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Exploratory investigation of nu
leon-nu
leonintera
tionsusing Eu
lidean Monte Carlo simulationsIstvan Montvaya;b and Carsten Urba
hba Deuts
hes Elektronen-Syn
hrotron DESY, Notkestr. 85, D-22603 Hamburg, Germanyb HISKP (Theorie), Universit�at Bonn, Nussallee 14-16, D-53115 Bonn, GermanyMay, 2011Abstra
tWe present an exploratory study of 
hiral e�e
tive theories of nu
lei with methodsadopted from latti
e quantum 
hromodynami
s (QCD). We show that the simulationsin the Eu
lidean path integral approa
h are feasible and that we 
an determine theenergy of the two nu
leon state. This opens up the possibility to determine in futuresimulations nu
leon phase shifts by varying the parameters and the simulated volumes.The physi
al 
ut-o� of the theory is realised by blo
king of the latti
e �elds. By keepingthe blo
k size �xed in physi
al units the latti
e 
ut-o� (i.e. the latti
e spa
ing) 
an befreely 
hanged. This o�ers an e�e
tive way for 
ontrolling latti
e artefa
ts.
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1 Introdu
tionQuantum Chromodynami
s (QCD) is the nowadays a

epted theory of strong intera
tionsin terms of the fundamental quark and gluon degrees of freedom. Also, if one is interestedin nu
lear physi
s, QCD is the relevant theory to 
al
ulate for instan
e binding energies ofnu
lei from �rst prin
iples. However, QCD is strongly intera
ting at low energies and hen
e,non-perturbative methods are needed in order to study quantities as, for instan
e, nu
learbinding energies.The method of 
hoi
e for ab initio, non-perturbative investigations of QCD is providedby latti
e QCD. Even if this �eld was fa
ing tremendous progress over the last few years, the
omputation of nu
lear binding energies for say A > 2 is still out of rea
h. But it is also not
lear whether those quantities need to be 
omputed in the fundamental theory, be
ause therelevant degrees of freedom are e�e
tively given by hadrons des
ribed in a 
hiral e�e
tivetheory [1, 2℄, and not by quarks and gluons in QCD. And again, latti
e methods 
an beused in order to investigate these 
hiral e�e
tive theories from �rst prin
iples, for a reviewsee ref. [3℄. For an overview over the various available approa
hes and methods to nu
learphysi
s using 
hiral e�e
tive theories we refer to re
ent review arti
les [4, 5℄.A latti
e approa
h to nu
lear physi
s was presented in a row of papers by Borasay and
ollaborators [6{12℄. The authors of these publi
ations take the approa
h of simulating the
hiral e�e
tive theory on a dis
rete spa
e-time latti
e. Starting point for these simulationsis the non-relativisti
 e�e
tive theory. As a 
onsequen
e, Quantum Monte-Carlo methodsbased on Fo
k states [13℄ are used for the numeri
al simulations. The latti
e regularisation isutilised as the physi
al 
ut-o� in the theory, hen
e it 
annot be removed. It naturally takesvalues of a � 2 fm. Latti
e artifa
ts are redu
ed perturbatively by adding 
ounter-termsto the simulated a
tion. Su
h large values of the latti
e spa
ings allow for simulations withL = 8 latti
e points at most in ea
h of the spatial dire
tions. This is important, as in thesimulations a sign problem is apparent, whi
h is 
ontrollable for small L, but severe for largeL. Apart from the fa
t that QCD and the 
hiral e�e
tive �eld theory (ChET) are ratherdi�erent, also the approa
h taken in these publi
ations di�ers fundamentally from the meth-ods applied in LQCD simulations. In LQCD the path integral in Eu
lidean spa
e-time isdire
tly simulated using appropriate Markov 
hain Monte Carlo methods. Simulations areperformed in a �nite volume with dis
retised spa
e-time, with the inverse latti
e spa
ingserving as a momentum 
ut-o�. Renormalisaton is then performed by properly removingthe 
ut-o� in the 
ontinuum limit when the latti
e spa
ing tends to zero (a ! 0). At thispoint the fundamental di�eren
e between QCD and ChET be
omes evident: LQCD has anon-trivial 
ontinuum limit and hen
e the 
ut-o� 
an be 
ompletely removed. In ChET the2




