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Exploratory investigation of nuleon-nuleoninterationsusing Eulidean Monte Carlo simulationsIstvan Montvaya;b and Carsten Urbahba Deutshes Elektronen-Synhrotron DESY, Notkestr. 85, D-22603 Hamburg, Germanyb HISKP (Theorie), Universit�at Bonn, Nussallee 14-16, D-53115 Bonn, GermanyMay, 2011AbstratWe present an exploratory study of hiral e�etive theories of nulei with methodsadopted from lattie quantum hromodynamis (QCD). We show that the simulationsin the Eulidean path integral approah are feasible and that we an determine theenergy of the two nuleon state. This opens up the possibility to determine in futuresimulations nuleon phase shifts by varying the parameters and the simulated volumes.The physial ut-o� of the theory is realised by bloking of the lattie �elds. By keepingthe blok size �xed in physial units the lattie ut-o� (i.e. the lattie spaing) an befreely hanged. This o�ers an e�etive way for ontrolling lattie artefats.
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1 IntrodutionQuantum Chromodynamis (QCD) is the nowadays aepted theory of strong interationsin terms of the fundamental quark and gluon degrees of freedom. Also, if one is interestedin nulear physis, QCD is the relevant theory to alulate for instane binding energies ofnulei from �rst priniples. However, QCD is strongly interating at low energies and hene,non-perturbative methods are needed in order to study quantities as, for instane, nulearbinding energies.The method of hoie for ab initio, non-perturbative investigations of QCD is providedby lattie QCD. Even if this �eld was faing tremendous progress over the last few years, theomputation of nulear binding energies for say A > 2 is still out of reah. But it is also notlear whether those quantities need to be omputed in the fundamental theory, beause therelevant degrees of freedom are e�etively given by hadrons desribed in a hiral e�etivetheory [1, 2℄, and not by quarks and gluons in QCD. And again, lattie methods an beused in order to investigate these hiral e�etive theories from �rst priniples, for a reviewsee ref. [3℄. For an overview over the various available approahes and methods to nulearphysis using hiral e�etive theories we refer to reent review artiles [4, 5℄.A lattie approah to nulear physis was presented in a row of papers by Borasay andollaborators [6{12℄. The authors of these publiations take the approah of simulating thehiral e�etive theory on a disrete spae-time lattie. Starting point for these simulationsis the non-relativisti e�etive theory. As a onsequene, Quantum Monte-Carlo methodsbased on Fok states [13℄ are used for the numerial simulations. The lattie regularisation isutilised as the physial ut-o� in the theory, hene it annot be removed. It naturally takesvalues of a � 2 fm. Lattie artifats are redued perturbatively by adding ounter-termsto the simulated ation. Suh large values of the lattie spaings allow for simulations withL = 8 lattie points at most in eah of the spatial diretions. This is important, as in thesimulations a sign problem is apparent, whih is ontrollable for small L, but severe for largeL. Apart from the fat that QCD and the hiral e�etive �eld theory (ChET) are ratherdi�erent, also the approah taken in these publiations di�ers fundamentally from the meth-ods applied in LQCD simulations. In LQCD the path integral in Eulidean spae-time isdiretly simulated using appropriate Markov hain Monte Carlo methods. Simulations areperformed in a �nite volume with disretised spae-time, with the inverse lattie spaingserving as a momentum ut-o�. Renormalisaton is then performed by properly removingthe ut-o� in the ontinuum limit when the lattie spaing tends to zero (a ! 0). At thispoint the fundamental di�erene between QCD and ChET beomes evident: LQCD has anon-trivial ontinuum limit and hene the ut-o� an be ompletely removed. In ChET the2



