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École normale supérieure

45 rue d’Ulm, 75005 Paris, France

vicente.cortes@uni-hamburg.de, stefan.suhr@ens.fr

December 27, 2016

Abstract

We prove that every projective special Kähler manifold with regular boundary be-

haviour is complete and defines a family of complete quaternionic Kähler manifolds
depending on a parameter c ≥ 0. We also show that, irrespective of its boundary
behaviour, every complete projective special Kähler manifold with cubic prepoten-

tial gives rise to such a family. Examples include non-trivial deformations of non-
compact symmetric quaternionic Kähler manifolds.
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Introduction

Quaternionic Kähler manifolds constitute a much studied class of Einstein manifolds of

special holonomy [B]. All known complete examples of positive scalar curvature are

symmetric of compact type (Wolf spaces) and it has been conjectured that there are no

more complete quaternionic Kähler manifolds of positive scalar curvature [LS]. Besides the

noncompact duals of the Wolf spaces, there exist also nonsymmetric complete examples of

negative scalar curvature including locally symmetric spaces, nonsymmetric homogeneous

spaces (Alekseevsky spaces) and deformations of quaternionic hyperbolic space [L]. Our

work is motivated by the desire to obtain further complete examples of quaternionic

Kähler manifolds using ideas from supergravity and string theory.

Based on general supersymmetry arguments [BW] and dimensional reduction in field

theory it has been known for a long time in the physics community that projective spe-

cial Kähler manifolds (see Definition 3) are related to quaternionic Kähler manifolds of

negative scalar curvature. This correspondence, known as the supergravity c-map, was

established by Ferrara and Sabharwal [FS] who explicitly associated a quaternionic Kähler

metric with every projective special Kähler domain (see Definition 5), cf. [Hi] for another

proof. It was shown in [CHM] that the supergravity c-map maps every complete projective

special Kähler manifold to a complete quaternionic Kähler manifold.
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Motivated by the fact that in the low energy limit string theory is described by su-

pergravity, Robles Llana, Saueressig and Vandoren [RSV] proposed a deformation of the

Ferrara-Sabharwal metric (or supergravity c-map metric) depending on a real parameter.

This deformation, know as the one-loop deformation, is interpreted as the full perturba-

tive quantum correction (with no higher loop corrections) of supergravity when embedded

into string theory. It was proven in [ACDM] using an indefinite version of the HK/QK

correspondence [ACM] that the one-loop deformation of the Ferrara-Sabharwal metric

is indeed quaternionic Kähler on its domain of positivity. As a corollary, one obtains a

new proof of the quaternionic Kähler property for the (undeformed) Ferrara-Sabharwal

metric. It was also found that the completeness of the metric depends on the sign of the

deformation parameter. In particular, it was shown that the one-loop deformation of the

complex hyperbolic plane is complete for positive deformation parameter and incomplete

for negative deformation parameter.

The purpose of this paper is to give general completeness results for projective special

Kähler manifolds and one-loop deformations of Ferrara-Sabharwal metrics. These results

make it possible to construct many new explicit complete quaternionic Kähler manifolds of

negative scalar curvature by the supergravity c-map and its one-loop quantum correction.

After reviewing some basic definitions and facts concerning special Kähler manifolds in

the first section, we introduce the notion of regular boundary behaviour for special Kähler

manifolds in the second section. The main result of that section is that every projective

special Kähler manifold with regular boundary behaviour is complete, see Theorem 7 and

its Corollary 8 for projective special Kähler domains.

In the third section we study the one-loop deformation of Ferrara-Sabharwal met-

rics for nonnegative deformation parameter. We show that the one-loop deformation is

not only defined in the case of projective special Kähler domains but is a globally de-

fined one-parameter family of quaternionic Kähler metrics for every projective special

Kähler manifold, see Theorem 12. Moreover, we show that the resulting quaternionic

Kähler manifolds carry a globally defined integrable complex structure subordinate to the

quaternionic structure.

In the fourth section we prove the completeness of the one-loop deformation for non-

negative deformation parameter under the assumption that the initial projective special

Kähler manifold has either regular boundary behaviour (see Theorem 13) or is complete

with cubic prepotential (see Theorem 27). The latter projective special Kähler manifolds

are precisely those which can be obtained by dimensional reduction from five-dimensional

supergravity [DV] with complete scalar geometry [CHM]. The corresponding construc-

tion is known as the supergravity r-map, which maps projective special real manifolds to
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projective special Kähler domains.

As the simplest1 application of Theorem 27 (see Example 28) we discuss a one-

parameter deformation of the metric of the noncompact symmetric space G∗
2/SO(4) by

locally inhomogeneous complete quaternionic Kähler metrics, where G∗
2 denotes the non-

compact real form of the complex Lie group of type G2. In fact, Theorem 27 implies the

completeness of the one-loop deformation for all the symmetric quaternionic Kähler man-

ifolds of noncompact type with exception of the quaternionic hyperbolic spaces (which

are not in the image of the supergravity c-map) and the spaces X̃(n+1) = SU(n+1, 2)
S[U(n+1)×U(2)]

.

Similarly, applying Theorem 13 to the complex hyperbolic space (which is a projective

special Kähler domain with regular boundary behaviour) we obtain the completeness of

the one-parameter deformation of the remaining symmetric spaces X̃(n+1) , see Example

14.

Based on the effective necessary and sufficient completeness criterion for projective

special real manifolds provided in [CNS, Thm. 2.6], it is easy to construct many more

examples of complete projective special Kähler domains with cubic prepotential (see for

example [CDL] and work in progress by Jüngling, Lindemann and the first two authors)

and corresponding one-loop deformed quaternionic Kähler manifolds by Theorem 27.
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1 Preliminaries

1.1 Conical and projective special Kähler manifolds

First we recall some basic facts and definitions of special Kähler geometry [ACD, CM].

Definition 1. A conical affine special Kähler manifold (M,J, g,∇, ξ) is a pseudo-Kähler

manifold (M,J, g) endowed with a flat torsion-free connection ∇ and a vector field ξ such

that

1The corresponding projective special real manifold is a point.
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1. ∇ω = 0, where ω = g(J., .) is the Kähler form,

2. d∇J = 0, where J is considered as a 1-form with values in TM ,

3. ∇ξ = Dξ = Id, where D is the Levi-Civita connection and

4. g is positive definite on the distribution D = span{ξ, Jξ} and negative definite on

D⊥.

Note that the affine special Kähler metric g has the global Kähler potential f = g(ξ, ξ)

in the sense that
i

2
∂∂f = ω.

Furthermore the vector fields ξ and Jξ generate a holomorphic homothetic action of a

2-dimensional Abelian2 Lie algebra and Jξ is a Killing vector field.

Proposition 2. Let (M,J, g,∇, ξ) be a conical affine special Kähler manifold such that

the vector fields ξ and Jξ generate a principal C∗-action. Then the degenerate symmetric

tensor field

g′ := −g

f
+

α2 + (J∗α)2

f 2
, (1.1)

where α := g(ξ, ·) = 1
2
df , induces a Kähler metric ḡ on the quotient (complex) manifold

M̄ .

Proof: It suffices to check that the kernel of g′ is exactly D, the distribution tangent to

the C∗-orbits, and that g′ is invariant under the C∗-action.

Definition 3. A projective special Kähler manifold (M̄, ḡ) is a quotient as in the previous

proposition with canonical projection π : M → M̄ .

Notice that the projective special Kähler metric is related to the tensor field (1.1) by

g′ = π∗ḡ.

