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Abstract. Representations of small quantum groups uq(g) at a root of unity
and their extensions provide interesting tensor categories, that appear in differ-
ent areas of algebra and mathematical physics. There is an ansatz by Lusztig to
endow these categories with the structure of a braided tensor category.
In this article we determine all solutions to this ansatz that lead to a non-
degenerate braiding. Particularly interesting are cases where the order of q has
common divisors with root lengths. In this way we produce familiar and unfa-
miliar series’ of (non-semisimple) modular tensor categories. In the degenerate
cases we determine the group of so-called transparent objects for further use.
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1. Introduction

Hopf algebras with R-matrices, so called quasitriangular Hopf algebras, give rise to tensor
categories with a braiding c : V ⊗ W

∼−→ W ⊗ V . Of particular interest are braided
tensor categories where the braiding fulfills a certain non-degeneracy condition, see Def.
5.1, which is equivalent to the fact that there are no transparent objects V , i.e. no objects
where the double-braiding c2 : V ⊗ W

∼−→ V ⊗ W is the identity for all W . A C-
linear tensor category with a nondegenerate braiding, as well as finiteness conditions and
another natural transformation θ : V

∼−→ V (twist), is called a modular tensor category.
Note that we do not require the category to be semisimple.
Modular tensor categories have many interesting applications: They give rise to topologi-
cal invariants and mapping class group actions [Tur94, KL01]. For example, the standard
generators T, S of the mapping class group of the torus SL2(Z) are constructed from θ

and c2, respectively. A different source for modular tensor categories in mathematical
physics are vertex algebras. There are only few example classes of modular tensor cate-
gories, in particular non-semisimple ones.

The aim of the present article is to provide modular tensor categories from small quantum
groups uq(g) at a primitive `-th root of unity q for a finite-dimensional simple complex
Lie algebra g. Lusztig [Lus90] has constructed these finite-dimensional Hopf algebras and
provided an ansatz for an R-matrix R0Θ̄, where the fixed element Θ̄ ∈ uq(g)− ⊗ uq(g)+

is constructed from a dual basis of PBW generators, while R0 ∈ uq(g)0⊗ uq(g)0 is a free
parameter subject to some constraints. He gives one canonical solution for R0 whenever
` has no common divisors with root lengths, otherwise there are cases where no R-matrix
exists [KS11] and the quantum group becomes more interesting [Len14]. Of particular
interest in conformal field theory [FGST06, FT10, GR15] is the most extreme case where
all root lengths (α, α) divide `.
But even if there are no common divisors with the root length, the resulting braided
tensor categories may not fulfill the non-degeneracy condition and hence provides no
modular tensor category.

Both obstacles (existence and non-degeneracy) can be be resolved by extending the
Cartan part of the quantum group by a choice of a lattice ΛR ⊆ Λ ⊆ ΛW between
root- and weight-lattice, respectively a choice of a subgroup of the fundamental group
π1 := ΛW /ΛR, corresponding to a choice of a Lie group between adjoint and simply-
connected form. In this way the number of possible R matrices increases.
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In a previous article [LN14b] we have considered such extensions uq(g,Λ) and determined
solutions for R0 (under additional assumptions which we drop in this article to get all
solutions). We hence constructed braidings on the representation category of this Hopf
algebra. As it turns out, the solutions can be parametrized by subgroupsH1, H2 ⊂ π1 and
group pairings between H1, H2, and the set of solutions depends on the common divisors
of ` not only with root lengths, but also divisors of the Cartan matrix. Some cases admit
no braided structure, while others have multiple in-equivalent solutions. An interesting
occurence was for example that Bn behaves differently for n odd or even, and that D2n

with non-cyclic fundamental group allows several more solutions with non-symmetric R0.

In the present article we first improve these techniques, and thus remove the additional
assumptions (allowing for several more solutions) and achieve the list of quasitriangular
structures more systematically. Then, using our new techniques, we determine which of
these choices fulfill the non-degeneracy condition. We also determine which cases have a
ribbon structure. A main role in the first part plays a natural pairing a` on the fundamen-
tal group π1 which depends only on the common divisors of ` with the fundamental group
and encapsulates the essential `-dependence. Then the non-degeneracy of the braiding
turns out to depend only on the 2-torsion of the abelian group in question.

Our result produces a list of modular tensor categories for representations of quantum
groups. Moreover we use our methods to determine the group of transparent objects if
the category is not modular, which is for example a prerequisite for modularization.

We now discuss our methods and results in more detail:

In Section 2 we briefly recall the Lie theory and Hopf algebra preliminaries: For every
finite-dimensional (semi-)simple complex Lie algebra g and a primitive `-th root of unity
q Lusztig has introduced in [Lus90] the small quantum group uq(g) which has a triangular
decomposition u+

q u
0
qu
−
q where the (exponentiated) Cartan algebra u0

q is the groupring of
the root lattice ΛR, and u±q are generated by simple root vectors Eαi , Fαi fulfilling q-
deformed Serre relations. In [Lus93] Sec. 32 he gives an ansatz for an R-matrix in the
form R0Θ̄ where Θ̄ consists of dual PBW basis’ and R0 ∈ u0

q⊗u0
q is an arbitrary element

in the Cartan part that has to fulfill certain relations.
Our goal is to study the existence and non-degeneracy of R-matrices of this form for the
quantum group uq(g,Λ,Λ

′) with any choice of lattice between root- and weight-lattice
ΛR ⊆ Λ ⊆ ΛW and any possible choice of quotient by a subgroup Λ′ ⊆ Λ in the Cartan
part u0 = C[Λ/Λ′]. Later, we prove that Λ′ is in fact unique if we want a quasitriagular
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structure (Cor. 3.6).

The R0-matrix has the following interpretation: It is an R-matrix for the groupring
C[Λ/Λ′] and it appears as the braiding between highest-weight vectors in our uq(g)-
modules. Thus the previous theorem clarifies which choices for an R-matrix for the group
ring lift to the quantum group.

In Section 3 we address the question of constructing quasi-triangular R-matrices. First
we briefly recall the following result in [LN14b], which was in essence a combinatorial
problem solved in [LN14a] and will be used continuesly:

Theorem (3.3). The R0-matrix is necessarily of the form

f(µ, ν) =
1

d
q−(µ,ν)g(µ̄, ν̄)δµ̄∈H1δν̄∈H2

where H1, H2 are subgroups of Λ/ΛR ⊆ π1 with |H1| = |H2| =: d (not necessarily iso-
morphic!) and g : H1 ×H2 → C× is a pairing of groups.

Then we proceed differently than in the previous article: Using the previous result, we
prove in Lemma 3.5 that the quasitriangularity of R is equivalent to the assertion that
the group pairing f̂ := |Λ/Λ′| · f between the preimages Gi := Λi/Λ

′ of the groups Hi is
non-degenerate (which is no surprise). In particular we show that this condition fixes Λ′

uniquely. In later applications we often encounter f̂ as a natural identification of G1 and
the dual Ĝ2, e.g. when studying representation theory.

To find all solutions f with this property we develop a machinery to push f̂ into the
fundamental group π1, which encapsulates all the `-dependence: In Definition 3.8 we
give an abstract characterization of a centralizer transfer map

A` : Λ/ΛR
∼−→ Cent`Λ(ΛR)/Cent`ΛR(Λ)

(without proving that it always exists). In a generic case this is just multiplication by
`, but it severely depends on common divisors of ` with root length and divisors of the
Cartan matrix. With this matrix we can transfer q−(µ,ν) to a natural form a` on the funda-
mental group. In a generic case a`(µ, ν) = e−2πi (µ,ν). We prove that f̂ is non-degenerate
iff ag` = a`(g ◦ (id ⊗ A`)) is non-degenerate. This explains why the set of solutions, say
for fundamental group Zn always looks like the subset of invertible elements Z×n but it
is shifted (namely by a`) depending on ` and the root system in question.

In Section 4 the remaining computational work is done for quasitriagularity: We calcu-
late a list containing a` for all simple g, depending on common divisors of ` with root
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length and divisors. We thus write down all solutions for f and hence R-matrices. The
calculation starts with the Smith normal form for the Cartan matrix in question and
uses three cases: For Λ = ΛW we have a generic construction, the cases An with their
large fundamental group Zn+1 is treated by hand, as is D2n with non-cyclic fundamental
group, which has the only cases allowing Λ1 6= Λ2.

In Section 5 we address our main issue of factorizability with our new tools:

In Subsection 5.1 we introduce factorizability. Then we calculate the monodromy ma-
trix R21R for an arbitrary choice of R-matrix in terms the the R0-part. This gives a purely
lattice theoretic problem equivalent to the factorizability of such an R-matrix. Then we
prove in the main Thm. 5.9 that factorizability is equivalent to the non-degeneracy of a
symmetrization SymG(f̂) of f̂ . As will turn out later, the radical of this form is isomor-
phic to the group of transparent objects.

In Subsection 5.2 we restrict ourselves to the symmetric case where H1 = H2 and f, g
are symmetric. Other cases appear only in some the non-cyclic Z2×Z2-extension for type
g = D2n and are dealt with in Subsection 5.3 and give surprising new solutions.
The main result for the symmetric case is that the radical of the form SymG(f̂) is in this
case simply the 2-torsion of Λ/Λ′ (Ex. 5.11) and that this is non-degenerate precisely for
odd ` and odd Λ/ΛR as well as for g = Bn, Λ = ΛR, ` ≡ 2 mod 4 including A1.

In Subsection 5.4 we prove the following result:

Lemma (5.17). The transparent objects in the category of representations of the Hopf
algebra uq(g,Λ) with R-matrix given by Lusztigs ansatz are 1-dimensional objects Cχ and
are the f -transformed of the radical of SymG(f̂):

χ(µ) = f(µ, ξ) ξ ∈ Rad(SymG(f̂)).

