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1 Introduction

Ahmed and Zeghib [AZ] investigated homogeneous almost complex manifolds of index 2

which they call Hermite-Lorentz spaces referring to the complex index 1. More precisely

they considered a manifold M = G/H of dimension 2n+2 ≥ 8 where G ⊂ Iso(M,g, J) is a

connected Lie group that acts transitively on M and Iso(M,g, J) denotes the subgroup of

the isometry group where elements preserve the almost complex structure. They showed

that M is a Kähler manifold locally isometric to one of the following spaces

Minkn+1(C) = C
1,n, dSn+1(C) = SU(1, n + 1)/U(1, n), AdSn+1(C) = SU(2, n)/U(1, n),

CdSn+1 = SO0(1, n + 2)/SO0(1, n) × SO(2), CAdS = SO0(3, n)/SO(2) × SO0(1, n).

Their strategy was to consider H0 as a connected C-irreducible Lie subgroup of U(1, n)

and to use that such groups contain the subgroup SO0(1, n). Since the Kähler form ω and

the Nijenhuis tensor N are respectively H-invariant and H-equivariant they are preserved

under the action of SO0(1, n) ⊂ H. From this they conclude that ω is closed and that
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N vanishes. Hence, the homogeneous spaces are already Kähler manifolds. A detailed

investigation of the possibilities for H0 gives the above list of manifolds.

In this paper we follow the idea of Ahmed and Zeghib but consider instead almost hy-

percomplex pseudo-Riemannian manifolds of index 4 which have an H-irreducible isotropy

group. It turns out that except in dimension 12 all the manifolds are flat. Our main result

is the following theorem.

Theorem 1.1. Let (M,g, (J1, J2, J3)) be a connected almost hypercomplex pseudo-Rieman-

nian manifold of index 4 and dimM = 4n + 4 ≥ 8, such that there exists a connected

Lie subgroup G ⊂ Iso(M,g, (J1, J2, J3)) acting transitively on M . If the isotropy group

H = Gp, p ∈ M , acts H-irreducibly, then (M,g, (J1, J2, J3)) is globally hyper-Kähler

and locally isometric to Minkn+1(H) or dimM = 12 and H0 is either H0 ∼= SO0(1, 2),

H0 ∼= SU(1, 2) or trivial.

Here Iso(M,g, (J1, J2, J3)) denotes the subgroup of Iso(M,g) the elements of which

preserve the three almost complex structures J1, J2, and J3. The quaternionic Minkowski

space is denoted by Minkn+1(H) = H
1,n.

Acknowledgments. This work was partly supported by the German Science Foundation

(DFG) under the Collaborative Research Center (SFB) 676 Particles, Strings and the Early

Universe. We would like to thank Ines Kath for valuable remarks.

2 Hyperbolic spaces and subgroups of Sp(1,n)

2.1 Facts about hyperbolic spaces

In this Section we collect some known facts about the quaternionic hyperbolic spaces which

will be needed for the proof of our main result. We will use the same notation as in [CG].

In the following F denotes the real numbers R, the complex numbers C or the quaternions

H. Recall first the classification of the totally geodesic submanifolds of the hyperbolic

space Hn(F) over F.

Proposition 2.1 ([CG, Prop. 2.5.1]). Any totally geodesic submanifold of Hn(F) is equiv-

alent under U(1, n;F) to one of the following:

(i) Hm(F′), where F
′ ⊆ F, F′ = R,C or H, and 1 ≤ m ≤ n;

(ii) H1(I) := e1I ∩ Bn(H), where e1 = (1, 0, . . . , 0)T ∈ H
n and I = spanR {i, j,k}. It

occurs only if F = H.

These are all inequivalent under U(1, n;F).

Proposition 2.2 ([CG, Proposition 4.2.1]). Let M be a totally geodesic submanifold in

Hn(F) and let I(M) be the stabilizer of M in U(1, n;F ). Let K(M) be the subgroup of
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I(M) which leaves M pointwise fixed. Then there exists a Lie subgroup U(M) ⊂ I(M) such

that I(M) = K(M)U(M) (almost semidirect product). The identity component U0(M)

is a simple Lie group when dimM > 1, and I0(M) = K0(M)U0(M) is an almost direct

product. U0(M) induces the connected isometry group of M .

