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DESY 11-078May 2011Splitting strings on integrable ba
kgroundsBenô�t Vi
edoDESY Theory, Notkestra�e 85, 22603 Hamburg, Germanybenoit.vi
edo�desy.deAbstra
tWe use integrability to 
onstru
t the general 
lassi
al splitting string solution on R�S3 .Namely, given any in
oming string solution satisfying a ne
essary self-interse
tion propertyat some given instant in time, we use the integrability of the worldsheet �-model to 
onstru
tthe pair of outgoing strings resulting from a split. The solution for ea
h outgoing string isexpressed re
ursively through a sequen
e of dressing transformations, the parameters ofwhi
h are determined by the solutions to Birkho� fa
torization problems in an appropriatereal form of the loop group of SL2(C ).
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1 Introdu
tionSolving a 
onformal �eld theory amounts to �nding its spe
trum of anomalous dimensionsand the stru
ture 
onstants of its 3-point fun
tions. At weak 
oupling, the former problemis equivalent to perturbatively diagonalizing the dilatation operator. When the CFT admitsan AdS dual, the same problem at strong 
oupling requires �nding the semi
lassi
al energyspe
trum of strings in AdS-spa
e. In the 
ase of N = 4 SYM, dual to type IIB superstringson AdS5�S5, the emergen
e of integrability in the planar limit of both theories has graduallyled to a very elegant analyti
al solution to both of these problems (see [1℄ for a re
ent review).Assuming integrability at all loops, this eventually 
ulminated in a series of proposals for
omputing the full spe
trum of anomalous dimensions at all values of the 
oupling [2, 3, 4℄.In sharp 
ontrast with these developments for the spe
trum ofN = 4 SYM, 
omparativelylittle is known about the stru
ture 
onstants of its 3-point fun
tions. A possible explanationfor this short
oming might be the apparent la
k of integrability methods beyond the planarse
tor. And yet it was re
ently shown in [5℄, building on [6℄, that the integrability of planarN = 4 SYM, whi
h was so 
ru
ial in the exa
t study of the spe
trum, 
an also be used tosystemati
ally ta
kle the problem of 3-point fun
tions at weak 
oupling. At strong 
oupling,on the other hand, a similar use of the 
lassi
al integrability of superstrings on AdS5 � S5,whi
h is after all a lo
al property on the worldsheet, has not yet been exploited. Indeed,the semi
lassi
al study of 3-point fun
tions [7℄ has thus far been restri
ted to 
ases wherethe path integral is dominated by some �nite-gap solution with 
ylindri
al worldsheet. Inparti
ular, a 
omparison [8℄ of the results of [5℄ with string theory in the Frolov-Tseytlin limit
ould only be 
onsidered in the 
ase where two of the three string states are \heavy", i.e.semi
lassi
al, while the third is \light". Nevertheless, an attra
tive proposal for 
omputing3-point fun
tions at strong 
oupling using 
lassi
al methods was put forward in [9℄, whi
hrelies on �nding 
lassi
al Minkowskian solutions splitting/joining in S5.The aim of this paper is to exploit the 
lassi
al integrability of the superstring �-modelon AdS5 � S5 so as to 
onstru
t 
lassi
al string solutions with Lorentzian worldsheets ofmore general topology than the 
ylinder. The simplest su
h worldsheet is the `pair of pants'diagram, or three pun
tured sphere, des
ribing the splitting or joining of strings. By fo
usingon the bosoni
 subspa
e R�S3 , we shall 
onstru
t the most general splitting string solutionon this ba
kground. Spe
i�
ally, we assume that we are given a solution on the 
ylinder withthe property that: at some given instant in time � = 0, two of its points �1 and �2 
oin
idein target spa
e and their velo
ities agree; a simple example is the folded spinning string [12℄.The splitting of su
h a string 
omes from treating it as 
onsisting of two individual stringsand letting ea
h of them evolve separately, see Figure 1. The problem therefore 
onsists insolving a pair of Cau
hy problems on the outgoing 
ylinders (the legs of the pair of pants)with Cau
hy data spe
i�ed by a portion of the original solution at time � = 0.The 
lassi
al splitting of strings has been extensively studied in the literature [10℄, mostlyin 
at Minkowski spa
e, but also on 
ertain ba
kgrounds with respe
t to whi
h the equations2



PSfrag repla
ements X�(�; 0)X�I (�; 0)X�II(�; 0) 0�Figure 1: The splitting is the result of a manual 
hange in the topology of the 
losed stringimposed at the instant � = 0 when the pro�le in spa
e-time self-interse
ts. The full timeevolution of the string is des
ribed by a worldsheet with the topology of a pair of pants.of motion are linear in the �elds. In ea
h 
ase, therefore, the general solution of the equationsis given by a Fourier series whi
h 
an be subje
ted to the relevant boundary 
onditions andCau
hy data in order to solve the Cau
hy problem. More re
ently, there has been renewedinterest in splitting strings in the 
ontext of the AdS/CFT 
orresponden
e [11℄. However, inthis 
ase the non-linearity of the equations of motion renders Fourier analysis unappli
able.But fortunately these non-linear equations are well known to be integrable, in the sense thatthey de�ne a Lax 
onne
tion: a lo
ally de�ned 1-form on the worldsheet, meromorphi
 insome auxiliary 
omplex parameter, and with the property of being 
at. This will allow usto solve the Cau
hy problems on the outgoing 
ylinders.The outline of the paper is as follows. In se
tion 2 we set up the general formalism fordis
ussing 
lassi
al intera
ting strings, treating in parallel the 
ase of 
at spa
e and R � S3.In se
tion 3 we set up and solve the Cau
hy problem for splitting strings in 
at spa
e. Thisserves as a warmup exer
ise sin
e it will turn out that many features of the solution in 
atspa
e 
arry over to those of the Cau
hy problem in R � S3. Finally, se
tion 4 deals withsplitting strings in R � S3. After setting up the Cau
hy problem on the outgoing 
ylinders,we show that the smoothness property of the solution is the same as in 
at spa
e, resultingin a similar tessellation of the worldsheet into tile-shaped regions bounded by null rays. Wethen show how integrability 
an be used to re
ursively 
onstru
t the solution to the Cau
hyproblem in ea
h tile, given the solution in the previous tile.2 Classi
al intera
ting stringsOur analysis of splitting strings on R�S3 will be 
losely related to the 
orresponding analysisin 
at spa
e. In this se
tion we therefore introdu
e both 
ases in parallel. Let W denote theworldsheet of the string, equipped with a Lorentian metri
 