ut-o� annot be removed { in fat it has a physial relevane representing the energy salewhere the basi degrees of freedom (pions and nuleons) beome inappropriate for desrib-ing physis. In a perturbative framework the neessity of a �nite ut-o� is implied by thenon-renormalisability of the theory. In a non-perturbative formulation ChET belongs to thegeneral lass of Yukawa-type theories with fermion-boson interations. (In a four-fermiontheory, for instane, the boson in the Yukawa interation is generated dynamially.) Yukawa-theories are expeted to have only a trivial (non-interating) ontinuum limit, therefore theut-o� is neessary for maintaining a non-zero interation. (For an introdution in lattieYukawa models see Chapter 6 in [14℄.) The �nite value of the ut-o� also orresponds tothe non-zero size of pions and nuleons below whih distane sale obviously some otherdesription is required (namely, with quarks and gluons in terms of QCD).In the ontinuum limit of LQCD all symmetries of the ontinuum theory broken bydisretisation, inluding Lorentz symmetry, are restored and lattie artifats in all quantitiesare removed. Performing the ontinuum limit requires an extrapolation to vanishing valueof the lattie spaing a ! 0 and therefore the simulations have to take plae in ranges ofa whih allow suh an extrapolation in a ontrolled way. It is not a priori lear how smallvalues of the lattie spaing are required for this proedure, and eventually one will only �ndit out empirially.The so alled Symanzik e�etive theory [15{17℄ allows for a better understanding whihlattie artifats one has to expet. For suÆiently small values of a LQCD an be desribedby an e�etive loal ation [18℄Se� = S0 + aS1 + a2S2 + : : : ; (1)where S0 is the ontinuum QCD ation and the additional terms Sk for k > 0 are to beinterpreted as operator insertions in the ontinuum theorySk = Z d4x Lk ;with Lk being ombinations of loal omposite �elds with mass dimension 4 + k. The listof possible �elds is onstrained by the symmetries. Similarly one an write for a loal gaugeinvariant omposite �eld �(x), where we neglet mixing under renormalisation for simpliity,�e�(x) = �0(x) + a�1(x) + a2�2(x) + : : : : (2)The �elds �k are again linear ombinations of loal �elds with appropriate symmetries anddimension. Without disussing all the details { whih an be found in ref. [18℄ { one �nds3



that a onneted n-point funtion on the lattie to leading order in the lattie spaing readsGn(x1; : : : ; xn) = h�0(x1) � � ��0(xn)iont� a Z d4y h�0(x0) � � ��0(xn)L1(y)iont+ a nXk=1h�0(x1) � � ��1(xk) � � ��0(xn)iont+ : : : : (3)
From this expression it should be lear that �rst of all the value of a should be small enoughto neglet all higher order terms in the lattie spaing. In partiular, on the right handside of eq. (3) there should be only ombinations with ah: : :i � 1. This is also the reasonwhy LQCD investigations with heavy quarks appear to be diÆult sine then amq an easilybeome of order 1 and an lead to signi�ant lattie artifats. Of ourse, all terms on theright hand side of eq. (3) ome with unknown oeÆients, so also with amq � 1 large lattieartifats are not automatially to be expeted.The so alled Symanzik expansion an also be used to systematially remove lattieartifats from the theory. This requires to add ounter terms to the lattie ation withoeÆients that need to be determined non-perturbatively. Improving the ation is, however,not always enough. There are observables that require operator spei� improvement withoeÆients that again need to be determined non-perturbatively.Comparing the lattie QCD approah and the lattie approah to hiral e�etive theoriesfrom refs. [6{12℄ rises an immediate question, namely how large are lattie artifats in thelattie simulations of the hiral e�etive theory and whether they are will ontrolled. Thisquestion is hard to answer sine the ontinuum limit a! 0 annot be performed due to thephysial interpretation of the ut-o�. Moreover, a variation of the ut-o� is for tehnialreasons diÆult, but a variation in a reasonable range is desirable.This is why we take a di�erent approah to lattie simulations of these hiral e�etivetheories, whih we shall present in this paper. It onsists of using the fully relativisti pathintegral formulation of the hiral e�etive theory in Eulidean spae-time, whih an besimulated by means of Markov hain Monte Carlo methods. The physial ut-o� of thetheory is implemented by blok-�eld methods. The sizes of the bloks represent the hadronsizes. These have to be kept �xed if the lattie spaing is hanged, for instane, keepingR � M �xed where R denotes the blok size and M is a physial mass, say the nuleonmass. Separating the lattie ut-o� from the physial ut-o� allows to hange the lattieut-o� (i.e. the lattie spaing) by keeping the physial ontent of the theory unhanged. Onthe basis of the Symanzik e�etive theory it has to be expeted that by making the lattiespaing suÆiently small the lattie artifats, for instane, Lorentz-symmetry breaking an4