The following table covers all possibilities of I(M) for a totally geodesic submanifold
M ⊂ Hn(H).

Table 1: Decomposition of I(M)

I(M) = K(M)U(M)

M = Hm(H) ⊂ Hn(H) K(M) = {±1m+1} × Sp(n−m), U(M) = Sp(1,m)× {1n−m},
K0(M) = {1m+1} × Sp(n−m);

M = Hm(C) ⊂ Hn(H) K(M) = U(1) · 1m+1 × Sp(n−m), U(M) = SU(1, m) · {±1,±j} × {1n−m} ,
U0(M) = SU(1,m)× {1n−m};

M = Hm(R) ⊂ Hn(H) K(M) = Sp(1) · 1m+1 × Sp(n−m), U(M) = O(1,m)× {1n−m},
U0(M) = SO0(1, m)× {1n−m};

M = H1(I) ⊂ Hn(H) K(M) = {±12} × Sp(n− 1), U(M) = U × {1n−1},
K0(M) = {12} × Sp(n− 1), U0(M) = U0 × {1n−1}.

In the case M = H1(I) the Lie group U ⊂ Sp(1, 1) is given by

U =

{

A ∈ Sp(1, 1)

∣

∣

∣

∣

A =

(

a −b
εb εa

)

, ε = ±1

}

.

One can show that the elements of U0 are precisely the elements of Sp(1, 1) which commute

with

Φ =

(

0 −1
1 0

)

.

Notice that U0 acts H-irreducibly on H
2. It is sufficient to check this for the Lie algebra

u. The matrices

x =
i

2
Φ, y =

j

2
Φ, z =

k

2
Φ,

u =
i

2
12, v =

j

2
12, w =

k

2
12

form a basis of u ⊂ sp(1, n). We have the following eigenspace decomposition for x

H
1,1 =

(

i

−1

)

·H⊕

(

i

1

)

·H.

Assume there exists a u-invariant subpace V of quaternionic dimension one. Then V is

one of the quaternionic eigenspaces of x. But these spaces are not preserved by y. Hence,

u acts H-irreducibly.

Furthermore, one can show that U0 is simply connected and that its Lie algebra u ∼=

so(1, 3). This implies U0 ∼= Spin0(1, 3).

Recall that the elements of Sp(1, n) are classified according to their fixed points in Hn(H).

An element g ∈ Sp(1, n) is called elliptic if it has one fixed point in Hn(H). It is called

parabolic if it has exactly one fixed point and this point lies on the boundary ∂Hn(H).

If g has exactly two fixed points which lie on the boundary it is called loxodromic. Any

element with three or more fixed points on the boundary has also a fixed point in Hn(H).
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Hence, the above classification covers all possibilities.

If g ∈ Sp(1, n) and v ∈ H
1,n, λ ∈ H, such that g(v) = vλ, then A(vµ) = (vµ)µ−1λµ for all

µ ∈ H\{0}, i.e. vµ is an eigenvector of g with eigenvalue µ−1λµ. Thus the eigenvalues of g

occur in similarity classes. These are called of negative or positive type if the corresponding

eigenvector is timelike or spacelike, respectively.

Proposition 2.3 ([CG, Prop. 3.2.2]). Let g ∈ U(1, n;F) be elliptic, let Λ0 be its negative

class of eigenvalues, and let Λ1, . . . , Λn be its positive classes. Let F (g) denote the set of

fixed points of g in Hn(F).

(i) If Λ0 6= Λi for all 1 ≤ i ≤ n, then F (g) contains only one point.

(ii) Suppose that Λ0 coincides with exactly m of the classes Λi, 1 ≤ i ≤ n. Then F (g)

is a totally geodesic submanifold, which is equivalent to Hm(F) if Λ0 ⊂ R, and to

Hm(C) if Λ0 6⊂ R.

Remark 2.1. One has to pay attention to the notation. The authors of [CG] denote by C

a subfield of F which contains R and is isomorphic to the field of complex numbers. Hence,

in Proposition 2.3, C could be for example spanR {1, j}.

