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AbstratIt is shown, that the e�etive ation for the reggeized graviton interations an be formu-lated in terms of the reggeon �elds A++ and A�� and the metri tensor g�� in suh a way,that it is loal in the rapidity spae and has the property of general ovariane. The or-responding e�etive urrents j� and j+ satisfy the Hamilton-Jaobi equation for a masslesspartile moving in the gravitational �eld. These urrents are alulated expliitly for theshok wave{like �elds and a variation priniple for them is formulated. As an appliation, wereprodue the e�etive lagrangian for the multi-regge proesses in gravity together with thegraviton Regge trajetory in the leading logarithmi approximation with taking into aountsupersymmetri ontributions.
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1 IntrodutionIn the Regge pole model the sattering amplitude at large energies ps and �xed momentumtransfers p�t has the form [1℄ApRegge(s; t) = �p(t) s1+!p(t) 2(t) ; �p(t) = e�i�!p(t) � p ; (1)where p = �1 is the signature of the reggeon with the trajetory !p(t). The Pomeron isthe Regge pole of the t-hannel partial waves f!(t) with vauum quantum numbers and thepositive signature desribing an approximately onstant behaviour of total ross-setions forthe hadron-hadron sattering. S. Mandelstam demonstrated, that the Regge poles generateut singularities in the !-plane [2℄. These singularities appear as a result of the analytiontinuation of the multi-partile unitarity ondition [3℄. They orrespond to satteringstates of the reggeons. Using the loality of the reggeon interations in the rapidity spae,V. Gribov onstruted an e�etive (2+1) Pomeron �eld model [4℄.On the other hand, it was disovered, that in some �eld theories the elementary partilesbeome reggeons after taking into aount radiative orretions. The simplest example ofthis phenomenon is the eletron reggeization in quantum eletrodynamis with a massivephoton [5℄. Using the ounting rules suggested in Ref. [6℄ the vetor boson reggeization inthe gauge models with the Higgs mehanism was also established [7℄.In the leading logarithmi approximation (LLA) the sattering amplitude at high energiesin QCD has the Regge form [8℄MA0B0AB (s; t) =MA0B0AB (s; t)jBorn s!(t) ; (2)where MBorn is the Born amplitude and the gluon Regge trajetory is given below!(�jqj2) = ��sN4�2 Z d2k jqj2jkj2jq � kj2 � ��sN2� ln jq2j�2 ; (3)where � is a gluon mass, introdued for the infrared regularization.In the multi-Regge kinematis, where the pair energies psk of the produed gluons arelarge in omparison with momentum transfers jqij the prodution amplitudes in LLA areonstruted from produts of the Regge fators s!(tk)k and e�etive reggeon-reggeon-gluonverties C�(qr; qr+1) [8℄. The amplitudes satisfy the Steinmann relations and the s-hannelunitarity leading to bootstrap equations [8℄.The knowledge of M2!2+n allows us to onstrut the BFKL equation for the Pomeronwave funtion [8℄ E	(~�1; ~�2) = H12	(~�1; ~�2) ; �t � s� ; � = ��sN2� E0 : (4)Here H12 is the BFKL Hamiltonian and � is the Pomeron interept. The operator H12has the property of the holomorphi separability [9℄ and is invariant under the M�obiustransformations [10℄ �k ! a�k + b�k + d : (5)1



