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DESY-11-074
Reombination within multi-hainontributions in pp sattering

J. Bartelsa and M.G.Ryskinba II. Institut f�ur Theoretishe Physik, Universit�at Hamburg, LuruperChaussee 149, D-22761 Hamburg, Germanyb Petersburg Nulear Physis Institute, Gathina, St.Petersburg, 188300,RussiaAbstratWe investigate the evolution of multiple parton hains in proton-proton sattering andshow that interations between di�erent hains may beome quite important.1 IntrodutionIn the last years it has beome lear that multiple parton interations play an importantrole in hadron-hadron ollisions at high energies [1, 2, 3, 4, 5, 6, 7, 8℄. As a �rst stepthese hains are modelled as a olletion of single noninterating hains (Fig.1). Eahhain follows the usual partoni DGLAP evolution, i.e. the ladders are in olor singletstates, and the momentum transfer aross the ladder is set equal to zero. Disregarding�nal state radiation and working in leading order only, the �nal state produed by k suhhains onsists of N = n1+n2+ :::+nk partons, and the ross setion, d� � jT2!N j2d
N ,is desribed by a sum of squares, without any interferene terms.The theory of multiparton (higher twist) evolution has been outlined in [9℄. To leadingorder, the evolution is desribed by the sum over the pairwise interations between twot-hannel partons, and the evolution kernels are given by the nonforward DGLAP split-ting funtions. Of partiular importane is the small-x region where powers of ln 1=x mayompensate (and even overome) the higher twist suppression. In this region, the domi-nant ontributions are given by gluon ladders, and their evolution in ln 1=x is desribedby the BKP equations [10℄. In leading order this evolution is, again, desribed by the sumover parwise interations between t-hannel gluons. The evolution kernels are given bythe nonforward BFKL-kernels. At small x, the leading logarithmi approximations of thetwo approahes - higher twist evolution in momentum sale or small-x evolution in ln 1=x1
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Figure 1: Two noninterating hains: (a) the ross setion (energy disontinuity ofthe sattering amplitude T2!2), (b) redrawn as a (unut) two-ladder exhange diagram.Within eah hain, the boxes mark the hard subproess with largest transverse momenta(prodution of dijets).- oinide in the so-alled 'double logarithmi approximation' whih samples powers of(�s ln 1=x ln p2).For both evolution shemes the t-hannel multiparton state is in a olor singlet stateand, as far as the total ross setion is onerned, the total momentum transfer is setequal to zero. However, any subsystem onsisting of two t-hannel gluons, in general,will have nonzero olor quantum number and nonzero momentum transfer. Therefore,desribing the evolution of a t-hannel state onsisting of, say, 2n gluons as the evolu-tion of n noninterating olor singlet ladders with zero momentum transfer represents anapproximation whose validity deserves further investigation.In this note we study, as a �rst orretion beyond the approximation of noninteratingladders, a partiular type of 'interations' between two ladders whih we illustrate in Fig.2:Starting at the proton at the bottom of Fig.2, we �rst have two noninterating olor singletladders (denoted by the pairs of t-hannel gluons (14) and (23)). At rapidity Y we allowfor a 'reombination' of t-hannel gluons: from now on we have the two olor singlet pairs(13) and (24). In the following we will denote his transition by 'reombination vertex'. Itintrodues a orrelation between the two ladders. However, it is important to note that,in the double log approximation, this kind of interation between the two ladders stillbelongs to the leading logarithmi approximation: for eah momentum integral we havea fator (�s ln p2 ln 1=x). It is this kind interation between the two ladders whih wewill study in the following, staying within the double logarithmi approximation of gluonladders. Partiular attention will be given to the possibility that this reombination oftwo hains takes plae in the perturbative region, i.e. in the region of large transverse2
