Y turned
out to be too strong. In [19], Seymour and Thomas then found a requirement
that worked: that any two such sets, �(X) and �(Y ), should touch: that either
they share a vertex or G has an edge between them. Such maps � are now called
havens, and it is easy to show that G admits a haven of order k (one defined on
all sets X of fewer than k vertices) if and only if G has a bramble of order at
least k.
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Lemma 6.4. G has a bramble of order at least k if and only if G has an Fk-
tangle of Sk.

Proof. Let B be a bramble of order at least k. For every {A,B} 2 Sk, since
A\B is too small to cover B but every two sets in B touch and are connected,
exactly one of the sets A r B and B r A contains an element of B. Thus,

O = { (A,B) 2 ~Sk : B r A contains an element of B }

is an orientation of Sk, which for the same reason is clearly consistent.
To show that O avoids Fk, let � = {(A1, B1), . . . , (An, Bn)} 2 Fk be given.

Then
��Tn

i=1 Bi

�� < k, so some C 2 B avoids this set and hence lies in the union
of the sets Ai r Bi. But these sets are disjoint, since � is a star. Hence C lies
in one of them, A1 r B1 say, putting (B1, A1) in O. But then (A1, B1) /2 O, so
� 6✓ O as claimed.

Conversely, let O be an Fk-tangle of Sk. We shall define a bramble B con-
taining for every set X of fewer than k vertices exactly one component of G�X,
and no other sets. Such a bramble will have order at least k, since no such set
X covers it.

Given such a set X, note first that X 6= V . For if |V | < k then ; 2 Fk,
contradicting our assumption that O has no subset in Fk. Let C1, . . . , Cn be
the vertex sets of the components of G�X. Consider the separations (Ai, Bi)
with Ai = Ci [N(Ci) and Bi = V r Ci. Since

�X := { (Ai, Bi) | i = 1, . . . , n }

is a star in Fk, not all the (Ai, Bi) lie in O. So (Bi, Ai) 2 O for some i, and
since O is consistent this i is unique. Let us make Ci an element of B.

B ∩ B

N(C) N(C )

A B = C C = A B

Figure 5: If C,C0 do not touch, then (B,A) and (B0, A0) are inconsistent.

It remains to show that every two sets in B touch. Given C,C0 2 B, there are
sets X and X 0 such that �X contains a separation (A,B) with A = C [N(C)
and (B,A) 2 O, and likewise for C0. If C and C0 do not touch, then C0 ✓ B rA
and hence A0 ✓ B (Fig. 5), and similarly A ✓ B0. Hence (A,B)  (B0, A0) 2 O
but also (B,A) 2 O, contradicting the consistency of O.

Theorem 6.2 can thus be extended to incorporate tree-width and brambles:

Theorem 6.5 (Tangle-bramble-treewidth duality theorem for graphs).
The following assertions are equivalent for all finite graphs G and k > 0:

(i) G has a bramble of order at least k.
(ii) G has an Fk-tangle of Sk.
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(iii) G has no Sk-tree over Fk.
(iv) G has tree-width at least k � 1.

Proof. (i)$(ii) is Lemma 6.4. (ii)$(iii) is Theorem 6.2. (iii)$(iv) is Lemma 6.3.

7 Tangle duality for path-width in graphs

A path-decomposition of a graph G is a tree-decomposition of G whose de-
composition tree is a path. The path-width of G is the least width of such a
tree-decomposition. By Lemma 6.3, G has path-width < k � 1 if and only if it
has an Sk-tree over

F (2)
k :=

�
� ✓ ~Sk | � = {(A1, B1), (A2, B2)} is a star with

��B1 \B2

�� < k
 
,

the stars in Fk of order at most 2. Theorem 6.2 has the following analogue:

Theorem 7.1 (Tangle-pathwidth duality theorem for graphs).
For every k > 0, every graph G satisfies exactly one of the following assertions:

(i) G has an F (2)
k -tangle of Sk.

(ii) G has an Sk-tree over F (2)
k .

Proof. Apply Theorem 3.2 and Lemmas 3.3, 3.4 and 6.1.

