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Abstra
tIt is shown, that the e�e
tive a
tion for the reggeized graviton intera
tions 
an be formu-lated in terms of the reggeon �elds A++ and A�� and the metri
 tensor g�� in su
h a way,that it is lo
al in the rapidity spa
e and has the property of general 
ovarian
e. The 
or-responding e�e
tive 
urrents j� and j+ satisfy the Hamilton-Ja
obi equation for a masslessparti
le moving in the gravitational �eld. These 
urrents are 
al
ulated expli
itly for thesho
k wave{like �elds and a variation prin
iple for them is formulated. As an appli
ation, wereprodu
e the e�e
tive lagrangian for the multi-regge pro
esses in gravity together with thegraviton Regge traje
tory in the leading logarithmi
 approximation with taking into a

ountsupersymmetri
 
ontributions.
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1 Introdu
tionIn the Regge pole model the s
attering amplitude at large energies ps and �xed momentumtransfers p�t has the form [1℄ApRegge(s; t) = �p(t) s1+!p(t) 
2(t) ; �p(t) = e�i�!p(t) � p ; (1)where p = �1 is the signature of the reggeon with the traje
tory !p(t). The Pomeron isthe Regge pole of the t-
hannel partial waves f!(t) with va
uum quantum numbers and thepositive signature des
ribing an approximately 
onstant behaviour of total 
ross-se
tions forthe hadron-hadron s
attering. S. Mandelstam demonstrated, that the Regge poles generate
ut singularities in the !-plane [2℄. These singularities appear as a result of the analyti

ontinuation of the multi-parti
le unitarity 
ondition [3℄. They 
orrespond to s
atteringstates of the reggeons. Using the lo
ality of the reggeon intera
tions in the rapidity spa
e,V. Gribov 
onstru
ted an e�e
tive (2+1) Pomeron �eld model [4℄.On the other hand, it was dis
overed, that in some �eld theories the elementary parti
lesbe
ome reggeons after taking into a

ount radiative 
orre
tions. The simplest example ofthis phenomenon is the ele
tron reggeization in quantum ele
trodynami
s with a massivephoton [5℄. Using the 
ounting rules suggested in Ref. [6℄ the ve
tor boson reggeization inthe gauge models with the Higgs me
hanism was also established [7℄.In the leading logarithmi
 approximation (LLA) the s
attering amplitude at high energiesin QCD has the Regge form [8℄MA0B0AB (s; t) =MA0B0AB (s; t)jBorn s!(t) ; (2)where MBorn is the Born amplitude and the gluon Regge traje
tory is given below!(�jqj2) = ��sN
4�2 Z d2k jqj2jkj2jq � kj2 � ��sN
2� ln jq2j�2 ; (3)where � is a gluon mass, introdu
ed for the infrared regularization.In the multi-Regge kinemati
s, where the pair energies psk of the produ
ed gluons arelarge in 
omparison with momentum transfers jqij the produ
tion amplitudes in LLA are
onstru
ted from produ
ts of the Regge fa
tors s!(tk)k and e�e
tive reggeon-reggeon-gluonverti
es C�(qr; qr+1) [8℄. The amplitudes satisfy the Steinmann relations and the s-
hannelunitarity leading to bootstrap equations [8℄.The knowledge of M2!2+n allows us to 
onstru
t the BFKL equation for the Pomeronwave fun
tion [8℄ E	(~�1; ~�2) = H12	(~�1; ~�2) ; �t � s� ; � = ��sN
2� E0 : (4)Here H12 is the BFKL Hamiltonian and � is the Pomeron inter
ept. The operator H12has the property of the holomorphi
 separability [9℄ and is invariant under the M�obiustransformations [10℄ �k ! a�k + b
�k + d : (5)1



The generalization of eq. (4) to a 
omposite state of several gluons [11℄ in the multi-
olorQCD leads to an integrable XXX model [12℄ having a duality symmetry [13℄.The next-to-leading 
orre
tion to the BFKL kernel in QCD is also 
al
ulated [14℄. Itseigenvalue 
ontains non-analiti
 terms proportional to Æn;0 and Æn;2, where n is the 
onformalspin of the M�obius group. But in the 
ase of the N = 4 extended supersymmetri
 gaugemodel these Krone
ker symbols are 
an
eled leading to an expression having the propertiesof the hermitian separability [15℄ and maximal trans
endentality [16℄. The last propertyallowed to 
al
ulate the anomalous dimensions of twist-two operators up to three loops [17℄.It turns out, that evolution equations for the so-
alled quasi-partoni
 operators are integrablein N = 4 SUSY at the multi-
olor limit [18℄. The N = 4 four-dimensional 
onformal �eldtheory due to the Malda
ena guess is equivalent to the superstring living on the anti-de-Sitter 10-dimensional spa
e [19, 20, 21℄. Therefore the Pomeron in N=4 SUSY is equivalentto the reggeized graviton in this spa
e. This equivalen
e gives a possibility to 
al
ulate theinter
ept of the BFKL Pomeron at large 
oupling 
onstants [17, 22℄j = 2�� ; � = 12� â�1=2 ; a = g2N
16�2 : (6)The duality between the BFKL Pomeron and the reggeized graviton means, that the Pomeron
al
ulus 
ould be des
ribed in a framework of the approa
h based on the e�e
tive a
tion forthe reggeized gravitons. It is one of the reasons, why we investigate in this paper the gravityat high energies.To begin with, let us remind the e�e
tive �eld theory for reggeized gluons [23℄. The
orresponding e�e
tive a
tion is lo
al in the rapidity spa
ey = 12 ln �k + jkj�k � jkj ; jy � y0j < � ; � << ln s : (7)We introdu
e the anti-hermitian �elds v� for the usual gluons and the gauge invariant �eldsA� des
ribing the produ
tion and annihilation of the reggeized gluonsv�(x) = �iT ava�(x) ; A�(x) = �iT aAa�(x) ; ÆA�(x) = 0 ; (8)where T a are generators of the gauge group in the adjoint representation. The �elds A�satisfy the kinemati
al 
onstraints ��A+ = �+A� = 0 : (9)The e�e
tive a
tion for a 
luster of parti
les with approximately equal rapidities has theform S = Z d4x �LQCD + Tr(V+�2�A� + V��2�A+)� ; (10)where LQCD is the usual QCD a
tion and the e�e
tive 
urrents V� are given belowV+ = �1g�+ P exp �g2 Z x+�1 v+(x0)d(x0)+! = v+ � gv+ 1�+v+ + ::: : (11)The Feynman rules for this a
tion are derived in ref. [24℄. The e�e
tive a
tion approa
hgives a possibility to 
onstru
t various reggeon verti
es needed to 
al
ulate NLO and NNLO
orre
tions to the BFKL kernel. 2



Another appli
ation of the e�e
tive a
tion for the gauge models is a veri�
ation of theBDS ansatz [25℄ for the inelasti
 amplitudes in N = 4 SUSY. It was shown [26, 27℄, that theBDS amplitudeMBDS2!4 should be multiplied by the fa
tor 
ontaining the 
ontribution of theMandelstam 
ut in LLA. In the two-loop approximation this fa
tor 
an be found also fromproperties of analyti
ity and fa
torization [28℄ or dire
tly from re
ently obtained exa
t resultfor M2!4 [29℄. In a general 
ase the wave fun
tion for the Mandelstam singularity satis�esthe S
hr�odinger equation for an open integrable Heisenberg spin 
hain [30℄.Below we apply the approa
h based on the e�e
tive a
tion for reggeons to the 
ase of thehigh energy gravity. The graviton reggeization was established initially with the use of thet-
hannel unitarity [31℄. Later it was shown [32℄, that in LLA the graviton Regge traje
toryis �nite in the ultraviolet region only in the N = 4 supergravity. At other gravity modelsthe 
orresponding t-
hannel partial wave fj(t) has a Regge 
ut singularity 
orresponding tothe double-logarithmi
 asymptoti
s [32℄. Also some e�e
tive verti
es for reggeized gravitonintera
tions were 
al
ulated [33℄. These results were veri�ed by the authors of Ref. [34℄ intheir study of the gravity at Plan
kian energies. An e�e
tive �eld theory for the S-matrixin gravity with the multi-Regge unitarity was 
onstru
ted in Ref. [35℄, whi
h allowed toinvestigate the gravitational 
ollapse at the high energy parti
le s
attering [36℄. The newresults on the high energy s
attering in gravity and supergravity and related referen
es 
anbe found in the paper [37℄.2 Reggeon �elds in gravityIt is natural to 
onstru
t the theory of high energy pro
esses in gravity in terms of thereggeized gravitons and their intera
tions, be
ause in this 
ase the s
attering amplitudeswill satisfy automati
ally the t-
hannel unitarity. The S-
hannel unitarity will be in
orpo-rated in the reggeon verti
es. In parti
ular, the so-
alled bootstrap relations in QCD are
onsequen
es of the multi-parti
le S-
hannel unitarity. We begin with the introdu
tion ofthe �elds des
ribing the usual and reggeized gravitons.The Hilbert-Einstein a
tion for gravity has the form [38℄S = Sgrav + Sm ; (12)where Sgrav and Sm des
ribe the intera
tion of the gravity �eld g��(x) and the matter �elds,respe
tively. Both 
ontributions are invariant under the general 
oordinate transformation.For the metri
 tensor g�� , entering in the invariant interval(ds)2 =X�� g�� dx� dx� ; (13)this transformation in the in�nitesimal form is given belowÆg��(x) = D� ��(x) +D� ��(x) ; (14)where ��(x) is a small lo
al parameter and D� is the 
ovariant derivative de�ned belowD� ��(x) = ����(x)� ���� ��(x) : (15)3



Here �� is the partial derivative in x� and ���� is the Christo�el symbol���� = 12 g�� (��g�� + ��g�� � ��g��) : (16)Note, that in the Minkowski spa
e the 
orresponding invariant interval is(ds)2 = ��� dx� dx� ; (17)where the Lorentz tensor ��� has the signature (+���).The a
tion for the pure gravity 
an be written as followsSgrav = � 12� Z d4xp�g R ; (18)where g = Det(g��) (19)and the Einstein parameter � is proportional to the Newton 
onstant 
� = 8 � 
 : (20)The s
alar 
urvature R is related to the Riemann tensor by the 
ontra
tion of indi
esR = R�� g�� : (21)In turn, R�� is expressed in terms of the Riemann tensor of the fourth rankR�� = R��;�� ; R��;�� = ������ � ������ + ���� ���� � ���� ���� : (22)The matter a
tion 
an be written as an integral from the Lagrangian LmSm = Z d4xp�g Lm : (23)Its variation in the metri
 tensor is expressed in terms of the energy-momentum tensor T ��ÆSm = 12 Z d4xp�g Æg�� T �� ; (24)whi
h is 
onserved D� T �� = 0 : (25)Performing also the variation of the gravity a
tionÆSgrav = 12� Z d4xp�g Æg�� G�� ; G�� � R�� � 12 g��R ; (26)we obtain from the stationarity 
ondition for the total a
tion ÆS = 0 the Einstein equationsG�� = ��T �� (27)4