be suppressed. One an also imagine to reah in the limit a! 0 a non-trivial ontinuum limitdesribing an interating non-loal quantum �eld theory. Stritly speaking, the existene ofsuh a ontinuum limit is not known at present { similarly to the existene of the ontinuumlimit of many other lattie quantum �eld theories.A substantial simpli�ation in fermioni lattie quantum �eld theories is the so alledquenhed approximation whih orresponds to omitting losed fermion loops. Sine bothneutron and proton are heavy, we do not expet that nuleon-anti-nuleon loops play asigni�ant role and hene perform the simulations in the quenhed approximation. Later onone an, of ourse, perform simulations in the full theory, removing this approximation.Another possible simpli�ation is to work within a non-relativisti approximation { in-stead of in a relativisti quantum �eld theory as we are doing here. One big advantage ofthe non-relativisti formulation might be that the rest masses of the nulei do not appear inthe theory and binding energies are omputed diretly, whereas in our relativisti approahbinding energies are sub-perent e�ets as ompared to the energy levels we determine. Thisis one point we shall address in a forthoming publiation.The authors of refs. [19{21℄ follow a similar approah to the one presented here, butapplied to a Yukawa model with one salar �eld. Previous investigations of Yukawa modelsin the Eulidean path integral formulation have been performed in the ontext of upper andlower limits of masses in the eletroweak theory, see for instane refs. [22, 23℄.In this paper we shall disuss our method and show evidene for its appliability. Physialresults are planned to be presented in forthoming publiations. In the following setion wedisuss our lattie ation followed by details of the numerial methods we apply. We shalllose with presenting some simulation results and give a onlusion and outlook.2 Lattie ationsLet us start by introduing our notations. The nuleon �elds are desribed by a pair ofGrassmann variables and are denoted by �x ; � �x (� = 1; 2) (4)where � is the isospin doublet index and x denotes the lattie sites. The Dira-index ofthe nuleon �eld is not displayed here and the isospin index of the nuleon �eld will also beomitted in most formulae. The real boson �elds are�(�)ax ; �(0)x ; �(1)ax (a = 1; 2; 3) (5)with the triplet isospin index a. Here �(�) stands for the pion and �(0) and �(1) are Hubbard-Stratanovih auxiliary boson �elds with isospin zero and one, respetively.5