Bienstock, Robertson, Seymour and Thomas [2] also found tangle-like HCSs
dual to path-width, which they call ‘blockages’.10 Let us define these, and then
incorprorate their result into our duality theorem with a unified proof.

Given a set X of vertices in G = (V,E), let us write @(X) for the set of
vertices in X that have a neighbour outside X. A blockage of order k � 1,
according to [2], is a collection B of sets X ✓ V such that

(B1) |@(X)| < k for all X 2 B;
(B2) X 0 2 B whenever X 0 ✓ X 2 B and |@(X 0)| < k;
(B3) for every {X1,X2} 2 Sk, exactly one of X1 and X2 lies in B.

To deduce the duality theorem of [2] from Theorem 3.2, we just need to
translate blockages into orientations of Sk:

Theorem 7.2 (Tangle-blockage-pathwidth duality theorem for graphs).
The following assertions are equivalent for finite graphs G 6= ; and k > 0:

(i) G has a blockage of order k � 1.
(ii) G has an F (2)

k -tangle of Sk.
(iii) G has no Sk-tree over F (2)

k .
(iv) G has path-width at least k � 1.
10They go on to show that all graphs with a blockage of order k � 1 – which are precisely

the graphs of path-width at least k � 1 – contain every forest of order k as a minor. This
corollary is perhaps better known than the path-width duality theorem itself.
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Proof. Theorem 7.1 asserts the equivalence of (ii) and (iii), while (iii) is equiv-
alent to (iv) by Lemma 6.3.

(i)!(ii): Suppose that G has a blockage B of order k�1. By (B2) and (B3),

O = { (X,Y ) 2 ~Sk : X 2 B }

is a consistent orientation of Sk.
For a proof that O avoids every singleton star {(A,X)} 2 F (2)

k it su�ces
to show that B contains every set X of order < k: then (X,A) 2 O and hence
(A,X) /2 O. To show that X 2 B, consider the separation {X,V } 2 Sk. If
V 2 B, then also X 2 B by (B2), contradicting (B3). Hence V /2 B, and thus
X 2 B by (B3).

To complete the proof that O avoidsF (2)
k consider {(A1, B1), (A2, B2)} 2 F (2)

k
with (A1, B1) 6= (A2, B2), and suppose that (A1, B1) 2 O. Since {(A1, B1), (A2, B2)}
is a star, {B1, B2} is a separation. As |B1 \B2| < k by definition of F (2)

k , it lies
in Sk. Applying (B3) three times, we deduce from our assumption of A1 2 B
that B1 /2 B, and hence B2 2 B, and hence A2 /2 B. Thus, (A2, B2) /2 O.

(ii)!(i): Let O be an F (2)
k -tangle of Sk. We claim that

B := {X : (X,Y ) 2 O }

is a blockage of order k � 1. Clearly, B satisfies (B1).
Given {X1,X2} 2 Sk as in (B3), assume that (X1,X2) 2 O. Then X1 2 B.

If also X2 2 B, there exists Y2 such that (X2, Y2) 2 O. Then {X1 \ Y2,X2} is
still a separation of V, and clearly in Sk. As (X1 \ Y2,X2)  (X1,X2) 2 O and
O is consistent, we have (X1 \ Y2,X2) 2 O. Then {(X1 \ Y2,X2), (X2, Y2)} is a
star in F (2)

k , contradicting our assumption.
Given X 0 ✓ X 2 B as in (B2), with (X,Y ) 2 O say, let Y 0 := @(X 0)[(V rX 0)

and Z := @(X) [ (V r X). Then Z ✓ Y and hence |X \ Z|  |X \ Y | < k, so
{X,Z} 2 Sk. By (B3) we have Z /2 B and hence (Z,X) /2 O, so (X,Z) 2 O.
Since O is consistent and ~Sk 3 (X 0, Y 0)  (X,Z), we thus obtain (X 0, Y 0) 2 O
and hence X 0 2 B, as desired.

8 Tangle duality for tree-width in matroids

Hliněný and Whittle [12, 13] generalized the notion of tree-width from graphs
to matroids.11 Let us show how Theorem 3.2 implies a duality theorem for
tree-width in matroids.

