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Abstract

The cohomology of the degree-n general linear group over a finite
field of characteristic p, with coefficients also in characteristic p, re-
mains poorly understood. For example, the lowest degree previously
known to contain nontrivial elements is exponential in n. In this paper,
we introduce a new system of characteristic classes for representations
over finite fields, and use it to construct a wealth of explicit nontrivial
elements in these cohomology groups. In particular we obtain nontriv-
ial elements in degrees linear in n. We also construct nontrivial ele-
ments in the mod p homology and cohomology of the automorphism
groups of free groups, and the general linear groups over the integers.
These elements reside in the unstable range where the homology and
cohomology remain poorly understood.

1 Introduction

We introduce a new system of modular characteristic classes for represen-
tations of groups over finite fields, and use it to construct explicit non-
trivial elements in the modular cohomology of the general linear groups
over finite fields. The cohomology groups H∗(GLNFpr ; F) were computed
by Quillen [Qui72] in the case where F is a field of characteristic differ-
ent from p, but he remarked that determining them in the modular case
where the characteristic of F is p “seems to be a difficult problem once
N ≥ 3” [Qui72, p. 578]. Indeed, the modular cohomology has since resisted
computation for four decades. Complete calculations exist only for N ≤
4 [Agu80, TY83b, TY83a, AMM90]. Much attention has focused on the case
where N is small compared to p, e.g. [Bar04, BNP12a, BNP12b, Spr15a].

To our knowledge, when N > max{p, 4}, the only previously constructed
nonzero elements of H∗(GLNFpr ;Fp) are those due to Milgram and Priddy
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[MP87], in the case r = 1. These reside in exponentially high degree: at least
pN−2. On the other hand, the cohomology is known to vanish in degrees
less than N/2, by the stability theorem of Maazen [Maa79] together with
Quillen’s observation [Qui72] that the stable limit is zero. This leaves a
large degree gap where it was not known whether the cohomology groups
are nontrivial. We narrow this gap considerably by providing nonzero classes
in degrees linear in N . We obtain:

Theorem 1 (see Theorem 39). Let N ≥ 2, and let n be the natural number
satisfying

pn−1 < N ≤ pn.

Then
H∗(GLNFpr ;Fp)

has a nonzero element in degree r(2pn − 2pn−1 − 1). Moreover, it has is a
non-nilpotent element in degree 2r(pn−1) if p is odd and in degree r(2n−1)
if p = 2.

Notice that the degrees in the theorem grow linearly with N : if d is any of
the degrees mentioned in the theorem, then

r(N − 1) ≤ d < 2r(pN − 1).

In the case r = 1, we obtain stronger results, for instance:

Theorem 2 (see Theorem 41). For all N ≥ 2,

H∗(GLNF2;F2)

has a non-nilpotent element of degree d for every d with at least ⌈log2 N⌉
ones in its binary expansion.

Our characteristic classes are defined for representations of dimension
N ≥ 2 over the finite field Fpr , and they are modular in the sense that they
take values in group cohomology with coefficients in a field F of characteristic
p. Thus they are interesting even for p-groups. The family of characteristic
classes is parametrized by the cohomology of GL2Fpr . We will show that
many classes in this family are nonzero by finding representations ρ on which
they are nontrivial. This will produce a family of nonzero cohomology classes
on the general linear groups, namely the “universal classes” obtained by
applying the characteristic classes to the defining representation of GLNFpr

where N is the dimension of ρ.
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The characteristic classes are defined in terms of a push–pull construction
featuring a transfer map. This construction was previously studied by the
second author in [Spr15a], where he proved that it yields an injective map

H∗(GL2Fpr ;Fp) −→ H∗(GLNFpr ;Fp)

for 2 ≤ N ≤ p. The present work was inspired by computations of the
first author in string topology of classifying spaces [Lah16] featuring similar
push–pull constructions.

In addition to the groups GLNFpr , our characteristic classes can be used
to study other groups with interesting representations over finite fields. For
example:

Theorem 3 (see Theorem 45 and Proposition 33). For all n ≥ 1,

H∗(Aut(Fpn); Fp) and H∗(GLpnZ; Fp)

have a non-nilpotent element of degree 2d for every d with the following
property: the sum of the p-ary digits of d is equal to k(p − 1) for some
k ≥ n. In particular, there is a non-nilpotent element of degree 2pn − 2.
(For p = 2, divide degrees by 2.)

These classes live in the unstable range where the cohomology groups remain
poorly understood.

The paper proceeds as follows. In section 2, we summarize the behav-
ior of our characteristic classes and give two equivalent constructions. In
section 3, we show that the universal classes on GLNFpr for various N are
related by parabolic induction maps. In section 4, we prove that our char-
acteristic classes vanish on representations decomposable as a direct sum.
In sections 5 and 6, we recall the cohomology of GL2Fpr and describe a
coalgebra structure on it. In section 7, we develop a formula for the char-
acteristic classes of a representation decomposable as a “wedge sum.” In
section 8, we introduce a family of “basic representations” which decompose
as such wedge sums, and in section 9, we show that many of the character-
istic classes of these representations are nonzero. In section 10, we study
representations of elementary abelian groups, proving that their character-
istic classes agree with those of a certain subrepresentation. In section 11,
we exploit this property to construct high-dimensional representations with
the same characteristic classes as the basic representations, and deduce our
main results on the cohomology of general linear groups (Theorems 39 and
41). In section 12, we restrict to the prime fields Fp, and give an alternative
description of some of the characteristic classes of the basic representations
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in terms of Dickson invariants. This allows us to deduce that a certain subset
of the universal classes is algebraically independent (Theorem 44). Finally,
in section 13, we present applications to the homology and cohomology of
automorphism groups of free groups and general linear groups over integers.

Conventions

Throughout the paper, p is a prime and q = pr is a power of p. A “represen-
tation” means a finite-dimensional representation over the field Fq. Unless
noted otherwise, homology and cohomology will be with coefficients in a
field F of characteristic p, which will be omitted from notation. The main
interest is in the cases F = Fp and F = Fq, the latter being interesting since
it allows for an explicit description of H∗(GL2Fq).

As our characteristic classes χα are only defined for representations of
dimension at least 2, whenever the notation χα(ρ) appears, it is implicitly
assumed that the representation ρ has dimension at least 2.

2 Characteristic classes

We will now define our characteristic classes. Given α ∈ H∗(GL2Fq), to
each N -dimensional representation ρ over Fq of a group G (with N ≥ 2), we
will associate a class

χα(ρ) ∈ H∗(G).

only depending on the isomorphism class of ρ. As required of a character-
istic class, the assignment ρ 7→ χα(ρ) will be natural with respect to group
homomorphisms in the sense that

χα(f
∗ρ) = f∗χα(ρ)

for any group homomorphism f to the domain of ρ. In fact we will give two
alternative constructions of the characteristic classes, Definitions 5 and 6
below, and prove their equivalence. The following theorem summarizes the
basic properties of the classes.

Theorem 4. The characteristic classes χα have the following properties.

(i) (Nontriviality, Remark 8) For the identity representation of GL2Fq,
we have

χα(idGL2Fq) = α

for all α ∈ H>0(GL2Fq).
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(ii) (Vanishing on decomposables, Corollary 16) If ρ and η are nonzero
representations of G, then

χα(ρ⊕ η) = 0.

(iii) (Wedge sum formula, Theorem 27) Suppose ρ and η are representations
of G, and v0 ∈ ρ and w0 ∈ η are vectors fixed by G. Then

χα(ρ ∨ η) = −
∑

χα(1)
(ρ) · χα(2)

(η),

where ρ ∨ η = ρ⊕ η/〈v0 − w0〉 and

∆(α) =
∑

α(1) ⊗ α(2)

is a coproduct on the cohomology of GL2Fq which will be described in
section 6.