ut-o� 
annot be removed { in fa
t it has a physi
al relevan
e representing the energy s
alewhere the basi
 degrees of freedom (pions and nu
leons) be
ome inappropriate for des
rib-ing physi
s. In a perturbative framework the ne
essity of a �nite 
ut-o� is implied by thenon-renormalisability of the theory. In a non-perturbative formulation ChET belongs to thegeneral 
lass of Yukawa-type theories with fermion-boson intera
tions. (In a four-fermiontheory, for instan
e, the boson in the Yukawa intera
tion is generated dynami
ally.) Yukawa-theories are expe
ted to have only a trivial (non-intera
ting) 
ontinuum limit, therefore the
ut-o� is ne
essary for maintaining a non-zero intera
tion. (For an introdu
tion in latti
eYukawa models see Chapter 6 in [14℄.) The �nite value of the 
ut-o� also 
orresponds tothe non-zero size of pions and nu
leons below whi
h distan
e s
ale obviously some otherdes
ription is required (namely, with quarks and gluons in terms of QCD).In the 
ontinuum limit of LQCD all symmetries of the 
ontinuum theory broken bydis
retisation, in
luding Lorentz symmetry, are restored and latti
e artifa
ts in all quantitiesare removed. Performing the 
ontinuum limit requires an extrapolation to vanishing valueof the latti
e spa
ing a ! 0 and therefore the simulations have to take pla
e in ranges ofa whi
h allow su
h an extrapolation in a 
ontrolled way. It is not a priori 
lear how smallvalues of the latti
e spa
ing are required for this pro
edure, and eventually one will only �ndit out empiri
ally.The so 
alled Symanzik e�e
tive theory [15{17℄ allows for a better understanding whi
hlatti
e artifa
ts one has to expe
t. For suÆ
iently small values of a LQCD 
an be des
ribedby an e�e
tive lo
al a
tion [18℄Se� = S0 + aS1 + a2S2 + : : : ; (1)where S0 is the 
ontinuum QCD a
tion and the additional terms Sk for k > 0 are to beinterpreted as operator insertions in the 
ontinuum theorySk = Z d4x Lk ;with Lk being 
ombinations of lo
al 
omposite �elds with mass dimension 4 + k. The listof possible �elds is 
onstrained by the symmetries. Similarly one 
an write for a lo
al gaugeinvariant 
omposite �eld �(x), where we negle
t mixing under renormalisation for simpli
ity,�e�(x) = �0(x) + a�1(x) + a2�2(x) + : : : : (2)The �elds �k are again linear 
ombinations of lo
al �elds with appropriate symmetries anddimension. Without dis
ussing all the details { whi
h 
an be found in ref. [18℄ { one �nds3



that a 
onne
ted n-point fun
tion on the latti
e to leading order in the latti
e spa
ing readsGn(x1; : : : ; xn) = h�0(x1) � � ��0(xn)i
ont� a Z d4y h�0(x0) � � ��0(xn)L1(y)i
ont+ a nXk=1h�0(x1) � � ��1(xk) � � ��0(xn)i
ont+ : : : : (3)
From this expression it should be 
lear that �rst of all the value of a should be small enoughto negle
t all higher order terms in the latti
e spa
ing. In parti
ular, on the right handside of eq. (3) there should be only 
ombinations with ah: : :i � 1. This is also the reasonwhy LQCD investigations with heavy quarks appear to be diÆ
ult sin
e then amq 
an easilybe
ome of order 1 and 
an lead to signi�
ant latti
e artifa
ts. Of 
ourse, all terms on theright hand side of eq. (3) 
ome with unknown 
oeÆ
ients, so also with amq � 1 large latti
eartifa
ts are not automati
ally to be expe
ted.The so 
alled Symanzik expansion 
an also be used to systemati
ally remove latti
eartifa
ts from the theory. This requires to add 
ounter terms to the latti
e a
tion with
oeÆ
ients that need to be determined non-perturbatively. Improving the a
tion is, however,not always enough. There are observables that require operator spe
i�
 improvement with
oeÆ
ients that again need to be determined non-perturbatively.Comparing the latti
e QCD approa
h and the latti
e approa
h to 
hiral e�e
tive theoriesfrom refs. [6{12℄ rises an immediate question, namely how large are latti
e artifa
ts in thelatti
e simulations of the 
hiral e�e
tive theory and whether they are will 
ontrolled. Thisquestion is hard to answer sin
e the 
ontinuum limit a! 0 
annot be performed due to thephysi
al interpretation of the 
ut-o�. Moreover, a variation of the 
ut-o� is for te
hni
alreasons diÆ
ult, but a variation in a reasonable range is desirable.This is why we take a di�erent approa
h to latti
e simulations of these 
hiral e�e
tivetheories, whi
h we shall present in this paper. It 
onsists of using the fully relativisti
 pathintegral formulation of the 
hiral e�e
tive theory in Eu
lidean spa
e-time, whi
h 
an besimulated by means of Markov 
hain Monte Carlo methods. The physi
al 
ut-o� of thetheory is implemented by blo
k-�eld methods. The sizes of the blo
ks represent the hadronsizes. These have to be kept �xed if the latti
e spa
ing is 
hanged, for instan
e, keepingR � M �xed where R denotes the blo
k size and M is a physi
al mass, say the nu
leonmass. Separating the latti
e 
ut-o� from the physi
al 
ut-o� allows to 
hange the latti
e
ut-o� (i.e. the latti
e spa
ing) by keeping the physi
al 
ontent of the theory un
hanged. Onthe basis of the Symanzik e�e
tive theory it has to be expe
ted that by making the latti
espa
ing suÆ
iently small the latti
e artifa
ts, for instan
e, Lorentz-symmetry breaking 
an4