Let M = (E, I) be a matroid with rank function r. Its connectivity function
is defined as

�(X) := r(X) + r(E r X)� r(M).

We consider the universe ~U of all bipartitions (X,Y ) of E. Since

|X,Y | := �(X) = �(Y )

is non-negative, submodular and symmetric, it is an order function on ~U , so our
universe ~U is submodular.

11In our matroid terminology we follow Oxley [17].
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A tree-decomposition of M is a pair (T, ⌧), where T is a tree and ⌧ : E ! V (T )
is any map. Let t be a node of T , and let T1, . . . , Td be the components of T � t.
Then the width of t is the number

dX
i=1

r(E r Fi)� (d� 1) r(M),

where Fi = f�1(V (Ti)). (If t is the only node of T , we let its width be r(M).)
The width of (T, ⌧) is the maximum width of the nodes of T . The tree-width
of M is the minimum width over all tree-decompositions of M .

Matroid tree-width was designed so as to generalize the tree-width of graphs:

Theorem 8.1 (Hliněný and Whittle [12, 13]). The tree-width of a finite graph
containing at least one edge equals the tree-width of its cycle matroid.

In order to specialize Theorem 3.2 to a duality theorem for tree-width in
matroids, we consider for k > 0 the set

Sk = { {A,B} 2 U : |A,B| < k };
then ~Sk is separable by Lemma 3.4. For stars � = {(Ai, Bi) : i = 0, . . . , n} ✓ ~U
we write

h�i := r(M) +
nX

i=0

�
r(Bi)� r(M)

�
.

We consider
Fk :=

�
� ✓ ~U : � is a star with h�i < k

 
.

Clearly, the singleton stars {(A,B)} in Fk are precisely those with r(B) < k,
and the empty star lies in Fk if and only if r(M) < k. We remark that requiring
� ✓ ~Sk in the definition of Fk would not spare us a proof of the following lemma,
which we shall need in the proof of Lemma 8.4.

Lemma 8.2. Every � 2 Fk is a subset of ~Sk.

Proof. We show that every Ai in a star � = {(Ai, Bi) : i = 0, . . . , n} ✓ ~U
satisfies �(Ai)  h�i; if � 2 Fk, this implies that |Ai, Bi| < k as desired. Our
proof will be for i = 0; the other cases then follow by symmetry.

Since � is a star we have Ai ✓ Bj whenever i 6= j, and in particular Ai+1 ✓
B⇤

i := B1 \ . . . \Bi for i = 1, . . . , n� 1. Hence B⇤
i [Bi+1 ◆ E. Submodularity

of the rank function now gives

r(B⇤
i ) + r(Bi+1) � r(B⇤

i \Bi+1) + r(B⇤
i [Bi+1) = r(B⇤

i+1) + r(M)

for each i = 1, . . . , n� 1. Summing these inequalities over i = 1, . . . , n� 1, and
noting that B⇤

1 = B1, yields

r(B1) + . . . + r(Bn) � r(B1 \ . . . \Bn) + (n� 1) r(M).

Using that � is a star and hence A0 ✓ B1 \ . . . \Bn, we deduce

h�i =
nX

i=0

r(Bi)� n r(M) � r(B0) + r(B1 \ . . . \Bn)� r(M)

� r(B0) + r(A0)� r(M)

= �(A0).

as desired.
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In order to apply Theorem 3.2, we have to prove that ~Sk is Fk-separable:

Lemma 8.3. ~Sk is Fk-separable.

Proof. Let !r ,
 
r0 2 ~Sk be given: nondegenerate, nontrivial, not forced by Fk, and

satisfying !r  !
r0. Pick (X,Y ) 2 ~Sk with !r  (X,Y )  !

r0 and |X,Y | minimum.
We claim that (X,Y ) emulates !r in ~Sk for Fk, and that (Y,X) emulates  r0 in ~Sk

for Fk. By symmetry, it is enough to prove that (X,Y ) emulates !r for Fk.
The proof of Lemma 3.4 shows that (X,Y ) emulates !r .12 To show that it

does so for Fk, consider a nonempty star

� =
�
(Ai, Bi) : i = 0, . . . , n

 
✓ ~S�!r r { r}

in Fk (where ~S := ~Sk) with !r  (A0, B0). Then
!r  (A0, B0)  (Bi, Ai) for all i � 1. (5)

