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RELATIVE LODAY CONSTRUCTIONS AND APPLICATIONS TO HIGHER

THH-CALCULATIONS

GEMMA HALLIWELL, EVA HÖNING, AYELET LINDENSTRAUSS, BIRGIT RICHTER,
AND INNA ZAKHAREVICH

Abstract. We define a relative version of the Loday construction for a sequence of commuta-
tive S-algebras A → B → C and a pointed simplicial subset Y ⊂ X. We use this to construct
several spectral sequences for the calculation of higher topological Hochschild homology and
apply those for calculations in some examples that could not be treated before.

1. Introduction

Considering relative versions of (co)homology theories is crucial for obtaining calculational
and structural results. We work in the setting of commutative S-algebras (see [EKMM]) and
these can be tensored with simplicial sets or topological spaces. Important invariants of a
commutative S-algebra A are the homotopy groups of A ⊗X for suitable spaces or simplicial
sets X. We call this the Loday construction of A with respect to X and denote it by LX(A).

Important special cases are the higher order topological Hochschild homology of A,

THH
[n]
∗ (A) = π∗(A⊗ S

n),

where Sn is the n-sphere. For n = 1 this reduces to ordinary topological Hochschild homology
of A, THH(A), which receives a trace map from the algebraic K-theory of A, K(A), and can be
used via the construction of topological cyclic homology to obtain an approximation of K(A).
Torus homology of A, π∗(A⊗T

n) for the n-torus T n, receives an n-fold iterated trace map from
the iterated algebraic K-theory of A. Ongoing work by Ausoni and Dundas uses torus homology
in order to make progress on the so-called red-shift conjecture [AuR].

One strength of the construction of A ⊗ X is that it is functorial in both X and A, which
allows us to study the homotopy type of A ⊗ X by iteratively constructing X out of smaller
spaces. This iterative method is for instance heavily used in Veen’s work [V] and in [DLR],

[BLPRZ]. As spheres are the building blocks of CW complexes, the calculation of THH
[n]
∗ (A) is

crucial for understanding π∗(LX(A)) for CW-complexes X. The aim of this paper is to develop
new tools for the calculation of higher order topological Hochschild homology by using the extra
flexibility that is gained by a relative approach.

For a sequence of morphisms in the category of commutative S-algebras A→ B → C and for
a pair of pointed simplicial sets (X,Y ) we consider a relative version of the Loday construction,
L(X,Y )(A,B;C): This relative version places C over the basepoint, B over all points of Y that
are not the basepoint and A over the complement of Y in X.

We define this relative Loday construction and show some of its properties in Section 2.
Section 3 exploits this relative structure and other geometric observations to establish several
weak equivalences (juggling formulae) that compare higher THH groups with respect to the
sphere spectrum as the ground ring and those with respect to other commutative S-algebra
spectra as ground rings, and compare higher THH-groups THH

[m] for m = n and n − 1. We
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use these juggling formulae to construct several spectral sequences for the calculation of higher
topological Hochschild homology and apply these spectral sequences to obtain calculations for
(higher) topological Hochschild homology that were not known before. In Section 4 we determine
for instance higher order relative THH of certain Thom spectra and the higher order Shukla
homology of Fp with respect to pointed commutative Fp-monoid algebras. We gain additive

results about THH
E(HFp) and THH

[2](E;HFp) for E = ko, ku, tmf at p = 2 and E = ℓ the
Adams summand for p an odd prime. Furthermore, we show a splitting result for higher THH of
the form THH

[n],Hk(HA), where k is any commutative ring and A is any commutative k-algebra.
In the following we work in the setting of [EKMM] and we use the model structure on

commutative S-algebras from [EKMM, chapter VII]. Let A be a commutative S-algebra. As
the category of commutative A-algebras is equivalent to the category of commutative S-algebras
under A, we obtain a model category structure on the category of commutative A-algebras. In
particular, a commutative A-algebra B is cofibrant if its unit map A → B is a cofibration of
commutative S-algebras.

2. The relative Loday construction

Higher topological Hochschild homology of a commutative ring spectrum A is a special case
of the Loday construction, or the internal tensor product, which sends A and a simplicial set X
to a commutative simplicial ring spectrum LX(A) = X⊗A, which is a commutative augmented
A-algebra. This is a ring spectrum version of the Loday construction defined by Pirashvili in
[P] for commutative rings, which sends a commutative ring R and a simplicial set X to the
commutative augmented simplicial R-algebra X ⊗R.

For a cofibrant commutative S-algebra A this construction is homotopy invariant as a functor
of X, that is: if one works with homotopy equivalent simplicial sets, we get homotopy equivalent
augmented simplicial commutative A-algebras; in particular, this is true if one works with two
simplicial models for the same space.

Let X be a pointed simplicial set. Since all boundary maps in a pointed simplicial set send the
basepoint to the basepoint, given an A-module C (and in particular, a commutative A-algebra
C) we can also study Loday constructions with coefficients LX(A;C) which replaces the copy
of A over the base point by a copy of C. We now define a relative version of this.

Definition 2.1. Let A be a commutative S-algebra, B a commutative A-algebra, and C a

commutative B-algebra, with maps A
f
−→ B

g
−→ C. Let X be a pointed simplicial set and Y be

a pointed simplicial subset. Then we can define

(L(X,Y )(A,B;C))n :=




∧

Xn\Yn

A



 ∧




∧

Yn\∗

B



 ∧ C.

We call this the nth simplicial degree of the relative Loday construction of A and B with coeffi-
cients in C on (X,Y ).

The smash product here is usually taken over the sphere spectrum, but can be done over any
commutative ring spectrum, k. In this case, we will add a superscript to the notation,

Lk(X,Y )(A,B;C).

If B = C then the simplicial subset Y of X does not have to be pointed.
The structure maps of this construction use the fact that the smash product is the coproduct

in the category of commutative S-algebras and they are given as follows: Let ϕ ∈ ∆([m], [n])
and let ϕ∗ denote the induced map on X and Y :

ϕ∗ : Yn → Ym, ϕ∗ : Xn → Xm.
2



Note that Xn \Yn is not a subcomplex of Xn, so ϕ
∗ might send elements in here to Ym. We get

an induced map

ϕ∗ :




∧

Xn\Yn

A



 ∧




∧

Yn\∗

B



 ∧ C →




∧

Xm\Ym

A



 ∧




∧

Ym\∗

B



 ∧C

by first defining a map from

(2.1.1)




∧

Xn\Yn

A



 ∧




∧

Yn\∗

B



 ∧ C

to a smash product over Xn where some of the smash factors A,B in (2.1.1) are sent to B or
C:

• If for x ∈ Xn \ Yn the image ϕ∗(x) is in Ym \ ∗, then we apply the map f on the
corresponding smash factor A.
• If x ∈ Xn \ Yn is sent to the basepoint in Ym under ϕ∗, then we use the composite g ◦ f
on the corresponding factor A.
• If for x ∈ Xn \ Yn, the element ϕ∗(x) is in Xm \ Ym, then we don’t do anything, i.e., we
apply the identity map on the corresponding factor A.
• Similarly, if a y ∈ Yn \ ∗ is sent to the basepoint, then we apply g to the corresponding
B-factor.
• If y ∈ Yn \ ∗ is sent to Ym \ ∗, then we apply the identity map to the corresponding
B-factor.
• By assumption, the basepoint is sent to the basepoint, so the C-factors are not involved
in this process.