1.2 Conical and projective special Kähler domains

In this section we describe an important class of special Kähler manifolds, the so-called

special Kähler domains. It is known that every special Kähler manifold is locally isomor-

phic to a special Kähler domain [ACD].

Let F : M → C be a holomorphic function on a C∗-invariant domain M ⊂ Cn+1 \ {0}
such that

2Note that a (real) holomorphic vector field X always commutes with JX : LX(JX) = (LXJ)X = 0
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(i) F is homogeneous of degree 2, that is F (az) = a2F (z) for all z ∈ M , a ∈ C∗,

(ii) the real matrix (NIJ(z))I,J=0,...n, defined by

NIJ(z) := 2ImFIJ(z) = −i(FIJ (z)− FIJ(z)),

is of signature (1, n) for all z ∈ M , where FI :=
∂F
∂zI

, FIJ := ∂2F
∂zI∂zJ

etc.,

(iii) f(z) :=
∑

NIJ(z)z
I z̄J > 0 for all z ∈ M .

Definition 4. A conical special Kähler domain (M, g, F ) is a C
∗-invariant domain

M ⊂ Cn+1 \{0} endowed with a holomorphic function F (called holomorphic prepotential)

as above and with the pseudo-Riemannian metric

g =
∑

NIJdz
Idz̄J .

Notice that g has signature (2, 2n) and is pseudo-Kähler with the Kähler potential f .

A conical special Kähler domain becomes a conical special Kähler manifold if we endow

it with the complex structure J and the position vector field ξ induced from the ambient

space C
n+1. The flat connection ∇ is induced by the standard flat connection on R

2n+2

via the immersion M ∋ (z0, . . . , zn) 7→ Re(z0, . . . , zn, F0, . . . , Fn).

Next we consider the domain M̄ = π(M) ⊂ CP n which is the image of M under the

projection

π : Cn+1 \ {0} → CP n.

The quotient manifold M̄ inherits a (positive definite) Kähler metric ḡ uniquely deter-

mined by

π∗ḡ = −g

f
+

α2 + (J∗α)2

f 2
, (1.2)

where α := g(ξ, ·) = 1
2
df .

Definition 5. A projective special Kähler domain (M̄, ḡ) is the quotient M̄ of a conical

special Kähler domain M by the natural C∗-action, endowed with its canonical Kähler

metric ḡ.

Now we describe a local Kähler potential for the projective special Kähler metric ḡ in

a neighborhood of a point p ∈ M̄ . This yields a local Kähler potential K for projective

special Kähler manifolds. Let λ be any linear function on Cn+1 such that p lies in the

affine chart {λ 6= 0} ⊂ CP n. The function f
λλ̄

is homogeneous of degree 0 on M ∩{λ 6= 0}
and therefore well defined on π(M ∩ {λ 6= 0}) = M̄ ∩ {λ 6= 0}. Then

K := − log

(
f

λλ̄

)

is a Kähler potential for the metric ḡ on the open subset M̄ ∩{λ 6= 0}. By an appropriate

choice of linear coordinates (z0, . . . , zn) on Cn+1 we can assume that λ = z0.
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2 Special Kähler manifolds with regular boundary

behaviour

Now we consider certain compactifications of projective special Kähler manifolds by

adding a boundary. As a first step we consider conical affine special Kähler manifolds

with boundary.

Definition 6. A conical affine special Kähler manifold with regular boundary behaviour is

a conical affine special Kähler manifold (M,J, g,∇, ξ) which admits an embedding i : M →
M into a manifold with boundary M such that i(M) = int M := M \ ∂M and the tensor

fields (J, g, ξ) smoothly extend to M such that, for all boundary points p ∈ ∂M, f(p) =

0, dfp 6= 0 and gp is negative semi-definite on Hp := Tp∂M ∩ J(Tp∂M) with kernel

span{ξp, Jξp}, where f = g(ξ, ξ).

Note that for the smooth extendability of the metric g it is sufficient to assume that

J and f smoothly extend to the boundary. Indeed this follows from the fact that f is a

Kähler potential for g.

As in the case of empty boundary, we will assume that ξ and Jξ generate a principal

C∗-action on the manifold M. Then M̄ = M/C∗ is a manifold with boundary and its

interior M̄ = M/C∗ is a projective special Kähler manifold with projective special Kähler

metric ḡ. If the manifold M̄ with boundary is compact, then we will call (M̄, ḡ) a projective

special Kähler manifold with regular boundary behaviour.

The projective special Kähler domains considered in Remark 1 below, are examples

of projective special Kähler manifolds with regular boundary behaviour.

Theorem 7. Every projective special Kähler manifold with regular boundary behaviour

is complete.

Proof: Consider the underlying conical affine special Kähler manifold (M,J, g,∇, ξ) with

regular boundary behaviour. We first show that gp is nondegenerate for every point

p ∈ ∂M. By definition of regular boundary behavior we have g|Hp×Hp
≤ 0 with ker-

nel span{ξp, Jξp}. Let H
′
p ⊂ Hp be a complex hyperplane not containing ξp. Then gp

is negative definite on H′
p. For dimensional reasons Hp is a real codimension one sub-

space of Tp∂M. Let w be a vector in the complement of Hp in Tp∂M. By applying the

Gram-Schmidt procedure we can assume that w is gp-orthogonal to H′
p in Tp∂M. Then

span{w, Jw} is gp-orthogonal toH′
p by the J-invariance of gp. Since the real 4-dimensional

vector space span{ξp, Jξp, w, Jw} is gp-orthogonal to H′
p in TpM it suffices to show that

7



gp is nondegenerate on span{ξp, Jξp, w, Jw}. By continuity of df and ξ we know that

2gp(ξp, .) = dfp.

Since Jw /∈ Tp∂M and w ∈ Tp∂M we have

0 6= dfp(Jw) = 2gp(ξp, Jw) = −2gp(Jξp, w) and 0 = dfp(w) = 2gp(ξp, w) = 2gp(Jξp, Jw).

Now by considering the representing matrix of gp on span{ξp, Jξp, w, Jw} and using that

gp vanishes on span{ξp, Jξp} we see that gp is nondegenerate. This proves that gp is

nondegenerate and, therefore, of signature (2, 2n) by continuity.

Let γ : I → M̄ , I = [0, b), 0 < b ≤ ∞, be a curve which is not contained in any

compact subset of M̄ . We will show that γ has infinite length under the assumption of

regular boundary behaviour. Call a point p ∈ M̄ an accumulation point of γ if there

exists a sequence ti ∈ I such that lim ti = b and lim γ(ti) = p. By our assumption, γ has

at least one accumulation point p̄0 on the boundary. We distinguish two cases:

1st case: γ has exactly one accumulation point p0 which necessarily lies on the bound-

ary. Under this hypothesis, for every neighborhood of p̄0 we can find a ∈ I such that

γ([a, b)) is fully contained in that neighborhood.

Choose a point p0 ∈ π−1(p̄0) ⊆ ∂M. Since the signature of gp0 is (2, 2n), there exists a

complex hyperplane E ⊂ Tp0M on which −g is positive definite. Let M ′ denote a complex

hypersurface through p0 tangent to E such that −g|TM ′×TM ′ is positive definite.