be suppressed. One 
an also imagine to rea
h in the limit a! 0 a non-trivial 
ontinuum limitdes
ribing an intera
ting non-lo
al quantum �eld theory. Stri
tly speaking, the existen
e ofsu
h a 
ontinuum limit is not known at present { similarly to the existen
e of the 
ontinuumlimit of many other latti
e quantum �eld theories.A substantial simpli�
ation in fermioni
 latti
e quantum �eld theories is the so 
alledquen
hed approximation whi
h 
orresponds to omitting 
losed fermion loops. Sin
e bothneutron and proton are heavy, we do not expe
t that nu
leon-anti-nu
leon loops play asigni�
ant role and hen
e perform the simulations in the quen
hed approximation. Later onone 
an, of 
ourse, perform simulations in the full theory, removing this approximation.Another possible simpli�
ation is to work within a non-relativisti
 approximation { in-stead of in a relativisti
 quantum �eld theory as we are doing here. One big advantage ofthe non-relativisti
 formulation might be that the rest masses of the nu
lei do not appear inthe theory and binding energies are 
omputed dire
tly, whereas in our relativisti
 approa
hbinding energies are sub-per
ent e�e
ts as 
ompared to the energy levels we determine. Thisis one point we shall address in a forth
oming publi
ation.The authors of refs. [19{21℄ follow a similar approa
h to the one presented here, butapplied to a Yukawa model with one s
alar �eld. Previous investigations of Yukawa modelsin the Eu
lidean path integral formulation have been performed in the 
ontext of upper andlower limits of masses in the ele
troweak theory, see for instan
e refs. [22, 23℄.In this paper we shall dis
uss our method and show eviden
e for its appli
ability. Physi
alresults are planned to be presented in forth
oming publi
ations. In the following se
tion wedis
uss our latti
e a
tion followed by details of the numeri
al methods we apply. We shall
lose with presenting some simulation results and give a 
on
lusion and outlook.2 Latti
e a
tionsLet us start by introdu
ing our notations. The nu
leon �elds are des
ribed by a pair ofGrassmann variables and are denoted by �x ; � �x (� = 1; 2) (4)where � is the isospin doublet index and x denotes the latti
e sites. The Dira
-index ofthe nu
leon �eld is not displayed here and the isospin index of the nu
leon �eld will also beomitted in most formulae. The real boson �elds are�(�)ax ; �(0)x ; �(1)ax (a = 1; 2; 3) (5)with the triplet isospin index a. Here �(�) stands for the pion and �(0) and �(1) are Hubbard-Stratanovi
h auxiliary boson �elds with isospin zero and one, respe
tively.5



These latter are used to des
ribe four-nu
leon intera
tions whi
h in the Eu
lidean latti
ea
tion have the following form:SNA =Xx ��(0)x �(0)x + �(1)ax�(1)ax + C0 �(0)x ( � x x) + C1 �(1)ax ( � x�a x)	 ; (6)where �a; (a = 1; 2; 3) are Pauli-matri
es for isospin and a summation over repeated indi
es ais understood. The four-nu
leon intera
tions are obtained after integrating over the auxiliary�elds a

ording to Z 1�1 d� expf��2 � C �( �  )g = p� expfC24 ( �  )2g : (7)Our 
hoi
e of the pion-nu
leon intera
tion 
orresponds to the latti
e dis
retisation of the
ontinuum intera
tion ���a( � 
5
��a ) and is given asSN� =Xx �C�2 ��(�)ax+�̂ � �(�)ax��̂� ( � x
5
��a x)� ; (8)where �̂ denotes, as usual, the unit ve
tor on the latti
e in dire
tion � (� = 1; 2; 3; 4).(Similarly to isospin index a, over repeated dire
tion index � a summation is implied.) Theabove expression 
orresponds to a parti
ularly simple dis
retisation of the derivative of thepion �eld whi
h 
an, of 
ourse, be 
hosen di�erently.The parameters of the latti
e a
tion are always dimensionless. The 
onne
tion to the(eventually) dimensionful parameters in 
ontinuum formulations is established with the mul-tipli
ation by an appropriate power of a mass parameter.Let us illustrate this on the example of the four-nu
leon intera
tions in (6)-(7). The(bare) nu
leon �eld  x is related to the (bare) 
ontinuum nu
leon �eld by  x = a3=2 
ontx (andsimilarly for � x). The relation for the auxiliary s
alar �elds is given by �x = a2�
ontx . Thisimplies that the four-nu
leon 
ouplings C0;1 are related to their 
ontinuum 
ounterparts byC0;1 = a�1C
ont0;1 = (mNC
ont0;1 )=(amN). Here, mNC
ont0;1 is again dimensionless and independentof the latti
e spa
ing a. In the following we always work in latti
e units. The 
onne
tionto the (eventually) dimensionful parameters in 
ontinuum formulations is established bymultipli
ation with an appropriate power of a mass parameter and/or a power of the latti
espa
ing a. Note that in Ref. [7℄ the 
oeÆ
ients appear quadrati
ally in the a
tion.In addition to the intera
tion terms we also need a kineti
 term for the nu
leon whi
hwe take to be the Wilson fermion latti
e a
tion [24℄:SN =Xx (( � x x)� �N �=�4X�=�1( � x+�̂[1 + 
�℄ x)) : (9)6



