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Chapter 1
Introduction

Abstract We define the framework of classical physics as considered in the present
book. We briefly point out its place in the history of physics and its relation to
modern physics. As the prime example of a theory of classical physics we introduce
Newtonian mechanics and discuss its limitations. This leads to and motivates the
study of different formulations of classical mechanics, such as Lagrangian and
Hamiltonian mechanics, which are the subjects of later chapters. Finally, we explain
why in this book, we take a mathematical perspective on central topics of classical
physics.

Classical physics refers to the collection of physical theories that do not use quantum
theory and often predate modern quantum physics. They can be traced back to Newton
(17th century) and in some sense even further all the way to Aristotle, Archimedes,
and other Greek philosophers of antiquity (starting in the 4th century BC). However,
this does by far not mean that theories of classical physics are exclusively a subject
of the past. They continue to play important roles in modern physics, for example in
the study of macroscopic systems, such as fluids and planetary motions, where the
effects of the quantum behavior of the microscopic constituents are irrelevant.

Newtonian mechanics is arguably the first mathematically rigorous and self-
contained theory of classical physics. In its traditional formulation, Newton’s theory
comprises three physical laws known as Newton’s laws of motion, describing the
relationship between a body (usually assumed to be a point particle of constant mass
m > 0) and forces acting upon it. They also quantify the resulting motion of the body
in response to those forces and can be summarised, in an inertial reference frame, as
follows.

First law: A body at rest will stay at rest and a body in uniform motion will stay in motion
at constant velocity, unless acted upon by a net force.

1



2 1 Introduction

Second law: The force F acting on a body is equal to the mass of the body times the acceleration
a of the body:

F = ma . (1.1)

Third law: For every action force there is a corresponding reaction force which is equal in
magnitude and opposite in direction. This is often abbreviated as actio = reactio.

Considering a point particle moving in R3, its acceleration at time t is given by the
second time derivate of its position vector, denoted by a(t) = ẍ. Throughout the
entire book, we work in the C∞-category, unless stated otherwise, that is, manifolds
and maps between them are usually assumed to be smooth. The force F is generally
allowed to depend on position x, velocity ẋ, and time t, that is F = F(x, ẋ, t). Eq. (1.1)
then turns into

ẍ =
1
m

F(x, ẋ, t) . (1.2)

For m and F(x, ẋ, t) given, this is a set of second-order ordinary differential equations
known as Newton’s equations of motion. Note that F = 0 if and only if the motion
t → x(t) is linear and therefore Newton’s first law is a special case of the second
law. Also, the third law is a consequence of the second law in combination with
conservation of momentum, which ultimately follows from translational invariance
(see Corollary 2.15). Despite this redundancy in Newton’s laws, all three highlight
different aspects of important concepts of modern physics, namely the notion of
inertial frame in Einstein’s theory of relativity and the relation between different
concepts of mass (inertial versus gravitational) in gravitational theories (see, for
example, [5]).

We remark that eq. (1.1) is also sometimes written as F = ṗ, where p = mẋ
is the momentum of the particle. This allows for the consideration of bodies with
non-constant mass, such as rockets consuming their fuel, where however the second
law needs to be applied to the total system including the lost (or gained) mass.

In order to solve eq. (1.2) for a given mechanical system, one first needs to
determine an actual expression for the net force F(x, ẋ, t). However, this can be
intricate in practice, especially when constraint forces are present. Typically for
constraint forces it is easy to describe the constraints geometrically, while it is difficult
to explicitly obtain the corresponding function F(x, ẋ, t). For example, consider a
ball moving on the surface of a flat table. Geometrically, the constraint imposed by
the presence of the table implies that the vertical component of x (usually denoted
by x3) is held fixed. On the other hand, incorporating this constraint into eq. (1.2)
amounts to specifying an actual functional expression for the force exerted by the
table on the ball. Another problem with Newton’s formulation, partly related to the
previous issue, is the intrinsic use of Cartesian coordinates. Indeed, changing to a
different coordinate system is generally cumbersome.

Given these limitations, one is led to consider more geometric formulations, such
as Lagrangian and Hamiltonian mechanics, in which generalized coordinates are
introduced. These two formulations were introduced by Lagrange in 1788 and by
Hamilton in 1833, respectively. They can be adapted to the mechanical system at
hand, for example in order to incorporate geometrically the presence of constraint
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forces. In addition, symmetries can be identified more straightforwardly and exploited
more efficiently in these alternative formulations of classical mechanics. Historically,
in particular Hamilton-Jacobi theory – yet another formulation – has also played an
important role in the development of quantum mechanics [3, 7, 18]. It has also paved
the way for the development of classical field theory, which incorporates Einstein’s
theory of relativity and nowadays underlies many areas of modern physics.

For these reasons, a profound understanding of these central areas of classical
physics is very important and hence, many textbooks on these subjects exist, such
as for example refs. [1, 2, 7, 8]. However, many of these textbooks require a strong
background in physics and do not put strong emphasis on mathematical rigor. This
presents difficulties for the more mathematically inclined reader.

As a complementary contribution to the existing literature, the present book takes
a different, namely more mathematical, perspective at these central topics of classical
physics. It puts emphasis on a mathematically precise formulation of the topics
while conveying the underlying geometrical ideas. For this purpose the mathematical
presentation style (definition, theorem, proof) is used and all theorems are proved. In
addition, the field theory part is formulated in terms of the theory of jet bundles, high-
lighting the relativistic covariance. Jet bundles do not receive widespread attention
in the physics literature up to now. Each chapter of the book is accompanied by a
number of exercises, which can be found collectively in Appendix A. The interested
reader is highly encouraged to try the exercises, as this will greatly help in gaining a
deeper understanding of the subject.

This book grew out of a lecture course on “mathematical methods of classical
physics” held in the winter semester of 2015/2016 as part of the master’s program
in mathematics and mathematical physics at the Department of Mathematics at the
University of Hamburg. It is therefore primarily directed at readers with a background
in mathematical physics and mathematics. Also, physicists with a strong interest in
mathematics may find this text useful as a complementary resource.





Chapter 2
Lagrangian Mechanics

Abstract In this chapter, we lay out the foundations of Lagrangian Mechanics. We
introduce the basic concepts of Lagrangian mechanical systems, namely the Lag-
rangian, the action, and the equations of motion, also known as the Euler-Lagrange
equations. We also discuss important examples, such as the free particle, the har-
monic oscillator, as well as motions in central force potentials, such as Newton’s
theory of gravity and Coulomb’s electrostatic theory. Highlighting the importance of
symmetries, we study integrals of motion and Noether’s theorem. As an application,
we consider motions in radial potentials and, further specializing to motions in New-
ton’s gravitational potential, we conclude this section with a derivation of Kepler’s
laws of planetary motion.

2.1 Lagrangian mechanical systems and their equations of
motion

Definition 2.1. A Lagrangian mechanical system is a pair (M,L ) consisting of a
smooth manifold M and a smooth function L on T M. The manifold M is called the
configuration space and the function L is called the Lagrangian function (or simply
the Lagrangian) of the system.

More generally, one can allow for the Lagrangian to depend explicitly on an extra
variable interpreted as time.

Example 2.2. The Lagrangian of a point particle of mass m> 0 moving in Euclidean
space Rn under the influence of a potential V ∈C∞(Rn) is

L (v) =
1
2

m〈v,v〉−V (x), v ∈ TxR
n, x ∈ Rn,

where 〈·, ·〉 denotes the Euclidean scalar product. Given a smooth curve t 7→ γ(t)
in Rn, the quantities Ekin(t) = 1

2 m〈γ ′(t),γ ′(t)〉 and Epot(t) =V (γ(t)) are called the
kinetic energy and the potential energy at time t, respectively. Their sum

5



6 2 Lagrangian Mechanics

E(t) = Ekin(t)+Epot(t)

is the total energy at time t.
By specializing V one obtains many important mechanical systems:

1. The free particle: V = 0.
2. The harmonic oscillator: n = 1 and V = 1

2 kx2, where k is a positive constant
known as Hooke’s constant.

3. Newton’s theory of gravity: n = 3 and

V =−κmM
r

,

where r = |x| denotes the Euclidean norm of the vector x, M > 0 is the mass of the
particle (placed at the origin 0 ∈ R3) generating the gravitational potential, and
κ is a positive constant known as Newton’s constant. (Notice that in this case V is
not defined at the origin, so the configuration space is R3 \{0} rather than R3.)

4. Coulomb’s electrostatic theory: n = 3 and

V =
keq1q2

r
,

where q1 is the charge of the particle of mass m moving under the influence of the
electric potential generated by a particle of charge q2 and ke is a positive constant
known as Coulomb’s constant. Notice that up to a constant factor Coulomb’s
potential is of the same type as Newton’s potential. However, contrary to Newton’s
potential, the Coulomb potential can have either sign. As we shall see, this corres-
ponds to the fact that electric forces can be attractive or repulsive, depending on
the sign of the product q1q2, whereas gravitational forces are always attractive.
Another important difference is that the gravitational potential contains the mass
m as a factor whereas the electric potential does not. As we shall see, the former
property implies that the acceleration γ ′′ of the particle in Newton’s theory of
gravity is independent of its mass.

Example 2.3. More generally, given a smooth function V on a pseudo-Riemannian
manifold (M,g), one can consider the Lagrangian

L (v) =
1
2

g(v,v)−V (x), v ∈ TxM, x ∈M.

Definition 2.4. Let (M,L ) be a Lagrangian mechanical system. The action of a
smooth curve γ : [a,b]→M is defined as

S(γ) :=
∫ b

a
L (γ ′(t))dt.

A motion of the system is a critical point of S under smooth variations with fixed
endpoints. (This statement is a mathematical formulation of Hamilton’s principle of
least action, which should better be called principle of stationary action.)
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Next we will derive the equations of motion, which are the differential equa-
tions describing critical points of the action functional. These are known as the
Euler-Lagrange equations and are given in (2.3). For this we introduce coordin-
ates (x1, . . . ,xn) on an open subset U ⊂ M. They induce a system of coordinates
(q, q̂) = (q1, . . . ,qn, q̂1, . . . , q̂n) on the open subset TU = π−1(U) ⊂ T M, where
π : T M→M denotes the canonical projection. The induced coordinates are defined
by

qi := xi ◦π, q̂i(v) := dxi(v), v ∈ TU.

Let γs : [a,b]→M, −ε < s < ε , ε > 0, be a smooth variation of γ : [a,b]→M with
fixed endpoints. Then in local coordinates as above we compute

d
ds

∣∣∣∣
s=0

L (γ ′s) = ∑

(
∂L

∂qi (γ
′)

d
ds

∣∣∣∣
s=0

qi(γ ′s)+
∂L

∂ q̂i (γ
′)

d
ds

∣∣∣∣
s=0

q̂i(γ ′s)

)
= ∑

(
∂L

∂qi (γ
′)

d
ds

∣∣∣∣
s=0

γ
i
s +

∂L

∂ q̂i (γ
′)

d
ds

∣∣∣∣
s=0

γ̇
i
s

)
,

where γ i := xi ◦ γ and γ̇ i := (γ i)′. Note that here and throughout the rest of the book,
we use an adapted version of Einstein’s summation convention, where repeated upper
and lower indices are to be summed over. This is indicated by a plain sum symbol
(see also page xi). If we denote by V := d

ds

∣∣
s=0 γs the variation vector field along γ ,

then we can rewrite this as

d
ds

∣∣∣∣
s=0

L (γ ′s) = ∑

(
∂L

∂qi (γ
′)V i +

∂L

∂ q̂i (γ
′)V̇ i

)
= ∑

(
∂L

∂qi (γ
′)− d

dt
∂L

∂ q̂i (γ
′)

)
V i + f ′,

where V i := dxi(V ) = q̂i(V ) are the components of V and

f := ∑
∂L

∂ q̂i (γ
′)V i.

Notice that the local vector field V ver = ∑V i ∂

∂ q̂i along γ ′ is independent of the
choice of local coordinates and, hence, defines a global vector field along γ ′. This
follows from the fact that it corresponds to V under the canonical identification of
Tγ(t)M with the vertical tangent space

T ver
γ ′(t)(T M) := kerdπ|γ ′(t) ⊂ Tγ ′(t)(T M).

Using this vector field we can rewrite the function f as

f = V ver(L )|γ ′ .

This shows that also f is globally defined on the interval [a,b] and vanishes at the
endpoints. Therefore we have
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d
ds

∣∣∣∣
s=0

S(γs) =
d
ds

∣∣∣∣
s=0

∫ b

a
L (γ ′s(t))dt =

∫ b

a

d
ds

∣∣∣∣
s=0

L (γ ′s(t))dt (2.1)

=
∫ b

a

(
d
ds

∣∣∣∣
s=0

L (γ ′s(t))− f ′(t)
)

dt, (2.2)

where the integrand is a globally defined function on the interval [a,b] with the
following local expression:

d
ds

∣∣∣∣
s=0

L (γ ′s(t))− f ′(t) = ∑

(
∂L

∂qi (γ
′(t))− d

dt
∂L

∂ q̂i (γ
′(t))

)
V i(t).

Theorem 2.5. Let (M,L ) be a Lagrangian mechanical system, n = dimM. The
motions of the system are the solutions γ : [a,b]→ M of the following system of
ordinary differential equations:

αi :=
∂L

∂qi (γ
′)− d

dt
∂L

∂ q̂i (γ
′) = 0, i = 1, . . .n. (2.3)

Proof. Let us first remark that for every vector field V along γ the function
∑αiV i = d

ds

∣∣
s=0 L (γ ′s)− f ′ is coordinate independent and thus globally well-defined.

From this we can deduce that α = ∑αidxi|γ is a well-defined one-form along γ (cf.
Appendix A, Exercise 1). In virtue of (2.2), we see that γ is a motion if and only if∫ b

a
α(V )|tdt = 0.

for all vector fields V along γ vanishing at the endpoints. To see that this implies that
α(t0) = 0 for all t0 ∈ (a,b) we take δ > 0 such that γ([t0−δ , t0 +δ ]) is contained
in a coordinate domain and consider V i = hαi, where h ≥ 0 is a smooth function
on [a,b] with support contained in (t0−δ , t0 +δ ) such that h(t0)> 0. This defines
a smooth vector field V along γ vanishing at the endpoints and 0 =

∫ b
a α(V )|tdt =∫ t0+δ

t0−δ
h∑α2

i dt now implies that α(t0) = 0. This proves that α|(a,b) = 0 and, by
continuity, α = 0. ut

Definition 2.6. The one-form α along γ will be called the Euler-Lagrange one-form.

Example 2.7. Let (M,g) be a pseudo-Riemannian metric and consider the Lag-
rangian L (v) = 1

2 g(v,v), v ∈ T M. In canonical local coordinates (q1, . . . ,qn,

q̂1, . . . , q̂n) on T M associated with local coordinates (x1, . . . ,xn) on M it is given by

L =
1
2 ∑ g̃i jq̂iq̂ j,

where g = ∑gi jdxidx j and g̃i j = gi j ◦π . We compute
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∂L

∂qi =
1
2 ∑

∂ g̃k j

∂qi q̂kq̂ j =
1
2 ∑

(
∂gk j

∂xi ◦π

)
q̂kq̂ j,

∂L

∂ q̂i = ∑ g̃i jq̂ j,

∂L

∂qi (γ
′) =

1
2 ∑

∂gk j

∂xi (γ)γ̇
k
γ̇

j,

∂L

∂ q̂i (γ
′) = ∑gi j(γ)γ̇

j,

d
dt

∂L

∂ q̂i (γ
′) = ∑

∂gi j

∂xk (γ)γ̇
k
γ̇

j +∑gi j(γ)γ̈
j,

−αi = ∑gi j(γ)γ̈
j +

1
2 ∑

(
∂gi j

∂xk (γ)+
∂gik

∂x j (γ)−
∂gk j

∂xi (γ)

)
γ̇

k
γ̇

j

= ∑
`

gi`(γ)

(
γ̈
`+∑

j,k
Γ

`
jk(γ)γ̇

j
γ̇

k

)
.

This shows that the Euler-Lagrange equations are equivalent to the geodesic equa-
tions

γ̈
`+∑Γ

`
jk(γ)γ̇

j
γ̇

k = 0, `= 1, . . . ,n.

Using the covariant derivative ∇ they can be written as ∇γ ′γ
′ = 0 or ∇

dt γ ′ = 0.

Proposition 2.8. Let V be a smooth function on a pseudo-Riemannian manifold
(M,g) and consider the Lagrangian

L (v) =
1
2

g(v,v)−V (π(v)), v ∈ T M, (2.4)

of Example 2.3. Then a curve γ : I → M is a motion if and only if it satisfies the
following equation

∇

dt
γ
′+gradV |γ = 0 (2.5)

Proof. We have already shown that the Euler-Lagrange one-form in the case V = 0
is given by α =−g

(
∇

dt γ ′, ·
)

. It remains to compute the contribution of the potential
V to the Euler-Lagrange one-form, which is

−∑
∂ (V ◦π)

∂qi (γ ′)dxi =−∑
∂V
∂xi (γ)dxi =−dVγ .

So in total we obtain

−α = g
(

∇

dt
γ
′, ·
)
+dV |γ

and, hence,

−g−1
α =

∇

dt
γ
′+gradV |γ ,
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where g−1 : T ∗M→ T M denotes the inverse of the map

g : T M→ T ∗M, v 7→ g(v, ·).

ut

2.2 Integrals of motion

Definition 2.9. Let (M,L ) be a Lagrangian mechanical system. A smooth function
f on T M is called an integral of motion if it is constant along every motion of the
system, that is for every motion γ : I→M the function f (γ ′) is constant.

Obviously, the integrals of motion are completely determined by the equations
of motion and do not depend on the precise Lagrangian. Therefore, the notion of
an integral of motion is meaningful if we are just given a system of second order
differential equations1 for a curve γ : I→M in a smooth manifold M.

Proposition 2.10 (Conservation of energy). Let V be a smooth function on a pseudo-
Riemannian manifold (M,g) and consider the Lagrangian

L (v) =
1
2

g(v,v)−V (π(v)), v ∈ T M, (2.6)

of Example 2.3. Then the total energy

v 7→ E(v) :=
1
2

g(v,v)+V (π(v))

is conserved, that is it is an integral of motion. If V is constant then the motion is
geodesic.

Proof. We compute the derivative of t 7→ E(γ ′(t)) along a motion γ:

d
dt

(
1
2

g(γ ′,γ ′)+V (γ)

)
= g

(
∇

dt
γ
′,γ ′
)
+dV |γ γ

′ (2.5)= 0.

If V is constant then the equation of motion (2.5) reduces to the geodesic equation.
ut

Remark. The last statement of the proposition is related to conservation of momentum
in Newtonian mechanics. Recall from Chapter 1 that the momentum of a particle
γ : I→ Rn of mass m moving in Euclidean space is p = mγ ′. Newton’s second law of
mechanics has the form p′=F , where F is the force acting on the particle, which may
depend on the position γ and momentum p of the particle. Obviously, F = 0 implies

1 Such a system will be usually given by a consistent specification of a system of second order
differential equations for the components of the curve in each local coordinate system. A typical
example is (2.3).
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that the momentum is constant along every motion. The conservation of energy holds
in Newtonian mechanics if the force field F depends only on the position and is a
gradient vector field. In fact, then we can write F =−gradV for some function V on
Rn and hence, Newton’s equation is a special case of (2.5).

Definition 2.11. Let (M,L ) be a Lagrangian mechanical system. A diffeomorphism
ϕ : M→M is called an automorphism of the system if

L (dϕv) = L (v),

for all v ∈ T M. A vector field X ∈ X(M) is called an infinitesimal automorphism if
its flow consists of local automorphisms of (M,L ).

Theorem 2.12 (Noether’s theorem). With every infinitesimal automorphism X of
a Lagrangian mechanical system (M,L ) we can associate an integral of motion
f = dL Xver, where Xver ∈X(T M) denotes the vertical lift of X. (In local coordinates
we have Xver = ∑(X i ◦π) ∂

∂ q̂i if X = ∑X i ∂

∂xi .)

Proof. Let us denote by ϕs the flow of X . For every motion γ : I→M of the system
with values in the domain of definition of ϕs the curve γs = ϕs ◦ γ is again a motion
and

γ
′
s = dϕsγ

′,
∂

∂ s

∣∣∣∣
s=0

γ
′
s = X̃ |γ ′ ,

where

T M 3 v 7→ X̃(v) =
∂

∂ s

∣∣∣∣
s=0

dϕs(v)

denotes the vector field on T M the flow of which is dϕs. Differentiating the equation
π ◦dϕs = ϕs ◦π with respect to s, we obtain dπ ◦ X̃ = X ◦π . In local coordinates (xi)
on M and corresponding local coordinates (qi, q̂i) on T M this means that

X̃ = ∑

(
(X i ◦π)

∂

∂qi +Y i ∂

∂ q̂i

)
, X = ∑X i ∂

∂xi .

The locally defined functions Y i on T M can be computed at v ∈ T M as follows:

Y i(v) = dq̂iX̃(v) =
∂

∂ s

∣∣∣∣
s=0

q̂i(dϕsv) =
∂

∂ s

∣∣∣∣
s=0

q̂i

(
∑
j,k

v j ∂ϕk
s

∂x j
∂

∂xk

)

=
∂

∂ s

∣∣∣∣
s=0

∑
j

v j ∂ϕ i
s

∂x j = dX i(v),

where ϕ i
s := xi ◦ϕs and we have used that ∂

∂ s

∣∣∣
s=0

ϕ i
s = X i. The above implies that

0 =
∂

∂ s

∣∣∣∣
s=0

L (γ ′s) = dL X̃ |γ ′ = ∑

(
∂L

∂qi

∣∣∣∣
γ ′

X i(γ)+
∂L

∂ q̂i

∣∣∣∣
γ ′

dX i(γ ′)

)
. (2.7)
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Using the Euler-Lagrange equations we can now compute

d
dt

f (γ ′) =
d
dt ∑

∂L

∂ q̂i

∣∣∣∣
γ ′

X i(γ)

= ∑

(
d
dt

∂L

∂ q̂i

∣∣∣∣
γ ′

)
︸ ︷︷ ︸

= ∂L
∂qi

∣∣∣
γ ′

X i(γ)+∑
∂L

∂ q̂i

∣∣∣∣
γ ′

dX i(γ ′)
(2.7)
= 0

ut

Proposition 2.13. The group of automorphisms of the Lagrangian system of Ex-
ample 2.3 is given by the Lie subgroup

Aut(M,L ) = {ϕ ∈ Isom(M,g)|V ◦ϕ =V} ⊂ Isom(M,g).

Its Lie algebra consists of all Killing vector fields X such that X(V ) = 0.

Proof. See Appendix A, Exercise 6. ut

Corollary 2.14. Let V be a smooth function on a pseudo-Riemannian manifold
(M,g) and consider the Lagrangian L (v) = 1

2 g(v,v)−V (π(v)), v∈ T M, of Example
2.3. Then every Killing vector field X such that X(V ) = 0 gives rise to an integral of
motion f (v) = g(v,X(π(v))), v ∈ T M.

Corollary 2.15. (Conservation of momentum) Consider, as in the previous corollary,
the Lagrangian of Example 2.3. Assume that with respect to some coordinate system
on M the metric g and the potential V are both invariant under translations in one of
the coordinates xi. Then the function

pi := ∑ g̃i jq̂ j

is an integral of motion on the coordinate domain.

Since the Euclidian metric is translational invariant we have the following special
case of Corollary 2.15.

Corollary 2.16. Let V = V (x2, . . . ,xn) be a smooth function on Euclidean space
Rn which does not depend on the first coordinate and consider the Lagrangian
L (v) = 1

2 m〈v,v〉−V (π(v)), v ∈ TRn, of Example 2.2. Then the first component p1
of the momentum vector p = ∑ piei is an integral of motion, where pi(v) := m〈v,ei〉,
v ∈ TRn.

Note that the result still holds if we replace the Euclidean scalar product by a
pseudo-Euclidean scalar product, such as the Minkowski scalar product.

