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ON UNROLLED HOPF ALGEBRAS

NICOLÁS ANDRUSKIEWITSCH AND CHRISTOPH SCHWEIGERT

Abstract. We show that the definition of unrolled Hopf algebras can be naturally extended to the
Nichols algebra B(V ) of a Yetter-Drinfeld module V on which a Lie algebra g acts by biderivations.
Specializing to Nichols algebras of diagonal type, we find unrolled versions of the small, the De
Concini-Procesi and the Lusztig divided power quantum group, respectively.

1. Introduction

1.1. In the recent papers [CGP, GPT], a so called unrolled version of quantum sl(2) was introduced,
with applications to quantum topology; the definition was generalized to simple finite-dimensional
Lie algebras in [GP]. In the present article, we propose a generalization of this notion and embed it
into the appropriate conceptual context.

Recall that the unrolled quantum sl(2) is defined as the smash product of Uq(sl(2)) by the universal
enveloping algebra of the Lie algebra of dimension 1. Our starting point is the observation in Lemma
2.6: given an action of the universal enveloping algebra U(g) of a Lie algebra g on a Hopf algebra H,
the smash product is a Hopf algebra, if and only if g acts on H by biderivations. We next observe
that, if V is a Yetter-Drinfeld module over a group G, then the Lie algebra bdV := EndGG(V ) of
endomorphisms of the Yetter-Drinfeld module V acts by biderivations on the Nichols algebra B(V ).
Hence, we can form the Hopf algebra (B(V )#kG)⋊U(bdV ) which we call the unrolled bosonization
of V . If dimV is finite, then its Gelfand-Kirillov dimension can be expressed in terms of the Gelfand-
Kirillov dimension of B(V ) and the dimension of bdV .

The construction of unrolled bosonizations extends to a Lie subalgebra g of bdV , pre- or post-
Nichols algebras (in the place of B(V )), and to deformations thereof, provided that the action of the
Lie algebra g preserves the relevant defining relations. In particular, we define the unrolled version
of the quantum double of a finite-dimensional Nichols algebra of diagonal type.

1.2. Preliminaries. Fix a field k and let H be a Hopf algebra over k. We use standard notation:
∆, ε, S, S are respectively the comultiplication, the counit, the antipode (always assumed to be
bijective) and the inverse of the antipode.

We denote by H
HYD the category of Yetter-Drinfeld modules over H as in [AS]. For V,W ∈ H

HYD,

we denote by HomH
H(V,W ), EndHH(V ), AutHH(V ) the spaces of morphisms, respectively endomor-

phisms, automorphisms in H
HYD. Let R be a Hopf algebra in the braided monoidal category H

HYD,
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2 ANDRUSKIEWITSCH; SCHWEIGERT

with comultiplication denoted by r 7→ r(1)⊗r(2). Recall that the bosonization R#H is the Hopf alge-
bra over k with underlying vector space R⊗H, smash product multiplication and smash coproduct
comultiplication; i.e., for all r, s ∈ R, a, b ∈ H,

(r#a)(s#b) = r(a(1) · s)#a(2)b,(1.1)

∆(r#a) = r(1)#(r(2))(−1)a(1) ⊗ (r(2))(0)#a(2).(1.2)

Here we write r#h for r ⊗ h.

We also introduce the category YDH
H = Hbop

HbopYD of right-right Yetter-Drinfeld modules over H.

Thus M ∈ YDH
H means that M is a right H-module and a right H-comodule (with coaction ̺), and

satisfies the compatibility axiom

̺(m · h) = m(0) · h(2) ⊗ S(h(1))m(1)h(3), m ∈ M, h ∈ H.(1.3)

The tensor category YDH
H is braided, with braiding c(m ⊗ n) = n · m(1) ⊗ m(0), for all m ∈ M ,

n ∈ N , M,N ∈ YDH
H . For right-right Yetter-Drinfeld modules V,W ∈ YDH

H , we use the notion

HomH
H(V,W ), EndHH(V ), AutHH(V ) are as before.

Let T be a Hopf algebra in the braided monoidal category YDH
H of right-right Yetter-Drinfeld

modules, with comultiplication denoted by t 7→ t(1) ⊗ t(2). In this case, the bosonization H#T is the
Hopf algebra over k with underlying vector space H ⊗ T , smash product multiplication and smash
coproduct comultiplication; i.e.