In Subsection 5.5 we summarize our result by a table containing all quasitriangular
quantum groups uq(g,Λ) with their group of transparent objects. We show in Subsection
5.6 that all have a ribbon structure. The factorizable solutions and thus modular tensor
categories are ` odd, Λ = ΛR and the following new factorizable cases:
(` odd, E6,Λ = ΛW ) and (` ≡ 2 mod 4, g = Bn, Λ = ΛR) (including A1) and (` odd,
g = D2n, Λ1 6= Λ2). All other cases can be modularized as discussed in Question 7.3.
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g ` # Hi
∼= Hi (i=1,2) g T ⊆ Λ/Λ′

all
` odd 1

Z1 〈0〉 g = 1

0

` ≡ 0 mod 4 1 Zn2

∞

Zn−1
2 , 2 - x

Zd 〈d̂λn〉 g(d̂λn, d̂λn) = exp
(

2πik
d

)
An≥1 Zn2 , 2 | x

π1 = Zn+1
d | n+ 1 d̂ = n+1

d
gcd

(
d, k`−d̂n

gcd(`,d̂)

)
= 1

x = d`
gcd(`,d̂)

` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 0

` ≡ 2 mod 4 2 Z2 〈λn〉 g(λn, λn) = ±1 Z2

Bn≥2
` ≡ 0 mod 4 2 Z2 〈λn〉 g(λn, λn) = ±1 Zn2π1 = Z2

` odd 1 Z2 〈λn〉 g(λn, λn) = (−1)n+1 Z2

` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Zn−2
2

` ≡ 2 mod 4 1

Z2 〈λn〉

g(λn, λn) = 1 Zn−1
2

Cn≥3
` ≡ 0 mod 4 2 g(λn, λn) = ±1 Zn2π1 = Z2

` odd 1 g(λn, λn) = −1 Z2

` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z2(n−1)
2

` ≡ 2 mod 4 1

Z2

H1
∼= 〈λ2n−1〉

g(λ2n−1, λ2n) = (−1)n

Z2n
2

` ≡ 0 mod 4 2δ2|n g(λ2n−1, λ2n) = ±1, n even

H2
∼= 〈λ2n〉

` odd 1 g(λ2n−1, λ2n) = −1 0
D2n≥4
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π1 = Z2 × Z2
` ≡ 2 mod 4 1

Z2 〈λ2n〉

g(λ2n, λ2n) = (−1)n+1 Z2n−1
2

` ≡ 0 mod 4 2δ2-n g(λ2n, λ2n) = ±1, n odd Z2n
2

` odd 1 g(λ2n, λ2n) = −1 Z2

` even 2

Z2 × Z2 〈λ2n, λ2n+1〉

g(λ2(n−1)+i, λ2(n−1)+j) = ±1 Z2n
2

` odd
det(K) = K12 +K21 = 0 mod 2 Z2

det(K) = K12 +K21 = 1 mod 2 Z2
2

` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z2n
2

` ≡ 2 mod 4 1

Z2 〈2λ2n+1〉

g(2λ2n+1, 2λ2n+1) = 1

Z2n+1
2

` ≡ 0 mod 4 2 g(2λ2n+1, 2λ2n+1) = ±1

D2n+1≥5
` odd 1 g(2λ2n+1, 2λ2n+1) = −1 Z2

π1 = Z4

` even 4
Z4 〈λ2n+1〉

g(λ2n+1, λ2n+1) = c, c4 = 1 Z2n+1
2

` odd 2 g(λ2n+1, λ2n+1) = ±1 Z2

` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z6
2

` ≡ 0 mod 3 3

Z3 〈λn〉

g(λn, λn) = c, c3 = 1
Z6

2, 2 | `
E6

` ≡ 1 mod 3 2 g(λn, λn) = 1, exp
(

2πi2
3

)
π1 = Z3

0, 2 - `
` ≡ 2 mod 3 2 g(λn, λn) = 1, exp

(
2πi
3

)
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` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z6
2

` even 2
Z2 〈λn〉

g(λn, λn) = ±1 Zn2E7

π1 = Z2
` odd 1 g(λn, λn) = 1 Z2

E8 ` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z8
2

F4 ` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z2
2

G2 ` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z2
2

Table 1: Solutions for R0-matrices

2. Preliminaries

2.1. Lie-Theory. Throughout this article, g denotes a finite-dimensional simple complex
Lie algebra. We fix a choice of simple roots ∆ = {αi | i ∈ I}, so that the Cartan matrix
C is given by Cij = 2

(αi,αj)
(αi,αi)

, where ( , ) denotes the normalized Killing form. For a root

α, we define dα := (α,α)
2 and set di = dαi . By ΛR := Z[∆] and Λ∨R := Z[∆∨] we denote

the (co)root lattice of g.
By ΛW , we denote the weight lattice spanned by fundamental dominant weights λi, which
are defined by the equation (λi, αj) = δi,jdi. Finally, we define the co-weight lattice Λ∨W as
the Z-span of the elements λ∨i := λi

di
. The quotient π1 := ΛW /ΛR is called the fundamental

group of g.
One can easily see that the Killing form restricts to a perfect pairing ( , ) : Λ∨W ×ΛR → Z
and that we get a string of inclusions ΛR ⊆ Λ∨R ⊆ ΛW ⊆ Λ∨W .

2.2. Lusztig’s Ansatz for R-matrices. The starting point for our work [LN14b] was
Lusztig’s ansatz in [Lus93], Sec. 32.1, for a universal R-matrix of Uq(g). Namely, for a
specific element Θ̄ ∈ U≥0

q ⊗ U≤0
q from a dual basis and a suitable (not further specified)

element in the coradical R0 ∈ U0
q ⊗ U0

q we are looking for R-matrices of the form

R = R0Θ̄

Note, that this ansatz has been successfully generalized to general diagonal Nichols al-
gebras in [AY13]. In our more general setting Uq(g,Λ,Λ′), we have

R0 ∈ C[Λ/Λ′]⊗ C[Λ/Λ′]
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This ansatz hast been worked out by Müller in his Dissertation [Mül98a][Mül98b] for
small quantum groups uq(g) which we will use in the following, leading to a system of
quadratic equation on R0 that are equivalent to R being an R-matrix:

Theorem 2.1 (cf. [Mül98b], Thm. 8.2). (a) There is a unique family of elements Θβ ∈
u−β ⊗u

+
β , β ∈ ΛR, such that Θ0 = 1⊗1 and Θ =

∑
β Θβ ∈ u⊗u satisfies ∆(x)Θ = Θ∆̄(x)

for all x ∈ u.
(b) Let B be a vector space-basis of u−, such that Bβ = B ∩ u−β is a basis of u−β for all
β. Here, u−β refers to the natural ΛR-grading of u−. Let {b∗ | b ∈ Bβ} be the basis of u+

β

dual to Bβ under the non-degenerate bilinear form ( · , · ) : u− ⊗ u+ → C. We have

Θβ = (−1)trβqβ
∑
b∈Bβ

b− ⊗ b∗+ ∈ u−β ⊗ u
+
β .

Theorem 2.2 (cf. [Mül98b], Theorem 8.11). Let Λ′ ⊂ {µ ∈ Λ | Kµ central in uq(g,Λ)}
a subgroup of Λ, and G1, G2 subgroups of G := Λ/Λ′, containing ΛR/Λ

′. In the following,
µ, µ1, µ2 ∈ G1 and ν, ν1, ν2 ∈ G2.
The element R = R0Θ̄ with an arbitrary R0 =

∑
µ,ν f(µ, ν)Kµ ⊗Kν is a R-matrix for

uq(g,Λ,Λ
′), if and only if for all α ∈ ΛR and µ, ν the following holds:

f(µ+ α, ν) = q−(ν,α)f(µ, ν), f(µ, ν + α) = q−(µ,α)f(µ, ν),(1)

∑
ν1+ν2=ν

f(µ1, ν1)f(µ2, ν2) = δµ1,µ2f(µ1, ν),
∑

µ1+µ2=µ

f(µ1, ν1)f(µ2, ν2) = δν1,ν2f(µ, ν1),

(2)

∑
µ

f(µ, ν) = δν,0,
∑
ν

f(µ, ν) = δµ,0.(3)

3. Conditions for the Existence of R-Matrices

3.1. A first set of conditions on Λ/Λ′. The target of our efforts is a Hopf algebra
called small quantum group uq(g,Λ,Λ′) with Cartan part u0

q = C[Λ/Λ′]. It is defined e.g.
in [LN14b] and depends on lattices Λ,Λ′ defined below. For Λ = ΛR the root lattice and
this is the usual small quantum group; the choice of Λ′ differs in literature.

In the previous section we have discussed an R = R0Θ̄-matrix for the quantum group
uq(g,Λ,Λ

′) can be obtained from an R0-matrix of the form

R0 =
∑
µ,ν∈Λ

f(µ, ν)Kµ ⊗Kν ∈ C[Λ/Λ′]⊗ C[Λ/Λ′]

In the following we collect necessary and sufficient conditions for R = R0Θ̄ to be an
R-matrix.
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Definition 3.1. We fix once-and-for-all a finite-dimensional simple complex Lie algebra
g and a lattice Λ between root- and weight-lattice

ΛR ⊆ Λ ⊆ ΛW .

These choices have a nice geometric interpretation as quantum groups associated to dif-
ferent Lie groups associated to the Lie algebra g.

Another interesting choice is ΛR ⊆ Λ ⊆ Λ∨W
∼= Λ∗R, which would below pose no additional

complications and may produce further interesting factorizable R-matrices.

Definition 3.2. We fix once-and-for-all a primitive `-th root of unity q.
For Λ1,Λ2 ⊆ Λ∨W we define the sublattice

CentΛ1(Λ2) := { ν ∈ Λ1 | (ν, µ) ∈ ` · Z ∀µ ∈ Λ2}.

Informally, this is the centralizer with respect to the braiding q−(ν,µ).