Corollary 2.17 (Conservation of angular momentum). Let V be a smooth radial
function on R3 \{0}, that is V depends only on the radial coordinate r, and consider
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the Lagrangian L (v) = 1
2 m〈v,v〉−V (π(v)), v ∈ T (R3 \{0}). Then the components

of the angular momentum vector

L(v) = π(v)×p(v) = m

 x1

x2

x3

×
 v1

v2

v3


are integrals of motion. Here, x1,x2,x3 denote the components of x = π(v).

Proof. This can be proven either directly from the equations of motion or by applying
Noether’s theorem (see Appendix A, Exercise 9). The first proof uses the fact that
the moment of force γ×F(γ), F =−gradV , is zero for every curve γ : I→ R3 \{0}
and yields also the following proposition. ut

Definition 2.18. A vector field F on R3 \{0} is called radial if there exists a radial
function f on R3 \{0} such that F(x) = f (x) x

|x| for all x ∈ R3 \{0}.

Proposition 2.19. Let F be a smooth radial vector field on R3 \ {0}. Then the
angular momentum is constant for every solution of Newton’s equation d

dt p(t) = F(t),
where we are using the usual notation p(t) = p(γ ′(t)) and F(t) = F(γ(t)).

Remark. A function or vector field on R3 \{0} is radial if and only if it is spherically
symmetric, that is invariant under SO(3) (or, equivalently, O(3)), see Appendix A,
Exercises 11 and 12. The name is due to the fact that SO(3) is the group of orientation
preserving isometries of the sphere S2 and O(3) = Isom(S2).

In the next section we will see how to use the conservation of energy and angular
momentum to analyze the motion in a radial potential.

2.3 Motion in a radial potential

We consider the Lagrangian L (v) = 1
2 m〈v,v〉 −V (r) on R3 \ {0}, where V is a

smooth function of the radial coordinate r = |x| alone. Since the mass can be absorbed
into the definitions of V and L (denoting L /m and V/m again by L and V ) we
may as well put m = 1. So from now on we consider a particle of unit mass.

We know by the results of the previous section that the energy E(t)= 1
2 〈γ
′(t),γ ′(t)〉

+V (|γ(t)|) and angular momentum L(t) = γ(t)× γ ′(t) are constant for every motion
γ : I→ R3 \{0} of the system.

The first observation is that the conservation of angular momentum implies that
the motion is planar, that is contained in a plane.

Proposition 2.20. If the vector L = γ × γ ′ is constant along the curve γ : I →
R3 \{0} then γ is a planar curve.

Proof. If L = 0 then γ is a radial curve (see Appendix A, Exercise 7) and thus planar.
Therefore we can assume that L is a nonzero constant vector. Since the cross product
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of two vectors is always perpendicular to both of them, we know that γ(t) ∈ L⊥ for
all t. So γ is contained in the plane L⊥. ut

By a change of coordinates we can assume that the motion is restricted to the plane
e⊥3 and use polar coordinates (r,ϕ) in that plane rather than Cartesian coordinates
(x1,x2) to describe the motion. In these coordinates, the Euclidean metric is dr2 +
r2dϕ2 and, hence,

E =
1
2
(
ṙ2 + r2

ϕ̇
2)+V (r). (2.8)

To compute the cross product γ× γ ′ in polar coordinates we recall that

∂r = cosϕ∂1 + sinϕ∂2, ∂ϕ =−r sinϕ∂1 + r cosϕ∂2,

where we have abbreviated ∂r = ∂/∂ r, ∂ϕ = ∂/∂ϕ and ∂i = ∂/∂xi. From these
relations we easily obtain

∂r×∂ϕ = re3

and hence
L = γ× γ

′ = r∂r×
(
ṙ∂r + ϕ̇∂ϕ

)
= r2

ϕ̇e3.

Changing the time parameter t to −t, if necessary, we can assume that the constant
r2ϕ̇ ≥ 0 and, hence,

L := |L|= r2
ϕ̇. (2.9)

Substituting ϕ̇ = L/r2 into the energy equation (2.8) we arrive at

E =
1
2

ṙ2 +Veff(r), Veff(r) :=V (r)+
L2

2r2 , (2.10)

where Veff is called the effective potential. As a consequence, we obtain the following
result.

Theorem 2.21. Consider a particle of unit mass moving in a radial potential V (r)
in R3. Then the radial coordinate obeys the equation of motion r̈ = −V ′eff(r) of a
particle t 7→ r(t)> 0 moving in the Euclidean line under the potential

Veff(r) :=V (r)+
L2

2r2 , (2.11)

which reduces to the first order equation

ṙ =±
√

2(E−Veff(r)) (2.12)

solvable by separation of variables. The angular coordinate is then given by

ϕ(t) = L
∫ t

0

ds
r(s)2 +ϕ(0),

where the initial value ϕ(0) is freely specifiable or, as a function of r, by
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ϕ(r) =±L
∫ r

r0

ds

s2
√

2(E−Veff(s))
+ϕ(r0).

Proof. The energy equation (2.10) immediately implies (2.12), which can be solved
by separation of variables:

± dr√
2(E−Veff(r))

= dt.

Integration yields t as a function of r. Then r as a function of t is the inverse of that
function. Differentiating (2.12) gives Newton’s equation r̈ =−V ′eff(r). Given r as a
function of t, the angular coordinate is now determined from ϕ̇ = L/r2 by integration
as claimed. Finally, to express ϕ as a function of r one does not need to know the
inverse of the function r 7→ t(r) but can proceed as follows:

d
dr

ϕ = ϕ̇
dt
dr

=± L

r2
√

2(E−Veff(r))
.

ut

Next we specialize the discussion to Newton’s potential V (r) =−M
r , from which

we will derive, in particular, Kepler’s laws of planetary motion.

2.3.1 Motion in Newton’s gravitational potential

By (2.11) we know that the motion in Newton’s gravitational potential is governed
by the following effective potential

f (r) :=Veff(r) =−
M
r
+

L2

2r2 . (2.13)

We will assume that L > 0; the case L = 0 is treated in Appendix A, Exercise 8. The
qualitative behavior of the effective potential is essential for the qualitative analysis
of the possible orbits. The proof of the next proposition is elementary.

Proposition 2.22. The function f : R>0→ R defined in (2.13) has the following
properties:

1. f has a unique zero, at r0 := L2

2M .
2. It is positive for r < r0 and negative for r > r0.
3. limr→0 f (r) = ∞, limr→∞ f (r) = 0.
4. f has a unique critical point, at rmin := L2

M > r0, where f attains its global

minimum f (rmin) =− M2

2L2 .
5. f is strictly decreasing for r < rmin and strictly increasing for r > rmin.

Proposition 2.23.
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(i) The range of possible energies for motions with nonzero angular momentum in
Newton’s gravitational potential is given by the interval

[
− M2

2L2 ,∞
)

. The motions
are unbounded if E ≥ 0 and bounded if E < 0. The orbit of minimal energy
Emin =− M2

2L2 is a circle of radius L2

M .
(ii) The perihelion distance rper, that is the minimal distance to the origin, for a given

energy E ≥ 0 (and L > 0) is given by the unique positive solution of the equation

r2 + M
E r− L2

2E = 0, which is rper =
M
2E

(
−1+

√
1+2 L2E

M2

)
. For Emin < E < 0

(and L > 0) the distance to the origin varies between the two positive solutions

of the equation r2 + M
E r− L2

2E = 0, which are rper =
M

2|E|

(
1−
√

1+2 L2E
M2

)
and

raph =
M

2|E|

(
1+
√

1+2 L2E
M2

)
(the aphelion distance, that is the maximal distance

to the origin).

Proof. The first part follows immediately from Proposition 2.22. For the second part
note that at the points of minimal or maximal distance to the origin we have ṙ = 0
and, hence, E =Veff = f . The last equation is equivalent to the quadratic equation
r2+ M

E r− L2

2E = 0, which has a unique solution for E = Emin (the radius of the circular
orbit), two positive solutions for Emin < E < 0, and only one positive solution for
E ≥ 0. ut

Next we will solve the equations of motion. The function t 7→ r(t) is determined
by

r̈ =− f ′(r) =−M
r2 +

L2

r3 .

To solve this equation we make the substitution u = 1/r and compute

du
dϕ

=
du
dt

∣∣∣∣
t(ϕ)

dt
dϕ

=− ṙ
r2ϕ̇

∣∣∣∣
t(ϕ)

=− ṙ
L

∣∣∣∣
t(ϕ)

,

which implies

d2u
dϕ2 =− r̈

L
dt
dϕ

=− r̈
Lϕ̇

=− r̈r2

L2 =
f ′(r)r2

L2 =
M
L2 −u.

So we obtain the equation
d2u
dϕ2 +u =

M
L2 ,

the general solution of which is

u = k cos(ϕ−ϕ0)+
M
L2 ,

where k ≥ 0 and ϕ0 are constants. By choosing ϕ0 = 0, this allows us to write
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r =
p

1+ ε cosϕ
, p :=

L2

M
, ε :=

kL2

M
. (2.14)

For 0≤ ε < 1 this is an ellipse of eccentricity ε .
For ε = 1 it is a parabola and for ε > 1 a component of a hyperbola. (Observe

that for the parabola and hyperbola the angle ϕ is constrained by the condition
that ε cosϕ >−1.) Recall that for an ellipse with major half-axis a and minor half-
axis b the distance between the two focal points is 2c, where c2 = a2−b2, and the
eccentricity and parameter are given by

ε =
c
a
, p =

b2

a
,

see e.g. [10, VIII.43] for a detailed discussion of conic sections.
Summarizing we obtain:

Theorem 2.24. The motions of a particle (with nonzero angular momentum) in
Newton’s gravitational potential are along conic sections with a focus at the origin.
The bounded motions are ellipses.

The latter statement is the content of Kepler’s first law (of planetary motion): The
planets move along ellipses with the sun at a focal point. Kepler’s second law asserts
that the area swept out during a time interval [t, t + s] by the line segment connecting
the sun and the planet depends only on its duration s and not on the initial time t.
This is a simple consequence of the conservation of angular momentum as shown in
Appendix A, Exercise 13:

Proposition 2.25. Let γ : I→ R3 \{0} be the motion of a particle in a radial force
field F according to Newton’s law mγ ′′ = F(γ). Then the angular momentum vector
L is constant, the motion is planar and the area A(t0, t1) swept out by the vector γ

during a time interval [t0, t1] is given by

A(t0, t1) =
L
2
(t1− t0),

where L is the length of the angular momentum vector.

As a corollary we obtain Kepler’s third law:

Corollary 2.26. The elliptic orbits in Newton’s gravitational potential are periodic
with period

T =
2π√

M
a3/2,

where a is the major half-axis of the ellipse.

Proof. For a given initial time t0 ∈ R let us denote by T = T (t0) the smallest positive
real number such that (r,ϕ)|t0+T = (r,ϕ)t0 , where t 7→ (r(t),ϕ(t)) is an elliptic
motion of the system. Since A(t0, t0 +T ) = L

2 T is the area of the ellipse, T is clearly
independent of t0, which shows that the motion is periodic. The area of the ellipse is
A = πab and, hence,
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T =
2
L

A =
2πab

L
(2.14)
=

2πab√
pM

=
2πa3/2
√

M
.

ut



Chapter 3
Hamiltonian Mechanics

Abstract We present Hamilton’s formulation of classical mechanics. In this formula-
tion, the n second-order equations of motion of an n-dimensional mechanical system
are replaced by an equivalent set of 2n first-order equations, known as Hamilton’s
equations. There are problems where it is favorable to work with the 2n first-order
equations instead of the corresponding n second-order equations. After introdu-
cing basic concepts from symplectic geometry, we consider the phase space of a
mechanical system as a symplectic manifold. We then discuss the relation between
Lagrangian and Hamiltonian systems. We show that, with appropriate assumptions,
the Euler-Lagrange equations of a Lagrangian mechanical system are equivalent
to Hamilton’s equations for a Hamiltonian, which can be obtained from the Lag-
rangian by a Legendre transformation. In the last part, we consider the linearization
of mechanical systems as a way of obtaining approximate solutions in cases where
the full non-linear equations of motion are too complicated to solve exactly. This
is an important tool for analyzing physically realistic theories as these are often
inherently non-linear.

3.1 Symplectic geometry and Hamiltonian systems

Definition 3.1. A symplectic manifold (M,ω) is a smooth manifold M endowed
with a symplectic form ω , that is a non-degenerate closed 2-form ω .

Example 3.2 (Symplectic vector space). Let ω be a non-degenerate skew-symmetric
bilinear form on a finite dimensional real vector space V . Then (V,ω) is called a
(real) symplectic vector space. Every symplectic vector space is of even dimension
and there exists a linear isomorphism V → R2n, 2n = dimV , which maps ω to the
canonical symplectic form

ωcan =
n

∑
i=1

dxi∧dxn+i, (3.1)

19
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where (x1, . . . ,x2n) are the standard coordinates on R2n.

It is a basic result in symplectic geometry, known as Darboux’s theorem, see e.g.
[1, Thm. 3.2.2], that for every point in a symplectic manifold (M,ω) there exists a
local coordinate system (x1, . . . ,x2n) defined in a neighborhood U of that point, such
that

ω|U =
n

∑
i=1

dxi∧dxn+i.

So ω|U looks like the canonical symplectic form on R2n.

Example 3.3 (Cotangent bundle). Let π : N = T ∗M→M be the cotangent bundle
of a manifold M. We define a 1-form λ on N by

λξ (v) := ξ (dπ(v)),

for all ξ ∈ N, v ∈ Tξ N. The 1-form is called the Liouville form. Its differential
ω = dλ is a symplectic form on N, which is called the canonical symplectic form of
the cotangent bundle N. To check that ω is indeed non-degenerate, let us compute
the Liouville form in coordinates (q1, . . . ,qn, p1, . . . , pn) on π−1(U) = T ∗U ⊂ T ∗M
associated with coordinates (x1, . . . ,xn) on some open set U ⊂M:

qi = xi ◦π, pi(ξ ) = ξ

(
∂

∂xi

)
, ξ ∈ T ∗U.

Since under the projection dπ : T N→ T M the vector fields ∂/∂qi and ∂/∂ pi are
mapped to ∂/∂xi and zero, respectively, at every point ξ = ∑ξ jdx j|π(ξ ) ∈ T ∗U we
have

λξ

(
∂

∂qi

)
= ξ

(
∂

∂xi

)
= ξi = pi(ξ ), λξ

(
∂

∂ pi

)
= 0.

This shows that
λ |U = ∑ pidqi, ω|U = ∑d pi∧dqi,

proving that ω is a symplectic form.

Given a smooth function f on a symplectic manifold (M,ω), there is a unique
vector field X f such that

d f =−ω(X f , ·).

Definition 3.4. The vector field X f is called the Hamiltonian vector field associated
with f .

According to Darboux’s theorem, we can locally write ω = ∑d pi∧dqi for some
local coordinate system (q1, . . . ,qn, p1, . . . , pn) on M. In such coordinates, which will
be called Darboux coordinates, we can easily compute

X f = ∑

(
∂ f
∂ pi

∂

∂qi −
∂ f
∂qi

∂

∂ pi

)
, (3.2)

see Appendix A, Exercise 19.
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Definition 3.5. A Hamiltonian system (M,ω,H) is a symplectic manifold (M,ω)
endowed with a function H ∈ C∞(M), called the Hamiltonian. An integral curve
γ : I→M of the Hamiltonian vector field XH , defined on an open interval I ⊂ R, is
called a motion of the Hamiltonian system. The corresponding system of ordinary
differential equations

γ
′ = XH(γ) (3.3)

is called Hamilton’s equation. An integral of motion of the Hamiltonian system is a
function f ∈C∞(M) which is constant along every motion. The symplectic manifold
(M,ω) is called the phase space of the Hamiltonian system.

Proposition 3.6. Let (M,ω,H) be a Hamiltonian system. Then H is an integral of
motion.

Proof. Let γ : I→M be a motion of the system. Then

d
dt

H(γ(t)) = dHγ
′(t) =−ω(XH(γ(t)),γ ′(t)) =−ω(XH ,XH)|γ(t) = 0.

ut

Proposition 3.7. In Darboux coordinates, Hamilton’s equation for a curve γ : I→
M takes the form

q̇i(t) =
∂H
∂ pi

(γ(t)), ṗi(t) =−
∂H
∂qi (γ(t)), (3.4)

for all i = 1, . . . ,n (here, n = dimM
2 ), where qi(t) = qi(γ(t)), pi(t) = pi(γ(t)).

Proof. This follows immediately from (3.2) by comparing γ ′ = ∑

(
q̇i ∂

∂qi + ṗi
∂

∂ pi

)
with XH(γ). ut

We refer henceforth to eq. (3.3) as Hamilton’s equation and to eq. (3.4) as
Hamilton’s equations.

3.2 Relation between Lagrangian and Hamiltonian systems

In this section, we clarify the relation between Lagrangian and Hamiltonian systems.
We will show, under certain assumptions, that the Euler-Lagrange equations of a
Lagrangian mechanical system (M,L ) are equivalent to Hamilton’s equation for
a certain Hamiltonian H on T ∗M endowed with the canonical symplectic form ω .
If this is true, then the Lagrangian mechanical system (M,L ) should possess an
integral of motion, corresponding to the integral of motion H of the Hamiltonian
system (T ∗M,ω,H).
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3.2.1 Hamiltonian formulation for the Lagrangian systems of
Example 2.3

In the case of Lagrangians of the form L (v) = 1
2 g(v,v)−V (π(v)), v ∈ T M, con-

sidered in Example 2.3, we showed in Proposition 2.10 that the energy E(v) =
1
2 g(v,v)+V (π(v)), v ∈ T M, is indeed an integral of motion. Moreover, we have a
natural identification of T M with T ∗M by means of the pseudo-Riemannian metric:

φ = φg : T M→ T ∗M, v 7→ g(v, ·).

Proposition 3.8. Let (M,g) be a pseudo-Riemannian manifold and denote by
φ : T M→ T ∗M the isomorphism of vector bundles induced by g. Let V be a smooth
function on M and consider the Lagrangian L of Example 2.3.

(i) Then a smooth curve γ : I→M is a solution of the Euler-Lagrange equations if
and only if the curve φ ◦ γ ′ : I→ T ∗M is a solution of Hamilton’s equation for the
Hamiltonian H = E ◦φ−1.

(ii) Conversely, if a smooth curve γ̃ : I→ T ∗M is a motion of the Hamiltonian system
(T ∗M,ω,H) then the curve π ◦ γ̃ : I→M is a motion of the Lagrangian system
(M,L ), where π : T ∗M→M denotes the projection. The maps γ 7→ φ ◦ γ ′ and
γ̃ 7→ π ◦ γ̃ are inverse to each other when restricted to solutions of the Euler-
Lagrange equations and Hamilton’s equations, respectively.

Proof. We prove (i). Part (ii) is similar and part of Appendix A, Exercise 22. Let
(x1, . . . ,xn) be coordinates defined on some open set U ⊂M. They induce coordinates
(q1, . . . ,qn, q̂1, . . . , q̂n) on TU ⊂ T M and (q1, . . . ,qn, p1, . . . , pn) on T ∗U ⊂ T ∗M. In
terms of these coordinates φ is given by

qi ◦φ = qi, pi ◦φ = ∑(gi j ◦π)q̂ j =
∂L

∂ q̂i ,

where π : T M→M denotes the projection. The inverse ψ : T ∗M→ T M is given by

qi ◦ψ = qi, q̂i ◦ψ = ∑(gi j ◦π)p j,

where (gi j) is the matrix inverse to (gi j) and π : T ∗M→M is the projection. Therefore
we obtain

H = E ◦ψ =
1
2 ∑(gi j ◦π)pi p j +V ◦π, π : T ∗M→M,

and by Proposition 3.7, Hamilton’s equation takes the form

q̇i = ∑(gi j(γ))p j = q̂i,

ṗi = −
1
2 ∑

∂gk`

∂xi (γ)pk p`−
∂V
∂xi (γ)
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=
1
2 ∑

∂gk`

∂xi (γ)q̂
kq̂`− ∂V

∂xi (γ) =
∂L

∂qi (γ
′),

where γ : I→M, qi(t) = xi(γ(t)), q̂i(t) = q̂i(γ ′(t)) and pi(t) = pi(φ(γ
′(t))). So we

see that φ ◦ γ ′ : I → T ∗M is a motion of the Hamiltonian system if and only if
γ ′ : I→ T M satisfies

q̇i = q̂i, ṗi =
∂L

∂qi (γ
′),

where pi(t) = ∂L
∂ q̂i (γ

′(t)). Substituting the expression for pi into the second equation
one obtains precisely the Euler-Lagrange equations, whereas the first equation holds
for every curve γ . ut

Next we will generalize the above constructions to any Lagrangian satisfying
an appropriate non-degeneracy assumption analogous to the non-degeneracy of the
pseudo-Riemannian metric.

3.2.2 The Legendre transform

As a first step we will show that for every Lagrangian mechanical system in the sense
of Definition 2.1 (that is for which the Lagrangian does not explicitly depend on
time) we can define an integral of motion which generalizes the energy defined for
Example 2.3. For this we remark that for the Lagrangian of Example 2.3 the energy
can be written in the form

E = ∑
∂L

∂ q̂i q̂i−L .

We use this formula to define the energy E for any Lagrangian L . To show that the
definition is coordinate independent it is sufficient to remark that the vector field

ξ = ∑ q̂i ∂

∂ q̂i

is coordinate independent. It is in fact the vector field generated by the one-parameter
group of dilatations

ϕt : T M→ T M, v 7→ etv.

Its value at v ∈ T M is simply

ξ (v) =
d
dt

∣∣∣∣
t=0

ϕt(v) = v,

where on the right-hand side v ∈ TxM, x = π(v), is interpreted as vertical vector
by means of the canonical identification T ver

v T M = TxM. The following result is a
generalization of Proposition 2.10.
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Proposition 3.9 (Conservation of energy). Let (M,L ) be a Lagrangian mechanical
system. Then the energy E = ξ (L )−L is an integral of motion.

Proof. It suffices to differentiate t 7→ E(γ ′(t)) along a motion γ : I→M. We obtain

d
dt

E(γ ′) =
d
dt

(
∑

∂L

∂ q̂i q̂i−L

)
= ∑

((
d
dt

∂L

∂ q̂i

)
q̂i +

∂L

∂ q̂i
˙̂qi− ∂L

∂qi q̇i− ∂L

∂ q̂i
˙̂qi
)
,

which vanishes by the Euler-Lagrange equations. ut

Next we generalize the isomorphism φ = φg : T M→ T ∗M defined by a pseudo-
Riemannian metric g. As we have shown, it can be written in terms of the Lagrangian
as

qi ◦φ = qi, pi ◦φ =
∂L

∂ q̂i .

We claim that these formulas define a smooth map φ = φL : T M→ T ∗M for any
Lagrangian L . To see this let us define φL in a coordinate independent way. For
v ∈ TxM, x ∈M, we define

φL (v) = d (L |TxM) |v ∈ (TxM)∗ = T ∗x M. (3.5)

What we obtain is a smooth map that maps any vector v ∈ T M to a covector φL (v) ∈
T ∗x M at the point x = π(v). In other words, φL is a one-form along the projection
map π : T M→M, or, equivalently, a section of the vector bundle π∗T ∗M over T M.
Notice that as a map from T M to T ∗M it is fiber-preserving but (contrary to φg) in
general not linear on fibers. Also, in general, it is not even a local diffeomorphism.
In local coordinates we have

φL (v) = ∑
∂L (v)

∂ q̂i dxi|x.

Definition 3.10. Let (M,L ) be a Lagrangian mechanical system, n = dimM. Then
L is called non-degenerate if φL is of maximal rank, that is if dφL has rank 2n
everywhere. The Lagrangian is called nice if it is non-degenerate and φL is a
bijection.

Proposition 3.11. Let (M,L ) be a Lagrangian mechanical system. Then the
following conditions are equivalent:

1. L is non-degenerate.
2. φL : T M→ T ∗M is a local diffeomorphism.
3. For all x ∈M, φL |TxM : TxM→ T ∗x M is of maximal rank.
4. For all v ∈ T M, there exists a coordinate system (xi) defined on an open

neighborhood U of π(v) such that the matrix
(

∂ 2L (v)
∂ q̂i∂ q̂ j

)
is invertible, where

(q1, . . . ,qn, q̂1, . . . , q̂n) are the corresponding coordinates on TU.
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5. For all v∈ T M and every coordinate system (xi) defined on an open neighborhood

U of π(v), the matrix
(

∂ 2L (v)
∂ q̂i∂ q̂ j

)
is invertible.