Lemma 2.1 ([CG, Lemma 3.2.2]). Let g ∈ U(1, n;F) which fixes ±f1 = (±1, 0, . . . , 0)T ∈

∂Hn(F) (considered as elements of the sphere). Then

g =





cλ sλ 0
sλ cλ 0
0 0 A



 ,

where c = cosh(t), s = sinh(t) for some t ∈ R, λ ∈ F with |λ| = 1 and A ∈ U(n− 1;F).

Let G ⊂ U(1, n;F) be a subgroup. Then L(G) := H · p∩∂Hn(F), p ∈ Hn(F), is called the

limit set of G. It is independend of the point p.

Lemma 2.2 ([CG, Lemma 4.3.4]). Let N be a normal subgroup of G ⊂ U(1, n;F). Then

G leaves L(N) invariant. Furthermore if L(N) 6= ∅ and the elements of G do not have a

common fixed point in ∂Hn(F), then L(N) = L(G).

Theorem 2.1 ([CG, Theorem 4.4.1]). Let G be a connected Lie subgroup of U(1, n;F).

Then one of the following is true.

(a) The elements of G have a common fixed point in Hn(F).

(b) There is a proper, totally geodesic submanifold M in Hn(F) such that dimM > 1,

L(G) = ∂M = M ∩∂Hn(F), and G = K ·U0(M), where K ⊂ K0(M) is a connected

Lie subgroup.

(c) F = C and G = SU(1, n).

(d) G = U0(1, n;F).
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2.2 About Lie subgroups of Sp(1,n)

Corollary 2.1. Let H ⊂ Sp(1, n) be a connected and H-irreducible Lie subgroup. Then

H is conjugate to one of the following groups:

(i) SO0(1, n), SO0(1, n) · U(1), SO0(1, n) · Sp(1) if n ≥ 2,

(ii) SU(1, n), U(1, n),

(iii) Sp(1, n),

(iv) U0 = {A ∈ Sp(1, 1)|AΦ = ΦA} ∼= Spin0(1, 3) with Φ =
(

0 −1
1 0

)

if n = 1.

Proof: We apply Theorem 2.1 to H. Case (c) is not relevant, since F = H. Since every

point in Hn(H) corresponds to a quaternionic line in H
1,n, every fixed point of H in Hn(H)

gives us an H-invariant H-subspace of H1,n. Hence, we can exclude case (a) in Theorem

2.1. The case (d) gives us H = U(1, n;H) = Sp(1, n) which is (iii) in the Corollary.

Only case (b) remains for further consideration. Here H = K ·U0(M) for a proper totally

geodesic submanifold M ⊂ Hn(H) with dimM > 1 and K ⊂ K(M) connected. According

to Proposition 2.1 there are four possibilities for M and furthermore by Table 1 we know

that H ⊂ Sp(1,m)×Sp(n−m) or H ⊂ U0×Sp(n−1). In the first case there is an invariant

H-subspace if m < n and we get (i), (ii) and (iii) in the corollary. If H ⊂ U0× Sp(n− 1),

then H can act H-irreducibly if and only if n = 1. This gives us case (iv) in the Corollary

and finishes the proof. �

Proposition 2.4. Let H ⊂ Sp(1, n) be an H-irreducible subgroup. Then one of the fol-

lowing is true.

(i) H is discrete.

(ii) H0 = U(1) · 1n+1 or H0 = Sp(1) · 1n+1.

(iii) H0 is H-irreducible.

(iv) n = 1 and H0 is one of the groups SO0(1, 1), SO0(1, 1) · U(1), SO0(1, 1) · Sp(1) or

S =

{

eibt
(

cosh(at) sinh(at)
sinh(at) cosh(at)

)∣

∣

∣

∣

t ∈ R

}

,

for some non-zero real numbers a, b.

Proof: We will apply Theorem 2.1 to H0 and discuss the cases (a), (b), (c), and (d).

Assume that H is not discrete. Case (c) is not relevant, since F = H. If (d) holds for H0,

then H0 = Sp(1, n) acts H-irreducibly, so we are in (iii).