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Figure 2: Two reombinations within the two hains.momenta.Reently an important potential appliation of suh reombination e�ets has beensuggested. In their attempt to explain the ridge e�et reported by the CMS group at theLHC [11℄, it has been suggested [12℄ that the observed long range rapidity orrelation andazimuthal orrelation an be explained, within the Color Glass Condensate framework,by a two-hain reombination whih will be disussed in this paper.2 Two noninterating laddersWe begin with the double logarithmi approximation of the two-hain on�gurationsshown in Figs.1 and 2: we searh for regions of integration where eah losed momen-tum loop gives two logarithms, one in the transverse momentum and one in rapidity.We restrit ourselves to gluon ladders whih, at small x, are known to give the largestontributions. We parametrize our momenta ask = xpA + ypB + k (1)where pA, pB are the large momenta of the inoming protons A and B, resp., the momen-tum frations x, y range between 0 and 1, and k denotes the two dimensional transversemomentum. In the double logarithmi approximation, the BFKL kernel and the splittingfuntion Pgg lead to the same answer (Fig.3): we an either start from the small-x limitwhih is desribed by the BFKL equation and then take the limit of strongly di�erentmomentum sales; alternatively, we an begin with the ollinear limit where the DGLAPequations apply and then take the limit of small x. For our purposes it will turn out thatthe approah based upon the BFKL equation is more suitable: it is the region where the3
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k’−k’’Figure 3: A single ell inside a ladder, below the produed pair of jets.logarithms in 1=x are slightly larger than the transverse momentum logarithms where thereombination e�ets beome important.In the region of strongly ordered transverse momenta the olor singlet BFKL kernelis approximated byg2 �q2 + k2(q � k)2 + k02(q � k0)2(k � k0)2 ! � 2g2k0(k0 � q) (2)This approximation will be used in the following.We begin with the two noninterating ladders shown in Fig.1. Our main fous is onthe integration over the loop momentum q, and we onsider a single ell with momentumk0 inside one of the ladders below the produed pairs of jets. This ell is illustrated inFig.3. Using (2) for the upper rung (and the orresponding expression for the lower rung),together with the gluon propagators for the vertial lines, one sees that the integration overthe transverse momentum k0 is logarithmi only if k0 � q, i.e. q de�nes the momentumsale Q0 where the k2 evolution along the ladders starts. On the other hand, the rangeof the integration over the momentum transfer along the ladders is determined by thesize of the interation region and by the orrelation length of the initial gluons of the twoladders inside the proton: we denote this e�etive radius by ~R, and put Q20 = 1= ~R2. Asa result, the ross setion for the prodution of two pairs of gluon jets (f. Fig.1) will beof the form: d�dY1dY2d2p1d2p2 � 1~R2 1(p21)2 1(p22)2 f(x1;p21)f(y1;p21)f(x2;p22)f(y2;p22) (3)where f(x;p2) = xg(x;p2) denotes the gluon density with initial momentum sale Q20, thefator 1= ~R2 results from the integration over the loop momentum q, and the momentumfators 1=(p21p22)2 represent the two prodution verties of the pairs of gluon jets (evaluatedin the double logarithmi approximation).As an important feature of (3) we mention that, as long as interations betweendi�erent parton hains are not taken into aount, the momentum transfer along a ladderis of the order of the initial momentum sale of the (multi)parton distribution.4