Contrary to [LN14b] we do not fix Λ′ but we prove later 3.6 that there is a necessary
choice for Λ′. In this way, we get more solutions than in [LN14b]. The only condition
necessary to ensure that the Hopf algebra uq(g,Λ,Λ′) is well-defined is Λ′ ⊆ CentΛR(ΛR).

Theorem 3.3. (c.f. [LN14b] Thm. 3.4) The R0-matrix is necessarily of the form

f(µ, ν) =
1

d|ΛR/Λ′|
· q−(µ,ν)g(µ̄, ν̄)δµ̄∈H1δν̄∈H2(4)

where H1, H2 are subgroups of H := Λ/ΛR ⊆ π1 with equal cardinality |H1| = |H2| =: d

(not necessarily isomorphic!) and g : H1 ×H2 → C× is a pairing of groups.

The necessity of this form (in particular that the support of f is indeed a subgroup!)
amounts to a combinatorial problem of its own interest, which we solved for π1 cyclic in
[LN14a] and for Z2×Z2 by hand; a closed proof for all abelian groups would be interesting.

Definition 3.4. Let g : G ×H → C× be a finite group pairing, then the left radical is
defined as

RadL(g) := {λ ∈ G | g(λ, η) = 1 ∀ η ∈ H}.

Similarly, the right radical is defined as

RadR(g) := {η ∈ H | g(λ, η) = 1∀λ ∈ G}.

The pairing g is called non-degenerate if RadL(g) = 0. If in addition RadR(g) = 0, g is
called perfect.
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For an R0-matrix of this form, a sufficient condition is that they fulfill the so-called
diamond-equations (see [LN14b] Def. 2.7) for each element 0 6= ζ ∈ (Cent(ΛR) ∩ Λ)/Λ′.
However, we will now go into a different, more systematic direction that makes use of
the following observation:

Lemma 3.5. An R0-matrix of the form given in Theorem 3.3 is a solution to the equa-
tions in Theorem 2.2, and hence produces an R-matrix R0Θ̄ iff the restriction to the
support

f̂ := d|ΛR/Λ′| · f : G1 ×G2 → C×

is a perfect group pairing, where Gi := Λi/Λ
′ ⊆ Λ/Λ′ =: G.

Proof. We first show that a solution with restriction to the support a nondegenerate
pairing solves the equation:
The first equations are obviousely fulfilled for the form assumed.

f(µ+ α, ν) = q−(ν,α)f(µ, ν), f(µ, ν + α) = q−(µ,α)f(µ, ν),

For the other equations the sums get only contributions in the support Λ1/Λ
′×Λ2/Λ

′. The
quantities f(µ, ν) · d|ΛR/Λ′| for fixed ν (or µ) are characters on the respective support,
and by the assumed non-degeneracy all ν 6= 0 give rise to different nontrivial characters.
Then the second and third relations follows from orthogonality of characters. Note that
since d|ΛR/Λ′| = |G1| = |G2| (equality of the latter was an assumption!) we were able to
chose the right normalization.

For the other direction assume a solution of the given form to the equations. Then already
the third equation shows that no f(−, ν) may be the trivial character and hence the form
on the support is nondegenerate and hence perfect by |G1| = |G2|. �

Corollary 3.6. A first consequence of the perfectness of f̂ (i.e. a necessary condition
for quasi-triangularity) is:

CentΛR(Λ1) = CentΛR(Λ2) = Λ′

This fixes Λ′ uniquely. Morover in cases Λ1 6= Λ2, which can only happen for g = D2n

where π1 is noncyclic, we get an additional constraint relating Λ1,Λ2.

In our case, the only possibility for Λ1 6= Λ2, s.t. G1
∼= G2 is g = D2n. In this case, we

have CentΛR(ΛW ) = CentΛR(ΛR) and thus the above condition is always fulfilled.
Our main goal for the new approach on quasitriangularity as well as the later modularity
is to reduce this non-degeneracy condition for f̂ to a non-degeneracy condition for g on
H1, H2 ⊂ π1 that can be checked explicitly.
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3.2. A natural form on the fundamental group. We now define for each triple
(Λ,Λ1,Λ2) and each `th root of unity q a natural pairing a` on the subgroupsHi := Λi/ΛR

of the fundamental group π1 := ΛW /ΛR. The simplest example is a` = e−2πi(µ,ν). In
general it is a transportation of the natural form q−(µ,ν) (which does not factorize over
ΛR) to Hi by a suitable isomorphism A`.
This isomorphism A` will encapsulate the crucial dependence on the common divisors
of `, |H| and the root lengths di; moreover, for different H these forms are not simply
restrictions of one another.
Then, we can moreover transport any given pairing g together with q−(µ,ν) along the
isomorphism A` to the Hi and thus define forms ag` on H. The main result of this section
is in Theorem 3.13 that the non-degeneracy condition in Lemma 3.5 for R0(f) depending
on Hi, g is equivalent to ag` being non-degenerate.

Definition 3.7. Let Λ ⊆ Λ∨W be a sublattice, s.t. ΛR ⊆ Λ. By Λ̂ ⊂ Λ∨W we denote the
unique sublattice, s.t. the symmetric bilinear form ( . , . ) : Λ∨W × Λ∨W → Q induces a
commuting diagram

(5)
ΛR Λ̂ Λ∨W

Λ∨W
∗ Λ∗ Λ∗R ,

∼= ∼= ∼=

where Λ∗ := HomZ(Λ,Z). In particular, we have Λ̂R = Λ∨W and Λ̂∨W = ΛR.

Definition 3.8. A centralizer transfer map is an group endomorphism A` ∈ EndZ(Λ),
s.t.

(1) A`(Λ)
!

= Λ ∩ ` · Λ̂R = Cent`Λ(ΛR)

(2) A`(ΛR)
!

= ΛR ∩ ` · Λ̂ = Cent`ΛR(Λ).

Such a A` induces a group isomorphism

Λ/ΛR
∼−→ Cent`Λ(ΛR)/Cent`ΛR(Λ).

Of course A` is not unique.

Question 3.9. Are there abtract arguments for the existence of these isomorphism and
for its explicit form?

We will calculate explicit expressions for A` depending on the cases in the next section.
At this point we give the generic answers:

Example 3.10. For Λ = Λ∨W we have A` = ` · id.
For Λ = ΛR the two conditions are equivalent, so existence is trivial (resp. obviously
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the two trivial groups are isomorphic) and we may simply take for A` any base change
between left and right side. The expression may however be nontrivial.

Lemma 3.11. Assume gcd(`, |Λ∨W /Λ|) = 1, then A` = ` · id. In particular this is the
case if ` is prime to all root lengths and all divisors of the Cartan matrix.

Moreover if ` = `1`2 with gcd(`1, |Λ∨W /Λ|) = 1, then A` = `1 ·A`2.

This means we only have to calculate A` for all divisors ` of |Λ∨W /Λ|, which is a subset
of all divisors of root lengths times divisors of the Cartan matrix.

Proof. For the first condition we need to show for any λ ∈ Λ∨W that `λ ∈ Λ already
implies λ ∈ Λ. But if by assumption the order of the quotient group Λ∨W /Λ is prime to
`, then `· is an isomorphism on this abelian group, hence follows the assertion. For the
second condition applies the same argument noting that |Λ̂/ΛR| = |Λ∨W /Λ|.

For the second claim we simply consider the inclusion chains

A`(Λ) ⊂ Λ ∩ `2 · Λ̂R ⊂ Λ ∩ ` · Λ̂R

A`(ΛR) ⊂ Λ ∩ `2 · Λ̂ ⊂ ΛR ∩ ` · Λ̂
where a first isomorphism is given by A`2 and again `1· is a second isomorphism because
it is prime to the index. �

Our main result of this chapter is the following:

Theorem 3.12. Let ΛR ⊆ Λ1,Λ2 ⊆ ΛW be intermediate lattices, s.t. the condition
in Corollary 3.6 is fulfilled, i.e. CentΛR(Λ1) = CentΛR(Λ2) = Λ′. Assume we have a
centralizer transfer map A`.

(1) The following form is well defined on the quotients:

a`g : Λ1/ΛR × Λ2/ΛR −→ C×

(λ̄, µ̄) 7−→ q−(λ,A`(µ)) · g(λ,A`(µ)).

(2) Let
CentgΛ1

(Λ2) := {λ ∈ Λ1 | q(λ,µ) = g(λ, µ) ∀µ ∈ Λ2}.
Then the inclusion CentgΛ1

(Λ2) ↪→ Λ1 induces an isomorphism

(6) CentgΛ1
(Λ2)/Λ′ ∼= Rad(a`g).

Corollary 3.13. The quasitriangularity conditions for a choice R0 are by Lemma 3.5
equivalent to the non-degeneracy of the group pairing on Λ1/Λ

′ × Λ2/Λ
′:

f̂(λ, µ) = q−(λ,µ)g(λ, µ).
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By the previous theorem this condition is now equivalent to the nondegeneracy of a`g.

This condition on the fundamental group, which is a finite abelian group and mostly
cyclic, can be checked explicitly once a`g has been calculated.

Proof of Thm. 3.12. The first part of the theorem is a direct consequence of the defini-
tion of the centralizer transfer matrix A`. For the second part, we first notice that by
assumption we have a commutative diagram of finite abelian groups

ΛR/Λ
′ Λ1/Λ

′ Λ1/ΛR

(Λ2/CentΛ2(ΛR))∧ (Λ2/Λ
′)∧ (CentΛ2(ΛR)/Λ′)∧ ,

q−(.,.) f̂ f̂ ′

where G∧ denotes the dual group of a group G.
Now, by the five lemma we know that f̂ is an isomorphism if and only if the induced
map f̂ ′ is an isomorphism. Post-composing this map with the dualized centralizer transfer
matrix A∧` : (CentΛ2(ΛR)/Λ′)∧ ∼= (Λ2/ΛR)∧ gives a`g. �

4. Explicit calculation for every g

In the following, we want to compute the endomorphism A` ∈ EndZ(Λ) and the pairing
a` on the fundamental group explicitly in terms of the Cartan matrices and the common
divisors of ` with root lengths and divisors of the Cartan matrix. We will finally give a
list for all g.