Due to the general 
ovarian
e of the a
tion Sgrav the left hand side of this equality satis�esthe identity D�G�� = 0 ; (28)whi
h is 
ompatible with the 
onservation of the energy-momentum tensor T �� .We want to 
onstru
t the intera
tion of the Reggeized gravitons and usual gravitonsto des
ribe quasi-multi-Regge pro
esses at high energies. In these pro
esses intermediateparti
les are produ
ed in 
lusters with �x invariant masses mr. The parti
les in ea
h 
lusterhave approximately the same rapidities y � yr in the intervaljy � yrj < � ; (29)where the intermediate parameter � is assumed to satisfy the inequalitiesln s� � � 1 : (30)The relative rapidities of di�erent 
lusters produ
ed in the multi-Regge kinemati
s are 
on-sidered to be large ln s� yr � yr�1 � � : (31)The intera
tion between the 
lusters is performed through an ex
hange of the reggeizedgravitons des
ribed by two additional �elds A++ and A��. These new �elds 
orrespond tothe reggeon emission and absorption in the 
rossing 
hannel. In our quasi-multi-Regge kine-mati
s 
orresponding to the strongly ordered rapidities they satisfy the following kinemati
al
onstraints (
f. (32)) �+A++ = 0 ; ��A�� = 0 ; (32)where �� = n���� ; n2� = 0 ; n+n� = 1 (33)and the light-
one ve
tors n� are expressed in terms of momenta pA; pB of 
olliding parti
lesn+ = pAs2s ; n� = pB s2s : (34)The above 
onstraints for A� follow from the fa
t that the Sudakov variables �r; �r for theprodu
ed 
luster momentumkr = �rpA + �rpB + kr? ; k2r = s�r�r � k2r? = m2r (35)are strongly ordered1� �1 � �2 � :::� �n ; 1� �n � �n�1 � :::� �1 ; s�r�r � k2r? � m2r : (36)We derive in next se
tions the e�e
tive a
tion for high energy pro
esses in gravity. Thisa
tion des
ribes the intera
tion of gravitons inside ea
h 
luster with neighboring reggeonshaving approximately the same rapidities. In this 
ase apart from the usual Hilbert-Einsteina
tion Sgrav one should introdu
e an additional 
ontribution �S 
ontaining the linear 
om-bination of the reggeon �elds A++ and A�� 
onsidered them as external sour
esSeff = Sgrav +�S : (37)5



It is well known, that the reggeon des
ribes a family of parti
les with di�erent spins andmasses lying on the Regge traje
tory. The reggeized graviton 
an be viewed as a naturalgeneralization of the usual massless graviton with the spin j = 2. Therefore it is natural to
onsider the fun
tions A++ and A�� as �elds invariant under general 
ovariant transforma-tions ÆA++ = ÆA�� = 0 (38)with the 
orresponding lo
al parameters � de
reasing at large x. Of 
ourse, A++ and A��are transformed under the global Poin
are group. The indu
ed 
ontribution �S 
an bewritten in the form �S = � 12� Z d4x  j++ �2�A++2 + j�� �2�A��2 ! : (39)Here the Lapla
ian operators �2� are introdu
ed to avoid simultaneous singularities in theoverlapping dire
t and 
rossing 
hannels be
ause they 
an
el neighboring reggeon propaga-tors 1=q2. These propagators appear due to a kineti
 term bilinear in the �elds A��. As itis shown below, due to general 
ovarian
e the 
urrents j++ and j�� 
ontain the non-lo
aloperators ��1+ and ��1� whi
h should be interpreted as propagators of the parti
les in other
lusters emitting the gravitons into the given rapidity interval �.In the perturbation theory the 
urrents j++; j�� 
ontain 
ontributions linear in the metri
tensor g�� j++ � g++ + ::: ; j�� � g�� + ::: :The 
orresponding solution of the Einstein equation for g�� in the external �elds A++ andA�� will have the formg�� = ��� + Æ�+Æ�+A++ + Æ��Æ��A�� +O(A2) : (40)Therefore the reggeon �elds A++ and A�� 
an be 
onsidered as 
lassi
al 
omponents of thegravity �eld.The indu
ed term �S should be invariant under general 
oordinate transformationsproviding that A�� satisfy the kinemati
al 
onstraints (32). As it was argued above, the
urrents j++ and j�� des
ribe the graviton emission into the given interval of rapidities fromother 
lusters having di�erent rapidities. In an a

ordan
e with the 
ondition ��A�� = 0two neighboring reggeons for the 
luster r have the momentum 
omponents k�r whi
h aretransferred almost 
ompletely to the parti
les in the 
luster. These momenta are sharedby the parti
les in other 
lusters with higher values of k�. Be
ause the 
urrents j� areuniversal, for their 
al
ulation one 
an 
onsider an arbitrary pro
ess in the external �eldhaving parti
les with the larger 
omponents k� of their momenta.3 General 
ovarian
e of the e�e
tive a
tionTo 
al
ulate the e�e
tive 
urrents j++ and j�� we use their invarian
e under the general
oordinate transformations up to the total derivatives in x+ and x�, taking into a

ountthe fa
t that the �elds A++ and A�� are invariant under these transformations and satisfyadditional 
onstraints �+A++ = ��A�� = 0 : (41)6



As a gravitational �eld we 
hose the tensor h�� in the following de
omposition of the 
ovariantmetri
 tensor g�� = ��� + h�� : (42)The 
omponents of the 
ontravariant metri
 tensor g�� 
an be found from the linear equationg�� g�� = Æ�� : (43)and are obtained by the perturbation expansiong�� = ��� � h�� + h��h�� � h��h�ÆhÆ� + ::: : (44)Note, that for the tensor h�� and its derivatives we shall use only lower 
omponents implyingthe Minkowski signature in summation over the repeated indi
es. The e�e
tive 
urrents j++and j�� 
an be 
al
ulated in the perturbation series over the tensor 
omponents h�� . Forexample, j++ 
an be presented as followsj++ = h++ + P (2)++(h) + P (3)++(h) + ::: ; (45)where the polynomials P (k)++ 
an 
ontain derivatives �� and integral operators 1=�+ a
tingon the �elds h. Furthermore, generally we di�er the 
omponents h++; h�+ and h��. The
orresponding set of re
urrent equations for the homogeneous polynomials P (n)++ are obtainedfrom the general 
ovarian
e of the indu
ed a
tion using the in�nitesimal transformationswith parameters �� and �+ÆP (n)++Æh�� 2 ���� + ÆP (n)++Æh�+ �+�� = n�1Xk=1 ÆP (k)++Æh�� 2������ ; (46)ÆP (n)++Æh++ 2 �+�+ + ÆP (n)++Æh�+ ���+ = 0 : (47)In the right hand side of the �rst equation one should leave only the terms of the order nin the perturbation series over h�� using the above expansion for g��. It is implied also inthese equations, that after the di�erentiation over h��; h�+ and h++ the 
orresponding tensor
omponents in P++ should be repla
ed by the subsequent fa
tors.The se
ond equation 
an be easily solved. Namely, P (n)++ should 
ontain the dependen
efrom h�+ and h++ only in the form of the following linear 
ombinationX�+ = X+� = h�+ � 12 ���+ h++ : (48)Moreover, we 
an add to the solution of the �rst equation an arbitrary fun
tion of anotherlinear 
ombination Z�� = h�� � 2 ���+ h�+ : (49)It is 
onvenient to introdu
e two independent variables: X�+ andY�� = h�� � 2 ���+ h�+ + �����2+ h++ = h�� � 2 ���+ X�+ : (50)7



Then the left hand sides of the above equations do not 
ontain the derivative in Y�� and the�rst equation 
an be written as follows�P (n)++�X�+ �+�� = n�1Xk=1 ÆP (k)++Æh�� 2������ : (51)Here the right hand side should be expressed in terms of the variables X�+ and Y��. Inparti
ular using P (1)++ = h++ (52)for P (2)++ one 
an obtain the equation�P (2)++�X�+ �+�� = �2X�+ �+�� ; (53)where the following relation was usedÆh++ = 2�+�+ � 2���+X�+ (54)with the subsequent integration over x+ by parts. Note, that the �rst term 2�+�+ in Æh++gives a vanishing 
ontribution to the indu
ed a
tion �S in this order due to the kinemati
al
onstraint �+A++ = 0 : (55)Therefore from eq. (53) we obtain P (2)++ = �X2�+ : (56)To �nd P++ in upper orders of the perturbation theory one should use the following relationsÆh�+ = ���+ + �+�� � �� (�+h�� + ��h+� � ��h+�) ; (57)Æh�� = ���� + ���� � �� (��h�� + ��h�� � ��h��) : (58)Thus, in the third order we obtain the equation�P (3)++�X�+ �+�� = �2��h���+X�+ + 2X�+ Æ(2)X�+ ; (59)where Æ(2)X�+ = ��� (�+Y�� + ��X�+ + ��X�+) + ���+ ���+X�+ (60)enters in the in�nitesimal transformation of X�+ÆX�+ = �+�� + Æ(2)X�+ : (61)With the integration over x+ by parts one 
an rewrite the equation (59) in the form�P (3)++�X�+ �+�� = (�+��)X�+ (Y�� + Y��)8



�2��  ���+ XÆ+! �+XÆ+ � 2(���Æ) 1�+ X�+! �+XÆ+ � 2(�2+�Æ) ���+ XÆ+! 1�+ X�+ : (62)After that its solution 
an be easily foundP (3)++ = X�+XÆ+ Y�Æ � 2  1�+ X�+! ���+ XÆ+! �+XÆ+ : (63)Integration by parts and using the expression for Y�Æ one 
an simplify this resultP (3)++ = X�+X�+ h�� �X�+ ���+ X2�+ : (64)Therefore we obtain for the e�e
tive 
urrents j++ and j�� the perturbative expansionj++ = h++ �X2�+ +X�+X�+h�� �X�+ ���+ X2�+ + ::: ; (65)j�� = h�� �X2�� +X��X��h�� �X�� ���� X2�� + ::: : (66)One 
an verify, that with our a

ura
y these 
urrents are transformed under the 
oordi-nate 
hange as followsÆj�� � 2�� (�� � h����) + �� (�� � h����) ���� �h++ �X2�+� : (67)It allows us to guess the law of transformations of j�� in a general 
aseÆj�� = 2 �� �� + �� �� ���� j�� ; �� = g�� �� : (68)4 Rapidly moving s
alar parti
le in a gravity �eldThe general 
ovarian
e 
onditions for the e�e
tive reggeon 
urrents(Æh��) ÆÆh�� j++ = (Æh��) ÆÆh�� j�� = 0 (69)are equivalent to equations of motion for the relativisti
 matter propagating in the 
orre-sponding gravitational �eld be
ause the e�e
tive a
tion 
an be viewed as a ba
kward rea
tionof the rapidly moving 
olliding parti
les on the pro
esses taking pla
e at a given intervalof rapidity. Due to the universality of the a
tion for its 
al
ulation one 
an 
onsider anarbitrary type of the 
olliding matter.Let us restri
t ourselves to the s
attering of the high energy s
alar parti
le o� the gravi-tational �eld. The a
tion for the free massless s
alar �eld � in the gravitational ba
kground
an be written as follows Ss = Z d4xp�g 12 (���) g�� (���) : (70)9