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Figure 4: Kinematis of a reombination (14)(23)! (13)(24).3 Reombinations in a two-ladder on�gurationWe now turn to the main topi of this paper, a study of the two reombinations shown inFig.2. We begin with the reombination vertex below the produed jets; the kinematisare illustrated in Fig.4,. Above the reombination, the two ladders formed by the lines(13) and (24) are in the olor singlet on�guration; below the olor singlet ladders areformed out of (14) and (23). As a result, eah olor reombination is aompanied by theolor suppression fator 1N2 � 1 (4)In order to have, for the momentum loops below the lower two rungs (onneting (14)and (23)), logarithmi momentum integrals, we needjk01j; jk02j � jlj: (5)Similarly, in order to �nd logarithmi momentum integrals above the upper two rungs(onneting (13) and (24)), we need jk1j; jk2j � jqj; (6)Finally, inside the k loop of Fig.4. we needjk1j; jk2j � jkj � jk01j; jk02j; jkj � jlj; jk1j; jk2j � jk01j; jk02j: (7)Using, for the upper two rungs, the approximations following from (2), and ombiningthem with the propagators for the vertial gluon lines, we obtain:(2Ng2)2 Z d2k(2�)3 Z d2q(2�)3 2k(k � q)k2(q � k)2 2k(k � q)k2(q � k)2 (8)In order to obtain a logarithmi integrals of k, we identify two regions of k and q: eitherjqj � jk or jqj � jq � kj. For eah of the two ases, after averaging over the azimuthalangle, we arrive at the integrals2g4 Z d2q(2�)3 1q2 Z q2 d2k(2�)3 1k2 (9)5



whih gives the desired logarithmi integral in k (or (q � k)).For the two ladders below the reombination we derive, from the ondition (7) andfrom the seond integral in (9), that the upper uto� is given by q2. The lower uto� isobtained by applying the disussion of setion 2.1: the loop momentum l appears onlyinside the initial ondition of the lower proton B, and it is restrited by the e�etive saleQ20 The ondition (6) implies that the momentum q also de�nes the lower momentumuto� for the ladders above the reombination vertex.In order to �nd the full dependene on q2, we need to onsider the full diagram inFig.2 1. The reombination vertex above the produed pairs of jets is analysed in thesame way as the lower one. This leads to an expression similar to (9), i.e. the ompletedependene in q is of the form: Z d2q(q2)2 ; (10)The integral in q is dominated by small values. Sine the momentum q de�nes the uppermomentum uto�, both for the two ladders below the lower reombination vertex andfor the two ladders above the upper reombination vertex, we onlude that the infrareddivergene of the q-integration destroys the ladders above and below the reombinationverties. The reombination verties, therefore, are absorbed into the nonperturbativeinitial onditions. As far as the perturbative part is onerned, we are bak to the twononinterating hains of setion 2.1.The situation hanges if logarithms in rapidity beome more important than thosein transverse momentum, i.e. within the BFKL approah we move towards small x. InFig.2, we replae the rungs by BFKL Green's funtions. Re-drawing the diagram in anmore suitable way, we arrive at Fig.5: Let us �rst reformulate the result whih we havejust obtained in the double logarithmi approxmation. We have shown that, in orderto �nd inside the BFKL Green's funtion the maximal number of transverse logarithms,the momentm transfer aross the Green's funtion has to be smaller than the transversemomenta of the two gluons entering the Green' funtion at the low-momentum side. InFig.5. this says that l and l0 have to be small, while for the q-loop we found the integralR dq2=q4 whih favors small values, too.In order to see how the appearane of large rapidity intervals hanges this situation,let us use the following integral representation for the forward BFKL-Green's funtion:G(k; k0;Y � Y 0) = Z d!2�ie!(Y �Y 0) Z d�2�i � k2k02�� 1! � �(�; 0) ; (11)where � = i� + 12 , the integration ontours in � and ! run parallel to the imaginay axis,�(�; n) is the BFKL eigenvalue funtion, and we have averaged over the azimuthal anglesof k, k0. Furthermore, we have kept only the leading term of the onformal spin, n = 0.From this representation one easily dedues the dependene upon Y �Y 0 and ln k2k02 : afterthe integration over ! the saddle point analysis of the remaining � -integral shows that, forlarge ln k2k02 , the dominant ontributions ome from � = i�+ 12 � 0 and ! = O(1), whereasfor large Y � Y 0, one �nds � � 12 and small ! = !BFKL = 4N ln 2�s� . This observation1Otherwise the momentum q will run through the blob orresponding to the proton initial onditionsand, like the momentum l, it will be restrited by a low sale Q0.6