The pullback of the projective special Kähler metric can be estimated on N = int(M ′)

as follows

(π∗ḡ)|N = − g

f

∣
∣
∣
∣
N

+
α2 + (J∗α)2

f 2

∣
∣
∣
∣
N

≥ α2

f 2

∣
∣
∣
∣
N

=
df 2

4f 2
. (2.1)

Now we show how this implies that γ has infinite length. We can assume by shifting the

initial point of the interval I that γ is fully contained in π(N) ⊂ M̄ . Let γN : I → N

be the curve which projects to γ under π|N . Then there exists a sequence ti ∈ [0, b) such

that f(γN(ti)) → 0 and γN([0, ti]) ⊂ γN(I) ⊂ N . In view of (2.1), we have

L(γ) ≥ L
(
γ|[0,ti]

)
= Lπ∗ḡ(γN |[0,ti]) ≥

1

2

∫ ti

0

∣
∣
∣
∣

d

dt
log f ◦ γN

∣
∣
∣
∣
dt

≥ −1

2

∫ ti

0

d

dt
log f ◦ γN dt =

1

2

(
log f(γN(0))− log f(γN(ti))

)
→ ∞.

This shows that γ has infinite length.

2nd case: γ has at least two accumulation points. Let p0 6= p1 be such accumulation

points. We know that at least one accumulation point, e.g. p0, lies in the boundary. Under

the assumption that there exists a second accumulation point, we now show that the
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second accumulation point can be taken arbitrarily near to p0. In other words, we claim

that for every given neighborhood U of p̄0 there exists an accumulation point p̄2 ∈ U\{p̄0}.
Indeed let us denote by Baux

r (p̄0) the ball of radius r > 0 centered at p̄0 with respect to an

auxiliary Riemannian metric on M̄. Choose r > 0 such that Baux
r (p̄0) ⊂ U . If p̄1 ∈ U there

is nothing to prove. If p̄1 /∈ U choose sequences si < ti < si+1 such that limi→∞ γ(si) = p̄0

and limi→∞ γ(ti) = p̄1. We can assume that γ(si) ∈ Baux
r/2 (p̄0) and γ(ti) /∈ Baux

r (p̄0) for

all i. Then there exists a sequence ui ∈ (si, ti) with γ(ui) ∈ Baux
r (p̄0) \ Baux

r/2 (p̄0). The

sequence γ(ui) has an accumulation point p̄2 ∈ Baux
r (p̄0) ⊂ U . We will continue to denote

this accumulation point arbitrarily close to p0 by p̄1.

If p1 ∈ M it is easy to see that γ has infinite length. In fact consider a geodesically

convex ball Bδ(p̄1) of radius δ > 0 centered at p̄1 with respect to ḡ. We take δ sufficiently

small such that Bδ(p̄1) is relatively compact in M̄ . Since the curve γ intersects the ball

Bδ/2(p̄1) an arbitrarily large number of times k, the length of γ is larger or equal than

kδ → ∞.

Thus we can assume that p̄1 lies in the boundary as well. By restricting U we can

assume that U is in the image of a complex hypersurface M ′ ⊂ M as above. We can

further assume that f ≤ ǫ on M ′. Since g′ = π∗ḡ is given by (1.1) the Riemannian metric

π∗ḡ|N on N = int(M ′) is bounded from below by the Riemannian metric

− g

f

∣
∣
∣
∣
N

≥ −1

ǫ
g|N . (2.2)

Let us denote by B′
r(p) the ball centered at p ∈ M ′ of radius r > 0 with respect to the

Riemannian metric −g|M ′ on M ′. We choose δ > 0 such that B′
δ(p0) is relatively compact

in M ′. Then every curve in B′
δ(p0) from B′

δ/2(p0) ⊂ M ′ (p0 := (π|M ′)−1(p̄0)) which leaves

B′
δ(p0) has length with respect to −g|M ′ bounded from below by some positive constant c

(in fact c = δ/2). Since we can assume that p1 := (π|M ′)−1(p̄1) is arbitrarily close to p0 we

can assume that p1 ∈ B′
δ(p0) and there exist disjoint balls B′

δ′(p0), B
′
δ′(p1) ⊂ B′

δ(p0) which

have distance with respect to −g|M ′ bounded from below by some positive constant. By

reducing the above constant c, if necessary, we can assume that this constant is again c.

Then we can conclude that every curve which connects a point in B′
δ′(p0) with a point

in B′
δ′(p1) has length with respect to −g|M ′ bounded from below by c. Since p0 and p1

are accumulation points of γ either γ leaves the set π(N) infinitely often, in which case γ

has infinite length, or γ stays eventually inside π(N), in which case it can be eventually

identified with a curve γN in N by the projection π|N . Since p̄0 and p̄1 are accumulation

points of γN there exists an infinite number of arcs of γN in N connecting B′
δ′(p0) with

B′
δ′(p1). Again the length is infinite. In both cases we used the estimate (2.2) together

with the lower bound c on the length of arcs with respect to −g|N .
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Remark 1. In the case of conical affine special Kähler domains the description of regular

boundary behaviour simplifies as follows. Let (M̄, ḡ) be a projective special Kähler domain

with underlying conical special Kähler domain (M, g, F ). Suppose that the affine Kähler

potential f extends to a smooth function (denoted again by f) on some neighborhood of

cl(M) \ {0}, where cl(M) denotes the closure of M , such that f(p) = 0, dfp 6= 0, and that

gp is negative semi-definite on Tp∂M ∩ J(Tp∂M) with kernel Cξp = Cp for all boundary

points p ∈ ∂M \ {0}. Then (M, g, F ) is an example of a conical affine special Kähler

manifold with regular boundary behaviour and (M̄, ḡ) an example of a projective special

Kähler manifold with regular boundary behaviour.

The following result is an immediate consequence of Theorem 7.

Corollary 8. Under the above assumptions on the boundary behaviour of the affine

Kähler potential f in Remark 1, the Riemannian manifold (M̄, ḡ) is complete.

3 One-loop deformed Ferrara-Sabharwal metric

In this section we will recall the definition of the one-loop (quantum) deformation of

the Ferrara-Sabharwal metric which is a one-parameter family of quaternionic Kähler

metrics associated with a projective special Kähler domain [RSV, ACDM]. The fact that

the metric is quaternionic Kähler was proven in [ACDM] with the help of an indefinite

version of Haydys’ HK/QK correspondence [Ha] developed in [ACM]. This implies that

the reduced scalar curvature ν = scal
4m(m+2)

is negative and more precisely given by ν = −2

with the present normalizations. Herem is the quaternionic dimension of the quaternionic

Kähler manifold. In the special case of the (undeformed) Ferrara-Sabharwal metric the

quaternionic Kähler property was obtained by different methods in [FS, Hi].

Every projective special Kähler manifold admits a covering by projective special Kähler

domains and we will show that the one-loop deformed Ferrara-Sabharwal metrics asso-

ciated with the domains can be consistently glued to a globally defined (quaternionic

Kähler; to be shown) metric. This generalizes the result that the Ferrara-Sabharwal met-

ric, which was originally defined for special Kähler domains [FS], is globally defined for

every projective special Kähler manifold [CHM]. We will also show that the above quan-

tum deformed quaternionic Kähler manifolds admit a globally defined integrable complex

structure J1 subordinate to the quaternionic structure, generalizing results of [CLST] for

the Ferrara-Sabharwal metric.
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3.1 The supergravity c-map

