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DESY 11-078May 2011Splitting strings on integrable bakgroundsBenô�t ViedoDESY Theory, Notkestra�e 85, 22603 Hamburg, Germanybenoit.viedo�desy.deAbstratWe use integrability to onstrut the general lassial splitting string solution on R�S3 .Namely, given any inoming string solution satisfying a neessary self-intersetion propertyat some given instant in time, we use the integrability of the worldsheet �-model to onstrutthe pair of outgoing strings resulting from a split. The solution for eah outgoing string isexpressed reursively through a sequene of dressing transformations, the parameters ofwhih are determined by the solutions to Birkho� fatorization problems in an appropriatereal form of the loop group of SL2(C ).
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1 IntrodutionSolving a onformal �eld theory amounts to �nding its spetrum of anomalous dimensionsand the struture onstants of its 3-point funtions. At weak oupling, the former problemis equivalent to perturbatively diagonalizing the dilatation operator. When the CFT admitsan AdS dual, the same problem at strong oupling requires �nding the semilassial energyspetrum of strings in AdS-spae. In the ase of N = 4 SYM, dual to type IIB superstringson AdS5�S5, the emergene of integrability in the planar limit of both theories has graduallyled to a very elegant analytial solution to both of these problems (see [1℄ for a reent review).Assuming integrability at all loops, this eventually ulminated in a series of proposals foromputing the full spetrum of anomalous dimensions at all values of the oupling [2, 3, 4℄.In sharp ontrast with these developments for the spetrum ofN = 4 SYM, omparativelylittle is known about the struture onstants of its 3-point funtions. A possible explanationfor this shortoming might be the apparent lak of integrability methods beyond the planarsetor. And yet it was reently shown in [5℄, building on [6℄, that the integrability of planarN = 4 SYM, whih was so ruial in the exat study of the spetrum, an also be used tosystematially takle the problem of 3-point funtions at weak oupling. At strong oupling,on the other hand, a similar use of the lassial integrability of superstrings on AdS5 � S5,whih is after all a loal property on the worldsheet, has not yet been exploited. Indeed,the semilassial study of 3-point funtions [7℄ has thus far been restrited to ases wherethe path integral is dominated by some �nite-gap solution with ylindrial worldsheet. Inpartiular, a omparison [8℄ of the results of [5℄ with string theory in the Frolov-Tseytlin limitould only be onsidered in the ase where two of the three string states are \heavy", i.e.semilassial, while the third is \light". Nevertheless, an attrative proposal for omputing3-point funtions at strong oupling using lassial methods was put forward in [9℄, whihrelies on �nding lassial Minkowskian solutions splitting/joining in S5.The aim of this paper is to exploit the lassial integrability of the superstring �-modelon AdS5 � S5 so as to onstrut lassial string solutions with Lorentzian worldsheets ofmore general topology than the ylinder. The simplest suh worldsheet is the `pair of pants'diagram, or three puntured sphere, desribing the splitting or joining of strings. By fousingon the bosoni subspae R�S3 , we shall onstrut the most general splitting string solutionon this bakground. Spei�ally, we assume that we are given a solution on the ylinder withthe property that: at some given instant in time � = 0, two of its points �1 and �2 oinidein target spae and their veloities agree; a simple example is the folded spinning string [12℄.The splitting of suh a string omes from treating it as onsisting of two individual stringsand letting eah of them evolve separately, see Figure 1. The problem therefore onsists insolving a pair of Cauhy problems on the outgoing ylinders (the legs of the pair of pants)with Cauhy data spei�ed by a portion of the original solution at time � = 0.The lassial splitting of strings has been extensively studied in the literature [10℄, mostlyin at Minkowski spae, but also on ertain bakgrounds with respet to whih the equations2



PSfrag replaements X�(�; 0)X�I (�; 0)X�II(�; 0) 0�Figure 1: The splitting is the result of a manual hange in the topology of the losed stringimposed at the instant � = 0 when the pro�le in spae-time self-intersets. The full timeevolution of the string is desribed by a worldsheet with the topology of a pair of pants.of motion are linear in the �elds. In eah ase, therefore, the general solution of the equationsis given by a Fourier series whih an be subjeted to the relevant boundary onditions andCauhy data in order to solve the Cauhy problem. More reently, there has been renewedinterest in splitting strings in the ontext of the AdS/CFT orrespondene [11℄. However, inthis ase the non-linearity of the equations of motion renders Fourier analysis unappliable.But fortunately these non-linear equations are well known to be integrable, in the sense thatthey de�ne a Lax onnetion: a loally de�ned 1-form on the worldsheet, meromorphi insome auxiliary omplex parameter, and with the property of being at. This will allow usto solve the Cauhy problems on the outgoing ylinders.The outline of the paper is as follows. In setion 2 we set up the general formalism fordisussing lassial interating strings, treating in parallel the ase of at spae and R � S3.In setion 3 we set up and solve the Cauhy problem for splitting strings in at spae. Thisserves as a warmup exerise sine it will turn out that many features of the solution in atspae arry over to those of the Cauhy problem in R � S3. Finally, setion 4 deals withsplitting strings in R � S3. After setting up the Cauhy problem on the outgoing ylinders,we show that the smoothness property of the solution is the same as in at spae, resultingin a similar tessellation of the worldsheet into tile-shaped regions bounded by null rays. Wethen show how integrability an be used to reursively onstrut the solution to the Cauhyproblem in eah tile, given the solution in the previous tile.2 Classial interating stringsOur analysis of splitting strings on R�S3 will be losely related to the orresponding analysisin at spae. In this setion we therefore introdue both ases in parallel. Let W denote theworldsheet of the string, equipped with a Lorentian metri . For the moment we imposeno restrition on the topology of W . 3