Here �N is the hopping parameter de�ning the nu
leon mass and the 
onvention 
�� = �
�is followed. For the pion �eld, besides the kineti
 term, also a self-intera
tion term is allowed,hen
e we de�ne the pion part of the a
tion byS� =Xx (�2�� �=4X�=1 �(�)ax �(�)ax+�̂ + �[�(�)ax �(�)ax � 1℄2) ; (10)where �� is the hopping parameter of the pion and � gives the strength of the self-intera
tion.The total latti
e a
tion is the sum of all the above terms, that isS = SN + S� + SNA + SN� : (11)2.1 Blo
k �eldsThe intera
tion among hadrons, like nu
leons and pions, is non-lo
al as a 
onsequen
e ofthe extended hadron stru
ture implied by Quantum Chromodynami
s. This non-lo
ality
an be approximately taken into a

ount by introdu
ing blo
k �elds in the latti
e a
tion.Blo
k �elds are sums of the the above lo
al �elds weighted by appropriate numeri
al fa
tors.In order to de
rease rotation symmetry breaking, our de�nition of the blo
k �elds tries tobe as 
lose as possible to an exponential de
rease of the weight fa
tors proportional to theEu
lidean distan
e squared. Of 
ourse, periodi
 (or anti-periodi
) boundary 
onditions haveto be taken into a

ount and therefore we de�ne the squared distan
e between two pointsx; y on the latti
e as (x; y)2 � �=4X�=1 jx�; y�j2 (12)where jx�; y�j � min (jx� � y�j; jx� � y� + L�j; jx� � y� � L�j) : (13)Here L� denotes the latti
e extension in the dire
tion �. With this de�nition a generi
 blo
k�eld is de�ned by �x � Xy ;(x;y)2�R2 �y exp��S (x; y)2	 : (14)The blo
king parameters 
an depend on the type of �elds, that is one 
an have di�erentparameters for the nu
leon (RN; SN), for the pion (R�; S�) and for the auxiliary �elds (R0; S0)and (R1; S1), respe
tively. The latti
e a
tion in terms of the blo
k �elds has exa
tly the sameform as the above a
tion in terms of the lo
al �elds (in
luding the summation over the latti
esites). The only 
hanges are: x ! 	x ; �(A)x ! �(A)x (A = �; 0; 1) : (15)7



Besides re
e
ting the non-lo
ality of the intera
tions, the blo
king also has an importantrole in de�ning the 
ut-o� of the theory. The high momentum modes are de
oupled from theintera
tions by the blo
king. Only the modes below some momentum 
ut-o� are intera
ting,the 
ut-o� value being determined by the blo
king parameters (R; S). The 
ut-o� introdu
edby the blo
king 
an be 
onsidered as a physi
al e�e
t. The latti
e 
ut-o� 
an be 
hangedindependently of it. This allows to move the latti
e spa
ing to small values for redu
inglatti
e artefa
ts.3 Numeri
al simulations3.1 Latti
e parametersIn order to gain experien
e with the latti
e formulation de�ned in the previous se
tion westarted numeri
al simulations on small latti
es and also introdu
ed some simpli�
ations inthe 
hoi
e of latti
e a
tion parameters. In most 
ases we did not blo
k the nu
leon �eld,only the bosoni
 �elds and �xed the blo
king parameters as follows:RN = 0 ; S0 = S1 = S� = 2:0 ; R0 = R1 = R� = 1:5 : (16)This 
hoi
e of the radius sets the number of points in a blo
k to be 33.The simplest 
hoi
e of 
oupling parameters is to keep only C0 and C1 de�ning the four-nu
leon intera
tions. We also experimented with the additional introdu
tion of the pion �eldand the 
oupling C� but here we report only on results in the pion-less theory. A detailedinvestigation of the e�e
t of the pion 
oupling is left to future work. Following Ref. [7℄ C0 istaken to be real whi
h 
orresponds to an attra
tive intera
tion whereas C1 = i jC1j is purelyimaginary des
ribing a repulsive intera
tion. In most 
ases the magnitudes of C0 and C1were equal, that is C� = 0 ; C0 = jC0j ; C1 = i jC1j ; jC0j = jC1j : (17)(Note that a

ording to eq. (7) the signs of C0 and C1 are irrelevant.)For this exploratory work we had a

ess to a PC 
luster with 12 graphi
s pro
essing units(GPUs) atta
hed to it. Due to the memory limitations of the GPUs the maximally feasiblespatial latti
e size was 323 ; (L = 32). The temporal latti
e extension is taken four timeslonger in order to allow for a pre
ise determination of the energy values. In summary, wedid simulations on three types of latti
es:163 � 64 ; 243 � 96 ; 323 � 128 : (18)8



