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Abstract. We present an overview of inflationary models derived from string theory
focusing mostly on closed string moduli as inflatons. After a detailed discussion of the
n-problem and different approaches to address it, we describe possible ways to obtain a
de Sitter vacuum with all closed string moduli stabilised. We then look for inflationary
directions and present some of the most promising scenarios where the inflatons are
either the real or the imaginary part of Kahler moduli. We pay particular attention
on extracting potential observable implications, showing how most of the scenarios
predict negligible gravitational waves and could therefore be ruled out by the Planck
satellite. We conclude by briefly mentioning some open challenges in string cosmology
beyond deriving just inflation.
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1. Inflation and string theory

There are several reasons for trying to derive inflationary models from an ultra-violet

complete theory such as string theory [I]. Some of the main motivations are:

Inflation generically involves energy scales which are much higher than those of
ordinary particle phenomenology, and so cosmology seems to be more promising to
directly probe string-related physics (unless the string scale is around the TeV so
that the LHC can put string theory to experimental test [2]).

The vast majority of inflationary models are based on the existence of very shallow
scalar potentials which give rise to extremely light scalar masses, m, < H.
However, scalar masses are notoriously sensitive to microscopic details since they
generically get large contributions when the short-distance sector of the theory is
integrated out. Due to this UV-sensitivity of inflation (often called ‘n-problem’ [3]),
model building can be trusted only via the knowledge of its UV completion.

String theory has many non-trivial constraints to model building, in the sense that
some signals seem to be generic in string-derived effective Lagrangians, while others
look very difficult to derive. Therefore an observation of these unlikely signals would
strongly constrain inflationary model-building in string theory. Two main examples
are tensor modes and non-gaussianities since many, but not all, string inflationary
models, predict a very small amount for these two inflationary observables [4] [5].

The number of known field theoretic models of inflation could be largely reduced
and restricted by the requirement of sensible embedding into string theory.

It is reasonable to expect that inflation combined with particle physics will help us
to understand which vacuum of the string landscape we live in, sheding also some
light on the particular mechanism through which we end up there.

A complete understanding of reheating requires the knowledge of all the relevant
degrees of freedom at inflationary energies in order to make sure that too much
energy is not lost into hidden sector particles [6, [7].

Given that the choice of special initial conditions is crucial for most of the available
inflationary models, the knowledge of the full microscopic theory might help to
address the origin of these initial conditions.

Particular inflationary models derived from string theory predict purely stringy

signals that cannot arise in any low-energy field theory. A primary example is
cosmic strings [8] which get formed at the end of brane/anti-brane inflation [9, 10].

2. Inflation and UV-sensitivity

In this section we shall illustrate the origin of the n-problem in generic supergravity

potentials focusing on the simplest case of an inflaton which we take as a real scalar



String moduli inflation: an overview 3

field ¢ (9> = |®|* for a canonically normalised complex scalar ®) in a 4D N = 1
supergravity. The inflationary potential is given by the F-term scalar potential:

: = — 3w
Vi = eK/Mp <K“DZ~WD3W _ 3 2| ) . (1)
Mp
Expanding the factor e® for K = ¢? and keeping the three leading order terms in (),
we can rewrite the inflationary potential as:
4
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We shall assume that an appropriate mechanism ensures the flatness of the potential

Vo(¢), so that the corresponding slow-roll conditions are satisfied:

M (VY vy
=—r2(2 1 d =Mp2 < 1. 3
w=2E (1) <1 m=amif< )
Defining x = ¢/Mp, we then obtain for the total slow-roll parameter 7:
Vv 4x(1 + 2%) 1+ 322
=Mi— = ——/2 22— 4
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Let us analyse this result separately for the two different kinds of inflationary models:
e Small-field inflationary models: ¢ < Mp < x < 1. The expression (@) becomes:
n~no + 4z 2€) + 2 ~ O(1), (5)

and so the slow-roll conditions are violated. In order to have n < 1 we should start
with 79 ~ —2 + 1 with 7 < 1 which generally requires fine-tuning of order 1%.

e Large-field inflationary models: ¢ > Mp < x> 1. Even though naively for this
case the expression () becomes:

8 12
7’]27’]0"—;\/260_'_?«1, (6)

higher order operators in the potential (2) become more and more important and
the series of higher order operators will give rise to a contribution to the potential
larger than M} even if V, < Mp. In this case, generic string or Planck-scale
corrections become significant. This is just an indication that the series in ¢/Mp
is not well defined if ¢ > Mp and the effective field theory (EFT) is not valid.

We stress that for small field inflationary models, the EFT is under control, and so higher
order operators are less and less important but they can still give rise to large O(1)
corrections to 7 (see ([B)). On the other hand, for large field models, the contribution
to n from dimension 6 and 8 operators are both still much less than unity (see (@)),
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but it is inconsistent to consider just these operators since higher dimensional ones will
be even more important. Thus the situation is even more complicated for large field
inflation, since one has to check that higher order operators are not generated not just
to preserve inflation but also to have a consistent EFT. Notice also that a canonical
Kahler potential naturally brings the potential to large values that invalidate the EFT
independent of any expansion, due to the exponential dependence of V on K.

Hence we realised that inflation is even more UV-sensitive in the case of models
with Ap > Mp, but why are we interested in this regime? In order to get observable
gravity waves from inflation, since Lyth derived the following bound [IT]:

1/2
= (57" )
which can be easily derived recalling the definition of the number of e-foldings N, and
the ratio between the amplitude of the tensor and scalar perturbations r:

1 [V T V'\°
Ne:M—%/Wdcp and r:§:16e:8]\/[§,<7> : (8)
which imply:
1V Ay V! r
AN, = — —A =~ — Mp—AN, = AN,/ -. 9
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Substituting in (@) the value AN, ~ 5 for the scales relevant for the measurement of
r, we obtain the bound (7). Notice that Ay corresponds to AN, ~ 5, and so Ay
corresponding to AN, ~ 50 — 60 is even bigger. The present observational limit on r is
r < 0.2 and the forecasts for future cosmological observations are r ~ 0.1 by the ESA
satellite PLANCK, r ~ 0.01 by the balloon experiments SPIDER, EPIC and BICEP,
and r ~ 0.001 by the planned NASA satellite CMBPol [12], 13].

Hence we need a trans-planckian field range during inflation to see gravity waves.
Notice that the value of r fixes also the inflationary scale M;, s since M, ~ Megypr'/*,
and so an observation of r would correspond to a direct test of GUT-scale physics.

We conclude this section by stressing that in order to solve the n-problem we need
two mechanisms: one to obtain a flat potential, i.e. 7y < 1, and the other to protect
the flatness of this potential against dangerous higher order operators. If the n-problem
is present, a 1% fine-tuning will be needed. This is not desirable but, if possible, is not
much tuning. A non-trivial question is if the fine-tuning is achievable and computable
in string models. A better output would be to find mechanisms in string theory that
avoid the fine-tuning.

3. The n-problem in string inflation

String compactifications are characterised by the ubiquitous presence of moduli which,
after moduli stabilisation, emerge as natural good candidates for inflaton fields. Focusing
on single-field slow roll inflation, there are two broad classes of string inflationary models
according to the origin of the inflaton field [14]:
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(i) Open string models [9} 10} [18];
(ii) Closed string models [15] 16 [17].

