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Re
ombination within multi-
hain
ontributions in pp s
attering

J. Bartelsa and M.G.Ryskinba II. Institut f�ur Theoretis
he Physik, Universit�at Hamburg, LuruperChaussee 149, D-22761 Hamburg, Germanyb Petersburg Nu
lear Physi
s Institute, Gat
hina, St.Petersburg, 188300,RussiaAbstra
tWe investigate the evolution of multiple parton 
hains in proton-proton s
attering andshow that intera
tions between di�erent 
hains may be
ome quite important.1 Introdu
tionIn the last years it has be
ome 
lear that multiple parton intera
tions play an importantrole in hadron-hadron 
ollisions at high energies [1, 2, 3, 4, 5, 6, 7, 8℄. As a �rst stepthese 
hains are modelled as a 
olle
tion of single nonintera
ting 
hains (Fig.1). Ea
h
hain follows the usual partoni
 DGLAP evolution, i.e. the ladders are in 
olor singletstates, and the momentum transfer a
ross the ladder is set equal to zero. Disregarding�nal state radiation and working in leading order only, the �nal state produ
ed by k su
h
hains 
onsists of N = n1+n2+ :::+nk partons, and the 
ross se
tion, d� � jT2!N j2d
N ,is des
ribed by a sum of squares, without any interferen
e terms.The theory of multiparton (higher twist) evolution has been outlined in [9℄. To leadingorder, the evolution is des
ribed by the sum over the pairwise intera
tions between twot-
hannel partons, and the evolution kernels are given by the nonforward DGLAP split-ting fun
tions. Of parti
ular importan
e is the small-x region where powers of ln 1=x may
ompensate (and even over
ome) the higher twist suppression. In this region, the domi-nant 
ontributions are given by gluon ladders, and their evolution in ln 1=x is des
ribedby the BKP equations [10℄. In leading order this evolution is, again, des
ribed by the sumover parwise intera
tions between t-
hannel gluons. The evolution kernels are given bythe nonforward BFKL-kernels. At small x, the leading logarithmi
 approximations of thetwo approa
hes - higher twist evolution in momentum s
ale or small-x evolution in ln 1=x1
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Figure 1: Two nonintera
ting 
hains: (a) the 
ross se
tion (energy dis
ontinuity ofthe s
attering amplitude T2!2), (b) redrawn as a (un
ut) two-ladder ex
hange diagram.Within ea
h 
hain, the boxes mark the hard subpro
ess with largest transverse momenta(produ
tion of dijets).- 
oin
ide in the so-
alled 'double logarithmi
 approximation' whi
h samples powers of(�s ln 1=x ln p2).For both evolution s
hemes the t-
hannel multiparton state is in a 
olor singlet stateand, as far as the total 
ross se
tion is 
on
erned, the total momentum transfer is setequal to zero. However, any subsystem 
onsisting of two t-
hannel gluons, in general,will have nonzero 
olor quantum number and nonzero momentum transfer. Therefore,des
ribing the evolution of a t-
hannel state 
onsisting of, say, 2n gluons as the evolu-tion of n nonintera
ting 
olor singlet ladders with zero momentum transfer represents anapproximation whose validity deserves further investigation.In this note we study, as a �rst 
orre
tion beyond the approximation of nonintera
tingladders, a parti
ular type of 'intera
tions' between two ladders whi
h we illustrate in Fig.2:Starting at the proton at the bottom of Fig.2, we �rst have two nonintera
ting 
olor singletladders (denoted by the pairs of t-
hannel gluons (14) and (23)). At rapidity Y we allowfor a 're
ombination' of t-
hannel gluons: from now on we have the two 
olor singlet pairs(13) and (24). In the following we will denote his transition by 're
ombination vertex'. Itintrodu
es a 
orrelation between the two ladders. However, it is important to note that,in the double log approximation, this kind of intera
tion between the two ladders stillbelongs to the leading logarithmi
 approximation: for ea
h momentum integral we havea fa
tor (�s ln p2 ln 1=x). It is this kind intera