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Figure 5: Another way of drawing Fig.2bhas important onsequenes. Let us denote the rapidities of the two reombinations byY 0 and Y , resp.. Beginning with the BFKL amplitudes near the produed jets, largerapidity intervals Y 0� Y1, Y1� Y , Y 0� Y2, Y2� Y inrease the orresponding anomalousdimensions and hene favor larger values of the entral loop momentum, q. To see thisim more detail, we insert the integral representations for all the BFKL Green' funtionin Fig.5. We arrive atd�dY1dY2d2p1d2p2 � 1R2 1R2 1(p21)2 1(p22)2 Z d�02�i Z d�2�i Z d�012�i Z d�12�i Z d�022�i Z d�22�i �Z dY Z dY 0 Z d2qq4 h� q2Q20��0 e(Ytot�Y 0)�(�0)i2�h�p21q2��01 e(Y 0�Y1)�(�01)ih�p21q2��1 e(Y1�Y )�(�1)ih�p22q2��02 e(Y 0�Y2)�(�02)ih�p22q2��2 e(Y2�Y )�(�2)i�� h� q2Q20�� eY �(�)i2 (12)Here we have introdued another length sale, R2 : it results from the additional integrals(as ompared to eq.(3)) d2l and d2l0, whih are restrited by the proton radius and by theorrelation between the two hains inside the proton. As long as all BFKL amplitudes arein DGLAP regime, i.e. they are dominated by the logarithms in the transverse momenta,all � variables are small, and we are in the situation whih we have desribed above: theq integral is dominated by small values, and the transverse momentum logarithms insidethose four BFKL amplitudes whih are lose to the protons are destroyed. If, however,the rapidity intervals beome large and the BFKL amplitudes are in the small-x region,7



� values are lose to 12 . As a result, in (12) the overall power of q2 may inrease and thedominane of the small-q2 region disappears. One easily sees that large rapidity intervalsnear the protons, Ytot � Y 0 and Y , tend to make � and �0 large and thus help to inreasethe overall power of q2.Let us see in more detail how this balane works. De�ning in (12) the phase funtion�(�; �01; �1; �02; �2; �) = 2�(Ytot � Y 0)�(�0) + �0 ln q2Q20�++ �(Y 0 � Y1)�(�01) + �01 ln p21q2� + �(Y1 � Y )�(�1) + �1 ln p21q2�+�(Y 0 � Y2)�(�02) + �01 ln p22q2� + �(Y2 � Y )�(�2) + �1 ln p22q2�+2�Y �(�) + � ln q2Q20� ; (13)the saddle points are determined from the onditions:0 = ���� = 2�0(�s)Y + 2 ln q2Q20 ; (14)and 0 = ����1 = �0(�1;s)(Y1 � Y ) + ln p21q2 ; (15)whih lead to �0(�s) = � ln q2Q20Y (16)and �0(�1;s) = � ln p21q2Y1 � Y (17)Similar equations are obtained for the other � variables.For a systemati analysis one �rst determines, for �xed Y , Y 0 and q2, the stationarypoints of the � variables and then �nds the dominant values of the rapidities Y , Y 0 andof the momentum sale ln q2. As we have said before, if in (16) the evolution in rapiditydominates over that in momentum sale, the rhs beomes small. Sine �0(�) vanishes at� = 12 , we have �s � 12 � 1�00(12) ln q2Q20Y : (18)On the other hand, if in (17) the interval in momentum evolution is larger than in rapidity,the rhs is large when � is lose to zero:�1;s �saY1 � Yln p21q2 (19)8
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2ln p 2 ln p 2ln q 2Figure 6: Two di�erent paths of evolution: (a) Normal path whih disfavors reom-bination, (b) a path whih supports a reombination. For simpliity, we have takenp21 = p22 = p2 and Y1 = Y2.with a = N�s� and �00(12) = a28�(3) (here �(3) � 1:202 denotes the Riemann zeta fun-tion).The results an be illustrated in terms of evolution paths in Fig.6. There is an in�nitenumber of paths in the ln k2-y plane whih onnet the protons with the produed jetswith rapidity Y1, Y2 and momenta p21, p22. The saddle point analysis determines the mostprobable path. Two examples are shown in Fig.6. Let us now onsider a few speial