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Abstract. Representations of small quantum groups u,(g) at a root of unity
and their extensions provide interesting tensor categories, that appear in differ-
ent areas of algebra and mathematical physics. There is an ansatz by Lusztig to
endow these categories with the structure of a braided tensor category.

In this article we determine all solutions to this ansatz that lead to a non-
degenerate braiding. Particularly interesting are cases where the order of ¢ has
common divisors with root lengths. In this way we produce familiar and unfa-
miliar series’ of (non-semisimple) modular tensor categories. In the degenerate

cases we determine the group of so-called transparent objects for further use.



1.
2.

2.1.
2.2.

3.

3.1.
3.2.

4.

4.1.
4.2.
4.3.
4.4.
4.5.

5.

5.1.
0.2
2.3.
5.4.
5.9.

6.
7.

CONTENTS

Introduction
Preliminaries
Lie-Theory
Lusztig’s Ansatz for R-matrices
Conditions for the Existence of R-Matrices
A first set of conditions on A/A’
A natural form on the fundamental group
Explicit calculation for every g
Technical Tools
Case A = Ay
Case An
Case Dn
Table of all quasitriangular quantum groups
Factorizability of Quantum Group R-matrices
Monodromy matrix in terms of Ry
Factorizability for symmetric Ry(f)
Factorizability for Ds,, Ry antisymmetric
Transparent objects in non-factorizable cases
Table of all factorizable quantum groups
Quantum groups with a ribbon structure
Open Questions

References

—-—
BEoooo

HJHHHEEBEBEHEEHEHEE

3
-

BEE

9%
o



1. INTRODUCTION

Hopf algebras with R-matrices, so called quasitriangular Hopf algebras, give rise to tensor
categories with a braiding ¢ : V @ W —+ W ® V. Of particular interest are braided
tensor categories where the braiding fulfills a certain non-degeneracy condition, see Def.
[5.1] which is equivalent to the fact that there are no transparent objects V, i.e. no objects
where the double-braiding ¢ : V@ W —» V ® W is the identity for all W. A C-
linear tensor category with a nondegenerate braiding, as well as finiteness conditions and
another natural transformation 6 : V' - V (twist), is called a modular tensor category.
Note that we do not require the category to be semisimple.

Modular tensor categories have many interesting applications: They give rise to topologi-
cal invariants and mapping class group actions [Tur94, [KLO1|. For example, the standard
generators T, S of the mapping class group of the torus SLy(Z) are constructed from 6
and ¢?, respectively. A different source for modular tensor categories in mathematical
physics are vertex algebras. There are only few example classes of modular tensor cate-

gories, in particular non-semisimple ones.

The aim of the present article is to provide modular tensor categories from small qguantum
groups ug(g) at a primitive ¢-th root of unity ¢ for a finite-dimensional simple complex
Lie algebra g. Lusztig [Lus90] has constructed these finite-dimensional Hopf algebras and
provided an ansatz for an R-matrix Ry©, where the fixed element © € u,(g)~ ® u,(g)™
is constructed from a dual basis of PBW generators, while Ry € u4(g)? ® uy(g)° is a free
parameter subject to some constraints. He gives one canonical solution for Ry whenever
£ has no common divisors with root lengths, otherwise there are cases where no R-matrix
exists [KS11] and the quantum group becomes more interesting [Lenl4|. Of particular
interest in conformal field theory [FGST06, [FT10L [GRI5| is the most extreme case where
all root lengths (o, «) divide £.

But even if there are no common divisors with the root length, the resulting braided
tensor categories may not fulfill the non-degeneracy condition and hence provides no

modular tensor category.

Both obstacles (existence and non-degeneracy) can be be resolved by extending the
Cartan part of the quantum group by a choice of a lattice Ap € A C Ay between
root- and weight-lattice, respectively a choice of a subgroup of the fundamental group
71 := Aw /AR, corresponding to a choice of a Lie group between adjoint and simply-
connected form. In this way the number of possible R matrices increases.
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In a previous article [LN14b| we have considered such extensions u4(g, A) and determined
solutions for Ry (under additional assumptions which we drop in this article to get all
solutions). We hence constructed braidings on the representation category of this Hopf
algebra. As it turns out, the solutions can be parametrized by subgroups Hy, Ho C 71 and
group pairings between H1, Ho, and the set of solutions depends on the common divisors
of ¢ not only with root lengths, but also divisors of the Cartan matrix. Some cases admit
no braided structure, while others have multiple in-equivalent solutions. An interesting
occurence was for example that B, behaves differently for n odd or even, and that Do,
with non-cyclic fundamental group allows several more solutions with non-symmetric Ry.

In the present article we first improve these techniques, and thus remove the additional
assumptions (allowing for several more solutions) and achieve the list of quasitriangular
structures more systematically. Then, using our new techniques, we determine which of
these choices fulfill the non-degeneracy condition. We also determine which cases have a
ribbon structure. A main role in the first part plays a natural pairing a, on the fundamen-
tal group 71 which depends only on the common divisors of £ with the fundamental group
and encapsulates the essential ¢-dependence. Then the non-degeneracy of the braiding
turns out to depend only on the 2-torsion of the abelian group in question.

Our result produces a list of modular tensor categories for representations of quantum
groups. Moreover we use our methods to determine the group of transparent objects if
the category is not modular, which is for example a prerequisite for modularization.

We now discuss our methods and results in more detail:

In Section 2 we briefly recall the Lie theory and Hopf algebra preliminaries: For every
finite-dimensional (semi-)simple complex Lie algebra g and a primitive ¢-th root of unity
¢ Lusztig has introduced in [Lus90] the small quantum group uy(g) which has a triangular
decomposition u;“ugu[; where the (exponentiated) Cartan algebra ug is the groupring of
the root lattice Ag, and ufzt are generated by simple root vectors E,,, F,, fulfilling g¢-
deformed Serre relations. In [Lus93| Sec. 32 he gives an ansatz for an R-matrix in the
form Ro® where © consists of dual PBW basis’ and Ry € ug ® ug is an arbitrary element
in the Cartan part that has to fulfill certain relations.

Our goal is to study the existence and non-degeneracy of R-matrices of this form for the
quantum group u,(g, A, A’) with any choice of lattice between root- and weight-lattice
Ar € A C Ay and any possible choice of quotient by a subgroup A’ C A in the Cartan
part u® = C[A/A’]. Later, we prove that A’ is in fact unique if we want a quasitriagular



structure (Cor. [3.6).

The Rp-matrix has the following interpretation: It is an R-matrix for the groupring
C[A/A'] and it appears as the braiding between highest-weight vectors in our u4(g)-
modules. Thus the previous theorem clarifies which choices for an R-matrix for the group
ring lift to the quantum group.

In Section 3 we address the question of constructing quasi-triangular R-matrices. First
we briefly recall the following result in [LN14b|, which was in essence a combinatorial

problem solved in [LN14al] and will be used continuesly:

Theorem (3.3). The Ry-matriz is necessarily of the form

1

f(,u? V) = E q_(u7u)g(ﬂa D)5ﬂ6H1 556H2

where Hy, Hy are subgroups of A/Ar C m with |Hy| = |Ha| =: d (not necessarily iso-
morphic!) and g: Hy x Hy — C* is a pairing of groups.

Then we proceed differently than in the previous article: Using the previous result, we
prove in Lemma [3.5 that the quasitriangularity of R is equivalent to the assertion that
the group pairing f := |A/A’|- f between the preimages Gy := A;/A’ of the groups H; is
non-degenerate (which is no surprise). In particular we show that this condition fixes A’
uniquely. In later applications we often encounter f as a natural identification of G and

the dual G, e.g. when studying representation theory.

To find all solutions f with this property we develop a machinery to push f into the
fundamental group m;, which encapsulates all the ¢-dependence: In Definition [3.8] we

give an abstract characterization of a centralizer transfer map
. ~ 4 L
Ay A/AR — CentA(AR)/CentAR(A)

(without proving that it always exists). In a generic case this is just multiplication by
£, but it severely depends on common divisors of £ with root length and divisors of the
Cartan matrix. With this matrix we can transfer ¢~ (**) to a natural form a, on the funda-
mental group. In a generic case ay(u,v) = e=2™ (:¥) We prove that f is non-degenerate
iff af = ag(g o (id ® Ay)) is non-degenerate. This explains why the set of solutions, say
for fundamental group Z,, always looks like the subset of invertible elements ZX but it
is shifted (namely by ay) depending on ¢ and the root system in question.