In this section we shall review how the n-problem is solved in each class of models,
showing how closed string models are more promising than the ones based on open
moduli since, in the latter case, slow-roll can be achieved only via fine-tuning.

3.1. Open string models

The inflaton is a brane position modulus that parameterises the separation between two
branes or a brane and an anti-brane [9, 10} I8]. In this class of models it is hard to get
a flat potential since 1y ~ O(1) but one can obtain 79 < 1 by means of warping.

However there is no symmetry that protects the inflaton potential from getting large
contributions from higher order operators. Let us see this in the illustrative example of
D3/D3-brane inflation [10]. The Kéhler potential for the inflaton ¢, which gives the
distance between the D3 and D3-brane, and the volume modulus 7 is:

K=-3Wn[(T+T) - ¢y (10)

The volume mode is fixed following the KKLT procedure [19]: T + T = ((T +T)).
Therefore the Kahler potential (I0) can be expanded as:
¢

. ¢
(T+T) 1= = =
AN R @+ 1))
where we defined Ko = —3In((T'+ T)). The canonically normalised inflaton field is

— By
Pe (T+T))

K =-3In =Ky+3

(11)

, and so also the F-term scalar potential can be expanded as:

Vi = eXoU(p,)e?% ~ efoU(p,) (1 + (’00(’20> , (12)
Mp

with the last term in parenthesis giving rise to a large correction to 1, dn ~ O(1). Thus
inflation can be achieved only by means of fine-tuning. A great effort has been made
in order to make sure this fine-tuning is actually possible in string models [20]. This
illustrates not only how difficult it is to obtain proper inflationary potentials in this
way, but also the level of sophistication of string theoretic models which can address
this point in explicitly calculations.

Moreover it is very hard to get large tensor modes due to bounds on field ranges. Let
us see the reason following a simple argument. Calling = the radial position of the brane
and L the characteristic size of the Calabi-Yau: Volgy = L%, we have the geometric
bound Az < L. The canonically normalised inflaton field is ¢ = M2z implying that:

A M?  LM?
_()0_ 5 < s

=A . 13
My S Mp S My (13)
The string scale is related to the 4D Planck scale by dimensional reduction:
Mp Mp 473
M, = = , = Mp = M;L". 14
\/VOlcyMsﬁ L3M53 r ( )
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Substituting (I4)) in (I3]) we end up with:
Ap _ LM; _ < 1 )2

= 1
Mp L3M4 LM, (15)
but in order to trust the EFT we need L > [, = M;' which implies LM, > 1, and so

Ap < Mp. Note that this bound holds also for the warped case [4].

3.2. Closed string models

The inflaton is either the real or the imaginary part of a closed string modulus
(15, 16, 17, 211, 22], 23| 24, 25 26]. The relevant 4D closed moduli of type IIB Calabi-Yau
orientifold compactifications with D3/D7-branes and O3/O7-planes are:

T, :Ti+ib;“, = Vol(D /04, Z.:la"'ah’;r,la

G]' =Cj — ZSbJ_, Cj = / CQ, b]_ = / BQ, j = ]_, "'7h1_17
b, Y ’

J
where D; denotes divisors of the internal three-fold, C'; and C) are respectively the

Ramond-Ramond 2- and 4-form, and B, is the Neveu Schwarz-Neveu Schwarz 2-form.
Notice that the Hodge numbers split under the orientifold action as hy; = hf’l + hiq,
and we neglected the axio-dilaton S and the complex structure moduli U since they
acquire large masses mg >~ ms/o 2 H via background fluxes [27].

3.2.1. Real part of T-moduli Examples of inflaton candidates which are the real part
of the Kéhler moduli are blow-up 4-cycles [16], fibration moduli [I7] and the volume
mode V [25]. In this case it is possible to get 7y < 1 due to the no-scale structure of the
the Kéhler potential if hf,l > 1 and keeping V fixed during inflation, in the sense that
the inflaton is a combination of the Kahler moduli orthogonal to the volume mode. In
this way the presence of inflaton-dependent higher order operators can be avoided.

Let us be more precise. The tree-level Kahler potential with the leading order o/
correction reads [28]:

§ 3
K =Ky + 0Ky =-2In (V + 293/2> —2InY — Ty (16)

Brz=hry) O(1), while the tree-level flux-generated superpotential is just a

with & x e

constant once the S and U-moduli have been integrated out: W = W. It is crucial to

notice that W, does not depend on the T-moduli. K| is of no-scale type, meaning that:
> K{ KoK, =3, (17)
0]

which in turn implies that at tree-level all the 7-directions are flat since:

V=eK (Z K D,WDsW + Y K D;W D;W — 3|W|2>
U,S T

=" KD, WDsW > 0. (18)
U,S
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The U-moduli and the axio-dilaton S are fixed supersymmetrically by imposing DsW =
DyW = 0 and the remaining potential for the 7-moduli vanishes.
The leading order o correction 6K 4y =~ —%2)} breaks the no-scale structure but
9

lifting only the volume direction. This implies tilat (hf’1 — 1) directions are still flat,
and so are natural inflaton candidates.

Moreover the tree-level Kahler potential Ko = —2In) also depends only on a
particular combination of the moduli which is the volume mode. Thus it is possible to
evade the n-problem since no inflaton-dependent higher order operator gets generated
from expanding the prefactor e¥ of the N’ = 1 F-term scalar potential.

The next question to ask is if there are further perturbative corrections that might
break the no-scale structure. The answer is yes and they are string loop corrections to
the Kéhler potential [29] [30, [31]:

K=K,+ (SK(O/) + 5K(gs)- (19)

These corrections arise from 1-loop processes involving open strings stretching from
two different stacks of D7/D3-branes. These processes can also be interpreted as the
tree-level exchange of closed strings carrying Kaluza-Klein momentum. Therefore the
dependence on the Kéahler moduli of these g, corrections for an arbitrary Calabi-Yau
has been conjectured to be 6K, ~ my%/V [30] i, where m;% gives the scaling of the
2-point function in string frame, while the inverse power of the volume accounts for the
Weyl rescaling from string to 4D Einstein frame. The Kaluza-Klein scale can be written
in terms of the Kéahler moduli if we denote with ¢ the volume of the 2-cycle transverse
to the 4-cycle wrapped by the D7-brane: mgx ~ M/l ~ M,/t'/?.

Thus we end up with a correction dangerously larger than the leading order o/ one:

t; 1
5K(gs) ~ Z v > 5K(ar) ~ v, (20)

since we need each t; > 1 in order to trust the EFT approach. This implies that all
T-direction might be lifted instead of just the volume one.

However this naive expectation turns out to be wrong since there is a generic
cancellation in the scalar potential of the leading order contribution of the g, corrections
such that 0V, > 0V(,,) even if 0K (o) < 0K(4,). This cancellation, named ‘extended
no-scale structure’ [31], is a property of the EFT that is crucial to solve the n-problem.