(a#t)(b#u) = ab(1)#(t · b(2))u,(1.4)

∆(a#t) = a(1)#(t(1))(0) ⊗ a(2)(t
(1))(1)#t(2),(1.5)

for all t, u ∈ R, a, b ∈ H. Here we write h#t for h⊗ t.
If Γ is an abelian group, then we denote by k

χ
g the one-dimensional object in kΓ

kΓYD with coaction

given by the group element g ∈ Γ and action given by the character χ ∈ Γ̂. For a Yetter-Drinfeld
module V ∈ kΓ

kΓYD, the corresponding isotypic component is denoted by V χ
g . A Yetter-Drinfeld

module has a natural structure of a braided vector space. For a braided vector space V , denote
by B(V ) its Nichols algebra and by J = J (V ) its ideal of defining relations, cf. [AS]; so that
B(V ) ≃ T (V )/J (V ).

Acknowledgements. N.A. thanks I. Angiono for some interesting exchanges.

2. Unrolled Hopf algebras

2.1. Let L be a Hopf algebra. Recall that a (left) L-module algebra is an algebra A which is also
an L-module with action · : L ⊗ A → A such that for all ℓ ∈ L and all a, b ∈ A the compatibility
conditions

ℓ · (ab) = (ℓ(1) · a)(ℓ(2) · b),(2.1)

ℓ · 1 = ε(ℓ)1.(2.2)

for product and unit hold. It is well-known that (2.1) and (2.2) mean that A is an algebra in the
monoidal category LM of left L-modules.
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In this paper, we are interested in the case of a Hopf algebra H that is also an L-module algebra,
where L is a Hopf algebra as well. In this case, we impose the following consistency conditions:

∆(ℓ · a) = ℓ(1) · a(1) ⊗ ℓ(2) · a(2),(2.3)

ε(ℓ · a) = ε(ℓ)ε(a),(2.4)

ℓ(1) ⊗ ℓ(2) · a = ℓ(2) ⊗ ℓ(1) · a,(2.5)

for all ℓ ∈ L and all a, b ∈ H. Then H⋊L := H⊗L with the tensor product structure as a coalgebra
and with the smash product (1.1) for the algebra structure is a Hopf algebra; see [M], [AN, 1.2.10]
(in this second paper a different notation is used). We shall say that H is a L-module Hopf algebra.

Remark 2.1. The following perspective shows that it is natural to impose these consistency conditions.
The category LM of left L-modules is monoidal, but not braided; thus H cannot be interpreted
as a Hopf algebra in LM. Still, it can be interpreted in terms of monads. Recall that A has the
structure of an algebra in the monoidal category LM of left L-modules, if and only if the endofunctor
T : LM → LM, T (X) = A⊗X has the structure of a monad.

Also recall [BLV] that a bimonad structure on a monad T on a monoidal category consists of a
comonoidal structure on the functor T , i.e. a natural transformation

T2 : T (X ⊗ Y ) = H ⊗ (X ⊗ Y ) → T (X)⊗ T (Y ) = (H ⊗X)⊗ (H ⊗ Y ),

and a morphism T0 : T (1) → 1. They have to obey axioms generalizing coassociativity and counital-
ity. If H is a bialgebra in a braided monoidal category, the monad T (−) = H ⊗ − can be endowed
via the coproduct ∆ : H → H ⊗H with the natural transformation

T2(a⊗ x⊗ y) = (a(1) ⊗ x)⊗ (a(2) ⊗ y) ,

where we used Sweedler notation for ∆. The morphism T0 is induced from the counit ε : H → k.
Now let L be another Hopf algebra and H be an L-module algebra. The fact that T2 is a morphism

in LM is then equivalent to the consistency conditions (2.3) and (2.5), while condition (2.4) amounts
to the fact that ε is a morphism in LM. Thus T (−) = H⊗− is a bimonad on the monoidal category

LM, if and only if the requirements (2.3), (2.4), and (2.5) hold. It is a Hopf monad, if and only if H
is a Hopf algebra. The Hopf monad in Veck (i. e., Hopf algebra) H ⋊ L corresponds to the forgetful
functor as described in [BLV, Proposition 4.3].

Remark 2.2. Here is another way to interpret H⋊L, dual to [AN, 1.1.5]. Let H be a L-module Hopf
algebra. Then H, endowed with the trivial coaction, is a Hopf algebra in L

LYD and H ⋊ L ≃ H#L.
Indeed, (2.5) is equivalent to the compatibility in L

LYD.