We now use the map ϕ to obtain a map to
(
∧

Xm\Ym
A
)

∧
(
∧

Ym\∗B
)

∧ C:

• If an x ∈ Xm \ Ym has multiple preimages under ϕ∗, then we use the multiplication on
A on the corresponding smash factors.
• If a y ∈ Ym \ ∗ has multiple preimages under ϕ∗, then we use the multiplication on B on
the corresponding smash factors.
• If the basepoint in Ym has multiple preimages, then we apply the multiplication in C on
the corresponding factors.
• If some x ∈ Xm \ Ym is not in the image of ϕ∗, then we insert the unit map of A in the
corresponding spots; similarly if y ∈ Ym \ ∗ has an empty preimage we use the unit map
of B. The basepoint always has a non-empty preimage.

As the multiplication maps on A, B and C are associative and commutative and as the maps
f and g are morphisms of commutative S-algebras, this gives the relative Loday construction
the structure of a simplicial spectrum.

Lemma 2.2. The relative Loday construction, L(X,Y )(A,B;C)•, is a simplicial augmented
commutative C-algebra spectrum.

Proof. The multiplication

L(X,Y )(A,B;C)n ∧C L(X,Y )(A,B;C)n → L(X,Y )(A,B;C)n

is defined coordinatewise and is therefore compatible with the simplicial structure. Hence we
obtain a simplicial commutative augmented C-algebra structure on L(X,Y )(A,B;C))•. �

Remark 2.3. One can also define a version of the relative Loday construction if C is a B-module,
rather than a commutative B-algebra. Then of course we cannot use the coproduct property
of the smash product anymore, but we spelt out the structure maps explicitly, so that this
generalization is not hard.
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In this case L(X,Y )(A,B;C))• is a simplicial A-module spectrum and for the simplicial struc-
ture maps one has to use the B-module structure of C. Note that the commutative S-algebra
A acts on C as well via the map f : A→ B.

Example 2.4. As an explicit example of a pointed simplicial subcomplex we consider ∂∆2 ⊂ ∆2

whose basepoint ∗ ∈ ∆([n], [2]) is the constant map with value 0. Note that the number of

elements in ∆([n], [m]) is
(n+m+1

n+1

)
.

We describe the effect of the maps ϕ : [1] → [2], ϕ(0) = 0, ϕ(1) = 2 and ψ : [2] → [1],
ψ(1) = ψ(0) = 0 and ψ(2) = 1.

ϕ ✲

✟
✟
✟✯

0

1

0,

1

2

ψ ✲

❍
❍
❍❥

❍
❍
❍❥

0

1

0

1

2

In L(∆2,∂∆2)(A,B;C)2 there is only one copy of A because

∆2[2] \ ∂∆2([2]) = ∆([2], [2]) \ ∂∆2([2]) = {id[2]}.

Thus

L(∆2,∂∆2)(A,B;C)2 = A ∧




∧

∂∆2([2])\{id[2],∗}

B



 ∧ C.

As ∂∆2[1] = ∆2[1] we get

L(∆2,∂∆2)(A,B;C)1 =




∧

∂∆2([1])\∗

B



 ∧C.

The map ψ∗ : ∆2([1]) → ∆2([2]) sends the six elements of ∆2([1]) injectively to six elements
in ∆2([2]), so on the Loday construction we only use the unit maps of A and B to fill in the
gaps. In particular, the identity of [2] is not in the image of ψ and we get as ψ∗ on the Loday
construction

(
∧

∂∆2([1])\∗
B
)

∧ C
∼= // S∧

(
∧

∆2([2])\({id[2]}∪im(ψ∗)) S
)

∧
(
∧

im(ψ∗)\∗B
)

∧ C

ηA∧

(

∧

∆2([2])\({id[2]}∪im(ψ∗)) ηB

)

∧(
∧

im(ψ∗)\∗ idB)∧idC
��

A ∧
(
∧

∂∆2([2])\{id[2],∗}
B
)

∧C.

In contrast to this, the map ϕ∗ : ∆2([2]) → ∆2([1]) is surjective. The preimage of the
basepoint under ϕ∗ is just the basepoint, so we get the identity on the C-factor in A ∧(
∧

∂∆2([2])\{id[2],∗}
B
)

∧ C, but we have to use the map f : A → B and several instances of

the multiplication on B to get to
(
∧

∂∆2([1])\∗
B
)

∧ C because there is a fiber of cardinality

three and a fiber of cardinality two.

Example 2.5. If in Definition 2.1 we take A = B, then L(X,Y )(A,A;C)• = LX(A;C)•. If in
addition A = C then we obtain L(X,Y )(A,A;A)• = LX(A)•.

Example 2.6. If we work relative to A, i.e., if we consider LA(X,Y )(A,B;C)•, then the A-factors

disappear because we smash over A and we get

LA(X,Y )(A,B;C)• ∼= L
A
Y (B;C)•.

Definition 2.7. We define higher topological Hochschild homology of order n of A with coef-
ficients in C by THH

[n],k(A;C) := LkSn(A;C)•. Here, Sn is a pointed simplicial model of the
n-sphere.
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Notation 2.8. As above, if k is the sphere spectrum it is omitted from the notation. Similarly,
if n = 1 this may be omitted also and written as THH

k(A;C). If C = A, we may write

THH
[n],k(A).

Proposition 2.9.

(a) For A,B, and as in Definition 2.1, C a commutative B-algebra, X a pointed simplicial
set and Y a pointed simplicial subset, we get an isomorphism of augmented simplicial
commutative C-algebras

(2.9.1) Lk(X,Y )(A,B;C)• ∼= L
k
X(A;C)• ∧LkY (A;C)•

LkY (B;C)•.

(b) For X0 a common pointed simplicial subset of X1 and X2 and Y0 a common pointed
simplicial subset of Y1 and Y2 so that Yi ⊆ Xi for i = 1, 2 and Y0 = X0 ∩ Y1 ∩ Y2, we
have an isomorphism of augmented simplicial C-algebras

(2.9.2) Lk(X1∪X0
X2,Y1∪Y0Y2)

(A,B;C)• ∼= L
k
(X1,Y1)

(A,B;C)• ∧Lk
(X0,Y0)

(A,B;C)•
Lk(X2,Y2)

(A,B;C)•.

If C = B, then in both statements we can work in the unpointed setting.

Proof. For the claim in (2.9.1) we have a levelwise isomorphism of simplicial spectra

(LkX(A;C))n ∧(LkY (A;C))n
(LkY (B;C))n ∼= (Lk(X,Y )(A,B;C))n

given by the identification of coequalizers



∧

Xn\Yn

A



 ∧




∧

Yn\∗

A



 ∧ C
∧

((
∧

Yn\∗ A)∧C)




∧

Yn\∗

B



 ∧C ∼=




∧

Xn\Yn

A



 ∧




∧

Yn\∗

B



 ∧C.

Similarly, for (2.9.2) we have a levelwise isomorphism of simplicial spectra

(Lk(X1,Y1)
(A,B;C))n ∧(Lk

(X0,Y0)
(A,B;C))n

(Lk(X2,Y2)
(A,B;C))n ∼= (Lk(X1∪X0

X2,Y1∪Y0Y2)
(A,B;C))n.

Here we use that tensoring a commutative S-algebra with a pointed simplicial set is compatible
with pushouts of simplicial sets, hence we get




∧

(X1)n\(Y1)n

A ∧
∧

(Y1)n\∗

B ∧C




∧

(

∧

(X0)n\(Y0)n
A∧

∧

(Y0)n\∗ B∧C
)




∧

(X2)n\(Y2)n

A ∧
∧

(Y2)n\∗

B ∧ C





∼=
∧

(X1∪X0
X2)n\(Y1∪Y0Y2)n

A ∧
∧

y∈(Y1∪Y0Y2)n\∗

B ∧ C.