The 
orresponding energy-momentum tensor isT�� = (���) (���)� 12 g�� g�� (���) (���) : (71)We introdu
e the 
ovariant d'Alambert operatorr2 = 1p�g�� g��p�g �� = D��� ; (72)whi
h is symmetri
 for the following s
alar produ
t of the �eldsZ d4xp�g  r2 � = Z d4xp�g �r2  : (73)The equations of motion for � are r2� = 0 : (74)The energy-momentum tensor is 
onservedD�T�� = 0 (75)due to the equations of motion.One 
an 
onstru
t also the equation for the Green fun
tion G(x; x0) of the s
alar parti
le�r2(x)G(x; x0) = Æ4(x� x0) : (76)Its arguments 
an be inter
hanged with a similarity transformationG(x; x0) = q�g(x0)G(x0; x) 1q�g(x) : (77)The variation of the Green fun
tion over the metri
 tensor 
an be written as followsÆG(x; x0) = Z d4y G(x; y) Æ(p�gr2)G(y; x0)= � Z d4y �G(x; y)�y� Æ(g��p�g) �G(y; x0)�y� : (78)Under the general 
ovariant transformations whi
h 
an be written in the formÆ(g��p�g) = p�g (g��D��� + g��D��� � g��D���) : (79)the Green fun
tion is transformed as followsÆG(x; x0) = ��(x) ��x�G(x; x0) + ��(x0) ��x0�G(x; x0) : (80)The 
orresponding S-matrix exists providing that at in�nity the metri
 has the Minkowskiform limx!1 g�� = ��� : (81)10



In this 
ase the s
attering amplitude f(p; p0) is expressed in terms of the matrix element ofthe Green fun
tion with amputated free propagatorsf(p; p0) �< p0j limt!1 limt0!�1 �2� G(x; x0) �2�0 jp > ; (82)where the initial and �nal parti
les are on mass shellp2 = p02 = 0 : (83)The s
attering amplitude is invariant under the general 
oordinate transformations, be-
ause the in�nitesimal parameter � tends to zero at in�nity. Note, however, that generallythe energy and momentum are not 
onserved.For our purpose it is enough to �nd the Green fun
tion only at high energiesp� � p0� !1 : (84)For example let us 
onsider the 
olliding parti
le with the momentumpA = n+rs2 : (85)In this 
ase the wave fun
tions < pAj and < pA0j are rapidly os
illate and we 
an write the
ovariant d'Alambert operator in the equation for G(x; x0) as followsr2 = �2� + h���2� + 2(��h��)�� + 12(�+h��)g���� + 12h��(��h��)g���� ; (86)where we introdu
ed the notationsg�� = ��� + h�� ; h�� = �h�+ + h��h�+ + ::: ; (87)h�� = �h++ + h+�h�+ � h+�h��h�+ + ::: : (88)We imply also the following de
omposition of the usual Lapla
e operator�2� = �+�� + ���� : (89)The 
losed expression for the indu
ed 
urrent j++ is given belowj++ = �2��� r�2 �2��� ; (90)where it is implied, that the di�erential operators in the end of the expression a
t to theleft after their integration by parts. One 
an use also a semi
lassi
al approximation for theGreen fun
tion. We shall return to the semi
lassi
al approa
h in another form in subsequentse
tions.
11



5 "Eikonal" 
ontribution to the e�e
tive a
tionAs it was mentioned above, in the perturbation theory the s
alar parti
le in the intermediatestates is strongly virtual in an a

ordan
e with the fa
t, that in our kinemati
s the gravitonsemitted from it belong to the 
lusters with their rapidity signi�
antly di�erent from theparti
le rapidity. Therefore we 
an expand its free propagator as follows� 1�2� � � 1�+�� + 1�+���?� �?� 1�+�� : (91)The leading terms � h++ are 
an
eled partly in the perturbation expansion between 
on-tributions of various Feynman diagrams 
orresponding to a di�erent ordering of the verti
esSint in time, be
ause the eikonal term with intermediate parti
les on mass shell in our 
ase isnegligible. To 
larify this important fa
t we 
al
ulate here several terms of the expansion ofs
attering amplitude in the Fourier transform V (k) of the intera
tion term h++. Omittingthe normalization fa
tors and the verti
es V (ki), the s
attering amplitude for the s
alar par-ti
le with the large momentum p 
an be written in the se
ond order of perturbation theoryas followsAeik2 = 1(p+ k1)2 + 1(p+ k2)2 = (p+ k1 + k2)2 � 2(k1k2)(p+ k1)2(p+ k1 + k2)2 � � (k1k2)2(pk1) (pk2) ; (92)where we used the reality requirement for the initial and �nal state parti
lesp2 = (p+ k1 + k2)2 = 0 (93)and the 
ondition of the strong virtuality for the parti
le in the intermediate states2(pk1) � 2(pk2)� k21 � k22 � (k1k2) : (94)In an analogous way one 
an obtain the following 
ontributions from the eikonal diagramsin the thirdAeik3 = 1(p+ k1)2 1(p+ k1 + k2)2 + 1(p+ k2)2 1(p+ k1 + k2)2 + 1(p+ k1)2 1(p+ k1 + k3)2+ 1(p+ k3)2 1(p+ k1 + k3)2 + 1(p+ k2)2 1(p+ k2 + k3)2 + 1(p + k3)2 1(p+ k2 + k3)2� k3(k1 + k2)4pk3 p(k1 + k2) k1k2pk1 pk2 + k2(k1 + k3)4pk2 p(k1 + k3) k1k3pk1 pk3 + k1(k2 + k3)4pk1 p(k2 + k3) k2k3pk2 pk3 (95)and fourth orderAeik4 � � k1k28 pk1 pk2  k4(k1 + k2 + k3)pk4 p(k1 + k2 + k3) k3(k1 + k2)pk3 p(k1 + k2) + k3(k1 + k2 + k4)pk3 p(k1 + k2 + k4) k4(k1 + k2)pk4 p(k1 + k2)!� k1k38 pk1 pk3  k4(k1 + k2 + k3)pk4 p(k1 + k2 + k3) k2(k1 + k3)pk2 p(k1 + k3) + k2(k1 + k3 + k4)pk2 p(k1 + k3 + k4) k4(k1 + k3)pk4 p(k1 + k3)!12



� k1k48 pk1 pk4  k3(k1 + k2 + k4)pk3 p(k1 + k2 + k4) k2(k1 + k4)pk2 p(k1 + k4) + k2(k1 + k3 + k4)pk2 p(k1 + k3 + k4) k3(k1 + k4)pk3 p(k1 + k4)!� k2k38 pk2 pk3  k4(k1 + k2 + k3)pk4 p(k1 + k2 + k3) k1(k2 + k3)pk1 p(k2 + k3) + k1(k2 + k3 + k4)pk1 p(k2 + k3 + k4) k4(k2 + k3)pk4 p(k2 + k3)!� k2k48 pk2 pk4  k3(k1 + k2 + k4)pk3 p(k1 + k2 + k4) k1(k2 + k4)pk1 p(k2 + k4) + k1(k2 + k3 + k4)pk1 p(k2 + k3 + k4) k3(k2 + k4)pk3 p(k2 + k4)!� k3k48 pk3 pk4  k2(k1 + k3 + k4)pk2 p(k1 + k3 + k4) k1(k3 + k4)pk1 p(k3 + k4) + k1(k2 + k3 + k4)pk1 p(k2 + k3 + k4) k2(k3 + k4)pk2 p(k3 + k4)!� (k3 + k4)(k1 + k2)8p(k3 + k4) p(k1 + k2) k1k2pk1 pk2 k3k4pk3 pk4 � (k2 + k4)(k1 + k3)8p(k2 + k4) p(k1 + k3) k1k3pk1 pk3 k2k4pk2 pk4� (k2 + k3)(k1 + k4)8p(k2 + k3) p(k1 + k4) k1k4pk1 pk4 k2k3pk2 pk3 : (96)The 
orresponding "eikonal" terms indeed appear in the e�e
tive 
urrentsjeik++ � g++ �X2�+ �X�+ ���+ X2�+ �X�+ ���+X�+ ���+ X2�+ � 14  ���+ X2�+!2 + ::: ; (97)jeik�� � g�� �X2�� �X�� ���� X2�� �X�� ����X�� ���� X2�� � 14  ���� X2��!2 + ::: ; (98)where we took into a

ount, that due to the general 
ovarian
e the light-
one 
omponents h++and h�� 
an enter in the �nal expressions only inside the tensors X�+ and X��, respe
tively.Looking at these expressions and 
omparing them with the above perturbative 
ontribu-tions obtained from general 
ovarian
e 
onsiderations one 
an formulate the hypothesis, thatthe 
omplete result for the generally invariant 
urrents is obtained from the "eikonal" ex-pression by its "
ovariantization" 
orresponding to the substitution of the Minkowski tensor��� everywhere by the world metri
 tensor:��� ! g�� : (99)This hypothesis leads to the following result in the perturbation theoryj++ = h++ �X�+g��X�+ �X�+g�� ���+ X�+g��X�+�X�+g�� ���+ X�+g�� ���+ X�+g��X�+ � g��4  ���+ X�+g��X�+! ���+ X�+g��X�+ + ::: ; (100)j�� = h�� �X��g��X�� �X��g�� ���� X��g��X���X��g�� ���� X��g�� ���� X��g��X�� � g��4  ���� X��g��X��! ���� X��g��X�� + ::: : (101)13



Moreover, it allows to formulate a 
losed equation for the important "eikonal" 
ontribution(�+��) ÆÆX�+ jeik++ = ((����) + (����)) ÆÆ��� jei
++� ��(��X�+) + (����)X�+ �  ���+ (�+��)X�+!! ÆÆX�+ jeik++ ; (102)where, as usual, the fa
tors in front of derivatives should substitute in the same position the
orresponding variables X�+ and ��� removed by the di�erentiation. The �rst term in theright hand side of this equation 
orresponds to the in�nitesimal transformation of h�� in thelowest order of the perturbation theory.For example, in the fourth order from this "eikonal" equation we derive the identity�(�+��) ���+X�+ ���+ X2�+ �X�+ ���+ (�+��) ���+ X2�+�2X�+ ���+X�+ ���+X�+�+�� �  ���+ X2�+! ���+ X�+�+��� �X�+ ((����) + (����)) ���+X2�+ � 2X�+ ���+X�+(���Æ)XÆ++ ��(��X�+) + (����)X�+ �  ���+ (�+��)X�+!! ���+X2�++2X�+ ���+X�+  ��(��X�+) + (����)X�+)� ���+ (�+��)X�+! ; (103)whi
h 
an be veri�ed with integration over x+ by parts.In the �fth order one 
an obtain the relation(�+��) ÆÆX�+ P eik (5)++ = �X�+(����) ���+ X�+ ���+X2�+ �X�+ ���+ X�+ (���Æ) �Æ�+X2�+�12 (����) ���+X2�+! ���+X2�+!+  ��(��X�+)�  ���+ (�+��)X�+!! ���+ XÆ+ �Æ�+X2�++X�+ ���+  �Æ(�ÆX�+)�  ���+ (�+�Æ)XÆ+!! ���+X2�++ 2X�+ ���+ X�+ +  ���+X2�+!! ���+X�+  �Æ(�ÆX�+)� ���+ (�+�Æ)XÆ+! : (104)It gives a possibility to 
al
ulate the 
orresponding "eikonal" 
ontribution to j++ in thisorder P eik (5)++ = �X�+ ���+X�+ ���+X�+ ���+ X2�+�14 X�+ ���+  ���+ X2�+!2 � 12  ���+ X�+ ���+ X2�+! ���+ X2�+! : (105)14