2.2. Now turn to the situation of two Hopf algebras H and U , provided with a non-degenerate
bilinear form ( | ) : H ⊗ U → k. We extend this bilinear form to a non-degenerate bilinear form
( | ) : H ⊗H ⊗ U ⊗ U → k by

(a⊗ ã|u⊗ ũ) := (a|ũ)(ã|u), for a, ã ∈ H, u, ũ ∈ U.(2.6)

We assume that the pairing ( | ) is such that for every a, ã ∈ H, u, ũ ∈ U , the following identities hold

(aã|u) = (a⊗ ã|∆(u)) = (a|u(2))(ã|u(1)), (1|u) = ǫ(u),(2.7)

(a|uũ) = (∆(a)|u⊗ ũ) = (a(2)|u)(a(1)|ũ), (a|1) = ǫ(a),(2.8)

(S(a)|u) = (a|S(u)).(2.9)

Such a pairing is called a Hopf pairing on H and U .
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Lemma 2.3. Assume that the two Hopf algebras H and U are L-modules and that there is a Hopf
pairing on H and U . Assume that the pairing is compatible with the L-action involving the antipode
of L,

(ℓ · a|u) = (a|S(ℓ) · u), a ∈ H, u ∈ U, ℓ ∈ L.(2.10)

Then the Hopf algebra H is an L-module Hopf algebra, if and only if U is so.

Proof. Let ℓ ∈ L, u, v ∈ U and a ∈ H. We compute

(a|ℓ · (uv)) = (S(ℓ) · a|uv) = ((S(ℓ) · a)(2)|u)((S(ℓ) · a)(1)|v);

(a|(ℓ(1) · u)(ℓ(2) · v)) = (a(2)|ℓ(1) · u)(a(1)|ℓ(2) · v) = (S(ℓ(1)) · a(2)|u)(S(ℓ(2)) · a(1)|v)

= (S(ℓ)(2) · a(2)|u)(S(ℓ)(1) · a(1)|v).

Hence (2.1) holds for U if and only if (a|ℓ · (uv)) = (a|(ℓ(1) ·u)(ℓ(2) · v)) for all ℓ ∈ L, u, v ∈ U , a ∈ H,

if and only if ((ℓ̃ · a)(2)|u)((ℓ̃ · a)(1)|v) = (ℓ̃(2) · a(2)|u)(ℓ̃(1) · a(1)|v)for all ℓ̃ ∈ L, u, v ∈ U , a ∈ H, if and
only if (2.3) holds for H. Thus (2.1) holds for H if and only if (2.3) holds for U .

Similarly (2.2) holds for U if and only if (2.4) holds for H and vice versa. Finally, (2.5) holds for
H if and only if it holds for U :

ℓ(1) ⊗ ℓ(2) · u = ℓ(2) ⊗ ℓ(1) · u, ∀u ⇐⇒ S(ℓ(1))(a| ⊗ ℓ(2) · u) = S(ℓ(2))(a|ℓ(1) · u), ∀u, a ⇐⇒

S(ℓ(1))(S(ℓ(2)) · a|u) = S(ℓ(2))((S(ℓ(1)) · a|u), ∀u, a ⇐⇒ S(ℓ)(2)(S(ℓ)(1) · a|u)

= S(ℓ)(1)((S(ℓ)(2) · a|u, ) ∀u, a ⇐⇒ S(ℓ)(2) ⊗ S(ℓ)(1) · a = S(ℓ)(1) ⊗ S(ℓ)(2) · a, ∀a.

�

2.3. We next extend our construction to Hopf algebras in braided monoidal categories. To this end,
let now K be a Hopf algebra, B a Hopf algebra in the braided category K

KYD. Let L be another Hopf
algebra as before, and assume that B is also an L-module algebra. We extend the action of the Hopf
algebra L to the bosonization H := B#K by ℓ · (b#k) := (ℓ · b)#k, for ℓ ∈ L, b ∈ B and k ∈ K.

Then straightforward verifications show that

• The bosonization H is a L-module algebra ⇐⇒ The actions of L and K on B commute.
• (2.4) holds for H ⇐⇒ (2.4) holds for B.
From now on, we assume that this is the case.

• (2.3) holds for H ⇐⇒ (2.3) holds for B and the action of ℓ on B is a morphism of K-comodules
for all ℓ ∈ L.

• (2.5) holds for H ⇐⇒ (2.5) holds for B.

