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I. INTRODUCTIONSupersymmetry is one of the most promising solutions of the hierarhy and �ne-tuning problem, namely the vastdi�erene between the eletroweak (EW) and the Plank sale, and the very stability of this di�erene. It yields amehanism for radiatively generating EW symmetry breaking, allows for an exat uni�ation of all fores and onveysa andidate for dark matter. However, it omes with the prie of having new problems, onneted to the avoursetor, the stability of the proton, and new sorts of hierarhy problems known as the � problem and doublet-tripletsplitting. To address these questions, models have been developed that derive from a Plank or GUT sale exeptionalgauge group like E6 [1℄, and might be embedded in the ontext of the heteroti string. Suh E6-based models have amatter-Higgs uni�ation, are automatially anomaly-free, inlude the right-handed neutrino, and solve the � problemas an e�etive next-to-minimal SUSY Standard Model (NMSSM). However, one either has to solve a problem similarto doublet-triplet splitting, or use e.g. an intermediate left-right symmetri model, where the high-sale brakinghappens through orbifold ompati�ations [2, 3℄. The fundamental representation of E6, the 27, ontains exotistates whih arry both lepton and baryon number and hene at as lepto- or diquarks. This is why a mehanismas in [2℄ is hosen spei�ally to prevent a phenomenologially disastrous rapid proton deay. As these exotis areleft-hiral super�elds (with vetor-like quantum numbers with respet to the EW gauge group), they ome as a pairof salars, D and D�, being R even, and a Dira fermion, ~D, being R odd, at the EW sale. The states are alledleptoquarks and leptoquarkinos, respetively. Their potential disovery at the Large Hadron Collider (LHC) mayallow for a diret handle on the GUT struture of these models at the TeV sale beyond super-preise extrapolationof parameters over 13-15 orders of magnitude.For the rest of this letter, it is suÆient to take the model-building set-up above as a rough motivation how suhstates ould ome about in Nature, and further on just assume their existene together with the spetrum of anNMSSM-like model. The phenomenology of the salar leptoquarks is very similar to that of non-supersymmetristates due to their R-even nature and will be disussed in a following publiation [3℄. While the pair prodution of thefermioni superpartners, the leptoquarkinos, is almost ompletely determined by QCD, their deays as R-odd partilesshow the very same asade-like strutures as squark and gluino deays. However, their deay produts ontain bothnon-vanishing lepton and baryon number. Hene, kinemati edge strutures for the mass determination of newphysis states derived from jet-lepton or jet-dilepton exlusive �nal states have very harateristi features whih {using invalid assumptions about the underlying SUSY model { ould lead to wrong partile identi�ations and massdeterminations (The latter point is partiularly relevant, if the salar states whih happen to be usually heavier thanthe fermions might lie outside the kinemati reah of LHC). The intent of this paper is to �rst introdue the relevantobservables before a brief disussion of the exoti fermion prodution and deay mehanisms is followed by a dediatedstudy on the impat of leptoquarkinos with varying masses onto SUSY squark analysis methods. Here it is the goalto show the essential and important di�erenes between standard SUSY squark asades and leptoquarkino-triggeredasades, and why it is important to onsider at least both, if not all possible model alternatives.II. LHC MASS EDGES FROM LEPTOQUARKINOSMass edge variables [4{8℄ have mostly been developed with a ertain deay pattern in mind: left-handed squarkinto a quark, two leptons and the lightest neutralino via the on-shell deays of the seond-to-lightest neutralino anda right-handed slepton: ~qL ! q ~�02 ! ql�~l�R ! ql�l� ~�01 (1)Sine one is not able to distinguish experimentally whih of the leptons l� and l� is nearest to the quark (in terms2