. For the moment we imposeno restri
tion on the topology of W . 3



In 
at spa
e. Consider the embedding X� : W ! Rp;1 of W into Minkowski spa
e Rp;1 .In order to des
ribe the 
lassi
al motion of a string, this map should minimize the stringa
tion RW dX� ^ �dX�, where � denotes the Hodge dual relative to the worldsheet metri
 
.The 
orresponding equations of motion for all the �elds (X�; 
) readX� : d � dX� = 0; (2.1a)
 : G�� = 12
��
��G��; (2.1b)where G�� = ��X���X� is the pull-ba
k of the 
at target spa
e metri
 to W .On R�S3 . The embedding of a string with worldsheetW into the target spa
e R�S3 withsignature (�1;+1;+1;+1) is des
ribed by a pair of �elds X0 : W ! R and g : W ! SU(2).The a
tion for all these �elds 
an be written down su

in
tly asS = p�4� Z �12 tr(j ^ �j) + dX0 ^ �dX0� ; (2.2)where j = �g�1dg is the su(2)-valued 
urrent and � denotes the Hodge dual relative to theworldsheet metri
 
. The resulting equations of motion for the respe
tive �elds areg : d � j = 0; dj � j ^ j = 0; (2.3a)X0 : d � dX0 = 0; (2.3b)
 : G�� = 12
��
��G��; (2.3
)where the indu
ed metri
 is G�� = 12 tr(j�j�) + ��X0��X0.2.1 Mandelstam diagramsIn the 
ontext of Riemannian worldsheetsW , the 
onformal 
lass of the Riemannian metri
 gendows W with a 
omplex stru
ture, promoting it to a Riemann surfa
e (W; [g℄). Moreover,as shown in [13℄, there is a 1 { 1 
orresponden
e between string light-
one diagrams andAbelian di�erentials onW . Analogous statements to these 
an also be made in the Lorentziansetting [14℄. In parti
ular, the 
onformal 
lass of the Lorentzian metri
 
 endows W with a
ausal stru
ture and stati
 gauge provides a Mandelstam diagram representation of W .Conformal gauge. The equations of motion (2.1) or (2.3) being invariant under 
onformaltransformations of the worldsheet metri
 
 7! e�
, only the 
onformal equivalen
e 
lass [
℄ of
 is physi
ally relevant. Yet there is a 1 { 1 
orresponden
e between 
onformal equivalen
e
lasses of Lorentzian metri
s and 
ausal stru
tures on W , i.e. ordered pairs (F+;F�) oftransverse null foliations [14℄. In other words, spe
ifying the worldsheet metri
 
 amountsto giving W a 
ausal stru
ture, thereby promoting it to a Lorentz surfa
e (W; [
℄). In termsof any lo
al null 
oordinates ~�� : U � W ! R, de�ned by �� := �~�� being tangent to thefoliation F�, the metri
 reads 
 = 
+�d~�+d~��.4



Stati
 gauge. We 
an write dX0 = �+ + �� where the pair (�+; ��) are transverse mea-sures to the foliations (F+;F�) respe
tively, whi
h lo
ally read �� = (��X0)d~��. In otherwords �� vanishes on tangent ve
tors to leaves of the foliation F� (in parti
ular �� mustvanish at singular points of the foliation F� where multiple leaves end). By working in lo
al
oordinates it is easy to see that ��� = ���. But now dX0 is harmoni
 (that is, 
losedand 
o-
losed) by the equations of motion, whi
h means that �� are both 
losed and hen
elo
ally read �� = f�(~��)d~��. Now integrating givesX0(p) = Z p(�+ + ��)for p 2 W , and sin
e X0 must be a well de�ned fun
tion we have RC �+ = � RC �� for anyC 2 �1(W ). This last 
ondition is the requirement for re
ti�ability of W into a Mandelstamdiagram [14℄, i.e. for there to be a representative of (W; [
℄) whi
h is a Mandelstam diagram.Indeed, the level 
urves of X0 are transverse to the leaves of both null foliations F� and thosethrough the singularities of F� provide an annuli de
omposition of W . The representativeof the 
lass [
℄ is given by � := �4�+ � �� = �4 d�+d�� = �d� 2 + d�2, where�� := Z p �� = 12(� � �) (2.4)de�ne global null 
oordinates on (the universal 
over of) W . In parti
ular we have X0 = � .Note that � is degenerate at the singular points of the foliation F�.Virasoro 
onstraints. After going to 
onformal stati
 gauge, the dynami
al equation forX0 is solved and the metri
 is now �xed to the 
at metri
 
 = �. The equations of motionthen redu
e to In 
at spa
e � �+��X� = 0; � 6= 0;T�� := ��X���X� = 0 (2.5)On R � S3 � ��j+ = 12 [j�; j+℄; �+j� = 12 [j+; j�℄;T�� := 12tr j2� + 1 = 0: (2.6)In either 
ase, we �nd using the �rst set of equations that T�� = T��(��) only depends on��. Therefore, if it vanishes for all � at some � then it must vanish for all � . It follows thatwhen solving the Cau
hy problem for the equations (2.5) or (2.6), the Virasoro 
onstraintsT�� = 0 will be automati
ally taken 
are of provided the Cau
hy data satisfy them.2.2 Pair of pantsSin
e our aim is to dis
uss splitting strings, from now on we shall fo
us on the 
ase whereW has the topology of a pair of pants, see Figure 2. There is a single singular point and the5



PSfrag repla
ements O IIIFigure 2: The string worldsheet W has the topology of a pair of pants, or three pun
turedsphere. The initial string O splits into two outgoing strings labelled I and II.level 
urve of X0 through it, whi
h has the topology of a `�gure of 8', 
an be assumed to beat � = 0 without loss of generality. With this 
urve removed, the spa
e W nf� = 0g 
onsistsof three 
ylinders, whi
h 
an be parameterized as followsWO := f(�; �) j 0 < � � 2�; � < 0g; (2.7a)WI := f(�; �) j 0 < � � 2a�; � > 0g; (2.7b)WII := f(�; �) j 2a� < � � 2�; � > 0g: (2.7
)where a < 1 and the �-interval is periodi
ally identi�ed in ea
h 
ase.It is 
lear that any map from su
h a worldsheetW into spa
etime des
ribes a single stringwhi
h splits o� into two separate strings at � = 0. In parti
ular, the map has the followingimportant self-interse
tion property:In 
at spa
e � X�(0; 0) = X�(2a�; 0);��X�(0; 0) = ��X�(2a�; 0) (2.8)On R � S3 � g(0; 0) = g(2a�; 0);��g(0; 0) = ��g(2a�; 0): (2.9)3 Splitting strings in 
at spa
eBefore studying splitting strings on R � S3, we start by analyzing the splitting of strings in
at spa
e in detail sin
e many features of the solution will remain true in the nonlinear 
aseand serve as a guideline there.3.1 Cau
hy problemWe would like to solve the Cau
hy problem 
orresponding to the linear wave equation (2.5)on the pair of pants W , for a given set of initial 
onditions on the in
oming 
ir
le. However,it is 
lear that these 
onditions 
annot be 
ompletely arbitrary sin
e they need to be su
hthat the self-interse
tion property (2.8) holds. We shall therefore assume that we are given6