Let us be a bit more precise about this cancellation. It can be shown that in
the presence of a generic correction to K, K = Ky + 6K, and a constant tree-level
superpotential, W = W, if 6K is a homogeneous function in the t-moduli of degree
n = —2, then at leading order 6V = 0 [31I]. This statement can be proven by expanding
the inverse Kahler metric K1 = (Ko + (SIC)f1 and then using the homogeneity ansatz.
In such a way, the scalar potential can be expanded as:

V=Vo+Vi+ Vot ., (21)

1 Exact computations are possible only for simple toroidal orientifolds [29]. However this conjecture
has passed several low-energy tests [31].
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where Vj = 0 due to the well-known no-scale structure, whereas:

1We
Vi= g (n+2) K, (22)
which vanishes for n = —2 giving rise to the extended no-scale structure, and:
W¢ 0’ K,
Vo, = —9 . 23
LTV o (23)

Notice that the gy correction (20)) is indeed a homogeneous function of the ¢-moduli of
degree n = —2 since the volume scales as V ~ t3. Moreover the first non-vanishing
contribution to the scalar potential scales as V5 ~ 1/ (V3t), and so for ¢ > 1 it is indeed
subleading with respect to the o' contribution which behaves like Vi) ~ 1/V3.

Let us now illustrate these concepts in the simple case of just one modulus:
V = 732 = 3 with t = \/7. The superpotential is a constant W = T, while the
Kahler potential including the leading o and g, corrections looks like (with £ = f/g§/2):

K:—2an—§+g. (24)
The corresponding F'-term scalar potential becomes:
fwp WAL WE Wi
V =0+ N2 +0- 3 +ﬁv3+73/2v3. (25)

The first vanishing contribution is due to the no-scale structure, the second term gives
the leading o' correction, the second vanishing piece is the extended no-scale, the fourth
term represents the leading g, correction, while the last term gives the subleading string
loop contribution. It is now clear that dV(a) > 6V, since 6V(,,)/0Viay =7 /2 < 1.

The extended no-scale structure admits a low-energy interpretation in terms of the
Coleman-Weinberg potential [32]:

M2
SVi—toop 2 0 - A* + A*STr (M?) + STr <M4 In ( A )) , (26)
where the cut-off is given by the Kaluza-Klein scale:
M Mp
A:MKK:T1/4 ~ A and STr (M?) :mg/gszD/V? (27)

Notice that the first term in (26]) is vanishing in any supersymmetric theory with the

same number of bosonic and fermionic degrees of freedom. The volume scaling of the

Coleman-Weinberg potential therefore turns out to be:
1 1 1

V8/3 V10/3 + vy

which matches exactly the scaling of the string loop corrections in (25) once we make

the substitution 7 = V/3:

OVi—100p = 0 - (28)

\/7_' 1 1 1 1 1
V(g =0 \/_V?’ 7.3/2];3—0 V8/3 V10/3 ﬁ' (29)
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From this very general analysis of all the possible corrections to the scalar potential,

we learnt that the inflationary potential can be generated in two ways:

()
(i)

via string loops like in the ‘Fibre inflation’ model [17];

via tiny non-perturbative effects like in the ‘Blow-up inflation’ model [16]. In this
case the superpotential gets non-perturbative corrections of the form:

W =W+ Aje ", (30)

which can then be used to generate the inflationary potential but only if there
are no loop corrections since they tend to dominate the non-perturbative effects in
the inflationary region: 6V, ) > 0V,,. A possible way-out to avoid the presence
of open string loop corrections @ would be to generate the inflationary potential
via E D3 instantons instead of gaugino condensation on D7-branes, but one should
then carefully check if a high enough inflationary scale could also be obtained.

3.2.2.  Imaginary part of T-moduli FExamples of inflaton candidates which are the

imaginary part of the Kahler moduli are the C4-, Cs- or Bs-axions. Except for the

Bs-axions, their action enjoys a shift symmetry a — a + ¢ which is broken only non-

perturbatively [34]. This implies that the tree-level K&hler potential does not depend on

the axion field a, providing a nice mechanism to forbid the appearance of higher order

operators from the expansion of the prefactor eX of the F-term scalar potential.

This is of course not enough to solve the n-problem since one has still to explain

why 1o = M3V, /Vy < 1. Here are some possible attempts:

i)
ii)

iii)

iv)

Trying to use just one Cy-axion as the inflaton, it turns out that ny < 1 only for
an axion decay constant larger than Mp, and so the potential is not flat enough.

1o < 1 can be obtained without requiring trans-planckian axion decay constants by
considering a racetrack superpotential like in the ‘Racetrack inflation” models [15].
Inflationary slow-roll can be achieved along a Cj-axion direction close to a saddle
point only by means of fine-tuning and no observable gravity waves get produced.

1o < 1 can also be obtained for sub-planckian axion decay constants by using
N Cj-axions which combine together to give the inflaton direction like in the ‘N-
flation’ model [21] where r turns out to be large w However this model is very
hard to realise since the real parts of the T-moduli have to be fixed at an energy
much larger than the axion potential. Moreover having a scalar potential (and
not the superpotential) as a sum of exponentials is a very strong assumption for
supergravity actions.

The n-problem can be solved with the help of monodromy by choosing a Cs-axion
as the inflaton like in the ‘Axion monodromy’ model [23] 24]. The inflaton travels
a trans-planckian distance in field space leading to observable gravity waves.

§ Subleading closed string loop effects [33] are likely to depend only on the volume mode.
|| See also [22] for a model with N Cs-axions.
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4. Inflationary model building for closed moduli

We shall follow a two-step strategy in order to build promising string inflationary models:

A) Find a de Sitter vacuum with all closed string moduli stabilised so that the effective
field theory and the whole scalar potential are under control,;

B) Look for inflationary directions @

4.1. Moduli stabilisation

The first historic example with all geometric moduli fixed is the KKLT scenario [19]

where K and W take the form:
hi,1

K=Ky=-2InV, W=W+> Ae ™" (31)

and all Kahler moduli are stabilised non-perturbatively. Despite all its fundamental
achievements, this scenario exhibits some problems:

(i) Need to fine-tune Wy such that Wy ~ W, ~ e~ . This fine-tuning guarantees
the presence of a minimum and the fact that one can safely neglect perturbative

corrections to the Kahler potential since:

Vi W 1

Vi ~ EWoW,y, Vo~ K WEK, = 220 " — <1, (32

P e 0 P> p e 0~ *p ‘/;) WOKp Kp < ) ( )

given that K, = 0Ky ~ V! < 1 for V > 1. However for natural values of

Wy ~ O(1) > W, this is not true anymore.

(ii) Need non-perturbative effects for each 4-cycle and this is very hard to get. In fact,
Wy gets definitely generated only for rigid cycles, and in addition there is a tension
between instanton effects and the presence of chirality [37].

(iii) Need to add D3-branes to up-lift the initial AdS minimum to dS. However in this
way supersymmetry is broken explicitly with some debates about the possibility to
work in a supersymmetric framework.

A solution to all these problems is provided by the LARGE Volume Scenario (LVS)
[38] which is an extension and a generalisation of the KKLT set-up. No fine-tuning of
the background fluxes is necessary, so Wy ~ O(1), and perturbative corrections to K
have to be taken into account. Let us describe the simplest version of the LVS with
hi1 = 2 for compactifications on a orientifold of the Calabi-Yau Pﬁl,l,l,ﬁ,%(lg)' The

3/2 3/2
/2 _ 3

volume reads V = 7, . The N' =1 F-term scalar potential can be derived from:

K=-2In (7’5’/2 - 7'33/2> - 93/52]}, W =Wy + Age %", (33)
and after axion minimisation (which sets cos (as(bs)) = —1) takes the form:
V _ ﬁazAge—msTs B (LSASWOTSe*asTs n §W02 . (34)
)Y V2 gg/Qv?)