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Figure 1: Branhing ratio for the leptoquarkino deay into fermion and salar (left), leading order ross setions for single andpair prodution at 14 TeV (right).of the deay asade), two spei� observables have been introdued [5℄ to allow for a disrimination:mql;high = maxfmql+ ;mql�g (2)mql;low = minfmql+ ;mql�g (3)As squarks are pair-produed at the LHC, they deay via the above or even simpler patterns leading to �nal statesthat may be able to mimi those of the leptoquarkino signals: two hard partoni jets, two or more opposite sign,same avour (OSSF) leptons and most importantly large amounts of missing transverse energy. However, it is ruialto note, that due to the general assumption of Minimal Flavour Violation in the SUSY lepton setor, avour is aonserved quantum number and runs like a line through the asade hain. Hene, OSSF leptons originating fromsquark deays inside a single deay hain are (up to a simple ombinatorial fator) equally likely than opposite signdi�erent avour (OSDF) lepton ontributions for standard MSSM-type signals, sine the branhing ratios into �rstand seond generation fermion/sfermion ombinations are of the same size in most mSUGRA senarios. These OSDFsignals are oming in the standard MSSM paradigm from di�erent avour deays of pair-produed SUSY partiles.They are, however, not present in the ase of leptoquarkino deays, when we onsider avour-diagonal Yukawaouplings and standard FCNC onstraints, whih allows to suppress large amounts of standard SUSY 'bakgrounds'.As a seletion riterion, we aept events only if they have exatly two hard jets with a minimum pT of 50 GeV. Thisrequirement is intended to suppress one additional ollinear initial state radiation jet, for allowed jet multipliitiesof three. If we also hoose to take jet multipliities of four into aount, we have to be more areful: to avert theontamination by e.g. a gluino pair prodution signal, we need the third hardest jet to have a maximum pT of 50 GeV,while retaining the uts above for the two hardest jets. In the ases investigated here this was suÆient to separateleptoquarkino signals from gluino pair prodution, however, there is still the possibility from mixed gluino-squarkprodution whih is known to be able to be aompanied by possibly harder QCD radiation jets [9℄. Furthermore,it ould also appear that jets from deays ould be rather soft (e.g. in SPS1a where gluinos and squarks are quitedegenerate), leading to a onfusion with QCD radiation jets. For leptoquarkino signals this seems not to be overlylikely (beause the leptoquarkino renormalization group equations are not so tightly linked as those of squarks andgluinos), but is nevertheless possible. For the further analysis presented here, we just take the rather simpli�ed utabove and assume that the jet bakgrounds are under ontrol. A omplete bakground study is beyond the intent ofthe present study and is not performed here.Leptoquarkinos, if existent, are abundantly produed at the LHC, sine they are massive olored isosinglet fermions[1℄. The leading order ross setions basially depend only on the mass for pair prodution, and the Yukawa ouplingfor single prodution, respetively (see RHS of Fig. 1). The Yukawa oupling is without knowledge of the ompleteGUT model arbitrary, but was taken here to be of the size of the eletromagneti oupling (y = 0:312). The LHS3



of Fig. 1 shows the branhing frations of the deaying leptoquarkino (for varying masses) into a fermion/sfermionpair. As the deay into squarks and leptons is kinematially forbidden for low leptoquarkino masses (and still heavilyphase-spae suppressed for inreasing leptoquarkino masses), the sleptons dominate in that ase as intermediate statesin asades. Though this depends on the parameter spae of the models, we follow this assumption from here on.Consequently, a typial leptoquarkino deay may be given by~D ! q~l�R=L ! ql� ~�01 ; (4)whereas a seond-to-lightest neutralino in the deay hain starts to beome important for heavier masses, leading todi�erent intermediate states, e.g.: ~D ! ~q�R=Ll� ! ql� ~�02 ! ql�l�l� ~�01 : (5)