In the sixth order we obtain in a similar wayP eik (6)++ = �XÆ+ �Æ�+X�+ ���+X�+ ���+X�+ ���+ X2�+�14 XÆ+ �Æ�+X�+ ���+  ���+ X2�+!2 � 12 XÆ+ �Æ�+  ���+ X�+ ���+ X2�+! ���+ X2�+!�14  ���+ X�+ ���+ X2�+!2 � 18 0� ���+  �Æ�+ X2�+!21A ���+ X2�+! : (106)To �nd a general stru
ture for the 
urrents jeik++ and jeik�� we should investigate in a morea

urate way the re
urrent relation following from the eikonal equation (102).To begin with, one 
an use the following formulas (see (60))2X�+Æ(2)X�+ �X�+X�+ (���� + ����)= �X�+ ���+ 2X�+(�+��)� (�+��) ���+X2�+ + �+�� ���+ X2�+ : (107)for the variation of the stru
ture X2�+ present in the previous order. On the other hand, thesum of the �rst two terms in the right hand side 
an be interpreted as the variation of theexpression �X�+ ���+ X2�+ (108)appearing in the next order. The last term in (107) gives a vanishing 
ontribution in these
ond order. For higher orders it is multiplied with two possible stru
ture X���=�+ or��=�+. The se
ond stru
ture is 
ontra
ted with the index � with the operator ��=�+ a
tingon another fun
tion. Let us 
onsider these two possibilities separately.We obtain for the variation of the �rst stru
tureÆ(2)X�+ ���+ �X�+ (���� + ����) ���+= ����X�+ ���+ �X�+���� ���+ �  ���+ (�+��)X�+! ���+ : (109)The se
ond term in the right hand side 
an
els the 
ontribution from the last term in forthe variation of X2� (107) due to the relation�X�+���� ���+X2�+ +X�+���� ���+ X2�+ = 0 (110)The last term in (109) 
orresponds to the variation of the following stru
ture in the nextorder �14  ���+ X2�+!2 (111)15



provided that the operator X�+ ���+ was applied to X2�+. In other 
ases we obtain from thelast term the term 
an
eling the variation of the 
ontribution�12  ���+ X2�+! ���+ : (112)in the next order. The �rst term in (109) 
an be written as follows�(�+��) ���+X�+ ���+ + �+�� ���+X�+ ���+ : (113)Here the �rst 
ontribution leads to the following stru
ture in the next order�X�+ ���+X�+ ���+ (114)and the se
ond term vanishes provided it is not multiplied by X���=�+ or ��=�+ 
ontra
tedby the index � with the operator ��=�+ a
ting on another fun
tion. In the these two 
aseswe should repeat 
al
ulations performed above for the last term in the variation of X2�.At last we 
onsider the variation of a produ
t of the operators ��=�+ in h�� of�(���� + ����) ���+ ::: ���+ = � ���� ���+ :::! ���+ � ���+ :::���� ���+ + ����  ���+ ::: ���+ :::! : (115)Two �rst terms are 
an
eled with the last terms in Eqs. (107) and (113). The last term 
anbe written as follows�(�+��) ���+  ���+ ::: ���+ :::!+ �+�� ���+  ���+ ::: ���+ :::! : (116)The �rst term here 
orresponds to the following stru
ture in the next order�X�+ ���+  ���+ ::: ���+ :::! : (117)The se
ond term is not zero only if it is multiplied by X���=�+ or ��=�+ 
ontra
ted by theindex � with the operator ��=�+ a
ting on another fun
tion. In these 
ases again we shouldperform 
al
ulations similar to that with the last term in eq. (107). Thus, after 
an
elationof some terms in the variation of j++ in the previous order we 
an obtain the result in nextorder, using the above substitutions.Even more, one 
an write the following representation for the e�e
tive "eikonal" 
urrentsin an arbitrary order jeik++ = h++ � �+Jeik+ ; j�� = h�� � ��Jeik� : (118)The above perturbative 
al
ulations allow to 
onstru
t the following "fan" equations for thequantities Jeik� (�� �X����) Jeik� = X2�� + 14 ���Jeik� �2 : (119)16



The solutions of these equations should have the following transformation properties follow-ing from the general 
oordinate invarian
e of j��ÆJeik� = � 2�� �� ��X�� = 2�� X�� ���� : (120)One 
an verify, that indeed these properties are 
ompatible with the transformations ofvarious operators entering in the "fan" equationsÆ (X����) = (����)�� �  ���� (����)X��! �� � (����) ����X���� ; (121)ÆX2�� = 2X������ �X�� ���� 2X��(����)� (����) ����X2�� (122)and Æ ��:::��::: = �(����) ���� (��:::��:::) : (123)Here we negle
ted the terms 
an
eled between various stru
ture (see last 
ontributions inEqs. (107), (113) and (116))� Æ (X����) = �X�������� + ���� ����X���� ; � ÆX2�� = ���� ����X2�� (124)and � Æ ��:::��::: = � (������:::) �� � ��:::������ + ���� ���� (��:::��:::) : (125)They generate unessential 
orre
tions to j�� proportional to ��� j� = �������J� : (126)6 Hamilton - Ja
obi equation for e�e
tive 
urrentsTo 
onstru
t 
ovariant equations for the e�e
tive 
urrents in all orders we take into a

ount,that j�� are invariant under general 
oordinate transformations up to total derivatives inx�. Let us introdu
e the 
urrents j� related dire
tly to j��j� � � 1�� j�� = J� � 1�� h�� : (127)Using these relations one 
an transform the "eikonal" equation (119) for Jeik� to the form� (�� � h����) j�eik = h�� � (h��)2 � 14 ���j�eik�2 : (128)In "eikonal" approximation the possible 
ontributions 
ontaining the matrix elements h��with �; � 6= � are absent. To restore su
h terms we should impose on the equation theproperty of general 
ovarian
e. To begin with, the inhomogeneous term 
an be modi�ed in17



su
h a way, that it be
omes proportional to a matrix element of the 
ontravariant metri
tensor h�� � (h��)2 ! h�� � g�� h�� h�� = �g�� : (129)Here and later the tensors with 
ovariant and 
ontravariant indi
es are 
onsidered to bedi�erent. They are related by a 
ontra
tion with the metri
 tensor.Using similar modi�
ations for the linear and quadrati
 term, one 
an obtain the generally
ovariant "fan" equation for the 
urrents j�g�� ��j� = g�� + g��4 ���j�� ���j�� : (130)In an a

ordan
e with the general 
ovarian
e the 
urrents j� are transformed as followsÆj� = 2�� + ����j� ; (131)where the in�nitesimal parameters �� and �� tend to zero at large x in an a

ordan
e withthe fa
t, that j� are de�ned up to the 
ontributions vanishing at x� ! 1. Indeed, theindu
ed part of the e�e
tive a
tion with an integration over x� 
an be written as follows�S = � 12�  Z d2x?dx� limx+!1 j� �2�A++2 !+ Z d2x?dx+ limx�!1 j+ �2�A��2 !! (132)and this expression is not 
hanged under su
h transformations.The equation for j� 
an be presented in a simpler formg�� �12 ��j� � g�� � �12 ��j� � g�� � = 0 : (133)Its formal solution is j� = 2 x� � !� ; (134)where the quantities !� satisfy the light front equationg�� ��!� ��!� = 0 : (135)The last equation 
an be obtained in an independent way if we would sear
h the solutionof the generally 
ovariant d'Alambert equation (see eq. (72) in Se
tion 4)r2�(x) = 0 (136)for the wave fun
tion of the s
alar parti
le moving with a large momentum p� in the semi-
lassi
al ansatz ��(x) = exp ��ijpj x� + i ��(x)� ; ��(x) = jpj2 j�(x) ; (137)where ��(x) is a rapidly 
hanging phase and j� is the e�e
tive 
urrent in our normaliza-tion. Indeed, by negle
ting the derivatives from the metri
 tensors in 
omparison with largederivatives from �� we obtain from the d'Alambert equation its semi
lassi
al versiong�� �12 ��j� � g�� � �12 ��j� � g�� � = 0 ; (138)18



whi
h 
oin
ides with the equation (133) for j� derived above.The S-matrix for the parti
le s
attering at a given impa
t parameter o� the gravitational�eld in the semi
lassi
al approximation has the following formS = limx�!1 exp i jpj2 j�(x)! ; (139)providing that the initial 
onditions for j� arelimx�!�1 j�(x) = 0 : (140)In parti
ular this S-matrix 
ontains pure eikonal 
ontributions for whi
h the parti
le in theintermediate states lies on mass shell. Su
h 
ontributions should be absent in the e�e
tivea
tion, although they are reprodu
ed by the iteration of e�e
tive verti
es in the s-
hannel. Itis the reason, why the e�e
tive 
urrent j� entering in the a
tion at large x� is proportionalto the logarithm of the S-matrix limx�!1 j�(x) = �i 2p� lnS : (141)It is well known [38℄, that the solution of the light front equationg�� ��! ��! = 0 (142)
an be expressed in terms of the null-geodesi
 traje
tories of parti
les in the gravitational�eld satisfying the equation of motiond2x�(d�)2 = ���� dx�d� dx�d� ; (143)where � is a parameter in
reasing along the traje
tory and ���� is the Christo�el symbol.The geodesi
 equation is presented in the form of the Hamilton equationsdx�d� = g�� !� ; d!�d� = �12 !� !��� g�� ; (144)where !� � ��! = g�� dx�dp (145)plays a role of the parti
le momentum.Note, that the light front equation 
an be 
onsidered as the Hamilton-Ja
obi (HJ) equa-tion for the a
tion !. Its general integral 
ontains an arbitrary fun
tion, but it is wellknown [39℄, that this general solution is expressed in terms of the so-
alled 
omplete integral
ontaining only 4 arbitrary 
onstants! = a f(x�; 
1; 
2) + A : (146)The appearan
e of the parameters a and A is related to the lo
ality and the homogeneityof the HJ equation (its invarian
e under the transformation ! ! b ! + B). Really the HJ19