tion between the two ladders whi
h wewill study in the following, staying within the double logarithmi
 approximation of gluonladders. Parti
ular attention will be given to the possibility that this re
ombination oftwo 
hains takes pla
e in the perturbative region, i.e. in the region of large transverse2
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Figure 2: Two re
ombinations within the two 
hains.momenta.Re
ently an important potential appli
ation of su
h re
ombination e�e
ts has beensuggested. In their attempt to explain the ridge e�e
t reported by the CMS group at theLHC [11℄, it has been suggested [12℄ that the observed long range rapidity 
orrelation andazimuthal 
orrelation 
an be explained, within the Color Glass Condensate framework,by a two-
hain re
ombination whi
h will be dis
ussed in this paper.2 Two nonintera
ting laddersWe begin with the double logarithmi
 approximation of the two-
hain 
on�gurationsshown in Figs.1 and 2: we sear
h for regions of integration where ea
h 
losed momen-tum loop gives two logarithms, one in the transverse momentum and one in rapidity.We restri
t ourselves to gluon ladders whi
h, at small x, are known to give the largest
ontributions. We parametrize our momenta ask = xpA + ypB + k (1)where pA, pB are the large momenta of the in
oming protons A and B, resp., the momen-tum fra
tions x, y range between 0 and 1, and k denotes the two dimensional transversemomentum. In the double logarithmi
 approximation, the BFKL kernel and the splittingfun
tion Pgg lead to the same answer (Fig.3): we 
an either start from the small-x limitwhi
h is des
ribed by the BFKL equation and then take the limit of strongly di�erentmomentum s
ales; alternatively, we 
an begin with the 
ollinear limit where the DGLAPequations apply and then take the limit of small x. For our purposes it will turn out thatthe approa
h based upon the BFKL equation is more suitable: it is the region where the3
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k’−k’’Figure 3: A single 
ell inside a ladder, below the produ
ed pair of jets.logarithms in 1=x are slightly larger than the transverse momentum logarithms where there
ombination e�e
ts be
ome important.In the region of strongly ordered transverse momenta the 
olor singlet BFKL kernelis approximated byg2 �q2 + k2(q � k)2 + k02(q � k0)2(k � k0)2 ! � 2g2k0(k0 � q) (2)This approximation will be used in the following.We begin with the two nonintera
ting ladders shown in Fig.1. Our main fo
us is onthe integration over the loop momentum q, and we 
onsider a single 
ell with momentumk0 inside one of the ladders below the produ
ed pairs of jets. This 
ell is illustrated inFig.3. Using (2) for the upper rung (and the 
orresponding expression for the lower rung),together with the gluon propagators for the verti
al lines, one sees that the integration overthe transverse momentum k0 is logarithmi
 only if k0 � q, i.e. q de�nes the momentums
ale Q0 where the k2 evolution along the ladders starts. On the other hand, the rangeof the integration over the momentum transfer along the ladders is determined by thesize of the intera
tion region and by the 
orrelation length of the initial gluons of the twoladders inside the proton: we denote this e�e
tive radius by ~R, and put Q20 = 1= ~R2. Asa result, the 
ross se
tion for the produ
tion of two pairs of gluon jets (
f. Fig.1) will beof the form: d�dY1dY2d2p1d2p2 � 1~R2 1(p21)2 1(p22)2 f(x1;p21)f(y1;p21)f(x2;p22)f(y2;p22) (3)where f(x;p2) = xg(x;p2) denotes the gluon density with initial momentum s
ale Q20, thefa
tor 1= ~R2 results from the integration over the loop momentum q, and the momentumfa
tors 1=(p21p22)2 represent the two produ
tion verti
es of the pairs of gluon jets (evaluatedin the double logarithmi
 approximation).As an important feature of (3) we mention that, as long as intera
tions betweendi�erent parton 
hains are not taken into a