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l+Figure 2: Examples for deay asades under investigation: squark (left) and leptoquarkino (right) pair prodution.Leptoquarkinos produed in pairs thus show the same exlusive �nal states as squarks, namely two hard partonijets, two or more leptons and large missing transverse energy in the detetor, aounting for the undeteted neutralinos.The inuene of the seond type of asade (5) however is of less importane, sine the new Majorana deay gives riseto additional OSDF lepton ontributions, whih is absent in the �rst type of leptoquarkino hain. Additionally, heavierintermediate states are strongly phase-spae suppressed and only start to beome more important for inreasing exotimasses. Consequently, we fous our analysis on the �rst asade (4) with the ase of only two OSSF leptons beingpresent, as it proves to be the most ommon exoti deay pattern for the regions in parameter spae with relativelylight leptoquarks.At this early partoni stage, standard analysis methods for lepton-quark mass edges applied to events with dediatedleptoquarkino asades show strong disrepanies to well-known results from standard SUSY signals. The di�ereneemerges due to the intermediate on-shell salar (squark or slepton) between the quark and lepton ompared to aMajorana fermion as e.g. the neutralino in the MSSM: there are no possible spin orrelations between lepton andquark, as they are onneted through a salar propagator. As a result, their invariant mass spetrum is equivalentto the dilepton spetrum in standard MSSM models (stemming from a salar slepton propagator), in that it linearlyrises from zero to its maximum at the endpoint, where it instantly falls down to zero. This ase is not neessarily aunique feature of SUSY as there are other models with a salar propagator, whih may distort the atual shape ofthe relevant invariant mass variables (e.q. in UED, for a general review f [10℄). However we take the leptoquarkino4
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Figure 3: Anatomy of leptoquarkino mass edges for mql;high and mql;low with mD = 600 GeVsetup as an appliation prototype and investigate how suh deviations from possible intermediate salars an arisein the ontext of a SUSY deay hain. A omplete knowledge of the partiular extended SUSY model ontainingleptoquarkinos is not needed for the present study, but will be disussed in a future publiation, whih in additionwill disuss a set of disrete self-onsistent parameter points [3℄. The generi properties of leptoquarkinos, however,ould be inferred rather independent of the underlying model setup: they are salar partiles whih deay into �nalstates with lepton and baryon number, but beause of the assumption of onserved R parity do not show a peak in theorresponding invariant mass distribution. The smoking-gun signatures are the spei� quark-lepton mass edges to bedesribed below in detail, whih deviate from standard edges in SUSY squark and gluino searhes. (Suh deays ouldindeed arise from squarks in SUSY models with R parity violation, however, due to onstraints from proton lifetimethese would be overwhelmingly washed out by the standard SUSY deays). The avor struture of leptoquarkinosmight be quite interesting, espeially when onsidering third-generation leptoquarkinos involving (s)tops, (s)bottoms(experimentally problemati beause of the neutrinos in the �nal state) and (s)taus, but is rather model-dependentand thus we postpone a more omprehensive analysis to [3℄.For the omparison of ordinary squark- with leptoquarkino asades we are exemplarily using the parameter pointSPS1a [11℄ for the MSSM as well as a model ontaining leptoquarks1 and -inos with varying masses augmented bysquarks and sleptons with the same masses as the SPS1a data point (m~uL = 567 GeV, m~uR = 547 GeV, m~lL = 204GeV, m~lR = 145 GeV, m~�01 = 97 GeV, m~�02 = 181 GeV). To redue the dependeny of the e�et of edge distortionon the SUSY senario, we also looked at three other heavy Snowmass Points and Slopes (SPS) spetra inluding onegauge-mediated symmetry breaking (GMSB) ase (SPS1b, SPS3, SPS7 [11℄), the results of whih are summarized inthe appendix. In general, we �nd that the following analysis does not depend on the SUSY breaking senario or thedetailed spei�s of the hosen parameter point.The kinematial endpoints under onsideration are given by the masses of the intermediate and mother partiles:mmaxql = " (m2~eR(L) �m2~�01)(m2D �m2~eR(L))m2~eR(L) # 12= 433 (496) GeV (6)for a leptoquarkino mass of 600 GeV, where the value in parentheses is given for an intermediate left-handed slepton,whih is slightly phase-spae suppressed in this partiular SPS1a senario. The overall signal onsists of the sum ofboth ontributions leading to the shape visible in Figures 3, 4 and 5. For eah model, a data set of 10K unweighted1 The salars are onsidered heavier than fermions (masses well above 1 TeV), sine this is usually the ase and their presene would mostlikely alter the shape in that a resonant peak struture would dominate the spetrum.5