§ For a general analysis of the supergravity conditions for dS vacua see [35] while for inflation see [36].
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Notice that we need non-perturbative corrections only in 74 which is a rigid blow-up

4-cycle [39]. We can integrate out 7y by imposing 0V /07, = 0 which gives as7s ~ In V.

Hence (34) simplifies to:

W (Iny)*? R
V3 gg/Qv?) '

Now setting 9V/0V = 0 we obtain InV ~ ¢2/3/g, corresponding to an exponentially

large volume minimum localised at (for g; ~ 0.1):

To~git v O(10), YV~ Woes™ ~ Wye®/% > 1. (36)
Note that a; = 27 in the case of an ED3 instanton whereas a;, = 27/N for gaugino
condensation in an SU(N) theory. The minimum is AdS but, contrary to KKLT, it
breaks SUSY spontaneously. The fact that SUSY is broken can be realised by noticing

that the scalar potential (34)) scales as V' ~ O(V™3) while the general expression of the
F-term scalar potential contains a terms that scales as —3eX|W|? ~ O(V~2). This forces

V=-—

(35)

also some D;W to be non-zero so that a cancellation in V' at order V=2 can be obtained.
A detailed calculation reveals that the largest F-term is the one of the volume mode,
Fr, # 0, so that 7, is the main responsible for SUSY breaking and its corresponding
fermionic partner is the Goldstino that gets eaten-up by the gravitino [40].

The D-term scalar potential can be used to get a dS vacuum [41] 42] . In fact
wrapping a D7-brane around 7, and turning on a gauge flux on an internal 2-cycle, leads
to the following D-term potential:

2
0K
Vp =g (fb > qia—go-%) ; (37)

where the Fayet-Iliopoulos term is given by (with ¢, denoting a gauge flux coefficient):
6=ng =52 (33)
It can be shown that Vi forces all {|¢;|) = 0, and so, recalling that ¢g> = 7,/(4n), the
D-term scalar potential reduces to Vp ~ p/7 ~ p/V?, which can be used as a nice up-
lifting potential by fine-tuning the coefficient p ~ O(V~1) so that Vp also scales as V3.
Notice that in supergravity a non-vanishing D-term can be obtained only if the F-term
is also non-zero. This does not happen in KKLT since the original AdS minimum is
supersymmetric, contrary to the LVS where the AdS minimum breaks SUSY.

We finally point out that in the limit Wy < 1 the LVS vacuum reduces to the KKLT
one, so in this sense the LVS can be seen as a generalisation of the KKLT scenario. The
LVS can also be extended to more complicated topologies allowing the presence of many
rigid blow-up modes with non-perturbative effects [40]:

V=N A (39)
J

Moreover, as we have already seen, string loop corrections are negligible due to the
extended no-scale structure.

* For possible scenarios with F-term uplifting see [43].
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4.2. Four-cycle moduli as inflaton fields

4.2.1. Blow-up inflation The minimal field content for realising ‘Blow-up inflation’
is hy; = 3 [16]. The volume is V = « (7'13/2 — ri? - 737'33/2>, and the Kéhler and
superpotential read:

K = -2 ln V + 3/52 s W = W() + A2 67a2T2 + A3 67043T3. (40)
gs'"V
The resulting scalar potential looks like:
3 3 9
= 2 2\/7Ti —2a;7; Ti —aimi W5
V = ZaiAiTe — ZaiAZ’W()ve + 3/2]}3, (41)
i=2 i=2 9s
and the minimum is located at:
aaTy ~ a3T3 ~ g, b, V >~ Wy /T €™ ~ Wy /T3 €57, (42)

Displacing 75 far from its minimum, this field can drive inflation while 73 keeps the
volume minimum stable during the inflationary dynamics. The potential in terms of
the canonically normalised inflaton field ¢/Mp ~ 75/* /V'/2 takes the form:

4/3 a3 _e \4/?
V:%—B(Miv> e (ih) (43)

In order to get both € < 1 and n < 1 we need V3,43 > M;i/?’ & o> Mp/V'V? = M,.
This implies that we are dealing with a small-field inflationary model that does not yield
observably large gravity waves: r < 1. On the other hand, the spectral index is in the
right region 0.960 < ng < 0.967. It is interesting to notice that inflation takes place
exactly in the region of field space where the EFT can be trusted since:
M 3/ M
The value of the Calabi-Yau volume is fixed by the requirement of generating enough
density perturbations, dp/p ~ 1075, and it turns out to be V ~ (10° = 107) £.
A dangerous correction to this potential comes from string loops which behave as:

1 1

& />, (44)

OVigs) ~ JV? ~ 2FPI0]3 (45)
and lead to a correction to the n-parameter of the form (where Vg ~ £/V3):
oVl 1
o~ ME—19) (46)

Py B/3V1/3 £
This correction is larger than unity for small 7 since substituting in (46) the expression
for the canonically normalised inflaton, we end up with 8y ~ V/(72€) > 1, for 7, < V/V.
This may be seen as a manifestation of the n-problem in the loop corrected potential. If
the brane configuration is such that these corrections are absent, then this mechanism
works, otherwise fine-tuning is needed in order to get slow-roll inflation. Notice that
dn can become smaller than unity for larger values of 7 but then 6Vy,) > 6V, and
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the inflationary potential is completely different since it would be generated by string
loops instead of non-perturbative effects. Moreover, one should make sure not to hit
the walls of the Kahler cone by taking 7 too large. We shall now consider a different
model where the inflationary potential is indeed generated by string loops.

4.2.2. Fibre inflation The ‘Fibre inflation’ model is realised for Calabi-Yaus which are
K3 fibrations over a P' base with an additional blow-up mode, so that hy; = 3 [I7].

The volume is V = « (\/7717'2 — 737'5’/2> while the Kahler and superpotential read:

3
Y

The resulting scalar potential looks like:

K=-2In <V + ) s W = W() + Ag 67G3T3. (47)

2
V= aiAigem‘m - G3A3WU%67G3T3 + ;2/10;3’ (48)
S

and depends only on two moduli: 73 and V, which can be stabilised at 73 ~ 1/g; and
V ~ Wyy/T3€%™. The direction in the (7, 72)-plane orthogonal to the volume is still
flat, and so it represents a perfect inflaton candidate. This direction can be lifted only
at subleading order by the inclusion of string loop corrections which take the form:
Wig) = (Ag;? - Cg?ﬁ) %2,

i V1 V? V?

where A, B and C' are unknown O(1) coefficients. The potential (49) fixes the K3
fibre modulus 7 at 7 ~ gi/?’ V2/3. Working in the (71, 72)-plane and displacing 7 far

(49)

from its minimum, this field can drive inflation while 73 keeps the volume minimum
stable. The inflationary potential in terms of the canonically normalised inflaton field
©/Mp ~ /3InT1/2 looks like (with R ~ g < 1 and 8 ~ O(1)):