a solution to (2.5) on the in
oming 
ylinder WO satisfying (2.8). To determine the 
ompletesolution on the rest of W , it remains to �nd solutions X�I , X�II to�+��X�I = 0; on WI (3.1.I)�+��X�II = 0; on WII (3.1.II)with initial 
onditions at � = 0 spe
i�ed by the given solution X� on WO as followsX�I (�; 0) = X�(�; 0);��X�I (�; 0) = ��X�(�; 0) � for 0 < � � 2a�; (3.2.I)X�II(�; 0) = X�(�; 0);��X�II(�; 0) = ��X�(�; 0) � for 2a� < � � 2�: (3.2.II)Note that for ea
h outgoing string, the singularity lies at the end points of the initial interval.Sin
e they live on WI and WII respe
tively, the solutions X�I and X�II de�ned for � � 0 arerequired to have new periodi
ity 
onditions, di�erent from those of X�, namelyX�I (� + 2a�; �) = X�I (�; �); (3.3.I)X�II(� + 2(1� a)�; �) = X�II(�; �): (3.3.II)Noti
e that (3.3) is 
onsistent with (3.2) by virtue of the self-interse
tion property (2.8).3.2 Absolute elsewhere of the singularityD'Alembert's solution to the linear wave equation is expressed as a sum of fun
tions in �+and ��. In parti
ular, the solution given on the initial 
ylinder assumes this general form,X�(�; �) = X�+(�+) +X��(��): (3.4a)Sin
e X�I , X�II are solutions of the same equation (3.1), they are also given by d'Alembert'sgeneral form on their respe
tive 
ylindersX�I (�; �) = X�I+(�+) +X�I�(��); X�II(�; �) = X�II+(�+) +X�II�(��): (3.4b)In terms of (3.4) the initial 
onditions (3.2) read, in their respe
tive domains in �,X�I+(�) +X�I�(�) = X�+(�) +X��(�); ��X�I+(�)� ��X�I�(�) = ��X�+(�)� ��X��(�);X�II+(�) +X�II�(�) = X�+(�) +X��(�); ��X�II+(�)� ��X�II�(�) = ��X�+(�)� ��X��(�):But then, di�erentiating the left set of equations with respe
t to � and 
ombining them withthe right set we obtain��X�I�(�) = ��X��(�); for 0 < � � 2a���X�II�(�) = ��X��(�); for 2a� < � � 2�:7



Integrating in � and using part of the initial 
onditions again, we �ndX�I�(�) = X��(�)� v�I ; for 0 < � � 2a� (3.5.I)X�II�(�) = X��(�)� v�II; for 2a� < � � 2�; (3.5.II)where v�I and v�II are 
onstants. Plugging this into (3.4b) we obtainX�I (�; �) = X�(�; �); for � < � � 2a� � �; (3.6.I)X�II(�; �) = X�(�; �); for 2a� + � < � � 2� � �: (3.6.II)Note that the domains of validity here are determined by the requirement that �� satis�es thesame bounds as � does in (3.5). Hen
e, these domains are bounded by null rays emanatingfrom the singularity, as shown in Figure 3. That is, the original solution remains valid atpoints on the outgoing 
ylinders I and II whi
h are spa
e-like separated from the singularity.
PSfrag repla
ements 2a�0 0 I IIII �

�
Figure 3: When � < 0 the worldsheet has the topology of a 
ylinder, the pi
ture beingperiodi
ally identi�ed in the �-dire
tion. For � > 0 the 
hange in topology is indi
ated bythe blue 
uts emanating from the singularity at 0 � 2a�: the right and left sides of the 
utthrough 0 are to be identi�ed with the left and right sides of the 
ut through 2a� respe
tively.In the shaded area, bounded by null rays (in red), the initial solution remains valid.3.3 Absolute future of the singularityTo determine the solutions I and II beyond the limited region of Figure 3, we impose theirrespe
tive periodi
ity 
onditions (3.3). Taking the derivatives of these 
onditions with respe
tto �� and using the general form of the solutions (3.4b) leads to��X�I�(� + a�) = ��X�I�(�); ��X�II�(� + (1� a)�) = ��X�II�(�):After integrating we �ndX�I�(� + a�) = X�I�(�) + x�I�; X�II�(� + (1� a)�) = X�II�(�) + x�II�:8



In other words, the fun
tions X�I� and X�II� are not periodi
 but shift by 
onstants underthe translations � 7! � + a� and � 7! � + (1� a)� respe
tively. This leads to(X�I (�+ + a�; ��) = X�I (�+; ��) + x�I ;X�I (�+; �� + a�) = X�I (�+; ��) + x�I ; (3.7.I)(X�II(�+ + (1� a)�; ��) = X�II(�+; ��) + x�II;X�II(�+; �� + (1� a)�) = X�II(�+; ��) + x�II: (3.7.II)That the same x�I (resp. x�II) appears for shifts in both �+ and �� of X�I (resp. X�II) followsfrom taking the di�eren
e of both equations and using the periodi
ity 
onditions (3.3) whi
h
an be written as X�I (�+ + a�; ��) = X�I (�+; �� + a�) and similarly for X�II.The formulae (3.7) now allow us to extend ea
h solution X�I , X�II beyond their restri
teddomains (3.6) depi
ted in Figure 4. Together, equations (3.6) and (3.7) therefore de�ne thefun
tions X�I and X�II 
ompletely on the whole outgoing 
ylinders WI and WII. Combinedwith the original solution X� on the in
oming 
ylinder, this gives a 
omplete des
ription ofthe 
orresponding splitting string. Let us emphasize that sin
e the 
onstru
tion assumedd'Alembert's form (3.4b) for both fun
tions X�I and X�II, they automati
ally satisfy theequations of motion (3.1), in a distributional sense, despite not being di�erentiable on theforward null rays through the singularity.
PSfrag repla
ements +xI+xI +xII+xII +2xI