In other words, the action of L on the bosonization H = B#K satisfies (2.4), (2.3) and (2.5), if and
only if so does the action of L on B, and the homothety ηℓ for ℓ ∈ L is a morphism of Yetter-Drinfeld
modules, ηℓ ∈ EndKK B for all ℓ ∈ L. This leads to

Definition 2.4. An L-module braided Hopf algebra is a Hopf algebra B in the braided category K
KYD

that is also a L-module algebra, that satisfies (2.4), (2.3) and (2.5), and such that the homothety
ηℓ ∈ EndKK B for all ℓ ∈ L.

We have just seen: for an L-module braided Hopf algebra, the bosonization H := B#K is an
L-module Hopf algebra over k and we can form the Hopf algebra H ⋊ L = (B#K)⋊ L.
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As in subsection 2.2, we consider the situation with non-degenerate pairings; this time internal to
the braided monoidal category K

KYD instead of vect k. Concretely, let E be another Hopf algebra in

the category K
KYD provided with a non-degenerate bilinear form ( | ) : B ⊗ E → k, and extend it by

(2.6) to a pairing B ⊗ B ⊗ E ⊗ E → k.

⋄ The fact that the pairing is internal to the category K
KYD means that the bilinear form ( | ) is

a morphism in the monoidal category K
KYD, where k is endowed with the structure of a trivial

Yetter-Drinfeld module.
⋄ We assume that for every a, ã ∈ B, u, ũ ∈ E , the conditions (2.7), (2.8) and (2.9) of a Hopf pairing,
relating coproduct, product, unit and counit of B and E hold.

Then we have in the braided category K
KYD exactly the same situation we considered in lemma

2.3 in the braided category vect k. The same calculations, this time in the category K
KYD, yield:

Lemma 2.5. Assume that both B and E are L-modules and that condition (2.10) on the Hopf pairing
( | ) holds. Then B is a L-module braided Hopf algebra, if and only if E is so. �

2.4. Let g be a Lie algebra over the field k. We specialize to L-module braided Hopf algebras where
the Hopf algebra L = U(g) is the universal enveloping algebra of g. Then the conditions (2.1) and
(2.4) in the definition of an L-module Hopf algebra H just mean that g acts on H by k-derivations,
while condition (2.5) is for free, due to the cocommutativity of U(g). Condition (2.3) amounts to the
condition

∆(x · a) = x · a(1) ⊗ a(2) + a(1) ⊗ x · a(2), ε(x · a) = 0,(2.11)

for all x ∈ g and a ∈ H. In other words, condition (2.11) tells us that g acts on H by k-coderivations.
We summarize all conditions by saying that g acts on H by k-biderivations: g acts by endomorphisms
that are simultaneously k-derivations and k-coderivations. Thus we have:

Lemma 2.6. Let H be a Hopf algebra and let g be a Lie algebra acting on H by k-biderivations.
Then H is a U(g)-module Hopf algebra and we can form the Hopf algebra H ⋊ U(g). �

The following remarks on biderivations are useful:

⋄ For any Hopf algebra H, the subspace Biderk(H) := {x ∈ Derk(H) : x is a coderivation} is a Lie
subalgebra of Derk(H).

⋄ If x ∈ Der(H) and if a, b ∈ H fulfill (2.11) for x, then so does their product ab. Hence it is enough
to check the biderivation property (2.11) for a given derivation x on a family of generators of H.

Remark 2.7. Let H be a Hopf algebra and let g be a Lie algebra acting on H by k-coderivations. Let
H0 be the coradical, and (Hn)n≥0 the coradical filtration, of H. If H0 is g-stable, then Hn is g-stable
for all n ≥ 0 by the defining condition (2.11). Hence g acts on grH by k-coderivations.

Assume that H0 is a Hopf subalgebra, that g acts on H by k-biderivations and that H0 is g-stable.
Then g acts on the graded object grH by k-biderivations.

Notice that g may act on H by k-biderivations with H0 not being g-stable. For instance, let x ∈ H
primitive. Then D = adx is a k-biderivation. If there exists g ∈ G(H) such that gx = qxg with
q ∈ k

× − {1}, then D(g) = (1− q)xg /∈ H0.

2.5. In this context, suppose that H is pointed and set G := G(H) the group of group-like elements
of H. Let g act on H by derivations; assume that g acts trivially on kG. Let g, t ∈ G and Pg,t(H) :=
{a ∈ H : ∆(a) = g ⊗ a + a ⊗ t} the space of (g, t) skew-primitive elements. Then the coderivation
property (2.11) implies that Pg,t(H) is a g-submodule for all g, t ∈ G. Summarizing, we have
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Lemma 2.8. Let g be a Lie algebra acting by derivations on a pointed Hopf algebra H, G = G(H).
Assume that

• g acts trivially on kG.
• H is generated by group-like and skew-primitive elements.