We have to show that

�0 =
�
(A0

i, B
0
i) : i = 0, . . . , n

 
2 Fk

for (A0
i, B

0
i) := f#!r!s0

(Ai, Bi).
From Lemma 3.1 we know that �0 is a star. Since (X,Y ) emulates !r , we

have �0 ✓ ~Sk by (5). It remains to show that h�0i < k. We show that, in fact,

�
h�0i =

�
r(Y \B0) +

nX
i=1

r(X [Bi)� n r(M)  h�i ; (6)

as h�i < k by our assumption that � 2 Fk, this will complete the proof.
By submodulary of the rank function, we have

r(Y \B0) + r(Y [B0)  r(Y ) + r(B0)
and r(X [Bi) + r(X \Bi)  r(X) + r(Bi) for i = 1, . . . , n.

For our proof of (6) we need to show that the sum of the first terms in these
n + 1 inequalities is at most the sum of the last terms. This will follow from
these inequalities once we know that the sum of the second terms is at least the
sum of the third terms. So let us prove this, i.e., that

r(Y [B0) +
nX

i=1

r(X \Bi) � r(Y ) + n r(X) . (7)

For i = 1, . . . , n let us abbreviate A⇤
i := A1 [ . . . [Ai and B⇤

i := B1 \ . . . \Bi.
Since � is a star we have Ai ✓ Bj whenever i 6= j. Hence A⇤

n ✓ B0, giving

r(Y [B0) � r(Y [A⇤
n), (8)

and Ai+1 ✓ B⇤
i for i � 1. Hence B⇤

i [Bi+1 ◆ E. By submodularity, this implies

r(X \B⇤
i ) + r(X \Bi+1) � r(X \ (B⇤

i \Bi+1)) + r(X \ (B⇤
i [Bi+1))

= r(X \B⇤
i+1) + r(X)

for each i = 1, . . . , n� 1. Summing this for i = 1, . . . , n� 1, and recalling that
12Technically, we do not need this fact at this point and could use Lemma 8.2 to deduce it

from the fact that all �0 as below lie in Fk. But that seems heavy-handed.
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B⇤
1 = B1, we obtain

nX
i=1

r(X \Bi) � r(X \B⇤
n) + (n� 1) r(X) . (9)

Since {X,Y } and {B⇤
n, A⇤

n} are bipartitions of E, so is {X \ B⇤
n, Y [ A⇤

n}.
Moreover, we have !r  (X \B⇤

n, Y [A⇤
n) since !r  (X,Y ) and !r  (B⇤

n, A⇤
n)

by (5), and we also have (X \ B⇤
n, Y [ A⇤

n)  (X,Y )  !
r0. It would therefore

contradict our choice of (X,Y ) if we had |X \B⇤
n, Y [A⇤

n| < |X,Y |. Hence
|X \B⇤

n, Y [A⇤
n| � |X,Y |, and therefore

r(X \B⇤
n) + r(Y [A⇤

n) � r(X) + r(Y ). (10)

Adding up inequalities (8), (9), (10) we obtain (7), proving (6).

Lemma 8.4. M has an Sk-tree over Fk if and only if it has tree-width < k.
More precisely, M has an Sk-tree (T,↵) over Fk if and only if it admits a
tree-decomposition (T, ⌧) of width < k.

Proof. For the forward implication, consider any Sk-tree (T,↵) of M . Given
e 2 E, orient every edge st of T , with ↵(s, t) = (A,B) say, towards t if e 2 B,
and let ⌧ map e to the unique sink of T in this orientation. Then (T, ⌧) is a
tree-decomposition of M . If (T,↵) is over Fk, the decomposition is easily seen
to have width less than k.

Conversely, let (T, ⌧) be a tree-decomposition of M of width < k. For every
edge e = st of T , let Ts and Tt be the components of T � e containing s and t,
respectively. Let

↵(s, t) :=
�
⌧�1(Ts), ⌧�1(Tt)

�
2 ~U.