(iv) (Reduction to J1, Theorem 34) If ρ is a representation of an elementary
abelian p-group G, then

χα(ρ) = χα(J1(ρ)),

where J1(ρ) ⊂ ρ is the subrepresentation consisting of the vectors an-
nihilated by the second power of the augmentation ideal in the group
ring FqG.

(v) (Dependence on α, Remark 8) For a fixed representation ρ of a group
G, the map

H∗(GL2Fq; F) −→ H∗(G; F), α 7−→ χα(ρ)

is F-linear and commutes with the action of the mod p Steenrod algebra
and the operation Fr∗ induced by the Frobenius map of the coefficient
field F. Moreover, it commutes with coefficient field extension

H∗(−;F) −→ H∗(−;E) = H∗(−;F)⊗F E,

i.e. χα⊗1(ρ) = χα(ρ)⊗ 1.

In part (v), the mod p Steenrod algebra acts on cohomology with F-coefficients
by extension of scalars from cohomology with Fp-coefficients.

We now give our two definitions of the χα-classes.
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Definition 5. For α ∈ H>0(GL2Fq) and N ≥ 2, let

χ(N)
α = (i! ◦ π

∗)(α)

in Hd(GLNFq), where i denotes the inclusion of the parabolic subgroup

P =

[
GL2 ∗

GLN−2

]

≤ GLNFq (1)

into GLNFq, π : P → GL2Fq is the projection onto the diagonal copy of
GL2Fq, and i! denotes the transfer map induced by i. By convention, set

χ
(N)
α = 0 when dimα = 0. (This convention simplifies the statement of

Theorem 27).
Now let G be a group and let ρ be a representation of G of dimension

N ≥ 2. We define
χα(ρ) = ρ∗(χ(N)

α ) ∈ H∗(G).

On the right side, the notation ρ denotes the homomorphism G → GLNFq

associated to the representation, well defined up to conjugacy. It is evident
from the definition that χα(ρ) only depends on the isomorphism class of ρ

and satisfies the required naturality. We call the underlying class χ
(N)
α =

χα(idGLNFq ) ∈ Hd(GLNFq) the universal χα-class for N -dimensional rep-
resentations.

Now we give the second definition. If V and W are vector spaces, write
Emb(V,W ) for the set of linear embeddings of V into W . If X is a G-space
or G-set, we write X//G for the topological bar construction B(pt, G,X)
[May75, Section 7], a model for the homotopy orbit space EG ×G X. In
particular, pt//G is a model for the classifying space BG.

Definition 6. Let G be a group and let ρ be a representation of G of
dimension N ≥ 2. Using the diagram

Emb(F2
q , ρ)//G×GL2Fq

π
!

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠

τ
((◗

◗◗
◗◗

◗◗
◗◗

◗

pt//G pt//GL2Fq

(2)

define
χα(ρ) = (π! ◦ τ

∗)(α) ∈ H∗(G)

for α ∈ H>0GL2Fq. Here G×GL2Fq acts on Emb(F2
q, ρ) by

(g,A) · f = g ◦ f ◦ A−1, (3)
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and π and τ are the evident projection maps. Observe that the action of
the GL2Fq-factor on Emb(F2

q, ρ) is free. Therefore, the map π factors as the
composite

Emb(F2
q, ρ)//G×GL2Fq

≃
−−→ (Emb(F2

q , ρ)/GL2Fq)//G −→ pt//G,

of a homotopy equivalence and a covering space with fibres modeled on the
Grassmannian Gr2(ρ), a finite set. Thus π indeed admits a transfer map π!
on cohomology. As before, set χα(ρ) = 0 if dimα = 0. Clearly χα(ρ) only
depends on the isomorphism class of ρ, and compatibility of transfer maps
with pullbacks implies that χα satisfies the required naturality.

Proposition 7. The classes χα(ρ) of Definitions 5 and 6 agree.

Proof. Write temporarily χ̃α for the the classes given by Definition 6. By

naturality, it suffices to show that χ̃α(idGLNFq) = χ
(N)
α for all N ≥ 2. Ob-

serve that for ρ = idGLNFq , the GLNFq × GL2Fq-action on Emb(F2
q ,F

N
q )

given by (3) is transitive, with the stabilizer of the inclusion F
2
q →֒ F

N
q ,

v 7→ (v, 0) given by the subgroup







([
A11 A12

0 A22

]

, A11

)

∈ GLNFq ×GL2Fq

∣
∣
∣
∣
∣

A11 ∈ GL2Fq

A22 ∈ GLN−2Fq

A12 ∈ MatN,N−2Fq







of GLNFq ×GL2Fq. Thus diagram (2) for computing χ̃α(idGLNFq) reduces
to the diagram

pt//P
!

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠♠

((◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

pt//GLNFq pt//GL2Fq

where P is the parabolic subgroup (1) of Definition 5 and the two maps are
induced by the inclusion i : P →֒ GLNFq and the projection π : P → GL2Fq

of Definition 5. The claim follows.

Remark 8. In the case N = 2, the maps i and π of Definition 5 both reduce
to the identity map of GL2Fq. Thus part (i) of Theorem 4 follows. Part (v)
of Theorem 4 is immediate from the fact that induced maps and transfer
maps on cohomology have the properties in question.
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3 Parabolic induction

The aim of this section is to show that the universal χα-classes χ
(n)
α for

various n are related by what we call parabolic induction maps.

Definition 9. For m ≤ n, we define the parabolic induction map Φm,n to
be the composite

Φm,n : H
∗(GLmFq)

π∗

−−→ H∗(P )
i!−−→ H∗(GLnFq)

where P is the parabolic subgroup

P =

[
GLmFq ∗

0 GLn−mFq

]

≤ GLnFq,

i : P →֒ GLnFq is the inclusion, and π : P → GLmFq is the projection onto
the diagonal copy of GLmFq.

Remark 10. Comparing Definitions 5 and 9, we see that χ
(n)
α = Φ2,n(α)

for all n ≥ 2 and α ∈ H>0(GL2Fq).

The parabolic induction maps are compatible with one another under
composition:

Proposition 11. For all ℓ ≤ m ≤ n,

Φm,n ◦ Φℓ,m = Φℓ,n.

Proof. Consider the diagram

H∗

([
GLℓ ∗

GLn−ℓ

])

??

π∗

id //

i∗

""❋
❋❋

❋❋
❋

H∗

([
GLℓ ∗

GLn−ℓ

])

i!

��

H∗









GLℓ ∗ ∗
GLm−ℓ ∗

GLn−m









i!
<<①①①①①①

<<
π∗

①①
①①
①① i!

""❋
❋❋

❋❋
❋

H∗

([
GLℓ ∗

GLm−ℓ

])

<<

π∗

①①
①①
①①
①①
①①
①

i!

""❋
❋❋

❋❋
❋❋

❋❋
❋❋

H∗

([
GLm ∗

GLn−m

])

<<

π∗

①①
①①
①①
①①
①①
①

i!

""❋
❋❋

❋❋
❋❋

❋❋
❋❋

H∗(GLℓ) H∗(GLm) H∗(GLn)
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where for brevity we have written GLa for GLaFq and where the various i’s
and π’s stand for the evident inclusion and projection maps, respectively.
Observe that the diagram commutes: For the two cells with curved arrows,
commutativity is immediate; for the diamond in the middle, commutativity
follows from the fact that the two projection maps π involved have the
same kernel; and for the triangle on top, commutativity follows from the
observation that the index of the subgroup





GLℓ ∗ ∗
GLm−ℓ ∗

GLn−m



 ≤

[
GLℓ ∗

GLn−ℓ

]

equals the number of points in the Grassmannian Grm−ℓ(F
n−ℓ
q ), which is

(
n− ℓ

m− ℓ

)

q

≡ 1 mod q.