B
Y10/3

__ 9 _ 4y 2¢
V= <3—4e VBMp | e V3Mp +Re*/§MP>. (50)
The inflationary dynamics is better understood dividing the field space in four different
regions as indicated in Figure 1 and then analysing each region separately. Inflation
takes place in region 2 where the dynamics is completely dominated by the first negative
exponential in (B0), and so the inflationary potential can very well be approximated as:

B )

The boarder between region 1 and 2 is given by an inflectionary point with n = 0
which develops when the second negative exponential in (B0) starts competing with the
first one. The parameter ¢ becomes of the order unity and so inflation ends. On the
other hand, region 3 is characterised by the fact that the positive exponential in (50
starts becoming important leading to n > € > 0. We are still in the slow-roll regime
but the spectral index ny; = 1 4 27 — 6e becomes larger than unity in contradiction
with CMB observations. Hence we do not consider any inflationary dynamics in this



String moduli inflation: an overview 14

|
‘x
I

\
T T T NP

Figure 1. Inflationary potential for the ‘Fibre inflation’ model.

region. Finally the boarder between region 3 and 4 is set by the violation of the slow-roll
conditions. Further away in this final region fully dominated by the positive exponential,
perturbation theory breaks down due to the fact that the K3 fibre modulus 7 becomes
extremely large while the 2-cycle which is the basis of the fibration shrinks to zero size.
This is a nice example of large field inflation since Ay > Mp. Furthermore, all
adjustable parameters enter only in the prefactor of the inflationary potential, making
this model very predictive and leading to an interesting relation between r and n,:

r~6(n,—1)°. (52)

The prediction for the cosmological observables is ny ~ 0.97 and r ~ 0.005. The
inflationary scale is fixed by the requirement of generating the observed density
perturbations, and sets V ~ 10*/¢ corresponding to M, ~ Mgyr ~ 106 GeV.
Contrary to ‘Blow-up inflation’; this mechanism does not suffer from the n-problem
in the sense that no O(1) corrections to 7 arise at loop level. Being a large field model,
loop corrections are suppressed by the size of the field and are naturally small. The
n-problem is absent because the supergravity potential being almost no-scale is not
generic, while the arguments used regarding the n-problem assume a generic Kahler
potential. There is also a symmetry enhancement in the limit of infinite volume.

4.3. Axions as inflaton fields

As we have already pointed out, the action of an axion field a enjoys a shift symmetry
a — a + ¢ which is perturbatively exact. Hence no axion-dependent dimension 6 Mp-
suppressed operator of the form Va?/M? can arise, singling out the axion as a natural
inflaton candidate in relation to this nice partial solution of the n-problem.

4.3.1. Single axion A typical axion potential is given by:

V(a) = A* (1 — cos <f1>> : (53)
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where f, denotes the axion decay constant which sets its coupling to gauge bosons:
1 a
£:§8ua8”a+f—/F/\F. (54)
In the case of Cy-axions b; = fz- Cy, where ¥; is an internal 4-cycle, the axion potential
might be generated by a stringy instanton wrapping ¥;. As we have already seen, the
superpotential for the LVS is W = W, + A, e~ %" with T, = 7, + ib,, and so the scalar
potential in units of Mp becomes (ignoring ' corrections):

CL?A? T, € 20sTs e 4sTs

V= S - aszaszOTsT cos (ashs) . (55)
We can therefore reproduce a potential of the form (B3] with the scale A given by:
. e m=TMy M} Mp
A 2 Y A Vi (56)
The slow-roll parameters for the axion potential (53] look like:
M2 sin?(a/f, Mp\?
€= —— sin” (a/ fa) 2:( P) , (57)
213 (1 —cos (a/fa)) fa
M2 cos(a/f, Mp\?
g = Mp_cosla/fo) :(P). (58)
fa 1—COS(a/fa) Ja

showing how € ~ n ~ (Mp/fa)2 < 1 only if f, > Mp, but this is never the case. Thus
we realise that the potential of a single axion is not flat enough to drive inflation.

4.3.2.  Racetrack inflation The ‘Racetrack inflation’ models were the first explicit
examples of closed string inflation [I5]. They were both realised in the context of the
KKLT scenario with one and two Kéhler moduli respectively. In the first scenario the
single-field KKLT framework is modified by including a racetrack superpotential [44]:

W=Wy+ A e’ + 4" (59)

The scalar potential has a saddle point in the direction of the axion component of 7.
By a tuning of the parameters of order 0.1%, the region close to the saddle point can be
made flat enough to allow (topological eternal [45]) inflation. The main observational
implications are a spectral index n, ~ 0.95 and negligible tensor modes (r < 107'2).

Very similar physical implications are obtained in the improved ‘Racetrack inflation’
scenario. In this case the Calabi-Yau manifold has two Kahler moduli 77 and 75 with
Kahler and superpotential of the form:

K=-2In (7'13/2 — 7'23/2> , W =Wy+ Aje T 4 Aye P2, (60)

In this case there are two axion-like fields and there is much less room to play with
the parameters. However inflation is also obtained in one of the axionic directions.
The amount of fine-tuning is similar to the single field case as well as all the physical
implications. In particular the value of the spectral index fits perfectly well within the
experimentally allowed window.

Both these scenarios were important to realise inflation in a concrete string model
even if the amount of fine-tuning of the underlying parameters is significant.
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4.3.3. N-flation The first inflationary scenario based on more than one axion, say for
definiteness N of them, is the ‘N-flation’ model [21]. The total action takes the form:

o o v rooe ()]

The equations of motion d; + 3Ha; = —0V/da; imply that each axion evolves
independently. However focusing on the collective motion of the N axions we obtain:

Mp\? 1 Mp\ 1
~(F) w = (F)w @

which gives rise to the possibility to get ¢ < 1 and n < 1 for f, < Mp if N > 1.
Moreover one can get large tensor modes even if each single axion travels a sub-planckian
distance in field space: Ay, < Mp.

The main obstacle against the realisation of such a multiple axion inflationary

scenario is the need to fix all the real parts of the T-moduli at an energy larger than the
axion potential: V(1) > V(a) < m, > m,. Thisis the only way to avoid the presence of
dangerous steep directions along which the field would quickly roll down destroying the
inflationary dynamics. However in general the non-perturbative effects used to generate
the axion potential give also a mass to the 4-cycle moduli of the same order of magnitude:
m, ~ mg. For example focusing again on the LVS, m, ~ my ~ Mp/V ~ mg/o. Thus
one should try to fix all the 7’s perturbatively, which is a hard task without invoking
fine-tuning. Another issue is that one should check that these axions do not get eaten-up
by any Green-Schwarz mechanism.

4.3.4. Axion monodromy The first example of a single axion with a flat potential
and Ag, > Mp has been provided by the ‘Axion monodromy’ model [23]. The key-
ingredient to obtain a trans-planckian motion for a field like an axion which is periodic
with period given by its decay constant: ¢, — ¢, + f,, is to use monodromy, i.e.
studying how the axion behaves when it turns around a singularity.

In the case of D5-branes wrapping a 2-cycle 3, of size Vol (33) = L2, the action
for the axion b = f22 B, is:

1 1
SDar ~ _/ d°¢\/det (G + B) = ——/d‘*:r\/—g L3+ b2 (63)
g My x3o gs

At large b, the potential can be approximated as V ~ p?bf = p?¢, becoming linear in
the canonically normalised inflaton ¢. The D5-brane breaks the shift symmetry and
gives a non-periodic contribution as b — b+ f. Thus V undergoes a monodromy that
‘unwraps’ the axion circle. However b appears also in the tree-level Kahler potential K,
and so it is not a good inflaton candidate due to the presence of higher order operators.