�

Let A be an augmented commutative C-algebra, i.e., in addition to the map g ◦ f : A → C
we have a map η : C → A, such that g ◦ f ◦ η = idC . In that case, we can identify the relative
Loday construction LC(X,Y )(A,C;C)• with the Loday construction of the quotient:

Proposition 2.10. Let A be an augmented commutative C-algebra. Then there is an isomor-
phism of simplicial augmented commutative C-algebras

(2.10.1) LC(X,Y )(A,C;C)• ∼= L
C
X/Y (A;C)•

where X/Y has the equivalence class of Y as a basepoint.

Proof. We use Proposition 2.9 above and obtain that

LC(X,Y )(A,C;C)• ∼= L
C
X(A;C)• ∧LCY (A;C)• L

C
Y (C;C)•

but LCY (C;C)• is isomorphic to the constant simplicial object C• with C in every simplicial
degree. Thus

LC(X,Y )(A,C;C)• ∼= L
C
X(A;C)• ∧LCY (A;C)• C•

∼= LCX/Y (A;C)• ∧C C ∼= L
C
X/Y (A;C)•

5



as claimed. �

Proposition 2.10 immediately gives rise to the following spectral sequence.

Proposition 2.11. If C is a cofibrant commutative S-algebra and A is a cofibrant commutative
augmented C-algebra and if Y is a pointed simplicial subset of X, then there is a spectral
sequence

E2
s,t = Tor

π∗(LCY (A;C)•)
s,t (π∗(L

C
X(A;C)•), π∗C)⇒ π∗(L

C
X/Y (A;C)•).

Proof. The isomorphism from Proposition 2.10

LCX(A;C)• ∧LCY (A;C)•
C ∼= LCX/Y (A;C)•

induces a weak equivalence

LCX(A;C)• ∧
L
LCY (A;C)•

C ∼ LCX/Y (A;C)•

and we get the associated Künneth spectral sequence. �

3. Spectral sequences with the relative Loday construction

In this section we set up some spectral sequences. Let S be the sphere spectrum and let
R be a commutative S-algebra. Unadorned smash products will be over S. We first recall
some properties of the category of commutative R-algebras: The category of commutative R-
algebras is a topological model category ([EKMM, VII.4.10]). This implies that it is tensored
over the category of unbased spaces and that for every sequence of cofibrations R→ A→ B of
commutative S-algebras and every relative CW-complex (L,K) the map

(A⊗ L) ∧(A⊗K) (B ⊗K)→ B ⊗ L

is a cofibration. For a simplicial finite set X and and commutative R-algebra A there is a
natural isomorphism (see [EKMM, VII.3.2]):

|LRX(A)•|
∼= A⊗ |X|.

We define the Loday construction LR|X|(A) as A⊗|X|. We get a similar definition in the pointed

setting and we can define the relative Loday construction for a pair of pointed CW complexes
Y ⊂ X and a sequence of maps of commutative S-algebras R→ A→ B → C using Proposition
2.9 (a) as

(3.0.1) LR(X,Y )(A,B;C) := LRX(A;C) ∧L
LRY (A;C)

LRY (B;C).

Theorem 3.1. Let A be a cofibrant commutative S-algebra, and let B be a cofibrant commutative
A-algebra. There is an equivalence of augmented commutative B-algebras

L(Dn,Sn−1)(A,B) ≃ THH
[n−1],A(B)

for all n.

Proof. We proceed by induction on n. For n = 1, L(D1,S0)(A,B) is the two-sided bar construc-

tion B(B,A,B) which is a model for B ∧LAB. As we assumed B to be a cofibrant commutative

A-algebra B∧LAB is weakly equivalent to B∧AB which is THH[0],A(B). For the inductive step,

we assume that L(Dn,Sn−1)(A,B) ≃ THH
[n−1],A(B). By [V], we know that THH[n],A(B) is weakly

equivalent to the bar construction BA(B,THH[n−1],A(B), B) by decomposing the n-sphere into
two hemispheres glued along an (n− 1)-sphere.

We also know that L(Dn+1,Sn)(A,B) can be built from two half-disks of dimension n+1, part
of whose boundary (the outside edge) has B’s over it, and the other part (the n-disk we glue
along) has A’s over it. So by (2.9.2),

L(Dn+1,Sn)(A,B) = L(Dn+1
⋃

Dn D
n+1,Dn

⋃

Sn−1 Dn)(A,B)

∼= L(Dn+1,Dn)(A,B) ∧L(Dn,Sn−1)(A,B) L(Dn+1,Dn)(A,B).

6



For example, when n = 1 we have

L(D2,S1)(A,B) ≃ L(

,

)(A,B) ∧L(

,

)(A,B) L
(

,

)(A,B)

So we have

L(Dn+1,Sn)(A,B) ∼= L(Dn+1,Dn)(A,B) ∧L(Dn,Sn−1)(A,B) L(Dn+1,Dn)(A,B)

≃ L(∗,∗)(A,B) ∧LL(Dn,Sn−1)(A,B) L(∗,∗)(A,B) (by homotopy invariance)

≃ B ∧LL(Dn,Sn−1)(A,B) B

≃ BA(B,L(Dn,Sn−1)(A,B), B)

≃ BA(B,THH[n−1],A(B), B) (by assumption)

≃ THH
[n],A(B). (by [V])

�

Let C be a commutative R-algebra. Let CR/C and CC/C denote the categories of commutative
R-algebras over C and of commutative C-algebras over C. Let T denote the category of based
spaces. We then have a functor

⊗̄C : CR/C × T → CC/C

defined by (A,X) 7→ A ⊗̄C X := (A ⊗ X) ∧A C. Here, the map A → A ⊗ X is given by
the composition of the isomorphism A ∼= A ⊗ ∗ with the map induced by the inclusion of the
basepoint. The augmentation A ⊗̄C X → C is given by

(A⊗X) ∧A C → (A⊗ ∗)⊗A C ∼= C.

We have a natural homeomorphism

CC/C(A ⊗̄C X,B) ∼= T (X, CR/C (A,B)).

Let D → E be a map in CR/C such that the underlying map of commutative R-algebras is a
cofibration. Let K → L be an inclusion of based spaces such that (L,K) is a relative CW -
complex. Then the natural map

(D ⊗̄C L) ∧(D⊗̄CK) (E ⊗̄C K)→ E ⊗̄C L

is a cofibration of commutative R-algebras. For A ∈ CR/C and a simplicial finite pointed set X,
we have a natural isomorphism of C-algebras over C:

|LR(X,∗)(A;C)•| ∼= A ⊗̄C |X|.

Theorem 3.2. Let S → A→ B → C be a sequence of cofibrations of commutative S-algebras.
Then

(a) THH
[n],A(B) ∼= A ∧

THH
[n](A) THH

[n](B) and

(b) THH
[n],A(B;C) ∼= C ∧

THH
[n](A;C) THH

[n](B;C).

In both cases, the smash product represents the derived smash product.

Proof. In order to show (a) we first prove that

A ∧
THH

[n](A) THH
[n](B)

represents the derived smash product of A and THH
[n](B) over THH

[n](A). For this we first

show that THH[n](A) is a cofibrant commutative S-algebra: Since A is a cofibrant commutative

S-algebra, it suffices to show that the unit A → THH
[n](A) or equivalently that the map

7



A ⊗ ∗ → A ⊗ Sn is a cofibration of commutatative S-algebras. By the properties listed above
the map

(S ⊗ Sn) ∧(S⊗∗) (A⊗ ∗)→ (A⊗ Sn)

is a cofibration. The map S⊗∗ → S⊗Sn is an isomorphism because both sides can be identified
with S. We get that

(A⊗ ∗) ∼= (S ⊗ Sn) ∧(S⊗∗) (A⊗ ∗).