ases.For simpliity, we start with the symmetri hoie Y1 = Y2 and p21 = p22 = p2. In order toget a large q2 we searh for the situation where � > �i and �0 > �0i. We insert the saddlepoint values (18), (19) into (13), and �rst look for the extrema with respet to Y and Y 0,that is for the saddle point of the expressionAlower = ep4a(Y1�Y ) ln(p21=q2)e2Y �(�s)ep4a(Y2�Y ) ln(p22=q2) (20)whih belongs to the lower part of Fig.5. To get (20) we have used the value of �s in (18)and negleted a weak dependene of �s � 1=2 on Y oming from (18). Thus the typialvalue of Y is Y = Ys = Y1 � a ln2(p2=q2)�2(�s) ; (21)leading to Alower � exp� 2a�(�s) h2 ln3=2(p2=q2)� ln2(p2=q2)i+ 2�(�s)Y1� : (22)An analogous expression is obtained for the upper part of the amplitude in Fig.5, Aup.Assuming that the total avaliable rapidity interval Ytot and the sub-rapidities Y1; Y2 are solarge that the saddle point position �s (18) is lose to 1/2, i.e. 28�(3)aY1 >> ln(q2=Q20).We put �s = 0:5 in (20), (22), and we see that in (12) the integral over q2 takes the formZ d ln q2q2 exp� 1ln 2 h2 ln3=2(p2=q2)� ln2(p2=q2)i� : (23)9



Here we have used the LO BFKL ratio a=�(�s) = a=�(0:5) = 1=4 ln 2. The integral (23)has its saddle point at q2 � p2 exp(�z2) (24)with z = 3=4 +p9=16 + 0:5 ln 2 ' 1:7; exp(�z2) ' 0:055. The orresponding valueof �1;s ' z=4 ln 2 � 0:6 is not small enough to justify the approximate estimate (19).We therefore onlude that the ompetition between the Y and q2 dependene leads toa rapidity saddle point (21) somewhere inside the avaliable interval (Y1; 0), whih in itsturn leads to a rather large �i;s violating the initial inequality �i < �.In general we an say that the ordering �i;s < �s leads to the opposite ordering ofthe interepts, �(�s) < �(�i;s). Therefore, in (12) the dominant ontribution to the Yintegral omes from the region of small Y where the reombination vertex is lose to theinitial proton and far from the prodution vertex of the dijets. For a small Y value theanomalous dimension � annot be large, and the essential q2 values are small as well. Thismeans that we are bak to the situation of non-interating ladders, illustrated in Fig.6a.Next we turn to the opposite ase �i > � whih orresponds to �(�i) < �(�). Nowthe dominant Y -value is large and lose to the rapidity of high ET dijets Y1. However,now the whole anomalous dimension in the q2 behaviour 2(�+�0)��1��01��2��02 < 0is negative, and the q2 integral is dominated by a low q2-value.The most interesting possibility is to put the reombination verties just as loseas possible to the high ET dijet prodution matrix elements. In this ase there is noBFKL or DGLAP evolution in the intervals between the produed pairs of jets and thereombination verties. That is, in the entre of Fig.5, we simply delete the four 'BFKLblobs' nearest to the produed jet pairs. Correspondingly, in (12) we eliminate the thirdline, togather with the integrations over �1; �2; �01; �02. The rapidities Y; Y 0 are lose to Yi,and the q2 integral takes the form Z d ln q2q2 q4(�s+�0s) ; (25)where the saddle point values, �s and �0s, follow from the ondition (14):0 = �0(�s)Y + ln q2Q20 (26)and 0 = �0(�0s)(Ytot � Y 0) + ln q2Q20 : (27)Their values are taken from (18):�s � 12 � 1�00(12) ln q2Q20Y ; (28)i.e. the integral over q2 reeives its main ontribution from q2 lose to minfp21; p22g 2 Thissituation belongs to the evolution path shown in Fig.6b.2In the region of q > pi the momentum q will destroy the matrix element of high ET;i dijet produtionreplaing in (12) the fator 1=p4i by 1=q4. 10