I IIII�0
Figure 4: The solution in the `null tiles' labelled I and II, delimited by null rays through thesingularity, is obtained by extending the original solution X�. The solutions X�I and X�II onsubsequent tiles are given by 
onstant translates of the solution in the regions I and II.One immediate advantage of this 
onstru
tion is that the qualitative des
ription of themotion of the outgoing strings in spa
e time is very transparent. In parti
ular, the form ofthe solution 
learly shows that the singular point, where the splitting o

urs, propagates atthe speed of light along the worldsheet of ea
h outgoing string I and II. Along these nullrays the spa
e time pro�le of strings I and II exhibits 
usps, but moreover, the pro�le awayfrom these 
usps is given by some rigid translate of a portion of the initial string.9



4 Splitting strings on R � S34.1 Cau
hy problemAs in the 
at spa
e 
ase, to solve the Cau
hy problem on the pair of pantsW we shall assumethat a solution g(�; �) of the equations (2.6) on the in
oming 
ylinder WO is given, whi
hsatis�es the self-interse
tion property (2.9) at � = 0. This solution will spe
ify Cau
hy datafor separate Cau
hy problems on ea
h outgoing 
ylinder WI and WII. However, sin
e bothproblems are essentially equivalent we shall fo
us on one of the outgoing strings, say I.The equations of motion for the embedding �eld gI : WI ! SU(2) 
an be written as�2�gI � �2�gI = �+��gI = 12��+gI(g�1I ��gI) + ��gI(g�1I �+gI)� =: f(gI; ��gI; ��gI): (4.1a)Sin
e the string is 
losed, we impose periodi
 boundary 
onditions, i.e. gI(0; �) = gI(2a�; �).Equivalently we require gI(�; �) to be 2a�-periodi
 in �. The initial 
onditions readgI(�; 0) = g(�; 0); ��gI(�; 0) = ��g(�; 0); (4.1b)where g(�; �) is the given initial string solution. By assumption it satis�es the self-interse
tionproperty (2.9) so that (4.1b) are 
onsistent with the 2a�-periodi
ity of gI. Moreover, we as-sume the in
oming string solution to be smooth so that (4.1b) are both smooth ex
ept atthe self-interse
tion point � = 0 � 2a� of the initial string, where they are only 
ontinuous.Su
h points of redu
ed regularity are referred to as `singularities' and the relation betweensingularities of a solution and singularities of the 
orresponding initial data goes under thename of `propagation of singularities'.To solve the Cau
hy problem (4.1) we will pro
eed in three steps. First, we make use ofthe theory of propagation of singularities to identify the global smoothness properties of theoutgoing string. It turns out that despite the nonlinearity of the equations, the singularity ofthe initial data propagates along null traje
tories, exa
tly as in the 
at spa
e 
ase where theequations were linear. We then argue that the initial solution 
an be trivially extended toall points whi
h are spa
elike separated from the singularity. Finally, using this informationwe 
onstru
t the remainder of the solution in the forward light-
one of the singularity byexploiting the integrability of the equations and using the dressing method.4.2 Propagation of the singularityThe propagation of singularities in nonlinear Klein-Gordon type equations of the generalform �2�u� �2�u = f(x; u; ��u; ��u) was �rst studied in [15℄ and further developed in [16℄. Itturns out that despite the presen
e of nonlinear terms on the right hand side, the result isexa
tly the same as in the linear 
ase where f � 0. In other words, if the initial data is Cnat (�; 0) then the solution will be Cn with respe
t to �� along the right null ray (� + �; �)10



and Cn with respe
t to �+ along the left null ray (� � �; �). In parti
ular, the solution willbe smooth at a point (�; �) if its ba
kward null rays interse
t � = 0 only at non-singularpoints of the initial data. Note that the pair of null rays through any point are nothing butthe 
hara
teristi
 lines of the se
ond order hyperboli
 di�erential operator �2� � �2�. This
on
lusion remains true more generally for 
oupled Klein Gordon equations su
h as (4.1a)in whi
h the nonlinear 
oupling terms depend only on lower order derivatives gI, ��gI, ��gI.The propagation of singularities in the light-
one 
omponents of the 
urrent jI = �g�1I dgIitself will be more relevant later so we dis
uss it dire
tly. The equations of motion read��jI+ = 12 [jI�; jI+℄; �+jI� = 12 [jI+; jI�℄; (4.2a)and the 
orresponding initial 
onditions derived from (4.1b) arejI�(�; 0) = �g(�; 0)�1(��g(�; 0)� ��g(�; 0)): (4.2b)These fun
tions are smooth away from the self-interse
tion point � = 0 � 2a�, but exhibita jump dis
ontinuity there sin
e g(�; 0) is only 
ontinuous at that point.The general semilinear hyperboli
 �rst order system with pie
ewise-smooth initial datahaving jump dis
ontinuities only at a dis
rete set of points was studied in [17℄. The system(4.2) is of this type but has only two 
hara
teristi
 dire
tions at any point, namely the left andright null rays. It follows (see [17℄ for details) that there 
an be no `anomalous' singularities{ these are singularities whi
h are not present in the linearized system { appearing at theinterse
tion of two singularity bearing 
hara
teristi
s. Let us denote S� and S+ the forwardleft and right null rays emanating from the singularity (a�; 0), see Figure 5 (a). Then asolution of (4.2) in the distributional sense must in fa
t be smooth in WI n (S+ [ S�).
PSfrag repla
ements S+ S�PSfrag repla
ements S+ S�p(a) (b)Figure 5: (a) The self-interse
tion point of the initial string 
orresponds to a singularity inthe initial 
onditions of ea
h outgoing string, whi
h propagates along both left and right nullrays S� and S+. The solution is therefore smooth everywhere ex
ept on these forward nullrays. The 
omponent jI� has a jump dis
ontinuity a
ross S� whereas jI� is 
ontinuous.(b) The shaded region, representing points whi
h are 
ausally dis
onne
ted from the sin-gularity, is una�e
ted by the splitting. The solution there is simply given by the originalsolution extended beyond � = 0 as if the splitting never o

urred.11



We 
an be more pre
ise about the value of the jump dis
ontinuities a
ross S�. By takingthe integral of the �rst equation in (4.2a) over a vanishingly small interval in the �� dire
tionwhi
h interse
ts S+, we �nd that the dis
ontinuity of jI+ a
ross this 
hara
teristi
 vanishes.That is, jI+ is 
ontinuous in the �� dire
tion. On the other hand, its dis
ontinuity ��jI+a
ross the left null ray S� satis�es ��(��jI+) = 12 [jI�;��jI+℄. A similar reasoning appliedto the se
ond equation in (4.2a) shows that jI� is 
ontinuous in the �+ dire
tion and itsjump dis
ontinuity �+jI� a
ross the right null ray S+ satis�es �+(�+jI�) = 12 [jI+;�+jI�℄.The upshot is that the jump dis
ontinuities of jI+ and jI� in the initial 
ondition at � = 0propagate along the left null ray S� and right null ray S+, respe
tively.4.3 Absolute elsewhere of the singularityHaving identi�ed the smoothness properties of the 
urrent jI on ea
h outgoing 
ylinder, wenow pro
eed to a
tually 
onstru
t these solutions. In the spirit of se
tion 3, we will solve theequations su