In at spae. Consider the embedding X� : W ! Rp;1 of W into Minkowski spae Rp;1 .In order to desribe the lassial motion of a string, this map should minimize the stringation RW dX� ^ �dX�, where � denotes the Hodge dual relative to the worldsheet metri .The orresponding equations of motion for all the �elds (X�; ) readX� : d � dX� = 0; (2.1a) : G�� = 12����G��; (2.1b)where G�� = ��X���X� is the pull-bak of the at target spae metri to W .On R�S3 . The embedding of a string with worldsheetW into the target spae R�S3 withsignature (�1;+1;+1;+1) is desribed by a pair of �elds X0 : W ! R and g : W ! SU(2).The ation for all these �elds an be written down suintly asS = p�4� Z �12 tr(j ^ �j) + dX0 ^ �dX0� ; (2.2)where j = �g�1dg is the su(2)-valued urrent and � denotes the Hodge dual relative to theworldsheet metri . The resulting equations of motion for the respetive �elds areg : d � j = 0; dj � j ^ j = 0; (2.3a)X0 : d � dX0 = 0; (2.3b) : G�� = 12����G��; (2.3)where the indued metri is G�� = 12 tr(j�j�) + ��X0��X0.2.1 Mandelstam diagramsIn the ontext of Riemannian worldsheetsW , the onformal lass of the Riemannian metri gendows W with a omplex struture, promoting it to a Riemann surfae (W; [g℄). Moreover,as shown in [13℄, there is a 1 { 1 orrespondene between string light-one diagrams andAbelian di�erentials onW . Analogous statements to these an also be made in the Lorentziansetting [14℄. In partiular, the onformal lass of the Lorentzian metri  endows W with aausal struture and stati gauge provides a Mandelstam diagram representation of W .Conformal gauge. The equations of motion (2.1) or (2.3) being invariant under onformaltransformations of the worldsheet metri  7! e�, only the onformal equivalene lass [℄ of is physially relevant. Yet there is a 1 { 1 orrespondene between onformal equivalenelasses of Lorentzian metris and ausal strutures on W , i.e. ordered pairs (F+;F�) oftransverse null foliations [14℄. In other words, speifying the worldsheet metri  amountsto giving W a ausal struture, thereby promoting it to a Lorentz surfae (W; [℄). In termsof any loal null oordinates ~�� : U � W ! R, de�ned by �� := �~�� being tangent to thefoliation F�, the metri reads  = +�d~�+d~��.4



Stati gauge. We an write dX0 = �+ + �� where the pair (�+; ��) are transverse mea-sures to the foliations (F+;F�) respetively, whih loally read �� = (��X0)d~��. In otherwords �� vanishes on tangent vetors to leaves of the foliation F� (in partiular �� mustvanish at singular points of the foliation F� where multiple leaves end). By working in loaloordinates it is easy to see that ��� = ���. But now dX0 is harmoni (that is, losedand o-losed) by the equations of motion, whih means that �� are both losed and heneloally read �� = f�(~��)d~��. Now integrating givesX0(p) = Z p(�+ + ��)for p 2 W , and sine X0 must be a well de�ned funtion we have RC �+ = � RC �� for anyC 2 �1(W ). This last ondition is the requirement for reti�ability of W into a Mandelstamdiagram [14℄, i.e. for there to be a representative of (W; [℄) whih is a Mandelstam diagram.Indeed, the level urves of X0 are transverse to the leaves of both null foliations F� and thosethrough the singularities of F� provide an annuli deomposition of W . The representativeof the lass [℄ is given by � := �4�+ � �� = �4 d�+d�� = �d� 2 + d�2, where�� := Z p �� = 12(� � �) (2.4)de�ne global null oordinates on (the universal over of) W . In partiular we have X0 = � .Note that � is degenerate at the singular points of the foliation F�.Virasoro onstraints. After going to onformal stati gauge, the dynamial equation forX0 is solved and the metri is now �xed to the at metri  = �. The equations of motionthen redue to In at spae � �+��X� = 0; � 6= 0;T�� := ��X���X� = 0 (2.5)On R � S3 � ��j+ = 12 [j�; j+℄; �+j� = 12 [j+; j�℄;T�� := 12tr j2� + 1 = 0: (2.6)In either ase, we �nd using the �rst set of equations that T�� = T��(��) only depends on��. Therefore, if it vanishes for all � at some � then it must vanish for all � . It follows thatwhen solving the Cauhy problem for the equations (2.5) or (2.6), the Virasoro onstraintsT�� = 0 will be automatially taken are of provided the Cauhy data satisfy them.2.2 Pair of pantsSine our aim is to disuss splitting strings, from now on we shall fous on the ase whereW has the topology of a pair of pants, see Figure 2. There is a single singular point and the5



PSfrag replaements O IIIFigure 2: The string worldsheet W has the topology of a pair of pants, or three punturedsphere. The initial string O splits into two outgoing strings labelled I and II.level urve of X0 through it, whih has the topology of a `�gure of 8', an be assumed to beat � = 0 without loss of generality. With this urve removed, the spae W nf� = 0g onsistsof three ylinders, whih an be parameterized as followsWO := f(�; �) j 0 < � � 2�; � < 0g; (2.7a)WI := f(�; �) j 0 < � � 2a�; � > 0g; (2.7b)WII := f(�; �) j 2a� < � � 2�; � > 0g: (2.7)where a < 1 and the �-interval is periodially identi�ed in eah ase.It is lear that any map from suh a worldsheetW into spaetime desribes a single stringwhih splits o� into two separate strings at � = 0. In partiular, the map has the followingimportant self-intersetion property:In at spae � X�(0; 0) = X�(2a�; 0);��X�(0; 0) = ��X�(2a�; 0) (2.8)On R � S3 � g(0; 0) = g(2a�; 0);��g(0; 0) = ��g(2a�; 0): (2.9)3 Splitting strings in at spaeBefore studying splitting strings on R � S3, we start by analyzing the splitting of strings inat spae in detail sine many features of the solution will remain true in the nonlinear aseand serve as a guideline there.3.1 Cauhy problemWe would like to solve the Cauhy problem orresponding to the linear wave equation (2.5)on the pair of pants W , for a given set of initial onditions on the inoming irle. However,it is lear that these onditions annot be ompletely arbitrary sine they need to be suhthat the self-intersetion property (2.8) holds. We shall therefore assume that we are given6