4.1. Technical Tools. We choose the basis of simple roots αi for ΛR and the dual basis
of fundamental coweights λ∨i for the dual lattice Λ∨W with (αi, λ

∨
j ) = δi,j .

For any choice Λ ⊂ ΛW ⊂ Λ∨W , let AΛ be a basis matrix i.e. any Z-linear isomorphism
Λ∨W → Λ sending the basis λ∨i of Λ∨W to some basis µi of Λ. It is unique up to pre-
composition of a unimodular matrix U ∈ SLn(Z).
The dual basis AΛ̂ of Λ̂ is defined by

(AΛ̂(λ∨i ), AΛ(λ∨j )) = δij .

Explicitly, AΛ̂ is given by AΛ̂ = (A−1
Λ AR)T , where (AR)ij = (αi, αj). Now, let AΛ =

PΛSΛQΛ be the unique Smith decomposition of AΛ, which means: PΛ, QΛ are unimodular
and SΛ is diagonal with diagonal entries (SΛ)ii =: dΛ

i , such that dΛ
i | dΛ

j for i < j.



16

Example 4.1. For the root lattice the dΛR
i are the divisors of scalar product matrix

(αi, αj). Their product is∏
i

dΛR
i = |Λ∨W /ΛR| =

(∏
i

di

)
· |π1|, di =

(αi, αi)

2
.

For the coweight lattice all dΛ∨W
i = 1. For the weight lattice we recover the familiar dΛW

i =

di.

Without loss of generality, we will assume the basis matrices AΛ to be symmetric, i.e.
QΛ = P TΛ . We then have the following Lemma:

Lemma 4.2. Let ΛR ⊆ Λ ⊆ Λ∨W be a lattice. We define lattices

ACent := (P TΛ )−1D`P
−1
Λ D` := Diag

(
`

gcd(`, dΛ
i )

)
.

Then,
CentΛR(Λ) = ARACentΛ

∨
W CentΛ(ΛR) = AΛACentΛ

∨
W .

Proof. We compute explicitly,

CentΛR(Λ) = ΛR ∩ ` · Λ̂

= ARΛ∨W ∩ (A−1
Λ AR)T `Λ∨W

= (A−1
Λ AR)T (((A−1

Λ AR)T )−1ARΛ∨W ∩ `Λ∨W )

= ARA
−1
Λ (AΛ ∩ `Λ∨W )

= AR(PΛSΛP
T
Λ )−1(PΛSΛP

T
Λ Λ∨W ∩ `Λ∨W )

= AR(P TΛ )−1S−1
Λ (SΛΛ∨W ∩ `Λ∨W )

= AR(P TΛ )−1S−1
Λ Diag(lcm(SΛii , `))Λ

∨
W

= AR(P TΛ )−1D`Λ
∨
W = ARACentΛ

∨
W .

On the other hand,

CentΛ(ΛR) = Λ ∪ `Λ̂R
= Λ ∪ `Λ∨W
= AΛΛ∨W ∪ `Λ∨W
= PΛSΛP

T
Λ Λ∨W ∪ `Λ∨W

= PΛ(SΛΛ∨W ∪ `Λ∨W )

= PΛSΛD`Λ
∨
W

= AΛ(P TΛ )−1D`Λ
∨
W = AΛACentΛ

∨
W .

In particular, this means AΛ̂CentΛ(ΛR) = CentΛR(Λ). �
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4.2. Case Λ = ΛW . In order to exhaust all cases that appear in our setting, we continue
with Λ = ΛW :

Lemma 4.3. In the case Λ = ΛW , the centralizer transfer matrix A` is of the following
form:

A` =

AΛWACentQ
T
CP
−1
C A−1

ΛW
, gcd(`, |π1|) 6= 1

` · id, else.

Here, C = PCSCQC denotes the Smith decomposition of the Cartan matrix of g.

Proof. As we noted in Example 4.1, we have AΛW = Diag(di), for di being the ith root
length. Since di ∈ {1, p} for some prime number p, up to a permutation AΛW is already in
Smith normal form: this means that PΛW is a permutation matrix of the form (PΛW )ij =

δj,σ(i) for some σ ∈ Sn, s.t. dσ(1) ≤ · · · ≤ dσ(n). It follows that ACent = Diag
(

`
gcd(`,di)

)
.

Using the definition Cij =
(αi,αj)
di

, in the case gcd(`, |π1|) 6= 1 we obtain

ACentC
T = CACent.

Thus,

A`AR = AΛWACentQ
T
CP
−1
C A−1

ΛW
AR

= ARC
−1ACentQ

T
CP
−1
C C

= ARACent(C
T )−1QTCP

−1
C C

= ARACent.

By the previous Lemma, this proves the first condition for A`. The second condition
follows immediately from the previous Lemma.
The case gcd(`, |π1|) = 1 follows from Lemma 3.11 and the fact that |π1| = |Λ∨W /Λ∨R|. �

4.3. Case An. In the following example, we treat the case g = An with fundamental
group ΛW /ΛR = Zn+1 for general intermediate lattices ΛR ⊆ Λ ⊆ ΛW .

Example 4.4. In order to compute the centralizer transfer map A`, we first compute the
Smith decomposition of AR:
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AR =



2 −1 0 . . . 0

−1 2 −1 0 0

0 −1 2
. . . . . .

...

0 0
. . . . . . −1 0

...
. . . −1 2 −1

0 . . . 0 −1 2



=



−1 0 0 . . . 0
2 −1 0 0

0 2 −1
. . .

...

0 0
. . . . . . 0

...
. . . 2 −1 0

0 . . . 0 2 1





1 0 0 . . . 0
0 1 0 0

0 0 1
. . .

...
...

. . . . . .

. . . 1 0
0 . . . 0 n+ 1





−2 1 0 . . . 0

−3 0 1
. . . 0

−4 0 0
. . .

...
...

...
. . . 1 0

−n 0 1
1 0 . . . 0 0


A sublattice ΛR ( Λ ( ΛW is uniquely determined by a divisor d | n + 1, so that
Λ/ΛR ∼= Zd and is generated by the multiple d̂λn, where d̂ := n+1

d . Then

dΛ
i =

1, i < n

d, i = n
.

Since An is simply laced with cyclic fundamental group, the formula AΛ = PRSΛP
T
R

gives us symmetric basis matrices of sublattices ΛR ⊆ Λ ⊆ ΛW . We also substitute the
above basis matrix of the root lattice AR by AR(QR)−1P TR . It is then easy to see that the
definition A` := PRD`P

T
R gives a centralizer transfer matrix. We calculate it explicitly:

(A`)ij = (PRD`P
−1
R )ij =


δij , i < n

(n+ 1− j)
(

`
gcd(`,d) − 1

)
, i = n and j < n

`
gcd(`,d) , i = j = n.

Now a form g is uniquely determined by a dth root of unity g(χ, χ) = exp(2πi·k
d ) = ζkd

with some k. Then we calculate the form a`g on the generator:

a`g(χ, χ) = q−(χ,A`(χ))g(χ,A`(χ))

= q
− (n+1)2·`
d2gcd(`,d̂)

(λ∨n ,λ
∨
n) · g(χ, χ)

`

gcd(`,d̂)

= exp

(
2πi · (k`− d̂n)

d · gcd(`, d̂)

)
.
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For example the trivial g (i.e. k = 0) gives an R-matrix for all lattices Λ (defined by
d̂d = n + 1) iff d̂

gcd(`,d̂)
is coprime to d. For ` coprime to the divisor n + 1 this amounts

to all lattices associated to decompositions of n+ 1 into two coprime factors.

4.4. Case Dn. Finally, we consider the root lattice Dn. Since we have π1(D2n≥4) ∼=
Z2 × Z2 and π1(D2n+1≥5) ∼= Z4, it is appropriate to split this investigation in two steps.
We start with D2n≥4. In order to compute the respective Smith decompositions, we used
the software Wolfram Mathematica.

Example 4.5. In the case D2n≥4, we have three different possibilities for the lattices
ΛR ⊆ Λ1,Λ2 ⊆ ΛW :

(1) Λ1 6= Λ2, H1
∼= H2

∼= Z2: In this case, the subgroups Λi/ΛR ⊆ ΛR are spanned by
the fundamental weights λ2(n−1)+i. As in the case An, we define the centralizer
transfer map A` := PRD`P

−1
R on H2. This is possible since the symmetric basis

matrix AΛ2 = PRSΛ2P
T
R of Λ2 is already in Smith normal form. Using the soft-

ware Wolfram Mathematica in order to compute PR, we obtain A`(λ2n) = `
gcd(2,`) .

Combining this with (λ2n−1, λ2n) = n−1
2 , we get

a`g(λ2n−1, λ2n) = exp
(

2πi · (kl − 2(n− 1))

2 · gcd(2, `)

)
for g(λ2n−1, λ2n) = exp

(
2πik

2

)
.

(2) Λ1 = Λ2, Hi
∼= Z2: Without restrictions and in order to use the same definition

for A` as above, we choose Λi, s.t. the group Λi/ΛR is spanned by λ2n. Combining
the above result A`(λ2n) = `

gcd(2,`) with (λ2n, λ2n) = n
2 , we obtain

a`g(λ2n, λ2n) = exp
(

2πi · (kl − 2n)

2 · gcd(2, `)

)
for g(λ2n, λ2n) = exp

(
2πik

2

)
.

(3) Λ1 = Λ2 = ΛW , H ∼= Z2 × Z2: A group pairing g : (Z2 × Z2)× (Z2 × Z2)→ C×

is uniquely defined by a matrix K ∈ gl(2,F2), so that

g(λ2(n−1)+i, λ2(n−1)+j) = exp
(

2πiKij

2

)
.