essively in ea
h `null-tile', delimited by the null lines S�, where the solution isknown to be smooth. The �rst tile in 
onta
t with the Cau
hy surfa
e requires little e�ort.Indeed, in any hyperboli
 system, the solution of the Cau
hy problem at any point ponly depends on that part of the Cau
hy data whi
h lies within the domain of dependen
eof p, de�ned as the interior of the ba
kward 
hara
teristi
 
one with apex p. Now 
onsiderthe region on the outgoing 
ylinder WI 
onsisting of all points, the domain of dependen
e ofwhi
h does not 
ontain the singularity. This region is delimited by the forward null rays S�through the singularity and the Cau
hy surfa
e � = 0, see Figure 5 (b). It is then 
lear thatthe original solution remains valid within this region, sin
e the relevant Cau
hy data is thesame as if the splitting had never o

urred.4.4 IntegrabilityExtending the solution into the region of in
uen
e of the singularity is 
onsiderably hardersin
e it requires expli
itly solving the Cau
hy problem. Fortunately, the equations (4.2a) ofthe prini
pal 
hiral model are well known to be integrable in the sense that they 
an lo
allybe rewritten in the form of a zero 
urvature equation. This will enable us to make use ofpowerful fa
torization methods to 
onstru
t their solutions.Lax 
onne
tion. Introdu
e the following one 
omplex-parameter family of sl2(C )-valued1-forms on the worldsheet WI, depending on the single parameter x 2 C P 1 ,JI(x) := jI+1� x d�+ + jI�1 + x d��; (4.3)where re
all that jI = jI+d�+ + jI�d��. It has the remarkable property of being 
at, i.e.dJI(x)� JI(x) ^ JI(x) = 0; (4.4)12



if and only if the equations of motion (4.2a) hold. In other words, 
at sl2(C )-
onne
tionsJI(x) on WI with simple poles at x = �1 and a zero at x =1 are in 1 { 1 
orresponden
ewith solutions jI :WI ! sl2(C ) of the prin
ipal 
hiral model equations. Spe
i�
ally, the Lax
onne
tion is 
onstru
ted from jI as in (4.3) and the 
urrent is re
overed from JI(x) byjI = JI(0): (4.5)Extended solution. Sin
e the sl2(C )-
onne
tion JI(x) is 
at, it 
an be trivialized overany simply 
onne
ted domain of U � WI, namely we 
an writeJI(x) = �d	I(x)�	I(x)�1; (4.6)where 	I is uniquely determined if we require 	I(x; �0; �0) = 1 at some point (�0; �0) 2 U . Itfollows from (4.6) that (d� tr JI(x)) det	I(x) = 0 and therefore det	I(x) is 
onstant sin
etrJI(x) = 0. The initial 
ondition then implies that 	I(x) takes values in SL2(C ).Ultimately we are interested in the group element gI 2 SU2 rather than the 
urrent jI.Comparing the de�nition of jI = �g�1I dgI with that of 	I(x) in (4.6) and using (4.5), we seethat the group element 
an be re
overed su

in
tly from 	I(x) asgI = 	I(0)�1: (4.7)For this reason 	I(x) is sometimes 
alled the extended solution.Gauge transformations. The zero-
urvature equation (4.4) has a large gauge redundan
ysin
e given any ~g(x; �; �), the gauge transformed Lax 
onne
tionJI(x) 7! ~gJI(x)~g�1 + (d~g)~g�1 (4.8)also satis�es the zero-
urvature equation. For generi
 
hoi
es of ~g, however, it will no longeradmit the same pole stru
ture as (4.3) and therefore 
an no longer be interpreted as a Lax
onne
tion of the prin
ipal 
hiral model. Yet, when ~g is 
arefully 
hosen to preserve the polestru
ture of the Lax 
onne
tion, (4.8) provides a powerful map between solutions.Reality 
onditions. To obtain su2-valued 
urrents jI and SU2-valued solutions gI, onemust impose reality 
onditions on the extended solution 	I(x). SuÆ
ient 
onditions are	I(x)y = 	I(�x)�1; (4.9)whi
h imply gyI = g�1I . Furthermore, the ensuing reality 
ondition JI(x)y = �JI(�x) on theLax 
onne
tion whi
h follows from (4.6) then implies jyI = �jI. It will be 
onvenient to thinkof real extended solutions (4.9) as �xed points of the 
omplex antilinear involution�̂(	I)(x) := ��	I(�x)�; (4.10)where �(A) := (Ay)�1 for any A 2 SL2(C ), so that SU2 � SL2(C ) is the �xed point set of � .13



4.5 Absolute future of the singularityWhen deriving exa
t solutions for the outgoing strings in the 
at spa
e 
ase we made fulluse of the fa
t that d'Alembert's general solution to the linear wave equation is expressed asa linear superposition of two independent fun
tions of �+ and ��. A nonlinear analogue ofthis statement in integrable models 
an be obtained using the so 
alled dressing method (see[18℄ for a review in the 
ontext of the prin
ipal 
hiral model). The rough idea is that thereexists a pair of gauge transformations (4.8) with parameters ~gI�(x; �+; ��) whi
h bring theLax 
onne
tion into 
anoni
al forms depending solely on ��, respe
tively:~gI�JI(x)~g�1I� + (d~gI�)~g�1I� = j0I�(��)1� x d�� =: JI�(x):But moreover, given two su
h `right and left moving' Lax 
onne
tions JI�(x) we 
an re
overthe original Lax 
onne
tion (4.3). Spe
i�
ally, we have a pair of mapsJI(x; �+; ��) undress / �JI+(x; �+); JI�(x; ��)�dressoreferred to as the undressing and dressing transformations. This is e�e
tively the nonlinear
ounterpart of the (linear) 
orresponden
e X�I (�+; ��)
 (X�I+(�+); X�I�(��)) in 
at spa
e.In fa
t, the analogy with the 
at spa
e 
ase goes even further. Suppose we `normalize' thesolutionX�I (�+; ��) by requesting thatX�I (0; 0) = 0. This amounts to performing a 
onstanttranslation on the solution, whi
h is a symmetry of the equations, and the `unnormalized'solution is re
overed by adding ba
k the original value of x�0 := X�I (0; 0). Then the fun
tionsX�I� may be de�ned simply as X�I+(�+) := X�I (�+; 0) and X�I�(��) := X�I (0; ��). Note thatthey inherit the `normalization' of X�I sin
e X�I�(0) = 0. The full solution may be obtainedfrom its values on the left and right null rays through the spe
ial point (0; 0) 2 WI,X�I (�+; ��) = X�I+(�+) +X�I�(��):In parti
ular, the `unnormalized' solution is obtained by adding the 
onstant x�0 .The analogous 
onstru
tion in the R � S3 
ase goes as follows. Consider the 
at Lax
onne
tions JI�(x) de�ne above but with j0I+(�+) := jI+(�+; 0) and j0I�(��) := jI�(0; ��).We introdu
e their lo
al trivializations 	I�(x; �+; ��) as in (4.6) but normalized su
h that	I�(x; 0; 0) = 1. Then it turns out that the trivialization 	I(x) of the original solution JI(x)normalized by 	I(x; 0; 0) = 1 
an be obtained by applying a dressing transformation�	I+(x);	I�(x)� dress // 	I(x):As in the 
at spa
e 
ase, the `unnormalized' extended solution with 	I(x; 0; 0) = 	0 isobtained by multiplying 	I(x; �+; ��) on the right by the 
onstant matrix 	0, whi
h is asymmetry of the equations (4.6).The purpose of the next subse
tion is to make these statements pre
ise. We shall usethem in the following subse
tion to obtain a 
omplete des
ription of the outgoing string I.14