Thus, THH[n](A) is cofibrant. We now show that THH
[n](A) → THH

[n](B) is a cofibration of
commutative S-algebras. For this it suffices to show that A ⊗ Sn → B ⊗ Sn is a cofibration.
Since A→ B is a cofibration, the map

(A⊗ Sn)⊗(A⊗∗) (B ⊗ ∗)→ (B ⊗ Sn)

is a cofibration. The map A⊗ ∗ → B ⊗ ∗ is a cofibration because it can be identified with the
map A→ B. Because cofibrations are stable under cobase change the map

(A⊗ Sn)→ (A⊗ Sn)⊗(A⊗∗) (B ⊗ ∗)

is a cofibration. Thus A⊗ Sn → B ⊗ Sn is a cofibration. Because THH
[n](A) → THH

[n](B) is
a cofibration between cofibrant commutative S-algebras, we get by [EKMM, VII.7.4] that the
functor

− ∧
THH

[n](A) THH
[n](B)

preserves weak equivalences between cofibrant commutative S-algebras. We factor the map
THH

[n](A)→ A as a cofibration followed by an acyclic fibration

THH
[n](A) ֌ Ã

∼
։ A

and obtain a weak equivalence

Ã ∧
THH

[n](A) THH
[n](B)

∼
→ A ∧

THH
[n](A) THH

[n](B).

By [EKMM, VII.6.7] the S-algebra

Ã ∧
THH

[n](A) THH
[n](B)

represents the derived smash product of A and THH
[n](B) over THH[n](A).

We now show that there is an isomorphism of commutative S-algebras

THH
[n],A(B) ∼= A ∧

THH
[n](A) THH

[n](B).

We start with the isomorphism of commutative S-algebras

A ∧
THH

[n](A) THH
[n](B) ∼= |L∗(A)•| ∧|LSn(A)•| |LSn(B)•|

∼= |L∗(A)• ∧LSn(A)• LSn(B)•|.

By a comparison of coequalizer diagrams we have, for all n, isomorphisms of commutative
S-algebras:

A ∧A∧n (B∧n) ∼= B ∧A . . . ∧A B
︸ ︷︷ ︸

n

and these induce an isomorphism of simplicial commutative S-algebras

L∗(A)• ∧LSn(A)• LSn(B)• ∼= L
A
Sn(B)•.

This proves part (a) of the theorem.
We now prove part (b). We again first show that

C ∧
THH

[n](A;C) THH
[n](B;C)

represents the derived smash product of C and THH
[n](B;C) over THH

[n](A;C). For this it

suffices to show that THH
[n](A;C) is a cofibrant commutative S-algebra and that the map
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THH
[n](A;C) → THH

[n](B;C) is a cofibration of commutative S-algebras. The morphism

C → THH
[n](A;C) is a cofibration because

C → A ⊗̄C S
n = (A⊗ Sn) ∧A C

is a cofibration. Thus THH[n](A;C) is cofibrant. The map THH
[n](A;C) → THH

[n](B;C) is a
cofibration because A ⊗̄C S

n → B ⊗̄C S
n can be written as

A ⊗̄C S
n → (A ⊗̄C S

n) ∧(A⊗̄C∗) (B ⊗̄C ∗) ֌ B ⊗̄C S
n.

The first map of the composition is an isomorphism, because the map A⊗̄C ∗ → B⊗̄C ∗ identifies
with the identity of C.

It remains to prove that there is an isomorphism of commutative S-algebras

THH
[n],A(B;C) ∼= C ∧

THH
[n](A;C) THH

[n](B;C).

This follows as above by using that we have an isomorphism of commutative S-algebras

C ∧(A∧n∧C) (B
∧n ∧ C) ∼= B∧AnC

for all n > 0. �

Remark 3.3. The proof shows that Theorem 3.2 also holds for general finite pointed simplicial
sets X and a sequence of cofibrations of commutative S-algebras S → A → B → C, giving us
isomorphisms

(a) LA|X|(B) ∼= A ∧L|X|(A) L|X|(B) and

(b) LA|X|(B;C) ∼= C ∧L|X|(A;C) L|X|(B;C).

Remark 3.4. It is known that for topological Hochschild homology, there is a difference between
Galois descent and étale descent: John Rognes [R] developed the notion of Galois extensions for
commutative S-algebras and showed that for a Galois extension A→ B with finite Galois group
G the canonical map B → THH

A(B) is a weak equivalence [R, Lemma 9.2.6]. Akhil Mathew
[M] provided an example of such a Galois extension that does not satisfy étale descent, i.e., the
pushout map

B ∧A THH(A)→ THH(B)

is not a weak equivalence. Theorem 3.2 doesn’t contradict this. We take a finite Galois extension
A→ B. Then we obtain a weak equivalences

B → THH
A(B) ∼= A ∧THH(A) THH(B).

But if we then smash this equivalence with THH(A) over A the resulting equivalence

(3.4.1) B ∧A THH(A) ≃ (A ∧THH(A) THH(B)) ∧A THH(A)

cannot be reduced to the statement that B ∧A THH(A) is equivalent to THH(B): On the right
hand side of (3.4.1) we cannot reduce the THH(A)-term because in the smash product we use
the augmentation map THH(A) → A and its composite with the unit is not equivalent to the
identity map.

Let R be a commutative S-algebra, and CR the category of commutative R-algebras. Let
D be the category {b ←− a −→ c}. Then the category DCR of functors from D to CR admits
a model category structure, where the weak equivalences (resp. fibrations) are the maps that
are objectwise weak equivalences (resp. fibrations). We have a cofibrant replacement functor
DCR →

DCR. The homotopy pushout B ∧̃AC of a diagram B ←− A −→ C in CR is constructed
by taking the chosen cofibrant replacement B′ ←− A′ −→ C ′ of the diagram and then taking
the usual pushout B′ ∧A′ C ′. One gets a functor

(−) ∧̃(−) (−) :
DCR → CR.

This functor sends weak equivalences to weak equivalences. There is natural map

B ∧̃A C → B ∧A C

9



which is a weak equivalence when A is cofibrant and A→ B and A→ C are cofibrations. If A
is cofibrant, then B ∧̃A C is equivalent to the derived smash product B ∧LA C of B and C over
A. One can show:

Lemma 3.5. For a commutative diagram

E D //oo F

B

��

OO

A //oo

��

OO

C

��

OO

H G //oo I

in CR there is a zig-zag of weak equivalences

(E ∧̃D F ) ∧̃(B∧̃AC) (H ∧̃G I) ∼ (E ∧̃B H) ∧̃(D∧̃AG) (F ∧̃C I)

over (E ∧B H) ∧(D∧AG) (F ∧C I) where

(E ∧̃D F ) ∧̃(B∧̃AC) (H ∧̃G I)→ (E ∧B H) ∧(D∧AG) (F ∧C I)

is given by the composition of the morphism

(E ∧̃D F ) ∧̃(B∧̃AC) (H ∧̃G I)→ (E ∧D F ) ∧̃(B∧AC) (H ∧G I)→ (E ∧D F ) ∧(B∧AC) (H ∧G I)

with the standard isomorphism

(E ∧D F )∧(B∧AC)(H ∧G I) ∼= (E ∧B H) ∧(D∧AG) (F ∧C I)

and

(E ∧̃B H) ∧̃(D∧̃AG) (F ∧̃C I)→ (E ∧B H) ∧(D∧AG) (F ∧C I)

is given by

(E ∧̃B H) ∧̃(D∧̃AG) (F ∧̃C I)→ (E ∧B H) ∧̃(D∧AG) (F ∧C I)→ (E ∧B H) ∧(D∧AG) (F ∧C I).