The claim now follows by observing that the composite from H∗(GLℓ) to
H∗(GLn) along the bottom of the diagram equals Φm,n ◦ Φℓ,m, while the
composite along the top of the diagram equals Φℓ,n.

Combining Proposition 11 and Remark 10, we obtain the desired con-

nection between the classes χ
(n)
α for different values of n.

Corollary 12. χ
(n)
α = Φm,n(χ

(m)
α ) for all 2 ≤ m ≤ n and α ∈ H∗(GL2Fq).

This in turn implies

Corollary 13. If χ
(n)
α is nonzero or non-nilpotent, so is χ

(m)
α for every

2 ≤ m ≤ n.

Proof. Only the claim regarding non-nilpotence requires comment. Since
non-nilpotence can be verified using Steenrod powers, the claim follows by
observing that the parabolic induction maps commute with the Steenrod
operations, because induced maps and transfer maps [Eve68] do.

In view of Corollary 13, to establish the nonvanishing of the univer-

sal classes χ
(m)
α for a large range of m’s, one should try to find as high-

dimensional representations ρ as possible with χα(ρ) 6= 0. This is our aim
in section 11.

9



4 Vanishing on decomposables

Our goal in this section is to prove the following result.

Theorem 14. If ρ is a representation which has a trivial subrepresentation
of dimension 2, then

χα(ρ) = 0

for all α.

Remark 15. Representations over Fq (or any field of characteristic p) have
an “upper-triangularization principle” with respect to mod-p cohomology.
Indeed, if P ≤ G is a Sylow p-subgroup, then restriction from G to P in
cohomology is injective, while the restriction of any representation of G to
P is unipotent upper-triangular with respect to some basis: in particular, it
has a fixed line.

Hence, Theorem 14 implies:

Corollary 16. If ρ and η are nonzero representations, then

χα(ρ⊕ η) = 0

for all α.

Remark 17. For a representation of a p-group P over a field of characteris-
tic p, the condition of having just one-dimensional fixed-point space is quite
restrictive. Indeed, such representations are precisely the subrepresentations
of the regular representation of P .

Remark 18. Taking η to be the trivial 1-dimensional representation shows

that the universal classes χ
(n)
α ∈ H∗(GLnFq) vanish upon restriction to

H∗(GLn−1Fq). That is, they are annihilated by the stabilization maps.

Remark 19. Corollary 16 implies that the universal classes χ
(n)
α are prim-

itives in the bialgebra
∞⊕

n=0

H∗(GLnFq)

where the coproduct is induced by the block-sum homomorphisms

GLaFq ×GLbFq → GLa+bFq.
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We now turn to the proof of Theorem 14. Let V ≤ ρG be a subspace of
the set of fixed-points in ρ. Define

Emb(V )(F2
q, ρ) =

{
f ∈ Emb(F2

q , ρ)

 Im(f) ∩ ρG = V

}
,

the set of embeddings whose image contains precisely the fixed-points in V
(nonempty only for dimV ≤ 2). This decomposition

Emb(F2
q, ρ) =

∐

V≤ρG

Emb(V )(F2
q, ρ)

as (G × GL2Fq)-sets yields a disjoint union decomposition of the space
Emb(F2

q, ρ)//G×GL2Fq. Consequently, Definition 6 splits up as a sum

χα(ρ) =
∑

V≤ρG

((πV )! ◦ τ
∗
V )(α),

where πV and τV are the evident projections fitting into the diagram

Emb(V )(F2
q , ρ)//G×GL2Fq

πV

!

vv♠♠
♠♠
♠♠
♠♠
♠♠
♠

τV ((◗
◗◗

◗◗
◗◗

◗◗
◗

pt//G pt//GL2Fq

The following lemma says that, in calculating χα(ρ), one needs to consider
only those embeddings whose image contains all of the fixed points, and also
contains nonfixed points.

Lemma 20. Let ρ be a representation of G, and V ≤ ρG a subspace. Then

(πV )! ◦ τ
∗
V = 0

in positive degrees if either

1. dimV = 2, or

2. V < ρG is a proper subspace.

Proof. First suppose dimV = 2. Then the G-action on Emb(V )(F2
q, ρ) is

trivial, so τV factors through

Emb(V )(F2
q, ρ)//GL2Fq = Iso(F2

q , V )//GL2Fq,

which is contractible.
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Now we turn to the case in which V ≤ ρG is proper. If dim(V ) > 2, we
are done since in this case Emb(V )(F2

q, ρ) is empty. In light of the previous

case, we may therefore assume that dimV < 2. Pick some fixed line L ≤ ρG

which is not contained in V . Let X be the image of Emb(V )(F2
q, ρ) under

the map
Hom(F2

q , ρ) −→ Hom(F2
q, ρ/L)

induced by the quotient homomorphism r : ρ → ρ/L.
Observe that the fibre over f ∈ X of the resulting surjection

Emb(V )(F2
q , ρ) −→ X

has a free Hom(F2
q/f

−1rV, L)-action. Consequently, the cardinalities of the

fibres are divisible by q2−dim(V ), and hence by p. The same is true after
passing to homotopy orbits, so that in the commutative diagram

X//G×GL2Fq

π′

V

��

τ ′
V

��

Emb(V )(F2
q, ρ)//G×GL2Fq

φ

OO

πV
vv♠♠
♠♠
♠♠
♠♠
♠♠
♠

τV ((◗
◗◗

◗◗
◗◗

◗◗
◗

pt//G pt//GL2Fq,

(where π′
V and τ ′V are the evident projections), the map φ is a union of

covering spaces whose multiplicities are divisible by p. It follows that

(πV )! ◦ τ
∗
V = (π′

V )! ◦ (φ! ◦ φ
∗) ◦ (τ ′V )

∗ = (π′
V )! ◦ 0 ◦ (τ

′
V )

∗ = 0.

Given a subspace V ≤ ρG, let us write Emb(≥V )(F2
q, ρ) for the set of

embeddings whose image contains V . For later reference, we record the
following corollary of Lemma 20.

Corollary 21. Let ρ be a representation of G and let V ≤ ρG be a subspace.
For all α ∈ H>0(GL2Fq) we have

χα(ρ) = (π! ◦ τ
∗)(α)

where π and τ are the evident projections fitting into the diagram

Emb(≥V )(F2
q , ρ)//G×GL2Fq

π
!

vv❧❧
❧❧
❧❧
❧❧
❧❧
❧

τ
((❘

❘❘
❘❘

❘❘
❘❘

❘

pt//G pt//GL2Fq
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Proof of Theorem 14. Since we are assuming dim ρG ≥ 2, any V ≤ ρG sat-
isfying dimV < 2 is proper. So by the lemma, (πV )! ◦ τ

∗
V = 0 for every V ,

showing χα(ρ) = 0.

5 The cohomology of GL2Fq

Because our family of characteristic classes is indexed on the modular co-
homology of GL2Fq, we now describe the cohomology for the reader’s con-
venience. The result described in this section is well-known [Agu80, Qui72,
FP83] [Spr15b, ch. 1]. To make the description more explicit, we assume in
this section that the coefficient field F for cohomology is an extension of Fq.

The p-Sylow subgroup of GL2Fq is

Fq =

[
1 ∗

1

]

,

the additive group of the finite field. Restriction gives an isomorphism

H∗(GL2Fq) ≈ H∗(Fq)
F
×

q

with the invariants of the multiplicative group

F
×
q ≈ Cq−1

acting on the cohomology ring of the additive group.

Remark 22. The same remarks apply with GL2Fq replaced by its subgroup

Aff1Fq =

[
1 ∗
0 ∗

]

.

Hence the restriction in mod p cohomology from GL2Fq to Aff1Fq is an
isomorphism. Since the index is a unit modulo p, the transfer H∗(Aff1Fq) →
H∗(GL2Fq) is an isomorphism as well.