Assume now that (a) holds for H0, i.e. H0 has a common fixed point in Hn(H). We

first discuss the case when this fixed point lies in Hn(H). This means that all elements

in H0 are elliptic. Let g ∈ H0 and F (g) the set of fixed points of g in Hn(H). By

Proposition 2.3, F (g) is either a singleton or a totally geodesic submanifold. Hence,
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M :=
⋂

g∈H0 F (g) is a totally geodesic submanifold and the set of all common fixed points

in Hn(H) of H0. In particular, H0 ⊂ K(M). Since H0 is a normal subgroup, M is

preserved by H, i.e. H ⊂ I(M). The H-irreducibility of H implies that M is not a

singleton. Furthermore we see from Table 1 that M is Hn(R), Hn(C), Hn(H) or n = 1

and M = H1(I). Hence, the possibilities for K(M) are K(M) = {±1n+1}, U(1) ·1n+1, or

Sp(1) · 1n+1. By assumption H is not discrete. Since Sp(1) has no two dimensional Lie

subgroup, we obtain H0 = U(1) · 1n+1 or H0 = Sp(1) · 1n+1, so we are in case (ii).

Secondly, we consider the case, when H0 has no common fixed point in Hn(H). This

means that there is a common fixed point in ∂Hn(H). Let F ⊂ ∂Hn(H) be the set of

common fixed points of H0 on the boundary. Notice that F consists of either one or two

elements, since otherwise there exist common fixed points in Hn(H). If F has exactly one

element, then H fixes this point, since H0 is a normal subgroup of H. But this contradicts

the H-irreducibility of H. If F has exactly two elements, then F is preserved by H. It

follows that H preserves the two dimensional H-subspace spanned by the two H0-invariant

lightlike lines. Since H acts H-irreducibly, this can only be the case if n = 1. By Lemma

2.1 we know that H0 is contained in SO0(1, 1) · Sp(1). Notice that H0 is not compact,

since otherwise it would be contained in a maximal compact subgroup of Sp(1, 1) and

would have a fixed point in H1(H) contradicting the assumption above. Let H0 = L · R

be the Levi decomposition. If the Levi factor L is non-trivial then it is at least three

dimensional and hence equals Sp(1). In that case it follows that R = SO0(1, 1) since H0 is

not compact, i.e. H0 = SO0(1, 1) · Sp(1). If the Levi factor is trivial, then H0 is contained

in SO0(1, 1) · U(1). If H0 has dimension two, then H0 = SO0(1, 1) · U(1). Assume now,

that H0 has dimension one and let h ⊂ so(1, 1)⊕u(1) be its Lie algebra. Then h is spanned

by a vector v = x+ y with x ∈ so(1, 1) and y ∈ u(1). We have H0 = exp(R · v). Since H0

is not compact, it follows x 6= 0. If y = 0, then we have H0 = SO0(1, 1). Otherwise there

exist non-zero real numbers a, b such that

v =

(

0 a
a 0

)

+

(

ib 0
0 ib

)

.

This gives us the group S. Summarizing, we are in case (iv).

Assume now that (b) holds for H0, i.e. there is a proper totally geodesic submanifold M

such that H0 = KU0(M) and L(H0) = ∂M . Using irreducibility of H we can apply

Lemma 2.2 to H0 and H. It follows ∂M = L(H0) = L(H). Notice that M is the union

of all geodesics whose endpoints lie in ∂M . Since the elements of H map geodesics to

geodesics and for the hyperbolic space the geodesics are uniquely determined by their

endpoints, see [CG, Proposition 2.5.1], it follows that H preserves M . By Table 1 M is

either Hn(R) or Hn(C). Since H0 = KU0(M), we obtain that H0 acts H-irreducibly, so

we are in case (iii). This finishes the proof. �
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3 Main result

3.1 Proof of the Theorem

Lemma 3.1. Let n ≥ 3 and α ∈ ⊗3V ∗, where V = H
1,n is considered as a real vector

space. If α is SO0(1, n)-invariant, then α = 0.

Proof: We have H
1,n ∼= R

1,n ⊗ R
4. Since SO0(1, n) acts trivially on R

4, we just have to

check the claim for α ∈ ⊗3(R1,n)∗. Since every such invariant gives rise to an invariant

of SO(n + 1,C) on ⊗3(Cn+1)∗, it is sufficient to consider these invariants. Let v1, v2,

v3 ∈ C
n+1 and W := spanC {v1, v2, v3}. Since n ≥ 3, there exists some A ∈ SO(n + 1,C)

such that A|W = −IdW . It follows α(v1, v2, v3) = (A∗α)(v1, v2, v3) = (−1)3α(v1, v2, v3).