Theorem 3.6. Let S → A→ B → C be a sequence of cofibrations of commutative S-algebras.
Then

THH
[n](B;C) ∼ THH

[n](A;C) ∧L
THH

[n−1],A(C)
THH

[n−1],B(C).

Proof. We work in the model category of commutative S-algebras. For a map of commutative
S-algebras D → E we define commutative S-algebras T [n],D(E) augmented over E inductively

as follows: Let T [0],D(E) be E ∧̃D E and let T [0],D(E)→ E be defined by

E ∧̃D E → E ∧D E → E.

Set T [n+1],D(E) := E ∧̃T [n],D(E) E and define T [n+1],D(E)→ E by

E ∧̃T [n],D(E) E → E ∧T [n],D(E) E → E.

The T [n],(−)(E) are then endofunctors on the category of commutative S-algebras over E. Using
the decomposition Sn = Dn∪Sn−1Dn, one can show that there are zig-zags of weak equivalences
over C (compare [V])

THH
[n],A(C) ∼ C ∧̃

THH
[n−1],A(C) C

THH
[n](A;C) ∼ C ∧̃

THH
[n−1](A;C) C.

With that it follows that there are equivalences over C

THH
[n],A(C) ∼ T [n],A(C)

THH
[n](A;C) ∼ T [n−1],C∧SA(C).
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The same is true for B instead of A.
It thus suffices to show:

T [n],C∧SB(C) ∼ T [n],C∧SA(C) ∧̃T [n],A(C) T
[n],B(C).

We prove by induction on n that these S-algebras are equivalent via a zig-zag of weak equiva-
lences over C where the augmentation of the right-hand side is given by

T [n],C∧SA(C) ∧̃T [n],A(C) T
[n],B(C)→ T [n],C∧SA(C)∧T [n],A(C)T

[n],B(C)→ C.

We have an isomorphism T [0],C∧SB(C) ∼= T [0],(C∧SA)∧AB(C) over C. Because of the cofibrancy
assumptions the map

(C ∧S A) ∧̃A B −→ (C ∧S A) ∧A B

is a weak equivalence. It induces a weak equivalence

(C ∧̃C C) ∧̃((C∧SA)∧̃AB) (C ∧̃C C)
∼
−→ C ∧̃((C∧SA)∧AB) C = T [0],(C∧SA)∧AB(C).

This is a map over C if we endow the left-hand side with the augmentation

(C ∧̃C C) ∧̃((C∧SA)∧̃AB) (C ∧̃C C)→ (C ∧̃C C) ∧((C∧SA)∧̃AB) (C ∧̃C C)→ C ∧̃C C → C.

By Lemma 3.5, we have an equivalence

(C ∧̃C C) ∧̃((C∧SA)∧̃AB) (C ∧̃C C) ∼ (C ∧̃(C∧SA) C) ∧̃(C∧̃AC) (C ∧̃B C)

and the right-hand side is equal to T [0],C∧SA(C) ∧̃T [0],A(C) T
[0],B(C). The compatibility of the

equivalence with the isomorphism

(C∧CC)∧((C∧SA)∧AB)(C∧CC) ∼= (C∧(C∧SA)C)∧(C∧AC)(C∧BC)

implies that it is an equivalence over C.
We now assume that the claim is true for n. Set T ′ = T [n],C∧SA(C) ∧̃T [n],A(C) T

[n],B(C). By
induction hypothesis we have

T [n+1],C∧SB(C) = C ∧̃T [n],C∧SB(C) C ∼ C ∧̃T ′ C.

via a zig-zag of weak equivalences over C. We have a weak equivalence

(C ∧̃C C) ∧̃T ′ (C ∧̃C C)
∼
−→ C ∧̃T ′ C.

It is a map over C if we endow the right-hand side with the augmentation

(C ∧̃C C) ∧̃T ′ (C ∧̃C C)→ (C ∧̃C C)∧T ′(C ∧̃C C)→ C ∧̃C C → C.

By Lemma 3.5 we have an equivalence

(C ∧̃C C) ∧̃T ′ (C ∧̃C C) ∼ (C ∧̃T [n],C∧SA(C) C) ∧̃(C∧̃
T [n],A(C)

C) (C ∧̃T [n],B(C) C)

and the right-hand side is equal to T [n+1],C∧SA(C) ∧̃T [n+1],A(C) T
[n+1],B(C). Because of the

compatibility with the isomorphism

(C ∧C C)∧(T [n],C∧SA(C)∧
T [n],A(C)

T [n],B(C))(C∧CC)

∼= (C∧T [n],C∧SA(C)C)∧(C∧
T [n],A(C)

C)(C∧T [n],B(C)C)

it is an equivalence over C. This shows the induction step. �
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4. Applications

4.1. Thom spectra.

Example 4.1. Christian Schlichtkrull [Sch] gives a general formula for the Loday construction
on Thom spectra LX(T (f);M) where f : A→ BFhI is an E∞-map, A is a grouplike E∞-space,
and BFhI is a model for BF = BGL1(S), the classifying space for stable spherical fibrations.
The commutative S-algebra T (f) is the associated Thom spectrum for f and M is any T (f)-
module.

If we set B = C in Theorem 3.2, then we obtain

(4.1.1) THH
A(B) ≃ B ∧L

THH
[n](A;B)

THH
[n](B)

so if there is a factorization as follows

A
f //

h
��

BFhI

B

g

<<
②
②
②
②
②
②
②
②

such that h is a map of grouplike E∞-spaces, then we get an induced map of commutative
S-algebras T (f)→ T (g).

For X a sphere and M = T (g), we obtain [Sch, Theorem 1]

THH
[n](T (f);T (g)) ≃ T (g) ∧Ω∞(Sn ∧ A)+

where A denotes the spectrum associated to A such that the map from A to the underlying
infinite loop space of A, Ω∞

A, is a weak equivalence.
Our juggling formula (4.1.1) gives a formula for higher THH of T (g) as a commutative T (f)-

algebra:

THH
[n],T (f)(T (g)) ≃ T (g) ∧L

THH
[n](T (f);T (g))

THH
[n](T (g))

≃ T (g) ∧LT (g)∧Ω∞(Sn∧A)+
T (g) ∧Ω∞(Sn ∧ B)+.

Important examples of such factorizations are listed for instance in [Be, section 3]. For example

we can consider BSU → BU , BU → BSO or BString → BSpin to get THH
[n],MSU(MU),

THH
[n],MU(MSO) or THH

[n],MString(MSpin). As these examples give rise to Hopf-Galois ex-
tensions of ring spectra (see [R]) but not Galois extensions, the above relative THH-terms will
be non-trivial.

4.2. THH
[n],HA(HFp) for commutative pointed Fp-monoid algebras A. Hesselholt and

Madsen [HM, Theorem 7.1] showed a splitting result for topological Hochschild homology of
pointed monoid rings. There is a straightforward generalization of this splitting result to higher
order topological Hochschild homology in the commutative case. Let Π be a discrete pointed
commutative monoid, i.e., a commutative monoid in the category of based spaces with smash
product. Assume moreover that Π is augmented, that is: admits a map of pointed monoids to
the pointed monoid {1, ∗}, where 1 is the unit and ∗ the base point. As long as 1 6= ∗ in Π,
there always is such a map: we can send all invertible elements in the monoid to 1 and all the
rest to ∗. In general, however, such an augmentation is not unique, so it needs to be part of the
data. We consider the monoid algebra where the ground ring is the field Fp and all unadorned
tensor products are understood to be over Fp. Hesselholt-Madsen define Fp[Π] as the Fp vector
space with basis Π modulo the subspace generated by the basepoint.