By the assumption that the coefficient field F is an extension of Fq, the
action of F×

q on H∗(Fq) diagonalizes, as all (q − 1)-th roots are present and
distinct. That is, there is a weight-space decomposition

H∗(Fq) =
⊕

k∈Z/(q−1)

Ek, (4)
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with Ek consisting of those elements on which c ∈ F
×
q acts as multiplication

by ck. In particular, restriction gives an isomorphism

H∗(GL2Fq) ≈ H∗(Fq)
F
×

q = E0.

Now, one can find canonical (up to scalar multiple) generators for the
cohomology:

H∗(Fpr) =







F[y0, . . . , yr−1] if p = 2,

F〈x0, . . . , xr−1〉

⊗F[y0, . . . , yr−1] if p odd,

where
xk, yk ∈ Epk

and deg xi = 1, deg yi = 2 (for p = 2, deg yi = 1). The angle braces indicate
an exterior algebra. The monomials

xAyB =
r−1∏

k=0

xakk ybkk

for
A = (a0, . . . , ar−1) ∈ {0, 1}r and B = (b0, . . . , br−1) ∈ N

r

now form an additive basis for the cohomology, consisting of eigenvectors
for the action of the multiplicative group.

From this, we obtain the following description of the invariants:

Lemma 23. Under the assumption that F is an extension of Fq, the restric-
tion

H∗(GL2Fq; F) −→ H∗(Fq; F)

is an isomorphism onto the subspace (and subring) generated by the mono-
mials

xAyB

with the property that

(pr − 1) |

r−1∑

k=0

pk (ak + bk) .

(In the case of odd p; for p = 2 of course there are no exterior terms.)
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6 The coproduct on the cohomology of GL2Fq

Because Fq is an abelian group, its addition map µ : Fq × Fq → Fq gives
its cohomology the structure of a (coassociative cocommutative counital)
coalgebra. We will show that, although GL2Fq is not abelian, its cohomology
inherits a coproduct from the Sylow p-subgroup Fq of GL2Fq. Observe that
the transfer map

tr : H∗(Fq) −→ H∗(GL2Fq)

is a retraction onto the image of res : H∗(GL2Fq) →֒ H∗(Fq).

Proposition 24. For any field F of characteristic p, the group cohomology
H∗(GL2Fq; F) admits a unique coassociative cocommutative counital coprod-
uct ∆ making

tr : H∗(Fq; F) −→ H∗(GL2Fq; F)

into a homomorphism of coalgebras.

Proof. It suffices to verify that the kernel J = ker(tr) is a coideal, that is,
that J is annihilated by the counit H∗(Fq; F) → F and that

µ∗J ⊂ H∗(Fq; F)⊗F J + J ⊗F H
∗(Fq; F).

The first of these conditions is immediate form the observation that tr is
an isomorphism in degree 0. To verify the second condition, observe that if
it holds for the field F, it also holds for any subfield of F, by the compati-
bility of transfers and induced maps with extending the coefficient field for
cohomology. Thus it is enough to check the condition in the case where F

is an extension of Fq. In that case, we have the weight-space decomposi-
tion (4), with respect to which the inclusion H∗(GL2Fq) →֒ H∗(Fq) corre-
sponds to the inclusion E0 →֒

⊕

k Ek and the transfer tr to the projection
⊕

k Ek → E0. In particular, we have

J =
⊕

k 6=0

Ek.

Because the addition map µ : Fq × Fq → Fq is equivariant with respect
to the action of the multiplicative group, the induced map µ∗ : H∗(Fq) →
H∗(Fq)⊗H∗(Fq) satisfies

µ∗(Ek) ⊂
⊕

i+j=k

Ei ⊗ Ej .

15



Thus

µ∗(J) ⊂
⊕

i+j 6=0

Ei ⊗ Ej

⊂
⊕

i 6=0 or
j 6=0

Ei ⊗ Ej

= J ⊗H∗(Fq; F) +H∗(Fq; F)⊗ J.

We warn the reader that the coproduct does not make H∗(GL2Fq) into
a Hopf algebra, as it is not compatible with the cup product.

Explicitly, we can describe ∆ in terms of the monomial basis of Lemma 23
under the assumption that F is an extension of Fq:

∆
(
xAyB

)
=

∑

A′+A′′=A
B′+B′′=B
P (A′+B′)

(
B

B′

)

xA
′

yB
′

⊗ xA
′′

yB
′′

.

Here we have used the shorthand
(
B

B′

)

=

(
b0
b′0

)

· · ·

(
br−1

b′r−1

)

,

and the sum runs over only those pairs with the divisibility property

P (C) =

[

(pr − 1) |

r−1∑

k=0

pkck

]

. (5)

(As usual, for p = 2 one must remove the exterior terms.) Informally, one
simply performs the usual coproduct on H∗(Fq) (which is multiplicative,
with the generators primitive), and then throws out all terms which do not
satisfy the divisibility condition (5).

7 Wedge sum formula

While our characteristic classes vanish on direct sums by Corollary 16, they
exhibit interesting behavior with respect to the following wedge sum con-
struction, which we can use to combine two representations without prolif-
erating their fixed-points.

16



Definition 25. A pointed representation of a group G is a representation ρ
of G equipped with the choice of a basepoint, a non-zero vector v0 ∈ ρ fixed
by the G-action. If (ρ, v0) and (η,w0) are pointed representations of groups
G and H, respectively, we define their wedge sum to be the representation

ρ ∨ η = ρ⊕ η/〈v0 − w0〉,

ofG×H, a pointed representation with basepoint v0 = w0. The isomorphism
type of ρ∨η as a pointed representation remains unchanged if the basepoints
v0 and w0 are replaced by non-zero multiples. Hence for representations
with unique fixed lines, we will take the liberty to form wedge sums without
explicitly specifying the basepoints.

Remark 26. Working with pointed representations may appear overly re-
strictive, since not all representations admit a non-zero fixed vector. How-
ever, from the point of view of mod-p cohomology it is no loss, due to the
upper-triangularization principle of Remark 15.

We describe how to calculate the classes of a wedge sum in terms of the
classes of the two factors:

Theorem 27. If ρ and η are pointed representations of G and H, respec-
tively, then for all α ∈ H∗(GL2Fq)

χα(ρ ∨ η) = −
∑

χα(1)
(ρ)× χα(2)

(η) (6)

as an element of H∗(G×H), where

∆(α) =
∑

α(1) ⊗ α(2)

is the coproduct constructed in section 6.

We begin the proof by establishing an “affine version” of the push-pull
construction in Definition 6, better suited to working with pointed repre-
sentations. Let i : Fq → GL2Fq be the inclusion.

Proposition 28. Let (ρ, v0) be a pointed representation of a group G with
dim(ρ) ≥ 2. The characteristic classes of ρ are given by following the dia-
gram

ρ//G× Fq

!
π

yyss
ss
ss
ss
ss

τ
%%❑

❑❑
❑❑

❑❑
❑❑

❑

pt//G pt//Fq
i // pt//GL2Fq

17



where the action of G× Fq on ρ is given by

(g, c) · v = gv − cv0.

More precisely,
χα(ρ) = −(π! ◦ τ

∗ ◦ i∗)(α)

for all α ∈ H∗(GL2Fq).

Proof. We first observe that the formula is correct when degα = 0. In that
case, χα(ρ) is zero by convention, while the right hand side is multiplication
by the multiplicity of the covering π, which is

|ρ/〈v0〉| = qdim ρ−1,

a multiple of q (so zero on cohomology).
Hence we assume α ∈ H>0(GL2Fq). Now, the expression on the right

hand side splits as a sum of two terms, corresponding to the equivariant
decomposition

ρ = 〈v0〉
∐

(ρ− 〈v0〉).