Hence, α = 0. �

Lemma 3.2. Let α ∈ ⊗3V ∗, where V = H
1,1 is considered as a real vector space. If α is

invariant under one of the Lie groups in (iv) of Proposition 2.4, then α = 0.

Proof: We have to discuss the four Lie groups of Proposition 2.4 (iv). The claim is clear

for the groups SO0(1, 1) · U(1) and SO0(1, 1) · Sp(1), since they contain −12. Now we

consider the claim for the group SO0(1, 1). As in the proof of Lemma 3.1 it is sufficient to

consider SO(2,C) and to use that −12 ∈ SO(2). So we have finally to consider the group

S. We consider its complexification

SC =

{

eibλ
(

cosh(aλ) sinh(aλ)
sinh(aλ) cosh(aλ)

)∣

∣

∣

∣

λ ∈ C

}

.

If we set λ = iπ
a
, we get an element A = −r12 with r = e−

πb

a . It follows α = A∗α = −r3α.

This shows α = 0. �

Remark 3.1. The elements of ⊗3V ∗ that are H-invariant are in one-to-one correspon-

dence with the bilinear maps V × V to V that are H-equivariant. It follows from Lemmas

3.1 and 3.2 that the corresponding bilinear maps also vanish.

Now we are able to prove Theorem 1.1.

Proof of the Theorem: Let λ : H → GL(TpM), h 7→ dhp be the isotropy representation.

We identify H with λ(H). Since H preserves the metric g and the almost hypercomplex

structure, we can consider H as a subgroup of Sp(1, n).

We will first discuss the cases with dimM ≥ 16 and dimM = 8. The twelve-dimensional

case is special and will be discussed afterwards.

We consider the universal covering M̃ = G̃/H0. The first step in the proof is to show that

M̃ is a hyper-Kähler manifold. By Hitchin’s Lemma, see [Hi, Lemma 6.8], this follows by

showing that the three Kähler forms ω1, ω2, and ω3 are closed. Since G̃ acts transitively,

it is sufficient to show that (dωα)p = 0, α = 1, 2, 3.

First we identify the tangent space TpM̃ with H
1,n and consider the exterior derivatives of

the three Kähler forms at p as elements of Λ3(H1,n)∗. All three forms are invariant under

7



the action of H0. Now we apply Proposition 2.4 and exclude first case (i). The idea is to

show that it follows that G is abelian, which implies that the isotropy representation is

trivial contradicting our assumptions.

Assume that H is discrete. Then G ∼= G/ {e} → M is a covering of M and we can identify

the Lie algebra g with TpM ∼= H
1,n. Notice that H and its Zariski closure HZar acts on g

by conjugacy and that both are H-irreducible. Then the Lie bracket [·, ·] at p defines an

anti-symmetric bilinear on g ∼= H
1,n which is HZar-equivariant. Since HZar is an algebraic

group, it has finitely many connected components, see also [Mi]. This implies that (HZar)0

is not compact, since otherwise HZar would be compact contradicting the H-irreducibility.

Proposition 2.4 implies that (iii) or (iv) holds for (HZar)0. Now we distinguish the cases

n ≥ 3 and n = 1. If n ≥ 3, then (HZar)0 is H-irreducible. From Corollary 2.1 we see that

SO0(1, n) ⊂ (HZar)0. By Remark 3.1, Lemma 3.1 implies that the Lie bracket vanishes. If

n = 1, then (iii) or (iv) of Proposition 2.4 holds for (HZar)0. If (iii) holds, from Corollary

2.1 we know that (HZar)0 is conjugate to one of the groups SU(1, 1), U(1, 1), Sp(1, 1),

or U0. Since all four groups contain −12, the Lie bracket vanishes. If (iv) holds, then

Lemma 3.2 implies together with Remark 3.1 that the Lie bracket vanishes. This gives us

the contradiction and shows that H is not discrete.