These latter are used to desribe four-nuleon interations whih in the Eulidean lattieation have the following form:SNA =Xx ��(0)x �(0)x + �(1)ax�(1)ax + C0 �(0)x ( � x x) + C1 �(1)ax ( � x�a x)	 ; (6)where �a; (a = 1; 2; 3) are Pauli-matries for isospin and a summation over repeated indies ais understood. The four-nuleon interations are obtained after integrating over the auxiliary�elds aording to Z 1�1 d� expf��2 � C �( �  )g = p� expfC24 ( �  )2g : (7)Our hoie of the pion-nuleon interation orresponds to the lattie disretisation of theontinuum interation ���a( � 5��a ) and is given asSN� =Xx �C�2 ��(�)ax+�̂ � �(�)ax��̂� ( � x5��a x)� ; (8)where �̂ denotes, as usual, the unit vetor on the lattie in diretion � (� = 1; 2; 3; 4).(Similarly to isospin index a, over repeated diretion index � a summation is implied.) Theabove expression orresponds to a partiularly simple disretisation of the derivative of thepion �eld whih an, of ourse, be hosen di�erently.The parameters of the lattie ation are always dimensionless. The onnetion to the(eventually) dimensionful parameters in ontinuum formulations is established with the mul-tipliation by an appropriate power of a mass parameter.Let us illustrate this on the example of the four-nuleon interations in (6)-(7). The(bare) nuleon �eld  x is related to the (bare) ontinuum nuleon �eld by  x = a3=2 ontx (andsimilarly for � x). The relation for the auxiliary salar �elds is given by �x = a2�ontx . Thisimplies that the four-nuleon ouplings C0;1 are related to their ontinuum ounterparts byC0;1 = a�1Cont0;1 = (mNCont0;1 )=(amN). Here, mNCont0;1 is again dimensionless and independentof the lattie spaing a. In the following we always work in lattie units. The onnetionto the (eventually) dimensionful parameters in ontinuum formulations is established bymultipliation with an appropriate power of a mass parameter and/or a power of the lattiespaing a. Note that in Ref. [7℄ the oeÆients appear quadratially in the ation.In addition to the interation terms we also need a kineti term for the nuleon whihwe take to be the Wilson fermion lattie ation [24℄:SN =Xx (( � x x)� �N �=�4X�=�1( � x+�̂[1 + �℄ x)) : (9)6



Here �N is the hopping parameter de�ning the nuleon mass and the onvention �� = ��is followed. For the pion �eld, besides the kineti term, also a self-interation term is allowed,hene we de�ne the pion part of the ation byS� =Xx (�2�� �=4X�=1 �(�)ax �(�)ax+�̂ + �[�(�)ax �(�)ax � 1℄2) ; (10)where �� is the hopping parameter of the pion and � gives the strength of the self-interation.The total lattie ation is the sum of all the above terms, that isS = SN + S� + SNA + SN� : (11)2.1 Blok �eldsThe interation among hadrons, like nuleons and pions, is non-loal as a onsequene ofthe extended hadron struture implied by Quantum Chromodynamis. This non-loalityan be approximately taken into aount by introduing blok �elds in the lattie ation.Blok �elds are sums of the the above loal �elds weighted by appropriate numerial fators.In order to derease rotation symmetry breaking, our de�nition of the blok �elds tries tobe as lose as possible to an exponential derease of the weight fators proportional to theEulidean distane squared. Of ourse, periodi (or anti-periodi) boundary onditions haveto be taken into aount and therefore we de�ne the squared distane between two pointsx; y on the lattie as (x; y)2 � �=4X�=1 jx�; y�j2 (12)where jx�; y�j � min (jx� � y�j; jx� � y� + L�j; jx� � y� � L�j) : (13)Here L� denotes the lattie extension in the diretion �. With this de�nition a generi blok�eld is de�ned by �x � Xy ;(x;y)2�R2 �y exp��S (x; y)2	 : (14)The bloking parameters an depend on the type of �elds, that is one an have di�erentparameters for the nuleon (RN; SN), for the pion (R�; S�) and for the auxiliary �elds (R0; S0)and (R1; S1), respetively. The lattie ation in terms of the blok �elds has exatly the sameform as the above ation in terms of the loal �elds (inluding the summation over the lattiesites). The only hanges are: x ! 	x ; �(A)x ! �(A)x (A = �; 0; 1) : (15)7