a solution to (2.5) on the inoming ylinder WO satisfying (2.8). To determine the ompletesolution on the rest of W , it remains to �nd solutions X�I , X�II to�+��X�I = 0; on WI (3.1.I)�+��X�II = 0; on WII (3.1.II)with initial onditions at � = 0 spei�ed by the given solution X� on WO as followsX�I (�; 0) = X�(�; 0);��X�I (�; 0) = ��X�(�; 0) � for 0 < � � 2a�; (3.2.I)X�II(�; 0) = X�(�; 0);��X�II(�; 0) = ��X�(�; 0) � for 2a� < � � 2�: (3.2.II)Note that for eah outgoing string, the singularity lies at the end points of the initial interval.Sine they live on WI and WII respetively, the solutions X�I and X�II de�ned for � � 0 arerequired to have new periodiity onditions, di�erent from those of X�, namelyX�I (� + 2a�; �) = X�I (�; �); (3.3.I)X�II(� + 2(1� a)�; �) = X�II(�; �): (3.3.II)Notie that (3.3) is onsistent with (3.2) by virtue of the self-intersetion property (2.8).3.2 Absolute elsewhere of the singularityD'Alembert's solution to the linear wave equation is expressed as a sum of funtions in �+and ��. In partiular, the solution given on the initial ylinder assumes this general form,X�(�; �) = X�+(�+) +X��(��): (3.4a)Sine X�I , X�II are solutions of the same equation (3.1), they are also given by d'Alembert'sgeneral form on their respetive ylindersX�I (�; �) = X�I+(�+) +X�I�(��); X�II(�; �) = X�II+(�+) +X�II�(��): (3.4b)In terms of (3.4) the initial onditions (3.2) read, in their respetive domains in �,X�I+(�) +X�I�(�) = X�+(�) +X��(�); ��X�I+(�)� ��X�I�(�) = ��X�+(�)� ��X��(�);X�II+(�) +X�II�(�) = X�+(�) +X��(�); ��X�II+(�)� ��X�II�(�) = ��X�+(�)� ��X��(�):But then, di�erentiating the left set of equations with respet to � and ombining them withthe right set we obtain��X�I�(�) = ��X��(�); for 0 < � � 2a���X�II�(�) = ��X��(�); for 2a� < � � 2�:7



Integrating in � and using part of the initial onditions again, we �ndX�I�(�) = X��(�)� v�I ; for 0 < � � 2a� (3.5.I)X�II�(�) = X��(�)� v�II; for 2a� < � � 2�; (3.5.II)where v�I and v�II are onstants. Plugging this into (3.4b) we obtainX�I (�; �) = X�(�; �); for � < � � 2a� � �; (3.6.I)X�II(�; �) = X�(�; �); for 2a� + � < � � 2� � �: (3.6.II)Note that the domains of validity here are determined by the requirement that �� satis�es thesame bounds as � does in (3.5). Hene, these domains are bounded by null rays emanatingfrom the singularity, as shown in Figure 3. That is, the original solution remains valid atpoints on the outgoing ylinders I and II whih are spae-like separated from the singularity.
PSfrag replaements 2a�0 0 I IIII �

�
Figure 3: When � < 0 the worldsheet has the topology of a ylinder, the piture beingperiodially identi�ed in the �-diretion. For � > 0 the hange in topology is indiated bythe blue uts emanating from the singularity at 0 � 2a�: the right and left sides of the utthrough 0 are to be identi�ed with the left and right sides of the ut through 2a� respetively.In the shaded area, bounded by null rays (in red), the initial solution remains valid.3.3 Absolute future of the singularityTo determine the solutions I and II beyond the limited region of Figure 3, we impose theirrespetive periodiity onditions (3.3). Taking the derivatives of these onditions with respetto �� and using the general form of the solutions (3.4b) leads to��X�I�(� + a�) = ��X�I�(�); ��X�II�(� + (1� a)�) = ��X�II�(�):After integrating we �ndX�I�(� + a�) = X�I�(�) + x�I�; X�II�(� + (1� a)�) = X�II�(�) + x�II�:8



In other words, the funtions X�I� and X�II� are not periodi but shift by onstants underthe translations � 7! � + a� and � 7! � + (1� a)� respetively. This leads to(X�I (�+ + a�; ��) = X�I (�+; ��) + x�I ;X�I (�+; �� + a�) = X�I (�+; ��) + x�I ; (3.7.I)(X�II(�+ + (1� a)�; ��) = X�II(�+; ��) + x�II;X�II(�+; �� + (1� a)�) = X�II(�+; ��) + x�II: (3.7.II)That the same x�I (resp. x�II) appears for shifts in both �+ and �� of X�I (resp. X�II) followsfrom taking the di�erene of both equations and using the periodiity onditions (3.3) whihan be written as X�I (�+ + a�; ��) = X�I (�+; �� + a�) and similarly for X�II.The formulae (3.7) now allow us to extend eah solution X�I , X�II beyond their restriteddomains (3.6) depited in Figure 4. Together, equations (3.6) and (3.7) therefore de�ne thefuntions X�I and X�II ompletely on the whole outgoing ylinders WI and WII. Combinedwith the original solution X� on the inoming ylinder, this gives a omplete desription ofthe orresponding splitting string. Let us emphasize that sine the onstrution assumedd'Alembert's form (3.4b) for both funtions X�I and X�II, they automatially satisfy theequations of motion (3.1), in a distributional sense, despite not being di�erentiable on theforward null rays through the singularity.
PSfrag replaements +xI+xI +xII+xII +2xI

I IIII�0
Figure 4: The solution in the `null tiles' labelled I and II, delimited by null rays through thesingularity, is obtained by extending the original solution X�. The solutions X�I and X�II onsubsequent tiles are given by onstant translates of the solution in the regions I and II.One immediate advantage of this onstrution is that the qualitative desription of themotion of the outgoing strings in spae time is very transparent. In partiular, the form ofthe solution learly shows that the singular point, where the splitting ours, propagates atthe speed of light along the worldsheet of eah outgoing string I and II. Along these nullrays the spae time pro�le of strings I and II exhibits usps, but moreover, the pro�le awayfrom these usps is given by some rigid translate of a portion of the initial string.9