Now we can easily conclude that the Kähler forms are closed. We just have to consider

the remaining possibilities for H0 in Proposition 2.4. If (ii) holds, i.e. H0 = U(1) · 12 or

Sp(1) · 12, then −12 ∈ H0 which implies that the Kähler forms are closed. If (iii) or (iv)

holds, then this follows from Lemma 3.1 and Lemma 3.2, respectively. Hence, we have

shown that M̃ is hyper-Kähler.

Next we show that M̃ is a reductive homogeneous space, i.e. there exists an Ad(H0)-

invariant vector subspace m ⊂ g such that g = h⊕m.

First we consider the case n ≥ 3. Since H is not discrete, we know from Proposition 2.4

and Corollary 2.1 that H0 is one of the following groups

U(1), Sp(1), SO0(1, n), SO0(1, n) · U(1), SO0(1, n) · Sp(1)

SU(1, n), U(1, n), Sp(1, n).

IfH0 is one of the compact or semi-simple groups above, Ad(H0) acts completely reducibly

on g. In particular M̃ is a reductive homogeneous space. So there are only the cases left

where H0 is SO0(1, n) ·U(1) or U(1, n) = SU(1, n) ·U(1).

Let s be either so(1, n) or su(1, n). Then we have h = s ⊕ u(1). We consider the adjoint

representation of s on g. Since s is simple, s acts completely reducibly on g and s is

an irreducible s-invariant subspace. Furthermore, there exists an s-invariant complement

m of h = s ⊕ u(1) which is isomorphic to g/h ∼= TpM̃ ∼= H
1,n. Hence, the s-module g

decomposes into g = m⊕s⊕u(1). Notice that m ∼= H
1,n decomposes into four respectively

two irreducible s-invariant subspaces which are equivalent to R
1,n or C

1,n, respectively.

These three submodules s, u(1), R
1,n or C

1,n are pairwise inequivalent. Since s and

u(1) commute, u(1) preserves the isotypical s-submodules. It follows that the isotypical

8



submodule m is u(1)-invariant and thus also h-invariant. Hence, m is invariant under

Ad(H0).

Now we investigate the case n = 1. By Proposition 2.4 and Corollary 2.1 we know that

H0 is one of the following groups

U(1), Sp(1), SU(1, 1), U(1, 1), Sp(1, 1), U0 ∼= Spin0(1, 3),

SO0(1, 1) · Sp(1), SO0(1, 1) · U(1), SO0(1, 1), S.

If H0 is one of the compact or semi-simple groups it is clear that M̃ is a reductive homo-

geneous space. If H0 is U(1, 1) then we can apply the arguments from above. So we just

have to consider the Lie groups SO0(1, 1) ·Sp(1), SO0(1, 1) ·U(1), SO0(1, 1), and S. Recall

that g ∼= h⊕ g/h and g/h ∼= TpM̃ ∼= H
1,1.

If H0 = SO0(1, 1) · Sp(1) then g decomposes in Sp(1)-submodules, namely g = so(1, 1) ⊕

sp(1)⊕V ⊕V ∼= R⊕R
3⊕V ⊕V with dimR V = 4. Let W := V ⊕V ∼= R

8. Hence, we have

three isotypical submodules which are Sp(1)-invariant. Since the elements of SO0(1, 1) and

Sp(1) are commuting, SO0(1, 1) preserves this decomposition into isotypical submodules.

In particular SO0(1, 1) preserves the complement W of h.

If H0 = SO0(1, 1) ·U(1), then g decomposes into U(1)-invariant submodules g = so(1, 1)⊕

u(1) ⊕ (V ⊕ V ⊕ V ⊕ V ) with V ∼= C. So there are two isotypical submodules. As before

it follows that m = ⊕4V is an H0-invariant complement of h ⊂ g.

Assume H0 = SO0(1, 1) and consider the adjoint action of h = so(1, 1) on g ∼= R
9. Let

A ∈ so(1, 1) \ {0}. Then g decomposes into g = kerA ⊕ im A, where im A = V+ ⊕ V−

is a sum of two 4-dimensional eigenspaces with opposite real eigenvalues and provides an

Ad(H0)-invariant complement to h ⊂ g.

If H0 = S then g decomposes as before into g = kerA⊕ im A where 0 6= A ∈ h and im A

is 8-dimensional (a sum of 2 complex eigenspaces of equal dimension). As before this gives

us an Ad(H0)-invariant complement to h ⊂ g.