ount, the momentum transfer along a ladderis of the order of the initial momentum s
ale of the (multi)parton distribution.4
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Figure 4: Kinemati
s of a re
ombination (14)(23)! (13)(24).3 Re
ombinations in a two-ladder 
on�gurationWe now turn to the main topi
 of this paper, a study of the two re
ombinations shown inFig.2. We begin with the re
ombination vertex below the produ
ed jets; the kinemati
sare illustrated in Fig.4,. Above the re
ombination, the two ladders formed by the lines(13) and (24) are in the 
olor singlet 
on�guration; below the 
olor singlet ladders areformed out of (14) and (23). As a result, ea
h 
olor re
ombination is a

ompanied by the
olor suppression fa
tor 1N2
 � 1 (4)In order to have, for the momentum loops below the lower two rungs (
onne
ting (14)and (23)), logarithmi
 momentum integrals, we needjk01j; jk02j � jlj: (5)Similarly, in order to �nd logarithmi
 momentum integrals above the upper two rungs(
onne
ting (13) and (24)), we need jk1j; jk2j � jqj; (6)Finally, inside the k loop of Fig.4. we needjk1j; jk2j � jkj � jk01j; jk02j; jkj � jlj; jk1j; jk2j � jk01j; jk02j: (7)Using, for the upper two rungs, the approximations following from (2), and 
ombiningthem with the propagators for the verti
al gluon lines, we obtain:(2N
g2)2 Z d2k(2�)3 Z d2q(2�)3 2k(k � q)k2(q � k)2 2k(k � q)k2(q � k)2 (8)In order to obtain a logarithmi
 integrals of k, we identify two regions of k and q: eitherjqj � jk or jqj � jq � kj. For ea
h of the two 
ases, after averaging over the azimuthalangle, we arrive at the integrals2g4 Z d2q(2�)3 1q2 Z q2 d2k(2�)3 1k2 (9)5



whi
h gives the desired logarithmi
 integral in k (or (q � k)).For the two ladders below the re
ombination we derive, from the 
ondition (7) andfrom the se
ond integral in (9), that the upper 
uto� is given by q2. The lower 
uto� isobtained by applying the dis
ussion of se
tion 2.1: the loop momentum l appears onlyinside the initial 
ondition of the lower proton B, and it is restri
ted by the e�e
tive s
aleQ20 The 
ondition (6) implies that the momentum q also de�nes the lower momentum
uto� for the ladders above the re
ombination vertex.In order to �nd the full dependen
e on q2, we need to 
onsider the full diagram inFig.2 1. The re
ombination vertex above the produ
ed pairs of jets is analysed in thesame way as the lower one. This leads to an expression similar to (9), i.e. the 
ompletedependen
e in q is of the form: Z d2q(q2)2 ; (10)The integral in q is dominated by small values. Sin
e the momentum q de�nes the uppermomentum 
uto�, both for the two ladders below the lower re
ombination vertex andfor the two ladders above the upper re
ombination vertex, we 
on
lude that the infrareddivergen
e of the q-integration destroys the ladders above and below the re
ombinationverti
es. The re
ombination verti
es, therefore, are absorbed into the nonperturbativeinitial 
onditions. As far as the perturbative part is 
on
erned, we are ba
k to the twononintera
ting 
hains of se
tion 2.1.The situation 
hanges if logarithms in rapidity be
ome more important than thosein transverse momentum, i.e. within the BFKL approa
h we move towards small x. InFig.2, we repla
e the rungs by BFKL Green's fun
tions. Re-drawing the diagram in anmore suitable way, we arrive at Fig.5: Let us �rst reformulate the result whi
h we havejust obtained in the double logarithmi
 approxmation. We have shown that, in orderto �nd inside the BFKL Green's fun
tion the maximal number of transverse logarithms,the momentm transfer a
ross the Green's fun
tion has to be smaller than the transversemomenta of the two gluons entering the Green' fun
tion at the low-momentum side. InFig.5. this says that l and l0 have to be small, while for the q-loop we found the integralR dq2=q4 whi
h favors small values, too.In order to see how the appearan
e of large rapidity intervals 
hanges this situation,let us use the following integral representation for the forward BFKL-Green's fun
tion:G(k; k0;Y � Y 0) = Z d!2�ie!(Y �Y 0) Z d�2�i � k2k02�� 1! � �(�; 0) ; (11)where � = i� + 12 , the integration 
ontours in � and ! run parallel to the imaginay axis,�(�; n) is the BFKL eigenvalue fun
tion, and we have averaged over the azimuthal anglesof k, k0. Furthermore, we have kept only the leading term of the 
onformal spin, n = 0.From this representation one easily dedu
es the dependen
e upon Y �Y 0 and ln k2k02 : afterthe integration over ! the saddle point analysis of the remaining � -integral shows that, forlarge ln k2k02 , the dominant 
ontributions 
ome from � = i�+ 12 � 0 and ! = O(1), whereasfor large Y � Y 0, one �nds � � 12 and small ! = !BFKL = 4N
 ln 2�s� . This observation1Otherwise the momentum q will run through the blob 
orresponding to the proton initial 
onditionsand, like the momentum l, it will be restri
ted by a low s
ale Q0.6
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Figure 5: Another way of drawing Fig.2bhas important 
onsequen
es. Let us denote the rapidities of the two re
ombinations byY 0 and Y , resp.. Beginning with the BFKL amplitudes near the produ
ed jets, largerapidity intervals Y 0� Y1, Y1� Y , Y 0� Y2, Y2� Y in
rease the 
orresponding anomalousdimensions and hen
e favor larger values of the 
entral loop momentum, q. To see thisim more detail, we insert the integral representations for all the BFKL Green' fun
tionin Fig.5. We arrive atd�dY1dY2d2p1d2p2 � 1R2
 1R2
 1(p21)2 1(p22)2 Z d�02�i Z d�2�i Z d�012�i Z d�12�i Z d�022�i Z d�22�i �Z dY Z dY 0 Z d2qq4 h� q2Q20��0 e(Ytot�Y 0)�(�0)i2�h�p21q2��01 e(Y 0�Y1)�(�01)ih�p21q2��1 e(Y1�Y )�(�1)ih�p22q2��02 e(Y 0�Y2)�(�02)ih�p22q2��2 e(Y2�Y )�(�2)i�� h� q2Q20�� eY �(�)i2 (12)Here we have introdu
ed another length s
ale, R2
 : it results from the additional integrals(as 
ompared to eq.(3)) d2l and d2l0, whi
h are restri
ted by the proton radius and by the
orrelation between the two 
hains inside the proton. As long as all BFKL amplitudes arein DGLAP regime, i.e. they are dominated by the logarithms in the transverse momenta,all � variables are small, and we are in the situation whi
h we have des
ribed above: theq integral is dominated by small values, and the transverse momentum logarithms insidethose four BFKL amplitudes whi
h are 
lose to the protons are destroyed. If, however,the rapidity intervals be
ome large and the BFKL amplitudes are in the small-x region,7