4 Splitting strings on R � S34.1 Cauhy problemAs in the at spae ase, to solve the Cauhy problem on the pair of pantsW we shall assumethat a solution g(�; �) of the equations (2.6) on the inoming ylinder WO is given, whihsatis�es the self-intersetion property (2.9) at � = 0. This solution will speify Cauhy datafor separate Cauhy problems on eah outgoing ylinder WI and WII. However, sine bothproblems are essentially equivalent we shall fous on one of the outgoing strings, say I.The equations of motion for the embedding �eld gI : WI ! SU(2) an be written as�2�gI � �2�gI = �+��gI = 12��+gI(g�1I ��gI) + ��gI(g�1I �+gI)� =: f(gI; ��gI; ��gI): (4.1a)Sine the string is losed, we impose periodi boundary onditions, i.e. gI(0; �) = gI(2a�; �).Equivalently we require gI(�; �) to be 2a�-periodi in �. The initial onditions readgI(�; 0) = g(�; 0); ��gI(�; 0) = ��g(�; 0); (4.1b)where g(�; �) is the given initial string solution. By assumption it satis�es the self-intersetionproperty (2.9) so that (4.1b) are onsistent with the 2a�-periodiity of gI. Moreover, we as-sume the inoming string solution to be smooth so that (4.1b) are both smooth exept atthe self-intersetion point � = 0 � 2a� of the initial string, where they are only ontinuous.Suh points of redued regularity are referred to as `singularities' and the relation betweensingularities of a solution and singularities of the orresponding initial data goes under thename of `propagation of singularities'.To solve the Cauhy problem (4.1) we will proeed in three steps. First, we make use ofthe theory of propagation of singularities to identify the global smoothness properties of theoutgoing string. It turns out that despite the nonlinearity of the equations, the singularity ofthe initial data propagates along null trajetories, exatly as in the at spae ase where theequations were linear. We then argue that the initial solution an be trivially extended toall points whih are spaelike separated from the singularity. Finally, using this informationwe onstrut the remainder of the solution in the forward light-one of the singularity byexploiting the integrability of the equations and using the dressing method.4.2 Propagation of the singularityThe propagation of singularities in nonlinear Klein-Gordon type equations of the generalform �2�u� �2�u = f(x; u; ��u; ��u) was �rst studied in [15℄ and further developed in [16℄. Itturns out that despite the presene of nonlinear terms on the right hand side, the result isexatly the same as in the linear ase where f � 0. In other words, if the initial data is Cnat (�; 0) then the solution will be Cn with respet to �� along the right null ray (� + �; �)10



and Cn with respet to �+ along the left null ray (� � �; �). In partiular, the solution willbe smooth at a point (�; �) if its bakward null rays interset � = 0 only at non-singularpoints of the initial data. Note that the pair of null rays through any point are nothing butthe harateristi lines of the seond order hyperboli di�erential operator �2� � �2�. Thisonlusion remains true more generally for oupled Klein Gordon equations suh as (4.1a)in whih the nonlinear oupling terms depend only on lower order derivatives gI, ��gI, ��gI.The propagation of singularities in the light-one omponents of the urrent jI = �g�1I dgIitself will be more relevant later so we disuss it diretly. The equations of motion read��jI+ = 12 [jI�; jI+℄; �+jI� = 12 [jI+; jI�℄; (4.2a)and the orresponding initial onditions derived from (4.1b) arejI�(�; 0) = �g(�; 0)�1(��g(�; 0)� ��g(�; 0)): (4.2b)These funtions are smooth away from the self-intersetion point � = 0 � 2a�, but exhibita jump disontinuity there sine g(�; 0) is only ontinuous at that point.The general semilinear hyperboli �rst order system with pieewise-smooth initial datahaving jump disontinuities only at a disrete set of points was studied in [17℄. The system(4.2) is of this type but has only two harateristi diretions at any point, namely the left andright null rays. It follows (see [17℄ for details) that there an be no `anomalous' singularities{ these are singularities whih are not present in the linearized system { appearing at theintersetion of two singularity bearing harateristis. Let us denote S� and S+ the forwardleft and right null rays emanating from the singularity (a�; 0), see Figure 5 (a). Then asolution of (4.2) in the distributional sense must in fat be smooth in WI n (S+ [ S�).
PSfrag replaements S+ S�PSfrag replaements S+ S�p(a) (b)Figure 5: (a) The self-intersetion point of the initial string orresponds to a singularity inthe initial onditions of eah outgoing string, whih propagates along both left and right nullrays S� and S+. The solution is therefore smooth everywhere exept on these forward nullrays. The omponent jI� has a jump disontinuity aross S� whereas jI� is ontinuous.(b) The shaded region, representing points whih are ausally disonneted from the sin-gularity, is una�eted by the splitting. The solution there is simply given by the originalsolution extended beyond � = 0 as if the splitting never ourred.11



We an be more preise about the value of the jump disontinuities aross S�. By takingthe integral of the �rst equation in (4.2a) over a vanishingly small interval in the �� diretionwhih intersets S+, we �nd that the disontinuity of jI+ aross this harateristi vanishes.That is, jI+ is ontinuous in the �� diretion. On the other hand, its disontinuity ��jI+aross the left null ray S� satis�es ��(��jI+) = 12 [jI�;��jI+℄. A similar reasoning appliedto the seond equation in (4.2a) shows that jI� is ontinuous in the �+ diretion and itsjump disontinuity �+jI� aross the right null ray S+ satis�es �+(�+jI�) = 12 [jI+;�+jI�℄.The upshot is that the jump disontinuities of jI+ and jI� in the initial ondition at � = 0propagate along the left null ray S� and right null ray S+, respetively.4.3 Absolute elsewhere of the singularityHaving identi�ed the smoothness properties of the urrent jI on eah outgoing ylinder, wenow proeed to atually onstrut these solutions. In the spirit of setion 3, we will solve theequations suessively in eah `null-tile', delimited by the null lines S�, where the solution isknown to be smooth. The �rst tile in ontat with the Cauhy surfae requires little e�ort.Indeed, in any hyperboli system, the solution of the Cauhy problem at any point ponly depends on that part of the Cauhy data whih lies within the domain of dependeneof p, de�ned as the interior of the bakward harateristi one with apex p. Now onsiderthe region on the outgoing ylinder WI onsisting of all points, the domain of dependene ofwhih does not ontain the singularity. This region is delimited by the forward null rays S�through the singularity and the Cauhy surfae � = 0, see Figure 5 (b). It is then lear thatthe original solution remains valid within this region, sine the relevant Cauhy data is thesame as if the splitting had never ourred.4.4 IntegrabilityExtending the solution into the region of inuene of the singularity is onsiderably hardersine it requires expliitly solving the Cauhy problem. Fortunately, the equations (4.2a) ofthe prinipal hiral model are well known to be integrable in the sense that they an loallybe rewritten in the form of a zero urvature equation. This will enable us to make use ofpowerful fatorization methods to onstrut their solutions.Lax onnetion. Introdue the following one omplex-parameter family of sl2(C )-valued1-forms on the worldsheet WI, depending on the single parameter x 2 C P 1 ,JI(x) := jI+1� x d�+ + jI�1 + x d��; (4.3)where reall that jI = jI+d�+ + jI�d��. It has the remarkable property of being at, i.e.dJI(x)� JI(x) ^ JI(x) = 0; (4.4)12