Proof. See Appendix A, Exercise 20. ut

Proposition 3.12. Let (M,L ) be a Lagrangian mechanical system. Then the
following conditions are equivalent:

1. L is nice.
2. φL : T M→ T ∗M is a diffeomorphism.
3. L is non-degenerate and for all x ∈M, φL |TxM : TxM→ T ∗x M is a bijection.
4. For all x ∈M, φL |TxM : TxM→ T ∗x M is a diffeomorphism.

Proof. See Appendix A, Exercise 21. ut

We can now generalize Proposition 3.8 to the case of non-degenerate Lagrangians.
For simplicity we assume that L is nice such that φL : T M→ T ∗M is not only a
local but a global diffeomorphism. The general (local) result for non-degenerate
Lagrangians is left as an exercise (see Appendix A, Exercise 23).

Theorem 3.13. Let (M,L ) be a Lagrangian mechanical system with nice Lag-
rangian. Then φ = φL : T M→ T ∗M is a diffeomorphism and the following hold:

(i) A smooth curve γ : I→M is a solution of the Euler-Lagrange equations if and
only if the curve φ ◦ γ ′ : I → T ∗M is a solution of Hamilton’s equation for the
Hamiltonian H = E ◦φ−1, where E is the energy, defined in Proposition 3.9.

(ii) Conversely, if a curve γ̃ : I → T ∗M is a motion of the Hamiltonian system
(T ∗M,ω,H), then the curve π ◦ γ̃ : I → M is a motion of the Lagrangian sys-
tem (M,L ), where π : T ∗M→M denotes the projection.

(iii) The maps γ 7→ φ ◦ γ ′ and γ̃ 7→ π ◦ γ̃ are inverse to each other when restricted to
solutions of the Euler-Lagrange equations and Hamilton’s equations, respectively.

Proof. Let us first remark that the function H on T ∗M gives rise to a smooth map
ψ = ψH : T ∗M→ T M. For α ∈ T ∗x M, x ∈M, we define

ψH(α) = d
(
H|T ∗x M

)
|α ∈ (T ∗x M)∗ = TxM. (3.6)

In local coordinates (qi, pi) on T ∗U ⊂ T ∗M and (qi, q̂i) on TU ⊂ T M associated
with local coordinates (xi) on U ⊂M, it is given by

qi ◦ψ = qi, q̂i ◦ψ =
∂H
∂ pi

.

We claim that φ and ψ are inverse to each other. In particular, ψ is a diffeomorphism.
Since we already know that φ is bijective, we only need to check that ψ ◦φ = IdT M .
Obviously qi ◦ψ ◦φ = qi. Thus it is sufficient to check that q̂i ◦ψ ◦φ = q̂i. Let us
denote by (ai j) the n×n-matrix inverse to the matrix (ai j) with matrix coefficients
ai j := ∂ 2L

∂ q̂i∂ q̂ j . Then we have
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∂H
∂ pi

= dE ◦d
(
φ
−1) ∂

∂ pi
= dE ◦ (dφ)−1 ∂

∂ pi

=

(
dE ∑ai j ∂

∂ q̂ j

)
◦φ
−1 =

(
∑ai j ∂E

∂ q̂ j

)
◦φ
−1

and
∂E
∂ q̂ j =

∂

∂ q̂ j

(
∑ q̂k ∂L

∂ q̂k −L

)
= ∑ q̂k ∂ 2L

∂ q̂ j∂ q̂k = ∑ q̂ka jk.

Substituting the second equation into the first equation, we obtain

∂H
∂ pi

= q̂i ◦φ
−1 (3.7)

and, hence,

q̂i ◦ψ ◦φ =
∂H
∂ pi
◦φ = q̂i.

This proves that ψ = φ−1 and, in particular, that pi ◦φ ◦ψ = pi, that is

∂L

∂ q̂i ◦ψ = pi. (3.8)

To relate Hamilton’s equation to the Euler-Lagrange equations, we compute with the
help of (3.7),(3.8):

∂H
∂qi =

∂

∂qi (E ◦ψ) =
∂

∂qi

((
∑ q̂ j ∂L

∂ q̂ j −L

)
◦ψ

)
=

∂

∂qi

(
∑

∂H
∂ p j

p j−L ◦ψ

)
= ∑

∂ 2H
∂qi∂ p j

p j−
∂

∂qi (L ◦ψ)

= ∑
j

∂ 2H
∂qi∂ p j

p j−
∂L

∂qi ◦ψ−∑
j

(
∂L

∂ q̂ j ◦ψ

)
︸ ︷︷ ︸

=p j

∂ (q̂ j ◦ψ)

∂qi︸ ︷︷ ︸
= ∂2H

∂qi∂ p j

=−∂L

∂qi ◦ψ. (3.9)

Now we see from (3.7) and (3.9) that Hamilton’s equations for a curve γ̃ : I→ T ∗M
in canonical coordinates (qi, pi) take the form

d
dt

qi(γ̃(t)) =
∂H
∂ pi

(γ̃(t)) = q̂i(ψ(γ̃(t)),

d
dt

pi(γ̃(t)) = −
∂H
∂qi

(γ̃(t)) =
∂L

∂qi (ψ(γ̃(t)).

Notice that the first equation is satisfied if and only if the curve ψ ◦ γ̃ : I→ T M is the
velocity vector field γ ′ of the curve γ := π ◦ γ̃ : I→M. Using ψ ◦ γ̃ = γ ′, the second
equation can be written in the form
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d
dt
(pi ◦φ)(γ ′(t)) =

∂L

∂qi (γ
′(t)).

In view of (3.8) this is equivalent to the Euler-Lagrange equations for the curve γ . So
we have proven (ii). This also proves (i) by considering the curve γ̃ = φ ◦ γ ′, which
projects onto γ .

In order to prove (iii), let us first remark that for every smooth curve γ in M we
have π ◦φ ◦ γ ′ = γ , simply because φ maps TxM to T ∗x M for all x ∈M. Now let γ̃ be
a solution of Hamilton’s equation. Then, as shown above, ψ ◦ γ̃ = γ ′ is the velocity
vector of γ = π ◦ γ̃ and, hence, φ ◦ γ ′ = γ̃ . This proves (iii). ut

Let us summarize for completeness some interesting facts, which we have estab-
lished in the course of the proof.

Proposition 3.14. Let (M,L ) be a Lagrangian mechanical system with nice
Lagrangian. Then the inverse of the diffeomorphism φ = φL : T M→ T ∗M is given
by the map ψ = ψH : T ∗M→ T M defined by H = E ◦φ−1 in equation (3.6). Under
these diffeomorphisms the following functions on T M and T ∗M are mapped to each
other:

T M qi q̂i ∂L /∂ q̂i E
T ∗M qi ∂H/∂ pi pi H

Next we will explain the relation of the previous constructions with the notion
of Legendre transform of a smooth function f : V → R on a finite-dimensional real
vector space V . To define the Legendre transform we consider the smooth map

φ f : V →V ∗, x 7→ d fx. (3.10)

For simplicity we will assume that φ f is a diffeomorphism. (More generally, we
could consider the case when φ f is only locally a diffeomorphism.) Then we can
define a new function f̃ : V ∗→ R by

f̃ := (ξ ( f )− f )◦φ
−1
f , (3.11)

where ξ is the position vector field in V , that is ξx = x for all x ∈V . Evaluating this
function at y = φ f (x), we obtain

f̃ (y) = ξx( f )− f (x) = d fxx− f (x) = 〈y,x〉− f (x),

where 〈y,x〉= yx = y(x) is the duality pairing. This shows that (3.11) can be equival-
ently written as

f̃ (y) = (〈y,x〉− f (x))|x=φ
−1
f (y) . (3.12)

Definition 3.15. The function f̃ : V ∗ → R is called the Legendre transform of
f : V → R.

Proposition 3.16. Let f be a smooth function on a finite-dimensional real vector
space V such that φ f : V → V ∗ is a diffeomorphism and consider its Legendre
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transform f̃ ∈ C∞(V ∗). Then φ f̃ : V ∗ → V is a diffeomorphism and the Legendre
transform of f̃ is f .

Proof. See Appendix A, Exercise 24. ut

Notice that, with the above notations, for every Lagrangian L ∈ C∞(T M) the
restriction of φL : T M→ T ∗M, defined in (3.5), to TxM, x ∈M, is given by

φL |TxM = φLx , Lx := L |TxM : TxM→ R.

Similarly, for every function H ∈C∞(T ∗M)

ψH |T ∗x M = φHx , Hx := H|T ∗x M : T ∗x M→ R.

In view of this relation, we will now unify the notation and define φH := ψH .

Proposition 3.17. Let L ∈ C∞(T M) be a nice Lagrangian and H ∈ C∞(T ∗M)
the corresponding Hamiltonian. Then H is the fiber-wise Legendre transform of L
and vice versa, that is Hx is the Legendre transform of Lx and Lx is the Legendre
transform of Hx for all x ∈M.

Proof. By comparing the definition of the energy E = ξ (L )−L with (3.11) we
see that Hx = Ex ◦φ

−1
Lx

= L̃x and this implies that H̃x = Lx by Proposition 3.16. ut

3.3 Linearization and stability

The Euler-Lagrange equations and Hamilton’s equations are typically non-linear. We
refer to Example 2.7 for an illustration of this observation. Non-linearity is also a key
feature in many interesting physical applications. Examples from classical mechanics
are the aerodynamic drag, where the drag force is proportional to the square of the
velocity, and the Navier-Stokes equations describing the motion of viscous fluids.
Important examples from modern physics are Einstein’s theory of general relativity
(see Section 5.4.3) as well as the Standard Model of particle physics.

However, non-linear equations are notoriously difficult to solve. A way out is to
consider a linear approximation, instead. This often yields valuable insights into the
true behavior of the underlying non-linear problem and serves as a starting point for
more thorough studies (such as perturbation theory).

This section is based on Ref. [2, Ch. 5]. In this section we denote by I ⊂ R an
open interval.

Definition 3.18. A point x0 ∈ Rn is called an equilibrium position of the system of
ordinary differential equations

dx
dt

= f (x) , x : I→ Rn , (3.13)

if the constant curve x(t) = x0 is a solution.
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Notice that the equilibrium positions of the system (3.13) are precisely the zeroes
of f .

For the rest of this section, we consider as the prime example a classical mechan-
ical system on M = Rn with canonical local coordinates (q1, . . . ,qn, q̂1, . . . , q̂n) on
T M and Lagrangian

L =
1
2 ∑ai j(q)q̂iq̂ j−V (q) . (3.14)

The functions ai j(q) are chosen such that Ekin =
1
2 ∑ai j(q)q̂iq̂ j > 0 for all q̂ 6= 0. The

motion is governed by the the Euler-Lagrange equations

d
dt

∂L

∂ q̂i −
∂L

∂qi = 0 , i = 1, . . . ,n . (3.15)

Proposition 3.19. The point q = q0, q̂ = q̂0 is an equilibrium position of the
Lagrangian mechanical system (3.14) if and only if q̂0 = 0 and q0 is a critical point
of V (q), that is

∂V
∂qi

∣∣∣∣
q=q0

= 0 ∀i = 1, . . . ,n . (3.16)

Proof. From Proposition 3.7 we know that the Euler-Lagrange equations (3.15) can
be transformed into a system of 2n first-order equations of the form

q̇i = ∑ai j p j = q̂i , ṗi =−
1
2 ∑

∂ak`

∂qi pk p`−
∂V
∂qi ,

where (q1, . . . ,qn, p1, . . . , pn) are local coordinates on T ∗M and (ai j) denotes the
inverse matrix of (ai j). At an equilibrium position, we have q̇ = ṗ = 0 and hence
from the first equation q̂ = 0, p = 0. With p = 0 the first term in the second equation
vanishes and hence we conclude that q = q0 is an equilibrium position if (3.16) holds
and only in that case. ut

Returning to the general case, dx
dt = f (x), we may Taylor-expand f (x) close to an

equilibrium position x0. For convenience, we may assume without loss of generality
x0 = 0 (by a translation of the coordinate system). The Taylor expansion close to
x0 = 0 then becomes

f (y) = Ay+O(|y|2) , (3.17)

where A = ∂ f
∂x |x=0.

Definition 3.20. The passage from the system

dx
dt

= f (x) , x : I→ Rn ,

to the linear system

dy
dt

= Ay , y : I→ T0Rn ∼= Rn ,
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is called linearization around the equilibrium position x0 = 0.

The linearized system can be easily solved by

y(t) = eAty(0) ,

where eAt = 1n +At + 1
2 A2t2 + . . . is the matrix exponential series. For small enough

y, the higher-order corrections O(|y|2) in (3.17) are small compared to y itself. Thus,
for a long time, the solutions y(t) of the linear system and x(t) of the full system
remain close to each other, provided that the initial conditions y(0) = x(0) are chosen
sufficiently close to the equilibrium position x0. More precisely, for a given time
T > 0 and ε > 0, there exists a δ > 0 such that for any x′0 ∈ Rn with |x′0−x0|< δ the
solution x(t) of (3.13) with initial condition x(0) = x′0 exists (at least) for all t ∈ [0,T ]
and compares to the solution y : R→ Rn of the linearized system with y(0) = x′0 by

max
[0,T ]
|x− y|< ε .

Consider the Lagrangian mechanical system (3.14) near the equilibrium position
q = q0 and choose coordinates such that q0 = 0.

Proposition 3.21. The linearization of (3.14) near q = q0 is given by

L2 =
1
2 ∑ai j(0)q̂iq̂ j− 1

2 ∑
∂ 2V

∂qi∂q j

∣∣∣∣
q=0

qiq j . (3.18)

This is also known as quadratic approximation.

Proof. The Hamiltonian corresponding to (3.14) is given by

H =
1
2 ∑ai j(q)pi p j +V (q) .

Hamilton’s equations can be written as

ṗi =−
∂H
∂qi =: fi(p,q) , q̇i =

∂H
∂ pi

=: gi(p,q) ,

The linearization of this system is obtained by Taylor expanding f and g around
q = p = 0 keeping only terms that are at most linear in p and q:

ṗi = ∑
∂ fi

∂q j

∣∣∣∣q j + ∑
∂ fi

∂ p j

∣∣∣∣ p j =−∑
∂ 2H

∂qi∂q j

∣∣∣∣q j−∑
∂ 2H

∂qi∂ p j

∣∣∣∣ p j

= −∑
∂ 2V

∂qi∂q j

∣∣∣∣q j− 1
2 ∑

(
∂ 2ak`

∂qi∂q j pk p`

)∣∣∣∣q j−∑

(
∂a jk

∂qi pk

)∣∣∣∣ p j

= −∑
∂ 2V

∂qi∂q j

∣∣∣∣q j ,
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q̇i = ∑
∂gi

∂q j

∣∣∣∣q j + ∑
∂gi

∂ p j

∣∣∣∣ p j = ∑
∂ 2H

∂ pi∂q j

∣∣∣∣q j + ∑
∂ 2H

∂ pi∂ p j

∣∣∣∣ p j

= ∑

(
∂aik

∂q j pk

)∣∣∣∣q j +∑ai j(0)p j = ∑ai j(0)p j .

In the above equations a vertical line is used as a shorthand symbol to denote the
evaluation of the preceding expression at q = p = 0. Differentiating and combining
the two equations yields

q̈i = ∑ai j(0)ṗ j =−∑ai j(0)
∂ 2V

∂q j∂qk

∣∣∣∣
q=0

qk .

These are precisely the Euler-Lagrange equations obtained from L2. ut

Example 3.22. Consider the case n = 1:

L =
1
2

a(q)q̇2−V (q) .

Let q(t) = q0 be an equilibrium position, that is

∂V
∂q

∣∣∣∣
q=q0

= 0 .

Assuming without loss of generality q0 = 0, the linearized Lagrangian becomes

L2 =
1
2

α q̇2− 1
2

βq2 ,

where α := a(0) and β := ∂ 2V
∂q2

∣∣∣
q=q0

. Note that α > 0 by assumption (cf. below

eq. (3.14)). The Euler-Lagrange equation corresponding to L2 is given by

q̈ =−ω
2
0 q , ω

2
0 :=

β

α
. (3.19)

The motion crucially depends on the sign of β or, in other words, on whether the
potential V (q) attains a local minimum or maximum at the equilibrium position q0.
Indeed, we find as solution of (3.19) with integration constants c1,c2 ∈ R,

q(t) =


c1 cos(ω0t)+ c2 sin(ω0t) , for β > 0 (“small oscillations”) ,
c1 cosh(|ω0|t)+ c2 sinh(|ω0|t) , for β < 0 (“runaway behavior”) ,
c1t + c2 , for β = 0 (“uniform motion”) .

This observation leads to the notion of stability.

Now, we consider the case of higher-dimensional motion on Rn, n > 1.
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Definition 3.23. Consider a Lagrangian mechanical system of the form (3.14) with
equilibrium position q = q0 and set

(Ω)i j :=
∂ 2V

∂qi∂q j

∣∣∣∣
q=q0

, i, j = 1, . . . ,n .

The equilibrium position q = q0 is called

(i) unstable, if Ω is negative definite,
(ii) stable, if Ω is positive definite,

(iii) degenerate, if Ω is degenerate,
(iv) a saddle point, if Ω is nondegenerate but indefinite.

This can be understood as follows. Condition (i) implies that the potential V (q)
attains a local maximum at the critical point q0. Hence, any small displacement away
from q0 causes the system to deviate further from it, since the net-force is directed
away from q0. An example of such a situation is depicted in the following figure:

In case (ii), V (q) attains a local minimum at q = q0. For small perturbations, the
system stays close to q0 for all times, since the forces are “restoring forces.” This
can be exemplified as follows:

A typical example of case (iii) is a region where the potential V (q) is flat:

In that case, higher-order derivatives are needed to decide stability. Finally, condition
(iv) can be understood as a situation where some directions are stable and some are
unstable.

For the rest of this section, to streamline the presentation we only consider
stable equilibrium positions. The general case can be analyzed similarly. For one-
dimensional motion we saw in Example 3.22 that the linearized motion around a
stable equilibrium position is oscillatory in nature,

q(t) = c1 cos(ω0t)+ c2 sin(ω0t) .

Here, ω0 =
√

β/α is the frequency, and τ0 = 2π/ω0 the period of the oscillation.
This leads us to the next concept, namely small oscillations.

Definition 3.24. Motions in a linearized system L2, as defined in (3.18), are called
small oscillations near an equilibrium position q = q0.
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Recall that the linearized Lagrangian is given by

L2 =
1
2 ∑αi jq̂iq̂ j− 1

2 ∑Ωi jqiq j .

where αi j := ai j(0) and Ωi j := ∂ 2V
∂qi∂q j

∣∣∣
q=0

. Note that (αi j) and Ω := (Ωi j) are sym-

metric, real matrices and (αi j) is positive definite. It is useful to work in coordinates
where αi j = δi j, where δi j is the Kronecker delta.

The equations of motion following from L2 are a set of a priori coupled linear
ordinary differential equations,

q̈i =−∑δ
i j

Ω jkqk .

Here, the Kronecker delta δ i j (note that δ i j = δi j) is written explicitly in order
to make it manifest that the index positions on both sides of the equation match.
By a suitable choice of coordinates, we can de-couple the ordinary differential
equations. That is, we diagonalize the real symmetric matrix Ω using an orthogonal
transformation M ∈ O(n), so that

MᵀΩM = diag(λ1, . . . ,λn) ,

where λ1, . . . ,λn ∈ R are the eigenvalues of Ω and (·)ᵀ denotes matrix transposition.
Now, we define new coordinates Q on Rn as

Q = Mᵀq .

In terms of the new coordinates, the equations of motion become

Q̈i =−λiQi (no sum over i) .

The corresponding Lagrangian is given by

L2 =
1
2 ∑

i

(
Q̇i)2− 1

2 ∑
i

λi
(
Qi)2

,

up to an additive constant. The de-coupled system of equations can be solved straight-
forwardly. One finds n independent harmonic oscillators of the form

Qi(t) = ci
1 cos

(√
λi t
)
+ ci

2 sin
(√

λi t
)

(no sum over i) ,

with real integration constants (ci
1,2)i=1,...,n. Recall that the stability criterion (see

Definition 3.23) guarantees λi > 0 for all i. Otherwise the linearized motion will
in general not be periodic, but solutions can be described in a similar way using
hyperbolic and linear functions for the cases λi < 0 and λi = 0, respectively.

What we have just learned is that a system performing small oscillations de-
composes into a direct product of n one-dimensional systems performing small
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oscillations. In particular, the system can perform small oscillations of the form

q(t) = [c1 cos(ωt)+ c2 sin(ωt)]ξ , (3.20)

where ω =
√

λ and ξ is an eigenvector of Ω corresponding to λ , that is

Ωξ = λξ .

This oscillation can be regarded as a product of Qi = ci
1 cos(ωit)+ ci

2 sin(ωit) and
Q j = 0, j 6= i, for some i ∈ {1, . . . ,n}. The two-parameter family of solutions (3.20)
is called a characteristic oscillation or eigen-oscillation or normal mode and ω =

√
λ

is called characteristic frequency or eigen-frequency (or sometimes also resonance
frequency). Sometimes also an element of that family is called a characteristic
oscillation. The vector ξ is called the eigenvector corresponding to the characteristic
oscillation and a system of characteristic oscillation is called independent if the
corresponding eigenvectors are linearly independent.

The above results are summarized in the following theorem.

Theorem 3.25. The linearized Lagrangian mechanical system of the form (3.18)
near a stable equilibrium position q = q0 performs small oscillations given by a
sum of characteristic oscillations. The system has n independent characteristic
oscillations and the characteristic frequencies are the square roots of the eigenvalues
of the Hessian matrix of the potential V (q) at q0 (assuming that αi j = δi j, without
loss of generality).

Note that a sum of characteristic oscillations is generally not periodic.1

The linearized Lagrangian mechanical system L2 can now be solved in the
following way:

(i) Find the complex characteristic oscillations of the form q(t) = eiωtξ by substitut-
ing into the equations of motion q̈ =−Ωq. This yields a characteristic equation,
Ωξ = ω2ξ . Solving this equation produces n pairwise orthogonal eigenvectors
ξk with corresponding real eigenvalues λk = ω2

k .
(ii) The general real-valued solution is a linear combination of (i). That is,

q(t) = Re
n

∑
k=1

ckei(ωkt+δk)ξk ,

with ck and δk real parameters.

Remark. This result is valid irrespective of the multiplicities of the eigenvalues λk.

Example 3.26 (See [2, Ch. 5] for this and further examples). Consider two identical
mathematical pendula of unit mass connected by a weightless spring as depicted in
the following figure:

1 For example, consider a case with two eigenvalues λ1 = 1, λ2 = 2, and the solution q(t) =
sin(t)ξ1 + sin(

√
2 t)ξ2.
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q1 q2

For small oscillations, we have Ekin =
1
2 q̇2

1+
1
2 q̇2

2 and Epot =V = 1
2 q2

1+
1
2 q2

2+
k
2 (q1−

q2)
2, where the last term in V is due to the spring. We choose new diagonalizing

coordinates
Q1 =

q1 +q2√
2

, Q2 =
q1−q2√

2
.

In terms of the new coordinates, the linearized Lagrangian becomes

L2 = Ekin−Epot =
1
2

Q̇2
1 +

1
2

Q̇2
2−

1
2

ω
2
1 Q2

1−
1
2

ω
2
2 Q2

2 ,

with ω1 = 1 and ω2 =
√

1+2k. There are two characteristic oscillations, namely

(a) Q2 = 0, that is q1 = q2.

This is the case where both pendula move in phase and the spring has no effect.
(b) Q1 = 0, that is q1 =−q2.

In this case, the pendula move in opposite phase with increased frequency ω2 > 1
due to the presence of the spring.