Since Dn is simply-laced, we have A` = `·Id. Using (λ2(n−1)+i, λ2(n−1)+j) mod 2 =

δi+jodd, we obtain

ag` (λ2(n−1)+i, λ2(n−1)+j) = exp
(

2πi ·Kij`

2

)
(−1)i+j .

The last step is the case D2n+1≥5:

Example 4.6. Since it it is simply-laced and its fundamental group is cyclic, the case
D2n+1≥5 can be treated very similar to An. We distinguish two cases:
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(1) Λ1 = Λ2, Hi = 〈2λ2n+1〉 ∼= Z2. As in the case An, we define the centralizer
transfer map A` := PRD`P

−1
R on H2. Using (λ2n+1, λ2n+1) = 2n+1

4 , we obtain

a`g(2λ2n+1, 2λ2n+1) = exp
(

2πi · (k`− 2(2n+ 1))

2 · gcd(2, `)

)
.

for g(2λ2n+1, 2λ2n+1) = exp
(

2πik
2

)
.

(2) Λ1 = Λ2 = ΛW , H = 〈λ2n+1〉 ∼= Z4. By an analagous argument as above, we
obtain

a`g(λ2n+1, λ2n+1) = exp
(

2πi · (k`− (2n+ 1))

4

)
.

for g(λ2n+1, λ2n+1) = exp
(

2πik
4

)
.

4.5. Table of all quasitriangular quantum groups. In the following table, we list
all simple Lie algebras and check for which non-trivial wchoices of Λ,Λi, ` and g the
element R0Θ̄ is an R-matrix. As before, we define Hi := Λi/ΛR and H := Λ/ΛR. In
the cyclic case, if xi are generators of the Hi, then the pairing is uniquely defined by an
element 1 ≤ k ≤ |Hi|, s.t. g(x1, x2) = exp

(
2πik
|Hi|

)
. In the case D2n, Λ = ΛW , g is uniquely

defined by a 2 × 2-matrix K ∈ gl(2,F2), s.t. g(λ2(n−1)+i, λ2(n−1)+j) = exp
(

2πiKg
ij

2

)
for

i, j ∈ {1, 2}.
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g ` # Hi
∼= Hi (i=1,2) g ag`

all 1 Z1 〈0〉 g = 1 1

∞
Zd 〈d̂λn〉 g(d̂λn, d̂λn) = exp

(
2πik
d

)
exp

(
2πi·(k`−d̂n)

d·gcd(`,d̂)

)An≥1

π1 = Zn+1
d | n+ 1 d̂ = n+1

d
gcd

(
d, k`−d̂n

gcd(`,d̂)

)
= 1

` even 2
Z2 〈λn〉

g(λn, λn) = ±1 −1
Bn≥2

π1 = Z2
` odd 1 g(λn, λn) = (−1)n+1 exp

(
2πi·(k`−n)

2

)
` ≡ 2 mod 4 1

Z2 〈λn〉

g(λn, λn) = 1 exp
(

2πi·(k `
2

+1)

2

)
Cn≥3

` ≡ 0 mod 4 2 g(λn, λn) = ±1 −1
π1 = Z2

` odd 1 g(λn, λn) = −1 exp
(

2πi·(k`−2n)
2

)
` ≡ 2 mod 4 1

Z2

H1
∼= 〈λ2n−1〉

g(λ2n−1, λ2n) = (−1)n

exp
(

2πi·(k `
2
−n+1))

2

)
` ≡ 0 mod 4 2δ2|n g(λ2n−1, λ2n) = ±1, n even

H2
∼= 〈λ2n〉

` odd 1 g(λ2n−1, λ2n) = −1 exp
(

2πi·(k`−2(n−1))
2

)
D2n≥4

π1 = Z2 × Z2
` ≡ 2 mod 4 1

Z2 〈λ2n〉

g(λ2n, λ2n) = (−1)n+1

exp
(

2πi(k `
2
−n)

2

)
` ≡ 0 mod 4 2δ2-n g(λ2n, λ2n) = ±1, n odd

` odd 1 g(λ2n, λ2n) = −1 exp
(

2πi(k`−2n)
2

)
` even 2

Z2 × Z2 〈λ2n, λ2n+1〉
g(λ2(n−1)+i, λ2(n−1)+j) = ±1

exp
(

2πi·Kij`
2

)
(−1)i+j

` odd det(K) = K12 +K12 mod 2

` ≡ 2 mod 4 1

Z2 〈2λ2n+1〉

g(2λ2n+1, 2λ2n+1) = 1

exp
(

2πi·(k `
2
−2n−1)

2

)
` ≡ 0 mod 4 2 g(2λ2n+1, 2λ2n+1) = ±1
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D2n+1≥5
` odd 1 g(2λ2n+1, 2λ2n+1) = −1 exp

(
2πi·(k`−2(2n+1))

2

)
π1 = Z4

` even 4
Z4 〈λ2n+1〉

g(λ2n+1, λ2n+1) = c, c4 = 1

exp
(

2πi·(k`−(2n+1))
4

)
` odd 2 g(λ2n+1, λ2n+1) = ±1

` ≡ 0 mod 3 3

Z3 〈λn〉

g(λn, λn) = c, c3 = 1

exp
(

2πi·(k`−1)
3

)E6
` ≡ 1 mod 3 2 g(λn, λn) = 1, exp

(
2πi2

3

)
π1 = Z3

` ≡ 2 mod 3 2 g(λn, λn) = 1, exp
(

2πi
3

)
` even 2

Z2 〈λn〉
g(λn, λn) = ±1

exp
(

2πi·(k`−1)
2

)E7

π1 = Z2
` odd 1 g(λn, λn) = 1

Table 2: Solutions for R0-matrices

The Lie algebras E8, F4 and G2 have trivial fundamental groups and thus have no non-
trivial solution. We want to emphasize once more that the choice Λi = ΛR always leads
to a quasitriangular quantum group.
The following Lemma connects our results with Lusztig’s original result:

Lemma 4.7. In Lusztig’s definition of a quantum group he uses the quotient Λ′Lusz =

2CentΛR(2ΛW ). This coincide with our choice Λ′ = CentΛR(Λ1 + Λ2), if and only if

2 gcd(`, dΛ
i ) = gcd(`, 2dWi ),(7)

where the dΛ
i denote the invariant factors of Λ∨W /Λ and the dWi denote the invariant

factors of Λ∨W /ΛW (i.e. ordered root lengths).
In particular, for ` odd these choices never coincide. For Λ = ΛW , Λ′ = Λ′Lusz holds if
and only if 2di | `. This is the most extreme case of divisibility and it is precisely the case
appearing in logarithmic conformal field theories.
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Proof. We first note that in our cases, Λ′ = CentΛR(Λ1 + Λ2) = CentΛR(Λ). We have,

2CentΛR(2ΛW ) = 2(ΛR ∩ 2̂ΛW )

= AR2(Λ∨W ∩A−1
W

`

2
Λ∨W )

= ARDiag
(

2`

gcd(`, 2dWi )

)
Λ∨W .

By 4.2, this coincides with Λ′ if and only if equation (7) holds. �

5. Factorizability of Quantum Group R-matrices

We first recall the definition of factorizable braided tensor categories and factorizable
Hopf algebras, respectively.

Definition 5.1. [EGNO15] A braided tensor category C is factorizable if the canonical
braided tensor functor G : C � Cop → Z(C) is an equivalence of categories.

Definition 5.2. A finite-dimensional quasitriangular Hopf algebra (H,R) is called fac-
torizable if its monodromy matrix M := R · R21 ∈ H ⊗ H is non-degenerate, i.e. the
following linear map is bijective

H∗ → H φ 7→ (id⊗ φ)(M).

Equivalenty, this means we can write M =
∑

iR
i
1 ⊗Ri2 for two basis’ Ri1, R

j
2 ∈ H.

In [Sch01], Schneider gave a different characterization of factorizable Hopf algebras in
terms of its Drinfeld double, leading to the following theorem:

Theorem 5.3. Let (H,R) be a finite-dimensional quasitriangular Hopf algebra. Then the
category of finite-dimensional H-modules H −modfd is factorizable if and only if (H,R)

is a factorizable Hopf algebra.

5.1. Monodromy matrix in terms of R0. In order to obtain conditions for the fac-
torizability of the quasitriangular small quantum groups (uq(g,Λ,Λ

′), R0(f)Θ̄) as in
Theorem 2.2 in terms of g, q,Λ and f , we start by calculating the monodromy matrix
M := R ·R21 ∈ uq(g,Λ,Λ′)⊗ uq(g,Λ,Λ′) in general as far as possible:

Lemma 5.4. For some R = R0(f)Θ̄ as in Theorem 2.2, the factorizability of R is equiv-
alent to the invertibility of the following complex-valued matrix m with entries indexed by
elements in µ, ν ∈ Λ/Λ′:

mµ,ν :=
∑

µ′,ν′∈Λ/Λ′

f(µ− µ′, ν − ν ′)f(ν ′, µ′).
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Proof. We first plug in the expressions for R0 from Theorem 3.3 and Θ̄ from Theorem
2.2 and simplify:

M := R21 ·R

= (R0)21 · Θ̄21 ·R0 · Θ̄

=

 ∑
µ1,ν1∈Λ

f(µ1, ν1)Kν1 ⊗Kµ1

 ·
 ∑
β1∈Λ+

R

(−1)trβ1qβ1

∑
b1∈Bβ2

b∗+1 ⊗ b
−
1


·

 ∑
µ2,ν2∈Λ

f(µ2, ν2)Kµ2 ⊗Kν2

 ·
 ∑
β2∈Λ+

R

(−1)trβ2qβ2

∑
b2∈Bβ2

b−2 ⊗ b
∗+
2


=

∑
β1,β2∈Λ+

R

(−1)trβ1+β2qβ1qβ2

 ∑
µ1,µ2,ν1,ν2∈Λ

f(µ1, ν1)f(µ2, ν2)qβ1(ν2−µ2)Kν1+µ2 ⊗Kµ1+ν2


·

 ∑
b1∈Bβ1

,b2∈Bβ2

b∗+1 b−2 ⊗ b
−
1 b
∗+
2

 ,

where Λ+
R = N0[∆]. The last equation holds since b−1 ∈ u

−
β1

and hence fulfills Kν2b
−
1 =

q−β1ν2b−1 Kν2 and similarly for b∗+1 .
We have two triangular decompositions

uq = u0
qu
−
q u

+
q uq = u0

qu
+
q u
−
q ,

thus the following both sets are vector space basis’ of uq:

{Kλb
−
1 b
∗+
2 |λ ∈ Λ/Λ′, bi ∈ Bβi , βi ∈ Λ+

R} {Kλb
∗+
1 b−2 |λ ∈ Λ/Λ′, bi ∈ Bβi , βi ∈ Λ+

R}.