A better candidate is the Cy-axion ¢ = f22 C5 since it does not appear in K.
Wrapping an N S5-brane around X5, the potential for the axion ¢ looks like:

1
Sngs ~ —g—/d4$\/ —g\/ L3 + g2c2. (64)
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Again at large ¢, the potential can be approximated as V'(¢) ~ ¢, becoming linear in the
canonically normalised inflaton. The inclusion of non-perturbative effects in the Kahler
potential from an F D1 instanton wrapping Y, gives rise to a cosine modulation:

V ~ udp+ Acos (?) : (65)

One needs again to fix the real parts of the T-moduli at a higher scale to avoid a
possible destabilisation of the inflationary potential, which can be done using warping.
The spectral index is ny; ~ 0.975 and, due to a trans-planckian field range, Ay ~ 11Mp,
observable tensor modes with r ~ 0.07 get produced. Moreover the cosine modulation
gives ripples in the power-spectrum [46] and resonant non-gaussianities [47]. However
this very promising inflationary model is missing a fully consistent compact example.

5. Open issues beyond inflation

There are several open challenges in string cosmology beyond deriving just closed moduli
inflation. In this section we shall just briefly mention some of them:

e Study of pre- and re-heating which is at the moment available only for brane-
antibrane inflation [6] and K&hler moduli inflation [7].

e Study of finite-temperature corrections to the moduli potential from the thermal
bath. In this way one finds a maximal temperature 7., that sets an upper bound
on the reheat temperature, Try < Ty.z, to avoid a decompactification limit. In
the KKLT case Tz ~ /M3 Mp ~ 10'° GeV for mg), ~ 1 TeV [48], while for the

1/4
LVS case, Trae ~ (m§/2Mp> ~ 107 GeV [49]. It would also be interesting to
find a model where finite-temperature corrections generate a late epoch of thermal
inflation [50] which might be needed to eliminate relics in the later Universe.

e Study of the post-inflationary (non)-thermal history of the moduli. It is important
to follow the moduli evolution in the presence of thermal corrections [51], and then
study their late time decay with the possible production of nice astrophysical signals
[52] or non-thermal dark matter [53].

e Derivation of inflationary scenarios which allow TeV-scale supersymmetry solving
the generic tension between cosmology and particle phenomenology [54]. The origin
of this tension can be illustrated expressing the inflationary scale as M;,, s = V4~
V' HMp and noticing that the scalar potential in the KKLT and LVS cases scale as:

Vicrr =~ m3, Mp, Vivs ~ m3;,Mp. (66)
Thus for KKLT: myy, ~ H ~ M2./Mp while for LVS: myp, ~ H?3M® ~

M;Ln/;’ /M;,/?’. The requirement of generating the density perturbations, p/p ~ 1075,
generically sets M;,; ~ Mgy, which implies M, p; ~ mgz/2 > 1 TeV.



String moduli inflation: an overview 18

Two available solutions are:

(i) The volume V can be used as the inflaton field [25]. In this way a high
inflationary scale can be obtained by having V small during inflation, while
a low m3/ can be achieved for V large at the end of inflation. Unfortunately
this scenario requires fine-tuning.

(ii) Some MSSM realisations via D-branes at orbifold singularities can be
sequestered from the bulk, resulting in a hierarchy between M,,;; and ms/,
which might be even of the order M,z ~ ms/2/V [53]. These models allow
Mozt ~ 1 TeV for large mg/s.

e Study of multi-field inflationary dynamics that can provide alternative mechanisms
[56, [57] to generate the density perturbations, which can lower the inflationary scale
and give rise to large non-Gaussianities. Two interesting scenarios are:

(i) The authors of [58] derived a curvaton model [56] from string theory by
combining some features of ‘Blow-up inflation” with others of ‘Fibre inflation’.
The model predicts large non-gaussianities of local type, but the inflationary
scale is still of the order Mgyr.

(ii) A very promising string-inspired scenario is based on modulated reheating [57]
but no explicit string derivation is presently available even if some attempts
are currently under way [59].

References

[1] F. Quevedo, Class. Quant. Grav. 19 (2002) 5721 [arXiv:hep-th/0210292]; R. Kallosh, Lect. Notes
Phys. 738 (2008) 119 [arXiv:hep-th/0702059]; C. P. Burgess, PoS P2GC (2006) 008 [Class.
Quant. Grav. 24 (2007) S795] [arXiv:0708.2865 [hep-th]]; L. McAllister and E. Silverstein, Gen.
Rel. Grav. 40 (2008) 565 [arXiv:0710.2951 [hep-th]]; M. Cicoli, Fortsch. Phys. 58 (2010) 115
[arXiv:0907.0665 [hep-th]].

[2] D. Lust et al , Nucl. Phys. B 808 (2009) 1 [arXiv:0807.3333 [hep-th]]; D. Lust et al , Nucl. Phys.
B 828 (2010) 139 [arXiv:0908.0409 [hep-th]]; M. Cicoli et al ,larXiv:1105.2107 [hep-th].

[3] E. J. Copeland et al , Phys. Rev. D 49 (1994) 6410 |arXiv:astro-ph/9401011].

[4] D. Baumann and L. McAllister, Phys. Rev. D 75 (2007) 123508 |arXiv:hep-th/0610285].

[5] R. Kallosh and A. Linde, JCAP 0704 (2007) 017 [arXiv:0704.0647 [hep-th]].

[6] N. Barnaby et al , JCAP 0504 (2005) 007 [arXiv:hep-th/0412040]; L. Kofman and P. Yi, Phys.
Rev. D 72 (2005) 106001 [arXiv:hep-th/0507257]; D. Chialva et al , JHEP 0601 (2006) 014
|[arXiv:hep-th /0508229.

[7] D. R. Green, Phys. Rev. D 76 (2007) 103504 [arXiv:0707.3832 [hep-th]]; N. Barnaby et al , JCAP
0912 (2009) 021 [arXiv:0909.0503 [hep-th]]; M. Cicoli and A. Mazumdar, JCAP 1009 (2010)
025 [arXiv:1005.5076 [hep-th]]; M. Cicoli and A. Mazumdar Phys. Rev. D 83 (2011) 063527
[arXiv:1010.0941 [hep-th]].

[8] M. B. Hindmarsh and T. W. B. Kibble, Rept. Prog. Phys. 58 (1995) 477 [arXiv:hep-ph/9411342].

[9] G. R. Dvali and S. H. H. Tye, Phys. Lett. B 450 (1999) 72 [arXiv:hep-ph/9812483)|.