Let (M̄, ḡ) be a projective special Kähler domain of complex dimension n. The super-

gravity c-map [FS] associates with (M̄, ḡ) a quaternionic Kähler manifold (N̄, gN̄) of

dimension 4n + 4. Following the conventions of [CHM], we have N̄ = M̄ × R>0 × R2n+3

and

gN̄ = ḡ + gG,

gG =
1

4ρ2
dρ2 +

1

4ρ2

(

dφ̃+
∑(

ζIdζ̃I − ζ̃Idζ
I
))2

+
1

2ρ

∑

IIJ(m)dζIdζJ

+
1

2ρ

∑

I
IJ(m)(dζ̃I + RIK(m)dζK)(dζ̃J + RJL(m)dζL),

where (ρ, φ̃, ζ̃I , ζ
I), I = 0, 1, . . . , n, are standard coordinates on R>0 ×R2n+3. The real-

valued matrices I(m) := (IIJ(m)) and R(m) := (RIJ(m)) depend only on m ∈ M̄ and

I(m) is invertible with the inverse I−1(m) =: (IIJ(m)). More precisely,

NIJ := RIJ + iIIJ := F̄IJ + i

∑

K NIKz
K
∑

L NJLz
L

∑

IJ NIJzIzJ
, NIJ := 2ImFIJ , (3.1)

where F is the holomorphic prepotential with respect to some system of special holomor-

phic coordinates (zI) on the underlying conical special Kähler domain M → M̄ . Notice

that the expressions are homogeneous of degree zero and, hence, well-defined functions

on M̄ . It is shown in [CHM, Cor. 5] that the matrix I(m) is positive definite and hence

invertible and that the metric gN̄ does not depend on the choice of special coordinates

[CHM, Thm. 9]. It is also shown that (N̄, gN̄) is complete if and only if (M̄, ḡ) is complete

[CHM, Thm. 5]. Using (pa)a=1, ..., 2n+2 := (ζ̃I , ζ
J)IJ=0,...,n and the positive definite matrix

[CHM]

(Ĥab) :=

(
I−1 I−1R

RI−1 I+ RI−1R

)

,

we can combine the last two terms of gG into 1
2ρ

∑
dpaĤ

abdpb, i.e. the quaternionic Kähler

metric is given by

gFS := gN̄ = ḡ +
1

4ρ2
dρ2 +

1

4ρ2

(

dφ̃+
∑(

ζIdζ̃I − ζ̃Idζ
I
))2

+
1

2ρ

∑

dpaĤ
abdpb. (3.2)

This metric is known as the Ferrara-Sabharwal metric.

3.2 The one-loop deformation

Now we consider a family of metrics gcFS depending on a real parameter c such that

g0FS = gFS. To define this family we assume for the moment that z0 6= 0 on the conical

affine special Kähler domain M ⊂ Cn+1. Under this assumption we can consider the

projective special Kähler domain as a subset M̄ ⊂ Cn ⊂ CP n.

11



Definition 9. For any c ∈ R, the metric

gcFS =
ρ+ c

ρ
ḡ +

1

4ρ2
ρ+ 2c

ρ+ c
dρ2 +

1

4ρ2
ρ+ c

ρ+ 2c
(dφ̃+

n∑

I=0

(ζIdζ̃I − ζ̃Idζ
I) + cdcK)2

+
1

2ρ

2n+2∑

a, b=1

dpaĤ
abdpb +

2c

ρ2
eK

∣
∣
∣
∣
∣

n∑

I=0

(XIdζ̃I + FI(X)dζI)

∣
∣
∣
∣
∣

2

(3.3)

is defined on the domains

N ′
(4n+4, 0) := {ρ > −2c, ρ > 0} ⊂ N̄,

N ′
(4n, 4) := {−c < ρ < −2c} ⊂ N̄ ,

N ′
(4, 4n) := M̄ × {−c < ρ < 0} × R

2n+3 ⊂ M̄ × R
<0 × R

2n+3 (3.4)

for any projective special Kähler domain M̄ defined by a holomorphic function F on

the underlying conical affine special Kähler domain M , where N̄ = M̄ × R>0 × R2n+3,

(Xµ)µ=1, ..., n are standard inhomogeneous holomorphic coordinates on M̄ ⊂ Cn, X0 := 1,

the real coordinate ρ corresponds to the second factor, (φ̃, ζ̃I , ζ
I)I=0, ..., n are standard real

coordinates on R
2n+3, and K := − log

∑n
I, J=0X

INIJ(X)X̄J is the Kähler potential for ḡ.

The metric gcFS is called the one-loop deformed Ferrara-Sabharwal metric.

Proposition 10. Let M̄ ⊂ Cn ⊂ CP n be a projective special Kähler domain and gcFS,

gc
′

FS one-loop deformed Ferrara-Sabharwal metrics for positive deformation parameters

c, c′ ∈ R>0 defined on N̄ = N ′
(4n+4, 0). Then (N̄ , gcFS) and (N̄ , gc

′

FS) are isometric.

Proof: Any eλ ∈ R>0 acts diffeomorphically on N̄ = M̄ × R>0 × R2n+3 as follows:

N̄ → N̄ , (m, ρ, φ̃, ζ̃I , ζ
I)I=0, ..., n 7→ (m, eλρ, eλφ̃, eλ/2ζ̃I , e

λ/2ζI)I=0, ..., n.

Under this action, gcFS 7→ ge
−λc

FS . Choosing eλ = c/c′, this shows that

(N̄, gcFS) and (N̄, gc
′

FS) are isometric.

3.3 Globalization of the one-loop deformed metric

Let (M̄, ḡ) be a projective special Kähler manifold with underlying conical affine special

Kähler manifold (M,J, g,∇, ξ). Consider a covering of M̄ by open subsets M̄α isomor-

phic to projective special Kähler domains. Over the preimage Mα := π−1(M̄α) we have

a system of so-called conical affine special coordinates (zI)0≤I≤n which correspond to the

natural coordinates in the underlying conical affine special Kähler domain equipped with

the holomorphic prepotential F . Notice that the map φα : Mα → C2n+2, p 7→ (zI , FI)|p,
where FI denotes the I-th partial derivative at the point z = (z0, . . . , zn), is a conical

12



nondegenerate Lagrangian immersion in the sense of [CM]. Further note that the coordi-

nates as well as the prepotential depend on α. To indicate this dependence we will write

zIα, Fα etc. Since any pair of conical nondegenerate Lagrangian immersions is related by

a real linear symplectic transformation [ACD, CM] there exists an element

O = Oβ,α =

(
A B
C D

)

∈ Sp(R2n+2)

such that φβ = O ◦ φα on Mα ∩Mβ.

Define N̄α := M̄α×R>0×S1
c ×R2n+2 and Nα := Mα×R>0×S1

c ×R2n+2, where R>0×
R2n+3 is endowed with the standard coordinate system (ρ, φ̃, ζ̃I , ζ

J) = (ρα, φ̃α, ζ̃I,α, ζ
J
α) =:

(ρα, φ̃α, vα) and S1
c := R/2πcZ. Notice that S1

c can be canonically identified with S1 =

R/2πZ by [x] 7→ [cx] if c 6= 0 and that S1
0 = R.

Next we define an equivalence relation on the disjoint union of the N̄α (and similarly

on the disjoint union of the Nα)

(mα, ρα, φ̃α, vα) ∼ (mβ, ρβ, φ̃β, vβ)

:⇔ mα = mβ , ρα = ρβ , φ̃β = φ̃α − ic log
(

z0αz̄
0
β

z0
β
z̄0α

)

, vβ = (Ot
β,α)

−1vα.

Proposition 11. The quotient N̄ := ∪αN̄α/ ∼ is a smooth manifold of real dimension

4n+4 fibering over the projective special Kähler manifold M̄ as a bundle of flat symplectic

manifolds modeled on the quotient of a symplectic vector space R2n+2 by a cyclic group of

translations (the cyclic group is trivial for c = 0). By π we denote the induced natural

projection N̄ → M̄ . Similarly, the quotient N := ∪αNα/ ∼ is a bundle over the conical

affine special Kähler manifold M with flat symplectic fibers.