� values are 
lose to 12 . As a result, in (12) the overall power of q2 may in
rease and thedominan
e of the small-q2 region disappears. One easily sees that large rapidity intervalsnear the protons, Ytot � Y 0 and Y , tend to make � and �0 large and thus help to in
reasethe overall power of q2.Let us see in more detail how this balan
e works. De�ning in (12) the phase fun
tion�(�; �01; �1; �02; �2; �) = 2�(Ytot � Y 0)�(�0) + �0 ln q2Q20�++ �(Y 0 � Y1)�(�01) + �01 ln p21q2� + �(Y1 � Y )�(�1) + �1 ln p21q2�+�(Y 0 � Y2)�(�02) + �01 ln p22q2� + �(Y2 � Y )�(�2) + �1 ln p22q2�+2�Y �(�) + � ln q2Q20� ; (13)the saddle points are determined from the 
onditions:0 = ���� = 2�0(�s)Y + 2 ln q2Q20 ; (14)and 0 = ����1 = �0(�1;s)(Y1 � Y ) + ln p21q2 ; (15)whi
h lead to �0(�s) = � ln q2Q20Y (16)and �0(�1;s) = � ln p21q2Y1 � Y (17)Similar equations are obtained for the other � variables.For a systemati
 analysis one �rst determines, for �xed Y , Y 0 and q2, the stationarypoints of the � variables and then �nds the dominant values of the rapidities Y , Y 0 andof the momentum s
ale ln q2. As we have said before, if in (16) the evolution in rapiditydominates over that in momentum s
ale, the rhs be
omes small. Sin
e �0(�) vanishes at� = 12 , we have �s � 12 � 1�00(12) ln q2Q20Y : (18)On the other hand, if in (17) the interval in momentum evolution is larger than in rapidity,the rhs is large when � is 
lose to zero:�1;s �saY1 � Yln p21q2 (19)8
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2ln p 2 ln p 2ln q 2Figure 6: Two di�erent paths of evolution: (a) Normal path whi
h disfavors re
om-bination, (b) a path whi
h supports a re
ombination. For simpli
ity, we have takenp21 = p22 = p2 and Y1 = Y2.with a = N
�s� and �00(12) = a28�(3) (here �(3) � 1:202 denotes the Riemann zeta fun
-tion).The results 
an be illustrated in terms of evolution paths in Fig.6. There is an in�nitenumber of paths in the ln k2-y plane whi
h 
onne
t the protons with the produ
ed jetswith rapidity Y1, Y2 and momenta p21, p22. The saddle point analysis determines the mostprobable path. Two examples are shown in Fig.6. Let us now 
onsider a few spe
ial 
ases.For simpli
ity, we start with the symmetri
 