Besides reeting the non-loality of the interations, the bloking also has an importantrole in de�ning the ut-o� of the theory. The high momentum modes are deoupled from theinterations by the bloking. Only the modes below some momentum ut-o� are interating,the ut-o� value being determined by the bloking parameters (R; S). The ut-o� introduedby the bloking an be onsidered as a physial e�et. The lattie ut-o� an be hangedindependently of it. This allows to move the lattie spaing to small values for reduinglattie artefats.3 Numerial simulations3.1 Lattie parametersIn order to gain experiene with the lattie formulation de�ned in the previous setion westarted numerial simulations on small latties and also introdued some simpli�ations inthe hoie of lattie ation parameters. In most ases we did not blok the nuleon �eld,only the bosoni �elds and �xed the bloking parameters as follows:RN = 0 ; S0 = S1 = S� = 2:0 ; R0 = R1 = R� = 1:5 : (16)This hoie of the radius sets the number of points in a blok to be 33.The simplest hoie of oupling parameters is to keep only C0 and C1 de�ning the four-nuleon interations. We also experimented with the additional introdution of the pion �eldand the oupling C� but here we report only on results in the pion-less theory. A detailedinvestigation of the e�et of the pion oupling is left to future work. Following Ref. [7℄ C0 istaken to be real whih orresponds to an attrative interation whereas C1 = i jC1j is purelyimaginary desribing a repulsive interation. In most ases the magnitudes of C0 and C1were equal, that is C� = 0 ; C0 = jC0j ; C1 = i jC1j ; jC0j = jC1j : (17)(Note that aording to eq. (7) the signs of C0 and C1 are irrelevant.)For this exploratory work we had aess to a PC luster with 12 graphis proessing units(GPUs) attahed to it. Due to the memory limitations of the GPUs the maximally feasiblespatial lattie size was 323 ; (L = 32). The temporal lattie extension is taken four timeslonger in order to allow for a preise determination of the energy values. In summary, wedid simulations on three types of latties:163 � 64 ; 243 � 96 ; 323 � 128 : (18)8



This restrition to the urrently feasible lattie volumes has impliations on the hoie ofparameters we an simulate: in order to study the two nuleon system a large physialvolume is required, beause otherwise the smallest available lattie momentum is too large.On the other hand we would like to simulate with as small as possible values of the lattiespaing a. To set the sale we �xed the equal mass of the proton and neutron to be MN �Mproton = Mneutron = 939MeV=2. This means that, for instane, a nuleon mass in lattieunits aMN = 1 implies a lattie spaing a ' 0:21 fm and in our ases spatial extensions of16 a ' 3:4 fm, 24 a ' 5:0 fm and 32 a ' 6:7 fm, respetively. In order to reah larger volumesone an, of ourse, inrease the nuleon mass in lattie units but in this way lattie artefatswill also inrease.With these hoies of volumes and with aMN = 1 we get for the smallest non-zeromomentum (2�)=(16La) ' 369MeV=, (2�)=(24La) ' 246MeV= and (2�)=(32La) '184MeV=, respetively. For extrating physis using the approah presented here bothlattie sizes and minimal non-zero momenta would require a fator, say, four inrease of thelattie extensions whih will be omfortably possible to reah with present day omputerresoures.3.2 Numerial methodsOur present aim is to determine the energies (masses) of di�erent nulear systems. Thisan be ahieved by investigating the large (Eulidean-) time behaviour of di�erent sets oforrelators. Sine at present we restrit ourselves to quenhed simulations, where the fermiondeterminant of the nuleon �eld is negleted, the reation of the boson �eld on�gurations issimple. In ase of the auxiliary �elds �(0)x and �(1)x one has to reate Gaussian distributions.The pion �eld �(�)x an also be simply produed by some update algorithm as, for instane,Metropolis algorithm { the only mild ompliation being to take into aount the non-loalityintrodued by the bloking.The nuleon mass an be determined from the behaviour of the nuleon time-slie or-relator. The time-slie operators are de�ned asNt � x4=tXx1 ;x2 ;x3	x1 ;x2 ;x3 ;x4 ; �Nt � x4=tXx1 ;x2 ;x3 �	x1 ;x2 ;x3 ;x4 (19)and the nuleon orrelator is, with a Dira-projetion to the state propagating in positivediretion, TrDira �(1 + 4)hNt1 �Nt2i� : (20)The expetation value of the fermion bilinear gives a fermion propagator whih is the inverseof the fermion matrix in the fermioni part of the ation. The overwhelming part of omputer9