Proof: It is clear that N̄ is a fibre bundle with standard fibre R>0 × S1
c × R2n+2. By

taking the logarithm of ρ one can identify the standard fibre with the quotient R× S1
c ×

R2n+2 of R2n+4 by the group of translations 2πcZ acting on the second coordinate. Since

the transition functions take values in the group of affine symplectic transformations

of R × S1
c × R

2n+2, the fibers of the resulting bundle naturally carry a flat symplectic

structure. In fact, the linear part of the transition functions takes values in the subgroup

{IdR2} × Sp(R2n+2) ⊂ Sp(R2n+4).

To avoid a parameter-dependence of the domain of definition of the metric we will

assume from now on for simplicity that the one-loop parameter c > 0.

Theorem 12. The quaternionic Kähler metrics gcFS,α, c > 0, given by (3.3) on each

coordinate domain N̄α of N̄ using the coordinates (Xµ, ρ, φ̃, ζ̃I , ζ
J) = (Xµ

α , ρα, φ̃α, ζ̃I,α, ζ
J
α)

induce a well-defined quaternionic Kähler metric gcFS on N̄ . Furthermore there exists a

13



globally defined integrable complex structure J1 subordinate to the parallel skew-symmetric

quaternionic structure Q of (N̄, gcFS).

Proof: First we show that the quaternionic Kähler metrics defined on the domains

N̄α are consistent. The terms ρ+c
ρ
ḡ and 1

4ρ2
ρ+2c
ρ+c

dρ2 in (3.3) are manisfestly coordinate

independent, since the transition functions do not act on ρ. The one-form ηcan :=
∑n

I=0(ζ
Idζ̃I − ζ̃Idζ

I) is obviously invariant under linear symplectic transformations and

therefore also coordinate independent. The invariance of the term
∑2n+2

a, b=1 dpaĤ
abdpb was

shown in [CHM, Lemma 4]. Next we show the invariance of dφ̃+ cdcK. Since

∑

I,J

XINIJX̄
J =

f

z0z̄0
,

where f = g(ξ, ξ) =
∑

I,J z
INIJ z̄

J is coordinate independent (but defined on N , not on

N̄), we see that

cdcKβ − cdcKα = cdc log

(
z0β z̄

0
β

z0αz̄
0
α

)

= icd log

(

z0αz̄
0
β

z0β z̄
0
α

)

,

where we have used that dc = −J∗d on functions. By the transition rule for φ̃ we have

dφ̃β = dφ̃α − icd log

(

z0αz̄
0
β

z0β z̄
0
α

)

.

This shows the invariance of dφ̃+ cdcK.

Finally we show the invariance of eK
∣
∣
∣
∑n

I=0(X
Idζ̃I + FI(X)dζI)

∣
∣
∣

2

. By rewriting this

as

1
∑

XINIJ(X)X̄J

∣
∣
∣
∣
∣

n∑

I=0

(XIdζ̃I + FI(X)dζI)

∣
∣
∣
∣
∣

2

= z0z̄0

f

∣
∣
∣
∑n

I=0
zI

z0
dζ̃I + FI(

z
z0
)dζI

∣
∣
∣

2

= 1
f

∣
∣
∣
∑n

I=0 z
Idζ̃I + FI(z)dζ

I
∣
∣
∣

2

we see that the term is coordinate independent. In fact, the sum
∑n

I=0 z
Idζ̃I + FI(z)dζ

I

is obtained from the natural pairing between C2n+2 and (C2n+2)∗ ⊃ (R2n+2)∗ which is,

in particular, invariant under linear symplectic transformations. Summarizing we have

shown that the metric gcFS is well defined on N̄ .

Since gcFS is quaternionic Kähler (of negative scalar curvature) on each of the domains

N̄α it follows that gcFS is a quaternionic Kähler metric. In fact, the locally defined parallel

skew-symmetric quaternionic structures on the domains N̄α are uniquely determined by

the Lie algebra of the holonomy group of gcFS|N̄α
and therefore extend to a globally defined
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quaternionic structure Q. It can be also checked by direct calculations (see below) that the

locally defined quaternionic structures Qα on N̄α are consistent. In fact, the description of

the quaternionic Kähler structure on N̄α in terms of the HK/QK-correspondence [ACDM]

yields an almost hypercomplex structure (J1, J2, J3) on N̄α which defines the quaternionic

structure Qα. The structure is defined by the three Kähler forms ωi = gcFS(Ji·, ·), i =
1, 2, 3. These are given by

ωi = −dθi + 2θj ∧ θk,

where (i, j, k) is a cyclic permutation of {1, 2, 3} and the one-forms θi on N̄α are defined

by

θ1 = − 1

4ρ

(
dφ̃+ (ρ+ c)dcK− ηcan

)

θ2 + iθ3 = i

√
ρ+ c

ρ
eK/2

n∑

I=0

XIAI , AI := dζ̃I +
∑

J

FIJdζ
J .

Next we prove that Q admits a global section J1 by showing that the Kähler form

ω1 is invariantly defined, i.e. coordinate independent. First we remark that θ1 can be

decomposed as

θ1 = − 1

4ρ

(
dφ̃+ cdcK− ηcan

)
− 1

4
dcK,

where the first was already shown to be invariant. Using that K = − log f
(r0)2

, where

z0 = r0eiϕ
0

, the second term can be decomposed as

−1

4
dcK =

1

4
dc log f +

1

2
dc log r0 =

1

4
dc log f − 1

2
dϕ0.

Since the first term on the right-hand side is invariant we see that

θ1 = θinv1 − 1

2
dϕ0,

where θinv1 is coordinate independent. This implies that dθ1 is invariant. Now we observe

that
∑

zIAI

is invariant (defined on N). This follows from

∑

zIAI =
∑

zIdζ̃I + FI(z)dζ
I ,

where the right-hand side was already observed to be invariant. As a consequence, the

two-form

θ2 ∧ θ3 = − 1

2i
(θ2 + iθ3) ∧ (θ2 − iθ3)

15



is also invariant, since

θ2 + iθ3 =
i

ρ

(
ρ+ c

f

) 1

2

e−iϕ0
∑

zIAI ,

which implies that eiϕ
0

(θ2 + iθ3) is a well defined one-form on N .

Combining these results we have shown that ω1 = −dθ1 + 2θ2 ∧ θ3 is invariant. By

similar calculations it is easy to show that a conformal multiple eiϕ
0

ω of the (2, 0)-form

ω = ω2 + iω3

with respect to J1 is invariantly defined onN (and horizontal with respect to the projection

N → N̄ induced by M → M̄). This implies that the complex plane spanned by ω and

ω̄ is invariantly defined on N̄ and therefore the real plane spanned by ω2 and ω3. This

reproves the fact that the quaternionic structure is well-defined.

Now we prove the integrability of J1. It is sufficent to check this on N̄α. In the case

c = 0 this was previously shown in [CLST]. With the definition of ω1 above we compute

ω1 =
1

4ρ

(

dρ ∧ dcK+ (ρ+ c) ddcK− 2
n∑

I=0

dζ̃I ∧ dζI

)

+
1

ρ
dρ ∧ θ1

+
ρ+ c

ρ2
eKi(

∑

I

XIAI) ∧ (
∑

J

X̄JĀJ)

=
ρ+ c

ρ

1

4
ddcK+

i

2

1

4ρ2
ρ+ c

ρ+ 2c
τ ∧ τ̄ − i

2

1

ρ

n∑

I, J=0

N IJAI ∧ ĀJ

+
i

2

2ρ+ 2c

ρ2
eK(
∑

I

XIAI) ∧ (
∑

J

X̄JĀJ), (3.5)

where

τ := dφ̃+ ηcan + cdcK+ i
ρ+ 2c

ρ+ c
dρ

and we used that

n∑

I, J=0

iN IJAI ∧ ĀJ =

n∑

I, J, K=0

iN IJ(FIK − F̄IK)dζ
K ∧ ζ̃J =

n∑

I=0

dζ̃I ∧ dζI .