The former term vanishes, because 〈v0〉//G × Fq → pt//Fq factors through
the contractible space 〈v0〉//Fq. So we must verify that the latter term in
the sum agrees with χα(ρ). Consider the commutative diagram

pt//G Emb(≥〈v0〉)(F2
q , ρ)//G×GL2Fq

!

π′

oo τ ′ // pt//GL2

ρ− 〈v0〉//G× Fq

!

π′′

ii❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

φ

OO

τ ′′ // pt//Fq

i

OO

where Emb(≥〈v0〉)(F2
q, ρ) is as in Corollary 21 and where φ is induced by the

map sending v ∈ ρ− 〈v0〉 to the embedding e1 7→ v0, e2 7→ v.
Following the diagram along the bottom, i.e. π′′

! ◦(τ
′′)∗◦i∗, yields the right

hand side of the proposition, without the minus sign. Meanwhile, following
the top of the diagram, i.e. π′

! ◦ (τ ′)∗, yields α 7→ χα(ρ), by Corollary 21.
Now, up to homotopy equivalence, φ agrees with the covering map

(
ρ

〈v0〉
− 0

)

//G −→ P

(
ρ

〈v0〉

)

//G

which has multiplicity q − 1. (We used that the actions of GL2Fq and
Fq are free, to replace their homotopy quotients with strict quotients.) So
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φ! ◦ φ
∗ = −1, and we get

χα(ρ) = (π′
! ◦ τ

′∗)(α)

= −(π′
! ◦ (φ! ◦ φ

∗) ◦ τ ′
∗
)(α)

= −(π′′
! ◦ τ

′′∗ ◦ i∗)(α).

We will also need the following fact:

Lemma 29. In the notation of Proposition 28,

π! ◦ τ
∗ ◦ (i∗ ◦ i!) = π! ◦ τ

∗.

Proof. Because i! ◦ i
∗ = 1, it suffices to show that π! ◦ τ

∗ : H∗(Fq) → H∗(G)
factors through i! : H

∗(Fq) → H∗(GL2Fq). To do so, it suffices to show
that it factors through the transfer H∗(Fq) → H∗(Aff1Fq), because the
further transferH∗(Aff1Fq) → H∗(GL2Fq) is an isomorphism by Remark 22.
Consider the commutative diagram

pt//G ρ//G×Aff1Fq
!oo τ ′ // pt//Aff1Fq

ρ//G× Fq

π
!

ff◆◆◆◆◆◆◆◆◆◆◆
φ !

OO

τ // pt//Fq

j !

OO

where

[
1 a
0 b

]

∈ Aff1Fq acts on ρ by v 7→ b−1v − b−1av0. The square is

a pullback and τ ′ is a fibration, so φ! ◦ τ∗ = τ ′∗ ◦ j!, yielding the desired
factorization.

Proof of Theorem 27. Let µ : Fq×Fq → Fq be the addition map, and i : Fq →
GL2Fq the inclusion. Consider the commutative diagram

pt//G×H ρ ∨ η//G×H × Fq
!

π′

oo

τ ′
// pt//Fq i

// pt//GL2Fq

ρ× η//G× Fq ×H × Fq

≃ϕ

OO

!
π

ii❙❙❙❙❙❙❙❙❙❙❙❙❙❙❙

τ
// pt//Fq × Fq

µ

OO

Here ϕ is induced by the quotient map ρ× η → ρ∨ η and the addition map
µ. The action of (G × Fq) × (H × Fq) on ρ × η is the product of those in
Proposition 28. Notice that π and τ are each a product of two projection
maps. Observe also that the kernel of µ acts freely on ρ× η, with quotient
ρ ∨ η. Thus the map ϕ is a homotopy equivalence.
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Applying Proposition 28 to both ρ and η shows that the right hand side
of equation (6) agrees with −(π! ◦ τ

∗ ◦ (i× i)∗)(∆α). Inserting

∆ = (i× i)! ◦ µ
∗ ◦ i∗

and applying Lemma 29 to remove (i × i)∗(i × i)! yields −(π! ◦ τ∗ ◦ µ∗ ◦
i∗)(α). The diagram shows that this is equal to −(π′

! ◦ τ
′∗ ◦ i∗)(α), which by

Proposition 28 agrees with the left hand side of equation (6).

8 The basic representations

We now define a family of representations whose characteristic classes we
shall be able to describe. For any Fq-vector space V , regard V as an ele-
mentary abelian group under addition, and define its “basic representation”
ρV to be

ρV = Fp ⊕ V ∗

as a vector space, with V acting as

v · (c, u) = (c+ u(v), u).

In coordinates, it looks like

ρFn
q
: (a1, . . . , an) 7−→








1 a1 · · · an
1

. . .

1







.

We equip ρV with the basepoint (1, 0) ∈ Fq⊕V ∗. If V and W are two vector
spaces, we then have

ρV ∨ ρW = ρV⊕W .

Therefore, in terms of a basis we have a decomposition

ρFn
q
= ρFq ∨ · · · ∨ ρFq

as representations of Fn
q . Hence by Theorem 27,

χα(ρFn
q
) = (−1)n−1

∑

χα(1)
(ρFq )× · · · × χα(n)

(ρFq ).

But ρFq is the (2-dimensional) representation given by the inclusion of Fq

as the Sylow p-subgroup of GL2Fq, by which we identified H∗(GL2Fq) as a
subspace of H∗(Fq). Therefore by Theorem 4.(i),

χα(ρFn
q
) =

{

α if degα > 0,

0 if degα = 0.
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Consequently, χα(ρFn
q
) is obtained from the iterated coproduct ∆n−1(α) by

throwing away all those terms which have degree 0 in some factor. Let us
write the result explicitly, assuming that F extends Fq. To begin with, write
the iterated coproduct as

∆n−1
(
xAyB

)
=

∑

A1+···+An=A
B1+···+Bn=B
P (Ai+Bi) ∀i

(
B

B1; · · · ;Bn

)

xA1yB1 ⊗ · · · ⊗ xAnyBn .

Here we have used the shorthand
(

B

B1; · · · ;Bn

)

=

(
b0

b0,1, . . . , b0,n

)

· · ·

(
br−1

br−1,1, . . . , br−1,n

)

, (7)

where the terms on the right hand side are multinomial coefficients, and
Bi = (b0,i, . . . , br−1,i). Now,

χxAyB (ρFn
q
) = (−1)n−1

∑

A1+···+An=A
B1+···+Bn=B
P (Ai+Bi) ∀i
Ai+Bi 6=0 ∀i

(
B

B1; · · · ;Bn

)

xA1yB1 × · · · × xAnyBn . (8)

9 Nontrivial classes

We now consider the question of which characteristic classes of the basic
representation are nonzero. In equation (8), the monomials xA1yB1 × · · · ×
xAnyBn in the sum are all linearly independent. So

χxAyB (ρFn
q
) 6= 0

if and only if there exists a nonzero term in the sum. By iterating Lucas’
theorem on the value of binomial coefficients mod p, we see that the co-
efficient (7) appearing in (8) is nonzero mod p precisely when there is not
a carry when adding together the numbers bj,1, . . . , bj,n in base p for any
0 ≤ j ≤ r − 1. It is now straightforward to check that by choosing

Ai = (0, . . . , 0) and Bi = pi−1(p− 1) · (1, . . . , 1),

we obtain a nonzero term appearing in a sum of type (8), as we do by
choosing

A1 = (1, . . . , 1) and B1 = (p− 2) · (1, . . . , 1),
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and for i > 1

Ai = (0, . . . , 0) and Bi = pi−2((p − 2)p + 1) · (1, . . . , 1).

Summing over i to obtain A and B, we have the following result.

Proposition 30. For p odd:

(i) The class
χα(ρFn

q
) ∈ H2r(pn−1)(Fn

q ; Fq)

is non-nilpotent for
α = (y0 · · · yr−1)

pn−1.