Chapter 4
Hamilton-Jacobi theory

Abstract Besides the Newtonian, Lagrangian, and Hamiltonian formulations of
classical mechanics, there is yet a fourth approach, known as Hamilton-Jacobi theory,
which is part of Hamiltonian mechanics. This approach is the subject of the present
chapter. In Hamilton-Jacobi theory, the central equation capturing the dynamics of the
mechanical system is the Hamilton-Jacobi equation which is a first-order, non-linear
partial differential equation. Remarkably and contrary to the other formulations of
classical mechanics, the entire multi-dimensional dynamics is described by a single
equation. Even for relatively simple mechanical systems, the corresponding Hamilton-
Jacobi equation can be hard or even impossible to solve analytically. However, its
virtue lies in the fact that it offers a useful, alternative way of identifying conserved
quantities even in cases where the Hamilton-Jacobi equation itself cannot be solved
directly. In addition, Hamilton-Jacobi theory has played an important historical role
in the development of quantum mechanics, since the Hamilton-Jacobi equation can
be viewed as a precursor to the Schrödinger equation [3, 7, 18].

For simplicity we consider Hamiltonian systems (T ∗M,H) of cotangent type, that is
for which the phase space is the cotangent bundle T ∗M of a (connected) manifold with
canonical symplectic form ω = ωcan. As we have shown in Chapter 3, this includes
the systems obtained from Lagrangian mechanical systems with a nice Lagrangian
via Legendre transform. By Darboux’s theorem every Hamiltonian system can be
locally identified with an open subset of a Hamiltonian system of cotangent type.

We will now describe a method for the solution of Hamilton’s equation which is
based on the following simple idea. Consider a function S on the base manifold M. It
gives rise to a 1-form dS : M→ T ∗M and for every curve γ : I→M we can consider
the curve

γ̃ : I→ T ∗M, t 7→ dSγ(t).

37
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We would like to know when γ̃ is an integral curve of the Hamiltonian vector field
XH . Since H is an integral of motion, a necessary condition is that H ◦ γ̃ is constant.
Projecting Hamilton’s equation γ̃ ′ = XH(γ̃) to M we obtain

γ
′ = dπXH(γ̃). (4.1)

We will prove in the next theorem that, conversely, this equation (for n = dimM
functions) is sufficient to solve Hamilton’s equation (for 2n functions) if we assume
that H is constant on the section dS of T ∗M. Notice that in canonical coordinates
(qi, pi) associated with local coordinates (xi) in M the equation (4.1) corresponds to
the system

q̇i =
∂H
∂ pi

(γ̃), i = 1, . . . ,n,

where qi(t) = qi(γ̃(t)) = xi(γ(t)). This is exactly half (that is, n out of 2n) of
Hamilton’s equations.

Theorem 4.1. Let (T ∗M,H) be a Hamiltonian system of cotangent type and S ∈
C∞(M). Then the following are equivalent.

1. For all solutions γ of (4.1), the curve γ̃ = dSγ is a solution of Hamilton’s equation.
2. The Hamiltonian vector field XH is tangent to the image of dS : M→ T ∗M.
3. The function H ◦dS : M→ R is constant.

To prove this theorem we will use the following fundamental lemma.

Lemma 4.2. Let α be a smooth 1-form on M. We consider it as a smooth map

ϕα : M→ T ∗M.

Then the following holds:

(i) The pull back of the Liouville form λ under this map is given by

ϕ
∗
α λ = α.

(ii) The pull-back of the canonical symplectic form ω is

ϕ
∗
α ω = dα.

Proof. (i) For v ∈ T M, we compute

(ϕ∗α λ )(v) = λ (dϕα v) = α(dπdϕα v) = α(v).

Part (ii) follows from (i):

ϕ
∗
α ω = ϕ

∗
α dλ = dϕ

∗
α λ = dα.

ut
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Definition 4.3. An immersion ϕ : N → M of an n-dimensional manifold N into
a 2n-dimensional symplectic manifold (M,ω) is called Lagrangian if it satisfies
ϕ∗ω = 0.

Lemma 4.2 (ii) immediately implies:

Corollary 4.4. The embedding ϕα : M→ T ∗M defined by a smooth 1-form α on a
manifold M is Lagrangian if and only if α is closed.

Definition 4.5. Let (V,ω) be a symplectic vector space. A subspace U ⊂V is called
Lagrangian if U coincides with

U⊥ = {v ∈V | ω(v,u) = 0 for all u ∈U}.

It is easy to prove the following proposition (see Appendix A, Exercise 25).

Proposition 4.6. An immersion ϕ : N→M of an n-dimensional manifold N into a
2n-dimensional symplectic manifold (M,ω) is Lagrangian if and only if its tangent
spaces dϕTxN ⊂ Tϕ(x)M are Lagrangian for all x ∈ N.

Proof. (of Theorem 4.1) Let us first show that 1. and 2. are equivalent. We first
assume 1. and show that XH(ϕdS(x)) is tangent to the Lagrangian submanifold
N = ϕdS(M) ⊂ T ∗M for all x ∈ M. Let γ : I = (−ε,ε)→ M, ε > 0, be a solution
of (4.1) with initial condition γ(0) = x. Then the curve γ̃ = ϕdS ◦ γ is a solution to
Hamilton’s equation and lies in N. Therefore,

XH(γ̃) = γ̃
′ ∈ T N

and, in particular, XH(ϕdS(x)) = XH(γ̃(0)) = γ̃ ′(0) ∈ T N. So we have proven that
1. implies 2. To show the converse, we observe that given a solution γ : I→M of
(4.1) and t ∈ I, the vector γ̃ ′(t) ∈ Tγ̃(t)N is the unique tangent vector in Tγ̃(t)N which
projects to γ ′(t) = dπXH(γ̃(t)). Since the vector XH(γ̃(t)) ∈ Tγ̃(t)T ∗M projects to the
same vector in the base, we see that γ̃ ′(t) = XH(γ̃(t)) if and only if XH(γ̃(t)) ∈ T N.

Next we prove the equivalence of 2. and 3. Since N ⊂ T ∗M is Lagrangian, the
vector field XH is tangent to N if and only if at all points u ∈ N we have

XH(u) ∈ (TuN)⊥ ⇐⇒ dHTuN = 0 ⇐⇒ d(H ◦ϕdS)|π(u) = 0.

ut

The partial differential equation

H ◦dS = const

of part 3 of Theorem 4.1 is called the Hamilton-Jacobi equation. We can summarize
part of Theorem 4.1 as follows. If S is a solution to the Hamilton-Jacobi equation then
every integral curve of XH passing through a point of the Lagrangian submanifold
N = ϕdS(M)⊂ T ∗M is fully contained in N and these integral curves are obtained
by solving a system of n ordinary differential equations (rather than 2n).
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Next we will show that given not only one solution, but a smooth family of
solutions of the Hamilton-Jacobi equation depending on n parameters we can (at
least locally) completely solve Hamilton’s equations of motion, provided the family
is non-degenerate in a certain sense. The non-degeneracy assumption will ensure that
the family cannot be locally reduced to a family depending on fewer parameters.

Definition 4.7. Let (T ∗M,H) be a Hamiltonian system of cotangent type and
n = dimM. A family of solutions of the Hamilton-Jacobi equation is a smooth
function

S : M×U → R, (x,u) 7→ S(x,u),

where U ⊂ Rn is an open subset, such that for all u ∈U the function x 7→ Su(x) :=
S(x,u) on M is a solution of the Hamilton-Jacobi equation. It is called non-degenerate
if the map

ΦS : M×U → T ∗M, (x,u) 7→ dSu|x ∈ T ∗x M ⊂ T ∗M

is of maximal rank.

Let (Su)u∈U be a smooth family of solutions of the Hamilton-Jacobi equation.
Then, for all u ∈U , the image of dSu : M→ T ∗M is a Lagrangian submanifold Nu.
The smooth map ΦS maps each submanifold M×{u} ⊂M×U diffeomorphically to
the submanifold Nu ⊂ T ∗M. Moreover, it is fiber preserving in the sense that it maps
the fibers {x}×U , x ∈M, of the trivial projection M×U →M into the fibers T ∗x M
of the cotangent bundle. The next proposition is left as an exercise (see Appendix A,
Exercise 26).

Proposition 4.8. Let (T ∗M,H) be a Hamiltonian system of cotangent type, n =
dimM and let S : M×U → R be a smooth n-parameter family of solutions of the
Hamilton-Jacobi equation. Then the following conditions are equivalent.

(i) The family is non-degenerate.
(ii) ΦS : M×U → T ∗M is a local diffeomorphism.
(iii) For all x ∈M,

ΦS|{x}×U : {x}×U ∼=U → T ∗x M, u 7→ dSu|x,

is a local diffeomorphism.
(iv) For all x ∈M,

ΦS|{x}×U : {x}×U ∼=U → T ∗x M,

is of maximal rank.
(v) For all (x,u) ∈M×U the n×n-matrix(

∂ 2S(x,u)
∂xi∂u j

)
is invertible, where (xi) are local coordinates in a neighborhood of x ∈M and (ui)
are (for instance) standard coordinates in U ⊂ Rn.
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Lemma 4.9. Let (T ∗M,H) be a Hamiltonian system of cotangent type, n = dimM,
and S : M×U → R a smooth non-degenerate n-parameter family of solutions of the
Hamilton-Jacobi equation. Then the pull back of the canonical symplectic form by
the local diffeomorphism ΦS : M×U → T ∗M is given by

Φ
∗
S ω = ∑

∂ 2S
∂xi∂u j dxi∧du j,

with respect to any local coordinate system (x1, . . . ,xn) on M, where (u1, . . . ,un) are
standard coordinates on U ⊂ Rn.

Proof. Let us denote by (qi, pi) the local coordinates on T ∗M associated with the
local coordinates (xi) on M. Then

qi ◦ΦS = xi, pi ◦ΦS =
∂S
∂xi

and, hence,

Φ
∗
S λ = ∑

∂S
∂xi dxi =⇒ Φ

∗
S ω = dΦ

∗
S λ = ∑

∂ 2S
∂xi∂u j dxi∧du j.

ut

Theorem 4.10. Let (T ∗M,H) be a Hamiltonian system of cotangent type, where M
is connected, n = dimM and S : M×U → R a smooth non-degenerate n-parameter
family of solutions of the Hamilton-Jacobi equation. Then the motions of the Hamilto-
nian system (T ∗M,H) contained in the open subset ΦS(M×U)⊂ T ∗M are of the
form ΦS ◦ γ , where γ : I→M×U is a motion of the Hamiltonian system

(M×U, ω̃ := φ
∗
S ω, H̃ := H ◦ΦS).

The equations of motion of the latter system can be solved by passing to local
coordinates of the form (

q̃i := ui, p̃i :=− ∂S
∂ui

)
.

In such coordinates we have

ω̃ = ∑dq̃i∧d p̃i,
∂ H̃
∂ p̃i

= 0.

The function H̃ = H̃(q̃1, . . . , q̃n) depends only on the q̃i and not on p̃i, and the
solutions are given by

q̃i(t) = ai, p̃i(t) =−
∫

∂ H̃
∂ q̃i (a

1, . . . ,an)dt,

where ai are arbitrary real constants.
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Proof. Since Φ∗S ω = ω̃ and φ ∗S H = H̃ it is clear that ΦS maps motions of (M×
U, ω̃, H̃) to motions of (T ∗M,H). In this way we obtain all motions lying in the image

of ΦS. Due to the non-degeneracy of the matrix
(

∂ 2S(x,u)
∂xi∂u j

)
, the functions (q̃i, p̃i) form

a system of local coordinates, when restricted to an appropriate neighborhood of any
given point of M×U . We compute

∑dq̃i∧d p̃i = ∑dui∧d
(
− ∂S

∂ui

)
= ∑

∂ 2S
∂xi∂u j dxi∧du j.

By Lemma 4.9, this is ω̃ . In virtue of the Hamilton-Jacobi equation, for every u ∈U ,
the function x 7→ H̃(x,u) = H ◦ΦS(x,u) = H ◦dSu|x is constant, that is, it depends
only on u. In the local coordinates (q̃i, p̃i) this means that H̃ = H̃(q̃) is a function
solely of the q̃i. So Hamilton’s equations reduce to

˙̃qi = 0, ˙̃pi =−
∂ H̃
∂ q̃i (q̃),

which are trivially solved as indicated. ut

Next we discuss an example, cf. [2, Ch. 9, Sec. 47] and references therein. Con-
sider a particle of unit mass moving in the Euclidean plane under the gravitational
potential generated by two equal masses placed at distance 2c > 0, say at the points
f1 = (c,0) and f2 = (−c,0). This problem can be conveniently studied by consid-
ering the distances r1 and r2 to the points f1 and f2, respectively. The gravitational
potential is

V =− k
r1
− k

r2

for some constant k > 0. Away from the Cartesian coordinate axes one can use the
globally defined functions

ξ := r1 + r2, η := r1− r2,

as coordinates. The level sets of ξ and |η | form a confocal system of ellipses and
hyperbolas, that is a system with common focal points f1, f2. From the geometry of
conic sections we know that the tangent line at a point q of any ellipse or hyperbola
bisects the angle between the two lines connecting q with the foci. This implies that
the ellipses and hyperbolas of the confocal system intersect orthogonally. Therefore
the Euclidean metric is a linear combination of dξ 2 and dη2 (with functions as
coefficients).

Proposition 4.11. In the coordinates (ξ ,η) the Euclidean metric takes the form

g =
ξ 2−η2

4(ξ 2−4c2)
dξ

2 +
ξ 2−η2

4(4c2−η2)
dη

2.

Proof. It is sufficient to check the formula on the ellipses and hyperbolas of the
confocal system. The ellipse can be parametrized as γ(t) = (acos t,bsin t), where
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a2−b2 = c2. Then, along the ellipse,

r2
1 = (acos t− c)2 +b2 sin2 t = a2 cos2 t−2accos t + c2 +b2 sin2 t

= c2 cos2 t−2accos t +a2 = (a− ccos t)2

and, thus,

r1 = a− ccos t, r2 = a+ ccos t, ξ = 2a, η =−2ccos t.

This implies 4c2−η2 = 4c2 sin2 t = η̇2 and, hence,

g(γ ′,γ ′) =
ξ 2−η2

4(4c2−η2)
η̇

2 =
1
4
(ξ 2−η

2) = a2− c2 cos2 t = a2 sin2 t +b2 cos2 t.

The result coincides with gcan(γ
′,γ ′), the square of the Euclidian length of γ ′ =

(−asin t,bcos t). The analogous calculation for the hyperbola is left to the reader
(see Appendix A, Exercise 31). This proves that gcan = g on the domain of definition
of the coordinates (ξ ,η). ut

Corollary 4.12. In the coordinates (ξ ,η), the Hamiltonian of a particle of unit
mass moving in the Euclidean plane under the gravitational potential generated by
two equal masses placed at f1 = (c,0) and f2 = (−c,0) has the form

H = 2p2
ξ

ξ 2−4c2

ξ 2−η2 +2p2
η

4c2−η2

ξ 2−η2 −
4kξ

ξ 2−η2 . (4.2)

Proof. For any local coordinate system (x1,x2) we have

H(q, p) =
1
2 ∑gi j(q)pi p j +V (q),

where (qi, pi) are the corresponding local coordinates on the cotangent bundle of R2.
Inverting the diagonal matrix representing the metric in the coordinates (ξ ,η) and
dividing by 2 yields the kinetic term in (4.2). The potential term is

V =− k
r1
− k

r2
=−k(r2 + r1)

r1r2
=− 4kξ

ξ 2−η2 .

ut

In the coordinates (ξ ,η), the Hamilton-Jacobi equation H
(

q, ∂S
∂q

)
=C = const

takes the form

2
(

∂S
∂ξ

)2

(ξ 2−4c2)+2
(

∂S
∂η

)2

(4c2−η
2)−4kξ =C(ξ 2−η

2).

The variables (ξ , pξ ) and (η , pη) can be separated as follows. We look for solutions
of the system
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2
(

∂S
∂ξ

)2

(ξ 2−4c2)−4kξ − c2ξ
2 = c1,

2
(

∂S
∂η

)2

(4c2−η
2)+ c2η

2 =−c1,

where c1,c2 are constants. Solving each equation for the partial derivatives ∂S/∂ξ

and ∂S/∂η , respectively, and integrating yields the following two-parameter family
of solutions of the Hamilton-Jacobi equation

S(ξ ,η ,c1,c2) =
∫ √c1 + c2ξ 2 +4kξ

2(ξ 2−4c2)
dξ +

∫ √−c1− c2η2

2(4c2−η2)
dη .

Remark. Hamilton-Jacobi theory can be extended to the case of time-dependent
Hamiltonians H(q, p, t). The corresponding generalization of the Hamilton-Jacobi
equation has the form

∂S
∂ t

+H
(

q,
∂S
∂q

, t
)
= 0, (4.3)

where S = S(q, t) is now allowed to depend on time t. The choice of the letter S is
related to the action functional of a Lagrangian mechanical system as defined in
Definition 2.4. Let us very briefly explain this relation. Let (M,L ) be a Lagrangian
mechanical system with possibly time-dependent Lagrangian. Fix a point x0 ∈M and
a time t0. Suppose that for (x, t) ∈M×R in a suitable domain there exists a unique
motion s 7→ γ(s) (inside a suitable domain in M) such that γ(t0) = x0 and γ(t) = x.
Then we can define

S(x0, t0)(x, t) :=
∫ t

t0
L (γ ′(s),s)ds.

Under appropriate assumptions, it can be shown that S(x0,t0) is a smooth family of
solutions of the time-dependent Hamilton-Jacobi equation (4.3), see [2, Ch. 9, Sec.
46].



Chapter 5
Classical field theory

Abstract A second cornerstone of classical physics besides point-particle mech-
anics is field theory. Classical field theory is essentially an infinite collection of
mechanical systems (one at each point in space) and hence can be viewed as an
infinite-dimensional generalization of classical mechanics. More precisely, solutions
of classical mechanical systems are smooth curves t 7→ γ(t) from R to M. In classical
field theory, curves from R are replaced by maps from a higher-dimensional source
manifold. In this more general framework we also allow for Lagrangians with ex-
plicit time dependence. Another key feature of classical field theory is its manifest
incorporation of the laws of Einstein’s theory of relativity. This chapter begins with
definitions and properties of the central objects, namely fields, Lagrangians, action
functionals, and the field-theoretic version of the Euler-Lagrange equations. Modern
covariant field theory is customarily formulated in the language of jet bundles, which
is also utilized and thus introduced here. We study symmetries and conservation
laws of classical field theories in the second part of this chapter, which culminates in
the field-theoretic version of Noether’s theorem. The penultimate section is devoted
to a thorough presentation, from a mathematical perspective, of some prominent
examples of classical field theories, such as sigma models, Yang-Mills theory, and
Einstein’s theory of gravity. A key ingredient of matter-coupled Einstein gravity is
the energy-momentum tensor, which is studied in detail in the final section. This
chapter is largely based on Ref. [16].

5.1 The Lagrangian, the action and the Euler-Lagrange
equations

The fields of a classical field theory are basically smooth maps f : S→T from a
source manifold S (possibly with boundary) to a target manifold T . The theory is
defined by an action functional of the form

45
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S[ f ] =
∫
S

L ( jk( f ))dvol, (5.1)

where dvol is a fixed volume element on S and the Lagrangian L is a smooth
function on a certain bundle Jetk(S,T ) over S. The elements of the fiber Jetkx(S,T )
over x ∈S are defined as equivalence classes of smooth maps S→T , where two
maps are equivalent if their Taylor expansions with respect to some local coordinate
system coincide up to order k at x. This condition does not depend on the particular
choice of local coordinates. The equivalence class of f with respect to the above
relation is denoted by jk

x( f ) ∈ Jetkx(S,T ) and is called the k-th order jet of f at x.
The map

jk( f ) : S→ Jetk(S,T ), x 7→ jk
x( f ),

is a smooth section of the jet bundle Jetk(S,T ).
In many physically interesting cases the source manifold S is interpreted as a

space-time of a certain dimension. The Lagrangian mechanical systems discussed so
far can be considered as classical field theories of order k = 1 with one-dimensional
space-time. The source S= I is an interval and the target manifold T is the config-
uration space of the mechanical system.

For simplicity, we will assume for the moment that S is either a bounded domain
Ω ⊂ Rn with smooth boundary or Ω = Rn, and that T = Rm. (Recall that a domain
is a connected open set.) The basic ideas can be explained with almost no loss of
generality in this setting, cf. [16]. For the convergence of the action integral one needs
to require certain boundary conditions on f , depending on the particular problem
under consideration.

Using standard coordinates (x1, . . . ,xn) on Ω ⊂ Rn and (y1, . . . ,ym) on Rm we
can trivialize the bundle Jetk(Ω ,Rm) and so identify it with Ω ×V , where V =
Jetk0(R

n,Rm) is the vector space consisting of vector-valued Taylor polynomials
of order k. It has natural global coordinates denoted by ua

I , where a = 1, . . . ,m
and I = (i1, . . . , i`) ∈ {1, . . . ,n}` runs through all unordered multi-indices of length
` ≤ k. So multi-indices which differ only by a permutation are not distinguished.
The dimension of V is m

(n+k
k

)
. For any smooth map f : Ω → Rm and multi-index

I = (i1, . . . , i`) of length `≤ k we have

ua
I ( jk( f )) = ∂I f a = ∂i1 · · ·∂i` f a,

where ∂i = ∂xi and f a = ya ◦ f , a = 1, . . . ,m. So the k-th jet of f at some point x ∈Ω

is simply given x together with the partial derivatives up to order k of the components
f a of f at x.

Example 5.1. Consider the case n = 3, m = 1 and k = 2. With obvious notational
simplifications, the natural coordinates of V = Jet20(R

n,R) are

u,u1,u2,u3,u11,u12,u13,u22,u23,u33

and dimV = 10 =
(5

2

)
.
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In order to derive the equations of motions of a classical field theory it is useful to
introduce the total derivative Di = Dxi which is defined by

Di = ∂i +∑
I

ua
I,i

∂

∂ua
I
,

such that, by the chain rule,

∂i(L ( jk f )) = (∂iL )( jk f )+∑
I
(∂I,i f a)

∂L

∂ua
I
( jk f ) = (DiL )( jk f ).

For a multi-index I = (i1, . . . , i`) of length |I| := ` we define

DI = Di1 · · ·Di`

and
(−D)I = (−Di1) · · ·(−Di`) = (−1)`DI .

Theorem 5.2. Let L be a smooth function on Jetk(Ω ,Rm) and consider the
corresponding action functional (with respect to the canonical volume form). A
smooth map f : Ω → Rm is a critical point of the action under smooth variations
with compact support in Ω if and only if it has finite action and is a solution of the
following system of partial differential equations of order ≤ k:

αa := ∑
|I|≤k

(−D)I
∂L

∂ua
I
( jk f ) = 0, a = 1, . . . ,m. (5.2)

Definition 5.3. The equations (5.2) are called the Euler-Lagrange equations or
equations of motion of the classical field theory defined by the Lagrangian L . A
solution of the classical field theory is, by definition, a solution of its equations of
motion (irrespective of whether it has finite action or not).

In order to compare to the Euler-Lagrange equations in mechanics we observe
that

∑
|I|≤k

(−D)I
∂

∂ua
I
=

∂

∂ua + ∑
1≤|I|≤k

(−D)I
∂

∂ua
I
.

So for a first order Lagrangian we obtain

∂

∂ua −∑
i

Di
∂

∂ua
i
.

In the case n = 1 these are precisely the Euler-Lagrange equations of classical
mechanics if we denote ua = qa, ua

1 = q̂a, x1 = t, and D1 =
d
dt .

Proof. (of Theorem 5.2) A smooth map f with finite action is a critical point of the
action if and only if for all variations h with compact support we have
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d
dε

∣∣∣∣
ε=0

S[ f + εh] = 0.

We compute

d
dε

∣∣∣∣
ε=0

L ( jk( f + εh)) =
d

dε

∣∣∣∣
ε=0

L ( jk( f )+ ε jk(h)) = ∑
∂L

∂ua
I
( jk f )ua

I ( jk(h))

= ∑
∂L

∂ua
I
( jk f )∂Iha.

Applying the divergence theorem to ∂Ω if ∂Ω 6= /0, or to the boundary of an open
ball containing the support of h if Ω = Rn, we obtain

d
dε

∣∣∣∣
ε=0

S[ f + εh] = ∑

∫
Ω

∂L

∂ua
I
( jk f )∂Ihadvol = ∑

∫
Ω

(−∂ )I

(
∂L

∂ua
I
( jk f )

)
hadvol

= ∑

∫
Ω

(
(−D)I

∂L

∂ua
I

)
( jk f )hadvol = ∑

∫
Ω

αahadvol.