Since every node t has width less than k, its associated star {↵(s, t) : st 2 E(T )}
of separations is in Fk. (This includes the case of |T | = 1.) By Lemma 8.2 this
implies that ↵( ~E(T )) ✓ ~Sk, so (T,↵) is an Sk-tree over Fk.

Theorem 3.2 now yields the following duality theorem for matroid tree-width.

Theorem 8.5 (Tangle-treewidth duality theorem for matroids).
Let M be a matroid, and let k > 0 be an integer. Then the following statements
are equivalent:

(i) M has tree-width at least k.
(ii) M has no Sk-tree over Fk.
(iii) M has an Fk-tangle of Sk.

9 Tree-decompositions of small adhesion

As a case in point, let us illustrate the versatility of Theorem 3.2 by deducing a
duality theorem for a new width parameter: one that bounds the width and the
adhesion of a tree-decomposition independently, that is, allows the first bound
to be greater.

Recall that the adhesion of a tree-decomposition (T,V) of a graph G = (V,E)
is the largest size of an attachment set, the number maxst2E(T ) |Vs \ Vt|. (If T
has only one node t, we set the adhesion to 0.) Trivially if a tree-decomposition
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has width < k � 1 it has an adhesion < k, and it is easy to convert it to a
tree-decomposition of the same width and adhesion < k � 1.

The idea now is to have a duality theorem whose tree structures are the
tree-decompositions of adhesion < k and width less than w � 1 � k � 1. For
w = k this should default to the duality for tree-width discussed in Section 6.

Let ~U and ~Sk be as defined at the end of Section 3. Recall that ~Sk is
separable, by Lemma 3.4. Let

Fw
k =

�
� ✓ ~Sk | � = {(Ai, Bi) : i = 0, . . . , n} is a star with

��Tn
i=0 Bi

�� < w
 
,

(As before, we let
Tn

i=0 Bi := V if � = ;, so K1 is an Sk-tree over Fk if |G| < w.)
Note that, for w = k, we have Fw

k = Fk as defined in Section 6.

Lemma 9.1. Sk is Fw
k -separable.

Proof. Let !r ,
 
r0 2 ~Sk be given: nondegenerate, nontrivial, not forced by Fw

k ,
and satisfying !r  !

r0. Pick !s0 = (X,Y ) 2 ~Sk with !r  (X,Y )  !
r0 and |X,Y |

minimum. We claim that (X,Y ) emulates !r in ~Sk for Fw
k , and that (Y,X)

emulates  r0 in ~Sk for Fw
k . By symmetry, it is enough to prove that (X,Y )

emulates !r for Fw
k .

The proof of Lemma 3.4 shows that (X,Y ) emulates !r . To show that it
does so in Fw

k , consider a nonempty star

� =
�
(Ai, Bi) : i = 0, . . . , n

 
✓ ~S�!r r { r}

in Fw
k (where ~S := ~Sk) with !r  (A0, B0). Then

!r  (A0, B0)  (Bi, Ai) for all i � 1. (11)

We have to show that

�0 =
�
(A0

i, B
0
i) : i = 0, . . . , n

 
2 Fw

k

for (A0
i, B

0
i) := f#!r!s0

(Ai, Bi).
From Lemma 3.1 we know that �0 is a star. Since (X,Y ) emulates !r , we

have �0 ✓ ~Sk by (11). It remains to show that
��Tn

i=0 B0
i

�� < w. As in Lemma 6.1,
we shall prove this by rewriting the intersection of all the B0

i as an intersection
of the two sides of a suitable separation, and use submodularity and the choice
of (X,Y ) to show that this separation has order < w.

By (11) and the definition of f#!r!s0
, we have (A0

0, B
0
0) = (A0 [X,B0 \ Y ),

while (A0
i, B

0
i) = (Ai \ Y,Bi [X) for i � 1. Since the (Ai, Bi) are separations,

i.e. in ~U , so is
�Tn

i=1 Bi,
Sn

i=1 Ai

�
. As trivially (V,B0) 2 ~U , this implies that,

for B⇤ :=
Tn

i=1 Bi, also

⇣ n\
i=1

Bi \ V ,
n[

i=1

Ai [B0

⌘
=

(11)
(B⇤, B0) 2 ~U .