if and only if the equations of motion (4.2a) hold. In other words, at sl2(C )-onnetionsJI(x) on WI with simple poles at x = �1 and a zero at x =1 are in 1 { 1 orrespondenewith solutions jI :WI ! sl2(C ) of the prinipal hiral model equations. Spei�ally, the Laxonnetion is onstruted from jI as in (4.3) and the urrent is reovered from JI(x) byjI = JI(0): (4.5)Extended solution. Sine the sl2(C )-onnetion JI(x) is at, it an be trivialized overany simply onneted domain of U � WI, namely we an writeJI(x) = �d	I(x)�	I(x)�1; (4.6)where 	I is uniquely determined if we require 	I(x; �0; �0) = 1 at some point (�0; �0) 2 U . Itfollows from (4.6) that (d� tr JI(x)) det	I(x) = 0 and therefore det	I(x) is onstant sinetrJI(x) = 0. The initial ondition then implies that 	I(x) takes values in SL2(C ).Ultimately we are interested in the group element gI 2 SU2 rather than the urrent jI.Comparing the de�nition of jI = �g�1I dgI with that of 	I(x) in (4.6) and using (4.5), we seethat the group element an be reovered suintly from 	I(x) asgI = 	I(0)�1: (4.7)For this reason 	I(x) is sometimes alled the extended solution.Gauge transformations. The zero-urvature equation (4.4) has a large gauge redundanysine given any ~g(x; �; �), the gauge transformed Lax onnetionJI(x) 7! ~gJI(x)~g�1 + (d~g)~g�1 (4.8)also satis�es the zero-urvature equation. For generi hoies of ~g, however, it will no longeradmit the same pole struture as (4.3) and therefore an no longer be interpreted as a Laxonnetion of the prinipal hiral model. Yet, when ~g is arefully hosen to preserve the polestruture of the Lax onnetion, (4.8) provides a powerful map between solutions.Reality onditions. To obtain su2-valued urrents jI and SU2-valued solutions gI, onemust impose reality onditions on the extended solution 	I(x). SuÆient onditions are	I(x)y = 	I(�x)�1; (4.9)whih imply gyI = g�1I . Furthermore, the ensuing reality ondition JI(x)y = �JI(�x) on theLax onnetion whih follows from (4.6) then implies jyI = �jI. It will be onvenient to thinkof real extended solutions (4.9) as �xed points of the omplex antilinear involution�̂(	I)(x) := ��	I(�x)�; (4.10)where �(A) := (Ay)�1 for any A 2 SL2(C ), so that SU2 � SL2(C ) is the �xed point set of � .13



4.5 Absolute future of the singularityWhen deriving exat solutions for the outgoing strings in the at spae ase we made fulluse of the fat that d'Alembert's general solution to the linear wave equation is expressed asa linear superposition of two independent funtions of �+ and ��. A nonlinear analogue ofthis statement in integrable models an be obtained using the so alled dressing method (see[18℄ for a review in the ontext of the prinipal hiral model). The rough idea is that thereexists a pair of gauge transformations (4.8) with parameters ~gI�(x; �+; ��) whih bring theLax onnetion into anonial forms depending solely on ��, respetively:~gI�JI(x)~g�1I� + (d~gI�)~g�1I� = j0I�(��)1� x d�� =: JI�(x):But moreover, given two suh `right and left moving' Lax onnetions JI�(x) we an reoverthe original Lax onnetion (4.3). Spei�ally, we have a pair of mapsJI(x; �+; ��) undress / �JI+(x; �+); JI�(x; ��)�dressoreferred to as the undressing and dressing transformations. This is e�etively the nonlinearounterpart of the (linear) orrespondene X�I (�+; ��)
 (X�I+(�+); X�I�(��)) in at spae.In fat, the analogy with the at spae ase goes even further. Suppose we `normalize' thesolutionX�I (�+; ��) by requesting thatX�I (0; 0) = 0. This amounts to performing a onstanttranslation on the solution, whih is a symmetry of the equations, and the `unnormalized'solution is reovered by adding bak the original value of x�0 := X�I (0; 0). Then the funtionsX�I� may be de�ned simply as X�I+(�+) := X�I (�+; 0) and X�I�(��) := X�I (0; ��). Note thatthey inherit the `normalization' of X�I sine X�I�(0) = 0. The full solution may be obtainedfrom its values on the left and right null rays through the speial point (0; 0) 2 WI,X�I (�+; ��) = X�I+(�+) +X�I�(��):In partiular, the `unnormalized' solution is obtained by adding the onstant x�0 .The analogous onstrution in the R � S3 ase goes as follows. Consider the at Laxonnetions JI�(x) de�ne above but with j0I+(�+) := jI+(�+; 0) and j0I�(��) := jI�(0; ��).We introdue their loal trivializations 	I�(x; �+; ��) as in (4.6) but normalized suh that	I�(x; 0; 0) = 1. Then it turns out that the trivialization 	I(x) of the original solution JI(x)normalized by 	I(x; 0; 0) = 1 an be obtained by applying a dressing transformation�	I+(x);	I�(x)� dress // 	I(x):As in the at spae ase, the `unnormalized' extended solution with 	I(x; 0; 0) = 	0 isobtained by multiplying 	I(x; �+; ��) on the right by the onstant matrix 	0, whih is asymmetry of the equations (4.6).The purpose of the next subsetion is to make these statements preise. We shall usethem in the following subsetion to obtain a omplete desription of the outgoing string I.14