Let us �nally onsider a more realisti situation with Y1 = Y2 but p2 < p1. Reall thatthe true argument of the BFKL amplitude is not rapidity but the momentum fration x,that is atually we have to take Y = ln(1=x). When p1 >> p2 for the same rapiditiesY1 = Y2 we get in the right ladder the momentum fration x2 << x1. In other words, inthis on�guration we may put, in Fig.5, the reombination vertex just into the ell nearestto the left dijet. But then there will be a large lnx (and may be ln q2) interval for theevolution of the right ladders (between the dijets on the rhs and the two reombinationverties. In other words in Fig.5. we delete only the two 'BFKL blobs' on the lhs belowand above the dijet prodution. Assuming that, in (12), the total rapidity interval Ytot isvery large, we may perform �rst the rapidity integralZ dY exp[�Y (�(�2)� 2�(�))℄ = 1�(�2)� 2�(�) (29)where for the BFKL blobs on the lhs we have set �(�1) = 0, and for � we put itsasymptoti value � = 1=2. Now we lose the ountor of the �2 integration around thepole �(�2) � 2�(�) = 0: this leads to �2 ' 0:18. The same result is obtained for �02.Finally, the q2 integral takes the formZ p22 d ln q2q2(1��2��02); (30)and the major ontribution omes from the domain lose to upper limit q2 � p22.A loser look reveals still another detail. In the region of interest, for example in a 14TeV pp-ollision at the LHC, we observe in the entral region the dijet with p1 � 20GeV ,orresponding to x � 2p1=ps � 0:003. For suh x-values, the anomalous dimensionobserved at HERA is not so large. For x < 0:01 the behaviour of the struture funtionF2(x; q2) an be parametrized as F2 = (q2)x� (31)with  ' onst(q2) and � = 0:048 � 0:004 [13℄. This means that e�etive anomalousdimension �eff = � ln(1=x) � 0:28 for x = 3 �10�3. This value is still large enough to pro-vide the onvergene of the q2 integral (25) in the large q2 domain for the ase onsideredabove where both reombination verties are jsut near the dijet prodution ell. Howeverit is not evident that the parametrization (31) reets the behaviour of a single ladder.At not large q2 the experimentally measured F2 already inludes some absorptive e�etswhih redue the growth of F2 with x dereasing and thus leads to a lower value of � inomparison with a single ladder ontribution. In other words the true value of �eff whihorresponds to a single ladder may be even larger, pushing the harateristi values of q2loser to the (lower) hard sale p22.4 GeneralizationsSo far we have disussed the e�et of two reombinations inside a two-hain ontribution:one reombination on esh side of the produed jet pairs. Let us �rst omment on the11



Figure 7: A reombination of two ladders whih allows for di�rative states.ase where we have no seond reombination vertex above the jet pairs: as far as onlyone reombination vertex is onerned, the integration over q is logarithmi. However,q runs also through both upper ladders and de�nes the low momentum sale Q20 wherethe evolution starts: a large value of q therefore kills the evolution in the upper ladders,whereas a low value prevents the evolution in the lower ladders. Therefore, a singlereombination vertex is suppressed.Next a omment on the olor suppression fator (4). This suppression applies to thease when, as illustrated in Fig.2, there is evolution above and below the reombinationvertex. As we have disussed before, in a preferred situation we have little or no evolutionbetween the reombination verties and the dijet prodution verties. In this ase thereis no need to reonnet, between the two reombination verties, the four t-hannel gluonlines to olor singlet pairs. As result, the olor suppression beomes muh weaker..Next we onsider the ase of more than two hains, say three hains with three pro-dued pairs of jets.. In this ase a pair of two reombination verties an be attributed toany pair of hains, i.e. we have three possibilities. Similarly, for n hains we have n(n�1)2possiblities: these ounting fators an easily overome the olor suppression fator in (4).As an example, for n = 4, the overall ounting fator is already 3=4, and it exeeds unityfor n � 5.Finally, we mention another important possibility, related to �nal states with rapiditygaps. Besides the reombination illustrated in Fig.2 there exists another on�guration towhih our disussion applies. We show this in Fig.7: Applying our previous disussion, inpartiular the evolution paths illustrated in Fig.6, we onlude that the momentum saleat the upper end of the lower rapidity gap, q2, will be above Q20 but not too lose to thejet momenta p21 = p22: this allows for 'semihard' di�ration and is in qualitative agreementwith inlusive di�ration seen at HERA.5 Conlusions and outlookWe have studied the possibility of interations ('reombinations') between two evolutionhains, whih desribe double parton sattering orretions in high energy hadron olli-sions. We show that, thanks to large anomalous dimensions of the parton distributions inthe low-x region, suh an interation may our at small distanes within the pertubative12