(ii) The class

χα(ρFn
q
) ∈ Hr(2pn−2pn−1−1)(Fn

q ; Fq)

is nonzero for

α = x0 · · · xr−1(y0 · · · yr−1)
pn−pn−1−1.

Part (i) is also valid for p = 2, with the degree halved.

Now restrict to the case r = 1, where we can give a complete description
of which classes are nonzero.

Definition 31. For m ∈ N, define sp(m) to be the sum of the digits of m
in p-ary notation. That is,

sp(m) =
∑

k

ck

where
m =

∑

k

ckp
k with 0 ≤ ck < p ∀k.

First we give a bound for m in terms of sp(m).

Lemma 32. Let s ∈ N. The lowest m such that sp(m) = s is given by

m = (d+ 1)pc − 1,

where c and d are determined by

s = c(p− 1) + d, 0 ≤ d < p− 1.
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Proof. The lowest m must have a p-ary representation of the form

d′. (p− 1). · · · .(p− 1)
︸ ︷︷ ︸

c′

with 0 ≤ d′ < p− 1

since, if not, we may decrease m while preserving sp(m) by “moving digits
to the right.” For the digits to sum to s, we must have d′ = d and c′ = c,
which yields the claimed value for m.

By Lemma 23 and the congruence

m ≡ sp(m) mod p− 1,

the characteristic class χym is defined if and only if sp(m) is a multiple of
p− 1. Similarly, the characteristic class χxym is defined precisely when

sp(m) ≡ −1 mod p− 1.

The following proposition determines in terms of sp(m) which of the classes
χym(ρFn

p
) and χxym(ρFn

p
) are nonzero.

Proposition 33. Fix n ≥ 1.

(i) Let p = 2. For all m ≥ 1, the class

χym(ρFn
2
) ∈ Hm(Fn

2 ; F2)

is nonzero (and non-nilpotent) if and only if

s2(m) ≥ n.

The lowest-dimensional such class occurs in degree 2n − 1.

(ii) Let p be odd. The class

χym(ρFn
p
) ∈ H2m(Fn

p ; Fp)

is non-nilpotent if

sp(m) = k(p− 1) with k ≥ n.

The lowest-dimensional such class occurs in degree 2pn − 2. All other
χym(ρFn

p
) are zero.
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(iii) Let p be odd. The class

χxym(ρFn
p
) ∈ H2m+1(Fn

p ; Fp)

is nonzero if

sp(m) = k(p− 1)− 1 with k ≥ n.

The lowest-dimensional such class occurs in degree 2pn − 2pn−1 − 1.
All other χxym(ρFn

p
) are zero.

Proof. We will prove part (iii); the other parts are quite similar except that
x does not appear.

By writing m in p-ary notation, we can form a multiset

{x, y, . . . , y, yp, . . . , yp, . . . , yp
k

, . . . , yp
k

},

where each power of p appears less than p times, and the product of the
elements is our class xym. The number of elements is 1 + sp(m).

Now, assuming 1 + sp(m) = k(p − 1) with k ≥ n, the multiset can
be partitioned into a disjoint union of n nonempty submultisets, each of
which has a multiple of p − 1 elements. Choosing such a partition yields
a factorization xym = (xa1yb1) · · · (xanybn) which corresponds to a nonzero
summand in equation (8).

Conversely, suppose χxym(ρFn
p
) 6= 0. Let Ai, Bi, i = 1, . . . , n, be the

exponents appearing in some nonzero summand in equation (8) (with A = 1,
B = m). The condition

(
m

B1, . . . , Bn

)

6= 0 mod p

implies that
sp(m) = sp(B1) + · · · + sp(Bn).

But each Ai +Bi > 0, and

Ai + sp(Bi) ≡ Ai +Bi ≡ 0 mod (p− 1)

by the condition P (Ai+Bi). Thus Ai+sp(Bi) is a positive multiple of p−1
for all i. Summing up,

1 + sp(m) = k(p − 1)

for some k ≥ n, as desired.
The statement about degrees follows by applying Lemma 32.
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10 Representations of elementary abelian groups

Let G be a p-group, and let M be a representation of G. We define a
filtration

0 = J−1(M) ≤ J0(M) ≤ J1(M) ≤ · · · ≤ M

of M by setting J−1(M) = 0 and inductively defining Jℓ(M) to be the
preimage of the fixed-point subspace (M/Jℓ−1(M))G under the quotient
map M → M/Jℓ−1(M). In particular, J0(M) = MG. More generally,

Ji(M) =
{
v ∈ M


 Ii+1 · v = 0

}

where I ⊂ FqG is the augmentation ideal of the group ring. By Remark 15,
every inclusion in the filtration is strict until Jℓ(M) becomes equal to M ,
so Jdim(M)−1(M) = M . As the filtration is preserved by maps between
representations, it follows in particular that every d-dimensional submodule
of M must be contained in Jd−1(M).

Now we consider the case where G is elementary abelian.

Theorem 34. Suppose ξ is a representation of an elementary abelian p-
group. Then

χα(ξ) = χα(J1(ξ)).

That is, only the subrepresentation J1(ξ) matters when calculating χα(ξ).

Proof. Definition 6 involves the transfer associated to the covering

Emb(F2
q , ρ)//G×GL2Fq ≃ Gr2(ρ)//G → pt//G.

This decomposes as a sum of the transfer maps associated to each of the
components of the cover. Since G = π1(pt//G) is elementary abelian, all
such transfers vanish except for those associated to trivial (1-sheeted) com-
ponents. These correspond to the 2-planes V ∈ Gr2(ρ) such that g · V = V
for all g, i.e., the 2-dimensional subrepresentations of ρ. Since all such sub-
representations are contained in J1(ρ), the result is unchanged by replacing
the cover Gr2(ρ) with its subspace Gr2(J1(ρ)).

The J• filtration is compatible with tensor products, in the sense that

Ji(ξ1 ⊗ · · · ⊗ ξn) =
∑

a1+···+an=i

Ja1(ξ1)⊗ · · · ⊗ Jan(ξn),

where ξi is a representation of the p-group Gi, and the tensor product is
external (i.e., considered as a representation of

∏
Gi). In other words, the

J• filtration of a tensor product is just the tensor product of the filtrations
of the factors. So:
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Lemma 35. Suppose ρ and η are representations of G,G′ whose fixed-point
subspaces are one-dimensional. Then

J1(ρ⊗ η) = J1(ρ) ∨ J1(η)

as representations of G×G′.

Corollary 36. If ρ and η are representations of elementary abelian groups
G,G′, then

χα(ρ⊗ η) = −
∑

χα(1)
(ρ)× χα(2)

(η),

where
∆(α) =

∑

α(1) ⊗ α(2).

Proof. Both ρ and η must of course have at least a one-dimensional fixed-
point space. And if either of them has more than one fixed line, then so does
the tensor product. Consequently, by Lemma 14, both sides of the equation
vanish. So we assume that dim J0(ρ) = dim J0(η) = 1. Now the result is
immediate from Lemma 35, Theorem 34 and Theorem 27.

Lastly, let us restrict our attention for a moment to the case r = 1. In
that case, the calculation of χα(ρA) in section 8 actually suffices to compute
χα(•) for all representations of elementary abelian p-groups. Indeed:

Theorem 37. Let ξ : A → GLNFp be a representation of an elementary
abelian p-group A. Then

χα(ξ) = π∗χα(ρA/B)

if dim J0(ξ) = 1, and zero otherwise. Here B ≤ A is the kernel of the action
of A on J1(ξ) and π : A → A/B is the projection.