equation is an integral of motion for the Hamilton equations allowing to �nd the 
anoni
alvariables x� and !� as some fun
tions of � . Indeed, providing that the HJ equation is ful�lledat some � = �0 it will be valid at arbitrary � due to the relationdd� g�� ��! ��! = 0 ; (147)whi
h follows from the Hamilton equations. On the 
ontrary, the general solution of theHamilton equations 
an be obtained in terms of the 
omplete integral for !. Indeed, one
an prove [39℄, that the derivatives of ! over the parameters a; 
1; 
2�!�a = f = d ; �!�
1 = d1 ; �!�
2 = d2 (148)are also integrals of motion and therefore one 
an �nd from the last relations the 
oordinatesxi (i = 1; 2; 3) as fun
tions of t and six parameters a; 
1; 
2; d; d1; d2, whi
h 
orresponds to ageneral solution of equations of motion.To 
onstru
t a 
omplete integral ! for our 
ase of the massless parti
le s
attering o� thegravitation �eld from the solution of the Hamilton equations we write the light front surfa
efor arbitrary � in the form !(x0; x1; x2; x3) = 
onst : (149)Let us assume, that at large distan
es and large negative times t0, where g�� = ���, thissurfa
e is a plane 
ontaining the points parametrised by two numbers u and v~x = t0~n+ u~n1 + v ~n2 ; (150)where ~n; ~n1; ~n2 are orthogonal unit ve
tors~n2 = ~n21 = ~n22 ; (~n; ~n1) = (~n; ~n2) = (~n1; ~n2) = 0 : (151)The initial values of momenta are given below~r! = 
~n ; !20 = 
2 ; (152)where 
 is an arbitrary parameter whi
h depends generally on u and v (note, that ! is de�nedup to a 
ommon fa
tor). Then from the Hamilton equations one 
an 
al
ulate x� and !� forall values of � and parameters u and v. Thus, we 
an obtain x� = x�(�; u; v; t0;~n), whi
his a parametrised form of the light front surfa
e !(n) = 
onst, depending on the light-
oneve
tor n = 1p2(1; ~n): (153)In the usual form this surfa
e 
an be obtained by ex
luding the initial data (u; v; t0) fromfour 
omponents of the ve
tor x�.In parti
ular, to obtain the e�e
tive 
urrents j� we should put!� = !(n�) ; n� = 1p2(1;�1; 0; 0) (154)20



and normalize the fun
tions !� in su
h a way, that!� = 2x� � j� : (155)A possible generalization of the developed e�e
tive �eld theory 
ould in
lude a superpositionof the 
urrents jn with di�erent light-
one ve
tors n.The 
lassi
al equations for the e�e
tive a
tions apart from the usual Einstein term G��
ontain the indu
ed terms for the 
omponents of the metri
 tensor g��, g�� and g��. Theseterms are equal to the 
orresponding fun
tional derivatives of the a
tion �S. The 
on-tributions proportional to A++ and A�� 
ontain the derivatives from the 
urrents j�(x)and j+(x), respe
tively. Due to the Hamilton-Ja
obi equations these derivatives satisfy therelations 2g�� (��!�) �� Æj�(x)Æg��(y) = (��!�) (��!�) Æ4(x� y) : (156)The indu
ed terms in the Einstein equation play role of the energy-momentum tensor T��(y)whi
h is 
onserved due to the general 
ovarian
e of the a
tion �S.7 E�e
tive a
tion for sho
k wave gravitational �eldsTo illustrate the general approa
h based on the e�e
tive a
tion, let us 
onsider the Hamilton-Ja
obi equation for the massless parti
le s
attering o� the gravitation 
enter with the metri
tensor given by the S
hwarzs
hild solution [40℄d2s = �r � �r + �� d2t� �r + �r � �� d2r � (r + �)2 �d2� + sin2 � d2�� ; (157)where we used the spheri
al 
oordinates. The parameter � is proportional to the mass m ofthe attra
tion 
enter � = 
 m ; �2 = 8 � 
 : (158)The Einstein equations for the massless parti
le moving around the 
entral body in the plane(x; y) 
orresponding to � = �=2 are redu
ed to two ordinary di�erential equations [38℄ drd�!2 = (r + �)4b2 � (r2 � �2) ; (159)and (r + �)3r � � drdt = q(r + �)4 � (r2 � �2) b2 ; (160)where b in our 
ase is the impa
t parameter of the 
olliding parti
le whi
h moves for t! �1along the line parallel to the axes x, whi
h 
orresponds to the following initial 
ondition forthe �rst equation, des
ribing its traje
tory,r(�)j�!0 � b� !1 : (161)
21



The solution of this equation 
an be expressed in terms of the ellipti
 integral of the �rstkind Z 1r b drq(r + �)4 � (r2 � �2) b2 = � : (162)It allows to �nd r as a fun
tion of � and b. Inverting this fun
tion, one 
an �nd bb = b(r; �;�) : (163)The solution of the se
ond equation 
an be written in the formf(t; r; b; �) � t� Z r0 drq(r + �)4 � (r2 � �2) b2 (r + �)3r � � = C ; (164)where the 
onstant C is found from the initial 
onditions for r at t! �1. In an a

ordan
ewith our normalization we 
an 
onstru
t the 
omplete integral for the Hamilton-Ja
obiequation !(n) = 2 f(t; r; b(r; �;�); �) ; (165)where the unit ve
tor �!n de�nes the dire
tion of the initial parti
le momentum and theimpa
t parameter ve
tor �!� is orthogonal to it. The angle � is in fa
t the polar angle withthe respe
t to the ve
tor �!n .To obtain the e�e
tive 
urrents j� we should put �!n = ��!e 3 and write ! in the form!� = !(n�) = 2x� � j� : (166)To simplify the perturbative expansion of the e�e
tive 
urrents we 
onsider below themassless parti
le s
attering o� the gravitation 
enter moving with the relativisti
 velo
ityv ! 
 in the dire
tion of the third axes �!e 3. Due to the Lorentz 
ontra
tion the �eld of this
enter is given by the metri
 
orresponding to the sho
k wave solution of Ai
helburg andSexl (ds)2 = ��� dx� dx� + h��(dx�)2 (167)where h�� = 8p2 G� ln j�!x j Æ(x�) ; (168)where �!x is the transverse 
omponent of the ve
tor x�.The Hamilton equation for the parti
le moving in this �eld has the formdx�d� = ���!� � Æ�+ h��!+ ; d!�d� = 12 !+ !+�� h�� : (169)Before rea
hing the sho
k wave the parti
le propagates along the straight linex� = x�0 + !�0 � ; !�0 = ��� (!�)0 ; ���!�0!�0 = 0 ; (170)where x�0 and (!�)0 are initial values of 
oordinates and momenta. The 
ollision with themoving plane x� = 0 takes pla
e at the moment �
 �xed by the equationz
 = t
 ; (171)22



where the 
oordinates of the parti
le arez
 = z0 + !30 �
 ; t
 = t0 + !00 �
 ; �!� = �!x 0 ��!! 0 �
 : (172)Here we introdu
ed the notation �!� for the transverse 
oordinate �!x at � = �
.At � > �
 the new values of !� are!+ = (!+)0 ; !� = (!�)0 + 4p2 !+G� ln� Æ(x�) ; �!! = �!! 0 + 4p2 G��!��2 !+ ; (173)where �!� is �xed by the initial 
onditions.From the equation for x� we obtain!� !� dg��d� = !� !� (���!� � Æ�+ h��!+) dg��dx�= �!2+  � 8p2 G��!!�!��2 Æ(x�) + !+ 8p2 G� ln� ��Æ(x�)! : (174)This relation is 
ompatible with the Hamilton-Ja
obi equationg�� !� !� = 0 ; (175)whi
h 
an be veri�ed by its di�erentiation in � with the use of the Hamilton equation for!�. From the above expli
it expressions for !� we derive also, that the metri
 tensor g��,
al
ulated in the points of the parti
le traje
tory x� = x�(�) isg�� = ��� � Æ�+Æ�+ 8p2 G� ln� Æ(x�)�  �!� �!! 0�2 !+ + 2p2 G� 1�2 �(x�)! �(x�)! : (176)The 
oordinates of the massless parti
le arex� = x�
 + !�0 (� � �
) ; �!x = �!� ��!! 0(� � �
) (177)before its 
ollision with the plane wave andx� = !+(� � �
) ; �!x = � �!! 0!+ + 4p2 G��!��2!!+(� � �
) +�!� ;x+ = x+
 +  !+0!+ + 4p2 G� �!! 0�!�!+�2 + 2p2 G� 1�2!! !+(� � �
)� 4p2 G� ln � (178)after its 
ollision at � > �
. Here we used the identityZ dx� �(x�) Æ(x�) = 12 : (179)Note, that the parti
le moves along the light ray g��dx�dx� = 0.Finding � � �
 and � from two �rst equations and putting the result in the right handside of third relation we obtain the 
omplete integral for the 
orresponding Hamilton-Ja
obiequation in our normalization! = 2x+ = 2x+0 + 2!+0 (� � �
) + j; (180)23



where the e�e
tive 
urrentj = 8p2 G�  �!! 0�!�!+�2 x� + 2p2 G� 1�2 x� � ln �! : (181)Note, that this 
urrent 
an be written as followsj = �2 !+0!+ x� + (�!� ��!x )2x� � 8p2 G� ln � (182)and the equation for �!� is simpli�ed �!� j = 2 �!! 0!+ : (183)Let us 
onsider the simplest 
ase when the parti
le 
olliding with the sho
k wave has thefollowing initial 
onditions �!! 0 = !+0 = 0 : (184)In this 
ase we have for the e�e
tive 
urrentj+ = j(g) = 8p2 G�  2p2 G�x��2 � ln�! : (185)where the ve
tor �!� satis�es the equation�!x = �!�  1� 4p2 G� x��2 ! : (186)Its solution is given below �!� = �!x f(z) ; z = 8p2 G� x�jxj2 ; (187)where f(z) = 12 �1 +p1 + 2z� = 1 + z2 � z24 + z34 � 5z416 + ::: : (188)The 
urrent j+ 
an be written in the formj+ = a  14 jxj2j�j2 z � ln �! = �a (lnx + �(z)) ; a = 8p2 G� (189)where �(z) = ln f(z)� 14 zf 2(z) = z4 � z28 + 548 z3 � 764 z4 + ::: : (190)On the other hand, using expressions (97), (98) and (105) for the eikonal 
urrents jeik�� and(48) for X�� we 
an write the 
urrent j+ (127) for the sho
k wave �eld (168) in the formj+ = �a lnx+ a2�� � x�2x2�2 � a3�� x�2x2 ���� � x�2x2�2 + a4�� x�2x2 ���� x�2x2 ���� � x�2x2�224