[10] C. P. Burgess et al , JHEP 0107 (2001) 047 [arXiv:hep-th/0105204]; G. R. Dvali et al ,
arXiv:hep-th/0105203; C. Herdeiro et ol , JHEP 0112 (2001) 027 |arXiv:hep-th/0110271];
C. P. Burgess et ol , JHEP 0203 (2002) 052 [arXiv:hep-th/0111025]; S. Kachru et ol , JCAP
0310 (2003) 013 [arXiv:hep-th/0308055]; H. Firouzjahi and S. H. H. Tye, Phys. Lett. B 584


http://arxiv.org/abs/hep-th/0210292
http://arxiv.org/abs/hep-th/0702059
http://arxiv.org/abs/0708.2865
http://arxiv.org/abs/0710.2951
http://arxiv.org/abs/0907.0665
http://arxiv.org/abs/0807.3333
http://arxiv.org/abs/0908.0409
http://arxiv.org/abs/1105.2107
http://arxiv.org/abs/astro-ph/9401011
http://arxiv.org/abs/hep-th/0610285
http://arxiv.org/abs/0704.0647
http://arxiv.org/abs/hep-th/0412040
http://arxiv.org/abs/hep-th/0507257
http://arxiv.org/abs/hep-th/0508229
http://arxiv.org/abs/0707.3832
http://arxiv.org/abs/0909.0503
http://arxiv.org/abs/1005.5076
http://arxiv.org/abs/1010.0941
http://arxiv.org/abs/hep-ph/9411342
http://arxiv.org/abs/hep-ph/9812483
http://arxiv.org/abs/hep-th/0105204
http://arxiv.org/abs/hep-th/0105203
http://arxiv.org/abs/hep-th/0110271
http://arxiv.org/abs/hep-th/0111025
http://arxiv.org/abs/hep-th/0308055

String moduli inflation: an overview 19

(2004) 147 [arXiv:hep-th/0312020]; N. lizuka and S. P. Trivedi, Phys. Rev. D 70 (2004) 043519
|arXiv:hep-th /0403203]; C. P. Burgess et al , JHEP 09 (2004) 033 [arXiv:hep-th/0403119)].

[11] D.H. Lyth, Phys. Rev. Lett. 78 (1997) 1861 [arXiv:hep-ph/9606387].

[12] L. Verde, H. Peiris and R. Jimenez, JCAP 0601 (2006) 019 |arXiv:astro-ph/0506036].

[13] J. Bock et al , larXiv:0805.4207 [astro-ph].

[14] P. Binetruy and M. K. Gaillard, Phys. Rev. D 34, 3069 (1986); T. Banks et al , Phys. Rev. D 52,
3548 (1995) [arXiv:hep-th/9503114).

[15] J. J. Blanco-Pillado et al , JHEP 0411 (2004) 063 [arXiv:hep-th/0406230]; J. J. Blanco-Pillado et
al , JHEP 0609 (2006) 002 [arXiv:hep-th/0603129).

[16] J. P. Conlon and F. Quevedo, JHEP 0601 (2006) 146 |arXiv:hep-th/0509012]; J. R. Bond et al ,
Phys. Rev. D 75 (2007) 123511 [arXiv:hep-th/0612197).

[17] M. Cicoli, C. P. Burgess and F. Quevedo, JCAP 0903 (2009) 013 [arXiv:0808.0691 [hep-th]].

[18] E. Silverstein and D. Tong, Phys. Rev. D 70, 103505 (2004) [arXiv:hep-th/0310221]; M. Alishahiha
et al , Phys. Rev. D 70, 123505 (2004) [arXiv:hep-th/0404084]; K. Becker et al , Nucl. Phys. B
715, 349 (2005) [arXiv:hep-th/0501130].

[19] S. Kachru et al , Phys. Rev. D 68, 046005 (2003) [arXiv:hep-th/0301240].

[20] D. Baumann et al , JCAP 0801 (2008) 024 [arXiv:0706.0360 [hep-th]].

[21] S. Dimopoulos et al , JCAP 0808, 003 (2008) [arXiv:hep-th/0507205].

[22] T. W. Grimm, Phys. Rev. D 77 (2008) 126007 [arXiv:0710.3883 [hep-th]].

[23] E. Silverstein and A. Westphal, Phys. Rev. D 78, 106003 (2008) [arXiv:0803.3085 [hep-th]];
L. McAllister et al , Phys. Rev. D 82 (2010) 046003 [arXiv:0808.0706/ [hep-th]].

[24] N. Kaloper, A. Lawrence and L. Sorbo, JCAP 1103 (2011) 023 [arXiv:1101.0026 [hep-th]].

[25] J. P. Conlon et al , JCAP 0809 (2008) 011 [arXiv:0806.0809 [hep-th]].

[26] A. Avgoustidis et al , Gen. Rel. Grav. 39 (2007) 1203 [arXiv:hep-th/0606031]; M. Badziak and
M. Olechowski, JCAP 0807, 021 (2008) [arXiv:0802.1014 [hep-th]]; H. X. Yang and H. L. Ma,
JCAP 0808 (2008) 024 [arXiv:0804.3653 [hep-th]].

[27] S. B. Giddings et al , Phys. Rev. D 66 (2002) 106006 [arXiv:hep-th/0105097].

[28] K. Becker, M. Becker, M. Haack, and J. Louis, JHEP 0206 (2002) 060 [arXiv:hep-th/0204254].

[29] M. Berg, M. Haack, and B. Kors, JHEP 0511 (2005) 030 [arXiv:hep-th/0508043].

[30] M. Berg, M. Haack and E. Pajer, JHEP 0709 (2007) 031 [arXiv:0704.0737 [hep-th]].

[31] M. Cicoli, J. P. Conlon and F. Quevedo, JHEP 0801 (2008) 052 [arXiv:0708.1873 [hep-th]].

[32] S. R. Coleman and E. Weinberg, Phys. Rev. D 7 (1973) 1888; S. Ferrara et al , Nucl. Phys. B 429
(1994) 589 [Erratum-ibid. B 433 (1995) 255] [arXiv:hep-th/9405188|.

[33] G. von Gersdorff and A. Hebecker, Phys. Lett. B 624 (2005) 270 [arXiv:hep-th/0507131].

[34] J. P. Hsu and R. Kallosh, JHEP 0404 (2004) 042 [arXiv:hep-th/0402047].

[35] L. Covi et al , JHEP 0806 (2008) 057 [arXiv:0804.1073 [hep-th]].

[36] L. Covi et al , JHEP 0808 (2008) 055 [arXiv:0805.3290 [hep-th]].

[37] R. Blumenhagen, S. Moster and E. Plauschinn, JHEP 0801 (2008) 058 [arXiv:0711.3389 [hep-th]].

[38] V. Balasubramanian et ol , JHEP 0503 (2005) 007 [arXiv:hep-th/0502058].

[39] M. Cicoli, J. P. Conlon and F. Quevedo, JHEP 0810 (2008) 105 [arXiv:0805.1029 [hep-th]].

[40] J. P. Conlon, F. Quevedo and K. Suruliz, JHEP 0508 (2005) 007 [arXiv:hep-th/0505076].

[41] C. P. Burgess, R. Kallosh, and F. Quevedo, JHEP 0310 (2003) 056 [arXiv:hep-th/0309187].

[42] S. L. Parameswaran and A. Westphal, JHEP 0610 (2006) 079 [arXiv:hep-th/0602253|;
D. Cremades et al , JHEP 0705 (2007) 100 [arXiv:hep-th/0701154]; S. Krippendorf and
F. Quevedo, JHEP 0911 (2009) 039 [arXiv:0901.0683 [hep-th]]. M. Cicoli et al ,larXiv:1103.3705
[hep-th].