Note that
|B⇤, B0| = |B⇤ \B0| =

�� n\
i=0

Bi

�� < w (12)

since � 2 Fw
k .
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As !r  (X,Y ), and also !r  (B⇤, B0) by (11), we further have
!r  (X \B⇤, Y [B0)  (X,Y )  !

r0.

Hence if |X \B⇤, Y [B0| < |X,Y | then this would contradict our choice of (X,Y ).
Therefore |X \B⇤, Y [B0| � |X,Y |. As

|X \B⇤, Y [B0|+ |X [B⇤, Y \B0|  |X,Y |+ |B⇤, B0|

by submodularity, we deduce that

|X [B⇤, Y \B0|  |B⇤, B0| < w

by (12). Hence
���

n\
i=0

B0
i

��� =
���(B0 \ Y ) \

n\
i=1

(Bi [X)
��� =

��B0 \ Y,B⇤ [X
�� < w ,

which means that �0 2 Fw
k as desired.

The following translation lemma is proved like Lemma 6.3:

Lemma 9.2. G has an Sk-tree over Fw
k if and only if it has a tree-decomposition

of width < w � 1 and adhesion < k.

Theorem 3.2 and our two lemmas imply the following duality theorem:

Theorem 9.3 (Tangle-treewidth duality in graphs with given adhesion).
The following assertions are equivalent for all finite graphs G 6= ; and integers
w � k > 0:

(i) G has an Fw
k -tangle of Sk.

(ii) G has no Sk-tree over Fw
k .

(iii) G has no tree-decomposition of width < w � 1 and adhesion < k.

10 Weakly Submodular Partition Functions

Amini, Mazoit, Nisse and Thomassé [1], and Lyaudet, Mazoit and Thomassé [15],
proposed a framework to unify duality theorems in graph minor theory which,
unlike ours, is based exclusively on partitions. Their work, presented to us by
Mazoit in the summer of 2013, inspired us to look for possible simplifications,
for generalizations to separations that are not partitions, and for applications
to tangle-like dense objects not covered by their framework. Our findings are
presented in this paper and its sequel [8]. Although our approach di↵ers from
theirs, we remain indebted to Mazoit and his coauthors for this inspiration.

Since the applications of our abstract duality theorem include the applica-
tions of [1], it may seem unnecessary to ask whether our result also implies
theirs directly. However, for completeness we address this question now.

A partition of a finite set E is a set of disjoint subsets of E, possibly empty,
whose union is E. We write P(E) for the set of all partitions of E. In [1],
any function P(E) ! R [ {1} is called a partition function of E. We ab-
breviate  ({A1, . . . , An}) to  (A1, . . . , An), but note that the partition remains
unordered. A partition function  is called weakly submodular in [1] if, for every
pair (A,B) of partitions of E and every choice of A0 2 A and B0 2 B, one of
the following holds with A =: {A0, . . . , An} and B =: {B0, . . . , Bm}:
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(i) there exists a set F such that A0 ✓ F ✓ A0[(ErB0) and  (A0, . . . , An) >
 (F,A1 r F, . . . , An r F );

(ii)  (B0, . . . , Bm) �  
�
B0 [ (E r A0), B1 \A0, . . . , Bm \A0

�
.

Let us translate this to our framework. Given A ✓ E, let Ā := E rA. Then
~U := {(A, Ā) : A ✓ E} is a universe. Given a partition function  of E, let

~Sk =
�
(A, Ā) 2 ~U :  (A, Ā) < k

 
.

Every partition A = {A0, . . . , An} defines a star {(A0, Ā0), . . . , (An, Ān)} ✓ ~U ,
which we denote by �(A). Let

Fk :=
�
�(A) : A 2 P(E) and  (A) < k

 
[{{(X̄,X)} : |X|  1,  (X̄,X) < k}.

If all the stars in Fk are subsets of ~Sk, we call  monotone. All the weakly
submodular partition functions used in [1] for applications are monotone, and
we do not know whether any exist that are not.

Lemma 10.1. If  is weakly submodular, then ~Sk is Fk-separable.