Then the following are equivalent:

(1) g acts on H by k-biderivations, i.e. (2.11) holds.
(2) Pg,t(H) is a g-submodule for all g, t ∈ G.
(3) Pg,1(H) is a g-submodule for all g ∈ G. �

2.6. Let K be a Hopf algebra and V ∈ K
KYD. It is well-known that every d ∈ Hom(V, T (V )) extends

uniquely to a derivation D ∈ Der(T (V )) on the tensor algebra T (V ) by D(1) = 0 and

D|Tn(V ) =
∑

1≤j≤n

idT j−1(V )⊗d⊗ idTn−j(V ),(2.12)

for n > 0. Thus every Lie algebra map g → End(V ) extends to a Lie algebra map g → Der(T (V )).

Proposition 2.9. Let V ∈ K
KYD. Every morphism of Lie algebras g → EndKK(V ) extends to an

action of the universal enveloping algebra U(g) on T (V )#K and to an action on B(V )#K, giving
rise to the Hopf algebras (T (V )#K)⋊ U(g) and (B(V )#K)⋊ U(g).

Proof. As explained, the action of g on V extends uniquely to an action of g on the tensor algebra
T (V ) by derivations. Formula (2.12) and the assumptions imply that this action is by morphisms
in the category K

KYD. By definition, (2.3) holds in V , hence it holds in T (V ). By §2.3, the action
extended to T (V )#K satisfies the requirements in §2.1, hence we can form (T (V )#K) ⋊ U(g).
Second, the action of g on T n(V ) commutes with that of the braid group Bn; since the kernel of the
projection T n(V ) → Bn(V ) is the kernel of the quantum symmetrizer, g acts on the Nichols algebra
B(V ) with the desired requirements. �

Definition 2.10. Let K be a Hopf algebra, V ∈ K
KYD and g a Lie subalgebra of bdV := EndKK(V ).

We call the Hopf algebra (B(V )#K)⋊U(g) the unrolled bosonization of the Nichols algebra of V by
g.

One may define unrolled versions of bosonizations of pre-Nichols or post-Nichols algebras, see
e.g [AAR], or of deformations of Nichols algebras, provided that the ideals of defining relations are
preserved by the action of bdV , or if bdV is replaced by a suitable subalgebra.

2.7. Finite GK-dim. Our main reference for this subsection is [KL]. Let A be an associative k-
algebra. We say that a finite-dimensional subspace V ⊆ A is GK-deterministic if

GK-dimA = lim
n→∞

logn dim
∑

0≤j≤n

V n.

Lemma 2.11. [AAH, Lemma 2.2] Let K be a Hopf algebra, R a Hopf algebra in K
KYD, A a K-module

algebra and B an R-module algebra in K
KYD. Assume that the actions of K on A, of K on B, of K

on R, and of R on B are locally finite.

(a) GK-dimA#K ≤ GK-dimA + GK-dimK. If either K or A has a GK-deterministic subspace,
then GK-dimA#K = GK-dimA+GK-dimK.
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(b) GK-dimB#R ≤ GK-dimB + GK-dimR. If either R or B has a GK-deterministic subspace,
then GK-dimB#R = GK-dimB +GK-dimR. �

Clearly, a finite-dimensional Lie algebra g is a GK-deterministic subspace of U(g). Thus we have:

Example 2.12. Let H be a Hopf algebra and let g be a Lie subalgebra of Biderk(H) such that
GK-dimH, dim g < ∞. If the action of g on H is locally finite, then

GK-dim(H ⋊ U(g)) = GK-dimH + dim g < ∞.(2.13)

Here are some particular cases:

◦ If H is a finite-dimensional Hopf algebra and g is a Lie subalgebra of Biderk(H), then

GK-dim(H ⋊ U(g)) = dim g < ∞.

◦ Let K be a Hopf algebra, V ∈ K
KYD, g a Lie subalgebra of bdV , B ∈ K

KYD a pre-Nichols algebra of

V and E ∈ K
KYD a post-Nichols algebra of V . Assume that the action of g descends to B and E ,

GK-dimK < ∞, dimV < ∞, GK-dimB < ∞, GK-dim E < ∞.