This restri
tion to the 
urrently feasible latti
e volumes has impli
ations on the 
hoi
e ofparameters we 
an simulate: in order to study the two nu
leon system a large physi
alvolume is required, be
ause otherwise the smallest available latti
e momentum is too large.On the other hand we would like to simulate with as small as possible values of the latti
espa
ing a. To set the s
ale we �xed the equal mass of the proton and neutron to be MN �Mproton = Mneutron = 939MeV=
2. This means that, for instan
e, a nu
leon mass in latti
eunits aMN = 1 implies a latti
e spa
ing a ' 0:21 fm and in our 
ases spatial extensions of16 a ' 3:4 fm, 24 a ' 5:0 fm and 32 a ' 6:7 fm, respe
tively. In order to rea
h larger volumesone 
an, of 
ourse, in
rease the nu
leon mass in latti
e units but in this way latti
e artefa
tswill also in
rease.With these 
hoi
es of volumes and with aMN = 1 we get for the smallest non-zeromomentum (2�)=(16La) ' 369MeV=
, (2�)=(24La) ' 246MeV=
 and (2�)=(32La) '184MeV=
, respe
tively. For extra
ting physi
s using the approa
h presented here bothlatti
e sizes and minimal non-zero momenta would require a fa
tor, say, four in
rease of thelatti
e extensions whi
h will be 
omfortably possible to rea
h with present day 
omputerresour
es.3.2 Numeri
al methodsOur present aim is to determine the energies (masses) of di�erent nu
lear systems. This
an be a
hieved by investigating the large (Eu
lidean-) time behaviour of di�erent sets of
orrelators. Sin
e at present we restri
t ourselves to quen
hed simulations, where the fermiondeterminant of the nu
leon �eld is negle
ted, the 
reation of the boson �eld 
on�gurations issimple. In 
ase of the auxiliary �elds �(0)x and �(1)x one has to 
reate Gaussian distributions.The pion �eld �(�)x 
an also be simply produ
ed by some update algorithm as, for instan
e,Metropolis algorithm { the only mild 
ompli
ation being to take into a

ount the non-lo
alityintrodu
ed by the blo
king.The nu
leon mass 
an be determined from the behaviour of the nu
leon time-sli
e 
or-relator. The time-sli
e operators are de�ned asNt � x4=tXx1 ;x2 ;x3	x1 ;x2 ;x3 ;x4 ; �Nt � x4=tXx1 ;x2 ;x3 �	x1 ;x2 ;x3 ;x4 (19)and the nu
leon 
orrelator is, with a Dira
-proje
tion to the state propagating in positivedire
tion, TrDira
 �(1 + 
4)hNt1 �Nt2i� : (20)The expe
tation value of the fermion bilinear gives a fermion propagator whi
h is the inverseof the fermion matrix in the fermioni
 part of the a
tion. The overwhelming part of 
omputer9



resour
es in our quen
hed simulations is spent in the 
al
ulation of the fermion propagatorsby an iterative inverter of this sparse matrix.The 
omputation of nu
leon propagators has been done most of the time by applying amixed pre
ision Conjugate Gradient inverter, see the appendix. The 
ru
ial problem for theinverter is to deal with the very small values of the nu
leon propagators at large distan
es.The solution of this problem is to use distan
e pre
onditioning following Ref. [25℄. Sin
e thenu
leon propagator behaves nearly exponentially for distan
es whi
h we use for extra
tingthe masses (in most 
ases up to a time distan
e half the time extension L4 of the latti
e),we 
hoose the pre
onditioning fun
tion to be�(t) = 8<: expf�P tg if t � L4=2 ;expf�P (L4 � t)g if t > L4=2 : (21)The parameter P 
an be 
hosen typi
ally by an amount 0:1� 0:5 smaller than the nu
leonmass in latti
e units amN.In order to obtain the masses of multi-nu
leon (in the present paper two-nu
leon) stateswith suÆ
ient pre
ision, one has to �nd the proper 
omposite operators de�ning the 
orrel-ators. Here we restri
t ourselves to proton-neutron states. For lo
al operators we take inthe spin-0 and spin-1 
hannels, respe
tively,	1xC
5	2x ; 	1xC
k	2x ; (k = 1; 2; 3) ; (22)where C denotes the 
harge 
onjugation Dira
 matrix.Espe
ially for s
attering states it is important to also take extended (smeared) operatorswhere the proton and neutron are at di�erent points. In 
ase of Gaussian smearing one 
anuse the smearing fun
tionexp ���1jx1; y1j2 � �2jx2; y2j2 � �3jx3; y3j2	 (23)with the notation introdu
ed in (13). For a spheri
al state in the spin-0 
hannel one 
antake � � �1 = �2 = �3. For spin-1, ellipsoidal states with e.g. �1 6= �2 = �3 are useful. Inthis latter 
ase we also tried linear smearing 
orresponding to �2; �3 =1. In order to save
omputer time one 
an 
ut the summation over sites o� at distan
es where the smearingfun
tion in (23) is smaller than, say, 10�2. In 
ase of spheri
al smearing this 
orresponds toa 
ut-o� radius of � = � log(100)� �1=2 : (24)The simplest way to determine the masses is to �t some of the 
orrelators by an expo-nential fun
tion in time intervals for distant time-sli
es. In 
ase of small enough statisti
al10