Proof. Let ~S = ~Sk. Let !r ,
 
r0 2 ~S that are not forced by Fk and satisfy !r  !

r0

be given. Pick !s0 = (X,Y ) 2 ~S with !r  !s0  !
r0 and  (X,Y ) minimum. We

claim that !s0 emulates !r in ~S for Fk, and that  s0 emulates  r0 in ~S for Fk. By
symmetry, it is enough to prove that !s0 emulates !r for Fk.

We first prove that !s0 emulates !r . Let !s = (A,B) 2 ~S�!r r { r} be given.
Since  is weakly submodular, one of the following assertions holds:

(i) there exists F such that Y ✓ F ✓ Y [B and  (X,Y ) >  (F̄ , F );
(ii)  (A,B �  (A [X,B \ Y ).

Since A \X ✓ F̄ ✓ X, we have !r  (F̄ , F )  !
r0. So (i) does not hold, by the

choice of (X,Y ). So by (ii), !s0 _ !s = (A [X,B \ Y ) 2 ~S. This proves that !s0

emulates !r .
Now let us show that stars can be shifted. Let

� = {(Ai, Bi) : i = 0, . . . , n}

be a star in Fk \ ~S�!r , with (A0, B0) � !r . We have to show that

�0 =
�
(A0

i, B
0
i) : i = 0, . . . , n

 
2 Fk

for (A0
i, B

0
i) := f#!r!s0

(Ai, Bi). Since !r  (A0, B0)  (Bi, Ai) for i � 1, we have
(A0

0, B
0
0) = (A0 [X,B0 \ Y ), while (A0

i, B
0
i) = (Ai \ Y,Bi [X) for i � 1.

If n = 0, then |B0
0|  |B0|  1 and so �0 = {(A0

0, B
0
0)} 2 Fk. If n 6= 0, then

 (A0, . . . , An) < k. By the minimal choice of !s0 = (X,Y ), there exists no F
such that X ✓ F ✓ X [ A0 and  (X,Y ) >  (F, F̄ ) (as earlier). Applying the
weak submodularity of  with (X,Y ) and (A0, . . . , An), we deduce that

 (A0
0, . . . , A

0
n) =  (A0 [X, A1 \ Y, . . . , An \ Y )   (A0, . . . , An) < k.

Thus, �0 2 Fk.

24



In [1], a k-bramble for a weakly submodular partition function  of E is a
non-empty set B of pairwise intersecting subsets of E that contains an element
from every partition A of E with  (A) < k. It is non-principal if it contains no
singleton set {e}. In our terminology, Amini et al. [1] prove that there exists a
non-principal k-bramble for  if and only if there is no Sk-tree over Fk; they
call this a ‘partitioning k-search tree’.

Now any k-bramble B defines an orientation O of Sk: given {A,B} 2 Sk

exactly one of A,B must lie in B, and if B does we put (A,B) in O. Clearly
O is consistent and avoids non-singleton stars in Fk, and if B is non-principal
it avoids all singleton stars in Fk. Conversely, given an orientation O of Sk,
let B := {B : (A,B) 2 O}. If O is consistent, no two elements of B are disjoint.
If O avoids singleton stars in Fk, then B is non-principal. And finally, if  is
monotone and O avoids Fk, then B contains an element from every partition
A = {A1, . . . , An} of E with  (A) < k: since �(A) 2 Fk there is (Ai, Āi) 2
�(A) r O, which means that (Āi, Ai) 2 O and thus Ai 2 B.

Lemma 10.1 and Theorem 3.2 thus imply the duality theorem of Amini et
al. [1] for monotone weakly submodular partition functions:

Theorem 10.2. The following assertions are equivalent for all monotone weakly
submodular partition functions  of a finite set E and k > 0:

(i) There exists a non-principal k-bramble for  .
(ii) Sk has an Fk-tangle.
(iii) There exists no Sk-tree over Fk.
(iv) There exists no partitioning k-search tree.

11 Further applications

There are some obvious ways in which we can modify the sets F considered
so far in this section to create new kinds of highly cohesive substructures and
obtain associated duality theorems as corollaries of Theorem 3.2. For example,
we might strengthen the notion of a tangle by forbidding not just all the 3-sets
of separations whose small sides together cover the entire graph or matroid, but
forbid all such m-sets with m up to some fixed value n > 3. The resulting set
F can then be replaced by its subset F⇤ of stars without a↵ecting the set of
consistent orientations avoiding F , just as in Lemma 4.2.