4.5.1 Dressing and undressingGiven initial 
onditions j0I+(�+) and j0I�(��) on the pair of 
hara
teristi
s S� through (0; 0)we shall re
onstru
t the full solution jI�(�+; ��).We start by de�ning the following pair of 
at 
onne
tionsJI+(x) = j0I+(�+)1� x d�+; JI�(x) = j0I�(��)1 + x d��: (4.11a)The 
orresponding extended solutions normalized at (0; 0) are denoted respe
tively as 	I�(x),namely �d	I�(x)�	I�(x)�1 = JI�(x); 	I�(x; 0; 0) = 1: (4.11b)Birkho� fa
torization. Consider two small 
ir
les C� around x = �1 on the Riemannsphere C P 1 and let I� be their interiors and E� their respe
tive exteriors. We also introdu
eC := C+ [ C�, I := I+ [ I� and E := E+ \ E�. The pair of fun
tions 	I�(x) 
an be viewedas de�ning a single fun
tion C ! SL2(C ) and the set of all su
h smooth maps forms agroup LCSL2(C ) under pointwise matrix multipli
ation. Consider the Birkho� fa
torizationproblem whi
h 
onsists in writing 	I�(x) as a produ
t of maps in LCSL2(C ) whi
h extendholomorphi
ally to maps I ! SL2(C ) and E ! SL2(C ), respe
tively. Spe
i�
ally,	I�(x) = ~gI(x)�1	I(x); for x 2 C� (4.12)where ~gI(x) is holomorphi
 in I and 	I(x) is holomorphi
 in E with 	I(1) = 1.The Birkho� fa
torization theorem [19℄ states that there exists an open dense subset ofthe identity 
omponent of LS1SL2(C ), 
alled the \big 
ell", in whi
h the fa
torization intoloops holomorphi
 inside and outside the unit 
ir
le S1 = fx 2 C j jxj = 1g is possible. Inparti
ular, the Birkho� fa
torization always exists lo
ally, and this statement remains truealso for LCSL2(C ). Sin
e 	I�(x; 0; 0) = 1 trivially fa
torizes into a pair of identity matri
es,the existen
e of a solution to (4.12) is therefore guaranteed for small enough ��. We shall
ome ba
k to the question of existen
e after dis
ussing reality 
onditions.If it exists, however, it is easy to see that the fa
torization (4.12) is unique. For suppose	I�(x) = ~g0I(x)�1�I(x) gives another fa
torization then �I(x)	I(x)�1 = ~g0I(x)~gI(x)�1, wherethe left and right hand sides are holomorphi
 in E and I, respe
tively. However, sin
e theyare equal on C, together they de�ne a matrix of holomorphi
 fun
tions over C P 1 whi
h istherefore 
onstant. But the normalization 
ondition at 1 2 E implies �I(1)	I(1)�1 = 1so that this 
onstant is the identity matrix and hen
e ~g0I(x) = ~gI(x) and �I(x) = 	I(x).The Birkho� fa
torization (4.12) therefore provides a (lo
al) map 	I�(x) 7! 	I(x). Beforeexploiting this map, let us show that it is invertible. Sin
e the 
oeÆ
ients of the system (4.11)are holomorphi
 inE�, so are its solutions 	I�(x). Furthermore, 	I�(1) is a 
onstant matrix15



whi
h must be the identity by the initial 
onditions. Therefore given 	I(x) one 
an re
over	I�(x) using the `reverse' Birkho� fa
torization problem	I(x) = ~gI�(x)	I�(x); for x 2 C� (4.13)where ~gI�(x) and 	I�(x) are holomorphi
 in I� and E�, respe
tively, and with 	I�(1) = 1.This is just a rewriting of (4.12), where we now 
onsider the matrix 	I(x) as given and 	I�(x)as unknowns. In parti
ular, ~gI�(x) is the restri
tion of ~gI(x) to I�.Gauge transformation. Making use of the se
ond fa
tor in (4.12) we de�ne the following
at 
onne
tion 1-form, JI(x) := �d	I(x)�	I(x)�1: (4.14)Comparing this with (4.11b) using the fa
torization (4.13) we �ndJI(x) = ~gI�(x)JI�(x)~gI�(x)�1 + �d~gI�(x)�~gI�(x)�1: (4.15)This shows that (4.14) is related by a gauge transformation to ea
h of the Lax 
onne
tions(4.11a), in the sense of (4.8) with parameter ~g = ~gI�(x). As dis
ussed in se
tion 4.4, in orderfor this gauge transformation to be of any use we must show that it preserves the analyti
stru
ture of the Lax 
onne
tion.It follows from its de�nition (4.14) that JI(x) is holomorphi
 in E and vanishes at x =1.Its behaviour in I 
an be dedu
ed from the alternative expressions (4.15). Indeed, the se
ondterm in this equation is holomorphi
 in I� whereas the �rst has a simple pole at x = �1 withresidue proportional to d��. By Mittag-Le�er's theorem this information uniquely spe
i�esJI(x) so we 
an write JI(x) = jI+1� xd�+ + jI�1 + xd��;for some fun
tions jI�(�+; ��). Sin
e JI(x) is 
at by de�nition (4.14), it follows that jI�satisfy the equations of the prin
ipal 
hiral model.Cau
hy data. It remains to show that the initial data of jI� along the 
hara
teristi
s S�through (0; 0) 
oin
ides with j0I+(�+) and j0I�(��). To show this, 
onsider (4.14) in light-
one
oordinates, ��+	I(x)�	I(x)�1 = jI+1� x; ���	I(x)�	I(x)�1 = jI�1 + x:Setting �� = 0 in the �rst equation, we see that 	I(x; �+; 0) is holomorphi
 in E+ sin
ethe 
oeÆ
ient of the equation are. But then the solution of the fa
torization problem (4.13)when �� = 0 is simply given by 	I+(x; �+; 0) = 	I(x; �+; 0) and ~gI+(x; �+; 0) = 1. Likewise,setting �+ = 0 in the se
ond equation, we �nd that 	I(x; 0; ��) is holomorphi
 in E� whi
hin turn implies 	I�(x; 0; ��) = 	I(x; 0; ��). In parti
ular, this yields the desired resultj0I+(�+) = jI+(�+; 0); j0I�(��) = jI�(��; 0):16