mD # N(LQino) & N(SUSY) # Nut S / pS+B400 8763 5061 54600 1355 540 15800 684 102 41000 594 24 1Table I: Signi�ane estimates for 100 fb�1 and the relevant (non-) standard SUSY �nal state of two hard jets, two OSSFleptons and =ET . We only onsider standard SUSY events as possible bakgrounds.events was generated using a hard-oded implementation of these E6-inspired SUSY models into the event generatorWhizard [12℄, whih is partiularly well suited for LHC beyond the SM studies [13℄. While a omplete validation ofthe model implementation using the Whizard interfae to the FeynRules pakage [14℄ is under way, the part ofthe implementation relevant for this paper has been extensively tested.Returning to the asade, there still remains the problem of observability: experimentally there is no possibility toselet the orret partoni jet and orresponding lepton, whih are then to be ombined to the invariant mass spetrum.While in MSSM models this would ome about due to the presene of the Majorana fermion deay into two OSSFleptons, in the leptoquarkino ase two OSSF leptons are to be olleted from di�erent asades, one originating fromthe leptoquarkino and the other from its antipartile, respetively. The observables mql;low and mql;high, shown inFig. 3, thus display the tremendous disrepany, espeially the latter one with its sharply falling edge shape, intrinsito the nature of the salar intermediate spartile. The long tail, inherent in the signal variant of mql;high, is anotherunusual feature and a diret onsquene of the ombination of �nal state partiles from two di�erent asade sides.This issue of ombinatoris however may be addressed by ombining the softest jet and the hardest lepton to forman invariant mass spetrum in a single event. This has proven to be useful [15℄ in terms of resembling the atualshape and thus the most aurate position of the theoretial edge:m�ql = m(minE fj1; j2g;maxE fl+; l�g) (7)This observable is analysed in Fig. 4 for SPS1a (the other SPS senarios are found in Figs. 6-8) together withmql;high, mql;low and mqll for four di�erent leptoquarkino masses ranging from 400 GeV to 1000 GeV embedded intoan underlying SPS1a spetrum. Sine the hadroni leading order ross-setion for pair produed leptoquarkinos is ofthe order of 104 fb for masses as low as 400 GeV (see Fig 1), it dominates the shape of the observables in Fig. 4.The spei� shapes of the observables diretly hints towards new, possibly exoti physis beyond a standard SUSYparadigm. However, this behaviour hanges for heavier leptoquarkinos: the higher the mass and thus the lower theross-setion of the involved leptoquarkino, the weaker the e�et on the observables. While for masses of 600 GeV theshape of the distribution is still predominantly given by the leptoquarkino ontribution, di�erenes to squark signalsare merely visible for 800 GeV and are pratially invisible for 1000 GeV (or will be so after detetor e�ets). Theseharateristis do not hange drastially for the other SPS spetra but are instead shifted to higher values of theleptoquarkino mass2. The feature of edge distortion persists in all of the di�erent SUSY senarios and is thus mainlyindependent of the latter, as long as the leptoquarkino mass is not muh heavier than the rest of the spetrum.Given that mql;i (i = high; low) and mqll are single-sided3 variables, the inlusion of the leptoquarkinos spoils thelear endpoint struture due to the presene of (at least) one lepton from the opposite ('wrong') side. A speial remarkis in plae here: if kinematial endpoints as the ones disussed above are distorted by a ertain amount of events,whih are positioned in a kinematially inaessible region (i.e. beyond the edge), it may not neessarily mean, that2 Mass sans are adjusted to take plae from 600 to 1200 GeV3 i.e. they are to be applied on one side of the asade only 6
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Figure 7: Same as Fig. 6, but for SPS3.
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Figure 8: Same as Figs. 6,7, but for SPS7.10
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