errors one 
an also obtain good �ts with a sum of two (or more) exponentials. The bestresults 
an be a
hieved, however, by taking a set of some operators in a given 
hannel and
al
ulate the 
orrelator matrix among them. For determining the energies of two-nu
leon(a
tually proton-neutron) states we typi
ally start from a 4� 4 
orrelator matrix. The fourstates are 
hosen from lo
al, spheri
ally smeared and ellipti
ally smeared states with di�erentDira
-matri
es.The 
orrelator matrix 
an be approximated by the sum of 
ontributions of eigenstates ofthe Hamiltonian (i. e. of the transfer matrix). In general, a real symmetri
 D�D 
orrelatormatrix C(t2; t1) between time-sli
es t1 and t2 > t1 is de�ned by the matrix elements ofD operators Oa;Ob; : : : ;Od. If the energy eigenstates are jni; n = 1; 2; : : : ;M then in ashorthand notationC(t2; t1) = 0BBBB� C(t2; t1)aa C(t2; t1)ab : : : C(t2; t1)adC(t2; t1)ab C(t2; t1)bb : : : C(t2; t1)bd... ... : : : ...C(t2; t1)ad C(t2; t1)bd : : : C(t2; t1)dd
1CCCCA (25)where the matrix elements 
an be written as, for instan
e,C(t2; t1)ab = (aj1)t2(bj1)t1 + (aj2)t2(bj2)t1 + : : :+ (ajM)t2(bjM)t1 (26)with (
jk)t � h0jO
(t)jki = hkjO
(t)j0i ; (27)for 
 = a; b; : : : ; d and k = 1; 2; : : : ;M .Assuming that we 
onsider bosoni
 (fermioni
) operators, we have periodi
 (anti-periodi
)time dependen
e with the time extension of the latti
e L4. This implies(ajk)t2(bjk)t1 = (ajk) (bjk) fexp[�tEk℄� exp[�(L4 � t)Ek℄g : (28)where the positive and negative sign stands for periodi
ity and anti-periodi
ity, respe
tively.Here t � t2 � t1, Ek is the energy (e.g. mass) 
orresponding to the state jki and(ajk) � (ajk)0; (bjk) � (bjk)0. Fitting the 
orrelator matrix by the expression given by (25)- (28) one 
an obtain the energies we are looking for [26℄. The statisti
al errors of the results
an also be obtained by methods similar to those des
ribed in Se
tion 5 of this referen
e.Sin
e in the present 
ase the relevant (multi-) nu
leon 
orrelators 
an be determined toa very good pre
ision, one 
an perform least-square �ts by minimising the 
orrelated 
hi-squared. In order to obtain a good starting point for the minimisation, one 
an �rst minimisethe un
orrelated 
hi-squared de�ned by�2n = NCXi=1 �fi(p)�X iÆXi �2 (29)11