hoi
e Y1 = Y2 and p21 = p22 = p2. In order toget a large q2 we sear
h for the situation where � > �i and �0 > �0i. We insert the saddlepoint values (18), (19) into (13), and �rst look for the extrema with respe
t to Y and Y 0,that is for the saddle point of the expressionAlower = ep4a(Y1�Y ) ln(p21=q2)e2Y �(�s)ep4a(Y2�Y ) ln(p22=q2) (20)whi
h belongs to the lower part of Fig.5. To get (20) we have used the value of �s in (18)and negle
ted a weak dependen
e of �s � 1=2 on Y 
oming from (18). Thus the typi
alvalue of Y is Y = Ys = Y1 � a ln2(p2=q2)�2(�s) ; (21)leading to Alower � exp� 2a�(�s) h2 ln3=2(p2=q2)� ln2(p2=q2)i+ 2�(�s)Y1� : (22)An analogous expression is obtained for the upper part of the amplitude in Fig.5, Aup.Assuming that the total avaliable rapidity interval Ytot and the sub-rapidities Y1; Y2 are solarge that the saddle point position �s (18) is 
lose to 1/2, i.e. 28�(3)aY1 >> ln(q2=Q20).We put �s = 0:5 in (20), (22), and we see that in (12) the integral over q2 takes the formZ d ln q2q2 exp� 1ln 2 h2 ln3=2(p2=q2)� ln2(p2=q2)i� : (23)9



Here we have used the LO BFKL ratio a=�(�s) = a=�(0:5) = 1=4 ln 2. The integral (23)has its saddle point at q2 � p2 exp(�z2) (24)with z = 3=4 +p9=16 + 0:5 ln 2 ' 1:7; exp(�z2) ' 0:055. The 
orresponding valueof �1;s ' z=4 ln 2 � 0:6 is not small enough to justify the approximate estimate (19).We therefore 
on
lude that the 
ompetition between the Y and q2 dependen
e leads toa rapidity saddle point (21) somewhere inside the avaliable interval (Y1; 0), whi
h in itsturn leads to a rather large �i;s violating the initial inequality �i < �.In general we 
an say that the ordering �i;s < �s leads to the opposite ordering ofthe inter
epts, �(�s) < �(�i;s). Therefore, in (12) the dominant 
ontribution to the Yintegral 
omes from the region of small Y where the re
ombination vertex is 
lose to theinitial proton and far from the produ
tion vertex of the dijets. For a small Y value theanomalous dimension � 
annot be large, and the essential q2 values are small as well. Thismeans that we are ba
k to the situation of non-intera
ting ladders, illustrated in Fig.6a.Next we turn to the opposite 
ase �i > � whi
h 
orresponds to �(�i) < �(�). Nowthe dominant Y -value is large and 
lose to the rapidity of high ET dijets Y1. However,now the whole anomalous dimension in the q2 behaviour 2(�+�0)��1��01��2��02 < 0is negative, and the q2 integral is dominated by a low q2-value.The most interesting possibility is to put the re
ombination verti
es just as 
loseas possible to the high ET dijet produ
tion matrix elements. In this 
ase there is noBFKL or DGLAP evolution in the intervals between the produ
ed pairs of jets and there
ombination verti
es. That is, in the 
entre of Fig.5, we simply delete the four 'BFKLblobs' nearest to the produ
ed jet pairs. Correspondingly, in (12) we eliminate the thirdline, togather with the integrations over �1; �2; �01; �02. The rapidities Y; Y 0 are 
lose to Yi,and the q2 integral takes the form Z d ln q2q2 q4(�s+�0s) ; (25)where the saddle point values, �s and �0s, follow from the 
ondition (14):0 = �0(�s)Y + ln q2Q20 (26)and 0 = �0(�0s)(Ytot � Y 0) + ln q2Q20 : (27)Their values are taken from (18):�s � 12 � 1�00(12) ln q2Q20Y ; (28)i.e. the integral over q2 re
eives its main 
ontribution from q2 
lose to minfp21; p22g 2 Thissituation belongs to the evolution path shown in Fig.6b.2In the region of q > pi the momentum q will destroy the matrix element of high ET;i dijet produ
tionrepla
ing in (12) the fa
tor 1=p4i by 1=q4. 10