In Section 4 the remaining computational work is done for quasitriagularity: We calcu-
late a list containing a, for all simple g, depending on common divisors of £ with root
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length and divisors. We thus write down all solutions for f and hence R-matrices. The
calculation starts with the Smith normal form for the Cartan matrix in question and
uses three cases: For A = Ay we have a generic construction, the cases A, with their
large fundamental group Z, 41 is treated by hand, as is Dy, with non-cyclic fundamental
group, which has the only cases allowing A # As.

In Section 5 we address our main issue of factorizability with our new tools:

In Subsection 5.1 we introduce factorizability. Then we calculate the monodromy ma-
trix Ro1 R for an arbitrary choice of R-matrix in terms the the Rg-part. This gives a purely
lattice theoretic problem equivalent to the factorizability of such an R-matrix. Then we
prove in the main Thm. that factorizability is equivalent to the non-degeneracy of a
symmetrization Sym( f ) of f . As will turn out later, the radical of this form is isomor-
phic to the group of transparent objects.

In Subsection 5.2 we restrict ourselves to the symmetric case where Hy = Hs and f, g
are symmetric. Other cases appear only in some the non-cyclic Zsy X Zo-extension for type
g = Do, and are dealt with in Subsection 5.3 and give surprising new solutions.

The main result for the symmetric case is that the radical of the form Symg(f) is in this
case simply the 2-torsion of A/A’ (Ex. and that this is non-degenerate precisely for
odd ¢ and odd A/AR as well as for g = B, A = Agr, { =2 mod 4 including A;.

In Subsection 5.4 we prove the following result:

Lemma (5.17). The transparent objects in the category of representations of the Hopf
algebra ug(g, A) with R-matriz given by Lusztigs ansatz are 1-dimensional objects C,, and

A~

are the f-transformed of the radical of Symg(f):

X() = F(1,€) € € Rad(Symg(f)).
In Subsection 5.5 we summarize our result by a table containing all quasitriangular
quantum groups u4(g, A) with their group of transparent objects. We show in Subsection
5.6 that all have a ribbon structure. The factorizable solutions and thus modular tensor
categories are £ odd, A = Ar and the following new factorizable cases:
(¢ odd, Eg,A = Aw) and ({ =2 mod 4, g = B, A = Agr) (including A;) and (¢ odd,
g = Doy, Ay # Ag). All other cases can be modularized as discussed in Question
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g H 14 ‘ # H H,; = H; (i=1,2) g ‘ T CA/N
¢ odd 1 0
all Zl <0> g = 1
£=0mod 4 1 Ly
Zyt 2t
Zq (d\,) g(dAn, d\,) = exp (2E)
An21 n
=T 00 ) 7y, 2| x
1 = Zin+ 7 n+l kl—dn
dint+1| d=n5 gcd(d,gd(&d))fl .
T ged(£,d)
¢ =2 mod 4 1 Zy (0) g=1 0
{=2mod4 | 2 Zo (An) g(Any An) = £1 Zs
B2 _ "
/=0mod4 | 2 Zs (An) g Ay An) = £1 7y
T = ZQ
¢ odd 1 Zo (An) g(An, A\n) = (—1)"+1 Zo
(=2mod4 | 1 7y (0) g=1 zy2
(=2mod4 | 1 d(ny An) =1 A
Cn>3 _ B n
f=0mod4 | 2 Zs ) 90w, An) = £1 z
™ = ZQ
£ odd 1 g A, A\n) = —1 Zio
(=2mod4 | 1 7, (0) g=1 721
¢ =2 mod 4 1 Aon—1,Aap) = (—1)"
Hy = (Aap—1) 902n-1,A2n) = (=1) 72n
2
£=0mod 4 | 25y, Zo 9(Aan—1,A2n) = £1, n even
Hs = ()Xo,
¢ odd 1 2 {Aon) 921, A2n) = 1 0
Day>4




7T1:ZQ><Z2

(=2mod4 | 1 d(Aan, Aap) = (—1)7*t zan1
¢=0mod 4 | 20y, Zo (Aon) g(Aan, Aop) = £1, n odd zin
¢ odd 1 g(/\gn, )\Qn) = -1 ZQ
¢ even 2 I(A2(n—1)1is Ao(n—1)4j) = £1 z3"
Zo X 2o ()\Qn, /\2n+1> det(K) = Kis + K91 =0 mod 2 Zo
£ odd
det(K) = Ki2 + K21 = 1 mod 2 73
¢{=2mod4 | 1 Zy (0) g=1 /i
/=2 mod 4 1 9(2)\2n+1, 2>\2n+1) =1
72n+1
2
¢ =0 mod 4 2 ZQ <2>\2n+1> 9(2)\2n+17 2)\2n+1) =41
Doy,
Zrizs ¢ odd 1 9(2A2n41,2M2n41) = —1 Zo
m = Z4
¢ even 4 9(Xont1, Aons1) = ¢, ¢t =1 zy !
Zy (A2n+1)
¢ odd 2 9(A2nt1, Aong1) = £1 Zo
(=2mod4 | 1 A (0) g=1 z8
£ =0 mod 3 3 A, M) =c¢, =1 78,2 1
Ee — 2mi2
{=1mod3 | 2 Z3 (An) g(An, An) = 1,exp (352)
T = Z3
) 0,21/
{=2mod 3 | 2 9(An, An) = 1,exp (2) 21




(=2mod4 | 1 Zy (0) g=1 A
5 ¢ even 2 g(An, A\p) = £1 Ly
' Z, (An)
m™m = ZQ

£ odd 1 g(An, An) =1 Zio

Ex (=2mod4 | 1 Zy (0) g=1 VA
Fy /f=2mod4 | 1 A (0) g=1 73
G f=2mod4 | 1 Zy (0) g=1 72

Table 1: Solutions for Ry-matrices

2. PRELIMINARIES

2.1. Lie-Theory. Throughout this article, g denotes a finite-dimensional simple complex
Lie algebra. We fix a choice of simple roots A = {«; |7 € I}, so that the Cartan matrix
(cvirar))

C is given by Cj; = 2 (Zz’zz E where (, ) denotes the normalized Killing form. For a root
a, we define d,, = % and set d; = do,. By Ag := Z[A] and AY, := Z[AY] we denote
the (co)root lattice of g.

By Ay, we denote the weight lattice spanned by fundamental dominant weights A;, which
are defined by the equation (\;, a;) = 0; jd;. Finally, we define the co-weight lattice Ay}, as
the Z-span of the elements A\ := 2‘—2 The quotient m1 := Ay /AR is called the fundamental
group of g.

One can easily see that the Killing form restricts to a perfect pairing (, ) : Ay, X Agp = Z
and that we get a string of inclusions Ap C A}, € Ay C Ay,

2.2. Lusztig’s Ansatz for R-matrices. The starting point for our work [LN14b| was
Lusztig’s ansatz in [Lus93|, Sec. 32.1, for a universal R-matrix of U,(g). Namely, for a
specific element © € UqZO ® UqSO from a dual basis and a suitable (not further specified)
element in the coradical Ry € Ug ® Ug we are looking for R-matrices of the form

R = Ry©

Note, that this ansatz has been successfully generalized to general diagonal Nichols al-

gebras in [AY13]. In our more general setting Uy(g, A, A"), we have
Ry € C[A/N] @ C[A/N]
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This ansatz hast been worked out by Miiller in his Dissertation [Miil98a][Mul98b] for
small quantum groups u,(g) which we will use in the following, leading to a system of

quadratic equation on Ry that are equivalent to R being an R-matrix:

Theorem 2.1 (cf. [Miil98b], Thm. 8.2). (a) There is a unique family of elements Og €
UE®“E> B € AR, such that ©g = 1®1 and © = 3 ;505 € u@u satisfies A(z)© = OA(r)
forallx € w.
(b) Let B be a vector space-basis of u™, such that Bg = BN ug is a basis of Ug for all
5. Here, ug refers to the natural Ag-grading of u=. Let {b* | b € Bg} be the basis of ug
dual to Bz under the non-degenerate bilinear form (-, -): u~ @ ut — C. We have

05 = (—1)"qs > b @bt cuy @uf.

bEBB

Theorem 2.2 (cf. [Miil98Db|, Theorem 8.11). Let A’ C {u € A | K, central in uqy(g,A)}
a subgroup of A, and Gy, Gy subgroups of G := A/N', containing Ar/N . In the following,
Wy i1, 2 € G1oand v, vy, vs € Go.
The element R = Ry© with an arbitrary Ry = > (V) Ky ® Ky is a R-matriz for
uq(g, A, N'), if and only if for all o« € A and p,v the following holds:

(1) f(“+a¢y) :q_(y’a)f(#7y)7 f(MaV‘f‘a) :q_(”’a)f(ﬂa V)v
(2)
Do flvn) fuzove) = Gu e f(pasv), Y Fpsva) f (i, ve) = Gy s f1 1),

v1t+re=v p1tpe=p

(3) S fpv) =6bu0. D Flv) = dup.
M v

3. CONDITIONS FOR THE EXISTENCE OF R-MATRICES

3.1. A first set of conditions on A/A’. The target of our efforts is a Hopf algebra
called small quantum group u,(g, A, A’) with Cartan part ug = C[A/A]. Tt is defined e.g.
in [LN14b| and depends on lattices A, A’ defined below. For A = A the root lattice and
this is the usual small quantum group; the choice of A’ differs in literature.