+ a44��  ���� � x�2x2�2!2 � a5�� x�2x2 ���� x�2x2 ���� x�2x2 ���� � x�2x2�2� a54�� x�2x2 ����  ���� � x�2x2�2!2 � a52��  ���� x�2x2 ���� � x�2x2�2! ���� � x�2x2�2! : (191)Di�erentiating over x� and integrating over x+ we obtain the same expression for j�, whi
h
an serve as a veri�
ation of the approa
h.Let us 
onsider now a more general situation of the massless s
attering o� the gravita-tional �eld with the metri
 g�� = ��� + Æ�� Æ�� V (�!x ) Æ(x�) ; (192)where the potential V is an arbitrary fun
tion of the points on the sho
k plane. Repeatingthe above 
al
ulation, we obtain the generalized equation for the point �!� in whi
h theparti
le 
rosses the plane �!x = �!� � x�2 �!� V (�!� ) (193)and the expression for the e�e
tive 
urrent j+j+ = �V (�!� ) + x�4 ��!� V (�!� )�2 = �V (�!� ) + (�!� ��!x )2x� : (194)Note, that the equation for the point �!� 
an be written as the stationarity 
ondition for j+as a fun
tion of �!� �!� j+ = 0 : (195)Using the perturbation theory for the solution of the equation for �� = ���x� in metri
 ����� = x�2 V� � x�2 V��1 x�2 V�1 + 2 x�2 V��1 x�2 V�1�2 x�2 V�2 + ::: ; (196)where V�1;�2;:::�n � ��1��2 :::; ��nV (�!x ) ; (197)and putting the result in j+, we �ndj+eik = �V (x) + x� �12V��2 + (x�)22 V��� �12V��2 + ::: (198)in an agreement with the expressions (98) for the eikonal 
ontribution with the simpli�edexpression for X�� X�� ! � ���� g��: (199)
25



8 Variational prin
iple for the e�e
tive 
urrentsLet us 
onsider even more general 
on�guration of the gravitational �eld 
onsisting from nsho
k waves moving in the z-dire
tiong�� = ��� + Æ�� Æ�� nXr=1V (r)(�!x ) Æ(x� � x�r ) ; (200)where x�r are some parameters ordered in the following wayx�1 < x�2 < ::: < x�n : (201)By solving the Hamilton equations for the massless parti
le 
ying at � ! �1 along the z-axes from z = �1 with the impa
t parameter �!� and !+0 = �!! 0 = 0 for ea
h of the intervalsx�r < x� < x�r+1 for r = 1; 2; :::; n we obtain for the points �!� r in whi
h the traje
tory 
rossesthe 
orresponding planes the following re
urren
e relation�!� 1 = �!� ; �!� 2 = �!� 1 � x�2 � x�12 �!� 1 V (1)(�!� 1) ; �!� 3 = �!� 2 � x�3 � x�22 2Xt=1�!� t V (t)(�!� t) ; :::�!� n = �!� n�1 � x�n � x�n�12 n�1Xt=1 �!� t V (t)(�!� t) ; �!x = �!� n � x� � x�n2 nXt=1�!� t V (t)(�!� t) ; (202)where �!x and x� are 
oordinates of the parti
le after its intera
tion with all sho
k waves.Note, that the x�-
oordinate of the parti
le and its momentum !+ are not 
hanged during
ollisions x� = !+� + x�0 : (203)But the momenta !+ and �!! are di�erent in ea
h interval x�r < x� < x�r+1!� = !+2 nXr=1V (r)(�!� r) Æ(x� � x�r ) ; �!! = �!! r = !+2 rXt=1�!� tV (t)(�!� t) : (204)The metri
 tensor, 
al
ulated on the parti
le traje
tory in this interval, has the formg�� = ��� � Æ�+Æ�+ nXr=1 V (r)(�!� r)Æ(x� � x�r )� �2(x� � x�r )4 rXt=1 ��!� tV (t)(�!� t)�2! ; (205)
ompatible with the integral of motiong��!�!� = 2!+!� ��!! 2 + !2+g++ = 0 : (206)Note, that the total derivative of g++ in � is in an agreement with the Hamilton equationsdg++d� = �!+��g++ + 2�!!!2+ d�!wd� : (207)The 
oordinate x+ is also 
hanged after ea
h 
ollision and after all 
ollisions we havex+ = x+0 + 12 nXr=1(x�r+1 � x�r )0� rXt=1 �!�t2 V (t)(�!� t)1A2 � 12 nXr=1V (r)(�!� r) ; (208)26



where it is implied, that �!� n+1 = �!x and x�n+1 = x�. Thus, we obtain for the 
orrespondinge�e
tive 
urrent in the above gravitational �eld the following expressionj+ = nXr=1(x�r+1 � x�r )0� rXt=1 �!�t2 V (t)(�!� t)1A2 � nXr=1V (r)(�!� r) ; (209)where it is assumed, that the points �!� r are expressed in terms of �!x and x� with the useof equations (202). Due to these equations the e�e
tive 
urrent 
an be written even in asimpler form j+ = nXr=1 (�!� r+1 ��!� r)2x�r+1 � x�r � nXr=1V (r)(�!� r) ; �!� n+1 = �!x ; x�n+1 = x� : (210)Su
h form of the e�e
tive 
urrent gives a possibility to write the equations for �!� r as itsstationarity 
onditions �!� r j+ = 0 : (211)One 
an verify the perturbative expansion of this e�e
tive 
urrent by 
omparing it with thegeneral expressions (98) for the eikonal 
ontribution.Let us 
onsider the 
ontinuous limit of the s
attering problem, assuming that the numberof sho
k waves is in�nite and the distan
e between them tends to zero. In this 
ase the metri
tensor on the parti
le traje
tory isg��(�!x ; x�) = ��� � Æ�+Æ�+  g++(�!� ; x�) + �!! 2!2+ ! ; (212)where �!! = !+ ���!� (213)and �!� is 
onsidered to be a fun
tion of x� and �!x 
al
ulated with the use of the equationof motion for the 
olliding parti
le. The e�e
tive 
urrent 
an be written in the integral formj+ = Z x��1 dy� �g++(y�;�!� (y�)) + (���!� )2� ; (214)where the variable y� enumerates the sho
k waves.This fun
tional 
an be 
onsidered as a 
lassi
al a
tion for the parti
le moving in thegravitational �eld, whi
h allows to formulate the variational prin
iple for the e�e
tive 
urrentj+. Indeed, j+ should be 
al
ulated on the parti
le geodesi
 traje
tory �!� (x�;�!x ). Thetraje
tory are found from the stationarity 
onditions for this fun
tional whi
h have the formof the non-relativisti
 Newton equations2 �2��!� = �!� g++ : (215)Note, that the "potential" g++ depends expli
itly on x� and therefore the energy, whi
h is aformal integral of motion for this equation, is not 
onserved. But with taking into a

ount,that the partial derivatives in x� of !� and g++ are proportional, we 
an write the 
orre
tintegral of motion in the form (���!� )2 � g++ � 2 !�!+ = 0 ; (216)27



whi
h is really 
oin
ides with the Hamilton-Ja
obi equation. Indeed, the variation over �!�in the integrand for j� after the use of the stationarity equations gives a total derivativeover x� leading after its integration to the relationÆj+ = 2 (���!� ) Æ�!� (217)and therefore we have the relation���!� = 12 �!� j+ = ��!w!+ : (218)As a result, the integral of motion (216) 
oin
ides with the HY equation for this 
ase.Therefore we obtain the non-linear equation for j+ 
ompatible with the above variationalprin
iple j+ = Z x��1 dy� �g++(y�;�!� (y�)) + 14 ��!� j+�2� : (219)Here the fun
tions �!� (y�)) are solutions of the Hamilton equations. The iteration of thisequation over g++ reprodu
es results (98) for the pure eikonal 
ontributionj+eik = 1�� g++ � 1�� 0�12 �!��� g++1A2 + 1�� 0�12 �!��� g++1A �!��� 0�12 �!��� g++1A2 + ::: ; (220)where the 
ontributions from the expansion of g++ in �!� with the subsequent use of thehamilton equation and the integration by parts are also taken into a

ount.As we argued in the previous se
tions, the e�e
tive 
urrents j� as fun
tionals of themetri
 tensors in a general form satisfy the Hamilton{Ja
obi equation (see (130))g����j� = g�� + g��4 ���j�� ���j�� : (221)It would be important to write the solution of this equation as an extremum of an lo
alfun
tional similar to (214), be
ause in the perturbative expansion (65, 66) this lo
alityproperty is lost. Moreover, su
h fun
tional 
ould help us in �nding quantum-me
hani
al
orre
tions to the e�e
tive a
tion and its supersymmetri
 generalization. For this purposeone should present (214) in the form invariant under the general 
ovariant transformations.We hope to return to this problem in our future publi
ations.9 E�e
tive reggeon-graviton verti
esLet us apply the e�e
tive a
tion to the problem of 
al
ulations of the simplest e�e
tive ver-ti
es for the reggeon-graviton intera
tions in the lowest order of the perturbation theory. Forthis purpose it is enough to leave in the 
urrents j�� only two �rst terms of the perturbativeexpansion j�� � h�� �X2�� ; X�� = h�� � 12 ���� h�� : (222)28



We expand also the Christo�el symbol���� � 12 (��h�� + ��h�� � ��h�� � h��(��h�� + ��h�� � ��h��)) (223)and the Hilbert-Einstein Lagrangianp�g R = p�g g�� ������� � ������ + �������� � ��������� � L2 + L3 ; (224)where L2 = ��h��2 (��h�� � ��h��) + 14 �(��h��)2 � (��h��)2� (225)andL3 = h��  (��h��)��h�� � ��h��4 ��h�� � ��h��2 (��h�� + ��h��) + ��h��2 (2��h�� � ��h��)!+h�� �h��(����h�� � 12 �2�h��) + 12 (��h��)2 � 38 (��h��)2 + 14 (��h��) ��h����h��8 (��h��)2 � h��4 h�� ����h�� : (226)These expressions are valid up to the terms proportional to total derivatives whi
h givevanishing 
ontributions to the a
tion SHE.The a
tion is invariant under the general 
oordinate transformationsÆSHE = 0 (227)with the same a

ura
y, whi
h 
an be veri�ed by 
he
king the following relationsÆL2 = ��  h��2 (�2��� � ������) + h�������� � h���2���!+ �� a� ; ÆL3 = ��� a� ; (228)wherea� � �2�h��2 ��h�� � ��2�h��� �ÆhÆ� � ��h��2 ����h�� + �Æ��h��2 (��hÆ� + �Æh�� � ��hÆ�)+(����h��) ��h�� +  �2�h��2 � ���Æh�Æ! (��h�� + ��h�� � ��h��) : (229)Be
ause the indu
ed 
ontributions to the a
tion are also generally 
ovariant, the Euler-Lagrange equations for the total a
tion are self-
onsistent. We 
an write them in the formR�� � 12 g�� R = 12 ÆÆg�� Z d4x �j++�2�A++ + j���2�A��� ; (230)where in the right hand side it is implied as usual, that the 
al
ulation of the variationalderivative over g�� is 
ombined with the 
orresponding integration by parts. The solution ofthese equations 
an be expanded in the series over the reggeon �elds A��h�� = A�� +O(A2) (231)29