Hence the factorizability M (and hence of R) is equivalent to the fact that for all (!)
β1 ∈ Λ+

R the following element factorizes:

Mβ1
0 :=

∑
µ1,µ2,ν1,ν2∈Λ/Λ′

qβ1(ν2−µ2)f(µ1, ν1)f(µ2, ν2)Kν1+µ2 ⊗Kµ1+ν2

=
∑

µ,ν∈Λ/Λ′

Kν ⊗Kµ ·

 ∑
µ′,ν′∈Λ/Λ′

qβ1(µ′−ν′)f(µ− µ′, ν − ν ′)f(ν ′, µ′)

 .

Since Kν ⊗ Kµ is a vector space basis of u0
q ⊗ u0

q = C[Λ/Λ′] ⊗ C[Λ/Λ′], this in turn is
equivalent to the invertibility of the following family of matrices mβ1 for all β1 ∈ Λ+

R
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with rows/columns indexed by elements in µ, ν ∈ Λ/Λ′:

mβ1
µ,ν :=

∑
µ′,ν′∈Λ/Λ′

f(µ− µ′, ν − ν ′)f(ν ′, µ′)qβ1(µ′−ν′)

We now use the fact that R was indeed an R-matrix: By property (1) in Theorem 2.2 we
have

mβ1
µ,ν =

∑
µ′,ν′∈Λ/Λ′

f(µ− µ′, ν − ν ′)f(ν ′ + β1, µ
′)q−β1ν′

Since the invertibility of a matrix mµ,ν is equivalent to the invertibility of any matrix
mµ,ν+β1 , we may substitute ν ′ 7→ ν ′ + β1, ν 7→ ν + β1, pull the constant factor q−β2

1 in
front (which also does not affect invertibility) and hence eliminated the first β1 from the
condition. Hence the invertibility of R is equivalent to the invertibility of the following
family of matrices m̃β1 for all β1 ∈ Λ+

R:

m̃β1
µ,ν :=

∑
µ′,ν′∈Λ/Λ′

f(µ− µ′, ν − ν ′)f(ν ′, µ′)q−β1ν′

We may now use the same procedure to eliminate the second β1, hence the invertibility
of R is equivalent to the invertibility of the following matrix with rows/columns indiced
by elements in µ, ν ∈ Λ/Λ′:

mµ,ν :=
∑

µ′,ν′∈Λ/Λ′

f(µ− µ′, ν − ν ′)f(ν ′, µ′)

This was the assertion we wanted to prove. �

Definition 5.5. Let g : G1 ×G2 → C× be a group pairing. It induces a symmetric form
on the product G1 ×G2 we denote by Sym(g):

Sym(g) : (G1 ×G2)×2 −→ C×

((µ1, µ2), (ν1, ν2)) 7−→ g(µ1, ν2)g(ν1, µ2).

Lemma 5.6. If g : G1 × G2 → C× is a perfect pairing of abelian groups, then the
symmetric form Sym(g) is perfect.

Proof. By assumption, g × g defines an isomorphism between G1 × G2 to Ĝ2 × Ĝ1.
The symmetric form Sym(g) is given by the composition of this isomorphism with the
canonical isomorphism Ĝ2 × Ĝ1

∼= Ĝ1 ×G2. This proves the claim. �

Consider for a finite abelian group G and subgroups G1, G2 ≤ G the canonical exact
sequence

0→ G1 ∩G2 → G1 ×G2 → G1 +G2 → 0(8)

For µ ∈ G1 +G2, we denote its fiber by

(G1 ×G2)µ := {(µ1, µ2) ∈ G1 ×G2 | µ1 + µ2 = µ}
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Moreover, we define

Rad : = { (µ1, µ2) ∈ G1 ×G2 | Sym(f̂)((µ1, µ2), x) = 1 ∀x ∈ (G1 ×G2)0 }

Radµ : = Rad ∩ (G1 ×G2)µ

Rad⊥0 : = { µ1 + µ2 ∈ G | (µ1, µ2) ∈ Rad }

Lemma 5.7. We have two split exact sequences:

0→ Rad0 → Rad→ Rad⊥0 → 0

0→ Rad⊥0 → G→ Rad0 → 0.

Proof. The first sequence is exact by definition of the three groups. Moreover, we know

Rad = ker(ι̂ ◦ Sym(f̂)) ∼= ker(ι̂) = im(π̂) ∼= Ĝ ∼= G,

where ι̂, π̂ denote the duals of the inclusion and projection in (8). In example 5.11 we
will see that in the case G1 = G2 = G, f̂ symmetric, Rad0 is the 2-torsion subgroup of
G, and the second map in the second exact sequence is just the projection, hence both
diagrams split in this case. If f̂ is asymmetric, we will see in section 5.3 that Rad0 is
isomorphic to Zk2 for some k ≥ 2, thus

Rad⊥0 −→ Rad

x 7−→
∑

x̃∈Radx

x̃

is a section of the first exact sequence. Here we used that the sum over all elements in
Zk2 vanishes. Again, it follows that both diagrams split. Finally, if G1 6= G2 (i.e. in the
case D2n), then f̂ = q−(.,.) on G1 ∩G2. By the same argument as in example 5.11, Rad0

is the 2-torsion subgroup of G1 ∩G2. But we have G ∼= G1 ∩G2 × π1 in this case, hence
both sequences split. �

Corollary 5.8. Using the projection α : G → Rad⊥0 and the inclusion β : Rad⊥0 → Rad
from the above lemma, we can define a symmetric form on G:

SymG(f̂) : G×G −→ C×(9)

(µ, ν) 7−→ Sym(f̂)(β ◦ α(µ), β ◦ α(ν)).(10)

Moreover, we have Rad(SymG(f̂)) ∼= Rad0.

�

Theorem 5.9. We have shown in Theorem 2.2 and Lemma 3.5 that the assumption that
R = R0(f)Θ̄ is an R-matrix is equivalent to the existence of subgroups G1, G2 ⊂ Λ/Λ′ of
same order some d|ΛR/Λ′| and f restricting up to a scalar to a non-degenerate pairing
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f̂ : G1 ×G2 → C× and f vanishes otherwise.
In this notation the matrix m as defined in the previous lemma can be rewritten as:

mµ,ν =
1

d2|ΛR/Λ′|2
∑

µ̃∈(G1×G2)µ
ν̃∈(G1×G2)ν

Sym(f̂)(µ̃, ν̃).

It is invertible if and only if Rad0 = 0. In this case,

mµ,ν =
|G1 ∩G2|
d2|ΛR/Λ′|2

SymG(f̂)

.

We first note that Rad0 = 0 implies Rad⊥0 = G and thus G = G1 + G2. Together with
Corollary 3.6 this implies

Corollary 5.10.
Λ′ = CentΛR(Λ).

Before we proof the theorem, we first give a simple example:

Example 5.11. Let G1 = G2 = G (correspondingly Λ1 = Λ2 = Λ) and assume f̂ is
symmetric non-degenerate, then the radical measures 2-torsion:

Rad(SymG(f̂)) ∼= Rad0 = {µ ∈ G | 2µ = 0}

Again, this is the only case appearing for cyclic fundamental groups. Hence in all cases
except g = D2n factorizability is equivalent to |Λ/Λ′| being odd.

Proof of Thm. 5.9. The first part of the theorem follows by applying lemma 3.5 to the
matrixm as given in the previous lemma. Now, assume thatm is invertible. We must have
G = G1 +G2, otherwise the matrix has zero-columns and -rows, differently formulated:
the fibers (G1×G2)µ in the short exact sequence must be non-empty for all µ ∈ G. If on
the other hand, Rad0 = 0, then Rad⊥0 = G and thus G1 +G2 = G must also hold, thus
we assume this from now on. By the short exact sequence the fiber (G1×G2)0

∼= G1∩G2,
other fibers are of the explicit form µ̃+ (G1 ×G2)0 for some choice of representative µ̃.
Therefore,

mµ,ν =
1

d2|ΛR/Λ′|2
∑

µ̃∈(G1×G2)µ
ν̃∈(G1×G2)ν

Sym(f̂)(µ̃, ν̃)

=
1

d2|ΛR/Λ′|2
∑

ν̃∈(G1×G2)ν

Sym(f̂)(µ̃, ν̃)
∑

η̃∈(G1×G2)0

Sym(f̂)(η̃, ν̃)

=
|G1 ∩G2|
d2|ΛR/Λ′|2

∑
ν̃∈(G1×G2)ν

Sym(f̂)(µ̃, ν̃) · δSym(f)(ν̃,_)|G1∩G2
=1 = (∗).
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Fix as above a representative ν̃ of the fiber of ν, i.e. ν̃ ∈ (G1×G2)ν such that Sym(f)(ν̃,_)|G1∩G2 =

1 holds. Two elements fulfilling this property differ by an element in the subgroup
Rad0 ≤ G1 ∩G2, thus

(∗) =
|G1 ∩G2|
d2|ΛR/Λ′|2

Sym(f̂)(µ̃, ν̃)
∑

ξ̃∈Rad0

Sym(f̂)(ξ̃, ν̃) · δSym(f)(ν̃,_)|G1∩G2
=1

=
|G1 ∩G2||Rad0|
d2|ΛR/Λ′|2

Sym(f̂)(µ̃, ν̃) · δSym(f̂)(ν̃,_)|G1∩G2
=1 δSym(f̂)(µ̃,_)|Rad0

=1.