In the previous section we have discussed an R = Ry©-matrix for the quantum group

uqg(g, A, ") can be obtained from an Ryp-matrix of the form

Ro= Y fnv)K, @ K, € CA/N] © C[A/N]
u,veA

In the following we collect necessary and sufficient conditions for R = Ry© to be an

R-matrix.
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Definition 3.1. We fix once-and-for-all a finite-dimensional simple complex Lie algebra
g and a lattice A between root- and weight-lattice

Ar CACAy.

These choices have a nice geometric interpretation as quantum groups associated to dif-

ferent Lie groups associated to the Lie algebra g.

Another interesting choice is Ap € A C Ay, = A%, which would below pose no additional
complications and may produce further interesting factorizable R-matrices.

Definition 3.2. We fix once-and-for-all a primitive £-th root of unity q.
For A1, Ay C Ay, we define the sublattice

Centp,(Ag) :={veMN|(v,u)€l-Z Yue A}
Informally, this is the centralizer with respect to the braiding g~ ).

Contrary to [LN14b| we do not fix A’ but we prove later that there is a necessary
choice for A’. In this way, we get more solutions than in [LN14b]. The only condition

necessary to ensure that the Hopf algebra uq(g, A, A’) is well-defined is A’ C Centy , (AR).

Theorem 3.3. (c.f. [LN14b| Thm. 3.4) The Ro-matriz is necessarily of the form

1

(4) flp,v) = m : q_(“’l’)g(ﬂa V)0pecH, OpeH,

where Hy, Hy are subgroups of H := A/Ar C 71 with equal cardinality |Hy| = |Ha| =: d

(not necessarily isomorphic!) and g: Hy x Hy — C* is a pairing of groups.

The necessity of this form (in particular that the support of f is indeed a subgroup!)
amounts to a combinatorial problem of its own interest, which we solved for 7 cyclic in

[LN14a)] and for Zs x Zy by hand; a closed proof for all abelian groups would be interesting.

Definition 3.4. Let g : G x H — C* be a finite group pairing, then the left radical is
defined as

Radr(g) :={ € Glg(\,n) =1Vn € H}.
Similarly, the right radical is defined as
Radr(g) :={ne€ H|g(A\,n) =1V e G}.

The pairing g is called non-degenerate if Radr(g) = 0. If in addition Radr(g) =0, g is
called perfect.
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For an Ry-matrix of this form, a sufficient condition is that they fulfill the so-called
diamond-equations (see [LN14b| Def. 2.7) for each element 0 # ¢ € (Cent(Ag) N A)/A .
However, we will now go into a different, more systematic direction that makes use of

the following observation:

Lemma 3.5. An Ry-matriz of the form given in Theorem[3.3 is a solution to the equa-
tions in Theorem |2.3, and hence produces an R-matriz Ro© iff the restriction to the

support
f=dlAr/N|-f: G1 x Gy — C*

is a perfect group pairing, where G; := N;/N' C A/N =: G.

Proof. We first show that a solution with restriction to the support a nondegenerate
pairing solves the equation:

The first equations are obviousely fulfilled for the form assumed.

flu+a,v)=q I fu), flpv+a)=q " fuv),

For the other equations the sums get only contributions in the support A /A’ xAg/A’. The
quantities f(u,v) - d|Ar/A| for fixed v (or u) are characters on the respective support,
and by the assumed non-degeneracy all v # 0 give rise to different nontrivial characters.
Then the second and third relations follows from orthogonality of characters. Note that
since d|Ag/AN| = |G1| = |G2| (equality of the latter was an assumption!) we were able to

chose the right normalization.

For the other direction assume a solution of the given form to the equations. Then already
the third equation shows that no f(—, ) may be the trivial character and hence the form
on the support is nondegenerate and hence perfect by |G1| = |G2|. O

Corollary 3.6. A first consequence of the perfectness of f (i.e. a necessary condition

for quasi-triangularity) is:
Centp, (A1) = Centp,(Ag) = A

This fizes N uniquely. Morover in cases A1 # As, which can only happen for g = Doy,

where w1 s noncyclic, we get an additional constraint relating A1, As.

In our case, the only possibility for A; # Ag, s.t. G1 = Gs is g = Da,. In this case, we
have Centp ,(Aw) = Centy ,(Ag) and thus the above condition is always fulfilled.

Our main goal for the new approach on quasitriangularity as well as the later modularity
is to reduce this non-degeneracy condition for f to a non-degeneracy condition for g on
Hi, Hy C m; that can be checked explicitly.
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3.2. A natural form on the fundamental group. We now define for each triple
(A, A1, A2) and each £th root of unity ¢ a natural pairing ay on the subgroups H; := A;/Ar

_27ri(”7'/) . In

of the fundamental group m := Aw/Ag. The simplest example is ay = e
general it is a transportation of the natural form ¢~ () (which does not factorize over
AR) to H; by a suitable isomorphism Ay.

This isomorphism A, will encapsulate the crucial dependence on the common divisors
of ¢, |H| and the root lengths d;; moreover, for different H these forms are not simply
restrictions of one another.

Then, we can moreover transport any given pairing g together with ¢~ (**) along the
isomorphism Ay to the H; and thus define forms aj on H. The main result of this section
is in Theorem that the non-degeneracy condition in Lemma for Ro(f) depending

on H;, g is equivalent to az being non-degenerate.

Definition 3.7. Let A C A}, be a sublattice, s.t. AR € A. By A C A}, we denote the
unique sublattice, s.t. the symmetric bilinear form (.,.) : Ay, x A}, — Q induces a

commuting diagram

Ag A A},
(5) J/%’ = J/g
A} A* < A%,

where A* := Homgz (A, Z). In particular, we have Ag = AY,, and AVW = Ag.

Definition 3.8. A centralizer transfer map is an group endomorphism A, € Endz(A),
s.t.
(1) Ag(A) = AN Ap = Centi(AR)
(2) Ae(AR) = AN L-A = Centh (7).
Such a Ay induces a group isomorphism
AJ/AR = Centy(Ag)/Cently ,(A).

Of course Ay is not unique.

Question 3.9. Are there abtract arguments for the existence of these isomorphism and

for its explicit form?

We will calculate explicit expressions for A, depending on the cases in the next section.
At this point we give the generic answers:

Example 3.10. For A = Ay}, we have Ay = (- id.
For A = AR the two conditions are equivalent, so existence is trivial (resp. obviously
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the two trivial groups are isomorphic) and we may simply take for Ay any base change
between left and right side. The expression may however be nontrivial.

Lemma 3.11. Assume ged({, |Ay,/Al) =1, then Ay = £ - id. In particular this is the

case if £ is prime to all root lengths and all divisors of the Cartan matrix.
Moreover if £ = 10y with ged(ly, |Ay,/A]) =1, then Ay = 41 - Ay,.

This means we only have to calculate Ay for all divisors € of |Ayy,/A|, which is a subset
of all divisors of root lengths times divisors of the Cartan matric.

Proof. For the first condition we need to show for any A\ € A}, that £A € A already
implies A € A. But if by assumption the order of the quotient group Ay}, /A is prime to
£, then (- is an isomorphism on this abelian group, hence follows the assertion. For the
second condition applies the same argument noting that [A/Ag| = [A}},/Al.