Reality 
onditions. Sin
e the 
ir
les C� are 
entered around x = �1 they are invariantunder 
onjugation x 7! �x. The involution �̂ therefore sends LCSL2(C ) to itself and its �xedpoint subset de�nes the twisted loop groupL�̂CSL2(C ) := f	 2 LCSL2(C ) j �̂ (	) = 	g:It is straightforward to show that the Birkho� fa
torization (4.12) restri
ts to this subgroup.Indeed, suppose (	I+;	I�) 2 L�̂CSL2(C ), then applying �̂ to (4.12) yields the fa
torization	I�(x) = ��~gI(�x)��1��	I(�x)�; for x 2 C�;where ��~gI(�x)� and ��	I(�x)� are holomorphi
 in I and E, respe
tively, with ��	I(1)� = 1.Therefore, by the uniqueness of the Birkho� fa
torization (4.12) it follows that ~gI and 	I arealso in L�̂CSL2(C ), as 
laimed.Existen
e. We are �nally in a position to address the question of existen
e of the fa
tor-ization (4.12). The reason for postponing this issue until now is that although the Birkho�fa
torization in LS1SL2(C ) is only possible on a dense open subset, it turns out [20, 21℄ thatfor the �xed point subgroup L�̂S1SL2(C ) with respe
t to a 
omplex anti-linear involution �̂of the type (4.10), the Birkho� fa
torization always exists. In other words, L�̂S1SL2(C ) is
onne
ted and the \big 
ell" in this 
ase is the whole of L�̂S1SL2(C ) so that the Birkho�de
omposition is global.This 
an be used to prove the desired fa
torization (4.12) as follows. First of all, 
onsiderlinear fra
tional transformations f�, with real 
oeÆ
ients, mapping S1 to C� and the unitdisk fx 2 C j jxj < 1g to I�. This allows us to redu
e the Birkho� fa
otrization of L�̂C�SL2(C )to that of L�̂S1SL2(C ). In other words, we 
an de
ompose any 	� 2 L�̂C�SL2(C ) as a produ
t�I��E� where �I� 2 L�̂C�SL2(C ) and �E� 2 L�̂C�SL2(C ) extend holomorphi
ally to I� and E�respe
tively, with �E�(1) = 1.Let (�+;��) 2 LCSL2(C ) denote the loop over C = C+ [ C� de�ned by the pair of loops�� 2 LC�SL2(C ) over C�. Then the element (	I+;	I�) 2 LCSL2(C ) 
an be fa
torized as(	I+;	I�) = (	I+; 1)(1;	I�) = (�I+; 1)(�E+; 1)(1;	I�)= (�I+; 1)�1;	I�(�E+)�1�(�E+;�E+) = (�I+; 1)�1;�I��E��(�E+;�E+);= ��I+(�E�)�1;�I��(�E��E+;�E��E+);where in the �rst line we have introdu
ed the fa
torization 	I+ = �I+�E+ in L�̂C+SL2(C ), andin the se
ond line the fa
torization 	I�(�E+)�1 = �I��E� in L�̂C�SL2(C ). The last line thengives the desired fa
torization (4.12) sin
e ~gI+ := �I+(�E�)�1, ~gI� := �I� and 	I := �E��E+ areholomorphi
 in I+, I� and E, respe
tively, with 	I(1) = 1.17



4.5.2 Dressing the outgoing stringsPutting together the results of this se
tion we obtain a re
ursive algorithm for 
onstru
tingthe outgoing string solution I, one null-tile at a time. Sin
e the tiles are naturally orderedwe label them by integers, the 0th tile being the (half) tile introdu
ed in se
tion 4.3 and theith tile (i � 1) is de�ned by its lowest point being at (see Figure 6(a))pi := (�+i ; ��i ) = � (k a�; (k � 1)a�) for i = 2k;(k a�; k a�) for i = 2k + 1:The outgoing string 
an now be 
onstru
ted re
ursively as follows.
PSfrag repla
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(a) (b) (
)Figure 6: (a) We enumerate the di�erent tiles in the tessellation 
reated by the null rays S�emanating from the singularity. In parti
ular, the 0th tile 
ontains the Cau
hy surfa
e.(b) The shaded region represents the part of the solution already determined. For illustrationpurposes, we have 
ut the 
ylinder in su
h a way that the ith tile appears whole.(
) The indu
tive step 
onsists in solving the Cau
hy problem on the ith tile, taking forCau
hy data along S� the value of j(i�1)I� on the boundary of the (i� 1)st tile.Initial step. From se
tion 4.3 we know that the solution on the 0th tile is simply given byextending the original solution of the in
oming string, see Figure 5(b).Indu
tive step. Now given the solution on the (i � 1)st tile, the solution on the ith tile
an be obtained as follows, see Figure 6(b)-(
). Its Cau
hy data 
onsists of the values of jI�along the two null rays S� 
onne
ting it to the (i�1)st tile. Yet by se
tion 4.2 we know thatthe 
omponents jI� are 
ontinuous a
ross the singular null rays S�, respe
tively. Thereforethe Cau
hy data for the ith tile is 
ompletely spe
i�ed by the solution on the (i� 1)st tile asj0I+(�+) = j(i�1)I+ (�+; ��i ); j0I�(��) = j(i�1)I� (�+i ; ��): (4.16)The solution of the 
orresponding Cau
hy problem is now obtained by applying the dressingtransformation of se
tion 4.5.1 with the point (0; 0) there repla
ed by (�+i ; ��i ).18