where the index i runs over the independent matrix elements to be �tted, X i and ÆXi are themean value and error of the matrix element i, respe
tively, and fi(p) is the �tting fun
tionof NP parameters (p1; p2; : : : ; pNP ) de�ned by (26)-(28). The best �t obtained in this way
an be taken as a starting point to minimise the 
orrelated 
hi-squared�2
 = NCXi;j=1 �fi(p)�X i�Mij �fj(p)�Xj� ; (30)where Mij = NC�1ij , with the number N of input data and the 
orrelator matrixCij = 1N � 1 NXn=1 �Xi;n �Xi� �Xj;n �Xj� : (31)In general, the 
orrelator matrix in (31) 
an be determined with suÆ
ient pre
ision forobtaining its inverse and its eigenve
tors. In some 
ases, in parti
ular if the dimension of the
orrelator matrix NC is large, smoothing of the smallest eigenvalues [27, 28℄ 
an be helpfulbut does not substantially in
uen
e the results. The advantage of properly obtaining theminimum of �2
 is that one 
an sele
t \good �ts" by the value of �2
 per number of degreesof freedom (NC �NP ). The mean value and error of a quantity is de�ned by 
onsidering thedistribution of its values in good �ts. The quoted value is then the position of the medianof the distribution of these sele
ted values. The error de�nes a (symmetri
) interval aroundthe median su
h that 68% of the distribution is 
ontained in it.3.3 Numeri
al resultsThe physi
al quantities we are interested in are for instan
e the nu
leon-nu
leon s
atteringlength and binding energies of multi nu
leon states. In a latti
e simulation, the determ-ination of these quantities requires a study of the (�nite) volume dependen
e of one andtwo (and multiple) parti
le energies. In this methodi
al paper we hen
e try to understandhow pre
isely the 
orresponding quantities, i.e. the nu
leon and two-nu
leon masses, 
an bedetermined.In order to do so, we performed several simulations and determined the masses as de-s
ribed in the previous sub-se
tion. A typi
al example is a run on a 323 � 128 latti
e at�N = 0:08; C0 = 0:2; C1 = 0:2i. It turned out that the masses 
an be very pre
iselyobtained even from a modest statisti
al sample of 120 
on�gurations: see �gures 1-3.In �gure 1 we plot the a
tual nu
leon and two nu
leon 
orrelators as fun
tions of the timet in latti
e units on a logarithmi
 s
ale. The de
ay is nearly exponential in the whole timerange. Fitting the 
orrelators in di�erent time-sli
e distan
e intervals [t1; t2℄ by minimisingthe 
orrelated 
hi-squared one �nds that for the nu
leon mass amN we observe a plateau12
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10−60 (b)Figure 1: The nu
leon 
orrelator (a) and two-nu
leon 
orrelator (b) on a logarithmi
 s
aleas a fun
tion of time-sli
e distan
e t in latti
e units on a 323 � 128 latti
e at �N = 0:08; C0 =�iC1 = 0:2.from t1 = 18 on, almost independent of the value of t2 (see �g. 2). For the two nu
leon massamNN the plateau sets in somewhat later (see �g. 3). Both quantities have in 
ommon thatthe statisti
al errors of the single points are in the sub-per
ent region. The mass value andits error as determined from the distribution of the �t results { as des
ribed earlier { areindi
ated in both plots by the horizontal lines.The required pre
ision of two-nu
leon energies 
an be exempli�ed by L�us
her's formulafor extra
ting s
attering lengths from �nite size e�e
ts of the two-parti
le energies [29℄. Toleading order one 
an express the s
attering length a0 asa0mN = �2� mNNmN � � (mNLa)34� : (32)The masses from Figures 2-3, namely amN = 1:06567(25) and amNN = 2:1511(20) give forthe right hand side a value�59(7). The physi
al value of the right hand side is a0mN = 113:1.This 
orresponds to the value of the s
attering length in the 1S0 
hannel a0 = +23:76 fm andmN = 939MeV. (Here we use the sign 
onvention for the s
attering length of Ref. [29℄.1)Our value has the right order of magnitude but an opposite sign whi
h is due to the strongrepulsion implied by the imaginary value C1 = 0:2i. Obviously, tuning to the physi
al value1We thank the referee of our paper for drawing our attention to the di�erent sign 
onventions of thes
attering length in the literature whi
h we overlooked.13
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Figure 2: Results of nu
leon mass amN �ts on di�erent �tting intervals for a 323 � 128latti
e at �N = 0:08; C0 = �iC1 = 0:2. The �t interval [t1; t2℄ is spe
i�ed on the x-axis byt1 + 0:1(t2 � t1). The horizontal lines indi
ate the �nal result and error obtained from thedistribution of the �t results.would require either a mu
h smaller imaginary value or even a real value of C1. Besidesof this, one 
annot assume that the asymptoti
 formula works well already on a volume ofextension ' 7 fm. In fa
t, on latti
es 163 � 64 and 243 � 96 in the same point we obtained forthe right hand side of (32) values of about 5 and 40, respe
tively. This shows that, in any
ase, for the determination of s
attering lengths simulations on larger volumes are required.4 OutlookIn this paper we have de�ned a theory of nu
leon and pion �elds in the Eu
lidean pathintegral formulation on the latti
e. The inherent physi
al 
ut-o� of this theory has beenimplemented by formulating the latti
e a
tion in terms of blo
ked �elds. This physi
al 
ut-o� is given by the blo
k size. In this way the latti
e 
ut-o� is separated from the physi
al
ut-o� and 
an be 
hanged in order to determine the size of latti
e artefa
ts.The positive out
ome of the �rst studies we have performed is that the 
orrelators ofsingle- and two-nu
leon systems 
an be determined very pre
isely in order to obtain the14
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Figure 3: The same as Fig.2 for two-nu
leon masses amNN.energies to a very good pre
ision. In fa
t a few thousands of 
on�gurations are suÆ
ient fora pre
ision better than one per mill. Using L�us
her's formula we 
ould determine values forthe nu
leon-nu
leon s
attering length. The 
orresponding results are positive in the sensethat with larger volumes it seems to be realisti
 to tune its value to the physi
al one.An important step towards obtaining physi
al results is hen
e to in
rease the physi
allatti
e sizes. As dis
ussed in Se
tion 3.1, a spatial latti
e extension of about L = 100 would
orrespond for a nu
leon mass in latti
e units aMN ' 1 to a latti
e size of about La ' 20 fmand a minimal latti
e momentum 2�=(100La) ' 60MeV=
.It will be also important to introdu
e the pion �eld besides the auxiliary �elds des
ribingfour-nu
leon 
ouplings.In order to 
omplete this sort of latti
e studies an important �nal step is to investigatethe dependen
e of the results on the latti
e spa
ing. For this the physi
al parameters as,for instan
e, the blo
k size parameters RmN, SmN and the latti
e volume LamN have to bekept �xed. The 
ouplings in the latti
e a
tion (C0;1 et
.) have to be tuned for ea
h value ofthe latti
e spa
ing in su
h a way that some well 
hosen physi
al quantities (as for instan
esome nu
leon phase shifts) take their physi
al values. Of 
ourse, if the latti
e spa
ing getssmaller the required number of latti
e points have to be in
reased 
orrespondingly and thisimplies an in
rease in the required 
omputational power.15