domain, provided we onsider two reombination verties (whih desribe the hain-haininteration) plaed relatively lose to the 'hard' matrix elements.In our double leading log analysis of gluon ladder diagrams we �nd a ompetitionbetween 'ollinear' logarithms (lnp2) and 'energy' logarithms (ln(1=x)). Depending onthe ratio between these logarithms, the major ontribution to integrals over the rapidityof the two reombination verties, Y and Y 0, omes either from the region near theprotons (Fig.6a) or from the region lose to the jet prodution verties (Fig.6b), i.e. theseintegrals have no saddle point somewhere in entre of the avaliable interval. The �rst ase(Fig.6a) orresponds to two independent ladders whih do not ommuniate with eahother and are desribed by 'double DGLAP' evolution equations. More interesting is theseond possibility (Fig.6b) where the reombination verties are lose to the hard matrixelements and thus are entirely in the perturbative region. These on�gurations may leadto nontrivial orrelations between the seondaries produed in 'double parton sattering'proesses. We note that, in Fig.6b, the rapidities and transverse momenta of the partonsinside the reombination verties need not be very lose to the 'hard' matrix element: ina more or less realisti situation the onvergene of the integrals in rapidity (Y and Y 0)and transverse momentm (q) are rather slow, sine they are driven by numerially smallpowers of 1=x and q2. Therefore the partiles oming from the reombination vertiesmay still be separated from those produed via the 'hard' subproess by relatively largeintervals in rapidity (� few units) and in the logarithms of transverse momenta.The interations between di�erent ladders disussed in this paper also allow for semi-hard di�rative �nal states (Fig.7).In the ase of multiple parton interations with a larger number of evolution hainsthe suppression of hain-hain interations aused by the olour fator 1=(N2 �1) may beompensated by the ombinatorial fator. For n hains we have n(n� 1)=2 possibilities.Aording to naive 'eikonal model' estimates the mean number of hains in proton-protonollision at the LHC is < n >� 5. Therefore the expeted probability of multi-hainreombinations is not small and may lead both to a notieable orrelation between theseondaries in inlusive proesses and to 'semihard' di�ration �nal states.All results of this paper are based upon the double logarithmi approximation (with�xed �s). We onsider this as a �rst step towards a more aurate analysis. Within thesmall-x approah it is possible to go beyond the double logarithmi approximation andto reah single logarithmi auray (leading ln 1=x). Also, a more detailed numerialanalysis will be needed in order to obtain a more reliable estimate of the importane ofthe reombination orretions addressed in this paper. Both tasks will be topis of futurework.We �nally mention an important onsequene of our result. In ontrast to non-interating multiparton hains whih often are modelled within the eikonal approximation,orretions due to the reombination of ladder diagrams no longer �t into the eikonal pi-ture. This raises the question of the AGK utting rules whih provide a ruial theoretialonstraint of multiparton orretions. An investigation of this problem is quite important.Aknowledgements:The work by MGR was supported by the grant RFBR 11-02-00120a and by the FederealProgram of the Russian State RSGSS-65751.2010.2.13
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