resoures in our quenhed simulations is spent in the alulation of the fermion propagatorsby an iterative inverter of this sparse matrix.The omputation of nuleon propagators has been done most of the time by applying amixed preision Conjugate Gradient inverter, see the appendix. The ruial problem for theinverter is to deal with the very small values of the nuleon propagators at large distanes.The solution of this problem is to use distane preonditioning following Ref. [25℄. Sine thenuleon propagator behaves nearly exponentially for distanes whih we use for extratingthe masses (in most ases up to a time distane half the time extension L4 of the lattie),we hoose the preonditioning funtion to be�(t) = 8<: expf�P tg if t � L4=2 ;expf�P (L4 � t)g if t > L4=2 : (21)The parameter P an be hosen typially by an amount 0:1� 0:5 smaller than the nuleonmass in lattie units amN.In order to obtain the masses of multi-nuleon (in the present paper two-nuleon) stateswith suÆient preision, one has to �nd the proper omposite operators de�ning the orrel-ators. Here we restrit ourselves to proton-neutron states. For loal operators we take inthe spin-0 and spin-1 hannels, respetively,	1xC5	2x ; 	1xCk	2x ; (k = 1; 2; 3) ; (22)where C denotes the harge onjugation Dira matrix.Espeially for sattering states it is important to also take extended (smeared) operatorswhere the proton and neutron are at di�erent points. In ase of Gaussian smearing one anuse the smearing funtionexp ���1jx1; y1j2 � �2jx2; y2j2 � �3jx3; y3j2	 (23)with the notation introdued in (13). For a spherial state in the spin-0 hannel one antake � � �1 = �2 = �3. For spin-1, ellipsoidal states with e.g. �1 6= �2 = �3 are useful. Inthis latter ase we also tried linear smearing orresponding to �2; �3 =1. In order to saveomputer time one an ut the summation over sites o� at distanes where the smearingfuntion in (23) is smaller than, say, 10�2. In ase of spherial smearing this orresponds toa ut-o� radius of � = � log(100)� �1=2 : (24)The simplest way to determine the masses is to �t some of the orrelators by an expo-nential funtion in time intervals for distant time-slies. In ase of small enough statistial10



errors one an also obtain good �ts with a sum of two (or more) exponentials. The bestresults an be ahieved, however, by taking a set of some operators in a given hannel andalulate the orrelator matrix among them. For determining the energies of two-nuleon(atually proton-neutron) states we typially start from a 4� 4 orrelator matrix. The fourstates are hosen from loal, spherially smeared and elliptially smeared states with di�erentDira-matries.The orrelator matrix an be approximated by the sum of ontributions of eigenstates ofthe Hamiltonian (i. e. of the transfer matrix). In general, a real symmetri D�D orrelatormatrix C(t2; t1) between time-slies t1 and t2 > t1 is de�ned by the matrix elements ofD operators Oa;Ob; : : : ;Od. If the energy eigenstates are jni; n = 1; 2; : : : ;M then in ashorthand notationC(t2; t1) = 0BBBB� C(t2; t1)aa C(t2; t1)ab : : : C(t2; t1)adC(t2; t1)ab C(t2; t1)bb : : : C(t2; t1)bd... ... : : : ...C(t2; t1)ad C(t2; t1)bd : : : C(t2; t1)dd
1CCCCA (25)where the matrix elements an be written as, for instane,C(t2; t1)ab = (aj1)t2(bj1)t1 + (aj2)t2(bj2)t1 + : : :+ (ajM)t2(bjM)t1 (26)with (jk)t � h0jO(t)jki = hkjO(t)j0i ; (27)for  = a; b; : : : ; d and k = 1; 2; : : : ;M .Assuming that we onsider bosoni (fermioni) operators, we have periodi (anti-periodi)time dependene with the time extension of the lattie L4. This implies(ajk)t2(bjk)t1 = (ajk) (bjk) fexp[�tEk℄� exp[�(L4 � t)Ek℄g : (28)where the positive and negative sign stands for periodiity and anti-periodiity, respetively.Here t � t2 � t1, Ek is the energy (e.g. mass) orresponding to the state jki and(ajk) � (ajk)0; (bjk) � (bjk)0. Fitting the orrelator matrix by the expression given by (25)- (28) one an obtain the energies we are looking for [26℄. The statistial errors of the resultsan also be obtained by methods similar to those desribed in Setion 5 of this referene.Sine in the present ase the relevant (multi-) nuleon orrelators an be determined toa very good preision, one an perform least-square �ts by minimising the orrelated hi-squared. In order to obtain a good starting point for the minimisation, one an �rst minimisethe unorrelated hi-squared de�ned by�2n = NCXi=1 �fi(p)�X iÆXi �2 (29)11