A possible sour
e of diÆ
ulties in the quen
hed approximation, as observed in Yukawamodels by the authors of [19{21℄, is the appearan
e of ex
eptional 
on�gurations with ex-tremely small eigenvalues of the fermion latti
e a
tion. These 
on�gurations make the de-termination of 
orrelators and therefore masses pra
ti
ally impossible. In our 
ase we foundex
eptional 
on�gurations for bare 
ouplings in the range jC0j; jC1j; jC�j > 0:3. Sin
e thisproblem does not appear in numeri
al simulations in Yukawa models with dynami
al fermi-ons [22,23℄, we expe
t that it does also disappear in our nu
lear Yukawa models if dynami
alnu
leons are in
luded in the simulation update. For real values of the 
ouplings C0; C1; C�the fermion determinant is real (non-negative) therefore the known Hybrid Monte Carlomethods [30℄ 
an be applied in a straightforward manner. For non-real (e.g. imaginary)
ouplings the determinant be
omes 
omplex and the numeri
al simulation turns non-trivial,if not impossible.A
knowledgementWe thank Ulf G. Mei�ner for introdu
ing us in the literature of nu
lear physi
s on thelatti
e. We thank Hans-Werner Hammer, Dean Lee and Ulf G. Mei�ner for helpful andinteresting dis
ussions. We are grateful to Hans-Werner Hammer for useful 
omments onthe manus
ript. We thank JSC at FZ-J�uli
h for providing 
omputing time on JUROPA.A Implementation DetailsAs mentioned in the introdu
tion, we have used graphi
s pro
essing units (GPUs) in orderto perform the numeri
al inversions of the Dira
 operator. We have 12 NVIDIA Tesla C1060GPUs available with four Gb of memory ea
h. We have used NVIDIAs CUDA environmentto implement the Dira
 operator dedu
ed from eqs. (6), (8) and (9) for GPUs, whi
h is verysimilar to available implementations for latti
e QCD, see for instan
e ref. [31℄.We employ a mixed pre
ision solver using both, the CPU and the GPU. On the GPU wehave implemented a 
onjugate gradient (CG) solver inverting the squared hermitian Dira
operator (sin
e C1 is purely imaginary)QyQ = 
5D(C0;�C1; �N)
5D(C0; C1; �N) :The desired result is then obtained by multiplying with Qy. The CG solver on the GPU isimplemented solely in single pre
ision (32 Bit). The CG solver is 
alled from an outer solver,whi
h is run on the CPU in double pre
ision (64 Bit). We use iterative re�nement as theouter solver in order to solve D� = �16



Algorithm 1 Iterative Re�nementRequire: �; �; �o > 0; �i > 01: k = 02: rk = ��D�3: while k��Dxkk > �o do4: solve Dpk+1 = rk for pk+1 on GPU to relative pre
ision �i5: xk+1 = xk + pk+16: rk+1 = ��Dxk+17: k = k + 18: end while9: return �for �, given some sour
e spinor �eld �. The algorithm is summarised in algorithm 1. De-pending on the parameters �N ; C0 and C1 one has to tune the pre
ision for whi
h to solveon the GPU. The usage of distan
e pre
onditioning also had signi�
ant in
uen
e on thistuning: the 
loser the pre
onditioning mass to the measured mass the less stable the pre-s
ribed mixed pre
ision solver turned out to behave. Most probably due to a

umulation ofround o� errors we had to redu
e the number of inner iterations further and further withpre
onditioning mass approa
hing the measured mass.
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