The analogue of [HM, Theorem 7.1] is a splitting of augmented commutative HFp-algebras:

(4.1.2) THH
[n](HFp[Π]) ∼= THH

[n](HFp) ∧HFp THH
[n],HFp(HFp[Π]).

Note that π∗(THH
[n],HFp(HFp[Π])) ∼= HH

Fp,[n]
∗ (Fp[Π]).
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Theorem 4.2. For any Fp-algebra Fp[Π] on an augmented commutative pointed monoid Π with
∗ 6= 1 there is a weak equivalence

THH
[n],HFp[Π](HFp) ≃ HFp ∧

L
THH

[n],HFp(HFp[Π])
HFp[Π]

of commutative augmented HFp-algebras.

Proof. Theorem 3.2 applied to a model of the augmentation map HFp[Π] → HFp that is a
cofibration yields that

(4.2.1) THH
[n],HFp[Π](HFp) ≃ THH

[n](HFp) ∧
L
THH

[n](HFp[Π])
HFp[Π].

We use the two-sided bar construction as model for the above derived smash product and use
the splittings in (4.1.2) and (4.2.1) to obtain

B(THH[n](HFp),THH
[n](HFp[Π]),HFp[Π])

≃B(THH[n](HFp),THH
[n](HFp) ∧HFp THH

[n],HFp(HFp[Π]),HFp[Π])

≃B(THH[n](HFp),THH
[n](HFp),HFp) ∧HFp B(HFp,THH

[n],HFp(HFp[Π]),HFp[Π])

≃HFp ∧HFp B(HFp,THH
[n],HFp(HFp[Π]),HFp[Π])

which is a model of HFp ∧
L
THH

[n],HFp(HFp[Π])
HFp[Π]. �

We apply the above result to special cases of pointed commutative monoids, where we can
identify the necessary ingredients for the above result.

Proposition 4.3.

(a) Consider the polynomial algebra Fp[x] over Fp (with |x| = 0, augmented by sending

x 7→ 0), and let B′
1(x) = Fp[x] and B

′
n+1(x) = Tor

B′
n(x)

∗,∗ (Fp,Fp) with total grading. Then

THH
[n],HFp[x]
∗ (HFp) ∼= B′

n+2(x).

(b) Let m be a natural number such that p divides m, and let B′′
1 (m) = ΛFp(εx)⊗ ΓFp(ϕ

0x)

with |εx| = 1 and |ϕ0x| = 2 and B′′
n+1(m) = Tor

B′′
n(m)(Fp,Fp). Then

THH
[n],HFp[x]/xm

∗ (HFp) ∼= B′′
n+1(m).

(c) Let G be a finitely generated abelian group, so, G = Z
m ⊕

⊕N
i=1 Z/q

ℓi
i for some primes

qi. Then THH
[n],HFp[G]
∗ (HFp) can be expressed in terms of a tensor product of factors

that are isomorphic to THH
[n],HFp[x]
∗ (HFp) or THH

[n],HFp[x]/(xp
ℓ
)

∗ (HFp) for some ℓ.

Proof. We can rewrite HFp ∧
L
THH

[n],HFp(HFp[Π])
HFp[Π] as

HFp ∧HFp[Π] HFp[Π] ∧
L
THH

[n],HFp(HFp[Π])
HFp[Π]

which is equivalent to

HFp ∧HFp[Π] THH
[n+1],HFp(HFp[Π]).

In [BLPRZ] π∗(THH
[n+1],HFp(HFp[Π])) ∼= HH

[n+1],Fp
∗ (Fp[Π]) is calculated in the cases of the

Proposition:
For (a) we consider the pointed monoid Π = {0, 1, x, x2, . . .} whose associated pointed monoid

ring Fp[Π] is the ring of polynomials over Fp. In [BLPRZ, Theorem 8.6], we show inductively
that

HH
[n],Fp
∗ (Fp[x]) ∼= Fp[x]⊗B

′
n+1(x).

We also get inductively that the augmentation on HH
[n]
∗ (Fp[x]) is the identity on the Fp[x] factor

and for degree reasons the obvious augmentation on B′
n+1(x). Therefore the claim follows.
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Higher Hochschild homology of truncated polynomial algebras of the form Fp[x]/x
m for m

divisible by p was calculated in [BLPRZ] (the case m = pℓ) and [BHLPRZ] (the general case).
The result in those cases is

HH
[n]
∗ (HFp[x]/x

m) ∼= Fp[x]/x
m ⊗B′′

n(m)

where B′′
1 (m) = ΛFp(εx) ⊗ ΓFp(ϕ

0x) with |εx| = 1 and |ϕ0x| = 2 and where B′′
n+1(m) =

Tor
B′′
n(m)(Fp,Fp). This implies (b).

For a finitely generated abelian group as in (c) the group ring splits as

Fp[Z]
⊗m ⊗

N⊗

i=1

Fp[Z/q
ℓi
i ].

The torsion groups with torsion prime to p do not contribute to higher (topological) Hochschild
homology because they are étale over Fp (see [BLPRZ, Theorem 9.1] and [H, Theorem 7.9]).
For the free factors we use the fact that Fp[Z] = Fp[x

±1] is étale over Fp[x]; for the factors with

torsion that is a power of p, we use the fact that Fp[Z/p
ℓ] ∼= Fp[y]/(y

pℓ − 1) ∼= Fp[x]/(x
pℓ) by

taking x = y − 1. �

Remark 4.4. Let k be a commutative ring and let A be a commutative k-algebra. In [BHLPRZ]
we define higher order Shukla homology of A over k as

Shukla
[n],k
∗ (A) := THH

[n],Hk
∗ (HA).

Thus the calculations above determine higher order Shukla homology for commutative pointed

monoid algebras over Fp, Shukla
[n],Fp[Π]
∗ (Fp).

4.3. The examples ko, ku, ℓ and tmf . Angeltveit and Rognes calculate in [AR, 5.13, 6.2]
H∗(THH(ko);F2), H∗(THH(tmf );F2), H∗(THH(ku);F2) and for any odd prime p they determine
H∗(THH(ℓ);Fp) where ℓ → ku(p) is the Adams summand of p-local connective topological
complex K-theory.

The following lemma collects some immediate consequences of their work, which were already
noticed in [G]. These will be the basis of the calculations in the results that follow the lemma.
The index of a generator denotes its degree.

Lemma 4.5.

(a)

THH∗(ko;F2) ∼= Λ(x5, x7)⊗ F2[µ8].

(b)

THH∗(tmf ;F2) ∼= Λ(x9, x13, x15)⊗ F2[µ16].

(c)

THH∗(ku;F2) ∼= Λ(x3, x7)⊗ F2[µ8].

(d) At any odd prime:

THH∗(ℓ;Fp) ∼= Λ(x2p−1, x2p2−1)⊗ Fp[y2p2 ].