where the index i runs over the independent matrix elements to be �tted, X i and ÆXi are themean value and error of the matrix element i, respetively, and fi(p) is the �tting funtionof NP parameters (p1; p2; : : : ; pNP ) de�ned by (26)-(28). The best �t obtained in this wayan be taken as a starting point to minimise the orrelated hi-squared�2 = NCXi;j=1 �fi(p)�X i�Mij �fj(p)�Xj� ; (30)where Mij = NC�1ij , with the number N of input data and the orrelator matrixCij = 1N � 1 NXn=1 �Xi;n �Xi� �Xj;n �Xj� : (31)In general, the orrelator matrix in (31) an be determined with suÆient preision forobtaining its inverse and its eigenvetors. In some ases, in partiular if the dimension of theorrelator matrix NC is large, smoothing of the smallest eigenvalues [27, 28℄ an be helpfulbut does not substantially inuene the results. The advantage of properly obtaining theminimum of �2 is that one an selet \good �ts" by the value of �2 per number of degreesof freedom (NC �NP ). The mean value and error of a quantity is de�ned by onsidering thedistribution of its values in good �ts. The quoted value is then the position of the medianof the distribution of these seleted values. The error de�nes a (symmetri) interval aroundthe median suh that 68% of the distribution is ontained in it.3.3 Numerial resultsThe physial quantities we are interested in are for instane the nuleon-nuleon satteringlength and binding energies of multi nuleon states. In a lattie simulation, the determ-ination of these quantities requires a study of the (�nite) volume dependene of one andtwo (and multiple) partile energies. In this methodial paper we hene try to understandhow preisely the orresponding quantities, i.e. the nuleon and two-nuleon masses, an bedetermined.In order to do so, we performed several simulations and determined the masses as de-sribed in the previous sub-setion. A typial example is a run on a 323 � 128 lattie at�N = 0:08; C0 = 0:2; C1 = 0:2i. It turned out that the masses an be very preiselyobtained even from a modest statistial sample of 120 on�gurations: see �gures 1-3.In �gure 1 we plot the atual nuleon and two nuleon orrelators as funtions of the timet in lattie units on a logarithmi sale. The deay is nearly exponential in the whole timerange. Fitting the orrelators in di�erent time-slie distane intervals [t1; t2℄ by minimisingthe orrelated hi-squared one �nds that for the nuleon mass amN we observe a plateau12
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amNN = 2.1511(20)

C0 = 0.20, C1 = 0.20i

κN = 0.0800
323 × 128 lattice

t1 + 0.1(t2 − t1)