Together with the expression

gcFS =
ρ+ c

ρ
ḡ +

1

4ρ2
ρ+ c

ρ+ 2c
|τ |2 − 1

ρ

n∑

I, J=0

N IJAI ĀJ +
2ρ+ 2c

ρ2
eK
∣
∣

n∑

I=0

XIAI

∣
∣2

for the deformed Ferrara-Sabharwal metric, which can be proven using [ACDM, Lemma

3], (3.5) shows that

(τ, dXµ, AI)
µ=1, ..., n
I=0, ..., n
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is a coframe of holomorphic one-forms with respect to J1. This can be linearly combined

into the coframe

(
τ + 2ic∂K−2

n∑

I=0

ζIAI −
n∑

I, J,K=0

ζIFIJK(X)ζJdXK ,

dXµ,
1

2
(AI −

n∑

J,K=0

FIJK(X)ζJdXK)
)

of closed holomorphic one-forms which corresponds to the J1-holomorphic coordinate

system

(χ, Xµ, wI =
1

2
(ζ̃I +

n∑

J=0

FIJ(X)ζJ))µ=1, ..., n
I=0, ..., n ,

where

χ := φ̃+ i(ρ+ c(K+ log(ρ+ c)))−
n∑

I=0

ζI ζ̃I −
n∑

I, J=0

ζIFIJ(X)ζJ .

This proves the integrability of J1.

4 Completeness of the one-loop deformation

4.1 Completeness of the one-loop deformation for projective

special Kähler manifolds with regular boundary behaviour

In this and the next section, we prove under two different types of natural assumptions

the completeness of the one-loop deformed Ferrara-Sabharwal metric gcFS (see Definition

9 and Theorem 12) on N̄ for c ≥ 0. For c < 0 and the case of projective special Kähler

domains, (N ′
(4n+4, 0), g

c
FS) is known to be incomplete [ACDM, Rem. 9].

Theorem 13. Let (M̄, ḡ) be a projective special Kähler manifold with regular boundary

behaviour and (N̄, gcFS) the one-loop deformed Ferrara-Sabharwal (quaternionic Kähler)

manifold associated to (M̄, ḡ). Then (N̄, gcFS) is complete for all c ≥ 0.

Example 14. The projective special Kähler manifold CHn with quadratic holomorphic

prepotential F = i
2
((z0)2 −∑n

µ=1(z
µ)2) on the conical affine special Kähler domain M :=

{|z0|2 >
∑n

µ=1 |zµ|2} has regular boundary behaviour in the sense of Definition 6. Thus

Corollary 8 implies the completeness of the projective special Kähler domain CHn.

We know that (N̄, gFS) is isometric to the series of Wolf spaces

X̃(n+ 1) =
SU(n + 1, 2)

S[U(n + 1)× U(2)]
(4.1)

of non-compact type, see e.g. [DV].
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Corollary 15. For any n ∈ N0 and c ∈ R≥0, the deformed Ferrara-Sabharwal metric

gcFS =
ρ+ c

ρ

1

1− ‖X‖2
( n∑

µ=1

dXµdX̄µ +
1

1− ‖X‖2
∣
∣

n∑

µ=1

X̄µdXµ
∣
∣
2
)

+
1

4ρ2
ρ+ 2c

ρ+ c
dρ2 − 2

ρ
(dw0dw̄0 −

n∑

µ=1

dwµdw̄µ)

+
ρ+ c

ρ2
4

1− ‖X‖2
∣
∣dw0 +

n∑

µ=1

Xµdwµ

∣
∣2

+
1

4ρ2
ρ+ c

ρ+ 2c

(

dφ̃− 4Im
(
w̄0dw0 −

n∑

µ=1

w̄µdwµ

)
+

2c

1− ‖X‖2 Im
n∑

µ=1

X̄µdXµ
)2

with w0 :=
1
2
(ζ̃0 + iζ0), wµ := 1

2
(ζ̃µ − iζµ), µ = 1, . . . , n, on3

N̄ = {(X, ρ, φ̃, w) ∈ C
n × R

>0 × R× C
n+1 | ‖X‖2 < 1}

defined by the holomorphic function

F =
i

2

(

(z0)2 −
n∑

µ=1

(zµ)2

)

on M :=

{

|z0|2 >
n∑

µ=1

|zµ|2
}

is a complete quaternionic Kähler metric. Furthermore (N̄, gFS) is isometric to the sym-

metric space X̃(n + 1) = SU(n+1, 2)
S[U(n+1)×U(2)]

.

Proof of Theorem 13. Let γ : [0, b) → N̄ be a smooth curve which leaves every compact

subset of N̄ , b ∈ (0,∞]. We have to show that γ has infinite length. By Theorem 7 we

know that (M̄, ḡ) is complete.

Lemma 16. For every complete Riemannian manifold (M, g) and c ≥ 0 the Riemannian

manifold (

M × R
>0,

ρ+ c

ρ
g +

1

4ρ2
ρ+ 2c

ρ+ c
dρ2
)

is complete. Here ρ denotes the R
>0-coordinate.

Proof: This follows from the estimate

ρ+ c

ρ
g +

1

4ρ2
ρ+ 2c

ρ+ c
dρ2 ≥ g +

1

4
(d log ρ)2.

3In the case of a projective special Kähler domain M̄ we consider N̄ = M̄ × R>0 × R2n+3 as in
Definition 9, rather than its cyclic quotient M̄ × R>0 × S1

c × R2n+2 on which the metric is also defined.
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We consider the projection

N̄ → M̄ × R
>0, p 7→ (π(p), ρ(p)),

where π : N̄ → M̄ is the fibre bundle projection introduced in Proposition 11. Since the

metric
ρ+ c

ρ
g +

1

4ρ2
ρ+ 2c

ρ+ c
dρ2

on the base M̄×R>0 is complete by the previous lemma, the projection γ̄ of γ to M̄×R>0

either stays in a compact set or has infinite length. In the latter case γ has infinite length.

So we can assume that γ̄ stays in a compact set.

Using similar arguments as in the proof of Theorem 7 we can assume that γ̄ has a

unique accumulation point (p̄0, ρ0). In fact, the existence of two different accumulation

points implies that γ and, hence, γ have infinite length. There exists a sequence ti → b

with γ̄(ti) → (p̄0, ρ0) ∈ M̄ × R>0 and γ(ti) leaves every compact subset of N̄α
∼= M̄α ×

R>0 × S1
c × R2n+2, where M̄α is a projective special Kähler domain containing (p̄0, ρ0)

and N̄α is the corresponding trivial fibre bundle endowed with the one-loop deformed

Ferrara-Sabharwal metric associated to the projective special Kähler domain M̄α. Note

that πR2n+2(γ(ti)) ∈ R2n+2 is unbounded.

Lemma 17. For ε > 0 and sufficiently small relatively compact M̄α ⊂ M̄ we have4

gcFS ≥ δ · gFS on N̄α ∩ {ρ > ε} for some δ = δ(α, ε) > 0.

Proof: Choose linear coordinates (z0, . . . , zn) for the underlying conical affine special

Kähler domain Mα such that gα restricted to the (z1, . . . , zn)-plane is positive definite.