Proof. Assume J0(ξ) is one-dimensional; otherwise χα(ξ) = 0 by Theo-
rem 14. By Theorem 34, the left hand side depends only on J1(ξ). Since the
same is true for the right hand side, we may assume that ξ = J1(ξ). Then
B is the kernel of ξ, so

χα(ξ) = π∗χα(ξ̃),

where ξ̃ is the corresponding representation of the quotient A/B, a faithful
representation. Hence we have reduced to the case of a representation ξ of
A which is faithful and satisfies J1(ξ) = ξ and dim J0(ξ) = 1. In this case,
the claim reads

χα(ξ) = χα(ρA),

so the proof is completed by verifying that under these conditions

ξ ≈ ρA.
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11 Cohomology of GLNFq

In this section, we aim to prove nontriviality of χ
(N)
α ∈ H∗(GLNFq) for

N as large as possible. We do so by constructing a representation whose
characteristic classes will coincide with those studied in section 9 but whose
dimension is much larger:

Lemma 38. For each n ≥ 1, there is a representation ξA of the elementary
abelian group A = F

n
q such that

dim(ξA) = pn and J1(ξA) ≈ ρA.

In the case r = 1, ξA may be taken to be the regular representation of A.

Proof. In light of Lemma 35 and the fact that ρV ∨ ρW = ρV⊕W , we may
immediately reduce to the case n = 1 by defining

ξFn
q
= ξFq ⊗ · · · ⊗ ξFq
︸ ︷︷ ︸

n

.

In the case n = 1, we may take

ξFq = Symp−1(F2
q),

a p-dimensional representation of Fq ≤ GL2Fq. In terms of the basis F
2
q =

〈e1, e2〉,
ξFq = 〈ep−1

1 , ep−2
1 e2, . . . , e

p−1
2 〉,

and we have
Ji(ξFq) = 〈ep−1−j

1 ej2 | j ≤ i〉.

In particular, the action on J1(ξFq ) is the standard one

ρFq : a 7−→

[
1 a

1

]

.

Now assume r = 1. We will check that ξFn
p
as defined above is isomorphic

to the regular representation of Fn
p . Since both representations split up as

an n-fold tensor product, it suffices to prove this in the case n = 1. In that
case, we need to check that the two endomorphism of order p have the same
Jordan structure. Now observe that they both have a single fixed line, hence
a single block.
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Using the characteristic classes of the representation in Lemma 38, we
can now produce many nonzero cohomology classes on the general linear
groups:

Theorem 39. Fix n ≥ 1. For all

2 ≤ N ≤ pn,

(i) The class

χ(N)
α ∈ H∗(GLNFq; Fq) with α = (y0 · · · yr−1)

pn−1

is a non-nilpotent element of degree 2r(pn − 1) for p odd, or degree
r(2n − 1) for p = 2.

(ii) For p odd, the class

χ(N)
α ∈ H∗(GLNFq; Fq) with α = x0 · · · xr−1(y0 · · · yr−1)

pn−pn−1−1

is a nonzero element of degree r(2pn − 2pn−1 − 1).

Proof. In the special case N = pn, we need only combine Lemma 38 with
Theorem 34 and Proposition 30. The general case now follows from Corol-
lary 13.

Remark 40. The universal classes χ
(n)
α are not the only nonzero cohomology

classes on GLNFq which can be detected using our characteristic classes:
there are also “dual classes”

χα((F
n
q )

∗) = χα(T : GLn → GLn) = T ∗(χ(n)
α ),

where
T : GLnFq → GLnFq

is the inverse-transpose automorphism A 7→ (A−1)t. These dual classes are

in general distinct from the χ
(n)
α classes. Indeed, for n > 2, let V = F

n−1
q

and consider the dual ν = ρ∗V of the basic representation. Then

ν∗χ(n)
α = χα(ν) = 0

for all α by Theorem 14, while

ν∗T ∗χ(n)
α = χα(ν

∗) = χα(ρV )

which is often nonzero, as we saw in section 9.
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In the case r = 1, we have from Proposition 33 (along with Theorem 34,
Lemma 38, and Corollary 13):

Theorem 41. Fix n ≥ 1. For all

2 ≤ N ≤ pn,

(i) If p = 2, the class

χ
(N)

yd
∈ Hd(GLNF2; F2)

is a non-nilpotent element whenever the sum of the binary digits of d
is at least n.

(ii) If p is odd, the class

χ
(N)

yd
∈ H2d(GLNFp; Fp)

is a non-nilpotent element whenever the sum of the p-ary digits of d is
k(p− 1) for some k ≥ n.

(iii) If p is odd, the class

χ
(N)

xyd
∈ H2d+1(GLNFp; Fp)

is a nonzero element whenever the sum of the p-ary digits of d is k(p−
1)− 1 for some k ≥ n.

12 Dickson invariants

For this section, we restrict to the case r = 1 and assume F = Fp. We give
an alternative description of the classes

χyk(ρFn
p
) ∈ H∗(Fn

p ).

By equation (8), these classes belong to the polynomial subalgebra

Fp[F
n
p
∗] ⊂ H∗(Fn

p ),

where we interpret Fn
p
∗ as H1(Fp) if p = 2 or as the image of the Bockstein

map β : H1(Fn
p) → H2(Fn

p ) if p is odd. Because the image of ρFn
p
in GLn+1Fp

is normalized by a copy of GLnFp, these classes live in the invariant subring

Fp[F
n
p
∗]GLnFp = Fp[Dpn−pn−1 , . . . ,Dpn−1]
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where the elements Dpn−pi are the Dickson invariants of Fn
p
∗. Our aim is to

express the classes χyk(ρFn
p
) as polynomials in the Dickson invariants.

We begin with an alternative, coordinate-independent description of the
classes χyk(ρFn

p
). So far, we have defined these classes when k is a multiple

of p − 1. It is convenient to extend the definition by setting χyk = 0 when
p− 1 does not divide k. Then:

Lemma 42. For every k > 0, we have

χyk(ρFn
p
) = −

∑

z∈Fn
p
∗

zk.

Proof. By expanding z = c1z1+ · · ·+cnzn according to the dual {z1, . . . , zn}
of the standard basis, we obtain

∑

z∈Fn
p
∗

zk =
∑

c1,··· ,cn∈Fp

(c1z1 + · · · cnzn)
k

=
∑

i1+···+in=k

(
k

i1, . . . , in

)



∑

c∈Fp

ci1zi1



× · · · ×




∑

c∈Fp

cinzin





= (−1)n
∑

i1+···+in=k
(p−1)|ij>0 ∀j

(
k

i1, . . . , in

)

zi1 × · · · × zin ,

which agrees with the right hand side of equation (8) (in the case q = p,A =
0, B = k) except for a factor of −1. The last equality holds because

∑

c∈Fp
ci

is equal to −1 if (p− 1) divides i and i 6= 0, and to 0 otherwise.

In other words, the classes −χyk(ρFn
p
) can be viewed as the power sum

symmetric polynomials evaluated on the elements of Fn
p
∗. Since the Dickson

polynomials are the elementary symmetric polynomials evaluated on the
same elements, Newton’s identity gives a relationship between the two. To
express it conveniently, write total classes (as elements of the degree-wise
completed cohomology)

D =

n∑

i=0

Dpn−pi =
∏

z∈Fn
p
∗

(1 + z) =

pn
∑

k=0

σk(F
n
p
∗),

A =
∑

k>0

(−1)kχyk(ρFn
p
) =

∑

k>0

(−1)k−1pk(F
n
p
∗).

30



Here σk is the k-th elementary symmetric polynomial, and pk(x1, . . . , xℓ) =∑

i x
k
i is the k-th power sum polynomial.

From Newton’s identity
(

∞∑

i=0

σi

)(
∞∑

i=1

(−1)i−1pi

)

=
∞∑

k=1

kσk,

we get

DA =
∑

k>0

kDk = −Dpn−1.

The last equality holds because, for each k, either p|k orDk = 0 or k = pn−1.
Consequently,

Theorem 43. We have

A = −Dpn−1 ·D
−1.