Summarizing we have shown that M̃ is indeed a reductive homogeneous space. Next we

show that g = h ⊕ m is a symmetric Lie algebra. It is sufficient to show that [m,m] ⊂ h.

We consider the restriction of the Lie bracket [·, ·] to m×m and denote its projection to m

by β. The antisymmetric bilinear map β is Ad(H0)-equivariant. Since m ∼= H
1,n, we can

consider such a map as an H0-invariant element of ⊗3(H1,n)∗. We already discussed that

such maps vanish, so we have β = 0. This proves [m,m] ⊂ h.

Next we show that M̃ is isometric to Minkn+1(H). We consider the Lie algebra of the

transvection group ĝ = [m,m]⊕m ⊂ g. It is know that the transvection group of a hyper-

Kähler symmetric space is nilpotent, see [KO, Corollary 2.4]. It follows that the action of

ĝ+ := [m,m] ⊂ h on m is nilpotent. From the above list of the possible Lie algebras we see

that h is reductive, i.e. h = s⊕ a where s is semi-simple and a is abelian. Notice that s is

also allowed to be trivial. Since ĝ+ is nilpotent and furthermore an ideal in h, it follows

that ĝ+ ⊂ a. Since a acts completely reducibly on m, the same holds for ĝ+. Hence, ĝ+
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acts trivially on m. Since the action of ĝ+ is faithful, it follows that ĝ+ = {0}. This proves

that M̃ is isometric to Minkn+1(H).

Finally, we discuss the twelve-dimensional case. In this situation H is discrete or H0 is

one of the following groups

U(1), Sp(1), SO0(1, 2), SO0(1, 2) · U(1), SO0(1, 2) · Sp(1),

SU(1, 2), U(1, 2), Sp(1, 2).

Notice that there exist non-trivial 3-forms that are invariant under SO0(1, 2) or SU(1, 2).

In particular we can not exclude that H is discrete since (HZar)0 could be SO0(1, 2).

But if H0 is one of the groups U(1), Sp(1), SO0(1, 2) · U(1), SO0(1, 2) · Sp(1), U(1, 2), or

Sp(1, 2), then we can apply all arguments from above and get M̃ ∼= Minkn+1(H). Thus if

M̃ is not isometric to Minkn+1(H), then we get from the above list that H0 is either {e},

SO0(1, 2), or SU(1, 2). This finishes the proof. �

3.2 A class of non-symmetric examples in dimension 12

By Theorem 1.1 we know that a non-flat manifold appears only if dimM = 12 and one of

the following is true

• h = so(1, 2),

• h = su(1, 2),

• h = {0}, but (HZar)0 = SO0(1, 2) or SU(1, 2).

This is due to the fact that there exist non-trivial 3-forms on H
1,2 which are invariant under

SO0(1, 2). Therefore we can not conlude that the Kähler forms are closed if SO0(1, 2) ⊂ H0

or SO0(1, 2) ⊂ HZar.

In the following we will investigate the case with h = so(1, 2) and give some non-symmetric

examples. We consider the following Lie algebra

m = ℓ · so(1, 2) ⊕R
1,2 ⊗ R

4−ℓ

for ℓ ∈ {1, 2, 3, 4} and where the subalgebra R
1,2⊗R

4−ℓ is abelian. We define the represen-

tation ρ : so(1, 2) → der(m) by the adjoint representation on ℓ · so(1, 2), by the standard

representation on R
1,2 and by the trivial representation on R

4−ℓ.

Now we set h = so(1, 2) and g = h⋉ρm ∼= (ℓ+1)·so(1, 2)⋉ρ′R
1,2⊗R

4−ℓ where h corresponds

to {(X,X, . . . ,X) ∈ (ℓ + 1) · so(1, 2) | X ∈ so(1, 2)} and ρ′(X0, . . . ,Xℓ)x ⊗ v = X0x ⊗ v

for all x ∈ R
1,2, v ∈ R

4−ℓ, X0, . . . ,Xℓ ∈ so(1, 2).

The isotropy representation is equivalent to R
1,2⊗R

4 ∼= H
1,2, hence, admits an h-invariant

hyper-Hermitian structure of index 4.