Let us �nally 
onsider a more realisti
 situation with Y1 = Y2 but p2 < p1. Re
all thatthe true argument of the BFKL amplitude is not rapidity but the momentum fra
tion x,that is a
tually we have to take Y = ln(1=x). When p1 >> p2 for the same rapiditiesY1 = Y2 we get in the right ladder the momentum fra
tion x2 << x1. In other words, inthis 
on�guration we may put, in Fig.5, the re
ombination vertex just into the 
ell nearestto the left dijet. But then there will be a large lnx (and may be ln q2) interval for theevolution of the right ladders (between the dijets on the rhs and the two re
ombinationverti
es. In other words in Fig.5. we delete only the two 'BFKL blobs' on the lhs belowand above the dijet produ
tion. Assuming that, in (12), the total rapidity interval Ytot isvery large, we may perform �rst the rapidity integralZ dY exp[�Y (�(�2)� 2�(�))℄ = 1�(�2)� 2�(�) (29)where for the BFKL blobs on the lhs we have set �(�1) = 0, and for � we put itsasymptoti
 value � = 1=2. Now we 
lose the 
ountor of the �2 integration around thepole �(�2) � 2�(�) = 0: this leads to �2 ' 0:18. The same result is obtained for �02.Finally, the q2 integral takes the formZ p22 d ln q2q2(1��2��02); (30)and the major 
ontribution 
omes from the domain 
lose to upper limit q2 � p22.A 
loser look reveals still another detail. In the region of interest, for example in a 14TeV pp-
ollision at the LHC, we observe in the 
entral region the dijet with p1 � 20GeV ,
orresponding to x � 2p1=ps � 0:003. For su
h x-values, the anomalous dimensionobserved at HERA is not so large. For x < 0:01 the behaviour of the stru
ture fun
tionF2(x; q2) 
an be parametrized as F2 = 
(q2)x� (31)with 
 ' 
onst(q2) and � = 0:048 � 0:004 [13℄. This means that e�e
tive anomalousdimension �eff = � ln(1=x) � 0:28 for x = 3 �10�3. This value is still large enough to pro-vide the 
onvergen
e of the q2 integral (25) in the large q2 domain for the 
ase 
onsideredabove where both re
ombination verti
es are jsut near the dijet produ
tion 
ell. Howeverit is not evident that the parametrization (31) re
e
ts the behaviour of a single ladder.At not large q2 the experimentally measured F2 already in
ludes some absorptive e�e
tswhi
h redu
e the growth of F2 with x de
reasing and thus leads to a lower value of � in
omparison with a single ladder 
ontribution. In other words the true value of �eff whi
h
orresponds to a single ladder may be even larger, pushing the 
hara
teristi
 values of q2
loser to the (lower) hard s
ale p22.4 GeneralizationsSo far we have dis
ussed the e�e
t of two re
ombinations inside a two-
hain 
ontribution:one re
ombination on es
h side of the produ
ed jet pairs. Let us �rst 
omment on the11



Figure 7: A re
ombination of two ladders whi
h allows for di�ra
tive states.
ase where we have no se
ond re
ombination vertex above the jet pairs: as far as onlyone re
ombination vertex is 
on
erned, the integration over q is logarithmi
. However,q runs also through both upper ladders and de�nes the low momentum s
ale Q20 wherethe evolution starts: a large value of q therefore kills the evolution in the upper ladders,whereas a low value prevents the evolution in the lower ladders. Therefore, a singlere
ombination vertex is suppressed.Next a 
omment on the 
olor suppression fa
tor (4). This suppression applies to the
ase when, as illustrated in Fig.2, there is evolution above and below the re
ombinationvertex. As we have dis
ussed before, in a preferred situation we have little or no evolutionbetween the re
ombination verti
es and the dijet produ
tion verti
es. In this 
ase thereis no need to re
onne
t, between the two re
ombination verti
es, the four t-
hannel gluonlines to 
olor singlet pairs. As result, the 
olor suppression be
omes mu
h weaker..Next we 
onsider the 
ase of more than two 
hains, say three 
hains with three pro-du
ed pairs of jets.. In this 
ase a pair of two re
ombination verti
es 
an be attributed toany pair of 
hains, i.e. we have three possibilities. Similarly, for n 
hains we have n(n�1)2possiblities: these 
ounting fa
tors 
an easily over
ome the 
olor suppression fa
tor in (4).As an example, for n = 4, the overall 
ounting fa
tor is already 3=4, and it ex
eeds unityfor n � 5.Finally, we mention another important possibility, related to �nal states with rapiditygaps. Besides the re
ombination illustrated in Fig.2 there exists another 
on�guration towhi
h our dis
ussion applies. We show this in Fig.7: Applying our previous dis
ussion, inparti
ular the evolution paths illustrated in Fig.6, we 
on
lude that the momentum s
aleat the upper end of the lower rapidity gap, q2, will be above Q20 but not too 
lose to thejet momenta p21 = p22: this allows for 'semihard' di�ra
tion and is in qualitative agreementwith in
lusive di�ra
tion seen at HERA.5 Con
lusions and outlookWe have studied the possibility of intera
tions ('re
ombinations') between two evolution
hains, whi
h des
ribe double parton s
attering 
orre
tions in high energy hadron 
olli-sions. We show that, thanks to large anomalous dimensions of the parton distributions inthe low-x region, su
h an intera
tion may o