[43] A.Saltman and E. Silverstein, JHEP 0411 (2004) 066 |arXiv:hep-th/0402135]; A. Westphal, JHEP
0703 (2007) 102 [arXiv:hep-th/0611332].

[44] C. Escoda, M. Gomez-Reino and F. Quevedo, JHEP 0311 (2003) 065 [arXiv:hep-th/0307160].

[45] A.D. Linde, Phys. Lett. B 327 (1994) 208 [arXiv:astro-ph/9402031]; A. Vilenkin, Phys. Rev. Lett.
72 (1994) 3137 [arXiv:hep-th/9402085).


http://arxiv.org/abs/hep-th/0312020
http://arxiv.org/abs/hep-th/0403203
http://arxiv.org/abs/hep-th/0403119
http://arxiv.org/abs/hep-ph/9606387
http://arxiv.org/abs/astro-ph/0506036
http://arxiv.org/abs/0805.4207
http://arxiv.org/abs/hep-th/9503114
http://arxiv.org/abs/hep-th/0406230
http://arxiv.org/abs/hep-th/0603129
http://arxiv.org/abs/hep-th/0509012
http://arxiv.org/abs/hep-th/0612197
http://arxiv.org/abs/0808.0691
http://arxiv.org/abs/hep-th/0310221
http://arxiv.org/abs/hep-th/0404084
http://arxiv.org/abs/hep-th/0501130
http://arxiv.org/abs/hep-th/0301240
http://arxiv.org/abs/0706.0360
http://arxiv.org/abs/hep-th/0507205
http://arxiv.org/abs/0710.3883
http://arxiv.org/abs/0803.3085
http://arxiv.org/abs/0808.0706
http://arxiv.org/abs/1101.0026
http://arxiv.org/abs/0806.0809
http://arxiv.org/abs/hep-th/0606031
http://arxiv.org/abs/0802.1014
http://arxiv.org/abs/0804.3653
http://arxiv.org/abs/hep-th/0105097
http://arxiv.org/abs/hep-th/0204254
http://arxiv.org/abs/hep-th/0508043
http://arxiv.org/abs/0704.0737
http://arxiv.org/abs/0708.1873
http://arxiv.org/abs/hep-th/9405188
http://arxiv.org/abs/hep-th/0507131
http://arxiv.org/abs/hep-th/0402047
http://arxiv.org/abs/0804.1073
http://arxiv.org/abs/0805.3290
http://arxiv.org/abs/0711.3389
http://arxiv.org/abs/hep-th/0502058
http://arxiv.org/abs/0805.1029
http://arxiv.org/abs/hep-th/0505076
http://arxiv.org/abs/hep-th/0309187
http://arxiv.org/abs/hep-th/0602253
http://arxiv.org/abs/hep-th/0701154
http://arxiv.org/abs/0901.0683
http://arxiv.org/abs/1103.3705
http://arxiv.org/abs/hep-th/0402135
http://arxiv.org/abs/hep-th/0611332
http://arxiv.org/abs/hep-th/0307160
http://arxiv.org/abs/astro-ph/9402031
http://arxiv.org/abs/hep-th/9402085

String moduli inflation: an overview 20

[46] R. Flauger et al , JCAP 1006, 009 (2010) [arXiv:0907.2916/ [hep-th]].

[47] S. Hannestad et al , JCAP 1006, 001 (2010) [arXiv:0912.3527 [hep-ph]].

[48] W. Buchmuller et al , JCAP 0501 (2005) 004 [arXiv:hep-th/0411109]; W. Buchmuller et al , Nucl.
Phys. B699 (2004) 292 [arXiv:hep-th/0404168].

[49] L. Anguelova, V. Calo and M. Cicoli, JCAP 0910 (2009) 025 [arXiv:0904.0051 [hep-th]].

[50] D. H. Lyth and E. D. Stewart, Phys. Rev. Lett. 75 (1995) 201 [arXiv:hep-ph/9502417]; D. H. Lyth
and E. D. Stewart, Phys. Rev. D 53 (1996) 1784 |arXiv:hep-ph/9510204].

[51] T. Barreiro et al , Phys. Rev. D 78, 063502 (2008) [arXiv:0712.2394 [hep-ph]].

[52] J. P. Conlon and F. Quevedo, JCAP 0708 (2007) 019 [arXiv:0705.3460 [hep-ph]].

[53] B. S. Acharya et ol , JTHEP 0806 (2008) 064 [arXiv:0804.0863 [hep-ph]].

[54] R. Kallosh and A. Linde, JHEP 0412 (2004) 004 [arXiv:hep-th/0411011].

[55] R. Blumenhagen et ol , JHEP 0909 (2009) 007 [arXiv:0906.3297 [hep-th]].

[56] D. H. Lyth and D. Wands, Phys. Lett. B 524 (2002) 5 [arXiv:hep-ph/0110002]; D. H. Lyth, JCAP
0511 (2005) 006 [arXiv:astro-ph/0510443]; K. Ichikawa et al , Phys. Rev. D 78 (2008) 023513
[arXiv:0802.4138 [astro-ph]].

[57] G. Dvali et al , Phys. Rev. D 69 (2004) 023505 [arXiv:astro-ph/0303591]; G. Dvali et al , Phys.
Rev. D 69 (2004) 083505 [arXiv:astro-ph/0305548|; L. Kofman, jarXiv:astro-ph/0303614.

[58] C. P. Burgess et al , JHEP 1008 (2010) 045 [arXiv:1005.4840) [hep-th]].

[59] C. P. Burgess, M. Cicoli, M. Gomez-Reino, F. Quevedo, G. Tasinato and I. Zavala, in preparation.


http://arxiv.org/abs/0907.2916
http://arxiv.org/abs/0912.3527
http://arxiv.org/abs/hep-th/0411109
http://arxiv.org/abs/hep-th/0404168
http://arxiv.org/abs/0904.0051
http://arxiv.org/abs/hep-ph/9502417
http://arxiv.org/abs/hep-ph/9510204
http://arxiv.org/abs/0712.2394
http://arxiv.org/abs/0705.3460
http://arxiv.org/abs/0804.0863
http://arxiv.org/abs/hep-th/0411011
http://arxiv.org/abs/0906.3297
http://arxiv.org/abs/hep-ph/0110002
http://arxiv.org/abs/astro-ph/0510443
http://arxiv.org/abs/0802.4138
http://arxiv.org/abs/astro-ph/0303591
http://arxiv.org/abs/astro-ph/0305548
http://arxiv.org/abs/astro-ph/0303614
http://arxiv.org/abs/1005.4840

	1 Inflation and string theory
	2 Inflation and UV-sensitivity
	3 The -problem in string inflation
	3.1 Open string models
	3.2 Closed string models
	3.2.1 Real part of T-moduli
	3.2.2 Imaginary part of T-moduli


	4 Inflationary model building for closed moduli
	4.1 Moduli stabilisation
	4.2 Four-cycle moduli as inflaton fields
	4.2.1 Blow-up inflation
	4.2.2 Fibre inflation

	4.3 Axions as inflaton fields
	4.3.1 Single axion
	4.3.2 Racetrack inflation
	4.3.3 N-flation
	4.3.4 Axion monodromy


	5 Open issues beyond inflation