4.5.1 Dressing and undressingGiven initial onditions j0I+(�+) and j0I�(��) on the pair of harateristis S� through (0; 0)we shall reonstrut the full solution jI�(�+; ��).We start by de�ning the following pair of at onnetionsJI+(x) = j0I+(�+)1� x d�+; JI�(x) = j0I�(��)1 + x d��: (4.11a)The orresponding extended solutions normalized at (0; 0) are denoted respetively as 	I�(x),namely �d	I�(x)�	I�(x)�1 = JI�(x); 	I�(x; 0; 0) = 1: (4.11b)Birkho� fatorization. Consider two small irles C� around x = �1 on the Riemannsphere C P 1 and let I� be their interiors and E� their respetive exteriors. We also introdueC := C+ [ C�, I := I+ [ I� and E := E+ \ E�. The pair of funtions 	I�(x) an be viewedas de�ning a single funtion C ! SL2(C ) and the set of all suh smooth maps forms agroup LCSL2(C ) under pointwise matrix multipliation. Consider the Birkho� fatorizationproblem whih onsists in writing 	I�(x) as a produt of maps in LCSL2(C ) whih extendholomorphially to maps I ! SL2(C ) and E ! SL2(C ), respetively. Spei�ally,	I�(x) = ~gI(x)�1	I(x); for x 2 C� (4.12)where ~gI(x) is holomorphi in I and 	I(x) is holomorphi in E with 	I(1) = 1.The Birkho� fatorization theorem [19℄ states that there exists an open dense subset ofthe identity omponent of LS1SL2(C ), alled the \big ell", in whih the fatorization intoloops holomorphi inside and outside the unit irle S1 = fx 2 C j jxj = 1g is possible. Inpartiular, the Birkho� fatorization always exists loally, and this statement remains truealso for LCSL2(C ). Sine 	I�(x; 0; 0) = 1 trivially fatorizes into a pair of identity matries,the existene of a solution to (4.12) is therefore guaranteed for small enough ��. We shallome bak to the question of existene after disussing reality onditions.If it exists, however, it is easy to see that the fatorization (4.12) is unique. For suppose	I�(x) = ~g0I(x)�1�I(x) gives another fatorization then �I(x)	I(x)�1 = ~g0I(x)~gI(x)�1, wherethe left and right hand sides are holomorphi in E and I, respetively. However, sine theyare equal on C, together they de�ne a matrix of holomorphi funtions over C P 1 whih istherefore onstant. But the normalization ondition at 1 2 E implies �I(1)	I(1)�1 = 1so that this onstant is the identity matrix and hene ~g0I(x) = ~gI(x) and �I(x) = 	I(x).The Birkho� fatorization (4.12) therefore provides a (loal) map 	I�(x) 7! 	I(x). Beforeexploiting this map, let us show that it is invertible. Sine the oeÆients of the system (4.11)are holomorphi inE�, so are its solutions 	I�(x). Furthermore, 	I�(1) is a onstant matrix15



whih must be the identity by the initial onditions. Therefore given 	I(x) one an reover	I�(x) using the `reverse' Birkho� fatorization problem	I(x) = ~gI�(x)	I�(x); for x 2 C� (4.13)where ~gI�(x) and 	I�(x) are holomorphi in I� and E�, respetively, and with 	I�(1) = 1.This is just a rewriting of (4.12), where we now onsider the matrix 	I(x) as given and 	I�(x)as unknowns. In partiular, ~gI�(x) is the restrition of ~gI(x) to I�.Gauge transformation. Making use of the seond fator in (4.12) we de�ne the followingat onnetion 1-form, JI(x) := �d	I(x)�	I(x)�1: (4.14)Comparing this with (4.11b) using the fatorization (4.13) we �ndJI(x) = ~gI�(x)JI�(x)~gI�(x)�1 + �d~gI�(x)�~gI�(x)�1: (4.15)This shows that (4.14) is related by a gauge transformation to eah of the Lax onnetions(4.11a), in the sense of (4.8) with parameter ~g = ~gI�(x). As disussed in setion 4.4, in orderfor this gauge transformation to be of any use we must show that it preserves the analytistruture of the Lax onnetion.It follows from its de�nition (4.14) that JI(x) is holomorphi in E and vanishes at x =1.Its behaviour in I an be dedued from the alternative expressions (4.15). Indeed, the seondterm in this equation is holomorphi in I� whereas the �rst has a simple pole at x = �1 withresidue proportional to d��. By Mittag-Le�er's theorem this information uniquely spei�esJI(x) so we an write JI(x) = jI+1� xd�+ + jI�1 + xd��;for some funtions jI�(�+; ��). Sine JI(x) is at by de�nition (4.14), it follows that jI�satisfy the equations of the prinipal hiral model.Cauhy data. It remains to show that the initial data of jI� along the harateristis S�through (0; 0) oinides with j0I+(�+) and j0I�(��). To show this, onsider (4.14) in light-oneoordinates, ��+	I(x)�	I(x)�1 = jI+1� x; ���	I(x)�	I(x)�1 = jI�1 + x:Setting �� = 0 in the �rst equation, we see that 	I(x; �+; 0) is holomorphi in E+ sinethe oeÆient of the equation are. But then the solution of the fatorization problem (4.13)when �� = 0 is simply given by 	I+(x; �+; 0) = 	I(x; �+; 0) and ~gI+(x; �+; 0) = 1. Likewise,setting �+ = 0 in the seond equation, we �nd that 	I(x; 0; ��) is holomorphi in E� whihin turn implies 	I�(x; 0; ��) = 	I(x; 0; ��). In partiular, this yields the desired resultj0I+(�+) = jI+(�+; 0); j0I�(��) = jI�(��; 0):16