Since m is symmetric, we have

mµ,ν =
|G1 ∩G2||Rad0|
d2|ΛR/Λ′|2

Sym(f̂)(µ̃, ν̃) · δSym(f̂)(ν̃,_)|G1∩G2
=1 δSym(f̂)(µ̃,_)|G1∩G2

=1

=
|G1 ∩G2||Rad0|
d2|ΛR/Λ′|2

SymG(f̂)(µ, ν)δRadµ 6=∅δRadν 6=∅.

and this is invertible if an only if Rad0
∼= Rad(SymG(f̂)) = 0.

�

5.2. Factorizability for symmetric R0(f). For R0 =
∑

µ,ν f(µ, ν)Kµ ⊗Kν being the
Cartan part of an R-matrix, assume that f̂ = |G|f on G is symmetric. We have shown
in Example 5.11 that factorizability is equivalent to |G| being odd.
We now want to give a necessary and sufficient condition for this:

Lemma 5.12. Let ΛR ⊆ Λ ⊆ ΛW be an arbitrary intermediate lattice for a certain
irreducible root system. Then the order of the group G = Λ/CentΛR(Λ) is odd if and only
if both of the following conditions are satisfied:

(1) |Λ/ΛR| is odd
(2) ` is either odd or (` ≡ 2 mod 4, g = Bn, Λ = ΛR) including A1.

Proof. We saw that in all our cases, there exists an isomorphism Λ/ΛR ∼= CentΛ(ΛR)/CentΛR(Λ).
Moreover, from Lemma 4.2 we know that |Λ/CentΛ(ΛR)| = det(D`), where D` was the
diagonal matrix Diag

(
`

gcd(`,dΛ
i )

)
) with dΛ

i being the invariant factors of the lattice Λ (i.e.
the diagonal entries of the Smith normal form of a basis matrix of Λ). Thus,

|G| = |Λ/CentΛR(Λ)|

= |Λ/CentΛ(ΛR)||CentΛ(ΛR)/CentΛR(Λ)|

= |Λ/CentΛ(ΛR)||Λ/ΛR|

= det(D`)|Λ/ΛR|

=
n∏
i=1

`

gcd(`, dΛ
i )
|Λ/ΛR|.
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Clearly, this term is odd if ` and |Λ/ΛR| are odd. In the case (` ≡ 2 mod 4, g = Bn,
Λ = ΛR), the Smith normal form SR of the basis matrix AR is given by 2 · id. Thus, |G|
is odd in this case. On the other hand, let |G| be odd:
We first consider the case ` even. A necessary condition for |Λ/Λ′| odd is that the
multiplicity m` of the prime 2 in

∏n
i=1

`
gcd(`,dΛ

i )
is at most the multiplicity mπ1 of the

prime 2 in |π1|. We check this condition for rank n > 1:

• For g simply-laced (or triply-laced g = G2) we have all di = 1, hence n | m`

(equality for ` = 2 mod 4). The cases Dn with mπ1 = 2 have rank n ≥ 4, all
others except An have mπ1 = 0, 1, so the necessary condition m` ≤ mπ1 is never

fulfilled. The cases An have 2mπ1 |(n+ 1) ≤ (m` + 1)
!
≤ (mπ1 + 1) which can only

be true in rank n = 1 treated above.
• For g doubly-laced of rank n > 1, we always have always mπ1 = 0, 1 but m` can
be considerably smaller than above, namely for ` = 2 mod 4 equal to the number
of short simple roots dαi = 1 (otherwise m` again increases by n for every factor 2

in `), hence the necessary condition m` ≤ mπ1 can be fulfilled only for Bn (which
would also include A1 above for n = 1). More precisely, since m` = mπ1 and the
decomposition for Λ/Λ′ has an additional factor |Λ/ΛR|, it can only be odd for
Λ = ΛR.

On the other hand, if ` is odd, then the whole product term is odd. But since |G| was
assumed to be odd, also |Λ/Λ′| must be odd. �

Corollary 5.13. Let Λ = ΛR. In the previous section we have seen that f̂ = q−(.,.) gives
always an R-matrix in this case. By the proof of the previous Lemma, we have

Rad0
∼=

n∏
i=1

Z
gcd

(
2, `

gcd(`,dR
i

)

),
where the dRi denote the inveriant factors of Λ∨W /ΛR.

5.3. Factorizability for D2n, R0 antisymmetric. The split case g = D2n, G =

G1 × G2 is clearly factorizable, so the only remaining case for which we have to check
factorizabilty is g = D2n,Λ = ΛW for f̂ being not symmetric. We know that in this case,
the corresponding form g on Λ/ΛR is uniquely defined by a 2×2-matrixK ∈ gl(2,F2), s.t.
g(λ2(n−1)+i, λ2(n−1)+j) = exp

(
2πiKij

2

)
for i, j ∈ {1, 2}. From this we see that if g is not

symmetric, it must be antisymmetric, i.e. g(µ, ν) = g(ν, µ)−1. Thus, the following lemma
applies in this case, and hence there are no factorizable R-matrices for D2n, Λ = ΛW .

Lemma 5.14. For g simply-laced and Λ = ΛW , let f̂ = q−(.,.)g : G × G → C× be a
non-degenerate form as in Thm. 3.3 and Lemma 3.5, s.t. the form g : π1 × π1 → C× is
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asymmetric. Then,

Rad0
∼=

n⊕
i=1

Zgcd(2,`dRi ),

where the dRi denote the invariant factors of π1. In particular, Rad0 = 0 holds if and only
if gcd(2, `|π1|) = 1.

Proof. We recall the definition of Rad0(SymG(f̂)) in this case:

Rad0(SymG(f̂)) = {µ ∈ G | f(ν, µ)−1 = f(µ, ν) ∀ ν ∈ G }

= {µ ∈ G | q(ν,µ)g(ν, µ)−1 = q−(µ,ν)g(µ, ν) ∀ ν ∈ G }

= {µ ∈ G | q(ν,µ) = q−(µ,ν) ∀ ν ∈ G }

= {µ ∈ G | q(2µ,ν) = 1 ∀ ν ∈ G }

= {µ ∈ G | 2µ ∈ Cent2ΛW (ΛW )/2CentΛR(ΛW ) } = (∗)

For g is simply-laced, we have ΛW = Λ∨W , thus

(∗) ∼= Cent2ΛW (ΛW )/2CentΛR(ΛW )

= (2ΛW ∩ `ARΛW )/2`ARΛW

= PRDiag(lcm(2, `dRi ))ΛW /PR2`SRΛW

= ΛW /Diag(gcd(2, `dRi ))ΛW .

This proves the claim. �

5.4. Transparent objects in non-factorizable cases. In this section, we determine
the transparent objects in the representation category of uq(g,Λ) with our R-matrix
given by R0Θ̄ and R0 = 1

|Λ/Λ′|
∑

µ,ν∈Λ/Λ′ f̂ with f̂ a group pairing Λ1/Λ
′×Λ2/Λ

′ → C×.

Definition 5.15. Let C be a braided monoidal category with braiding c. An object V ∈ C
is called transparent if the double braiding cW,V ◦ cV,W is the identity on V ⊗W for all
W ∈ C. In particular, for a Hopf algebra H the representation category H − modfd is
factorizable if and only if 0 is the only transparent object.

Since in our cases Λ1 6= Λ2 can only appear in D2n, and we know those are factorizable,
we shall in the following restrict ourselves to the case Λ1 = Λ2 = Λ. The proof below
works also in the more general case, but requires more notation. As usual we first reduce
the Hopf algebra question to the group ring and then solve the group theoretical problem.

Lemma 5.16. If a uq(g)-module V with a highest-weight vector v and Kµv = χ(Kµ)v is
a transparent object, then necessarily the 1-dimensional Λ/Λ′-module Cχ is a transparent
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object over the Hopf algebra C[Λ/Λ′] with R-matrix R0. If V is 1-dimensional, then V is
transparent if and only if Cχ is.

Proof. Let V be transparent. For every ψ : Λ/Λ′ → C× we have another finite-dimensional
module W := uq(g)⊗uq(g)+ Cψ with highest weight vector w = 1⊗ 1ψ which we can test
this assumption against

c2 : V ⊗W →W ⊗ V → V ⊗W

We calculate the effect of c2 on the highest-weight vectors v ⊗ w:

c2(v ⊗ w) = τW⊗VR0Θ̄τV⊗WR0Θ̄(v ⊗ w)

Because v, w were assumed highest-weight vectors, the Θ̄ act trivially. Hence follows that
Cχ,Cψ have a trivial double braiding over the Hopf algebra C[Λ/Λ′] with R-matrix R0.
Because we could achieve this result for any ψ this means that Cχ is transparent as
asserted.