This vanishes for all h if and only if αa = 0 for all a = 1, . . . ,n. ut

The one-form α = ∑αadya along f is called the Euler-Lagrange one-form. It
generalizes the one-form which we encountered in Lagrangian mechanics. We will
also consider the Euler-Lagrange operators

Ea := ∑
|I|≤k

(−D)I
∂

∂ua
I
, a = 1, . . . ,n, (5.3)

which are differential operators acting on smooth functions on the manifold
Jetk(Ω ,Rm), such as L . The operator Ea is related to the function αa ∈ C∞(Ω)
by

Ea(L )( jk f ) = αa.

It is clear that the Lagrangian of a classical field theory determines the equations
of motion and, hence, the solutions of the theory. Adding a constant to the Lagrangian
does not change the equations of motion. More generally, we will show that adding a
total divergence does not alter the equations of motion.

Definition 5.4. A total divergence is a function f on Jetk(Ω ,Rm) of the form

f = DivP :=
n

∑
i=1

DiPi,

where P = (P1, . . . ,Pn) is a smooth vector-valued function on Jet`(Ω ,Rm) for some
`≥ k.

Proposition 5.5. Let L = DivP be a total divergence. Then the Euler-Lagrange
operators Ea vanish on L :

Ea(L ) = 0.
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Proof. Let f ,h : Ω → Rm be smooth maps and assume that h has compact support in
Ω . Let Ω ′ be a domain with smooth boundary, such that Ω ′ contains the support of
h and is relatively compact in Ω . Then, as in the proof of Theorem 5.2, we have that

∑

∫
Ω

Ea(L ( jk f ))hadvol = ∑

∫
Ω ′

Ea(L ( jk f ))hadvol

= ∑

∫
Ω ′

(
(−D)I

∂L

∂ua
I

)
( jk f )hadvol

= ∑

∫
Ω ′

∂L

∂ua
I
( jk f )∂Ihadvol

=
d

dε

∣∣∣∣
ε=0

∫
Ω ′

L ( jk( f + εh))dvol.

By the divergence theorem,∫
Ω ′

L ( jk( f + εh))dvol =
∫

Ω ′
DivP( j`( f + εh))dvol

=
∫

∂Ω ′
〈P( j` f ),ν〉dvol∂Ω ′ ,

where ν denotes the outer unit normal and dvol∂Ω ′ the induced volume form of
∂Ω ′ ⊂ Rn. Since the result does not depend on ε , we conclude that Ea(L ( jk f ))) = 0
for all smooth maps f : Ω → Rm. This proves that Ea(L ) = 0. ut

Theorem 5.6. Let L1,L2 ∈C∞(Jetk(Rn,Rm)) be two Lagrangians of order ≤ k
defined on Rn. Then L1 and L2 have the same Euler-Lagrange equations if and only
if L1−L2 is a total divergence.

Proof. By the previous proposition, we already know that L1 and L2 have the same
Euler-Lagrange equations if L1−L2 is a total divergence. Therefore it suffices to
show that a Lagrangian L ∈C∞(Jetk(Rn,Rm)) such that Ea(L ) = 0 for all a (that is
a Lagrangian with trivial equations of motion) is necessarily a total divergence. For
every f ∈C∞(Rn,Rm) we have

L ( jk f ) =
∫ 1

0

d
dε

L (ε jk f )dε−L (s0), (5.4)

where s0 stands for the zero section of the vector bundle Jetk(Rn,Rm)→ Rn, that is
the k-th order jet of the constant map Rn→ Rm, x 7→ 0. Clearly the function L (s0) ∈
C∞(Rn) does not depend on f and can be written in the form L (s0(x)) = ∂1F1(x)
for some function F1 ∈C∞(Rn). This shows that it is a total divergence ∑DiFi, since
we can simply put Fi = 0 for 2≤ i≤ n. It remains to show that the integral on the
right-hand side of (5.4) is also a total divergence. By the chain rule we have

d
dε

L (ε jk f ) = ∑∂I f a ∂L

∂ua
I
(ε jk f ).
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Performing partial integrations for each term `= |I| ≤ k brings this to the form

∑ f a(−D)I
∂L

∂ua
I
(ε jk f )+(DivPε)( j2k f ), (5.5)

where Pε = (P1
ε , . . . ,P

n
ε ) is a vector-valued function on Jet2k−1(Rn,Rm) depending

smoothly on all the variables, including the parameter ε . (Notice that DivPε is
thus a function on Jet2k(Rn,Rm) depending smoothly on all the variables, including
the parameter ε .) The first term in (5.5) vanishes by the assumption Ea(L ) =

∑(−D)I
∂L
∂ua

I
= 0. Thus,

∫ 1

0

d
dε

L (ε jk f )dε =

(
Div

∫ 1

0
Pε dε

)
( j2k f )

is a total divergence. ut

5.2 Automorphisms and conservation laws

We begin by observing that for every pair of smooth manifolds M, N the group
Diff(M)×Diff(N) acts naturally on C∞(M,N). In fact, given a group element g =
(ϕ,ψ) and a smooth map f : M→ N we have

g · f = ψ ◦ f ◦ϕ
−1.

This action induces an action on the jet bundle Jetk(M,N):

g · ( jk
x f ) := jk

ϕ(x)(g · f ), x ∈M.

Definition 5.7. Let M,N be smooth manifolds, dvol a volume form on M, n =
dimM and L ∈C∞(Jetk(M,N)) a Lagrangian. An element g= (ϕ,ψ)∈Diff+(M)×
Diff(N) is called an automorphism of the Lagrangian n-form L dvol if for all
f ∈C∞(M,N), x ∈M:

L (g · jk
x f )(ϕ∗dvol)x = L ( jk

x f )dvolx. (5.6)

Here Diff+(M) ⊂ Diff(M) denotes the subgroup of orientation preserving diffeo-
morphisms of M.

Pulling back the n-forms in equation (5.6) by ϕ−1 we obtain the equivalent
equation

L (g · jk
ϕ−1(x) f )dvolx = L ( jk

ϕ−1(x) f )((ϕ−1)∗dvol)x. (5.7)

Proposition 5.8. If g ∈ Diff+(M)×Diff(N) is an automorphism of L dvol, then

S[g · f ] =
∫

M
L ( jk(g · f ))dvol = S[ f ] =

∫
M

L ( jk f )dvol



5.2 Automorphisms and conservation laws 51

for all f ∈C∞(M,N).

Proof. This follows from[
(ϕ−1)∗

(
L ( jk f )dvol

)]
x
= L ( jk

ϕ−1(x) f )((ϕ−1)∗dvol)x
(5.6)
= L (g · jk

ϕ−1(x) f )dvolx

= L ( jk
x(g · f ))dvolx.

ut

The calculation in this proof shows that g = (ϕ,ψ) ∈ Diff+(M)×Diff(N) is an
automorphism of L dvol if and only if for all f ∈C∞(M,N):

(ϕ−1)∗
(
L ( jk f )dvol

)
= L ( jk(g · f ))dvol,

or, equivalently,
ϕ
∗
(
L ( jk(g · f ))dvol

)
= L ( jk f )dvol.

Definition 5.9. A conservation law for a Lagrangian L ∈ C∞(Jetk(Rn,Rm)) is
a total divergence DivP which vanishes on all solutions of the Euler-Lagrange
equations of L .

Theorem 5.10 (Noether). Consider a classical field theory defined by a Lagrangian
L ∈ C∞(Jetk(Rn,Rm)) and denote by dvol the standard volume form of Rn. With
every local one-parameter group of local automorphisms of L dvol one can associate
a conservation law of the form DivP = ∑QaEa(L ), where Qa = Y a−∑ua

i X i is
determined by the vector field ∑

n
i=1 X i ∂

∂xi +∑
m
a=1 Y a ∂

∂ya generating the local one-
parameter group.

For the proof of Noether’s theorem we will use a series of lemmas. Let X ,Y be
smooth vector fields on Rn and Rm, respectively. Then the flow of Z = X +Y on
Rn×Rm induces a flow on Jetk(Rn,Rm) and we denote the corresponding vector field
on Jetk(Rn,Rm) by pr(k)Z.

Definition 5.11. The vector field pr(k)Z is called the k-th prolongation of Z.

Lemma 5.12. Consider a Lagrangian L ∈ C∞(Jetk(Rn,Rm)) and the standard
volume form dvol on Rn. Let X ,Y be smooth vector fields on Rn and Rm, respectively.
Then Z = X +Y is an infinitesimal automorphism of L dvol if and only if

(pr(k)Z)(L )+L divX = 0. (5.8)

Proof. Recall that the divergence divX of a smooth vector field X on Rn is character-
ized by the equation

LX dvol = divXdvol,

where LX denotes the Lie derivative. The differential equation characterizing infin-
itesimal automorphisms is obtained by differentiating the equation (5.6) with respect
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to t after evaluation on a one-parameter group gt = (ϕt ,ψt) ∈ Diff+(Rn)×Diff(Rm).
The derivative of the left-hand side is

d
dt

∣∣∣∣
t=0

L (gt · jk
x f )(ϕ∗t dvol)x = (pr(k)Z)(L )| jkx f dvolx +L ( jk

x f )(divX)xdvolx,

whereas the right-hand side does not depend on t. ut

Lemma 5.13. Let X ,Y be smooth vector fields on Rn and Rm, respectively. Then
the k-th prolongation of Z = X +Y is given by

pr(k)Z = Z + ∑
1≤|J|≤k

∑
a

Y a
J

∂

∂ua
J
, (5.9)

where
Y a

J = DJQa +∑ua
J,iX

i, Qa = Y a−∑ua
i X i.

Proof. Since X and Y commute, the flow ϕZ
t of Z = X +Y decomposes as the

composition ϕZ
t = ϕX

t ◦ϕY
t of the flows of its summands. This implies that ϕ̃Z

t =
ϕ̃X

t ◦ ϕ̃Y
t , where ϕ̃X

t , ϕ̃Y
t , ϕ̃

Z
t denote the induced flows on Jetk(Rn,Rm). Differentiation

with respect to t yields that

pr(k)Z = pr(k)X +pr(k)Y.

Therefore, it suffices to check the formula (5.9) in the special cases X = 0 and Y = 0.
We first consider the case X = 0. Then Qa = Y a and Y a

J = DJY a. So, what we
have to show is

pr(k)Y = Y + ∑
1≤|J|≤k

∑
a

DJY a ∂

∂ua
J
. (5.10)

Let us denote by ψt the flow of Y on Rm and by gt = (Id,ψt) the corresponding local
one-parameter group of local diffeomorphisms of Rn×Rm. The induced action on
Jetk(Rn,Rm) is given by

gt · jk
x f = jk

x(ψt ◦ f ) =
(

x,ψt( f (x)),{∂J(ψ
a
t ◦ f )(x))}1≤|J|≤k, a=1,...,m

)
for all f ∈C∞(Rn,Rm) and x ∈ Rn, where ψa

t = ya ◦ψt . Differentiating this equation
with respect to t yields

pr(k)Y | jkx f =
(

0,Yf (x),{∂J(Y a ◦ f )(x)}1≤|J|≤k, a=1,...,m

)
=
(

0,Yf (x),{(DJY a)( jk
x f )}1≤|J|≤k, a=1,...,m

)
.

This is precisely the right-hand side of (5.10).
Next we assume Y = 0, in which case Qa = −∑ua

i X i. Firstly, we consider the
case k = 1 as a warm up. Now
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Y a
j = D jQa +∑ua

i, jX
i =−∑ua

i ∂ jX i.

So, what we have to show is

pr(1)X = X−∑ua
i ∂ jX i ∂

∂ua
j
. (5.11)

Let us denote by ϕt the flow of X and by gt = (ϕt , Id) the corresponding local
one-parameter group of local diffeomorphisms of Rn×Rm. It acts on Jet1(Rn,Rm) by

gt · jk
x f = jk

ϕt (x)( f ◦ϕ
−1
t ) = (ϕt(x), f (x),{∂ j( f a ◦ϕ

−1
t )|ϕt (x)} j,a).

Differentiation with respect to t yields

pr(1)X | jkx f =
d
dt

∣∣∣∣
t=0

gt · jk
x f =

(
Xx,0,

{
d
dt

∣∣∣∣
t=0

∂ j( f a ◦ϕ
−1
t )|ϕt (x)

})
.

We compute

d( f ◦ϕ
−1
t )|ϕt (x) = d f ◦d(ϕ−1

t )|ϕt (x) =
[
(ϕ−1

t )∗d f
]

ϕt (x)
.

In order to differentiate this with respect to t, we consider the time-dependent matrix-
valued function Ft(x) := F(t,x) := (ϕ−1

t )∗d f |x. So, what we have to differentiate is
F(t,ϕt(x)). Its total time-derivative is

d
dt

∣∣∣∣
t=0

F(t,ϕt(x)) =
∂F
∂ t

(0,x)+dF0Xx =−LX d f |x +(Hess f )(Xx, ·)

= −d(d f X)|x +(Hess f )(Xx, ·) =−d f ◦dX |x.

This shows that

d
dt

∣∣∣∣
t=0

(
∂ j( f a ◦ϕ

−1
t )|ϕt (x)

)
= −d f a ◦dX |x∂ j =−∑∂i f a

∂ jX i(x)

= −
(
∑ua

i ∂ jX i)( j1
x f ),

proving (5.11) in the case k = 1.
Let us finally consider the case of general k ≥ 1. We first claim that for every

multi-index of length ≤ k we have

(DJQa)( jk+1 f ) =−∂JX( f a). (5.12)

In fact,
Qa( jk f ) =−∑(ua

i X i)( jk f ) =−∑∂i f aX i =−X( f a)

implies (5.12). As a consequence,

Y a
J ( jk+1 f ) =

(
DJQa +∑ua

J,iX
i)( jk+1 f ) =−∂JX( f a)+∑(∂J,i f a)X i.
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So, what we have to show is

d
dt

∣∣∣∣
t=0

(
∂J( f a ◦ϕ

−1
t )|ϕt (x)

)
=−∂JX( f a)|x +∑(∂J,i f a)X i|x. (5.13)

To calculate the left-hand side we put Ft(x) := F(t,x) := ∂J( f a ◦ϕ
−1
t )x. Then we see

that

d
dt

∣∣∣∣
t=0

(
∂J( f a ◦ϕ

−1
t )|ϕt (x)

)
=

d
dt

∣∣∣∣
t=0

F(t,ϕt(x)) =
∂F
∂ t

(0,x)+dF0Xx

= −∂JX( f a)|x +d(∂J f a)X |x.

This coincides with the right-hand side of (5.13). ut

Now we can prove Noether’s theorem.

Proof. (of Theorem 5.10) We have to show that ∑QaEa(L ) is a total divergence.
By partial integration we have

∑QaEa(L ) = ∑Qa(−D)J
∂L

∂ua
J
= ∑(DJQa)

∂L

∂ua
J
+DivV

for some vector valued function V = (V 1, . . . ,V n) on Jet2k−1(Rn,Rm). It suffices to
show that ∑(DJQa) ∂L

∂ua
J

is a total divergence. Recall that we defined Y a
J = DJQa +

∑ua
J,iX

i for 1≤ |J| ≤ k. The formula holds also for |J|= 0:

Y a = Qa +∑ua
i X i.

Using this, Lemma 5.13, and Lemma 5.12 we have

∑(DJQa)
∂L

∂ua
J
= ∑(Y a

J −∑ua
J,iX

i)
∂L

∂ua
J
= (−X +pr(k)Z)L −∑ua

J,iX
i ∂L

∂ua
J

= −∑X iDiL +(pr(k)Z)L =−∑X iDiL −L divX

= −∑Di(L X i),

which is a total divergence. ut

In the proof of Theorem 5.10 we have shown that ∑QaEa(L ) is the total di-
vergence of the vector-valued function with components Pi = V i−L X i, where
X = ∑X i∂i is the projection of the infinitesimal automorphism Z onto the source
manifold Rn and V i is a function on Jet2k−1(Rn,Rm) obtained by partial integration.
This means that P = (P1, . . . ,Pn) can be explicitly computed by performing the
partial integrations. In the case k = 1 we obtain the following result.

Corollary 5.14. Let L ∈ C∞(Jet1(Rn,Rm)) be a first order Lagrangian. Then
Noether’s conservation law associated with an infinitesimal automorphism Z =
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X +Y as in Theorem 5.10 is the total divergence of the vector-valued function
P = (P1, . . . ,Pn) on Jet1(Rn,Rm) given by

Pi =−∑Qa ∂L

∂ua
i
−L X i, Qa = Y a−∑ua

jX
j.

Proof. It suffices to observe that V i :=−∑Qa ∂L
∂ua

i
satisfies

−∑QaDi
∂L

∂ua
i
= ∑(DiQa)

∂L

∂ua
i
+∑DiV i.

ut

As another corollary we obtain the generalization to time-dependent Lagrangian
mechanical systems on Rm of Noether’s theorem (Theorem 2.12), which concerned
time-independent mechanical systems.

Corollary 5.15. Let L = L (t,q1, . . . ,qm, q̂1, . . . , q̂m) be a time-dependent Lag-
rangian mechanical system on Rm. Then every infinitesimal automorphism Z = X +Y ,
X = X1∂t ∈ X(R), Y = ∑Y a∂qa ∈ X(Rm), of L dt gives rise to an integral of motion

f =−P1 = ∑Qa ∂L

∂ q̂a +L X1, Qa = Y a−∑ q̂aX1.

Example 5.16. Notice that in the case X = 0, an infinitesimal automorphism Y ∈
X(Rm) of L dt is the same as an infinitesimal automorphism of L and the integral
of motion takes the familiar form of Theorem 2.12:

f = ∑Y a ∂L

∂ q̂a = dLY ver.

The prolongation of a vector field Y ∈ X(Rm) given in (5.10) simplifies in the con-
sidered case k = 1 = n as

pr(1)Y = Y +∑DtY a ∂

∂ q̂a

and thus Y is an infinitesimal automorphism if and only if

Y (L )+∑DtY a ∂L

∂ q̂a = 0.

Evaluating this along the velocity vector field γ ′ of a smooth curve γ : I→ Rm, we
obtain

∑Y a(t)
∂L (γ ′(t))

∂qa +∑Ẏ a(t)
∂L (γ ′(t))

∂ q̂a = 0,

where Y a(t) := Y a(γ(t)). So Y is an infinitesimal automorphism if and only if the
latter equation holds for all γ .
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Next we state Noether’s theorem for time-dependent Lagrangian mechanical
systems in its general form replacing Rm by an arbitrary smooth manifold.

Theorem 5.17. Let L ∈C∞(R×T M) be a time-dependent Lagrangian mechanical
system on a smooth manifold M. Then every infinitesimal automorphism Z = X +Y ,
X = X1∂t ∈ X(R), Y ∈ X(M), of L dt gives rise to an integral of motion

f = Y ver(L )+(L −ξ (L ))X1, (5.14)

where ξ ∈ X(T M) denotes as usual the vertical vector field generated by scalar
multiplication (s,v) 7→ esv in the fibers of T M and Y ver denotes the vertical lift of Y .

Proof. Let (U,ϕ) be a local chart of M. According to Corollary 5.15, we have the
following integral of motion on TU :

f(U,ϕ) = ∑Qa ∂L

∂ q̂a +L X1, Qa = Y a−∑ q̂aX1,

where Y a, a = 1, . . . ,m, m = dimM, are the components of Y with respect to the
local chart (q1, . . . ,qm) = ϕ and (t,q1, . . . ,qm, q̂1, . . . , q̂m) are the corresponding
local coordinates of R×T M = Jet1(R,M), defined on R×TU = Jet1(R,U). Since
∑Y a ∂

∂ q̂a = Y ver|U and ∑ q̂a ∂

∂ q̂a = ξ |U , we see that f(U,ϕ) is the restriction of the
globally defined (and manifestly1 coordinate independent) function f . This shows
that f is an integral of motion. ut

Example 5.18. Consider the special case when Y = 0. The expression for the pro-
longation of X = X1∂t ∈ R on Jet1(R,M) in local coordinates (t,q, q̂) follows imme-
diately from (5.11):

pr(1)X = X−∑ q̂a
∂tX1 ∂

∂ q̂a . (5.15)

The vector field pr(1)X is in fact coordinate independent and obviously coincides
with X−∂tX1ξ . We conclude that X is an infinitesimal automorphism of L dt if and
only if

0 = X(L )−∂tX1
ξ (L )+L ∂tX1 = X(L )+(L −ξ (L ))∂tX1.

The right-hand side vanishes, in particular, if L is time-independent and X = ∂t .
The corresponding integral of motion (5.14) is precisely

L −ξ (L ) =−E,

the energy, up to the factor −1. So we see that the energy is the integral of motion
associated with the invariance of the Lagrangian under translations in time.

The notion of an infinitesimal automorphism of a Lagrangian n-form can be
generalized as follows.

1 Note that in the definition of f , we did not use any coordinates.
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Definition 5.19. Let X and Y be smooth vector fields on Rn and Rm, respectively,
L ∈C∞(Jetk(Rn,Rm)) a Lagrangian and dvol the standard volume form of Rn. We
say that Z = X +Y is an infinitesimal automorphism of L dvol up to a divergence if

(pr(k)Z)(L )+L divX

is a total divergence.

Noether’s theorem can be easily generalized as follows (see Appendix A, Exer-
cise 40).

Theorem 5.20 (Noether). Under the above assumptions, let Z = X +Y be an infin-
itesimal automorphism of L dvol up to a divergence. Then

∑QaEa(L ), defined by Qa = Y a−∑ua
i X i,

is a total divergence, where X i and Y a are the components of X ∈ X(Rn) and Y ∈
X(Rm).

5.3 Why are conservation laws called conservation laws?

Consider a classical field theory defined by a Lagrangian n-form L dvol, where
L ∈ C∞(Jetk(Rn,Rm)) and dvol is the standard volume form on Rn. We denote
the standard coordinates of Rn by (x0, . . .xn−1) and think of t = x0 as the time-
coordinate and of x = (x1, . . . ,xn−1) as the spatial position. Suppose that we are
given a conservation law DivP, P ∈C∞(Jet`(Rn,Rm),Rn), `≥ k. We denote by

J(t,x) := P( j`x f ),

the evaluation of P on a solution f ∈C∞(Rn,Rm).

Definition 5.21. The vector-valued function

J = (J0,J) : Rn→ Rn = R×Rn−1

is called the current, the function J0 is called the charge density, J is called the flux
density and the spatial integral

Q(t) :=
∫

Rn−1
J0(t,x)dx1∧·· ·∧dxn−1 (5.16)

is called the charge.
If P is associated with an infinitesimal automorphism Z of L dvol, as described

in Theorem 5.10 (or, more generally, in Theorem 5.20), then J is called the Noether
current and Q is called the Noether charge associated with −Z.

The sign is included here such that the notation of Theorem 5.10 is consistent
with the usual conventions for the Noether charge in the physics literature. With this
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notation, the Noether current of an infinitesimal automorphism Z = X +Y of a first
order Lagrangian L dvol on Rn is given by

Ji = ∑
a

(
Y a ◦ f −∑

j
∂ j f aX j

)
∂L

∂ua
i
( j1 f )+L ( j1 f )X i, (5.17)

see Corollary 5.14. Note that in the case n = 1, the current reduces to the charge
density, J = J0 = Q, and as we already observed, the equation DivP = 0 reduces to
the statement that P is an integral of motion, that is to Q′(t) = 0 (for all solutions f ).
This is generalized in the next theorem.

Theorem 5.22. Suppose that the current falls off sufficiently fast at infinity, in the
sense that for every bounded interval I there exists a Lebesgue integrable function
F : Rn−1→ [0,∞] such that

|J0(t,x)| ≤ F(x),∣∣∣∣∂J0

∂ t
(t,x)

∣∣∣∣ ≤ F(x),

for all (t,x) ∈ I×Rn−1 and

lim
r→∞

∫
∂Br(0)

〈J,ν〉dvol∂Br(0) = 0,

where ν denotes the outer unit normal of the sphere ∂Br(0)⊂ Rn−1. Then the charge
is conserved, that is t 7→ Q(t) is constant.