For the second claim we simply consider the inclusion chains
ANy CAnby-Agc ANt -Ag
Ag(AR) CANty-AC Agpne-A

where a first isomorphism is given by Ay, and again /;- is a second isomorphism because

it is prime to the index. O
Our main result of this chapter is the following:

Theorem 3.12. Let Ag C A1,Ay C Ay be intermediate lattices, s.t. the condition
in Corollary is fulfilled, i.e. Centy,(A1) = Centp,(A2) = A. Assume we have a
centralizer transfer map Ay.

1) The following form is well defined on the quotients:
(1) [ g f fi q
al: Ai/Ag x Ao/AR — C*
(A ) — g~ M) (X, Ag(p)).

(2) Let
Cent} (M) :={A € Ay | g™ = g\, 1) Vi € Ao}

Then the inclusion C’emﬁ‘lqXl (A2) <= Ay induces an isomorphism
(6) Cent (A)/A' = Rad(a).

Corollary 3.13. The quasitriangularity conditions for a choice Rg are by Lemma
equivalent to the non-degeneracy of the group pairing on Ay /A x Ag/A':

f()‘7 :u’) = qf()\,u)g()\’ :u')



15

By the previous theorem this condition is now equivalent to the nondegeneracy of af;.

This condition on the fundamental group, which is a finite abelian group and mostly
cyclic, can be checked explicitly once af; has been calculated.

Proof of Thm.[3.13. The first part of the theorem is a direct consequence of the defini-
tion of the centralizer transfer matrix A,. For the second part, we first notice that by
assumption we have a commutative diagram of finite abelian groups

Ap/N s Ay JN ———— % Ay /AR

o

(Ag/Centp, (AR))" —— (Ag/A)» —— (Centp,(Ag)/A)",

where G denotes the dual group of a group G.
Now, by the five lemma we know that f is an isomorphism if and only if the induced

map f’ is an isomorphism. Post-composing this map with the dualized centralizer transfer

matrix A7 : (Centa,(Ag)/A)" = (Az/AR)" gives al. O

4. EXPLICIT CALCULATION FOR EVERY g

In the following, we want to compute the endomorphism A, € Endz(A) and the pairing
ay on the fundamental group explicitly in terms of the Cartan matrices and the common
divisors of ¢ with root lengths and divisors of the Cartan matrix. We will finally give a
list for all g.

4.1. Technical Tools. We choose the basis of simple roots «; for Ar and the dual basis
of fundamental coweights \; for the dual lattice Ay, with (ai;, AY) = d; ;.

For any choice A C Ay C Ay, let Ay be a basis matriz i.e. any Z-linear isomorphism
Ay, — A sending the basis A\Y of A}, to some basis p; of A. It is unique up to pre-
composition of a unimodular matrix U € SLy,(Z).

The dual basis A; of A is defined by
(AR (), An(X])) = 63

Explicitly, A; is given by A; = (AP AR)T, where (AR)ij = (4, ;). Now, let Ay =
PASAQ A be the unique Smith decomposition of A, which means: Py, @ are unimodular
and Sy is diagonal with diagonal entries (Sy); =: dé\, such that df\ | dé-\ for i < j.
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Example 4.1. For the root lattice the dé\R are the divisors of scalar product matrix

(e, o). Their product is

Qi O

\
For the coweight lattice all dé\W = 1. For the weight lattice we recover the familiar d,f\W =

d;.

Without loss of generality, we will assume the basis matrices Ax to be symmetric, i.e.
Qn = PE. We then have the following Lemma:

Lemma 4.2. Let Ap C A C Ay, be a lattice. We define lattices

14
Acent := (PD'Dy P! Dy := Diag | ——— | .
Cent = (FX)™DePy ‘ W’(gcd(&d?))

Then,
C’entAR (A) = ARACentAVW CentA(AR) = AAACentAVW.

Proof. We compute explicitly,
Centp,(A) =ApNe-A
= ApAy, N (A AR)TEAY,
= (A AR) (A3 AR)T) T ARy, N EAY)
= ARALN (Ax N AYy)
= AR(PASAPAT)—l(PASAPATAV NLAY)
= Ap(PY) 'Sy (SaAyy NEATy)
= Ar(PL)~ 1SA1D13Lg(lcm(S‘/\“,6))AVW
= Ap(PH)™'DyAYy = ARACen Ay -
On the other hand,
Centp(AR) = AUZAR
= AU/LAY,
= ApAY, U LAY,
= PASAPTAY, ULAY,
= Py(SAAY, ULAY)
= PySADAYy,
= AA(PD) T DAYy = ApAcemAYy

In particular, this means A;Centy(Ag) = Centp,(A). O
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4.2. Case A = Ay . In order to exhaust all cases that appear in our setting, we continue

with A = Awi

Lemma 4.3. In the case A = Ay, the centralizer transfer matrix Ay is of the following

form:

AAWACenthpalAXivv ng(& |7T1|) 75 1
{-id, else.

Ay =

Here, C = PoScQc denotes the Smith decomposition of the Cartan matriz of g.

Proof. As we noted in Example we have Ap,, = Diag(d;), for d; being the ith root
length. Since d; € {1, p} for some prime number p, up to a permutation Ay, is already in

Smith normal form: this means that P, is a permutation matrix of the form (P, )

ij =
0j.(s) for some o € Sy, s.t. dy1) < -+ < dg(y). It follows that Acent = Diag (m)

Using the definition Cj; = (aif‘j), in the case ged(¥, |m1|) # 1 we obtain

ACentCT = C1A’4Cent-
Thus,

ApAR = Any AcentQEPS 1AX3V AR
= ApC™t AcemQL P, C
- ARACent(CT)_ngPC_'IC
- ARACent-

By the previous Lemma, this proves the first condition for A,. The second condition
follows immediately from the previous Lemma.

The case ged(Z, |m1|) = 1 follows from Lemma and the fact that |mi| = |AY, /A%, O

4.3. Case An. In the following example, we treat the case g = A, with fundamental
group Aw /AR = Zy41 for general intermediate lattices A C A C Ayy.

Example 4.4. In order to compute the centralizer transfer map Ay, we first compute the

Smith decomposition of Agr:
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2 —1 0 0
-1 2 -1 0 0
0 -1 2
AR =
0 0 -1 0
-1 2 -1
0 0 -1 2
-1 0 0 0 /1 0 0 0 —2 1 0 0
2 —1 0 ol f{o v o 0 a0 1 0
o o2 [0 0o 1 40 0
0 0 0 D 10
: 2 -10 1 0 —n 01
0 ... o 2 1/ \o .. 0n+1) \ 1 0 ... 00

A sublattice Ap C A € Aw is uniquely determined by a divisor d | n + 1, so that

=

A/Ar = Z4 and is generated by the multiple CZ)\n, where d = ”TH. Then

JA 1,i<n

' d,i=mn
Since A, is simply laced with cyclic fundamental group, the formula Ay = PRSAP}Q
gives us symmetric basis matrices of sublattices A C A C Ay . We also substitute the
above basis matriz of the root lattice Ar by AR(QR)_ng, It is then easy to see that the
definition Ay := PRDgpg gives a centralizer transfer matriz. We calculate it explicitly:

5z'j7 1< n
(Ag)ij = (PRDgPIgl)Z‘j = (’I’L—|— 1 —j) (W — 1) , 1=n andj <n
4 s g
gcd(6,d)° t=J=n

Now a form g is uniquely determined by a dth root of unity g(x,x) = exp(%) = CZE

4

with some k. Then we calculate the form ay

on the generator:

al(x,x) = ¢~ A0 g(x, Ay(x))

_ (n+1)2-é AV >\’\n/) Y4

24c 7 n’ - 7
=q d*ged(t,d) Q(X,X)g d(e,d)

B omi - (k€ — dn)
o d- ged(l, a?) '




19

For exzample the trivial g (i.e. k = 0) gives an R-matriz for all lattices A (defined by

dd =n+ 1) iff gcd?@ ) is coprime to d. For £ coprime to the divisor n + 1 this amounts

to all lattices associated to decompositions of n+ 1 into two coprime factors.

4.4. Case Dn. Finally, we consider the root lattice D,,. Since we have 7 (Dap>4) =
Zy X Zy and 71 (Dapt1>5) = Za, it is appropriate to split this investigation in two steps.
We start with Dg,>4. In order to compute the respective Smith decompositions, we used
the software Wolfram Mathematica.