This can always be achieved by restricting the coordinate domain. Then it follows from

(1.1) that ḡα ≥ k
4
(dcK)2 for some k > 0. Let ε > 0 be given. We claim that

gcFS ≥ 1

2

kε

kε+ c
gFS

on N̄α ∩ {ρ > ε}. Note first that

ḡ +
1

4ρ2
ρ+ 2c

ρ+ c
dρ2 ≥ 1

2

kε

kε+ c

(

ḡ +
1

4ρ2
dρ2
)

.

Next the last two expressions in the definition of gcFS can be estimated from below

1

2ρ

∑

dpaĤ
abdpb +

2c

ρ2
eK
∣
∣
∣

∑

(XIdζ̃I + FI(X)dζI)
∣
∣
∣

2

≥ 1

2

kǫ

kǫ+ c

1

2ρ

∑

dpaĤ
abdpb,

4Here gFS denotes the metric on N̄α = M̄α × R>0 × S1
c × R2n+2 induced by the metric gFS on

M̄α×R>0×R2n+3. Alternatively one can compare the metrics by pulling back gc
FS

to the cyclic covering
M̄α × R>0 × R2n+3 → N̄α.
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since kǫ
kǫ+c

≤ 1 and (Ĥab) is positive definite. Last setting

θ0 := dφ̃+
∑

(ζIdζ̃I − ζ̃Idζ
I),

we conclude

c

ρ
ḡ +

1

4ρ2
ρ+ c

ρ+ 2c
(θ0 + cdcK)2

≥ kc

4ρ
(dcK)2 +

1

4ρ2
ρ+ c

ρ+ 2c
︸ ︷︷ ︸
1

2
≤...≤1







c

kε+ c
(θ0 + (kε+ c)dcK)2

︸ ︷︷ ︸

≥0

+
kε

kε+ c
θ20 − kcε(dcK)2







≥ 1

2

kε

kε+ c

1

4ρ2
θ20 +

ck

4ρ2
(ρ− ε)(dcK)2

≥ 1

2

kε

kε+ c

1

4ρ2

(

dφ̃+
∑

(ζIdζ̃I − ζ̃Idζ
I)
)2

,

where the last inequality follows from ρ > ε. Combining these three inequalities, we have

shown that

gcFS ≥ 1

2

kε

kε+ c
gFS

on N̄α ∩ {ρ > ε}.

Choose ε > 0 such that ρ0 ≥ 2ε. For the undeformed metric gFS on N̄α we have

gFS = ḡ|M̄α
+ gG, where gG is a family of left invariant metrics on G = R>0 × R2n+3

endowed with the Lie group structure defined in [CHM].

Since M̄α ⊂ M̄ is relatively compact, we can estimate gG ≥ constg0G for some left

invariant metric g0G on the group fibre G. This implies that the curve γ has infinite

length, since every homogenous Riemannian metric is complete and the length of γ can

be estimated by the length of its projection to G.

4.2 Completeness of the one-loop deformation for complete pro-

jective special Kähler manifolds with cubic prepotential

In this section, we prove completeness of the one-loop deformation gcFS in the case of com-

plete projective special Kähler manifolds in the image of the supergravity r-map. We will

recall the definition of the latter manifolds below. They are also know as projective special

Kähler manifolds with cubic prepotential or projective very special Kähler manifolds.

In Section 4.2.1, we introduce projective special real geometry and the supergravity r-

map. The latter assigns a complete projective special Kähler manifold to each complete

projective special real manifold. In Section 4.2.2, we derive a sufficient condition for the
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completeness of (N ′
(4n+4, 0), g

c
FS) for c ∈ R≥0. Recall that we construct (N ′

(4n+4, 0), g
c
FS)

from a projective special Kähler manifold. We prove the completeness of (N ′
(4n+4, 0), g

c
FS)

in the case that the projective special Kähler manifold is obtained from a complete pro-

jective special real manifold via the supergravity r-map and in the case of CHn.

As a corollary, we obtain deformations by complete quaternionic Kähler metrics of all

known homogeneous quaternionic Kähler manifolds of negative scalar curvature (including

symmetric spaces), except for quaternionic hyperbolic space. In the case of the series

X̃(n + 1) = SU(n+1, 2)
S[U(n+1)×U(2)]

, which corresponds to the projective special Kähler domains

CHn with quadratic prepotential, we already gave a simple and explicit expression for

the deformed metric in Corollary 15.

In this chapter, we only discuss positive definite quaternionic Kähler metrics.

4.2.1 Projective special real geometry and the supergravity r-map

Definition 18. Let h be a homogeneous cubic polynomial in n variables with real coef-

ficients and let U ⊂ Rn\{0} be an R>0-invariant domain such that h|U > 0 and such that

gH := −∂2h
∣
∣
H
is a Riemannian metric on the hypersurface H := {x ∈ U | h(x) = 1} ⊂ U .

Then (H, gH) is called a projective special real (PSR) manifold.

Define M̄ := Rn + iU ⊂ Cn. We endow M̄ with the standard complex structure and use

holomorphic coordinates (Xµ = yµ + ixµ)µ=1, ..., n ∈ Rn + iU . We define a Kähler metric

ḡ = 2
n∑

µ, ν=1

gµν̄dX
µdX̄ν :=

n∑

µ, ν=1

∂2K

∂Xµ∂X̄ν
dXµdX̄ν

=
1

2

n∑

µ, ν=1

∂2K

∂Xµ∂X̄ν
(dXµ ⊗ dX̄ν + dX̄ν ⊗ dXµ)

on M̄ with Kähler potential

K(X, X̄) := −log 8h(x) = −logh
(
i(X̄ −X)

)
. (4.2)

Definition 19. The correspondence (H, gH) 7→ (M̄, ḡ) is called the supergravity

r-map.

Remark 2. With ∂
∂Xµ = 1

2

(
∂

∂yµ
− i ∂

∂xµ

)

, we have

2ḡ

(
∂

∂Xµ
,

∂

∂X̄ν

)

= 2gµν̄ =
∂2K(X, X̄)

∂Xµ∂X̄ν
=: Kµν̄

= −1

4

∂2log h(x)

∂xµ∂xν
= −hµν(x)

4h(x)
+

hµ(x)hν(x)

4h2(x)
, (4.3)
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where hµ(x) :=
∂h(x)
∂xµ , hµν(x) :=

∂2h(x)
∂xµ∂xν , etc., for µ, ν = 1, . . . , n.

The inverse (Kν̄λ)ν, λ=1, ..., n of (Kµν̄)µ, ν=1, ..., n is given by

K
ν̄λ = −4h(x)hνλ(x) + 2xνxλ. (4.4)

This can be shown using the fact that h is a homogeneous polynomial of degree three:

n∑

µ=1

hµ(x)x
µ = 3h(x),

n∑

ν=1

hµν(x)x
ν = 2hµ(x),

n∑

ρ=1

hµνρ(x)x
ρ = hµν , hµνρσ = 0. (4.5)

Remark 3. Note that any manifold (M̄, ḡ) in the image of the supergravity r-map is a

projective special Kähler domain. The corresponding conical affine special Kähler domain

is the trivial C∗-bundle

M := {z = z0 · (1, X) ∈ C
n+1 | z0 ∈ C

∗, X ∈ M̄ = R
n + iU} → M̄

endowed with the standard complex structure J and the metric gM defined by the holo-

morphic function

F : M → C, F (z0, . . . , zn) =
h(z1, · · · , zn)

z0
.