Proof. In virtue of the first inequality, we see that the total charge (5.16) is finite by
Lebesgue’s theorem. The second inequality then shows that Q is differentiable and

Q′(t) =
∫

Rn−1

∂J0

∂ t
(t,x)dn−1x,

where we have abbreviated dn−1x = dx1∧·· ·∧dxn−1. Since

divJ = ∂tJ0 +divRn−1J = 0,

we can rewrite this as

Q′(t) = −
∫

Rn−1
divRn−1 J(t,x)dn−1x =− lim

r→∞

∫
Br(0)

divRn−1 J(t,x)dn−1x

= − lim
r→∞

∫
∂Br(0)

〈J,ν〉dvol∂Br(0),

and the resulting limit is zero by the last assumption of the theorem. ut
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5.4 Examples of field theories

Here we discuss some examples of classical field theories. The examples play import-
ant roles in active research on contemporary theories of high-energy particle physics,
such as the standard model of particle physics and string theory.

5.4.1 Sigma models

Let (M,g) and (N,h) be pseudo-Riemannian manifolds of dimension m and n,
respectively. We assume that (N,h) is oriented and denote its volume form by dvolh.
The most natural2 first order Lagrangian n-form L dvolh for maps f ∈C∞(N,M) is
given by

L ( j1 f ) =
1
2
〈d f ,d f 〉, (5.18)

where 〈·, ·〉= 〈·, ·〉h,g is the (possibly indefinite) fiber-wise scalar product on T ∗N⊗
f ∗T M induced by h and g. In local coordinates (xi) in a neighborhood of x ∈ N and
(ya) in a neighborhood of f (x) ∈M we have

d fx = ∑
∂ f a(x)

∂xi dxi|x⊗
∂

∂ya

∣∣∣∣
f (x)

and

〈d fx,d fx〉= ∑gab( f (x))hi j(x)
∂ f a(x)

∂xi
∂ f b(x)

∂x j ,

where (hi j) denotes the inverse matrix of (hi j).

Theorem 5.23. The Euler-Lagrange equations for the Lagrangian n-form L dvolh
given by (5.18) are equivalent to

τ( f ) := trh∇d f = 0, (5.19)

where ∇ is the connection in the vector bundle T ∗N⊗ f ∗T M induced by the Levi-
Civita connections in T N and T M.

Proof. See Appendix A, Exercise 39. ut

Definition 5.24. A smooth map f : N→M which is a solution of eq. (5.19) is called
a harmonic map. The vector field τ( f ) along f is called the tension of f .

Example 5.25. (Harmonic functions) Consider the case when the target manifold
(M,g) is simply the Euclidean line R. Then f ∗T M can be identified with the trivial
line bundle over N and

2 This is to be understood in the sense that it generalizes the kinetic term in the standard Lag-
rangian (2.4) of classical mechanics.
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τ( f ) = ∆ f := divgrad f

is given by the Laplace operator ∆ associated with the pseudo-Riemannian metric h
on the source manifold N. The solutions of the equation ∆ f = 0 are called harmonic
functions. Recall that

grad f = h−1d f

and
divX = tr∇X

for every vector field X on (N,h). So indeed

divgrad f = tr∇(h−1d f ) = trh∇d f = τ( f ).

Here we have used that ∇v(h−1d f ) = h−1∇vd f for every v ∈ T N. Note that the
pseudo-Riemannian Laplace equation ∆ f = 0 is linear, whereas the harmonic map
equation (5.19) is in general non-linear, since the connection ∇ depends on f .
Observe that in the special case when (N,h) is a pseudo-Euclidean vector space we
can write the metric as h = ∑εi(dxi)2, where εi ∈ {±1}, and ∆ f = ∑εi∂

2
i .

Example 5.26. Generalizing the previous example, we consider the case when the
target manifold (M,g) is a pseudo-Euclidean vector space. Then the components
τa( f ) of the tension τ( f ) with respect to an affine coordinate system on the target
manifold M are given by

τ
a( f ) = ∆ f a.

So a smooth map f from a pseudo-Riemannian manifold to a pseudo-Euclidean
vector space is harmonic if and only if its components f a are harmonic functions.

In the physics literature the Lagrangian (5.18) is called a sigma-model and in the
case of Example 5.26 it is called a linear sigma model, since the equations of motion
are linear. The components of the map f : N→M are considered as scalar fields. We
can enlarge the class of sigma-model Lagrangians by including a potential:

L ( j1 f ) =
1
2
〈d f ,d f 〉−V ( f ),

where V ∈C∞(M).

Example 5.27. (Geodesics as harmonic maps) Consider the case when the source
manifold (N,h) is the Euclidean line R. Then a harmonic map f : R→ (M,g) is the
same as a geodesic.

Proposition 5.28. The Lie group Isom+(N,h)× Isom(M,g) consists of automorph-
isms of the sigma-model Lagrangian n-form L dvolh defined by (5.18).

Proof. This follows from the fact that the group Isom+(N,h) of orientation pre-
serving isometries of (N,h) preserves the metric volume form dvolh and that
Isom(N,h)× Isom(M,g) preserves the Lagrangian L . ut
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5.4.2 Pure Yang-Mills theory

Let E be a real or complex vector bundle of rank k over an oriented pseudo-
Riemannian manifold (M,g) with a reduction of the structure group of E to some
compact3 subgroup G ⊂ GL(k,K), where K = R or C. Such a G-reduction in the
vector bundle E is defined as a principal G-subbundle FG(E)⊂F (E) of the bundle
of frames of E. The elements of FG(E) are called G-frames.

Example 5.29. An O(k)-reduction in a real vector bundle E is equivalent to a
(positive definite fiber) metric h in E. The corresponding principal O(k)-subbundle
of the frame bundle F (E) is the bundle of orthonormal frames in the metric vector
bundle (E,h). A U(k)-reduction in a complex vector bundle E is equivalent to a
Hermitian metric h in E. The corresponding principal U(k)-subbundle of the frame
bundle F (E) is the bundle of unitary frames in the Hermitian vector bundle (E,h).

Note that since G is compact every G-reduction induces a metric h in E if K = R
and a Hermitian metric in E if K = C. A connection ∇ in a vector bundle E endowed
with a G-reduction FG(E) is called a G-connection if the parallel transport with
respect to ∇ maps G-frames to G-frames. We denote the curvature of ∇ by

F = F∇ ∈ Γ (Λ 2T ∗M⊗g(E)),

where g(Ex) denotes the Lie algebra of the subgroup G(Ex)⊂ GL(Ex) of elements
preserving the set of G-frames in Ex, x ∈M. For convenience, we will write so(E),
su(E), gl(E) etc. rather than so(k,R)(E), su(k)(E), gl(k,K)(E) etc.

Example 5.30. An O(k)-connection in a metric vector bundle (E,h) of rank k is the
same as a metric connection. A U(k)-connection in a Hermitian vector bundle (E,h)
of rank k is the same as a Hermitian connection.

Given a vector bundle E with structure group G over a pseudo-Riemannian
manifold (M,g), the space of fields of pure Yang-Mills theory is the affine space
AG(E) of G-connections in E. By choosing a reference connection ∇0 we can write
∇ = ∇0 +Φ , where Φ : M→ T ∗M⊗g(E) is a smooth section. In this way we can
identify the affine space AG(E) with the vector space Γ (T ∗M⊗g(E)). Using this
identification, one can define jets of ∇ by considering jets of the map Φ = ∇−∇0.
The Yang-Mills Lagrangian is

L ( j1(∇)) =−1
2
〈F,F〉, (5.20)

where 〈·, ·〉 is the (fiber-wise) scalar product on Λ 2T ∗M⊗g(E) obtained as the tensor
product of the scalar product 〈·, ·〉

Λ
on Λ 2T ∗M induced by g and the scalar product

〈A,B〉g = −tr(AB) on g(E). Notice that 〈A,A〉g = −trA2 = trAA† ≥ 0, where A†

denotes the adjoint of A with respect to the G-invariant metric h. In particular, 〈·, ·〉g
is real valued, irrespective of whether E is a real or a complex vector bundle. The

3 Recall that a compact subgroup of a Lie group is automatically a Lie subgroup.
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scalar product 〈·, ·〉
Λ

is normalized such that α ∧ β is of unit length if α , β are
orthonormal.

Recall that every connection satisfies the Bianchi identity

d∇F = 0, (5.21)

where d∇ is the covariant exterior derivative acting on differential forms with values
in End(E)⊃ g(E).

Theorem 5.31. The Euler-Lagrange equations for the Yang-Mills Lagrangian
(5.20) are equivalent to

d∇ ∗F = 0. (5.22)

Before we begin the proof of this proposition let us first discuss an example.

Example 5.32. (Maxwell theory) Let us consider the special case when (M,g) =
(R4,dt2−∑

3
α=1(dxα)2) is the four-dimensional Minkowski space and E is a Her-

mitian line bundle. So the structure group is the Abelian group G = U(1). Identifying
the Lie algebra u(1) =

√
−1R∼=R with R, we can consider F as a real-valued 2-form.

The Bianchi and Yang-Mills equations reduce to dF = d ∗F = 0. So the differential
form F is closed and co-closed, which implies the second order equations ∗d∗dF = 0
and d ∗d ∗F = 0. The spatial components Fαβ = F(∂α ,∂β ), α,β ∈ {1,2,3}, define
a real-valued time-dependent 2-form in R3. Identifying R3 ∼= Λ 2(R3)∗ by means of
contraction of a vector with the Euclidean volume form, this 2-form defines a time-
dependent vector field B in R3. The remaining components Eα := F0α = F(∂t ,∂α),
α = 1,2,3, define a time-dependent vector field E = ∑α Eα ∂α in R3. The vector
fields E and B can be interpreted as the electric and the magnetic field in Maxwell’s
theory of electromagnetism and the Yang-Mills equation reduces to half of Maxwell’s
equations in the vacuum, that is

divE = 0, rotB =
∂

∂ t
E,

whereas the Bianchi identity reduces to the other half of Maxwell’s vacuum equations,
that is

divB = 0, rotE =− ∂

∂ t
B,

see Appendix A, Exercise 43.

In order to derive the Yang-Mills equation (5.22) it is helpful to first rewrite the
Yang-Mills Lagrangian as:

− 1
2
〈F,F〉dvolg =−

1
2
〈F ∧∗F〉g, (5.23)

where 〈·∧·〉g denotes the Λ nT ∗M-valued pairing of Λ `T ∗M⊗g(E) with Λ n−`T ∗M⊗
g(E) obtained by combining the wedge product and the scalar product on g(E). Here
n = dimM and `= 2, but in later calculations we will also need the case `= 1. This
is a consequence of the following lemma.
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Lemma 5.33. For every section α of Λ 2T ∗M⊗g(E) we have

〈α,α〉dvolg = 〈α ∧∗α〉g. (5.24)

Proof. Let (ei)i=1,...,n be a local frame of T M and put αi j := α(ei,e j). Then we can
write

α =
1
2 ∑αi jei j,

where (ei) is the dual local frame of T ∗M and we have abbreviated ei ∧ e j =: ei j.
Now we can compute

〈α ∧∗α〉g =
1
4 ∑〈αi j,αk`〉gei j ∧∗ek`

=
1
4 ∑〈αi j,αk`〉g〈ei j,ek`〉Λ dvolg

= 〈α,α〉dvolg.

ut

Proposition 5.34. Let (ei) be any local frame in T M and (ei) the dual frame in
T ∗M. Then the Yang-Mills Lagrangian is locally given by

−1
2
〈F,F〉= 1

4 ∑ tr(Fi jF i j),

where Fi j = F(ei,e j), F i j = ∑gii′g j j′Fi′ j′ , gi j = g−1(ei,e j).

Proof. Choosing an orthonormal frame (ei), the calculation in the proof of the
previous lemma shows that

−1
2
〈F,F〉 = −1

8 ∑〈Fi j,Fk`〉g〈ei j,ek`〉Λ

= −1
4 ∑〈Fi j,Fi j〉g〈ei j,ei j〉Λ =−1

4 ∑〈Fi j,F i j〉g =
1
4 ∑ tr(Fi jF i j).

It is easy to check that the expression ∑Fi jF i j is independent of the choice of
frame. This proves that the formula − 1

2 〈F,F〉=
1
4 ∑ tr(Fi jF i j) holds in every local

frame. ut

As a corollary we obtain the usual expression for the Yang-Mills Lagrangian in
the physics literature.

Corollary 5.35. In local coordinates (xµ), µ = 1, . . . ,n, the Yang-Mills Lagrangian
on (M,g) is given by

−1
2
〈F,F〉= 1

4 ∑ tr(Fµν Fµν),

where Fµν = F(∂µ ,∂ν), Fµν = ∑gµµ ′gνν ′Fµ ′ν ′ , gµν = g−1(dxµ ,dxν).
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Lemma 5.36. Let ∇ be a G-connection in E and

α ∈Ω
1(g(E)) = Γ (T ∗M⊗g(E))

a one-form with values in g(E). Then

F∇+α = F∇ +d∇
α +α ∧α,

where (α ∧ α)(X ,Y ) := α(X)α(Y )− α(Y )α(X) = [α(X),α(Y )] for all X ,Y ∈
X(M).

Proof. See Appendix A, Exercise 44. ut

Corollary 5.37. Let ∇ be a G-connection in E, α ∈Ω 1(g(E)), and consider the
curvature Fε of the one-parameter family of G-connections ∇ε = ∇+ εα . Then

d
dε

∣∣∣∣
ε=0
〈Fε ∧∗Fε〉g = 2〈d∇

α ∧∗F〉g,

where F = F0.

Proof. Since Fε = F + εd∇α + ε2α ∧α , we have

1
2

d
dε

∣∣∣∣
ε=0
〈Fε ∧∗Fε〉g =

1
2

d
dε

∣∣∣∣
ε=0
〈Fε ,Fε〉dvolg = 〈d∇

α,F〉dvolg.

ut

Proof. (of Theorem 5.31) Using the preceding notation we compute

− d
dε

∣∣∣∣
ε=0

L ( j1(∇ε))dvolg = 〈d∇
α ∧∗F〉g =− tr(d∇

α ∧∗F)

= − tr
(

d∇(α ∧∗F)+α ∧d∇ ∗F
)

= − trd∇(α ∧∗F)+ 〈α ∧d∇ ∗F〉g.

Since
trd∇(α ∧∗F) = d tr(α ∧∗F),

we conclude that for variations α with compact support we have

−
∫

M

d
dε

∣∣∣∣
ε=0

L ( j1(∇ε))dvolg =
∫

M
〈α ∧d∇ ∗F〉gdvolg.

This proves that the equations of motion of pure Yang-Mills theory are indeed
d∇ ∗F = 0. ut
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Gauge transformations

Given a vector bundle E→M, we denote by Aut(E) its group of automorphisms. If
the vector bundle is equipped with a G-reduction FG(E)⊂F (E), then the subgroup
of Aut(E) consisting of those automorphisms which preserve the reduction will be
denoted by AutG(E). It coincides with the group of sections of the group bundle
G(E)⊂ GL(E).

Definition 5.38. AutG(E) is called the gauge group of the vector bundle E with
G-reduction FG(E). The elements of AutG(E) are called gauge transformations.

Gauge transformations play a similar role in the study of vector bundles to diffeo-
morphisms in the study of manifolds. The group Aut(E) acts C∞(M)-linearly on the
space of smooth sections Γ (E) by

Aut(E)×Γ (E)→ Γ (E), (ϕ,s)→ ϕs.

Proposition 5.39. The action of AutG(E) on Γ (E) induces an affine action on the
space AG(E) of G-connections.

Proof. The transformation of AG(E) induced by ϕ ∈ AutG(E) is

∇ 7→ ∇
′ = ∇

ϕ := ϕ ◦∇◦ϕ
−1. (5.25)

To see that it is affine, we apply ∇′ to a section s ∈ Γ (E):

∇
′s = ϕ(∇ϕ

−1s) = ϕ∇(ϕ−1)s+∇s.

So
∇
′ = ∇+ϕ∇(ϕ−1) (5.26)

is related to ∇ by a translation. ut

Proposition 5.40. Let ∇ be a connection in a vector bundle E→M and ϕ ∈Aut(E)
an automorphism. Then the curvature F ′ of the gauge transformed connection
∇′ = ∇ϕ is related to the curvature F of ∇ by the natural C∞(M)-linear action of
Aut(E) on Ω 2(End(E)):

F ′ = ϕ ◦F ◦ϕ
−1.

Proof. This is a straightforward consequence of (5.25) and the definition of the
curvature. ut

Corollary 5.41. The Yang-Mills Lagrangian (5.20) is invariant under Aut(E).

Proof. This follows from the fact that the trace form (A,B) 7→ tr(AB) on gl(E),
which was used in the definition of 〈F,F〉, is invariant under conjugation. ut
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This clarifies the role of gauge transformations in Yang-Mills theory. For that
reason, Yang-Mills theory is also known as gauge theory. In particular in the physics
literature, often a further distinction is made between Abelian and non-Abelian gauge
theories depending on the property of the respective gauge group. In this context, only
the latter is customarily referred to as Yang-Mills theory. This additional distinction
is used not only for historical reasons but also because the corresponding physical
theories differ significantly in both cases [9, 12, 15].
Remark. Let us denote by A Y M

G (E)⊂AG(E) the subset consisting of Yang-Mills
connections, that is solutions to the Yang-Mills equations. It follows from Corollary
5.41 that the gauge group AutG(E) acts on A Y M

G (E). The quotient

A Y M
G (E)/AutG(E) (5.27)

is the set of equivalence classes of Yang-Mills connections. Notice that the space of
connections as well as the group of gauge transformations are of infinite dimension.
Nevertheless it is possible to prove that under suitable extra assumptions (on the sig-
nature of the metric g, the connections, and gauge transformations), quotients similar
to (5.27) are sometimes finite-dimensional smooth manifolds encoding differential
topological information about the smooth manifold M. These problems are studied in
mathematical work on gauge theory. A particularly successful instance is Donaldson
theory (see, for example, ref. [4]), which is concerned with four-dimensional smooth
manifolds M, and restricts attention to the class of self-dual or anti-self-dual con-
nections (with respect to a Riemannian metric g), that is connections satisfying the
self-duality equation

∗F = F

or the anti-self-duality equation

∗F =−F.

In virtue of the Bianchi identity, each of these equations implies the Yang-Mills
equation:

d∇ ∗F =±d∇F = 0.

The connection one-form

Let ∇ be a connection in a vector bundle E → M of rank k. Given a local frame
f = ( f1, . . . , fk) of E, defined on some open subset U ⊂M, there exists a system of
one-forms Ai

j, i, j ∈ {1, . . . ,k}, such that

∇X fi = ∑A j
i (X) f j (5.28)

for all vector fields X on U ⊂M. The matrix-valued one-form



5.4 Examples of field theories 67

A = A∇, f = (Ai
j)i, j∈{1,...,k}

is called the connection one-form of ∇ with respect to the local frame f . The equation
(5.28) can be written in matrix-notation as

∇ f = f A.

Solving it with respect to A we obtain

A = f−1
∇ f ,

where f−1 = ( f ∗1 , . . . , f ∗k )
ᵀ is the column vector which is the transposed of the dual

frame f ∗ = ( f ∗1 , . . . , f ∗n ). The notation is consistent with the interpretation of a frame
b = (b1, . . . ,bk) of E at x ∈M (such as b = fx) as an isomorphism

b : Kk→ Ex, v→ bv = ∑vibi,

where bv is the product of the Ex-valued row vector b = (b1, . . . ,bk) with the column
vector v = (v1, . . . ,vk)ᵀ. The inverse of this map is given by

Ex→ Kk, w 7→ (b∗1(w), . . . ,b
∗
k(w))

ᵀ.

Proposition 5.42. Let ∇ be a connection and f a local frame in a vector bundle E
over K∈ {R,C}. The connection form A′ := A∇′, f of a gauge transformed connection
∇′ = ∇ϕ , ϕ ∈ Aut(E), is related to the connection form A = A∇, f of ∇ by

A′ = ψAψ
−1 +ψd(ψ−1), (5.29)

where ψ = f−1 ◦ϕ ◦ f : U → GL(k,K) is the matrix-valued function representing
the automorphism ϕ in the frame f .

Proof. Using that ϕ = f ◦ψ ◦ f−1 we compute

α := ∇
′−∇

(5.26)
= ϕ∇(ϕ−1) = f ψ f−1 [(∇ f )ψ−1 f−1 + f ∇(ψ−1 f−1)

]
= f ψAψ

−1 f−1 + f ψ∇(ψ−1 f−1) = f ψAψ
−1 f−1 + f ψd(ψ−1) f−1 + f ∇( f−1)

and, hence,

A′−A = f−1
α( f ) = ψAψ

−1 +ψd(ψ−1)+ ∇( f−1) f︸ ︷︷ ︸
=− f−1∇ f=−A

.

ut

Proposition 5.43. With the notation of the previous proposition we have

A∇′, f = A∇, f ′ ,

where f ′ = ϕ−1 ◦ f = f ◦ψ−1.
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Proof. From the formula A∇, f = f−1∇ f we can immediately deduce the general
transformation rule

Aϕ◦∇◦ϕ−1,ϕ◦ f = A∇, f . (5.30)

Substituting f ′ for f in this formula, we obtain the claim. ut

The last proposition shows that a gauge transformation ∇ 7→ ∇′ = ∇ϕ = ϕ ◦
∇ ◦ϕ−1 by ϕ has the same effect on the connection form as a change of frame
f 7→ f ′ = ϕ−1 ◦ f = f ◦ψ−1 by the inverse transformation ϕ−1, or equivalently, by
the corresponding change of basis ψ−1 in Kk.

Substituting a one-parameter group ψs : U → GL(k,K) into (5.29) and differenti-
ating with respect to s, we obtain the local expression for the action on a connection
∇ of an infinitesimal gauge transformation represented by τ : U → gl(k,K):

A 7→ [τ,A]−dτ.

To apply Noether’s theorem (Theorem 5.10) and to compute the Noether current
(5.17) corresponding to an infinitesimal gauge transformation, one can use the local
trivialization f of the bundle E and a system of coordinates (xµ), µ = 1, . . . ,n,
on U ⊂ M to describe a connection ∇ by its connection form A = ∑Aµ dxµ =

∑Ai
jµ dxµ ⊗ e∗j ⊗ ei, which we consider as a map

U →U× ((Rn)∗⊗gl(k,K)), x 7→ (x,(Ai
jµ(x))).

Here (e1, . . . ,ek) denotes the standard basis of Kk. Now one can compute the corres-
ponding Noether current by the formula

Jν = ∑
a

Y a(A)
∂L

∂ua
ν

( j1A),

where a is an index numerating the elements of the basis (dxµ ⊗ e∗j ⊗ ei) of V :=
(Rn)∗⊗gl(k,K) such that

(ua( j1A)) = (ui
jµ( j1A)) = (Ai

jµ) and (ua
ν( j1A)) = (ui

jµ,ν( j1A)) = (∂ν Ai
jµ).

The components (Y a) = (Y i
jµ) of the infinitesimal automorphism

X(U×V ) 3 Y = ∑Y a ∂

∂ua : U×V →V,

(x,A) 7→ Y (x,A) = [τ(x),A]−dτ(x)

are given by

Y i
jµ(x,A) = ∑τ

i
j′(x)A

j′
jµ −Ai

j′µ τ
j′
j (x)−∂µ τ

i
j(x), A = (Ai

jµ).

In order to obtain an explicit expression for Jν it suffices to calculate the partial
derivatives
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∂L

∂ua
ν

( j1A) =
∂L

∂ui
jµ,ν

( j1A) = (Fµν) j
i ,

where ((Fµν)i
j)i, j∈{1,...,k} is the matrix representing the endomorphism Fµν with

respect to the local frame f . So we obtain:

Proposition 5.44. The Noether current associated with an infinitesimal gauge
transformation represented by τ : U → gl(k,K) is given by

Jµ = tr ∑Fµν([τ,Aν ]−∂ν τ).