Example 4.5. In the case Doy>4, we have three different possibilities for the lattices
Ar C Ay, A C Ay
(1) Ay # Ao, Hy = Hy = Zy: In this case, the subgroups A;/Ar C AR are spanned by
the fundamental weights Ag(,—1)4i- As in the case Ay, we define the centralizer
transfer map Ap := PRDgPlgl on Ho. This is possible since the symmetric basis
matric Ap, = PRSAQPIZQ of As is already in Smith normal form. Using the soft-
ware Wolfram Mathematica in order to compute Pr, we obtain Ag(Aay) = m,
Combining this with (Aop—1, Aop) = ”771, we get
27t - (kl —2(n — 1))
2 ged(2,0) >

af,(>\2n—1, A2n) = €xp <
fOT’ g()‘2n717 )‘Zn) = exp (#)
(2) Ay = Ag, H; = Zy: Without restrictions and in order to use the same definition
for Ay as above, we choose A;, s.t. the group A; /AR is spanned by Aay,. Combining
the above result Ag(Xoy) = m with (A2n, A2n) = 5, we obtain

271 - (kl — 2n)

¢ _ )

om0 = e (%)
for g(Aopn, Aapn) = exp (#)

(3) Ay = Ao = Aw, H X7y X Zo: A group pairing g : (Za X L) X (Zg X Zg) — C*

is uniquely defined by a matriz K € gl(2,F2), so that
27T’LK”>

9(A2(n—1)+i> A2(n—1)+j) = €xp ( 5
Since Dy, is simply-laced, we have Ay = £-1d. Using ()\Q(n,l)ﬂ, )\2(”,1)+j) mod 2 =
Oitjodd, we obtain

2l

a7 (Ao(n—1)+i> A2(n—1)+j) = €Ip ( 5

The last step is the case Doy q1>5:

Example 4.6. Since it it is simply-laced and its fundamental group is cyclic, the case

Doy 1>5 can be treated very similar to A,,. We distinguish two cases:
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(1) Ay = Ao, H; = (2X\opt1) = Zo. As in the case A,, we define the centralizer

transfer map Ay := PRDgP}gl on Hy. Using (Aon+t1, Aont1) = 2”:1, we obtain
27 - (k€ —2(2n + 1))
¢
2\ 2\ =
ag( 2n+1, 27’L+1) eIp ( 2 . gcd(2, g)

for g(2Xan+1, 2 on41) = exp (%)
(2) A1 = Ao = Aw, H = (Aapt1) = Zy4. By an analagous argument as above, we

obtain

omi - (bl — (2n + 1))) |

ah(Aant1, Aons1) = exp ( 1

for g(Aan+1, Aan1) = eap ().

4.5. Table of all quasitriangular quantum groups. In the following table, we list
all simple Lie algebras and check for which non-trivial wchoices of A, A;,¢ and g the
element Rp©O is an R-matrix. As before, we define H; := A;/Ar and H := A/Ag. In

the cyclic case, if x; are generators of the H;, then the pairing is uniquely defined by an

element 1 < k < |H,|, s.t. g(x1,z2) = exp (2‘}?1"“) In the case Ds,, A = Ay, g is uniquely

iKY,
defined by a 2 x 2-matrix K € gl(2,F2), s.t. g(Ag(n—1)+is Ao(n—1)+5) = €xp <2 2K”> for
i,j e {1,2}.
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g l H; (i=1,2) g ay
all 1 Zy (0) g=1 1
Za dAn g(dAn, dNp) = exp (22
Apsr N (dAn) ( ) (%%°) exp <2m.(u—c§n)>
= Zn‘H 7 __ n+l kl—dn \ _ d-ged(£,d)
din+1| d=n8 god (d, £t ) =1
B ¢ even 2 g(Any An) = 1 -1
B | o A
e ¢ odd 1 9(An, An) = (1) exp (W)
i(kt
f =2 mod 4 1 g(An, A\n) =1 exp (W)
Cn
=3 (=0mod4| 2 Z, ) 9, An) = 1 ~1
T = 2o
o 2mi-(k€—2n)
£ odd 1 g()‘m )\n) =-1 exp <f)
(=2mod4| 1 A1, Aan) = (—=1)"
o Hy = (Mgp—1) 90an-1,d2n) = (=1) (2m’-(k§n+1))>
exp | —34—=
¢=0mod 4 | 25y, Zo 9(Aan—1,A2n) = £1, n even
Hy = () n mi-(kf—2(n—
¢ odd 1 2 & (an) 91, Agm) = —1 exp (2L
Day>4
=7 Z
T o X Lo { =2 mod 4 1 g(A2n, Azn) = (_1)n+1 -y
(2500
¢=0mod 4 | 25y, Zs (Aon) g(Aan, Aap) = £1, n odd
todd | 1 900, Aan) = —1 exp (20420
¢ even 2 I A2(n=1)+i> Ao(n—1)+j) = E1 s o
Zo X Zo | (Aan Do) exp (750 ) (—1)+
¢ odd det(K) = K2 + K2 mod 2
f=2mod 4 1 9(2)\2n+17 2/\2n+1) =1 p
(27ri~(k2—2n—1)>
exp | —2%—
f =0 mod 4 2 Z2 <2>\2n+1> 9(2)\2n+1> 2>\2n+1) =41
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D n mi-(k0—2(2n
2n+1>5 ¢ odd 9(2)\2n+1, 2>\2n+1) — exp (W)
™ = Z4
{ even 9 Aons1, dony1) = ¢, ¢t =1 et
74 ans1) exp (W)
¢ odd 9(A2ny1, Aopy1) = £1
¢ =0 mod 3 I An) =¢, =1
Eo f=1mod3 Zs (An) g(Any An) = 1,exp (M) exp (M)
™ = 43 3 3
— 2mi
£=2mod 3 g(An, A\n) = 1,exp (T)
¢ even g(Any An) = 1
E i (el —
_7 ZZ <)\n> exp (%)
T = 2o
¢ odd g(An, A\n) =1

Table 2: Solutions for Rp-matrices

The Lie algebras FEg, Iy and G2 have trivial fundamental groups and thus have no non-
trivial solution. We want to emphasize once more that the choice A; = A always leads

to a quasitriangular quantum group.
The following Lemma connects our results with Lusztig’s original result:

/

Lemma 4.7. In Lusztig’s definition of a quantum group he uses the quotient A}, .. =
2Centp, (2Aw). This coincide with our choice A" = Centa, (A1 + A2), if and only if

(7)

2ged(l, dY) = ged(¢,2dY),

where the alzA denote the invariant factors of Ay, /A and the de denote the invariant
factors of Ay, /Aw (i.e. ordered root lengths).

In particular, for £ odd these choices never coincide. For A = Ay, N = A}, .

holds if

and only if 2d; | £. This is the most extreme case of divisibility and it is precisely the case

appearing in logarithmic conformal field theories.
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Proof. We first note that in our cases, A’ = Centp , (A1 + Ag) = Centp,(A). We have,
2Centy . (2Aw) = 2(Ag N 2Aw)

R
= AR2(A}, N AwliAgv)
20
= AgDiag [ ———— | A}y
e (gcd(& 2d¢W)> v
By this coincides with A’ if and only if equation holds. g

5. FACTORIZABILITY OF QUANTUM GROUP R-MATRICES

We first recall the definition of factorizable braided tensor categories and factorizable

Hopf algebras, respectively.

Definition 5.1. [EGNOI15| A braided tensor category C is factorizable if the canonical
braided tensor functor G : CRC — Z(C) is an equivalence of categories.

Definition 5.2. A finite-dimensional quasitriangular Hopf algebra (H, R) is called fac-
torizable if its monodromy matrix M := R - Roy € H ® H is non-degenerate, i.e. the

following linear map is bijective
H* - H ¢~ (id® ¢)(M).
Equivalenty, this means we can write M =Y, Rl ® Ry for two basis’ R, Rg € H.

In [Sch01], Schneider gave a different characterization of factorizable Hopf algebras in
terms of its Drinfeld double, leading to the following theorem:

Theorem 5.3. Let (H, R) be a finite-dimensional quasitriangular Hopf algebra. Then the
category of finite-dimensional H-modules H —modg¢q is factorizable if and only if (H, R)
s a factorizable Hopf algebra.