Clearly, dim g < ∞ and g acts locally finitely on B#K and E#K. If either K or B, respectively
E , have a GK-deterministic subspace, then

GK-dim ((B#K)⋊ U(g)) = GK-dimB +GK-dimK + dim g < ∞,

GK-dim ((E#K)⋊ U(g)) = GK-dim E +GK-dimK + dim g < ∞.

3. The dual construction

3.1. Let J be a Hopf algebra. A J-comodule coalgebra is a coalgebra C which is also a right
J-comodule with coaction ̺ : C → C ⊗ J , ̺(c) = c[0] ⊗ c[1], and counit εC such that for all c ∈ C

(c(1))[0] ⊗ (c(2))[0] ⊗ (c(1))[1](c(2))[1] = (c[0])(1) ⊗ (c[0])(2) ⊗ c[1],(3.1)

εC(c[0])c[1] = εC(c).(3.2)

Here (3.1) and (3.2) mean that C is a coalgebra in the monoidal category MJ of right J-comodules.
Assume that C = H is a Hopf algebra and a J-comodule coalgebra that satisfies:

(ab)[0] ⊗ (ab)[1] = a[0]b[0] ⊗ a[1]b[1],(3.3)

̺(1) = 1⊗ 1,(3.4)

a[0] ⊗ ja[1] = a[0] ⊗ a[1]j,(3.5)

j ∈ J , a, b ∈ H; (3.3) and (3.5) say that H is a J-comodule algebra. Then J ⋉ H := J ⊗ H with
the tensor product structure as an algebra and with the smash coproduct (1.5) for the coalgebra
structure is a Hopf algebra; see e.g. [AN, 1.1.4]1. We shall say that H is a J-comodule Hopf algebra.

1In loc. cit a left version is presented, with a different notation. The proof is equally straightforward.
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3.2. Let H and U be Hopf algebras, provided with a non-degenerate Hopf pairing ( | ) : H ⊗U → k.

Lemma 3.1. Assume that H and U are J-comodules and that the pairing is compatible with J-
coaction involving the antipode of J , i.e.

(a[0]|u)a[1] = (a|u[0])S(u[1]), a ∈ H, u ∈ U.(3.6)

Then H is a J-comodule Hopf algebra if and only if U is so.

Proof. Let u, v ∈ U , a, b ∈ H. We compute

((ab)[0]|u)(ab)[1] = (ab|u[0])S(u[1]) = (a|(u[0])(2))(b|(u[0])(1))S(u[1]);

(a[0]b[0]|u)a[1]b[1] = (a[0]|u(2))(b[0]|u(1))a[1]b[1] = (a|(u(2))[0])(b|(u(1))[0])S((u(2))[1])S((u(1))[1])

= (a|(u(2))[0])(b|(u(1))[0])S((u(1))[1](u(2))[1]).

Hence (3.1) holds for U if and only if (3.3) holds for H and vice versa. Similarly (3.2) holds for U if
and only if (3.4) holds for H and vice versa. Finally, (3.5) holds for H if and only if it holds for U :

(a[0]|u)ja[1] = (a|u[0])jS(u[1]) = (a|u[0])S(u[1]S(j));

(a[0]|u)a[1]j = (a|u[0])S(u[1])j = (a|u[0])S(S(j)u[1]).

�

3.3. Let now K be a Hopf algebra, B a Hopf algebra in YDK
K and also a J-comodule coalgebra.

Extend the coaction of J to H = K#B by ̺(k#b) = k#b[0] ⊗ b[1], b ∈ B and k ∈ K. Then

• H is a J-comodule coalgebra ⇐⇒ the coactions of J and K on B commute, i.e. for all b ∈ B

(b(0))[0] ⊗ b(1) ⊗ (b(0))[1] = (b[0])(0) ⊗ (b[0])(1) ⊗ b[1] ∈ B ⊗K ⊗ J.(3.7)

• (3.4) holds for H ⇐⇒ (3.4) holds for B. Assume this is the case.
• (3.3) holds for H ⇐⇒ (3.3) holds for B and the action of k on B is a morphism of J-comodules
for all k ∈ K.

• (3.5) holds for H ⇐⇒ (3.5) holds for B.

In other words, the coaction of J on H = K#B satisfies (3.4), (3.3) and (3.5), if and only if so does
the coaction of J on B, and the coaction of J on B commutes both with the action and the coaction
of K. This can be phrased also as: the homothety ηℓ for ℓ ∈ J∗ is a morphism of Yetter-Drinfeld
modules, i.e. ηℓ ∈ EndKK B.