Proof. In all four cases Angeltveit and Rognes show that H∗(THH(E);Fp) is of the form
H∗(E;Fp) ⊗ AE for AE as described in (4.5.1) below, where p = 2 for E = ko, tmf , ku and
p is odd for E = ℓ. We rewrite π∗(THH(E;HFp)) as

π∗(THH(E;HFp)) ∼= π∗(THH(E) ∧LE HFp)

∼= π∗((THH(E) ∧HFp) ∧
L
E∧HFp

HFp)

and thus we get a spectral sequence

E2
s,t = Tor

H∗(E;Fp)
s,t (H∗(THH(E);Fp),Fp)

14



converging to the homotopy groups of THH(E;HFp). As H∗(THH(E);Fp) ∼= H∗(E;Fp) ⊗ AE
in all four cases, the E2-term above is concentrated in the s = 0 column with

E2
0,∗
∼= AE ,

where

(4.5.1) AE =







ΛF2(σξ̄
4
1 , σξ̄

2
2)⊗ F2[σξ̄3], E = ko,

ΛF2(σξ̄
8
1 , σξ̄

4
2 , σξ̄

2
3)⊗ F2[σξ̄4], E = tmf ,

ΛF2(σξ̄
2
1 , σξ̄

2
2)⊗ F2[σξ̄3], E = ku, and

ΛFp(σξ̄1, σξ̄2)⊗ Fp[στ̄2], E = ℓ.

The degrees are the usual degrees in the dual of the Steenrod algebra, hence at 2 we have
|ξi| = 2i − 1 and at odd primes |ξi| = 2pi − 2 and |τi| = 2pi − 1. We also have |σy| = |y| + 1.
The (̄.) denotes conjugation in the dual of the Steenrod algebra. Counting degrees gives the
claim. �

We can use the equivalence THH
A(B) ≃ B ∧L

THH(A;B) THH(B) from Theorem 3.2 to deduce

the following result.

Theorem 4.6. There are additive isomorphisms

(a) THH
ko(HF2) ∼= ΓF2(ρ

0x5)⊗ ΓF2(ρ
0x7)⊗ F2[µ2]/µ

4
2,

(b) THH
tmf (HF2) ∼= ΓF2(ρ

0x9)⊗ ΓF2(ρ
0x13)⊗ ΓF2(ρ

0x15)⊗ F2[µ2]/µ
8
2,

(c) THH
ku(HF2) ∼= ΓF2(ρ

0x3)⊗ ΓF2(ρ
0x7)⊗ F2[µ2]/µ

4
2,

(d) and for odd primes p we get an additive isomorphism

THH
ℓ(HFp) ∼= ΓFp(ρ

0x2p−1)⊗ ΓFp(ρ
0x2p2−1)⊗ Fp[µ2]/µ

p2

2 .

Here ρ0 raises degree by one.

Proof. We use Theorem 3.2 in the case whereB = HFp. In [B], Bökstedt shows that THH∗(HFp) ∼=
Fp[µ2] for all primes p. We give the details for the case ko; the arguments for the other examples
are completely analogous.

The E2-term of the spectral sequence is

Tor
Λ(x5,x7)⊗F2[µ8]
∗ (F2,F2[µ2]) =⇒ THH

ko
∗ (HF2).

Since both x5 and x7 have odd degrees, they cannot act on µ2 other than trivially. Thus we
can rewrite the left-hand side as

Tor
Λ(x5,x7)
∗ (F2,F2)⊗ Tor

F2[µ8]
∗ (F2,F2[µ2]).

The explicit description of the generators in [AR, Theorem 6.2] implies that the map F2[µ8]→
F2[µ2] takes µ8 to µ42, because µ8 corresponds to σξ̄3 and Angeltveit and Rognes show [AR,
proof of 5.12] that the σξ̄k satisfy

(σξ̄k)
2 = σξ̄k+1

for p = 2 and µ2 in Bökstedt’s calculation corresponds to σξ̄1.
Therefore the right-hand Tor is isomorphic to F2[µ2]/µ

4
2. Hence the E

2-term is isomorphic to

ΓF2(ρ
0x5)⊗ ΓF2(ρ

0x7)⊗ F2[µ2]/µ
4
2.

Since all the nonzero classes in this E2-term have even total degree, the spectral sequence
must collapse at E2.

In the case of the Adams summand, ℓ, we work at odd primes and here in [AR, proof of 5.12]
the relation

(στ̄k)
p = στ̄k+1

is shown. Hence στ̄2 in THH∗(ℓ;HFp) corresponds to (στ̄0)
p2 and στ̄0 is the element that

represents µ2 at odd primes. �
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Remark 4.7. In order to determine for instance THH
ko(HF2) multiplicatively we would also

need to control possible multiplicative extensions. We can show by degree considerations that
(ρkx7)

2 = 0, but not whether (ρkx5)
2 must vanish.

As a general warning we discuss the case of the bar spectral sequence in the case THH∗(ku;HF2).
Here, we know the answer from Lemma 4.5:

THH∗(ku;HF2) ∼= Λ(x3, x7)⊗ F2[µ8].

However, if we use the bar spectral sequence we get as the E2-term

Tor
THH

[0]
∗ (ku;HF2)

∗,∗ (F2,F2) ∼= Tor
F2[ξ̄21 ,ξ̄

2
2 ,ξ̄k,k>3]

∗,∗ (F2,F2)

because
THH

[0]
∗ (ku;HF2) ∼= H∗(ku;F2) ∼= F2[ξ̄

2
1 , ξ̄

2
2 , ξ̄k, k > 3]

(see for instance [AR, 6.1]). Hence the spectral sequence collapses because

E2
∗,∗
∼= ΛF2(σξ̄

2
1 , σξ̄

2
2 , σξ̄k, k > 3)

and all generators are concentrated on the 1-line. But we know that the exterior generators in
ΛF2(σξ̄k, k > 3) extend to form F2[µ8], so there are highly non-trivial multiplicative extensions
in this spectral sequence.

Remark 4.8. Veen established a Hopf-structure on the bar spectral sequence [V, §7] for higher
order THH of HFp. His argument generalizes: The pinch maps S

n → S
n ∨ S

n give rise to a
comultiplication

THH
[n](A;C)→ THH

[n](A;C) ∧C THH
[n](A;C)

and as the multiplication on THH
[n](A;C) is induced by the fold map, both structures are

compatible. For THH(A) this structure is heavily used in [AR].
If A is connective, then we can consider A→ H(π0A). For C = HFp this multiplication and

comultiplication turns THH
[n]
∗ (A;HFp) into an Fp-Hopf algebra. Veen’s arguments also transfer

to yield that the bar spectral sequence

Tor
THH

[n]
∗ (A;HFp)

∗,∗ (Fp,Fp)⇒ THH
[n+1]
∗ (A;HFp)

is a spectral sequence of Hopf-algebras; in particular, the differentials satisfy a Leibniz and a
co-Leibniz rule and these facts let us determine the differentials in certain cases.

Theorem 4.9. Additively,

THH
[2](ko;HF2) ∼= ΓF2(ρ

0x5)⊗ ΓF2(ρ
0x7)⊗ ΛF2(εµ8).

Here, the degrees are |ρ0x5| = 6, |ρ0x7| = 8 and |εµ8| = 9.

Proof. Using the Tor spectral sequence we get

Tor
Λ(x5)⊗Λ(x7)⊗F2[µ8]
∗,∗ (F2,F2) =⇒ THH

[2]
∗ (ko,HF2).

The E2 page of the spectral sequence is of the form Γ(ρ0x5)⊗ Γ(ρ0x7)⊗Λ(ǫµ8). This, in turn,
is isomorphic to

∞⊗

k=0

F2(ρ
kx5)/(ρ

kx5)
2

︸ ︷︷ ︸

Λ(ρkx5)

⊗
∞⊗

ℓ=0

F2(ρ
kx7)/(ρ

kx7)
2

︸ ︷︷ ︸

Λ(ρkx7)

⊗Λ(ǫµ8),

with bidegrees ||ǫµ8|| = (1, 8), and ||ρkxi|| = (2k, 2ki). The claim is that the spectral sequence
collapses at E2.