For a general classification of the homogeneous spaces with h = so(1, 2) one needs to

classify all Lie algebra structures on the vector space g = so(1, 2) ⊕ R
1,2 ⊗ R

4 such that
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the Lie bracket restricts to the Lie bracket of so(1, 2) and to the canonical representa-

tion of so(1, 2) on R
1,2 ⊗ R

4. For this one has to describe all so(1, 2)-invariant tensors in

Λ2(R1,2 ⊗R
4)∗ ⊗ g ∼= Λ2(R1,2 ⊗R

4)⊗ (R1,2 ⊗R
5) which satisfy the Jacobi identity. Since

[

Λ2(R1,2 ⊗ R
4)⊗ (R1,2 ⊗ R

5)
]so(1,2) ∼= Λ3

R
1,2 ⊗ S2

R
4 ⊗ R

5

the Lie brackets on m = R
1,2 ⊗ R

4 are of the form

[x⊗ v, y ⊗ w] = (x× y)⊗ β(v,w),

where β ∈ S2(R4)∗ ⊗ R
5, so β =

∑4
i=0 βi ⊗ bi, where (bi) is a basis of R5. The Jacobi

identity for three vectors in g then holds if at least one of the three vectors is in h and

the remaining equations form a system of quadratic equations for β. The above examples

correspond to solutions of the form β0 = 0 and βi = λi(b
∗
i )

2, i = 1, 2, 3, 4.

Now we consider the intrinsic torsion of the indefinite almost hyper-Hermitian structure

on M . From the fact that the sum ∇ + S of the Levi-Civita connection ∇ and the

tensor field S = −1
4

∑3
α=1 Jα∇Jα is a connection compatible with the metric and the

hypercomplex structure, it follows that the intrinsic torsion is completely determined by

the three covariant derivatives ∇Jα. More precisely, it is given by the image of S (evaluated

at the canonical base point) under the isomorphism V ∗⊗sp(1, 2)⊥ ∼= Λ2V ∗⊗V
alt(V ∗⊗ sp(1,2)) induced

by the alternation map alt : V ∗ ⊗ so(V )
∼

−→ Λ2V ∗ ⊗ V , where V = R
12 and ⊥ stands for

the orthogonal complement in so(V ) with respect to the Killing form.

We have the following formula for each almost complex structure

4g((∇XJα)Y,Z) = 6dωα(X,JαY, JαZ)− 6dωα(X,Y,Z) + g(NJα(Y,Z), JαX),

where NJα denotes the Nijenhuis tensor, see [KN]. Therefore, ∇Jα is determined by dωα

and NJα . The 3-form dωα is SO0(1, 2)-invariant. Since

(Λ3(R1,2 ⊗ R
4))SO

0(1,2) ∼= Λ3
R
1,2 ⊗ S3

R
4,

it has the form dωα(x1⊗q1, x2⊗q2, x3⊗q3) = sα ·det(x1, x2, x3)σα(q1, q2, q3) with xi⊗qi ∈

R
1,2 ⊗R

4, sα ∈ R, and σα ∈ S3(R4)∗, where R1,2 ⊗R
4 is identified with the tangent space

of M at the canonical base point. Analogously, the Nijenhuis tensor is given by

NJα(x1 ⊗ q1, x2 ⊗ q2) = tα ·K(x1, x2)τα(q1, q2)

where x1, x2 ∈ R
1,2, q1, q2 ∈ R

4, tα ∈ R, τα ∈ S2(R4)∗ ⊗R
4 and K is the cross product on

R
1,2, since (Λ2(R1,2 ⊗ R

4)∗ ⊗ R
1,2 ⊗ R

4)SO
0(1,2) ∼= R ·K ⊗ S2(R4)∗ ⊗ R

4.

Finally we give an example for the case h = 0 but (HZar)0 = SO0(1, 2). As before, let

m = ℓ ·so(1, 2)⊕R
1,2⊗R

4−ℓ with ℓ ∈ {1, 2, 3, 4}. Let H be the image of SL(2,Z) under the

double cover SL(2,R) → SO0(1, 2). Then H is a discrete, Zariski dense and H-irreducible

subgroup. If we set G = H⋉
(

SO0(1, 2)ℓ × R
3(4−ℓ)

)

, we get the desired homogeneous space

M = G/H.
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