Definition 3.2. A J-comodule braided Hopf algebra is a Hopf algebra B in the braided category YDK
K

that is also a J-comodule coalgebra, that satisfies (3.4), (3.3) and (3.5), and such that the coaction
of J on B commutes both with the action and the coaction of K. In such a case, the bosonization
H = K#B is a J-comodule Hopf algebra and we can form the Hopf algebra J ⋉H = J ⋉ (K#B).

As in subsection 3.2, we consider the situation with non-degenerate pairings; this time internal to
the braided monoidal category YDK

K instead of vect k. Concretely, let E be a Hopf algebra in YDK
K

provided with a non-degenerate bilinear form ( | ) : B ⊗ E → k, and extend it by (2.6) to a pairing
B ⊗ B ⊗ E ⊗ E → k.

⋄ The fact that the pairing is internal to the category YDK
K means that the bilinear form ( | ) is

a morphism in the monoidal category YDK
K , where k is endowed with the structure of a trivial

Yetter-Drinfeld module.
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⋄ We assume that for every a, ã ∈ B, u, ũ ∈ E , the conditions (2.7), (2.8) and (2.9) of a Hopf pairing,
relating coproduct, product, unit and counit of B and E hold.

Then we have in the braided category YDK
K exactly the same situation we considered in Lemma

3.1 in the braided category vect k. The same calculations, this time in the category YDK
K , yield:

Lemma 3.3. Assume that both B and E are J-comodules and that (3.6) holds. Then B is a J-
comodule braided Hopf algebra, if and only if E is so. �

3.4. Let G be an affine algebraic group over k and let J = k[G] be the algebra of functions on
G = Homalg(J,k). Here we use the convention (2.6), i.e.

〈γη, j〉 = 〈γ, j(2)〉〈η, j(1)〉, γ, η ∈ G.

Thus, being a (right) J-comodule means being a rational (right) G-module: m · γ = m[0]〈γ,m[1]〉;
which of course is equivalent to being rational left G-module. So, in what follows we work with left
rational modules. The conditions (3.1) and (3.2), respectively (3.3) and (3.4), in the definition of J-
comodule Hopf algebra just say that G acts on H by coalgebra, respectively algebra, automorphisms,
while (3.5) is automatic by the commutativity of k[G]. We summarize our findings:

Proposition 3.4. Let H be a Hopf algebra and let G be an affine algebraic group acting rationally
on H by Hopf algebra maps. Then H is a k[G]-comodule Hopf algebra and we can form k[G]⋉H. �

Remark 3.5. Since J is commutative, GK-dim(k[G]⋉H) = dimG+GK-dimH, see e.g. [KL, 3.10].

3.5. Let K be a Hopf algebra and V ∈ YDK
K , dimV < ∞. Then AutKK(V ) is an algebraic group,

whose Lie algebra is EndKK(V ). Every morphism of algebraic groups G → AutKK(V ) extends to an
action of G on T (V ) by Hopf algebra automorphisms in YDK

K ; hence it descends to an action of

G on B(V ) by Hopf algebra automorphisms in YDK
K . It extends to an action of G on K#B(V ),

trivially on K, giving rise to the Hopf algebra k[G]⋉ (K#B(V )). One may define analogous actions
of these Hopf algebras from bosonizations of pre-Nichols or post-Nichols algebras, or of deformations
of Nichols algebras, provided that the ideals of defining relations are preserved by the action of G.

4. Hopf algebras arising from Nichols algebras of diagonal type

4.1. Let θ ∈ N, I = Iθ = {1, 2, . . . , θ}. Denote by (αi)i∈I the canonical basis of Zθ.
Let (V, c) be a braided vector space of diagonal type of dimension θ; let (xi)i∈I be a basis of V .

Since (V, c) is assumed to be of diagonal type, there is a matrix q = (qij)i,j∈I ∈ (k×)I×I such that
c(xi ⊗ xj) = qijxj ⊗ xi for all i, j ∈ I. Then the tensor algebra T (V ) and and the Nichols algebra

B(V ) are Z
θ-graded (as braided Hopf algebras), by deg xi = αi, i ∈ I.

Let K be a Hopf algebra. To realize the braided vector space (V, c) as a Yetter-Drinfeld module
over K we need some extra data.

⋄ A pair (g, χ) ∈ G(K) × Homalg(K,k) is called a YD-pair [A+] if χ(a) g = χ(a(2))a(1) g S(a(3)) for
all a ∈ K. This implies g ∈ Z(G(K)).

⋄ Then k
χ
g := k with coaction given by g and action given by χ is a simple object in K

KYD.