As the spectral sequence above is a spectral sequence of Hopf algebras, the smallest nonzero
differential must go from an indecomposable element to a primitive element. As the only
primitive element in Γ(ρ0xi) is ρ

0xi we just need to check that no differentials hit ρ0xi, i = 5, 7,
or ǫµ8. These have bidegrees (1, i) and (1, 8), respectively, and thus if they are hit by dr of
an indecomposable dr(ρkxj), which would have bidegree (2k − r, 2kj + r − 1), we must have
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2k − r = 1 and 2kj + r − 1 = 5, 7, or 8. Substituting r = 2k − 1 into the second expression, it
becomes 2k(j + 1) − 2, where clearly k > 1 and j = 5 or 7, making 2k(j + 1) − 2 > 10. So the
spectral sequence collapses at E2.

�

So far, we cannot rule out non-trivial multiplicative extensions. These could be nontrivial only

if there is a multiplicative generator ρkxi or ǫµ8 with whose square is not zero in THH
[2]
∗ (ko,HF2)

(although it is zero in the E∞ term). This is possible only if (ρkxi)
2 has filtration degree less

than 2k+1, or (ǫµ8)
2 has filtration degree less than 2. The latter is clearly impossible, since

there is nothing in total degree 18 in filtration degrees 0 or 1. If i = 7, by similar arguments we
cannot have anything in total degree 2k+1 · 8 in filtration degree less than 2k+1: it would have
to be constructed out of elements in bidegrees (a, 5a), (b, 7b) and possibly also one occurrence
of the element of bidegree (1, 8), but then the first coordinates would have to add up to at least
2k+1 to have the total degree equal to 2k+1 · 8. However, for the cases (ρkx5)

2 one cannot rule
out extensions just for degree reasons.

In a similar manner as above, we can exclude non-trivial differentials in the other three cases:

Proposition 4.10. There are additive isomorphisms

(a) THH
[2]
∗ (ku;HF2) ∼= ΓF2(ρ

0x3)⊗ ΓF2(ρ
0x7)⊗ ΛF2(εµ8),

(b) THH
[2]
∗ (tmf ;HF2) ∼= ΓF2(ρ

0x9)⊗ ΓF2(ρ
0x13)⊗ ΓF2(ρ

0x15)⊗ ΛF2(εµ16),
(c) and for any odd prime p we get an additive isomorphism

THH
[2]
∗ (ℓ;HFp) ∼= ΓFp(ρ

0x2p−1)⊗ ΓFp(ρ
0x2p2−1)⊗ ΛFp(εµ2p2).

Proof.
(a) In the case of ku at the even prime we get a degree constraint for a differential dr(ρkxi)

of the form

(2k − r, 2ki+ r − 1) = (1, j)

where j is 3, 7 or 8. Since r > 2 and 2k − r = 1, we get k > 2, but that would make
the internal degree at least 4(i + 1) − 2 and this is bigger or equal to 14, hence doesn’t
occur.

(b) For tmf the degree constraint is

(2k − r, 2ki+ r − 1) = (1, j)

where j is 9, 13, 15 or 16. Again r > 2 and 2k − r = 1 imply that k > 2, which makes
the internal degree at least 38.

(c) For the Adams summand ℓ the degree condition is

(pk − r, pki+ r − 1) = (1, j)

where j = 2p − 1, 2p2 − 1 or 2p2. As before, we get that k > 2 and therefore we get
an internal degree of at least 2p3 − 2 which is too big to be the degree of a primitive
element.

In all cases the differentials dr, r > 2, all have to be trivial and we get the result. �

4.4. A splitting for THH
[n],Hk(HA) for commutative k-algebras A. We apply Theorem

3.6 for a sequence of cofibrations of commutative S-algebras of the form S → A→ B = C and
as THH[n−1],B(B) ≃ B we obtain a weak equivalence

(4.10.1) THH
[n](B) ≃ THH

[n](A;B) ∧L
THH

[n−1],A(B)
B.

In the special case of a sequence S → Hk → HA = HA where A is a commutative k-algebra
the formula in (4.10.1) specializes to the following result.

17



Proposition 4.11. For all commutative rings k and all commutative k-algebras A the higher
topological Hochschild homology of HA splits as

THH
[n](HA) ≃ THH

[n](Hk;HA) ∧L
Shukla

[n−1],k(A)
HA.

If A is flat as a k-module, then higher Shukla homology reduces to higher Hochschild homology
and we obtain

THH
[n](HA) ≃ THH

[n](Hk;HA) ∧L
HH

[n−1],k(A)
HA.

In particular, this gives splitting results for number rings: For k = Z and A = OK a ring of
integers in a number field we get

THH
[n](HOK) ≃ THH

[n](HZ;HOK) ∧L
HH

[n−1],Z(OK)
HOK .

The (topological) Hochschild homology of OK is known (see [LL, LM]). However, the additive
and multiplicative structure of these is complicated enough that we cannot use the iteration
methods of [BLPRZ, DLR] and so we do not know the higher order topological Hochschild
homology of OK with unreduced coefficients so far, nor its higher Shukla homology.

Remark 4.12. Beware that the splitting

THH
[n](HA) ≃ THH

[n](Hk;HA) ∧L
Shukla

[n−1],k(A)
HA

≃ (THH[n](Hk) ∧Hk HA) ∧
L
Shukla

[n−1],k(A)
HA

cannot be rearranged to

THH
[n](Hk) ∧Hk (HA ∧

L
Shukla

[n−1],k(A)
HA) = THH

[n](Hk) ∧Hk Shukla
[n],k(A)

because the Shukla
[n−1],k(A)-action on THH

[n](Hk;HA) does not usually factor through an ac-

tion on the coefficients HA. If we could rearrange it that way, it would imply that Shukla[n],k(A)

splits off THH
[n](HA), which is not true even for n = 1: for example, if we take k = Z and

A = Z[i], since THH(HZ) as the topological Hochschild homology of a ring is equivalent to a
product of Eilenberg Mac Lane spectra, which Bökstedt [B] identified to be

THH(HZ) ≃ HZ×

∞∏

a=2

Σ2a−1H(Z/aZ),

then we get the formula

π∗(THH(HZ) ∧HZ Shukla(Z[i]))

∼= π∗(Shukla(Z[i]))⊕

∞⊕

a=2

π∗(Σ
2a−1H(Z/aZ) ∧HZ Shukla(Z[i]))

∼= HH∗(Z[i])⊕
∞⊕

a=2

(

HH∗−2a+1(Z[i])⊗ Z/aZ⊕ Tor(HH∗−2a(Z[i]),Z/aZ)
)

where HH∗(Z[i]) = 0 when ∗ < 0. We also know that HH0(Z[i]) ∼= Z[i], HH2a−1(Z[i]) ∼=
Z[i]/2Z[i], and the positive even groups vanish. Thus the number of copies of Z/2Z’s in
πn(THH(HZ)∧HZShukla(Z[i])) grows linearly with n. On the other hand, by [L], THH0(Z[i]) ∼=
Z[i], THH2a−1(Z[i]) ∼= Z[i]/2aZ[i], and the positive even groups vanish.

Such a splitting of Shukla[n],k(A) off THH
[n](HA) does hold under additional assumptions,

for instance in the case of commutative pointed monoid rings (see (4.1.2) above).

18



References

[AR] Vigleik Angeltveit, John Rognes, Hopf algebra structure on topological Hochschild homology. Algebr.
Geom. Topol. 5 (2005), 1223–1290.

[AuR] Christian Ausoni, John Rognes, The chromatic red-shift in algebraic K-theory, in Guido’s Book of
Conjectures, Monographie de L’Enseignement Mathématique 40 (2008) 13–15.
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