We can write the lowest terms more explicitly:

A = −Dpn−1(1−Dpn−pn−1 − · · · −Dpn−1 + higher terms)

using the calculation

D−1 = (1 + D̃)−1 = 1− D̃ + D̃2 − · · · = 1− D̃ + higher terms

where D̃ = Dpn−pn−1 − · · · −Dpn−1. Consequently, we have

χ
y2pn−pi−1(ρFn

p
) = ±Dpn−1Dpn−pi , 0 ≤ i ≤ n,

and these are the only χyk(ρFn
p
)’s which are nonzero for k ≤ 2(pn − 1).

Because the Dickson polynomials are algebraically independent, it follows
that the n classes

Dpn−1 and Dpn−1Dpn−pi , 1 ≤ i ≤ n− 1,

are algebraically independent. We can deduce:

Theorem 44. Suppose n+ 1 ≤ N ≤ pn. Then the universal classes

χ
(N)

y2pn−pi−1
∈ H∗(GLNFp; Fp), 1 ≤ i ≤ n

are algebraically independent. In particular, our characteristic classes χ
(N)
•

generate a subring of Krull dimension at least n.
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Proof. In light of the above discussion and Theorem 34, it suffices to produce
a representation ξ of Fn

p with dim(ξ) = N and J1(ξ) = ρFn
p
. In the case

N = pn, we have the representation ξ = ξFn
p
of Lemma 38. In the general

case, any N -dimensional subrepresentation ξ with

ρFn
p
= J1(ξFn

p
) ≤ ξ ≤ ξFn

p

will suffice. Such subrepresentations exist with every dimension between
n + 1 = dim ρFn

p
and pn = dim ξFn

p
; they can be constructed by upper-

triangularizing the quotient ξFn
p
/ρFn

p
.

13 Applications to Aut(Fn) and GLnZ

We assume r = 1 and F = Fp throughout the section. In this section,
our aim is to demonstrate the usefulness of our characteristic classes for
studying groups other than general linear groups over finite fields by pre-
senting applications of our computations to the homology and cohomology
of automorphism groups of free groups and general linear groups over the
integers. The applications are of a broadly similar type to those we have
presented for the cohomology of general linear groups over finite fields: we
construct large families of explicit nontrivial elements in the homology and
cohomology of Aut(Fpn) and GLpnZ living in the unstable range where the
homology and cohomology groups remain poorly understood. In the case
of homology, the classes are not only nontrivial, but in fact indecomposable
in the rings H∗(

⊔

n≥0 BAut(Fn)) and H∗(
⊔

n≥0BGLnZ). (We will indicate
the ring structures below.)

Our starting point is the observation that the regular representation ρreg
of Fn

p factors as the composite

F
n
p

c
−−→ Σpn

i
−−→ Aut(Fpn)

πab−−−→ GLpnZ
ρcan

−−−−→ GLpnFp (9)

where c is the Cayley embedding, i is the embedding sending a permutation
to the corresponding automorphism of the free group Fpn given by per-
muting generators, πab is given by abelianization, and ρcan is the canonical
representation of GLpnZ on F

pn
p given by reduction mod p. By Lemma 38

and Theorem 34, in the case r = 1, the characteristic classes of the regular
representation ρreg of Fn

p agree with those of the basic representation ρFn
p
:

χα(ρreg) = χα(ρFn
p
) (10)

for all α. Thus we obtain
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Theorem 45. Suppose α ∈ H∗(GL2Fp; Fp) is any class for which χα(ρFn
p
) 6=

0. Then
χα(ρcan) 6= 0 ∈ H∗(GLpnZ; Fp)

and
χα(π

∗
ab(ρcan)) 6= 0 ∈ H∗(Aut(Fpn); Fp).

Moreover, if χα(ρFn
p
) is non-nilpotent, so are χα(ρcan) and χα(π

∗
ab(ρcan)).

We remind the reader that the question of when χα(ρFn
p
) is nonzero was

given a complete answer in Proposition 33.
We now turn to the application to homology groups. The homology

groups of each of the spaces

⊔

n≥0

BΣn,
⊔

n≥0

BAut(Fn),
⊔

n≥0

BGLnZ and
⊔

n≥0

BGLnFp

are highly structured. First, in each case the homology carries a ring struc-
ture. These structures are induced by disjoint unions of sets (yielding ho-
momorphisms Σn ×Σm → Σn+m); by free products of free groups (yielding
homomorphisms Aut(Fn) × Aut(Fm) → Aut(Fn+m)); and by direct sums
of free modules (yielding the block-sum homomorphisms on general linear
groups). Second, with the apparent exception of automorphism groups of
free groups, in each case the homology groups carry an additional product,
which we denote by ◦. These products are induced by direct products of
sets (yielding homomorphisms Σn×Σm → Σnm) and tensor products of free
modules (yielding homomorphisms GLnR×GLmR → GLnmR). The maps
induced by the analogues

Σn
i

−−→ Aut(Fn)
πab−−−→ GLnZ

ρcan
−−−−→ GLnFp, n ≥ 0

of the maps appearing in (9) are compatible with all this structure in the
sense that all give ring homomorphisms, and both (πabi)∗ and (ρcan)∗ pre-
serve the ◦-product. For each k ≥ 0, let zk ∈ H∗(Fp) be the dual of
yk ∈ H∗(Fp), and write

Ek = c∗(zk) ∈ H∗(Σp)

EZ

k = (πabi)∗(Ek) ∈ H∗(GLpZ)

E
Fp

k = (ρcan)∗(E
Z

k ) ∈ H∗(GLpFp),

where c : Fp → Σp is the Cayley embedding. With this notation, we have:
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Theorem 46. Suppose B1, . . . , Bn ∈ Z are positive multiples of p − 1 such
that there is no carry when B1, . . . , Bn are added together in base p. Let
B = B1+ · · ·+Bn. Then the following elements are indecomposable in their
respective rings:

(i) i∗(EB1 ◦ · · · ◦ EBn) ∈ H2B(Aut(Fpn); Fp) in H∗(
⊔

k≥0BAut(Fk); Fp)

(ii) EZ

B1
◦ · · · ◦ EZ

Bn
∈ H2B(GLpnZ; Fp) in H∗(

⊔

k≥0BGLkZ; Fp)

(iii) E
Fp

B1
◦ · · · ◦ E

Fp

Bn
∈ H2B(GLpnFp; Fp) in H∗(

⊔

k≥0BGLkFp; Fp).

(For p = 2, replace 2B by B.)

Proof. The first two elements map to the third under the ring homomor-
phisms (πab)∗ and (ρcan)∗, so it suffices to prove the third claim. Observe
that the Cayley embedding F

n
p → Σpn factors up to conjugacy as

F
n
p

c×n

−−−−→ Σn
p −→ Σpn

where the latter map induces the iterated ◦-product. Thus, by the factor-
ization (9) of the regular representation, we have

E
Fp

B1
◦ · · · ◦ E

Fp

Bn
= (ρreg)∗(zB1 × · · · × zBn).

We obtain

〈χ
(pB)

yB
, E

Fp

B1
◦ · · · ◦E

Fp

Bn
〉 = 〈χyB (ρreg), zB1 × · · · × zBn〉

= 〈χyB (ρFn
p
), zB1 × · · · × zBn〉

= (−1)n−1

(
B

B1, . . . , Bn

)

6= 0 ∈ Fp.

Here the second equality follows from equation (10), the third from equation
(8), and the final inequality from the choice of B1, . . . , Bn. The claim now
follows from Remark 19.

Remark 47. In the case p 6= 2, we can obtain further indecomposables
in the aforementioned rings by a similar argument by taking into account
the exterior class in H∗(Fp). We leave the formulation of the result to the
reader.

Remark 48. Analogues of Theorems 45 and 46 hold, by the same argu-
ments, for many other interesting groups through which the regular rep-
resentation factors. An example is GLpnR for R any ring surjecting onto
Fp.
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