Similarly, we might like tree-decompositions whose decomposition trees have
degrees of at least n at all internal nodes: graphs with such a tree-decomposi-
tion, of width and adhesion < k say, would ‘decay fast’ along (< k)-separations.
Such tree-decompositions can be described as Sk-trees over the subset of all
(� n)-sets and singletons in the Fk defined in Section 6.

Another ingredient we might wish to change are the singleton stars in F
associated with leaves. For example, we might be interested in tree-decompo-
sitions whose leaf parts are planar, while its internal parts need not be planar
but might have to be small. Theorem 3.2 would o↵er dual objects also for such
decompositions.

Conversely, it would be interesting to see whether other concrete highly
cohesive substructures than those discussed in the preceding sections can be
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described as F-tangles for some F of a suitable set S of separations – of a graph
or something else.

Bowler [3] answered this in the negative for complete minors in graphs, a
natural candidate. Using the terminology of [5] for minors H of G, let us say
that a separation (A,B) of G points to an IH ✓ G if this IH has a branch set
in B r A but none in A r B. A set of oriented separations points to a given IH
if each of its elements does. Clearly, for every IKk ✓ G exactly one of (A,B)
and (B,A) in ~Sk points to this IKk.

Theorem 11.1. [3] For every k � 5 there exists a graph G such that for no set
F ✓ 2~Sk of stars are the F-tangles of Sk precisely the orientations of Sk that
point to some IKk ✓ G.

To prove this, Bowler considered as G a subdivision of Kk obtained by
subdividing every edge of Kk exactly once. He constructed an orientation O
such that every star � ✓ O points to an IKk but the entire O does not. This O,
then, avoids every F consisting only of stars not pointing to any IKk. But any
F ✓ 2~Sk such that the orientations of Sk pointing to an IKk are precisely the
F-tangles must consist of stars not pointing to an IKk, since any star that does
is contained in the unique orientation of Sk pointing to the IKk to which this
star points.

However, Kk minors can be captured by F-avoiding orientations of Sk if we
do not insist that F contain only stars but allow it to contain weak stars: sets
of oriented separations that pairwise either cross or point towards each other
(formally: consistent antichains in ~Sk). In [8] we prove a duality theorem for
orientations of separation systems avoiding such collections F of weak stars.

In [7], we show that Theorem 3.2 implies duality theorems for k-blocks and
for any given subset of k-tangles.
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functions. Discrete Appl. Math., 309(20):6000–6008, 2009.

[2] D. Bienstock, N. Robertson, P. Seymour, and R. Thomas. Quickly exclud-
ing a forest. J. Combin. Theory Ser. B, 52(2):274–283, 1991.

[3] N. Bowler. Presentation at Hamburg workshop on graphs and matroids,
Spiekeroog 2014.

[4] J. Carmesin, R. Diestel, F. Hundertmark, and M. Stein. Connectivity and
tree structure in finite graphs. Combinatorica, 34(1):1–35, 2014.

[5] R. Diestel. Graph Theory. Springer, 4th edition, 2010.

[6] R. Diestel. Graph Theory (5th edition). Springer-Verlag, 2017.
Electronic edition available at http://diestel-graph-theory.com/.

[7] R. Diestel, J. Erde, and P. Eberenz. Duality theorem for tangles in graphs.
arXiv:1605.09139, 2016.

[8] R. Diestel and S. Oum. Unifying duality theorems for width parameters,
II. General duality. arXiv:1406.3798, 2014.

26



[9] R. Diestel and S. Oum. Tangle-tree duality in abstract separation systems.
ArXiv, 2017.

[10] R. Diestel and G. Whittle. Tangles and the Mona Lisa. arXiv:1603.06652,
2016.

[11] J. Geelen, B. Gerards, N. Robertson, and G. Whittle. Obstructions to
branch-decomposition of matroids. J. Combin. Theory (Series B), 96:560–
570, 2006.
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