5.4.3 The Einstein-Hilbert Lagrangian

In theories of gravity the space-time metric is no longer fixed but is a dynamical field
of the theory, that is subject to equations of motion. The most important Lagrangian
for a pseudo-Riemannian metric g on a smooth manifold M is the Einstein-Hilbert
Lagrangian n-form

L ( j2g) =
1

16πκ
scal dvolg , (5.31)

where scal is the scalar curvature of (M,g) and κ is the gravitational coupling
constant. It describes pure gravity, that is, gravity in the absence of matter fields. More
complicated theories of gravity can be obtained by including matter fields described,
for instance, by adding to the Einstein-Hilbert term a sigma-model Lagrangian (for a
map from M to some target manifold) or a Yang-Mills Lagrangian (for a connection
in some vector bundle E → M). Notice that the fields of the resulting theory are
coupled through the common dependence on the space-time metric, in the sense
that the resulting equations of motion generally form a coupled system of partial
differential equations.

Theorem 5.45. The Euler-Lagrange equations for the Einstein-Hilbert Lagrangian
are equivalent to the Einstein vacuum equation:

Ric− 1
2

scal ·g = 0, (5.32)

which is equivalent to Ric = 0 if n = dimM ≥ 3 and is satisfied for every pseudo-
Riemannian metric g if n≤ 2.

Proof. Let gε be a smooth family of pseudo-Riemannian metrics on M such that the
symmetric tensor field

h :=
∂

∂ε

∣∣∣∣
ε=0

gε (5.33)

has compact support. In order to compute the derivative of L ( j2gε) with respect to
ε , we first observe that
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∂

∂ε

∣∣∣∣
ε=0

dvolgε
=

1
2

tr(g−1h)dvolg, (5.34)

where g = g0. The derivative of the curvature tensor Rε of the Levi-Civita connection
∇ε of the metric gε is expressed in terms of the tensor field

α :=
∂

∂ε

∣∣∣∣
ε=0

∇
ε =

∂

∂ε

∣∣∣∣
ε=0

(∇ε −∇) ∈Ω
1(EndT M)

by
∂

∂ε

∣∣∣∣
ε=0

Rε = d∇
α, ∇ = ∇

0,

as follows easily from Lemma 5.36. As a consequence, the Ricci curvature Ricε of
gε can be computed as follows:

∂

∂ε

∣∣∣∣
ε=0

Ricε(X ,Y ) =
∂

∂ε

∣∣∣∣
ε=0

tr(Z 7→ Rε(Z,X)Y ) = tr(Z 7→ d∇
α(Z,X)Y ),

where X ,Y,Z ∈ X(M). Omitting Z we can write this in terms of a local frame (ei) of
T M as

∂

∂ε

∣∣∣∣
ε=0

Ricε(X ,Y ) = ∑ei [(∇eiα)XY − (∇X α)eiY )] , (5.35)

where αX = α(X) denotes the endomorphism field obtained by evaluating the one-
form α on the vector field X . We have used that d∇α(X ,Y )Z =(∇X α)Y Z−(∇Y α)X Z
for all X ,Y,Z ∈ X(M). For the scalar curvature scalε of gε we obtain

∂

∂ε

∣∣∣∣
ε=0

scalε =
∂

∂ε

∣∣∣∣
ε=0

(tr g−1
ε Ricε) =− tr(g−1hg−1Ric)

+ tr
(

g−1 ∂

∂ε

∣∣∣∣
ε=0

Ricε

)
︸ ︷︷ ︸

=: f

, (5.36)

where Ric denotes the Ricci curvature of g. If we can show that f is a total divergence,
then (5.34) and (5.36) imply that∫

M

∂

∂ε

∣∣∣∣
ε=0

scalε dvolgε
=−

∫
M

tr
(

g−1h
(

g−1Ric− scal
2

Id
))

dvolg.

From this formula we see that the equations of motion are equivalent to (5.32). Taking
the trace of g−1Ric− scal

2 Id, we see that every solution has scal = 0 if n 6= 2, which
implies Ric = 0 by (5.32). To compute f at some point p ∈M we can assume that
∇eie j = 0 at p. Then from (5.35) we compute at p:

f = ∑g jkei [(∇eiα)e j ek− (∇e j α)eiek)
]

= ∑ei
∇ei(g

jk
αe j ek)−∑g jkek∇e j(e

i ◦αei),
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where g jk = g−1(e j,ek). The first sum is the divergence of the vector field trg α

obtained by contraction of the first two factors of T ∗M⊗T ∗M⊗T M with the help
of the metric. The other sum is the divergence of the vector field v = g−1

∑ei ◦αei

obtained by contraction of the first and last factors by duality and identification of
the remaining factor T ∗M with T M using the metric:

∑g jkek∇e j(e
i ◦αei) = ∑g jkek∇e j gv = ∑g jkg(∇e j v,ek) = ∑e j

∇e j v = divv.

So we have proven that f is the divergence of the vector field trg α− v, which does
not depend on the particular frame. ut

Let (M,g,or) be an oriented pseudo-Riemannian manifold and denote by dvolg,or
its metric volume form with respect to the orientation or. In local coordinates
(x1, . . . ,xn) on some open set U ⊂M, we have

dvolg,or|U = ε

√
|det(gi j)|dx1∧·· ·∧dxn, ε ∈ {1,−1} , (5.37)

if dx1∧·· ·∧dxn ∈ ε ·or, where gi j = g(∂i,∂ j).

Proposition 5.46. For all ϕ ∈ Diff(M), we have

scalϕ∗gdvolϕ∗g,ϕ∗or = ϕ
∗(scalgdvolg,or).

In particular, the Einstein-Hilbert Lagrangian n-form scalgdvolg, where dvolg =
dvolg,or, is invariant under all orientation preserving diffeomorphisms of M:

scalϕ∗gdvolϕ∗g = ϕ
∗(scalgdvolg).

Proof. For all diffeomorphisms ϕ of M we have

dvolϕ∗g,ϕ∗or = ϕ
∗dvolg,or and scalϕ∗g = ϕ

∗scalg.

ut

The Einstein-Hilbert Lagrangian can be generalized by considering instead

L ( j2g) =
1

16πκ
(scal +2Λ)dvolg, (5.38)

where Λ is a constant known as the cosmological constant. The proof of The-
orem 5.45 does also show the following.

Theorem 5.47. The equations of motion of the Einstein-Hilbert Lagrangian with
cosmological constant (5.38) are equivalent to

Ric− 1
2

scal ·g = Λg. (5.39)

This equation is equivalent to the system
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Λ =
2−n

2n
scal and Ric =

scal
n

g.

Notice that if n≤ 2, then necessarily Λ = 0 and every metric is again a solution.
If n≥ 3, then one can show (exercise) that if g is an Einstein metric, that is

Ric = f g

for some function f , then f = scal
n = const. Thus g solves (5.39) for Λ = 2−n

2n scal. In
other words, the solutions of (5.39) for n≥ 3 are precisely the Einstein metrics such
that scal = 2n

2−nΛ . Observe that given an Einstein metric, the equation scal = 2n
2−nΛ

can be always solved by rescaling the Einstein metric by a positive constant provided
that scal has the same sign as Λ . So it is sufficient to distinguish only 3 cases: Λ = 0,
Λ > 0 and Λ < 0.

To end this section we explain now how to obtain the Einstein metrics as solutions
of a variational problem without introducing a cosmological constant. For that we
consider the Einstein-Hilbert Lagrangian but restrict to variations gε with compact
support (that is (5.33) has compact support) that are volume preserving, that is

∂

∂ε

∣∣∣
ε=0

dvolgε
= 0.

Theorem 5.48. The equations of motion for the Einstein-Hilbert Lagrangian under
volume preserving variations with compact support are equivalent to

Ric0 = 0, (5.40)

where Ric0 = Ric− scal
n g denotes the trace-free part of Ric. A pseudo-Riemannian

metric g is a solution of (5.40) if and only if Ric = f g for some function f .

Proof. Owing to (5.34), we obtain (5.40) by projecting (5.39) to its trace-free part.
ut

5.5 The energy-momentum tensor

In the previous subsection, we discussed pure gravity, that is, gravity in the absence
of matter fields. The key ingredient for coupling matter fields to Einstein gravity is
the energy-momentum tensor [13, 14, 19]. It can be introduced by reconsidering two
important conservation laws of classical mechanics in the context of classical field
theory. Recall that the reason for conservation of energy in classical mechanics is
the invariance of the Lagrangian under time-translations. Similarly, invariance under
spatial translations implies conservation of momentum.

As a concrete simple example to illustrate at least some of the features of matter-
coupled Einstein gravity, let us start by considering a first order field theory for
maps f : S→T from some source manifold S to some target manifold T . Since
our considerations will be local, we may restrict, by a choice of local coordinates,
to S = Rn, T = Rm, and we take the standard volume form on Rn. Then we can
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consider translations X = ∑vµ ∂µ in the source manifold S = Rn, where vµ are
constants. The vector field X is an infinitesimal automorphism of a Lagrangian
L ∈C∞(Jet1(Rn,Rm)) if and only if

L ( j1
x f ) = L (x, f (x),∂ f (x)), ∂ f (x) := (∂µ f (x)),

does not explicitly depend on x = (xµ) ∈ Rn. This follows from the fact that the
prolongation of X = ∑vµ ∂µ ∈ X(Rn) is given by pr(1)(X) = X ∈ X(Jet1(Rn,Rm)).
This can be seen either from Lemma 5.13 or by observing that the action of a
translation by a vector v = (vµ) ∈ Rn as a diffeomorphism on Jet1(Rn,Rm) is simply

(x, f (x),∂ f (x)) 7→ (x+v, f (x),∂ f (x)).

The Noether current (5.17) corresponding to the infinitesimal translation −v is given
by

Jµ = ∑∂ν f avν ∂L

∂ua
µ

( j1 f )−L ( j1 f )vµ .

We can write it as Jµ = ∑vν T µ

ν , where

T µ

ν := ∂ν f a ∂L

∂ua
µ

( j1 f )−L ( j1 f )δ µ

ν (5.41)

are the components of the energy-momentum tensor or stress-energy tensor. (Caveat:
We will redefine the energy-momentum tensor below.) As a consequence of Noether’s
theorem (Theorem 5.10) we have the following result.

Proposition 5.49. If L ∈C∞(Jet1(Rn,Rm)) is invariant under translations in Rn,
then the energy-momentum tensor is divergence-free (when evaluated on solutions of
the equations of motions), that is

∑
∂

∂xµ
T µ

ν = 0. (5.42)

Example 5.50. Consider the linear sigma-model

L ( j1 f ) =
1
2 ∑gab( f )∂µ f a

∂
µ f b−V ( f ), f : Rn→ Rm,

with potential V ∈C∞(Rm), where greek indices are raised with the inverse of the
constant metric h = ∑hµν dxµ dxν , for example ∂ µ = ∑hµν ∂ν and (hµν) being the
matrix inverse to (hµν). The corresponding energy-momentum tensor, written as
(0,2)-tensor field, is symmetric and given by

Tµν = ∑gab( f )∂µ f a
∂ν f b−L ( j1 f )hµν .

In index-free notation the right-hand side reads

f ∗g−L h.
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When h = dt2−∑
n−1
α=1(dxα)2 is the Minkowski metric, then the energy density (i.e.

the charge density associated with the infinitesimal automorphism −∂t )

T 00 = T 0
0 =

1
2

g(∂t f ,∂t f )+
1
2

n−1

∑
α=1

g(∂α f ,∂ α f )+V ( f )︸ ︷︷ ︸
=:Ṽ ( f ,∂1 f ,...,∂n−1 f )

,

resembles the energy in mechanics (and coincides with it if n = 1), if we consider Ṽ
as potential energy. The non-gravitational energy is in this situation defined as the
spatial integral of the energy density:

E(t) =
∫

Rn−1
T 00(t,x1, . . . ,xn−1)dn−1x. (5.43)

It is constant under appropriate boundary conditions at spatial infinity (as in The-
orem 5.22). Similarly, one defines the momentum density as the time-dependent
spatial vector field

n−1

∑
α=1

T α0
∂α

on Rn−1 and the momentum as the spatial integral

P(t) =
n−1

∑
α=1

Pα(t)∂α , Pα(t) =
∫

Rn−1
T α0(t,x1, . . . ,xn−1)dn−1x. (5.44)

Notice that the momentum density (T α0)α=1,...,n−1 is the flux density associated
with the infinitesimal automorphism −∂t . Its components coincide up to sign with
the charge densities T 0

α =−T α0 associated with the spatial translations −∂α , α =
1, . . . ,n−1.

It is important to remark that the physical notions of energy and momentum as
defined above are only valid in the Newtonian limit of Einstein gravity, that is, for
quasi-static matter systems in asymptotically flat space-times (see also the discussion
in [14, Sect. 19.3]). In general, the physical notions of energy and momentum become
rather subtle concepts in Einstein’s theory of general relativity. In fact, no general
definitions of energy and momentum valid for arbitrary space-time metrics exist.
Only for special classes of metrics there exist well-defined expressions such as,
for example, ADM energy, Komar energy, Bondi energy and Hawking energy. For
further details regarding this subtle aspect of Einstein gravity, the reader is referred
to [13, 14, 19].

Example 5.51. Consider the Yang-Mills Lagrangian L ( j1A) = 1
4 ∑ tr(Fµν Fµν).

Differentiating this Lagrangian with respect to ∂µ Aρ (more precisely, with respect to
ui

jρ,µ in the notation of Section 5.4.2) we obtain the (base-point dependent) linear
map

g→ K, B 7→ tr(BFµρ).
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Therefore from (5.41) we obtain that the corresponding energy-momentum tensor is
given by

T µ

ν (old) = ∑ tr
(
(∂ν Aρ)Fµρ

)
−L ( j1A)δ µ

ν .

(We are working in a global trivialization of the vector bundle, such that the endo-
morphisms Fµν can be considered as matrices.) At least in the case of Abelian gauge
groups (the reader may try to extend this to the case of non-Abelian gauge groups),
this tensor differs from the tensor

T µ

ν (new) = ∑ tr(Fνρ Fµρ)−L ( j1A)δ µ

ν , (5.45)

which is symmetric with respect to the metric h, by a tensor with vanishing divergence.
In fact, for Abelian gauge groups Fµν = ∂µ Aν −∂ν Aµ and it suffices to subtract

∑ tr
(
(∂ρ Aν)Fµρ

)
= ∑∂ρ tr(Aν Fµρ)

from T µ

ν (old). The last equation holds because of the Yang-Mills equation, which
for Abelian gauge groups reduces to ∑∂ρ Fµρ = 0. The tensor (5.45), which differs
from the original energy-momentum tensor by symmetrization and is still divergence-
free, will from now on be called the energy-momentum tensor and its components
will be denoted by T µ

ν , rather than T µ

ν (new). Notice that the newly defined energy-
momentum tensor is not only coordinate independent (as the previously defined
energy-momentum tensor) but, contrary to the previously defined one, is always
invariant under gauge transformations.

In the presence of gravity, the space-time metric g (formerly denoted h) is con-
sidered as a dynamical field of the theory. The definition of the action functional (5.1)
is then modified to read

S[ f ,g] =
∫

M
L( jk( f ), j`(g))dvolg ,

where dvolg =
√
|det(g)|dx1 ∧ ·· · ∧ dxn in local coordinates (x1, . . . ,xn) on some

open set U ⊂ M (cf. (5.37)). For physical reasons, it is important to distinguish
between the gravitational Lagrangian4 LGR and the matter Lagrangian Lmatter. The
former depends only on g and at least in ordinary Einstein gravity (as opposed to
modified gravity theories) it is taken to be the Einstein-Hilbert Lagrangian LEH =

1
16πκ

scal (cf. (5.31)). The matter Lagrangian not only depends on g, but also on other
fields through their k-th order jets. In total, L = LGR +Lmatter.

One can check that in the above examples the (symmetric) energy-momentum
tensor can be obtained from the formula

Tµν :=
2√
|det(g)|

δLmatter

δgµν
= 2

δLmatter

δgµν
+gµν Lmatter , (5.46)

4 We remark that in some texts the definition of the Lagrangian in gravity theories differs by a factor
of
√
|det(g)|, namely L =

√
|det(g)|L. This will be used below.
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where δL
δgµν := Egµν (L ), and

Egµν =
∂

∂gµν
−∑∂λ

∂

∂ [∂λ gµν ]
±·· · (5.47)

denotes the Euler-Lagrange operator associated with the field gµν as defined in (5.3).
Here we are denoting the coordinates on the jet space (uµν ,uµν

λ
, . . .) by the same

symbols as their evaluation (gµν , ∂ν gµν , . . .) on jk(g−1), as customary in the literat-
ure. Eq. (5.46) is also often used as the definition of the (matter) energy-momentum
tensor in the physics literature. With this definition, the energy-momentum tensor is
always symmetric.

Proposition 5.52. Let L = LEH +Lmatter be a gravity theory described as the
sum of the Einstein-Hilbert Lagrangian for a pseudo-Riemannian metric g and a
Lagrangian Lmatter which depends on g and on other fields through their k-th order
jets. Then the equations of motion corresponding to the variation of the metric take
the form:

1
8πκ

(
Ricg−

1
2

scalg g
)
=−T, (5.48)

where T = ∑Tµν dxµ dxν is the energy-momentum tensor of Lmatter defined in (5.46).

Proof. The Euler-Lagrange operator associated with gµν is 1
2 T for the matter Lag-

rangian and 1
16πκ

(
Ricg− 1

2 scalg g
)

for the Einstein-Hilbert term. For the latter state-
ment we are using the calculation in the proof of Theorem 5.45 and taking into
account that the variation of the inverse metric is related to the variation of the metric,
h = ∂

∂ε

∣∣∣
ε=0

gε , by

∂

∂ε

∣∣∣∣
ε=0

g−1
ε =−g−1hg−1.

ut

Notice that the minus sign on the right-hand side of the general Einstein equa-
tion (5.48) is usually absorbed by a sign change in the definition of the energy-
momentum tensor T .

The full set of equations of motions corresponding to L = LEH +Lmatter is the
Einstein equation (5.48) together with the matter equations of motions coming from
varying L with respect to the matter fields. Due to the coupling to gravity, the matter
equations of motions in general also contain terms involving the metric, thereby
turning the full set of equations of motions into a system of coupled equations.

Corollary 5.53. For every solution of the Einstein equation (5.48), the energy-
momentum tensor (5.46) of the matter Lagrangian Lmatter satisfies the covariant
divergence-free condition (cf. Proposition 5.49), namely

∑∇µ T µν = 0 , (5.49)
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where T µν = ∑gµρ gνσ Tρσ and ∇µ are the components of the Levi-Civita connection
of g.

Proof. This follows from the equations of motion provided in Proposition 5.52 and
the fact that the Einstein tensor Ricg− 1

2 scalg g is divergence-free, see [17, Ch. 12,
Lemma 2]. ut

Unlike eq. (5.42), eq. (5.49) in general does not correspond to a conservation law
in the sense of Definition 5.9. The analog of the quantities defined in eqs. (5.43)-
(5.44), that is ∫

Σ
∑
√
|det(g)|T µν dσν ,

where the integration is performed over a spacelike hypersurface Σ , is conserved
only if ∑∂µ(

√
|det(g)|T µν) = 0 holds rather than eq. (5.49) (see, for example, [13,

Ch. 11, Section 101] for further details). To find a conservation law nevertheless,
one needs to also take into account the contribution of the gravitational field (and its
derivatives) to the total energy-momentum. This can be achieved by generalizing the
definition (5.46) to

T eff
µν :=

2√
|det(g)|

δL

δgµν
=

2√
|det(g)|

Egµν (L ) . (5.50)

An analysis along the lines of [13, Ch. 11, Section 101] shows the following analog
of Proposition 5.49 in the presence of gravity:

∑∂µ T effµν = ∑∂µ(T µν + tµν) = 0 , (5.51)

where T µν = ∑gµρ gνσ Tρσ is the same as in (5.46) after raising the indices, and
tµν is called the energy-momentum pseudo-tensor of the gravitational field. The
quantity tµν is a coordinate-dependent object that cannot be interpreted as the com-
ponents of a tensor field. Note that eq. (5.51) is equivalent to eq. (5.49), with the
difference being that the latter is manifestly covariant. From the above, we see that
the distinction between energy-momentum carried by the gravitational field versus
energy-momentum carried by the matter fields becomes a subtle issue in general
relativity. For more details, the reader is referred to [13, 14, 19].





Appendix A
Exercises

A.1 Exercises for Chapter 2

1. Suppose that for every local chart ϕ : U → Rn on some smooth manifold M we
are given a system of n functions α

ϕ

i ∈ C∞(U), i = 1, . . . ,n. Let us denote by
V i

ϕ ∈C∞(U) the components of a smooth vector field V on M with respect to
the chart ϕ . Suppose that for every V and for every pair of charts ϕ : U → Rn,
ϕ̃ : Ũ → R the functions ∑α

ϕ

i V i
ϕ and ∑α

ϕ̃

i V i
ϕ̃

coincide on U ∩ Ũ . Show that
there exists a smooth function fV on M and a smooth one-form α on M such that
fV |U = ∑α

ϕ

i V i
ϕ and α|U = ∑α

ϕ

i dxi for every chart ϕ = (x1, . . . ,xn) : U → Rn.
Check that α(V ) = fV .

2. Determine the equations of motion of a free particle in Euclidean space (see
Example 2.2) and find the general solution.

3. Determine the equations of motion for the harmonic oscillator (see Example 2.2)
and find the general solution.

4. Consider the Riemannian manifold M̃ = (Rn+1 \ {0},gcan), where gcan is the
restriction of the Euclidean metric 〈·, ·〉 on Rn+1. Denote by Γ the cyclic group
generated by the homothety x 7→ 2x.

a. Show that the quotient M = M̃/Γ is diffeomorphic to S1× Sn and that the
Riemannian metric

g̃ :=
1
r2 gcan, r(x) :=

√
〈x,x〉, x ∈ M̃,

induces a Riemannian metric g on M.
b. Determine all periodic motions for the Lagrangian mechanical system (M,L ),

where L (v) = 1
2 g(v,v), v ∈ T M.

c. Show that (M,g) is locally conformally flat, that is for every p ∈M there exists
an open neighborhood U ⊂M and a positive function f ∈C∞(U) such that the
Riemannian metric f ·g|U is flat.

d. Does there exist a global function f ∈ C∞(M) such that f g is of constant
(sectional) curvature?
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(Hint: You may use the classification of complete simply connected Riemannian
manifolds of constant sectional curvature. These manifolds are precisely the
Euclidean spaces, the spheres and the hyperbolic spaces.)

5. Let V be a smooth function on a Riemannian manifold (M,g). Consider the
Lagrangian

L(v) =
1
2

g(v,v)−V (πv), v ∈ T M, (A.1)

where π : T M→M is the canonical projection. Let X be a Killing vector field on
(M,g) such that X(V ) = 0. Check by direct calculation (without using Noether’s
theorem) that the function v 7→ g(v,X(πv)) on T M is an integral of motion of the
Lagrangian mechanical system (M,L).

6. Show that the automorphism group of the Lagrangian mechanical system (M,L)
of the previous exercise is given by

Aut(M,L) = {ϕ ∈ Isom(M)|V ◦ϕ =V}.

Deduce that the infinitesimal automorphisms of (M,L) are precisely the Killing
vector fields X such that X(V ) = 0.

7. Let γ : I→ R3 \{0} be a smooth curve. Show that the following conditions are
equivalent:

a. γ× γ ′ = 0, where × denotes the cross product,
b. γ is a radial curve, that is γ(I) is contained in the ray R>0v0 generated by

some constant vector v0 ∈ R3 \{0}. Here R>0 denotes the set of positive real
numbers.

8. Consider a particle γ : I→ R3 \{0} of mass m = 1 moving in Euclidean space
under the influence of Newton’s gravitational potential V =−M

r , where units have
been chosen such that the gravitational constant κ = 1.

a. Determine the radial motions of the system.
b. Deduce the total fall time as a function of the initial radius if the initial velocity

is zero.

Hints: Rather than calculating r as a function of time t you will notice that
in general it is easier to calculate t as a function of r. The function r of t is
then implicitly determined as the inverse function and will not be calculated
explicitly. The calculation of r 7→ t(r) reduces to finding the primitive of a function.
For that it might be helpful to calculate the derivative of the function F(x) =√

x+ x2− arsinh(
√

x) for x > 0.
9. (Conservation of angular momentum). Consider a particle t 7→ γ(t) ∈ R3 moving

in Euclidean space according to Newton’s law

d
dt

p = F.