Now let V = Cχ be 1-dimensional over uq(g) and transparent over C[Λ/Λ′], and let w
be any element in any module W , then again the two Θ act trivially, one time because
v = 1χ is a highest weight vector, and one time because it is also a lowest weight vector.
But if the double-braiding of v = 1χ with any element w is trivial, then V = Cχ is
already tranparent over uq(g). �

Lemma 5.17. The transparent objects in the category of representations of the the Hopf
algebra uq(g,Λ) with R-matrix given by Lusztigs ansatz are 1-dimensional objects Cχ and
are the f -transformed of the radical of SymG(f̂):

χ(µ) = f(µ, ξ) ξ ∈ Rad0

Proof. Since f is nondegenerate, we can assume χ(µ) = f(µ, ξ) and wish to prove Cχ is
transparent iff ξ ∈ Rad0. We test transparency against any module Cψ and also write
ψ(µ) = f(λ, µ) (note the order of the argument). We evaluate the double-braiding on
1χ ⊗ 1ψ and get the following scalar factor, which needs to be = 1 for all ψ in order to
make Cχ transparent:
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1

|G|2
∑
µ,ν

χ(µ)ψ(ν)
∑

µ1+µ2=µ
ν1+ν2=µ

Sym(f̂)((µ1, µ2), (ν1, ν2))

=
1

|G|2
∑
µ,ν

f(µ, ξ)f(λ, ν)
∑

µ1+µ2=µ
ν1+ν2=µ

f(µ1, ν1)f(ν2, µ2)

=
1

|G|2
∑
µ,ν

f(µ, ξ)f(λ, ν)
∑
ν1,µ1

f(µ1, ν1) f(ν, µ)f−1(ν1, µ)f−1(ν, µ1)f(ν1, µ1)

=
1

|G|
∑
ν

f(λ, ν)
∑
ν1,µ1

f(µ1, ν1) δξ=−ν+ν1f
−1(ν, µ1)f(ν1, µ1)

=
1

|G|
∑
ν

f(λ, ν)
∑
µ1

f(µ1, ξ + ν) f(ξ, µ1)

= f−1(λ, ξ) f−1(ξ, λ) = SymG(f̂)(λ, ξ)

This scalar factor of the double braiding is equal +1 for all λ (and hence all Cψ) iff
ξ ∈ Rad0 as asserted. �

The previous two lemmata imply that the characters χ(µ) = f(µ, ξ), ξ ∈ Rad0 are the
potential highest-weight vectors for transparent objects, and if they even give rise to
1-dimensional uq(g)-modules (i.e. χ|2ΛR = 1), then these are guaranteed transparent.
But in all cases where f is symmetric we have seen in 5.11 that Rad0(SymG(f̂)) is the
2-torsion subgroup of Λ/Λ′, so in these cases χ gives rise to a 1-dimensional object.

Corollary 5.18. If f is symmetric (true for all cases except D2n) then the transparent
objects are all 1-dimensional Cχ where the characters χ are the f -transformed of the
elements in the radical of the bimultiplicative form Sym(f̂)|G on G = Λ/Λ′. In particular
the group of transparent objects is isomorphic to this radical as an abelian group.

Corollary 5.19. In the case of symmetric f (all cases except D2n) the fact that Rad0 is
the 2-torsion of Λ/Λ′ and f -transformation is a group isomorphism shows:
The group T of transparent objects consists of Cχ where χ|2Λ = 1 i.e. the two-torsion of
the character group.

The remaining case in D2n with f nonsymmetric and has been done by hand in Lemma
5.14.

5.5. Table of all factorizable quantum groups. We now give a list of all quasi-
triangular small quantum groups as in Table 2, where we replaced the entries in the last
column by the respective subgroups of transparent objects T ⊆ Λ/Λ′. If the quantum
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group is factorizable, this is indicated by a bold 0. Since (Λ = ΛR, ` odd) is always a
solution, we omitted this from the table.

g ` # Hi
∼= Hi (i=1,2) g T ⊆ Λ/Λ′

all
` odd 1

Z1 〈0〉 g = 1

0

` ≡ 0 mod 4 1 Zn2

∞

Zn−1
2 , 2 - x

Zd 〈d̂λn〉 g(d̂λn, d̂λn) = exp
(

2πik
d

)
An≥1 Zn2 , 2 | x

π1 = Zn+1
d | n+ 1 d̂ = n+1

d
gcd

(
d, k`−d̂n

gcd(`,d̂)

)
= 1

x = d`
gcd(`,d̂)

` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 0

` ≡ 2 mod 4 2 Z2 〈λn〉 g(λn, λn) = ±1 Z2

Bn≥2
` ≡ 0 mod 4 2 Z2 〈λn〉 g(λn, λn) = ±1 Zn2π1 = Z2

` odd 1 Z2 〈λn〉 g(λn, λn) = (−1)n+1 Z2

` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Zn−2
2

` ≡ 2 mod 4 1

Z2 〈λn〉

g(λn, λn) = 1 Zn−1
2

Cn≥3
` ≡ 0 mod 4 2 g(λn, λn) = ±1 Zn2π1 = Z2

` odd 1 g(λn, λn) = −1 Z2

` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z2(n−1)
2

` ≡ 2 mod 4 1

Z2

H1
∼= 〈λ2n−1〉

g(λ2n−1, λ2n) = (−1)n

Z2n
2

` ≡ 0 mod 4 2δ2|n g(λ2n−1, λ2n) = ±1, n even

H2
∼= 〈λ2n〉

` odd 1 g(λ2n−1, λ2n) = −1 0
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D2n≥4

π1 = Z2 × Z2
` ≡ 2 mod 4 1

Z2 〈λ2n〉

g(λ2n, λ2n) = (−1)n+1 Z2n−1
2

` ≡ 0 mod 4 2δ2-n g(λ2n, λ2n) = ±1, n odd Z2n
2

` odd 1 g(λ2n, λ2n) = −1 Z2

` even 2

Z2 × Z2 〈λ2n, λ2n+1〉

g(λ2(n−1)+i, λ2(n−1)+j) = ±1 Z2n
2

` odd
det(K) = K12 +K21 = 0 mod 2 Z2

det(K) = K12 +K21 = 1 mod 2 Z2
2

` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z2n
2

` ≡ 2 mod 4 1

Z2 〈2λ2n+1〉

g(2λ2n+1, 2λ2n+1) = 1

Z2n+1
2

` ≡ 0 mod 4 2 g(2λ2n+1, 2λ2n+1) = ±1

D2n+1≥5
` odd 1 g(2λ2n+1, 2λ2n+1) = −1 Z2

π1 = Z4

` even 4
Z4 〈λ2n+1〉

g(λ2n+1, λ2n+1) = c, c4 = 1 Z2n+1
2

` odd 2 g(λ2n+1, λ2n+1) = ±1 Z2

` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z6
2

` ≡ 0 mod 3 3

Z3 〈λn〉

g(λn, λn) = c, c3 = 1
Z6

2, 2 | `
E6

` ≡ 1 mod 3 2 g(λn, λn) = 1, exp
(

2πi2
3

)
π1 = Z3

0, 2 - `
` ≡ 2 mod 3 2 g(λn, λn) = 1, exp

(
2πi
3

)
` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z6

2

` even 2
Z2 〈λn〉

g(λn, λn) = ±1 Zn2E7

π1 = Z2
` odd 1 g(λn, λn) = 1 Z2
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E8 ` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z8
2

F4 ` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z2
2

G2 ` ≡ 2 mod 4 1 Z1 〈0〉 g = 1 Z2
2

Table 3: Solutions for R0-matrices

6. Quantum groups with a ribbon structure

In this section we construct a ribbon structure in all cases:

Theorem 6.1. Let uq(g,Λ) be quasitriangular Hopf algebra, with an R-matrix satisfying
the conditions in Theorem 2.2 and let u := S(R(2))R(1). Then v := K−1

ν0
u is a ribbon

element in uq(g,Λ).

Proof. We consider the natural N0[αi | i ∈ I]-grading on the Borel parts u± := uq(g,Λ)±

[Lus93]. Since u± is finite-dimensional, there exists a maximal ν0 ∈ N0[αi | i ∈ I], s.t. the
homogeneous component u±ν is non-trivial. More explicitly ν0 is of the form:

ν0 =
∑
α∈Φ+

(`α − 1)α,

where `α := `
gcd(`,2dα) .

By the proof of Thm. 8.23. in [Mül98b] it suffices to show thatK−1
ν0+2ρ is a central element.

By the K,E-relations, this is equivalent to

(11) ν0 + 2ρ ∈ CentΛ(ΛR),

where ρ = 1
2

∑
α∈Φ+ α is the Weyl vector.

We calculate directly that this is always the case:

(ν0 + 2ρ, β) = q
∑
α∈Φ+ (`α−1+1)(α,β)

= q
`
∑
α∈Φ+

1
gcd(`,2dα)

·2dα(α∨,β)
= 1

�
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7. Open Questions

Question 7.1. It was surprising to us that the case D2n = so4n(C) has so many more
solutions that the other cases, in particular with non-symmetric R0, due to the non-cyclic
fundamental group. Do these additional modular tensor categories appear elsewhere? Does
the non-symmetry have interesting implications on the category?

Question 7.2. Our procedure would be similarly possible for any diagonal Nichols alge-
bra. The Lusztig ansatz can in these cases be found in [AY13].

Question 7.3. In each case where uq(g,Λ), R is not factorizable, we can modularize the
corresponding representation category and get a modular tensor category, which should
be representations over some "quasi quantum group" uq(g, Λ̃, ω), R which is a quasi-Hopf
algebra where the group ring C[Λ̃] is deformed by a 3-group-cocycle ω.
Moreover in converse: By the trick of Etingof, Gelaki every factorizable "quasi quantum
group" can be extended to a twist of an ordinary Hopf algebra and hence arises from our
list.

More technically:

Question 7.4. The centralizer transfer map A` in Definition 3.8 (and correspondingly
the form a`) was characterized very generally, but we could only prove existence by a con-
struction using the classification of simple Lie algebras (and distinguishing three cases).

We would strongly assume that these maps exist under rather general assumptions (we
know a counterexample). For example, in this way our results would apply also to all
semi-simple Lie algebras, which allow for much richer possibilities than just combining
the simple Lie algebras.

Also the result Theorem 3.3 from our previous article [LN14b] has only been proven there
for cyclic groups (and by hand for Z2×Z2) although we strongly suspect it holds for every
abelian group.

Both authors thank Christoph Schweigert for helpful discussions and support. The first
author was supported by the DAAD P.R.I.M.E program funded by the German BMBF
and the EU Marie Curie Actions as well as the Graduiertenkolleg RTG 1670 at the
University of Hamburg. The second auther was supperted by the Collaborative Research
Center SFB 676 at the University of Hamburg.
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