5.1. Monodromy matrix in terms of Ry. In order to obtain conditions for the fac-
torizability of the quasitriangular small quantum groups (u,(g,A,A’), Ro(f)©) as in
Theorem in terms of g,q, A and f, we start by calculating the monodromy matrix
M := R Ro1 € ug(g, A, ') @ ug(g, A, A’) in general as far as possible:

Lemma 5.4. For some R = Ry(f)© as in Theorem the factorizability of R is equiv-
alent to the invertibility of the following complex-valued matriz m with entries indexed by

elements in p,v e AJN':

muyi= > flu—p,v =) u).

w v eN/N
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Proof. We first plug in the expressions for Ry from Theorem and © from Theorem
and simplify:

M :=Ro1 - R
= (Ro)21-©21- Ry - ©

- Z f(ubyl)KVl@KHl ’ Z (_l)trﬁlqﬁl Z bx1(+®b1_

H1,v1 €A BrEAT, b1€Bg,

ORLSL AT B I SEEETEI p T

na,v2 €A 5261\; b26352
= > (=)™ g4 S Flu ) fpz, ) Ky @ Ky
,31,,32€AE 1,p2,01,V2E€EN

*—+7 — — 7%+
S bty @byt |,
b1€B[31,b2€Bﬂ2

where A}, = No[A]. The last equation holds since b; € ug and hence fulfills K,,b; =
q P2b K, and similarly for b7,

We have two triangular decompositions

0, —
Ug = UgUg Ug

thus the following both sets are vector space basis’ of uy:
{K by b5TIN € AJN b € Bg,, Bi € AE} {K\biTby |X € AJN' b € Bg,, B; € AE}.

Hence the factorizability M (and hence of R) is equivalent to the fact that for all (!)
b1 € AE the following element factorizes:

]M()ﬁ1 = Z qﬁl(WilQ)f(ﬂlv Vl)f(“% V2)KV1+M2 ® KM1+V2
1,201, €A /A

= Z KV @ KH ' Z qﬁl(#/_yl)f(:u - /’L/7 v — V/)f(y,v /'L/>

v EA/N W ENJN

Since K, ® K, is a vector space basis of u) ® u) = C[A/A'] ® C[A/A’], this in turn is
equivalent to the invertibility of the following family of matrices m® for all 5 € AE
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with rows/columns indexed by elements in p, v € A/A":

mp, = Y flu— v =) g

M’,VIEA/A’

We now use the fact that R was indeed an R-matrix: By property in Theorem we
have

mi, = S flu— v =)+ Bl

v EAJN
Since the invertibility of a matrix m,, is equivalent to the invertibility of any matrix
Myp+8,, We may substitute v/ +— v/ + 1, v — v + 1, pull the constant factor g% in
front (which also does not affect invertibility) and hence eliminated the first 8; from the
condition. Hence the invertibility of R is equivalent to the invertibility of the following
family of matrices mP! for all 51 € AE:
mi, = > flu—p v =)W g
W ENJN
We may now use the same procedure to eliminate the second (1, hence the invertibility
of R is equivalent to the invertibility of the following matrix with rows/columns indiced
by elements in pu,v € A/A:
Muw = flu—p,v=2)f )
w v eN/N

This was the assertion we wanted to prove. O

Definition 5.5. Let g : G1 X Go — C* be a group pairing. It induces a symmetric form
on the product G1 x Gy we denote by Sym(g):

Sym(g) : (G x Gg)*? — C*
(g1, p2), (v1,v2)) = g(p1, v2)g(vi, p2).

Lemma 5.6. If g : G1 X Go — C* is a perfect pairing of abelian groups, then the
symmetric form Sym(g) is perfect.

Proof. By assumption, g X g defines an isomorphism between G; x Ga to é\g X é\l
The symmetric form Sym(g) is given by the composition of this isomorphism with the

canonical isomorphism C/v’\Q X é\l 2 (1 X (9. This proves the claim. O

Consider for a finite abelian group G and subgroups G1,Gs < G the canonical exact

sequence
(8) 0—-GiNGy -G xGy—G1+G2—0
For p € G + Ga, we denote its fiber by

(G1 x Ga)p = {(p1, p2) € G1 x Go | pa + piz = p}
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Moreover, we define

Rad : = { (11, p12) € G1 x Gy | Sym(f)((ua, p2), ) = 1V € (G x Ga)o }
Rad, : = Rad N (G1 x G2),
Rady : = { g1 + p2 € G| (1, p2) € Rad }

Lemma 5.7. We have two split exact sequences:

O‘%.Ramj‘%.RQd‘%.RGd&“}O
0 — Rady — G — Rady — 0.

Proof. The first sequence is exact by definition of the three groups. Moreover, we know
Rad = ker(i o Sym(f)) = ker(i) = im(#) = G = G,

where i, 7 denote the duals of the inclusion and projection in . In example we
will see that in the case G1 = G5 = G, f symmetric, Radg is the 2-torsion subgroup of
G, and the second map in the second exact sequence is just the projection, hence both
diagrams split in this case. If f is asymmetric, we will see in section 5.3 that Radg is
isomorphic to Z§ for some k > 2, thus

Radé — Rad
T — Z z
icRad,
is a section of the first exact sequence. Here we used that the sum over all elements in
ZE vanishes. Again, it follows that both diagrams split. Finally, if G; # G2 (i.e. in the
case Dy,), then f = ¢ ) on G4 N Gs. By the same argument as in example Radg
is the 2-torsion subgroup of G N G3. But we have G = G; N G2 X 71 in this case, hence
both sequences split. O

Corollary 5.8. Using the projection o : G — Rad& and the inclusion (3 : Rad& — Rad
from the above lemma, we can define a symmetric form on G:

(9) Syma(f) : G x G — C~
(10) (1) — Sym(f)(B 0 ap), B o a(v)).

Moreover, we have Rad(Symg(f)) = Radp.
U

Theorem 5.9. We have shown in Theorem[2.4 and Lemma[3.5 that the assumption that
R = Ro(f)O is an R-matriz is equivalent to the existence of subgroups G1,Ga C A/N of
same order some d|Ar/N'| and f restricting up to a scalar to a non-degenerate pairing
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f: G1 X Go — C* and f vanishes otherwise.
In this notation the matrix m as defined in the previous lemma can be rewritten as:

1 Ay~ o~
Mmyy = W Z Sym(f)(:ua V)'

RE(G1xG2)y

re(G1xG2)y

It is invertible if and only if Rady = 0. In this case,
|G1 N GQ‘ N
Myy = WsymG<f)

We first note that Radg = 0 implies Radé = @ and thus G = G 4+ Go. Together with
Corollary [3.6] this implies

Corollary 5.10.
A = Centp,(N).

Before we proof the theorem, we first give a simple example:

Example 5.11. Let G1 = Gy = G (correspondingly A1 = As = A) and assume f 18
symmetric non-degenerate, then the radical measures 2-torsion:

Rad(Symg(f)) = Rady = {n € G | 2 = 0}
Again, this is the only case appearing for cyclic fundamental groups. Hence in all cases
except § = Da, factorizability is equivalent to |A/N'| being odd.

Proof of Thm.[5.9. The first part of the theorem follows by applying lemma [3.5 to the
matrix m as given in the previous lemma. Now, assume that m is invertible. We must have
G = G1 + G9, otherwise the matrix has zero-columns and -rows, differently formulated:
the fibers (G1 x G2),, in the short exact sequence must be non-empty for all 4 € G. If on
the other hand, Rady = 0, then Radj = G and thus G; + G2 = G must also hold, thus
we assume this from now on. By the short exact sequence the fiber (G1 x G2)g = G1NGa,
other fibers are of the explicit form i + (G x G2)o for some choice of representative fi.

Therefore,

1 ANy~ ~
mu,uzm~ Z Sym(f)(@,v)

,LLE(G1><G2)H
ﬂE(G’lXGQ)V
1 A AN~
= anoe 2 SmD@y) Y sym(Hp)
d?[Ar/N[? )
ve(G1xGa)y 7€(G1xG2)o

’Gl ﬂGQ’ A
= B[A/N]? Y Syl D) sy, )laynay=1 = ()-
PE(G1xGa)w
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Fix as above a representative U of the fiber of v, i.e. 7 € (G1xG2), such that Sym(f)(7, )|a,nc,
1 holds. Two elements fulfilling this property differ by an element in the subgroup
Radg < G1 N Go, thus

|G1 N Gg‘ A ~
(¥) = d?’AR/A/P m(f)(a Z Sym 5Sym(f)(ﬂv_)‘GlﬂG2:1
£€Rad0
o |G1 N Ge||Rady| Al
 2|Ag/N SYMU) (s 2) - Oy )5, )leynay =1 O8ym(F) (. liaay=1"

Since m is symmetric, we have
_ |G1ﬂG2||R&dQ| (f)( ) S .
YT @2|AR /N2 Sym(£)(@, e ney =1 “Sym(f) (i lene, =1

‘GlﬂGQHRado‘ A
IV Syme (f) (1 V)0Rad, £00Rad, £0-

and this is invertible if an only if Radg = Rad(Symg(f)) = 0
U

5.2. Factorizability for symmetric Ro(f). For Ro=3_, , f(u,v) K, ® K, being the
Cartan part of an R-matrix, assume that f = |G|f on G is symmetric. We have shown
in Example that factorizability is equivalent to |G| being odd.