similar to the 
ase of the Euler-Lagrange equation for the e�e
tive a
tion in QCD [23℄. In-serting this solution in the e�e
tive a
tion one 
an obtain various e�e
tive verti
es for theself-intera
tion of the reggeon �elds A�� in the tree approximation. The physi
al gravita-tional �elds will 
orrespond to the 
u
tuations Æh = h�h around the 
lassi
al solution. Thefun
tional integration over these 
u
tuations in the quadrati
 approximation will lead to thegraviton Regge traje
tories and to various reggeon 
ouplings in the one-loop approximation.This traditional approa
h will be 
onsidered in future publi
ations. Here we restri
t ourselvesto the simple 
ases where the results 
an be obtained in the lowest orders of perturbationtheory.To begin with, we note, that performing the fun
tional gaussian integration over h�� fromthe exponent 
ontaining the indu
ed a
tion with the terms linear h++ and h�� we obtainthe kineti
 term for the �elds A��� 12� Z d4x2 ����h++ ��h�� � h++�2�A�� � h���2�A++�! � 12� Z d4x ��A++ ��A��2 :(232)The kineti
 term for the reggeon �elds should have an opposite sign. Therefore we in
ludein the e�e
tive a
tion the bare kineti
 term for the reggeon �eldsSkin = 12� Z d4x ��A++ ��A�� (233)to have the 
orre
t renormalized 
ontribution. Stri
tly speaking the propagator of thereggeized graviton should 
ontain the �-fun
tion 
orresponding to the ordering of rapidi-ties y in the di�erent 
lusters< 0j (Ay1��(x1)Ay2++(x2)) = 4 ��2 �(y1 � y2) i(x1 � x2)2 : (234)Further, the next order 
orre
tions in ea
h of the indu
ed a
tions� 12� Z d4x2 0��0�h++ � 14  ���+ h++!21A �2�A�� � 0�h�� � 14  ����h��!21A �2�A++1Alead with the use of the gaussian integration over the �elds h�� to the 
ubi
 intera
tions ofthe reggeon �eldsS1!2 = � 12� Z d4x8 0� ���+A++!2 �2�A�� +  ����A��!2 �2�A++1A : (235)Note, that the usual triple graviton vertex gives a vanishing 
ontribution to this intera
tion.In an analogous way one 
an 
al
ulate in the tree approximation the e�e
tive a
tion forthe reggeon transitions 1! nS1!n = � 12� Z d4x2 ��+Jeik+ (A++) �2�A�� + ��Jeik� (A��) �2�A++� ; (236)where the "eikonal" 
urrents Jeik� (h��) 
an be obtained from the solution of the "fan"equations  �� + 12  ���� h��! ��! Jeik� = 14  ���� h��!2 + 14 ���Jeik� �2 : (237)30



The e�e
tive a
tion for the reggeon transitions 2! n (n � 2) in the same approximation
ontains a 
ontribution from the usual triple graviton vertex. The general reggeon intera
tionn! m is expressed in terms of the solution of the Euler-Lagrange equation for the e�e
tivetheory.Let us 
onsider now the e�e
tive a
tion for the reggeon-reggeon-graviton (RRG) inter-a
tion in a tree approximation SRRG. It 
ontains the 
ontribution from the triple gravitonvertex (gv) and from the se
ond order (so) 
orre
tion (� h2) to the indu
ed a
tionSRRG = 12� Z d4xLRRG ; LRRG = LRRGgv + LRRGso ; (238)whereLRRGgv = A++   ��h�+ � ��h++2 ! ��A�� �  �+h�� + ��h�+ + ��h��2 ! ��A��!+A��   ��h�� � �+h��2 ! �+A++ �  ��h�+ + ��h�+ + ��h��2 ! ��A++!�h�� ��A++2 ��A�� � h+� (��A��)�+A++ � h+�(��A++)��A��+h�� ��12 A++ �2�A�� � 12 A�� �2�A++ � 34(��A++)��A�� + 12(�+A++)��A��� : (239)and LRRGso =  � h�+ � 12 ���+h++!A++ + 12  h�+ � 12 ���+h++!  ���+A++!! �2�A��+ � h�+ � 12 �+��h��!A�� + 12  h�� � 12 ����h��!  ����A��!! �2�A++ (240)The e�e
tive a
tion SRRG is invariantÆSRRG = 0 (241)under the "abelian" part of the general 
ovariant transformationÆh�� = ���� + ���� (242)be
ause the 
orresponding 
ontributions SRRGgv and SRRGso are transformed as follows (
f.(228) and (229)) ÆSRRGgv = �ÆSRRGso = 12� Z d4x�(x) ;�(x) = �����+A++ + 12 ����A++� �2�A�� + ���+��A�� + 12 ����A��� �2�A++ : (243)For the �eld of the produ
ed graviton on the mass shell we have additional 
onstraints�2�h�� = ��h�� = h�� = 0 (244)31



and the RRG lagrangian is simpli�ed as followsLRRG = A++  ���h++2 ��A�� � (�+h�� + ��h�+) ��A��!+A��  ��+h��2 �+A++ � (��h�+ + ��h�+) ��A++!�h�� ��A++2 ��A�� � h+� (��A��)�+A++ � h+�(��A++)��A��+ � h�+ � 12 ���+h++!A++ + 12  h�+ � 12 ���+h++!  ���+A++!! �2�A��+ � h�+ � 12 �+��h��!A�� + 12  h�� � 12 ����h��!  ����A��!! �2�A++ (245)Moreover, the 
orresponding RRG vertex 
an be written in the momentum spa
e asfollows [32, 33℄�RRG�� (q2; q1) = 12 C�(q2; q1)C�(q2; q1)� 12 N�(q2; q1)N�(q2; q1) : (246)Here C(q2; q1) is the e�e
tive vertex des
ribing the gluon produ
tion from the reggeized gluonC(q2; q1) = �q?1 � q?2 + pA  q21kpA + kpBpApB!� pB  q22kpB + kpApApB! ; (247)where q1; q2 are the momenta of the reggeized gluons, k = q1 � q2 is the momentum of theprodu
ed gluon and pA; pB are the momenta of the 
olliding parti
les. The ve
tor N(q2; q3)is proportional to the photon bremstrahlung fa
tor in QEDN(q2; q1) = qq21q22  pApAk � pBpBk! : (248)Using the light-
one gauge for the polarization tensor of the produ
ed graviton the RRGvertex 
an be written in a simple form, whi
h allows one to 
onstru
t the 
orrespondingterm in the e�e
tive a
tion for the s
attering amplitude with the multi-regge unitarity [35℄.Let us 
onsider now the e�e
tive a
tion for the graviton s
attering o� the reggeizedgravitons. It 
an be written as a sum of two termsSGGR = 12� Z d4x �LGGR(A++) + LGGR(A��)� ; (249)proportional to A++ and A��, respe
tively. We 
onsider only the �rst term, be
ause these
ond one 
an be obtained from it by inter
hanging the light-
one indi
es + and �. In turn,LGGR(A++) is the sum of 
ontributions from the triple reggeon vertex (rv) and the se
ondorder (so) 
orre
tion to the indu
ed termLGGR(A++) = LA++gv + LA��so ; (250)32



whereLA++gv = A++  (��h��)2 � (��h��)24 � ��h��2 (��h�� + ��h��) + ��h��2 (2��h�� � ��h��)!�(��A++) h��2 ��h�� + h��(��h�� + ��h��)� h����h�� + h��2 ��h��!+h��  �A++  �2�h��2 + �2�h��4 !� h��2 �2�A++ + (��A++) ��h��2 � 3 ��h��4 !! (251)and LA++so = �12  h�� � 12 ����h��!2 �2�A++ : (252)The 
orresponding lagrangians are transformed under the general 
oordinate transformationsas followsÆLA++gv = ���  (��h�� � 12 ��h��) �2�A++ � (�2�h�� + �2�h�� � 2����h��) ��A++2 !��� �����h�� + �2� � ����h�� � ����h��� ��A++ (253)and ÆLA++so = �� ���h�� � 12 ��h��� �2�A++ (254)We 
an simplify the GGR lagrangian providing that gravitons are on the mass shell andtheir �elds satisfy additional 
onstraints (244)LGGR(A++) = A++  �(��h��)24 � ��h��2 (��h�� + ��h��)!�(��A++) h��2 ��h�� + h��(��h�� + ��h��)!� 12  h�� � 12 ����h��!2 �2�A++ : (255)The 
orresponding vertex for the graviton s
attering o� the reggeon �eld A++ 
an be writtenas follows (see ref. [32, 33℄)�GGR��;�0�0 = 12 ��GGR��0 �GGR��0 + �GGR��0 �GGR��0 � ; (256)where �GGR��0 is the e�e
tive vertex for the gluon s
attering o� the reggeized gluon �eld A+�GGR��0 = � ���0 � k0�pB�0 + k�0pB�kpB � q2 pB� pB�02(kpB)2! ; (257)where k and k0 are momenta of the initial and �nal gluons, pB is the momentum of theanother initial gluon and q is the momentum transfer. After the transition to the heli
itybasis the above vertex �GGR��;�0�0 
orresponds to the 
onservation of the graviton heli
ity andleads to the 
orresponding 
ontribution in the e�e
tive a
tion for the s
attering amplitudewith the multi-Regge unitarity [35℄. 33



10 Graviton Regge traje
tory and supergravityTo 
al
ulate the graviton Regge traje
tory in one loop [32℄ it is needed to 
ontra
t twoGGR verti
es appearing in LGGR(A++) and LGGR(A��) with two graviton propagators andintegrate the produ
t over the loop momentum. The integration over the Sudakov variables� and � of the virtual graviton momentum should give ln s equal to the relative rapidity ofthe initial parti
les. To obtain a non-trivial s-dependen
e in ea
h of two GGR lagrangiansone should leave only the singular 
ontributions appearing in the indu
ed termsLGGR(A��) � 0�12 h�� ����h�� � 18  ����h��!21A �2�A�� : (258)From these expressions one 
an derive the s
attering amplitude des
ribed by the 
ontributionof the box diagrams 
orresponding to two graviton ex
hange in the 
rossing 
hannelF = Æ�A�A0 Æ�B�B0 �4L s2(2�)4i Z d2k?dk+dk�(k2? + 2k+k� + i�)((q � k)2? + 2k+k� + i�) f(k; q) ; (259)where �r are the heli
ities of the s
attered parti
les and the fun
tion f(k; q) is given belowf(k; q) = 12 (k; q � k)2(k+k�)2 + k2 + (q � k)2 + 4(k; q � k)k+k�= (k?; q? � k?)24(k+ � i�)2  1(k� + i�)2 + 1(k� � i�)2!+ q2?2(k+ � i�)  1k� + i� + 1k� � i�! : (260)Here we restored the analyti
 stru
ture of the poles in an a