Reality onditions. Sine the irles C� are entered around x = �1 they are invariantunder onjugation x 7! �x. The involution �̂ therefore sends LCSL2(C ) to itself and its �xedpoint subset de�nes the twisted loop groupL�̂CSL2(C ) := f	 2 LCSL2(C ) j �̂ (	) = 	g:It is straightforward to show that the Birkho� fatorization (4.12) restrits to this subgroup.Indeed, suppose (	I+;	I�) 2 L�̂CSL2(C ), then applying �̂ to (4.12) yields the fatorization	I�(x) = ��~gI(�x)��1��	I(�x)�; for x 2 C�;where ��~gI(�x)� and ��	I(�x)� are holomorphi in I and E, respetively, with ��	I(1)� = 1.Therefore, by the uniqueness of the Birkho� fatorization (4.12) it follows that ~gI and 	I arealso in L�̂CSL2(C ), as laimed.Existene. We are �nally in a position to address the question of existene of the fator-ization (4.12). The reason for postponing this issue until now is that although the Birkho�fatorization in LS1SL2(C ) is only possible on a dense open subset, it turns out [20, 21℄ thatfor the �xed point subgroup L�̂S1SL2(C ) with respet to a omplex anti-linear involution �̂of the type (4.10), the Birkho� fatorization always exists. In other words, L�̂S1SL2(C ) isonneted and the \big ell" in this ase is the whole of L�̂S1SL2(C ) so that the Birkho�deomposition is global.This an be used to prove the desired fatorization (4.12) as follows. First of all, onsiderlinear frational transformations f�, with real oeÆients, mapping S1 to C� and the unitdisk fx 2 C j jxj < 1g to I�. This allows us to redue the Birkho� faotrization of L�̂C�SL2(C )to that of L�̂S1SL2(C ). In other words, we an deompose any 	� 2 L�̂C�SL2(C ) as a produt�I��E� where �I� 2 L�̂C�SL2(C ) and �E� 2 L�̂C�SL2(C ) extend holomorphially to I� and E�respetively, with �E�(1) = 1.Let (�+;��) 2 LCSL2(C ) denote the loop over C = C+ [ C� de�ned by the pair of loops�� 2 LC�SL2(C ) over C�. Then the element (	I+;	I�) 2 LCSL2(C ) an be fatorized as(	I+;	I�) = (	I+; 1)(1;	I�) = (�I+; 1)(�E+; 1)(1;	I�)= (�I+; 1)�1;	I�(�E+)�1�(�E+;�E+) = (�I+; 1)�1;�I��E��(�E+;�E+);= ��I+(�E�)�1;�I��(�E��E+;�E��E+);where in the �rst line we have introdued the fatorization 	I+ = �I+�E+ in L�̂C+SL2(C ), andin the seond line the fatorization 	I�(�E+)�1 = �I��E� in L�̂C�SL2(C ). The last line thengives the desired fatorization (4.12) sine ~gI+ := �I+(�E�)�1, ~gI� := �I� and 	I := �E��E+ areholomorphi in I+, I� and E, respetively, with 	I(1) = 1.17



4.5.2 Dressing the outgoing stringsPutting together the results of this setion we obtain a reursive algorithm for onstrutingthe outgoing string solution I, one null-tile at a time. Sine the tiles are naturally orderedwe label them by integers, the 0th tile being the (half) tile introdued in setion 4.3 and theith tile (i � 1) is de�ned by its lowest point being at (see Figure 6(a))pi := (�+i ; ��i ) = � (k a�; (k � 1)a�) for i = 2k;(k a�; k a�) for i = 2k + 1:The outgoing string an now be onstruted reursively as follows.
PSfrag replaements 0th 1st1st 2nd

p1=(0; 0) p2
p3 PSfrag replaements S+S� pipi+1 ith(i+1)st(i+1)st PSfrag replaements S+S� pipi+1ith

(i+1)st(i+1)stdress
(a) (b) ()Figure 6: (a) We enumerate the di�erent tiles in the tessellation reated by the null rays S�emanating from the singularity. In partiular, the 0th tile ontains the Cauhy surfae.(b) The shaded region represents the part of the solution already determined. For illustrationpurposes, we have ut the ylinder in suh a way that the ith tile appears whole.() The indutive step onsists in solving the Cauhy problem on the ith tile, taking forCauhy data along S� the value of j(i�1)I� on the boundary of the (i� 1)st tile.Initial step. From setion 4.3 we know that the solution on the 0th tile is simply given byextending the original solution of the inoming string, see Figure 5(b).Indutive step. Now given the solution on the (i � 1)st tile, the solution on the ith tilean be obtained as follows, see Figure 6(b)-(). Its Cauhy data onsists of the values of jI�along the two null rays S� onneting it to the (i�1)st tile. Yet by setion 4.2 we know thatthe omponents jI� are ontinuous aross the singular null rays S�, respetively. Thereforethe Cauhy data for the ith tile is ompletely spei�ed by the solution on the (i� 1)st tile asj0I+(�+) = j(i�1)I+ (�+; ��i ); j0I�(��) = j(i�1)I� (�+i ; ��): (4.16)The solution of the orresponding Cauhy problem is now obtained by applying the dressingtransformation of setion 4.5.1 with the point (0; 0) there replaed by (�+i ; ��i ).18



The �rst step requires solving the system (4.11) with j0I�(��) given by (4.16). However,it is easy to see that the solution an be expressed in terms of the extended solution on theprevious (i�1)st tile, sine this satis�es the same equations but with a di�erent normalization.Spei�ally, we have 	(i)I+(x; �+) = 	(i�1)I (x; �+; ��i )	(i�1)I (x; �+i ; ��i )�1;	(i)I�(x; ��) = 	(i�1)I (x; �+i ; ��)	(i�1)I (x; �+i ; ��i )�1: (4.17a)Next we perform the Birkho� fatorization (4.12) of 	(i)I�(x; ��), namely	(i)I�(x; ��) = ~g(i)I (x; �+; ��)�1	(i)In(x; �+; ��); for x 2 C�:The seond fator on the right de�nes the `normalized' extended solution on the ith tile, seeFigure 7. Finally, the `unnormalized' extended solution is now given by	(i)I (x; �+; ��) = 	(i)In(x; �+; ��)	(i�1)I (x; �+i ; ��i ): (4.17b)Equations (4.17) provide the desired reursive formula expressing the extended solution onthe ith tile in terms of that on the (i� 1)st tile through the use of a Birkho� fatorization.PSfrag replaements
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Figure 7: The normalized extended solution 	(i)In(x; �+; ��) at the point (�+; ��) in the ithtile is obtained from the Birkho� fatorization of the pair 	(i)I�(x; ��) de�ned at the boundarypoints (�+; ��i ) and (�+i ; ��), respetively.5 Conlusions and OutlookThe lassial integrability of the superstring �-model on AdS5� S5 has so far played a vitalrole in the lassi�ation of its �nite-gap solutions [22℄ as well as their reonstrution [23℄ inthe subsetor R � S3. In this artile we made a �rst step beyond solutions with ylindrialworldsheet by onstruting the general splitting solution in R�S3 . Although the worldsheetsof these new solutions have the topology of a pair of pants, the integrability of the �-model19