The �rst step requires solving the system (4.11) with j0I�(��) given by (4.16). However,it is easy to see that the solution 
an be expressed in terms of the extended solution on theprevious (i�1)st tile, sin
e this satis�es the same equations but with a di�erent normalization.Spe
i�
ally, we have 	(i)I+(x; �+) = 	(i�1)I (x; �+; ��i )	(i�1)I (x; �+i ; ��i )�1;	(i)I�(x; ��) = 	(i�1)I (x; �+i ; ��)	(i�1)I (x; �+i ; ��i )�1: (4.17a)Next we perform the Birkho� fa
torization (4.12) of 	(i)I�(x; ��), namely	(i)I�(x; ��) = ~g(i)I (x; �+; ��)�1	(i)In(x; �+; ��); for x 2 C�:The se
ond fa
tor on the right de�nes the `normalized' extended solution on the ith tile, seeFigure 7. Finally, the `unnormalized' extended solution is now given by	(i)I (x; �+; ��) = 	(i)In(x; �+; ��)	(i�1)I (x; �+i ; ��i ): (4.17b)Equations (4.17) provide the desired re
ursive formula expressing the extended solution onthe ith tile in terms of that on the (i� 1)st tile through the use of a Birkho� fa
torization.PSfrag repla
ements
1 	(i)I+(x)	(i)I�(x) 	(i)In(x)

Figure 7: The normalized extended solution 	(i)In(x; �+; ��) at the point (�+; ��) in the ithtile is obtained from the Birkho� fa
torization of the pair 	(i)I�(x; ��) de�ned at the boundarypoints (�+; ��i ) and (�+i ; ��), respe
tively.5 Con
lusions and OutlookThe 
lassi
al integrability of the superstring �-model on AdS5� S5 has so far played a vitalrole in the 
lassi�
ation of its �nite-gap solutions [22℄ as well as their re
onstru
tion [23℄ inthe subse
tor R � S3. In this arti
le we made a �rst step beyond solutions with 
ylindri
alworldsheet by 
onstru
ting the general splitting solution in R�S3 . Although the worldsheetsof these new solutions have the topology of a pair of pants, the integrability of the �-model19



also played an essential role in their 
onstru
tion. This is no surprise sin
e after all the Lax
onne
tion is a lo
al obje
t on the worldsheet.Spe
i�
ally, given any string solution with 
ylindri
al worldsheet on R�S3 , whi
h satis�esthe self-interse
tion property at some instant in time, we 
onstru
ted the pair of outgoingstrings resulting from the split. This was a
hieved by redu
ing the problem to fa
torization ina loop group, as is usual in 
lassi
al integrable systems. It would be important to investigatefurther the possibility of solving these Birkho� fa
torization problems more expli
itly, forinstan
e in terms of Riemann �-fun
tions.An example of initial string 
ould be a �nite-gap string, the moduli of whi
h are en
odedin a �nite-genus algebrai
 
urve. In fa
t, sin
e the outgoing strings are uniquely determinedby their Cau
hy data whi
h in turn is given by the in
oming string, the entire splittingsolution is uniquely 
hara
terized by the same algebrai
 
urve as the initial string. Thedi�eren
e between these two solutions will show up in the behaviour of the angle variables,en
oded in the algebro-geometri
 language as a divisor on the 
urve [26℄, at the moment ofthe splitting. It would be interesting, though, to have a more algebrai
 
hara
terization ofthe self-interse
tion property at the level of the 
urve and the divisor.This brings up the 
urious observation that for a given initial string there 
an more thanone possible evolution, depending on whether or not we 
hoose the string to split at � = 0.This existen
e of multiple di�erent solutions for the same set of Cau
hy data at � < 0 ismerely a 
onsequen
e of the fa
t that the topology of the worldsheet is not determined bythe dynami
s but rather �xed by hand from the outset. Another way to phrase this is tonote that sin
e the metri
 is not dynami
al, it must be �xed prior to solving the equations.Its 
onformal 
lass then re
e
ts the underlying topology of the worldsheet. For instan
e, onthe 
ylinder the metri
 
an be made globally 
at, whereas on the pair of pants it must bedegenerate at the singular point.Throughout our 
onstru
tion we have assumed the initial string to be smooth at � = 0.Sin
e the pair of outgoing strings are not smooth along the null rays through the splittingpoint, it is therefore not immediate how to des
ribe their potential further splitting. Thiswould �rst require a slight generalization of the 
onstru
tion to in
lude initial solutions with adis
rete set of singularities propagating along null lines. It would also be interesting to studythe joining of two 
lassi
al strings in a similar fashion, as well as 
lassi
al solutions exhibitingmore general worldsheet topology. This is a novel possibility on 
urved ba
kgrounds su
h asR � S3 sin
e the produ
ts of a split 
an eventually meet again and join.We emphasize that splitting strings are solutions of an initial value problem for a system ofhyperboli
 (Lorentzian) di�erential equations. Su
h solutions, whi
h des
ribe a 
ompli
atedsplitting pro
ess in S3 � S5, should therefore be relevant for the semi
lassi
al 
omputationof 3-point fun
tions in the Minkowskian approa
h of [9℄. By 
omparison, the problem of
onstru
ting minimal surfa
es in Eu
lidean AdS ending at 
ertain points on the boundary isa very di�erent one. It 
an a priori be phrased as a boundary value problem for a system ofellipti
 (Eu
lidean) di�erential equations. However, the 
lassi
al minimal surfa
e dominating20



a 3-point 
orrelation fun
tion at strong 
oupling should also 
ontain extra information, onea
h leg, about the type of operator inserted at the boundary.Another promising approa
h for 
omputing strong 
oupling 3-point fun
tions dire
tlywithin the Eu
lidean formalism is the vertex operator approa
h [24℄. The main obsta
le inthis dire
tion is the 
onstru
tion of vertex operators 
orresponding to �nite-gap solutions.The insertion of three su
h operators in the path integral should produ
e the 
orre
t bound-ary 
onditions for the minimal surfa
e mentioned above. Be
ause �nite-gap solutions haveLorentzian worldsheets while minimal surfa
es have Eu
lidean signature, one would naivelyexpe
t the vertex operator to 
reate a Eu
lidean 
ontinuation of the �nite-gap solution. Su
ha relation is 
urrently only understood for 2-point fun
tions [25℄.Finally, our 
onstru
tion should have a natural generalization to AdS5�S5 superstrings ormore generally to Z4-graded super
oset �-models [27℄. Indeed, the loop group fa
torizationdis
ussed here is the global 
ounterpart of the loop algebra de
omposition dis
ussed in [28℄.A
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