A principal realization of the braided vector space (V, c) over the Hopf algebra K is a family
((gi, χi))i∈I of YD-pairs such that

χj(gi) = qij, for all i, j ∈ I.(4.1)
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A principal realization allows us to see braided vector space as a Yetter-Drinfeld module, V ∈ K
KYD,

by declaring xi ∈ V χi
gi , i ∈ I. Let dχg = dimV χ

g = |{i ∈ I : (gi, χi) = (g, χ)}|. Then

bdV = EndKK(V ) ≃
⊕

g∈Γ,χ∈Γ̂

gl(dχg ,k).

Despite the notation, the Lie algebra bdV depends on the way the braided vector space V is realized
as a K-Yetter-Drinfeld module and not merely on the braided vector space V itself.

For h = (hi)i∈Iθ ∈ k
θ we denote by Dh ∈ End(V ) the map defined by Dh(xi) = hixi, i ∈ Iθ. By

abuse of notation, we denote by Dh the corresponding derivation of T (V )#kΓ or B(V )#kΓ. Let

tV = {Dh : h ∈ k
θ} ⊆ bdV .

The abelian Lie algebra tV depends only on (V, c). If (gi, χi) = (gj , χj) implies i = j, then bdV = tV .

Remark 4.1. The action of the Lie algebra tV preserves the Z
θ-grading. Indeed, let h ∈ k

θ and let
α 7→ hα be the unique group homomorphism Z

θ → k such that hαi
= hi, i ∈ I. Then Dh acts by hβ

in the homogeneous component T (V )β for all β ∈ Z
θ. Hence every Hopf ideal I of T (V ) generated

by Z
θ-homogeneous elements is stable under tV and tV acts by derivations and coderivations on

T (V )/I.

Remark 4.2. In fact, the Z
θ-grading is tantamount to a comodule structure over the group algebra

kZ
θ, which is the algebra of functions on the algebraic torus TV ; tV is its Lie algebra, and the action

of tV is the derivation of the natural action of TV .

4.2. From now on, we assume that char k = 0. We keep the notation above and assume that
dimB(V ) < ∞. The classification of the finite-dimensional Nichols algebras of diagonal type was
given in [H1]. An efficient set of defining relations of B(V ), i.e. generators of the ideal Jq, was
provided in [An1]. Besides B(V ), there are two other Hopf algebras in K

KYD that are expected to
play a role in representation theory:

(a) [An1, An2] The distinguished pre-Nichols algebra of (V, c) is the quotient B̃(V ) := T (V )/Iq by

a suitable ideal Iq. Thus, there are projections T (V ) ։ B̃(V ) ։ B(V ).

(b) [AAR] The Lusztig algebra of (V, c) is the graded dual L(V ) of B̃(V ).

Proposition 4.3. Let K be a Hopf algebra provided with a principal realization of (V, c) and let

L = U(tV ). Then B̃(V ) and L(V ) are L-module braided Hopf algebras in K
KYD and we can form the

unrolled bosonizations (B̃(V )#K)⋊ L and (L(V )#K)⋊ L.

Proof. The claim for B̃(V ) follows from Remark 4.1 and implies the one for L(V ) by Lemma 2.5. �

Example 4.4. If θ = 1 and q is a root of 1 of even order, then we recover the construction in
[GPT, CGP].
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4.3. Let (V, c) be of diagonal type with dimB(V ) < ∞. Fix a principal realization over the group

algebra kΓ, where Γ is abelian. Then each of the Hopf algebras B(V ), B̃(V ) and L(V ) in kΓ
kΓYD

gives rise to Hopf algebras u(V ), U(V ), U(V ) respectively; they are suitable Drinfeld doubles of the

bosonizations B(V )#kΓ, B̃(V )#kΓ and L(V )#kΓ. See [H2, An2, AAR]. If q is symmetric, then we
may divide that Drinfeld double by a central Hopf subalgebra. If furthermore q is of Cartan type,
then we recover the small, the De Concini-Procesi and the Lusztig divided power quantum group,
respectively. Then we may define unrolled quantum groups

u(V )⋊ U(tV ), U(v)⋊ U(tV ), U(V )⋊ U(tV ).(4.2)

Indeed, the Lie algebra tV⊕W acts on T (V ⊕W )#kΓ, but if ζ ∈ k
2θ, then Dζ preserves the relations

of the quantum double if and only if ζ belongs to the image of the map tV → tV⊕W , ξ 7→ (ξ,−ξ).
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