ur at small distan
es within the pertubative12



domain, provided we 
onsider two re
ombination verti
es (whi
h des
ribe the 
hain-
hainintera
tion) pla
ed relatively 
lose to the 'hard' matrix elements.In our double leading log analysis of gluon ladder diagrams we �nd a 
ompetitionbetween '
ollinear' logarithms (lnp2) and 'energy' logarithms (ln(1=x)). Depending onthe ratio between these logarithms, the major 
ontribution to integrals over the rapidityof the two re
ombination verti
es, Y and Y 0, 
omes either from the region near theprotons (Fig.6a) or from the region 
lose to the jet produ
tion verti
es (Fig.6b), i.e. theseintegrals have no saddle point somewhere in 
entre of the avaliable interval. The �rst 
ase(Fig.6a) 
orresponds to two independent ladders whi
h do not 
ommuni
ate with ea
hother and are des
ribed by 'double DGLAP' evolution equations. More interesting is these
ond possibility (Fig.6b) where the re
ombination verti
es are 
lose to the hard matrixelements and thus are entirely in the perturbative region. These 
on�gurations may leadto nontrivial 
orrelations between the se
ondaries produ
ed in 'double parton s
attering'pro
esses. We note that, in Fig.6b, the rapidities and transverse momenta of the partonsinside the re
ombination verti
es need not be very 
lose to the 'hard' matrix element: ina more or less realisti
 situation the 
onvergen
e of the integrals in rapidity (Y and Y 0)and transverse momentm (q) are rather slow, sin
e they are driven by numeri
ally smallpowers of 1=x and q2. Therefore the parti
les 
oming from the re
ombination verti
esmay still be separated from those produ
ed via the 'hard' subpro
ess by relatively largeintervals in rapidity (� few units) and in the logarithms of transverse momenta.The intera
tions between di�erent ladders dis
ussed in this paper also allow for semi-hard di�ra
tive �nal states (Fig.7).In the 
ase of multiple parton intera
tions with a larger number of evolution 
hainsthe suppression of 
hain-
hain intera
tions 
aused by the 
olour fa
tor 1=(N2
 �1) may be
ompensated by the 
ombinatori
al fa
tor. For n 
hains we have n(n� 1)=2 possibilities.A

ording to naive 'eikonal model' estimates the mean number of 
hains in proton-proton
ollision at the LHC is < n >� 5. Therefore the expe
ted probability of multi-
hainre
ombinations is not small and may lead both to a noti
eable 
orrelation between these
ondaries in in
lusive pro
esses and to 'semihard' di�ra
tion �nal states.All results of this paper are based upon the double logarithmi
 approximation (with�xed �s). We 
onsider this as a �rst step towards a more a

urate analysis. Within thesmall-x approa
h it is possible to go beyond the double logarithmi
 approximation andto rea
h single logarithmi
 a

ura
y (leading ln 1=x). Also, a more detailed numeri
alanalysis will be needed in order to obtain a more reliable estimate of the importan
e ofthe re
ombination 
orre
tions addressed in this paper. Both tasks will be topi
s of futurework.We �nally mention an important 
onsequen
e of our result. In 
ontrast to non-intera
ting multiparton 
hains whi
h often are modelled within the eikonal approximation,
orre
tions due to the re
ombination of ladder diagrams no longer �t into the eikonal pi
-ture. This raises the question of the AGK 
utting rules whi
h provide a 
ru
ial theoreti
al
onstraint of multiparton 
orre
tions. An investigation of this problem is quite important.A
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