ordan
e with the Feynmani�-pres
ription. The integral over k+ in F is non-zero only for k� > 0. Taking it by residueswith the subsequent integration over k� one 
an obtainF = FBorn !(t) ln s ; t = q2? ; (261)where FBorn = Æ�A�A0 Æ�B�B0 �2 s2t (262)is the s
attering amplitude in the Born approximation and j = 2+!(t) is the graviton Reggetraje
tory [32℄!(q2?) = �2(2�)3 Z q2? d2k?k2?(q � k)2?  (k; q � k)2?k2? + (k; q � k)2?(q � k)2? � q2? � N2 (k; q � k)?! : (263)Here we added the 
ontribution of N gravitinos for the N -extended supergravity [32℄. Othersuper-partners do not give any 
ontribution in this order.Note, that the infrared divergen
y of the Regge traje
tory is universal, but the logarithmi
divergen
y at large k? depends on N and is absent at N = 4. Really the sum of the one-loopdiagrams do not 
ontain any ultraviolet divergen
y, be
ause the gravity is renormalized inone loop. It means, that the integral over k2? is restri
ted from above by the value of theorder of s, whi
h leads to the double-logarithmi
 asymptoti
s of the s
attering amplitude34



with the graviton quantum numbers in the t-
hannel. In Ref. [32℄ the 
orresponding ladderdiagrams in the double-logarithmi
 approximation were summed and the following result forthe amplitude in the N -extended supergravity was obtainedA2!2 = ��2 s2t Æ�A�A0 Æ�B�B0 1a� I1(2a�) ; (264)where �i are heli
ities of the initial and �nal gravitons, In(x) is the modi�ed Bessel fun
tionand the parameters a and � are given belowa =  (4�N) �216�2 (�t)! 12 ; � = st : (265)In prin
iple there 
ould be double-logarithmi
 
ontributions from other diagrams 
ontain-ing three and more gravitons in the t-
hannel. To investigate this possibility one shouldgeneralize the e�e
tive a
tion 
onstru
ted above to the supersymmetri
 
ase, be
ause the
ontribution of the superpartners of the graviton is essential for its Regge traje
tory in higherloops. But we 
onsider below for simpli
ity only the �rst non-trivial 
orre
tion to the a
tionin the N = 1 supergravity. In this 
ase apart from the vierbein em� , related to the metri
tensor g�� in the well-known way g�� =Xn e�n en� ; (266)the Rarita-S
hwinger �eld  � des
ribing the gravitino with the spin 3=2 is introdu
ed. Thea
tion for this �eld is given belowS3=2 = Z d4xL3=2 ; L3=2 = �12����� � �
5
�D� � : (267)The 
ovariant derivative D� is de�ned by the relationD� = �� + 12 �mn !mn� ; �mn = 12 (
m
n � 
n
m) ; (268)where !mn� is the spin 
onne
tion expressed in terms of the Christo�el symbol!mn� = �e�n ��em� + e�n em� ����= 12 e�n (��em� � ��em� )� 12 e�m (��en� � ��en�) + 12 e�n e�m e�k (��ek� � ��ek�) : (269)The total a
tion of supergravity is invariant under the supersymmetry transformationÆem� = �2 ��
m � ; Æ � = 1� D�� ; (270)where � is a lo
al parameter of these transformations being the anti
ommuting Majoranospinor. It is known, that to 
lose the SUSY 
ommutator algebra o�-shell one should introdu
ethe auxiliary �elds S; P and Am. Here for simpli
ity of dis
ussion we do not take into a

ountthem negle
ting total derivatives in the a
tion and in its variation.35



Let us start again with the Born 
ontribution to the indu
ed 
ontribution to the e�e
tivelagrangian Lind = � 14�2 �j++�2�A�� + j���2�A++� ; j�� � h�� + ::: (271)and attempt to add to it radiative 
orre
tions in the �elds h�� and  � to derive its general-ization invariant under the lo
al supersymmetri
 transformations.We obtain the following in�nitesimal transformation of the metri
 tensor with the light
one 
omponents Æh�� = � ��
� � (272)To 
an
el this term one should add to j�� the 
ontribution�1j�� = �22 � � 
���  � ; (273)be
ause up to a total derivative in the integrand for the a
tion its supersymmetri
 transfor-mation is equal to the expression Æ1 (�1j��) � �� ��
� � (274)opposite to Æh�� in sign.Thus, in the N = 1 supersymmetri
 gravity we obtain for j�� with the next-to-leadinga

ura
y The following resultj�� � h�� �X2�� + �22 � � 
���  � + ::: : (275)The upper order 
orre
tions 
an be 
al
ulated in a similar way.11 Dis
ussionIn this paper the e�e
tive a
tion for the high energy pro
esses in gravity was 
onstru
tedin terms of the 
urrents j� satisfying the Hamilton-Ja
obi equation. This equation 
an besolved in the perturbation theory or for simple 
on�gurations of the external gravitational�elds. One 
an formulate a variational prin
iple for the 
urrents 
al
ulated at su
h �elds.The e�e
tive a
tion 
an be used for the 
al
ulation of various elasti
 and inelasti
 s
atteringamplitudes in the Regge kinemati
s. The Feynman rules for the simple verti
es 
ontainingthe reggeized gravitons are extra
ted from the e�e
tive lagranjian. The one loop gravitonRegge traje
tory does not 
ontain the ultraviolet divergen
y only in the N=4 supergravity.In other models the amplitudes with the graviton quantum numbers in the 
rossing 
hannelhave the double-logarithmi
 terms. It is possible, that the 
onstru
ted e�e
tive a
tion 
anbe generalized to the 
ase of superstrings living in the anti-de-Sitter 10-dimensional spa
e.In this 
ase one 
ould use it for the dis
ription of the Pomeron intera
tions at the N=4supersymmetri
 gauge theory in the framework of the AdS/CFT 
orresponden
e.
36



A
knowledgementsI thank the Hamburg University for the hospitality and J. Bartels, E. Levin, A. Sabio Veraand A. Prygarin for helpful dis
ussions. This work was supported by the grant RFFI-10-02-01338-a.Referen
es[1℄ V. N. Gribov, Sov. Phys. JETP 14 478 (1962).[2℄ S. Mandelstam, Nuovo Cim. 30, 1148 (1963).[3℄ V. N. Gribov, I. Ya. Pomeran
huk and K. A. Ter-Martirosyan, Phys. Rev. B 139, 184(1965).[4℄ V. N. Gribov, Sov. Phys. JETP 26, 414 (1968).[5℄ M. Gell-Mann, M. L. Goldberger, F. E. Low, E. Marx and F. Za
hariasen, Phys. Rev.133, B145 (1954).[6℄ S. Mandelstam, Phys. Rev. 137, B949 (1965).[7℄ M. T. Grisaru, H. J. S
hnitzer and H.S. Tsao, Phys. Rev. Lett. 30, 811, (1973).[8℄ L. N. Lipatov, Sov. J. Nu
l. Phys. 23 338 (1976);V. S. Fadin, E. A. Kuraev, L. N. Lipatov, Phys. Lett. B 60 50 (1975);E. A. Kuraev, L. N. Lipatov, V. S. Fadin, Sov. Phys. JETP 44 443 (1976).[9℄ L. N. Lipatov, Phys. Lett. B 309 394 (1993).[10℄ L. N. Lipatov, Sov. Phys. JETP 63 904 (1986).[11℄ Bartels, J., Nu
l. Phys. B175 (1980) 365;Kwie
inskii, J., Praszalowi
z, M., Phys. Lett. B94 (1980) 413.[12℄ L. N. Lipatov High energy asymptoti
s of multi-
olour QCD and exa
tly solvable latti
emodels, hep-th/9311037, unpublished.[13℄ L. N. Lipatov, Nu
l. Phys. B 548 328 (1999).[14℄ V. S. Fadin, L. N. Lipatov, Phys. Lett. B 429 127 (1998);M. Ciafaloni and G. Cami
i, Phys. Lett. B 430 349 (1998).[15℄ A. V. Kotikov, L. N. Lipatov, Nu
l. Phys. B 582 19 (2000).[16℄ A. V. Kotikov, L. N. Lipatov, Nu
l. Phys. B 661 19 (2003).[17℄ A. V. Kotikov, L. N. Lipatov, A. I. Onish
henko, V. N. Velizhanin, Phys. Lett. B 595521 (2004); [Erratum-ibid. B 632 754 (2006)℄.37



[18℄ L. N. Lipatov, talk at "Perspe
tives in Hadroni
 Physi
s", Pro
. of Conf. ICTP, Triest,Italy, May 1997.[19℄ J. M. Malda
ena, Adv. Theor. Math. Phys. 2 231 (1998).[20℄ S. S. Gubser, I. R. Klebanov, A. M. Polyakov, Phys. Lett. B 428 105 (1998).[21℄ E. Witten, Adv. Theor. Math. Phys. 2 253 (1998).[22℄ R. C. Brower, J. Pol
hinsky, M. J. Strassler, C. I. Tan, JHEP 0712 005 (2007).[23℄ L. N. Lipatov, Nu
l. Phys. B B 452, 369 (1995); Phys. Rept. 286, 131 (1997).[24℄ E. N. Antonov, L. N. Lipatov, E. A. Kuraev, I. O. Cherednikov, Nu
l. Phys. B 721,111 (2005).[25℄ Z. Bern, L. J. Dixon, V. A. Smirnov, Phys. Rev. D 72, 085001 (2005).[26℄ J. Bartels, L. N. Lipatov, A. Sabio Vera, Phys. Rev. D 80, 045002 (2009).[27℄ J. Bartels, L. N. Lipatov, A. Sabio Vera, Eur. Phys. J. C 65 587, (2009),[28℄ L. N. Lipatov, preprint, hep-th 1008.1015.[29℄ L. N. Lipatov, A. Prygarin, preprints, hep-th 1008.1016, hep-th 1011.2673.[30℄ L. N. Lipatov, J. Phys. A 42, 304020 (2009).[31℄ M. T. Grisaru, B. van Nieuwenhuizen and C. C. Wu, Phys. Rev D 12 1563; M. T. Gris-aru, and H. J. S
hnitzer, Phys. Lett 107B 196 (1981).[32℄ L. N. Lipatov, Phys. Lett. 116B, 411 (1982).[33℄ L. N. Lipatov, JETP, 82, 991 (1982).[34℄ A. Bellini, M. Ademollo, M. Ciafaloni, Nu
l.Phys. B393, 79 (1993).[35℄ L. N. Lipatov, Nu
l. Phys. B365, 614 (1991).[36℄ D. Amati, M. Ciafaloni and G. Veneziano, JHEP 0802, 049 (2008).[37℄ S. B. Giddings, M. S
hmidt-Sommerfeld and J. R. Andersen, preprint, hep-th 1005.5408.[38℄ V. Fo
k, The theory of spa
e, time and gravitation, Pergamon Press, London and Ayles-bury (1969).[39℄ L. D. Landau, E. M. Lifshitz, Me
hani
s, Course of Theoreti
al Physi
s, ButterworthHeinemann.[40℄ K. S
hwarzs
hild, S. B. Preuss. A
ad. Wiss. 189 (1916).
38