also played an essential role in their onstrution. This is no surprise sine after all the Laxonnetion is a loal objet on the worldsheet.Spei�ally, given any string solution with ylindrial worldsheet on R�S3 , whih satis�esthe self-intersetion property at some instant in time, we onstruted the pair of outgoingstrings resulting from the split. This was ahieved by reduing the problem to fatorization ina loop group, as is usual in lassial integrable systems. It would be important to investigatefurther the possibility of solving these Birkho� fatorization problems more expliitly, forinstane in terms of Riemann �-funtions.An example of initial string ould be a �nite-gap string, the moduli of whih are enodedin a �nite-genus algebrai urve. In fat, sine the outgoing strings are uniquely determinedby their Cauhy data whih in turn is given by the inoming string, the entire splittingsolution is uniquely haraterized by the same algebrai urve as the initial string. Thedi�erene between these two solutions will show up in the behaviour of the angle variables,enoded in the algebro-geometri language as a divisor on the urve [26℄, at the moment ofthe splitting. It would be interesting, though, to have a more algebrai haraterization ofthe self-intersetion property at the level of the urve and the divisor.This brings up the urious observation that for a given initial string there an more thanone possible evolution, depending on whether or not we hoose the string to split at � = 0.This existene of multiple di�erent solutions for the same set of Cauhy data at � < 0 ismerely a onsequene of the fat that the topology of the worldsheet is not determined bythe dynamis but rather �xed by hand from the outset. Another way to phrase this is tonote that sine the metri is not dynamial, it must be �xed prior to solving the equations.Its onformal lass then reets the underlying topology of the worldsheet. For instane, onthe ylinder the metri an be made globally at, whereas on the pair of pants it must bedegenerate at the singular point.Throughout our onstrution we have assumed the initial string to be smooth at � = 0.Sine the pair of outgoing strings are not smooth along the null rays through the splittingpoint, it is therefore not immediate how to desribe their potential further splitting. Thiswould �rst require a slight generalization of the onstrution to inlude initial solutions with adisrete set of singularities propagating along null lines. It would also be interesting to studythe joining of two lassial strings in a similar fashion, as well as lassial solutions exhibitingmore general worldsheet topology. This is a novel possibility on urved bakgrounds suh asR � S3 sine the produts of a split an eventually meet again and join.We emphasize that splitting strings are solutions of an initial value problem for a system ofhyperboli (Lorentzian) di�erential equations. Suh solutions, whih desribe a ompliatedsplitting proess in S3 � S5, should therefore be relevant for the semilassial omputationof 3-point funtions in the Minkowskian approah of [9℄. By omparison, the problem ofonstruting minimal surfaes in Eulidean AdS ending at ertain points on the boundary isa very di�erent one. It an a priori be phrased as a boundary value problem for a system ofellipti (Eulidean) di�erential equations. However, the lassial minimal surfae dominating20



a 3-point orrelation funtion at strong oupling should also ontain extra information, oneah leg, about the type of operator inserted at the boundary.Another promising approah for omputing strong oupling 3-point funtions diretlywithin the Eulidean formalism is the vertex operator approah [24℄. The main obstale inthis diretion is the onstrution of vertex operators orresponding to �nite-gap solutions.The insertion of three suh operators in the path integral should produe the orret bound-ary onditions for the minimal surfae mentioned above. Beause �nite-gap solutions haveLorentzian worldsheets while minimal surfaes have Eulidean signature, one would naivelyexpet the vertex operator to reate a Eulidean ontinuation of the �nite-gap solution. Suha relation is urrently only understood for 2-point funtions [25℄.Finally, our onstrution should have a natural generalization to AdS5�S5 superstrings ormore generally to Z4-graded superoset �-models [27℄. Indeed, the loop group fatorizationdisussed here is the global ounterpart of the loop algebra deomposition disussed in [28℄.AknowledgementsThis work was motivated by a talk of R. Janik presented at the workshop \From SigmaModels to Four-dimensional QFT" at DESY, Hamburg. I would like to thank Y. Aisaka, T.W. Brown, N. Dorey, R. Janik, M. C. Reed, J. Teshner, K. P. Tod, A. A. Tseytlin and K.Zarembo for interesting disussions.Referenes[1℄ N. Beisert et al., \Review of AdS/CFT Integrability: An Overview," arXiv:1012.3982[hep-th℄.[2℄ N. Gromov, V. Kazakov and P. Vieira, \Exat Spetrum of Anomalous Dimensions ofPlanar N=4 Supersymmetri Yang-Mills Theory," Phys. Rev. Lett. 103 (2009) 131601[arXiv:0901.3753 [hep-th℄℄ � N. Gromov, V. Kazakov, A. Kozak and P. Vieira, \Ex-at Spetrum of Anomalous Dimensions of Planar N = 4 Supersymmetri Yang-MillsTheory: TBA and exited states," Lett. Math. Phys. 91 (2010) 265 [arXiv:0902.4458[hep-th℄℄.[3℄ D. Bombardelli, D. Fioravanti and R. Tateo, \Thermodynami Bethe Ansatz for planarAdS/CFT: A Proposal," J. Phys. A 42 (2009) 375401 [arXiv:0902.3930 [hep-th℄℄.[4℄ G. Arutyunov and S. Frolov, \String hypothesis for the AdS(5) x S**5 mirror," JHEP0903 (2009) 152 [arXiv:0901.1417 [hep-th℄℄ � G. Arutyunov and S. Frolov, \Thermo-dynami Bethe Ansatz for the AdS(5) x S(5) Mirror Model," JHEP 0905 (2009) 068[arXiv:0903.0141 [hep-th℄℄. 21
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