We now want to give a necessary and sufficient condition for this:

Lemma 5.12. Let A C A C Aw be an arbitrary intermediate lattice for a certain
irreducible root system. Then the order of the group G = A/ Centp,(A) is odd if and only
if both of the following conditions are satisfied:

(1) |A/AR| is odd

(2) ¢ is either odd or ({ =2 mod 4, g = B,,, A = Ar) including A;.
Proof. We saw that in all our cases, there exists an isomorphism A/Ag = Centp (Ar)/Centp , (A).
Moreover, from Lemma we know that |A/Centp(Ar)| = det(Dy), where D, was the
diagonal matrix Diag (W)) with df\ being the invariant factors of the lattice A (i.e.

the diagonal entries of the Smith normal form of a basis matrix of A). Thus,
|G| = |A/Centy, (M)
= |A/Centa(Ag)||Centr(Ag)/Centay (A)]
= [A/Centr(AR)[|A/AR|
= det(De)|A/AR|

n

A/A ’.
|| A ‘ R
; 1gcdfal
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Clearly, this term is odd if ¢ and |A/Ag| are odd. In the case (¢ = 2 mod 4, g = B,,
A = ApR), the Smith normal form Sg of the basis matrix Ag is given by 2 -id. Thus, |G|
is odd in this case. On the other hand, let |G| be odd:

We first consider the case ¢ even. A necessary condition for |A/A’| odd is that the

multiplicity my of the prime 2 in [, is at most the multiplicity my,, of the

¢
ged(£,d)
prime 2 in |m1|. We check this condition for rank n > 1:
e For g simply-laced (or triply-laced g = G2) we have all d; = 1, hence n | my
(equality for ¢ = 2 mod 4). The cases D,, with m,, = 2 have rank n > 4, all

others except A, have m,, = 0,1, so the necessary Condition my < My, is never

fulfilled. The cases A, have 2”1 |(n + 1) < (my + 1) < (my, + 1) which can only
be true in rank n = 1 treated above.

e For g doubly-laced of rank n > 1, we always have always m,, = 0,1 but my can
be considerably smaller than above, namely for £ = 2 mod 4 equal to the number
of short simple roots d,;, = 1 (otherwise my again increases by n for every factor 2
in /), hence the necessary condition my < my, can be fulfilled only for B,, (which
would also include A; above for n = 1). More precisely, since my = my, and the
decomposition for A/A’ has an additional factor |[A/Ag|, it can only be odd for

A = Apg.
On the other hand, if ¢ is odd, then the whole product term is odd. But since |G| was
assumed to be odd, also |A/A’| must be odd. O

Corollary 5.13. Let A = Agr. In the previous section we have seen that f =q~ ) gives

always an R-matriz in this case. By the proof of the previous Lemma, we have

n
=1 gcd( aed(l, dR))
where the df denote the inveriant factors of Ay, /AR.

5.3. Factorizability for D,,, Ry antisymmetric. The split case g = Do,, G =
G1 x Gy is clearly factorizable, so the only remaining case for which we have to check
factorizabilty is g = Doy, A = Ay for f being not symmetric. We know that in this case,
the corresponding form g on A /AR is uniquely defined by a 2 x 2-matrix K € gl(2,F9), s.t
I(A2(n—1)+i> Ao(n—1)4j) = €xp <27TZK”> for i,j € {1,2}. From this we see that if ¢ is not
symmetric, it must be antisymmetric, i.e. g(u,v) = g(v, )~ 1. Thus, the following lemma
applies in this case, and hence there are no factorizable R-matrices for Do,, A = Ay .

Lemma 5.14. For g simply-laced and A = Ay, let f — ¢ g GxG = C* bea
non-degenerate form as in Thm. and Lemma s.t. the form g : m x m — C* is
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asymmetric. Then,
n
Rady = D) Zyeaa pam)-
i=1

where the le denote the invariant factors of 1. In particular, Rady = 0 holds if and only
if ged(2,4|m]) = 1.

A

Proof. We recall the definition of Rady(Symg(f)) in this case:

N

Rado(Symg (f)) = {p € G| fv,p) ™" = f(p,v) VveG}
={neGqd"Mgv,u) =q " g(nv) YreG}
={ued| g = ¢~ vy e G }
={peG|¢* =1 Yved}
= {p € G| 2u € Centop,, (Aw)/2Centp , (Aw) } = (%)

For g is simply-laced, we have Ay = AVW, thus
(x) = Centan,, (Aw)/2Centp , (Aw)
= (2Aw NLARAW)/20ARAw
= PgrDiag(lem(2, £d?)) Ay / Pr2(SrAw
= Aw /Diag(ged(2, £d2)) Ay .
This proves the claim. O

5.4. Transparent objects in non-factorizable cases. In this section, we determine
the transparent objects in the representation category of uq(g, A) with our R-matrix
given by Ry© and Ry = W Z,u,VEA/A’ f with f a group pairing Ay /A’ x Ay /A’ — C*.

Definition 5.15. Let C be a braided monoidal category with braiding c. An object V € C
is called transparent if the double braiding cy,v o cy,w is the identity on V @ W for all
W € C. In particular, for a Hopf algebra H the representation category H — modyq is
factorizable if and only if O is the only transparent object.

Since in our cases A1 # Ao can only appear in Ds,, and we know those are factorizable,
we shall in the following restrict ourselves to the case A; = Ay = A. The proof below
works also in the more general case, but requires more notation. As usual we first reduce

the Hopf algebra question to the group ring and then solve the group theoretical problem.

Lemma 5.16. If a ug(g)-module V with a highest-weight vector v and K, v = x(Kp)v is
a transparent object, then necessarily the 1-dimensional A/A'-module C,, is a transparent
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object over the Hopf algebra C[A/N'| with R-matriz Ry. If V is 1-dimensional, then V is
transparent if and only if C, is.

Proof. Let V be transparent. For every ¢ : A/A" — C* we have another finite-dimensional
module W := u,(g) ®uq(g)+ Cp with highest weight vector w =1 ® 1y, which we can test

this assumption against
CVIW WV VoW
We calculate the effect of ¢ on the highest-weight vectors v ® w:
(v @ w) = Twey RoOTvew RoO(v @ w)

Because v, w were assumed highest-weight vectors, the © act trivially. Hence follows that
C,,Cy have a trivial double braiding over the Hopf algebra C[A/A’] with R-matrix Ry.
Because we could achieve this result for any ¢ this means that C, is transparent as

asserted.

Now let V' = C,, be 1-dimensional over u,(g) and transparent over C[A/A’], and let w
be any element in any module W, then again the two © act trivially, one time because
v = 1, is a highest weight vector, and one time because it is also a lowest weight vector.
But if the double-braiding of v = 1, with any element w is trivial, then V = C, is

already tranparent over uq(g). O

Lemma 5.17. The transparent objects in the category of representations of the the Hopf
algebra ug(g, A) with R-matriz given by Lusztigs ansatz are 1-dimensional objects Cy, and

N

are the f-transformed of the radical of Symg(f):

X(:LL) = f(/%f) § € Rady

Proof. Since f is nondegenerate, we can assume x(u) = f(i,€) and wish to prove C,, is
transparent iff £ € Radg. We test transparency against any module C, and also write
Y(p) = f(\, 1) (note the order of the argument). We evaluate the double-braiding on
1, ® 1, and get the following scalar factor, which needs to be = 1 for all ) in order to

make C,, transparent:
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mﬂzzxm)wu) S Sym() (. p2). (v1.)