Its angular momentum at time t is the vector
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L(t) := γ(t)×p(t).

Show that L is subject to the equation

d
dt

L = M,

where M := γ×F is the moment of force. Deduce that the angular momentum is
constant if the moment of force is zero.

10. Let V be a smooth function on a pseudo-Riemannian manifold (M,g) and consider
the Lagrangian L (v) = 1

2 g(v,v)−V (πv), v ∈ T M. Assume that with respect to
some coordinate system on M the metric g and the potential V are both invariant
under rotations in one of the coordinate planes, say in the (x1,x2)-plane. Show
that there exists a corresponding integral of motion defined on the coordinate
domain. How is it related with the notion of angular momentum?

11. Show that a function on R3 \{0} is radial if and only if it is spherically symmetric,
that is invariant under SO(3). Deduce that invariance under SO(3) is equivalent
to invariance under O(3).

12. Show that a vector field on M = R3 \{0} is radial if and only if it is spherically
symmetric, that is invariant under the natural action of SO(3)⊂ Diff(M). Deduce
that invariance under SO(3) is equivalent to invariance under O(3).
Hint: Recall that the natural action of the diffeomorphism group Diff(M) on the
vector space of vector fields F : M→ T M on a smooth manifold M is given by

F 7→ Fϕ := dϕ ◦F ◦ϕ
−1, ϕ ∈ Diff(M).

13. Let γ : I→R3\{0} be the motion of a particle in a radial force field F according to
Newton’s law mγ ′′ = F(γ). Recall that the motion is planar due to the conservation
of the angular momentum vector. Show that the area A(t0, t1) swept out by the
vector γ during a time interval [t0, t1] is given by A(t0, t1) = L

2 (t1− t0).
14. Let (M,g) be a pseudo-Riemannian manifold and f a nowhere vanishing smooth

function on M. Consider the pseudo-Riemannian metric

gN = g+ f du2

on N := M×R, where u is the coordinate on R. Show that geodesic equations for
a curve t 7→ γN(t) = (γ(t),u(t)) ∈ N = M×R can be separated into

a. the equations of motion for γ with respect to a Lagrangian of the form L (v) =
1
2 g(v,v)−V (πv), v ∈ T M, where V is a certain smooth function on M related
to f and π : T M→M is the canonical projection and

b. an ordinary differential equation for the function t→ u(t), which can be solved
by integration once we know t 7→ γ(t).

15. Determine the radius r as a function of the angle ϕ for a motion of a particle of
unit mass with non-zero angular momentum in Coulomb’s electrostatic potential.
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Can you use the results about the motion in Newton’s gravitational potential?
What is the main difference?

16. Let V be a smooth function on a pseudo-Riemannian manifold, which is either
bounded from above or from below. Show1 that there exists a function f related to
V and a pseudo-Riemannian metric gN = g+ f du2 on N = M×R, where u is the
coordinate on the R-factor, such that the solutions of the Lagrangian mechanical
system defined by L (v) = 1

2 g(v,v)−V (πv), v ∈ T M, correspond precisely to
geodesics t 7→ γN(t) = (γ(t),u(t)) in (N,gN) with a particular choice of the affine
parameter t and which satisfy u′ 6= 0.

17. Let V be a smooth function, which is bounded from below, on a complete Rieman-
nian manifold (M,g). Show that the solutions of the Lagrangian mechanical
system defined by L (v) = 1

2 g(v,v)−V (πv), v ∈ T M, exist for all times.
Hint: You may use the previous exercise to relate the problem to the completeness
of a Riemannian manifold (N,gN) of the type N = M×R, gN = g+ f du2. Recall
that a Riemannian metric on a smooth manifold M is called complete if every
Cauchy sequence in (M,g) converges and that this notion is equivalent to geodesic
completeness by the Hopf-Rinow theorem.

18. Deduce from the previous exercise that for every smooth function V on a compact
Riemannian manifold the solutions of the Lagrangian mechanical system defined
by L (v) = 1

2 g(v,v)−V (πv), v ∈ T M, exist for all times.

A.2 Exercises for Chapter 3

19. Let f be a smooth function on a symplectic manifold M. Compute the Hamiltonian
vector field X f in a coordinate system (q1, . . . ,qn, p1, . . . , pn) defined on some open
subset U ⊂M such that ω|U = ∑d pi∧dqi.

20. Let (M,L ) be a Lagrangian mechanical system and denote by π : T M→M the
canonical projection. Show that the following conditions are equivalent:

a. L is non-degenerate.
b. φL : T M→ T ∗M is a local diffeomorphism.
c. For all x ∈M, φL |TxM : TxM→ T ∗x M is of maximal rank.
d. For all v ∈ T M, there exists a coordinate system (xi) defined on an open

neighborhood U of πv such that the matrix
(

∂ 2L (v)
∂ q̂i∂ q̂ j

)
is invertible, where

(q1, . . . ,qn, q̂1, . . . , q̂n) are the corresponding coordinates on TU .
e. For all v ∈ T M, and every coordinate system (xi) defined on an open neighbor-

hood U of πv the matrix
(

∂ 2L (v)
∂ q̂i∂ q̂ j

)
is invertible.

21. Let (M,L ) be a Lagrangian mechanical system. Show that the following condi-
tions are equivalent:

a. L is nice.

1 See [6] for results generalizing this exercise and also Exercise 14.
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b. φL : T M→ T ∗M is a diffeomorphism.
c. L is non-degenerate and for all x ∈M, φL |TxM : TxM→ T ∗x M is a bijection.
d. For all x ∈M, φL |TxM : TxM→ T ∗x M is a diffeomorphism.

22. Let (M,g) be a pseudo-Riemannian manifold and denote by φ : T M → T ∗M
the isomorphism of vector bundles induced by g. Let V be a smooth function
on M and consider the Lagrangian L (v) = 1

2 g(v,v)−V (πv), v ∈ T M. Here
π : T M→M denotes the projection. Denote by E ∈C∞(T M) the energy and by
H = E ◦φ−1 ∈C∞(T ∗M) the Hamiltonian.

a. Show that if a curve γ̃ : I → T ∗M is a motion of the Hamiltonian system
(T ∗M,ω,H), then the curve π ◦ γ̃ : I → M is a motion of the Lagrangian
system (M,L ). Here ω denotes the canonical symplectic form.

b. Show that the map γ 7→ φ ◦ γ ′ from curves in M to curves in T ∗M is inverse to
the map γ̃ 7→ π ◦ γ̃ from curves in T ∗M to curves in M when restricted to solu-
tions of the Euler-Lagrange equations and Hamilton’s equations, respectively.
Here π : T ∗M→M denotes the projection.

23. State and prove a local result relating Lagrangian mechanical systems with non-
degenerate Lagrangian to Hamiltonian systems, similar to the global result proven
in Section 3.2.2 for nice Lagrangians.

24. Let f be a smooth function on a finite-dimensional real vector space V such that
φ f : V →V ∗ is a diffeomorphism and consider its Legendre transform f̃ ∈C∞(V ∗).
Show that φ f̃ : V ∗→V is also a diffeomorphism and that the Legendre transform
of f̃ is f .

25. A subspace U ⊂ V of a symplectic vector space (V,ω) is called isotropic if
U ⊂U⊥. Show that the maximal dimension of an isotropic subspace is n= 1

2 dimV
and that the isotropic subspaces U of dimension n are Lagrangian, that is U =U⊥.
Deduce that, with the definitions given in Chapter 4, an immersed submanifold of a
symplectic manifold is Lagrangian if and only if its tangent spaces are Lagrangian.

26. Let (T ∗M,H) be a Hamiltonian system of cotangent type, n = dimM, and let
S : M×U→R be a smooth n-parameter family of solutions of the Hamilton-Jacobi
equation. Show that the following conditions are equivalent.

(i) The family is non-degenerate.
(ii) The map ΦS : M×U → T ∗M, defined in Definition 4.7, is a local diffeomorph-

ism.
(iii) For all x ∈M,

ΦS|{x}×U : {x}×U ∼=U → T ∗x M, u 7→ dSu|x,

is a local diffeomorphism.
(iv) For all x ∈M,

ΦS|{x}×U : {x}×U ∼=U → T ∗x M,

is of maximal rank.
(v) For all (x,u) ∈M×U the n×n-matrix
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∂ 2S(x,u)
∂xi∂u j

)
is invertible, where (xi) are local coordinates in a neighborhood of x ∈M and
(ui) are (for instance) standard coordinates in U ⊂ Rn.

27. Let (M,g) be a Riemannian manifold and let x0 ∈M be an equilibrium point of a
given Lagrangian mechanical system L (v) = 1

2 g(v,v)−V (πv). Further assume
that x0 is a local minimum and a non-degenerate critical point of V . The latter
means that the Hessian of V with respect to the Levi-Civita connection at x0
is positive definite. Show that x0 is a stable solution in the sense of Lyapunov
stability, i.e. show that ∀ε > 0 ∃δ > 0, such that for all solutions γ : I→M, 0 ∈ I,
of the corresponding Euler-Lagrange equations the following holds true:√

dM(x0,γ(0))2 +gγ(0)(γ̇(0), γ̇(0))< δ

⇒
√

dM(x0,γ(t))2 +gγ(t)(γ̇(t), γ̇(t))< ε ∀t ∈ I ,

where dM(·, ·) denotes the metric on M induced by g.
Hints: Use the Morse lemma to bring V near x0 to a certain form. Verify that
for K ⊂ M compact and contained in a chart domain, one can find c > 0 and
C > 0, such that c〈·, ·〉 ≤ g|K(·, ·)≤C〈·, ·〉, where 〈q̂, q̂〉= ∑ q̂2

i . The topology of
M coincides with the topology induced by dM , see [11, p. 166], in particular V is
continuous with respect to the metric dM . Also, recall that the energy is an integral
of motion, hence estimating E(γ̇(0)) yields a global result for γ .

28. a. Consider a Lagrangian mechanical system in R3 with radial potential L (v) =
1
2 〈v,v〉−V (r) and assume that r(t) = r0 is the constant radial component of a
motion with |L|> 0. Recall the corresponding expression for the energy

E =
1
2

ṙ2 +Veff(r)

and show that such a solution is stable in the sense of the previous exercise if

d2V
dr2 (r0)+

3
r0

dV
dr

(r0)> 0.

b. Consider V (r) =− α

rn , α > 0. Find all n∈N such that a stable motion r(t) = r0
exists. Does the answer depend on α? (Note that this question is related to
Newtonian gravitation in d = n+ 2 dimensions. To show this, one needs to
use a conservation law similar to the angular momentum which was used in
dimension three.)

c. For which b > 0 does the Lagrangian system corresponding to the potential
V (r) = −α

r exp
(
− r

b

)
, α > 0, have stable motions with r(t) = r0? Does the

answer depend on α?
d. For which α does the Lagrangian system corresponding to the potential V (r) =

α ln(r) have stable motions with r(t) = r0?
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29. Let q1, . . . ,qn, q̂1, . . . , q̂n denote the standard coordinates on TRn . Consider the
function V : R\{0}→ R defined by

V (x) =V0

((x0

x

)12
−
(x0

x

)6
)
,

where V0,x0 ∈ R\{0} are constants. The Lagrangian system

L =
1
2
〈q̂, q̂〉−

n−1

∑
i=1

V (qi+1−qi)

describes small oscillations in a linear chain of n atoms of unit mass. Note that
the oscillations are assumed to be in direction of the chain.

a. Determine the distance a of two neighboring atoms in the equilibrium position.
b. Show that the Taylor expansion up to second order of V at a is given by

Ṽ (x) =−V0

4
+

1
2

k(x−a)2

with k = 18
3√2

V0
x2

0
.

c. Determine the equations of motion corresponding to the linearized problem

L2 =
1
2
〈q̂, q̂〉−

n−1

∑
i=1

Ṽ (qi+1−qi).

A.3 Exercises for Chapter 4

30. Consider a point q on a conic section C ⊂ R2 with focal points f1 6= f2. Show that
the tangent line at q bisects the angle formed by the two lines connecting q with
the focal points.

31. Consider a hyperbola H ⊂ R2 with focal points f1, f2 at distance 2c > 0. Recall
that H is defined by the equation |r1− r2|= 2a, where r1 and r2 are the distances
to f1 and f2, and a ∈ (0,c) is a constant. Show that the restriction of the Euclidean
metric to H is given by

ξ 2−4a2

4(ξ 2−4c2)
dξ

2,

where ξ = r1 + r2. (This result is used in the proof of Proposition 4.11.)
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A.4 Exercises for Chapter 5

32. Consider the Lagrangian L (q, q̂) = ∏
n
i=1 q̂i on Rn and let n ≥ 2. Show that the

restriction of φL : TRn→ T ∗Rn to the open subset

Uσ = {(q, q̂) ∈ TRn | σL > 0} ⊂ TRn,

where σ ∈ {+,−}, is a diffeomorphism onto its image. Check that φL (U+) =
φL (U−) if n is odd and that φL (U+) and φL (U−) are invariant under the an-
tipodal map in the fibers of T ∗Rn if n is even. Determine the corresponding
Hamiltonians on φL (Uσ ) and find the general solution of the corresponding
Hamilton’s equations.

33. Show that

dimJetk0(R
n,R) =

(
n+ k

k

)
.

34. Show that for every smooth manifold there are canonical identifications

a.
Jet1(M,R) = R×T ∗M,

b.
Jet1(R,M) = R×T M.

35. Let P = (P1, . . . ,Pn) be a smooth vector-valued function on Jetk(Rn,Rm). Its total
divergence DivP is a smooth function on Jetk+1(Rn,Rm). We know from Proposi-
tion 5.5 that the Euler operators Ea, acting on functions on Jetk+1(Rn,Rm), vanish
on DivP. Check this in the following cases by directly computing Ea(DivP):

a. k = 0,
b. k = m = n = 1.

36. a. Show that the Euler-Lagrange equations of the free scalar field Lagrangian
on the n-dimensional Minkowski space (M,g) = (Rn,(dx0)2−∑

n−1
i=1 (dxi)2),

given in index notation by

L =
1
2

∂µ ϕ∂
µ

ϕ− 1
2

m2
ϕ

2,

yield the Klein-Gordon equation (�+m2)ϕ = 0.
b. Verify that in the above case �= (−1)n−1 ?d ?d, where ? denotes the Hodge

star-operator, defined by

α ∧?β = 〈α,β 〉dvol,

where α,β are differential forms on n-dimensional Minkowski space and
dvol is the metric volume form of the Minkowski metric (dx0)2−∑

n−1
i=1 (dxi)2

compatible with the standard orientation.
37. Consider the Lagrangian of the Kepler problem with Newton’s potential in R3,
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L (v) =
1
2
〈v,v〉+ M

r
.

Show that each entry of the so-called Runge-Lenz vector (or Laplace-Runge-Lenz
vector)

R :=

xt
yt
zt

×
x

y
z

×
xt

yt
zt

− M
r

x
y
z


is an integral of motion.

38. For a given k ∈ N, determine the Euler-Lagrange equations for

L =
1
2 ∑
|J|≤k

u2
J , L ∈C∞(Jetk(Rn,R)).

39. Let (M,g) and (N,h) be pseudo-Riemannian manifolds of dimension m and
n, respectively. We assume that (N,h) is oriented and denote its volume form
by dvolh. Determine the Euler-Lagrange equations for the Lagrangian n-form
L dvolh defined by

L ( j1 f ) =
1
2
〈d f ,d f 〉, f ∈C∞(N,M),

where 〈·, ·〉x is the scalar product on T ∗x N⊗Tf (x)M, x ∈ N, induced by h and g.
Show that the resulting equations are equivalent to

trh∇d f = 0,

where ∇ is the connection on the vector bundle T ∗N⊗ f ∗T M→ N induced by
the Levi-Civita connections on M and N.

40. Let X and Y be smooth vector fields on Rn and Rm, respectively, Z = X +Y ,
dvol the standard volume form of Rn, and L ∈C∞(Jetk(Rn,Rm)) a Lagrangian.
Assume that

(pr(k)Z)(L )+L divX

is a total divergence. Show that the same calculation as in the proof of Noether’s
theorem can be used to prove that

∑QaEa(L ), defined by Qa = Y a−∑ua
i X i,

is a total divergence, where X i and Y a are the components of X ∈ X(Rn) and
Y ∈ X(Rm), respectively.

41. Let (M,g) and (N,h) be pseudo-Riemannian manifolds and V ∈ C∞(N ×M).
Consider the Lagrangian

L ( j1 f ) =
1
2
〈d f ,d f 〉−V ( j0 f ), f ∈C∞(N,M).
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a. In the special case when (N,h) is a pseudo-Euclidean vector space, show that
L dvolh is invariant under the group of translations of the source manifold N if
V ∈C∞(M)⊂C∞(N×M) and compute the corresponding Noether currents.

b. In the special case when (M,g) is a pseudo-Euclidean vector space, show that
L dvolh is invariant under the group of translations of the target manifold M if
V ∈C∞(N)⊂C∞(N×M) and compute the corresponding Noether currents.

42. Let Ω ⊂ Rn−1 be a bounded domain with smooth boundary. We consider a
Lagrangian L ∈C∞(Jetk(U,Rm)) on the cylinder U = R×Ω ⊂ Rn with standard
coordinates (x0,x1, . . . ,xn−1) =: (t,x). Let P : Jet`(Rn,Rm)→ Rn be a smooth
vector-valued function such that

DivP|Jet`+1(U,Rm)

is a conservation law of L dvol, where dvol is the standard volume form of U .
Let f ∈C∞(U,Rm) be a solution of the Euler-Lagrange equations which extends
smoothly to a neighborhood of the closure of U . We decompose the current
J = P( j` f ) = (J0,J) : U → Rn into the charge density J0 and the flux density J.
Show that the time evolution of the charge Q(t) =

∫
Ω

J0(t,x)dn−1x is given by

Q′(t) =−
∫

∂Ω

〈J,ν〉dvol∂Ω ,

where ν stands for the outer normal of ∂Ω and dvol∂Ω for the induced volume
form on ∂Ω ⊂ Rn−1. Conclude that the charge is constant if the flux density is
tangent along the boundary of Ω .

43. Consider Yang-Mills theory on a Hermitian line bundle over Minkowski space
(M,g) = (R4,dt2−∑

3
α=1(dxα)2). Since the Lie algebra of U(1) is one-dimen-

sional, we can identify the curvature F = F∇ with an ordinary real-valued 2-
form. Show that the Yang-Mills equation d ∗F = 0 reduces to half of Maxwell’s
equations in the vacuum, that is

divE = 0, rotB =
∂

∂ t
E,

whereas the Bianchi identity dF = 0 reduces to the other half of Maxwell’s
vacuum equations, that is

divB = 0, rotE =− ∂

∂ t
B,

where E = ∑Eα ∂α and B = ∑Bα ∂α are the time-dependent vector fields on R3

obtained by decomposing F into

Eα = F(∂t ,∂α) and Bα =−F(∂β ,∂γ),

where (α,β ,γ) runs trough cyclic permutations of {1,2,3}.
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44. Let ∇ be a G-connection in a vector bundle E and α a one-form with values in
g(E). Show that the curvature of the G-connection ∇+α is given by

F∇+α = F∇ +d∇
α +α ∧α.

45. Express the Yang-Mills equations in local coordinates.
46. Check by direct calculation that the Noether current associated with an infin-

itesimal gauge transformation as stated in Proposition 5.44 is conserved, that is
divergence-free.

47. Prove that
∂

∂ε

∣∣∣∣
ε=0

dvolgε
= tr(g−1h)dvolg,

for every smooth family of pseudo-Riemannian metrics gε , where g = g0 and
h = ∂

∂ε

∣∣∣
ε=0

gε .
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G
-connection, 61
-frame, 61
-reduction, 61

Action, 6, 45
Angular momentum, 12, 17

Conservation of, 12
Anti-self-duality equation, see Donaldson

theory
Automorphism, 11, 50

Group of, 65
Infinitesimal, 11, 51, 54–57, 74

Bianchi identity, 62

Canonical symplectic form, 20
Charge, see Electrostatic theory

density, 57
Classical field theory, 45
Configuration space, 5
Connection one-form, 67
Conservation

law, 51
of angular momentum, 12
of energy, 10, 23, 72
of momentum, 12, 72

Conserved current, see Noether current
Coordinate

Darboux, 20, 21
Induced, 7
Radial, 12

Cosmological constant, 71
Coulomb

constant, see Electrostatic theory
potential, see Electrostatic theory

Covariant derivative, 9

Current, 57

Darboux
coordinates, 20, 21
theorem, see coordinates

Derivative
Covariant, 9
Total, 47

Diagonalization, 33
Donaldson theory, 66

Eigen-frequency, see Characteristic frequency
Eigen-oscillation, see Characteristic oscillation
Einstein

equation, 76
metric, 72
summation convention, 7
tensor, 77
vacuum equation, 69

Einstein-Hilbert Lagrangian, 69
Electrostatic theory, 6
Energy, 6, 23

Conservation of, 10, 23
density, 74
Kinetic, 5
Non-gravitational, 74
Potential, 5
Total, 6

Energy-momentum pseudo-tensor, 77
Energy-momentum tensor, 73, 75, 76

Re-defined, 75
Symmetric, see Re-defined

Equations of motion, see Euler-Lagrange
equations

Equilibrium position, 28
Neutral, 32
Stable, 32
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Unstable, 32
Euler-Lagrange

equations, 7, 9, 12, 21, 47, 62, 69
one-form, 8, 48
operator, 48

Field, see Classical field theory
Flux density, 57
Frequency, 32

Characteristic, 34
Resonance, see Characteristic frequency

Gauge
group, 65
theory, 66
transformations, 65

infinitesimal, 68, 69
Geodesic

as harmonic map, 60
equations, 9

Gravitational
coupling constant, 69
potential, see Newton’s theory of gravity

Hamilton’s equation, 21, 37
Hamilton-Jacobi equation, 39–41

Time-dependent, 44
Hamiltonian, 21

system, 21
of cotangent type, 37, 40, 41

vector field, 20
Harmonic

function, 59
map, 59
oscillator, 6

Hooke’s constant, see Harmonic oscillator

Induced coordinates, 7
Integral of motion, 10, 21, 24

Jet, 46

Kepler’s Laws, 17
Kronecker delta, 33

Lagrangian, 5, 46
immersion, 39
Linearized, 30
Matter, 76
mechanical system, 5
Nice, 24
Non-degenerate, 24
subspace, 39

Laplace operator, 60

Legendre transform, 27
Linearization, 30
Liouville form, 20

Manifold
Source, 45
Symplectic, 19
Target, 45

Mass, 5
Matter Lagrangian, 76
Maxwell theory, 62
Minkowski

metric, 74
space, 62

Momentum, 2
Angular, 12, 17
Conservation of, 12
density, 74

Motion, 6, 8, 21
Integral of, 10, 21, 24
Planar, 13
Planetary, 17

Multi-index, 46

Newton
constant, see theory of gravity
theory of gravity, 6, 15

Noether
charge, 57
current, 57
theorem, 11, 51, 57, 73

for time-dependent systems, 55, 56
Normal mode, see Characteristic oscillation

Oscillation
Characteristic, 34
Small, 32

Particle
Free, 6
Point, 5

Period, 32
Phase space, 21
Planetary motion, 17
Potential, 5

Coulomb, see Electrostatic theory
Effective, 14, 15
Gravitational, see Newton’s theory of gravity
Radial, 13

Prolongation, 51

Quadratic approximation, 30

Radial
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coordinate, 12
function, 13
potential, 13
vector field, 13

Ricci curvature, 70

Saddle point, 32
Scalar curvature, 69
Self-duality equation, see Donaldson theory
Sigma model, 59

Linear, 60
Sigma-model

Linear, 73
Solution

of the classical field theory, 47
Space-time, 46
Spatial translations, 72, 74
Stability, 32
Stress-energy tensor, see Energy-momentum

tensor
Symmetry, see Automorphism

Spherical, 13
Symplectic

form, 19
manifold, 19
vector space, 19

Tension, 59
Time, 5

translations, 56, 72
Total derivative, 47
Total divergence, 48, 49, 51

Volume
element, see form
form, 46, 50, 51, 57, 71

Yang-Mills
connection, 66
equations, 62
lagrangian, 61, 63, 74
theory, 61