a
m

N
N

3634323028262422

2.20

2.18

2.16

2.14

2.12

2.10

Figure 3: The same as Fig.2 for two-nuleon masses amNN.energies to a very good preision. In fat a few thousands of on�gurations are suÆient fora preision better than one per mill. Using L�usher's formula we ould determine values forthe nuleon-nuleon sattering length. The orresponding results are positive in the sensethat with larger volumes it seems to be realisti to tune its value to the physial one.An important step towards obtaining physial results is hene to inrease the physiallattie sizes. As disussed in Setion 3.1, a spatial lattie extension of about L = 100 wouldorrespond for a nuleon mass in lattie units aMN ' 1 to a lattie size of about La ' 20 fmand a minimal lattie momentum 2�=(100La) ' 60MeV=.It will be also important to introdue the pion �eld besides the auxiliary �elds desribingfour-nuleon ouplings.In order to omplete this sort of lattie studies an important �nal step is to investigatethe dependene of the results on the lattie spaing. For this the physial parameters as,for instane, the blok size parameters RmN, SmN and the lattie volume LamN have to bekept �xed. The ouplings in the lattie ation (C0;1 et.) have to be tuned for eah value ofthe lattie spaing in suh a way that some well hosen physial quantities (as for instanesome nuleon phase shifts) take their physial values. Of ourse, if the lattie spaing getssmaller the required number of lattie points have to be inreased orrespondingly and thisimplies an inrease in the required omputational power.15



A possible soure of diÆulties in the quenhed approximation, as observed in Yukawamodels by the authors of [19{21℄, is the appearane of exeptional on�gurations with ex-tremely small eigenvalues of the fermion lattie ation. These on�gurations make the de-termination of orrelators and therefore masses pratially impossible. In our ase we foundexeptional on�gurations for bare ouplings in the range jC0j; jC1j; jC�j > 0:3. Sine thisproblem does not appear in numerial simulations in Yukawa models with dynamial fermi-ons [22,23℄, we expet that it does also disappear in our nulear Yukawa models if dynamialnuleons are inluded in the simulation update. For real values of the ouplings C0; C1; C�the fermion determinant is real (non-negative) therefore the known Hybrid Monte Carlomethods [30℄ an be applied in a straightforward manner. For non-real (e.g. imaginary)ouplings the determinant beomes omplex and the numerial simulation turns non-trivial,if not impossible.AknowledgementWe thank Ulf G. Mei�ner for introduing us in the literature of nulear physis on thelattie. We thank Hans-Werner Hammer, Dean Lee and Ulf G. Mei�ner for helpful andinteresting disussions. We are grateful to Hans-Werner Hammer for useful omments onthe manusript. We thank JSC at FZ-J�ulih for providing omputing time on JUROPA.A Implementation DetailsAs mentioned in the introdution, we have used graphis proessing units (GPUs) in orderto perform the numerial inversions of the Dira operator. We have 12 NVIDIA Tesla C1060GPUs available with four Gb of memory eah. We have used NVIDIAs CUDA environmentto implement the Dira operator dedued from eqs. (6), (8) and (9) for GPUs, whih is verysimilar to available implementations for lattie QCD, see for instane ref. [31℄.We employ a mixed preision solver using both, the CPU and the GPU. On the GPU wehave implemented a onjugate gradient (CG) solver inverting the squared hermitian Diraoperator (sine C1 is purely imaginary)QyQ = 5D(C0;�C1; �N)5D(C0; C1; �N) :The desired result is then obtained by multiplying with Qy. The CG solver on the GPU isimplemented solely in single preision (32 Bit). The CG solver is alled from an outer solver,whih is run on the CPU in double preision (64 Bit). We use iterative re�nement as theouter solver in order to solve D� = �16



Algorithm 1 Iterative Re�nementRequire: �; �; �o > 0; �i > 01: k = 02: rk = ��D�3: while k��Dxkk > �o do4: solve Dpk+1 = rk for pk+1 on GPU to relative preision �i5: xk+1 = xk + pk+16: rk+1 = ��Dxk+17: k = k + 18: end while9: return �for �, given some soure spinor �eld �. The algorithm is summarised in algorithm 1. De-pending on the parameters �N ; C0 and C1 one has to tune the preision for whih to solveon the GPU. The usage of distane preonditioning also had signi�ant inuene on thistuning: the loser the preonditioning mass to the measured mass the less stable the pre-sribed mixed preision solver turned out to behave. Most probably due to aumulation ofround o� errors we had to redue the number of inner iterations further and further withpreonditioning mass approahing the measured mass.
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