H1t+p2=p

v1trve=p
= ’GI‘QZf(lu7£)f()\7y) Z f(ul,yl)f(y%/@)
HV H1tpo=p
v1t+re=p
= ’G1‘2 Zf(,uvg)f()‘? 1/) Z f(:ula 7/1) f(l/, M)f_l(yh,u)f_l(l/,,ul)f(l/l,,ul)
HV V1,41

- |C1;|Zf()" v) Z flpa,v1) 65:—y+1/1f_1(V,u1)f(]/17Hl)

vi,H1

_ ’azm, ) flp, 6 +v) £(€ m)
v M1

= 71N FHEN) = Symg(f)(A,€)

This scalar factor of the double braiding is equal +1 for all A (and hence all Cy) iff
¢ € Rady as asserted. O

The previous two lemmata imply that the characters x(u) = f(u,§),€ € Radg are the
potential highest-weight vectors for transparent objects, and if they even give rise to
1-dimensional u4(g)-modules (i.e. x|2a, = 1), then these are guaranteed transparent.
But in all cases where f is symmetric we have seen in that Radg(Symg(f)) is the
2-torsion subgroup of A/A’, so in these cases y gives rise to a 1-dimensional object.

Corollary 5.18. If f is symmetric (true for all cases except Doy, ) then the transparent
objects are all 1-dimensional C, where the characters x are the f-transformed of the
elements in the radical of the bimultiplicative form Sym(f)|G on G =A/N. In particular

the group of transparent objects is isomorphic to this radical as an abelian group.

Corollary 5.19. In the case of symmetric f (all cases except Day, ) the fact that Rady is
the 2-torsion of A/A and f-transformation is a group isomorphism shows:
The group T of transparent objects consists of C, where x|opn =1 i.e. the two-torsion of

the character group.

The remaining case in Ds,, with f nonsymmetric and has been done by hand in Lemma

.14

5.5. Table of all factorizable quantum groups. We now give a list of all quasi-
triangular small quantum groups as in Table [2] where we replaced the entries in the last
column by the respective subgroups of transparent objects T C A/A’. If the quantum
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group is factorizable, this is indicated by a bold 0. Since (A = Apg, ¢ odd) is always a
solution, we omitted this from the table.

g H / ‘ # H H, = ‘ H; (i=1,2) ‘ g ‘ T CA/N
¢ odd 1 0
all Zy (0) g=1
¢ =0mod 4 1 Ly
Zyt 24
3 N g mik
Aoy Zq (d\n) g(dAn, d\,) = exp ()
7 00 75,2 |z
M = Lin41 5 ontl kl—dn \ _
din+1| d=n5 gcd(d,gcd(&d)) 1 .
T ged(£,d)
¢ =2mod 4 1 Zy (0) g=1 0
{=2mod 4 2 Zio (An) g(An, A\p) = 1 Zio
By,
=2 (=0mod4 | 2 Z, (An) 9(Ans An) = %1 z
™ = ZQ
¢ odd 1 Zs (An) 9 A, An) = (=1)nF1 Zo
{=2mod4 | 1 7y (0) g=1 zy2
¢ =2 mod 4 1 g Ay An) =1 A
Cn
=3 (=0mod4 | 2 Z, An) 9y ) = £1 z
T = ZQ
£ odd 1 g A, A\n) = —1 Zo
f=2mod4 | 1 Z (0) g=1 720
/=2 mod 4 1 Aon—_1,Aap) = (—1)"
Hy = (Aop—1) 90on-1,d2n) = (~1) 72n
2
£=0mod 4 | 25y, Zo g(A2n—1,Aon) = £1, n even
Hy = (Ao
¢ odd 1 2% (Aan)

g(A2n—1,A2n) = —1 0
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Day>4
=7 Z
e 9 modd | 1 9am, Aap) = (—1)mH1 72n-1
¢=0mod 4 | 20g, Zo (Aon) 9(Aan, Aop) = £1, n odd zin
¢ odd 1 9(Aan, Aop) = —1 L
¢ even 2 I A2(n—1)1is Ao(n—1)4j) = *1 z3"
Zo X o </\2n7 /\2n+1> det(K) = Ki9 + K91 =0 mod 2 Zo
¢ odd
det(K) = K12 + K91 = 1 mod 2 Z%
(=2mod4 | 1 Zy (0) g=1 Z3n
/=2 mod 4 1 9(2)\2n+1, 2)\2n+1) =1
Zgn+1
¢ =0 mod 4 2 Zg <2)\2n+1> 9(2)\2n+17 2)\2n+1) ==+l
Doy,
o= ¢ odd 1 9(2A2n11,2X0n11) = —1 Zs
™ = Z4
{ even 4 d(Aani1, dans1) = ¢, ct =1 Z%"H
Zy (A2n+1)
¢ odd 2 9(A2nt1, Aong1) = £1 Lo
¢=2mod 4 1 Zy (0) g=1 z8
{=0mod3 | 3 I An) =¢, & = 78,2 0
E
0 {=1mod3 | 2 Z3 (An) 9(An, An) = 1,exp (352)
T = Z3
0,21/
f=2mod 3 2 9(Ans An) fl,exp(zgl) 21
(=2mod4 | 1 Zy (0) g=1 Z8
> ¢ even 2 g(Any An) = £1 VAS
s :7Z = (An)
toe ¢ odd 1 9, ) = 1 Z,
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Eg (=2mod4 | 1 A (0) g=1 78
Fy ({=2mod4 | 1 Zy (0) g=1 73
G (=2mod4 | 1 A (0) g=1 73

Table 3: Solutions for Ry-matrices

6. QUANTUM GROUPS WITH A RIBBON STRUCTURE

In this section we construct a ribbon structure in all cases:

Theorem 6.1. Let uy(g, A) be quasitriangular Hopf algebra, with an R-matriz satisfying
the conditions in Theorem and let u := S(R))Ry. Then v := Kl,_olu s a ribbon
element in uq(g, A).

Proof. We consider the natural Ng[a; |i € I]-grading on the Borel parts u® := u,(g, A)*
[Lus93]. Since u* is finite-dimensional, there exists a maximal vy € No[oy; |7 € I], s.t. the

homogeneous component «; is non-trivial. More explicitly vy is of the form:

vy = Z (lo — D,

acdt

. 4
where £, := Zd(02d)"

By the proof of Thm. 8.23. in [Miil98D)] it suffices to show that K;(#Qp is a central element.

By the K, E-relations, this is equivalent to
(11) v+ 2p € CentA(AR),

where p = 3 s+ a is the Weyl vector.

We calculate directly that this is always the case:

(Vo + 2p, B) = qPoaca+ la=141)(e5)

1
= ¢ Tocot mataa 2@ ) _
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7. OPEN QUESTIONS

Question 7.1. It was surprising to us that the case Dy, = $04,(C) has so many more
solutions that the other cases, in particular with non-symmetric Ry, due to the non-cyclic
fundamental group. Do these additional modular tensor categories appear elsewhere? Does

the non-symmetry have interesting implications on the category?

Question 7.2. Our procedure would be similarly possible for any diagonal Nichols alge-
bra. The Lusztig ansatz can in these cases be found in [AY13].

Question 7.3. In each case where uq(g, A), R is not factorizable, we can modularize the
corresponding representation category and get a modular tensor category, which should
be representations over some "quasi quantum group" uq(g, A,w), R which is a quasi-Hopf
algebra where the group ring C[]\] 18 deformed by a 3-group-cocycle w.

Moreover in converse: By the trick of Etingof, Gelaki every factorizable "quasi quantum
group” can be extended to a twist of an ordinary Hopf algebra and hence arises from our

list.
More technically:

Question 7.4. The centralizer transfer map Ay in Definition (and correspondingly
the form ay) was characterized very generally, but we could only prove existence by a con-

struction using the classification of simple Lie algebras (and distinguishing three cases).

We would strongly assume that these maps exist under rather general assumptions (we
know a counterexample). For example, in this way our results would apply also to all
semi-simple Lie algebras, which allow for much richer possibilities than just combining

the simple Lie algebras.

Also the result Theoremfrom our previous article [LN14b| has only been proven there
for cyclic groups (and by hand for Zo x Zy) although we strongly suspect it holds for every
abelian group.

Both authors thank Christoph Schweigert for helpful discussions and support. The first
author was supported by the DAAD P.R.I.LM.E program funded by the German BMBF
and the EU Marie Curie Actions as well as the Graduiertenkolleg RTG 1670 at the
University of Hamburg. The second auther was supperted by the Collaborative Research
Center SFB 676 at the University of Hamburg.
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