Note that in general, the flat connection5 ∇ on M is not the standard one induced from

C
n+1 ≈ R

2n+2. The homothetic vector field ξ is given by

ξ =
∑n

I=0(z
I ∂
∂zI

+ z̄I ∂
∂z̄I

). To check that ḡ is the corresponding projective special Kähler

metric, one uses the fact that

8|z0|2h(x) =
n∑

I, J=0

zINIJ(z, z̄)z̄
J , (4.6)

where as above, x = (ImX1, . . . , ImXn) = (Im z1

z0
, . . . , Im zn

z0
) ∈ U (see [CHM]).

Definition 20. A Kähler manifold (M̄, ḡ) in the image of the supergravity r-map is

called a projective very special Kähler manifold.

Due to the following two results, projective special real geometry constitutes a powerful

tool for the construction of complete projective special Kähler manifolds.

Theorem 21. [CHM]

The supergravity r-map preserves completeness, i.e. it assigns a complete projective special

Kähler manifold to each complete projective special real manifold.

5∇ is defined by xI = Re zI and yI = ReFI(z) being flat, I = 0, . . . , n (see [ACD]).
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The question of completeness for a projective special real manifold (H, gH) reduces to

a simple topological question for the hypersurface H ⊂ Rn:

Theorem 22. [CNS, Thm. 2.6.]

Let (H, gH) be a projective special real manifold of dimension n− 1. If H ⊂ Rn is closed,

then (H, gH) is complete.

Remark 4. In low dimensions, it is possible to classify all complete projective special

real manifolds up to linear isomorphisms of the ambient space. In the case of curves,

there are exactly two examples [CHM]. In the case of surfaces, there exist precisely five

discrete examples and a one-parameter family [CDL].

4.2.2 The completeness theorem

Definition 23. The q-map is the composition of the supergravity r- and c-map. It

assigns a (4n+4)-dimensional quaternionic Kähler manifold to each (n− 1)-dimensional

projective special real manifold.

Remark 5. Except for quaternionic hyperbolic space HHn+1, all Wolf spaces of non-

compact type and all known homogeneous, non-symmetric quaternionic Kähler manifolds

(called normal quaternionic Kähler manifolds or Alekseevsky spaces) are in the image of

the supergravity c-map. While the series X̃(n+ 1) = Gr0, 2(C
n+1, 2) of non-compact Wolf

spaces can be obtained via the supergravity c-map from the projective special Kähler

manifold CHn (with holomorphic prepotential F = i
2
((z0)2 −

∑n
µ=1(z

µ)2)), which is not

in the image of the supergravity r-map, all the other manifolds mentioned above are in

the image of the q-map.

Below, we prove the completeness of the one-loop deformation of the Ferrara-Sabharwal

metric with positive deformation parameter c ∈ R≥0 for all manifolds in the image of the

q-map.

Due to the following result, both the supergravity c-map and the q-map preserve com-

pleteness:

Theorem 24. [CHM]

The supergravity c-map assigns a complete quaternionic Kähler manifold of dimension

4n+ 4 to each complete projective special Kähler manifold of dimension 2n.

Let (M̄, ḡ) be a projective special Kähler domain with underlying conical special

Kähler domain (M, g, F ). As in Section 3.2, we assume that M ⊂ {z0 6= 0} ⊂ C
n+1
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and identity M̄ with M ∩ {z0 = 1}. Then, by restricting the tensor field g
f
to M̄ ⊂ M ,

we can write

ḡ = −g

f
+ (∂K)(∂̄K) = −g

f
+

1

4
(dK)2 +

1

4
(dcK)2. (4.7)

We consider the one-loop deformed Ferrara-Sabharwal metric (see Eq. (3.3))

gcFS =
ρ+ c

ρ
ḡ +

1

4ρ2
ρ+ 2c

ρ+ c
dρ2 +

1

4ρ2
ρ+ c

ρ+ 2c
(dφ̃+

n∑

I=0

(ζIdζ̃I − ζ̃Idζ
I) + cdcK)2

+
1

2ρ

2n+2∑

a, b=1

dpaĤ
abdpb +

2c

ρ2
eK

∣
∣
∣
∣
∣

n∑

I=0

(XIdζ̃I + FI(X)dζI)

∣
∣
∣
∣
∣

2

(4.8)

for c ∈ R≥0 defined on N ′
(4n+4, 0) = N̄ = M̄×R>0×R2n+3 endowed with global coordinates

(Xµ, ρ, φ̃, ζ̃I , ζ
I)µ=1, ..., n

I=0, ..., n .

Proposition 25. If (M̄, ḡ) is complete and ḡ ≥ k
4
(dcK)2, for some k ∈ R

>0, then

(N̄, gcFS) is complete for every c ∈ R≥0.

Proof: (N̄ , g0FS) is complete by Theorem 24. Since every curve on (N̄ , gcFS) approaching

ρ = 0 has infinite length, we can restrict to {ρ > ǫ} ⊂ N̄ for some ǫ > 0. With the same

argument as in Lemma 17 one shows

gcFS ≥ 1

2

kǫ

kǫ+ c
g0FS

using that ḡ ≥ k
4
(dcK)2. Since (N̄, g0FS) is complete, this shows that (N̄ , gcFS) is complete

as well for c ∈ R≥0.

For quaternionic Kähler manifolds in the image of the q-map, the prepotential is

F (z) = h(z1, ..., zn)
z0

.

Lemma 26. For projective special Kähler manifolds in the image of the supergravity

r-map we have

ḡ ≥ 1

12
(dcK)2.

Proof: First, we show that

g̃ := −
n∑

µ,ν=1

hµν(x)

h(x)
dyµdyν ≥ −2

3
(dcK)2. (4.9)

Considering g̃ as a family of pseudo-Riemannian metrics on Rn depending on a parameter

x ∈ U , the left hand side is positive definite on the orthogonal complement Y ⊥g̃ of
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Y :=
∑n

µ=1 x
µ∂yµ , while the right hand side is zero, since g̃(Y, ·) = 2dcK. In the direction

of Y , we have g̃(Y, Y ) = −6 = −2
3
(dcK)2(Y, Y ).

Equation (4.9) implies

ḡ ≥ 1

4h(x)

n∑

µ,ν=1

(

−hµν(x) +
hµ(x)hν(x)

h(x)

)

dyµdyn ≥ −1

6
(dcK)2 +

1

4
(dcK)2 =

1

12
(dcK)2.

This shows that the assumption of Proposition 25 is fulfilled with k = 1/3 for projective

special Kähler manifolds in the image of the supergravity r-map and proves the following

theorem.

Theorem 27. Let (H, gH) be a complete projective special real manifold of dimension

n − 1 and gcFS, c ∈ R
≥0, the one-loop deformed Ferrara-Sabharwal metric on N̄ = M̄ ×

R>0×R2n+3 defined by the projective special Kähler domain (M̄, ḡ) obtained from (H, gH)

via the supergravity r-map. Then (N̄ , gcFS) is a complete quaternionic Kähler manifold.

(N̄, g0FS) is the complete quaternionic Kähler manifold obtained from (H, gH) via the

q-map.

Example 28. For the case n = 1 (h = x3), (N̄, g0FS) is isometric to the symmetric space

G∗
2/SO(4). In this case we checked using computer algebra software that the squared

pointwise norm of the Riemann tensor with respect to the metric is

8∑

i, j, k, l, ĩ, j̃, k̃, l̃=1

Rijklg
ĩigjj̃gkk̃gll̃Rĩj̃k̃l̃

=

128

(
528c7 + 2112c6ρ+ 3664c5ρ2 + 3568c4ρ3

+ 2110c3ρ4 + 764c2ρ5 + 161cρ6 + 17ρ7

)

3(c+ ρ)(2c+ ρ)6
.

For c > 0, this function is non-constant, which shows that (N̄ , gcFS) is not locally homo-

geneous for c > 0.
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