The generalization of eq. (4) to a omposite state of several gluons [11℄ in the multi-olorQCD leads to an integrable XXX model [12℄ having a duality symmetry [13℄.The next-to-leading orretion to the BFKL kernel in QCD is also alulated [14℄. Itseigenvalue ontains non-analiti terms proportional to Æn;0 and Æn;2, where n is the onformalspin of the M�obius group. But in the ase of the N = 4 extended supersymmetri gaugemodel these Kroneker symbols are aneled leading to an expression having the propertiesof the hermitian separability [15℄ and maximal transendentality [16℄. The last propertyallowed to alulate the anomalous dimensions of twist-two operators up to three loops [17℄.It turns out, that evolution equations for the so-alled quasi-partoni operators are integrablein N = 4 SUSY at the multi-olor limit [18℄. The N = 4 four-dimensional onformal �eldtheory due to the Maldaena guess is equivalent to the superstring living on the anti-de-Sitter 10-dimensional spae [19, 20, 21℄. Therefore the Pomeron in N=4 SUSY is equivalentto the reggeized graviton in this spae. This equivalene gives a possibility to alulate theinterept of the BFKL Pomeron at large oupling onstants [17, 22℄j = 2�� ; � = 12� â�1=2 ; a = g2N16�2 : (6)The duality between the BFKL Pomeron and the reggeized graviton means, that the Pomeronalulus ould be desribed in a framework of the approah based on the e�etive ation forthe reggeized gravitons. It is one of the reasons, why we investigate in this paper the gravityat high energies.To begin with, let us remind the e�etive �eld theory for reggeized gluons [23℄. Theorresponding e�etive ation is loal in the rapidity spaey = 12 ln �k + jkj�k � jkj ; jy � y0j < � ; � << ln s : (7)We introdue the anti-hermitian �elds v� for the usual gluons and the gauge invariant �eldsA� desribing the prodution and annihilation of the reggeized gluonsv�(x) = �iT ava�(x) ; A�(x) = �iT aAa�(x) ; ÆA�(x) = 0 ; (8)where T a are generators of the gauge group in the adjoint representation. The �elds A�satisfy the kinematial onstraints ��A+ = �+A� = 0 : (9)The e�etive ation for a luster of partiles with approximately equal rapidities has theform S = Z d4x �LQCD + Tr(V+�2�A� + V��2�A+)� ; (10)where LQCD is the usual QCD ation and the e�etive urrents V� are given belowV+ = �1g�+ P exp �g2 Z x+�1 v+(x0)d(x0)+! = v+ � gv+ 1�+v+ + ::: : (11)The Feynman rules for this ation are derived in ref. [24℄. The e�etive ation approahgives a possibility to onstrut various reggeon verties needed to alulate NLO and NNLOorretions to the BFKL kernel. 2



Another appliation of the e�etive ation for the gauge models is a veri�ation of theBDS ansatz [25℄ for the inelasti amplitudes in N = 4 SUSY. It was shown [26, 27℄, that theBDS amplitudeMBDS2!4 should be multiplied by the fator ontaining the ontribution of theMandelstam ut in LLA. In the two-loop approximation this fator an be found also fromproperties of analytiity and fatorization [28℄ or diretly from reently obtained exat resultfor M2!4 [29℄. In a general ase the wave funtion for the Mandelstam singularity satis�esthe Shr�odinger equation for an open integrable Heisenberg spin hain [30℄.Below we apply the approah based on the e�etive ation for reggeons to the ase of thehigh energy gravity. The graviton reggeization was established initially with the use of thet-hannel unitarity [31℄. Later it was shown [32℄, that in LLA the graviton Regge trajetoryis �nite in the ultraviolet region only in the N = 4 supergravity. At other gravity modelsthe orresponding t-hannel partial wave fj(t) has a Regge ut singularity orresponding tothe double-logarithmi asymptotis [32℄. Also some e�etive verties for reggeized gravitoninterations were alulated [33℄. These results were veri�ed by the authors of Ref. [34℄ intheir study of the gravity at Plankian energies. An e�etive �eld theory for the S-matrixin gravity with the multi-Regge unitarity was onstruted in Ref. [35℄, whih allowed toinvestigate the gravitational ollapse at the high energy partile sattering [36℄. The newresults on the high energy sattering in gravity and supergravity and related referenes anbe found in the paper [37℄.2 Reggeon �elds in gravityIt is natural to onstrut the theory of high energy proesses in gravity in terms of thereggeized gravitons and their interations, beause in this ase the sattering amplitudeswill satisfy automatially the t-hannel unitarity. The S-hannel unitarity will be inorpo-rated in the reggeon verties. In partiular, the so-alled bootstrap relations in QCD areonsequenes of the multi-partile S-hannel unitarity. We begin with the introdution ofthe �elds desribing the usual and reggeized gravitons.The Hilbert-Einstein ation for gravity has the form [38℄S = Sgrav + Sm ; (12)where Sgrav and Sm desribe the interation of the gravity �eld g��(x) and the matter �elds,respetively. Both ontributions are invariant under the general oordinate transformation.For the metri tensor g�� , entering in the invariant interval(ds)2 =X�� g�� dx� dx� ; (13)this transformation in the in�nitesimal form is given belowÆg��(x) = D� ��(x) +D� ��(x) ; (14)where ��(x) is a small loal parameter and D� is the ovariant derivative de�ned belowD� ��(x) = ����(x)� ���� ��(x) : (15)3



Here �� is the partial derivative in x� and ���� is the Christo�el symbol���� = 12 g�� (��g�� + ��g�� � ��g��) : (16)Note, that in the Minkowski spae the orresponding invariant interval is(ds)2 = ��� dx� dx� ; (17)where the Lorentz tensor ��� has the signature (+���).The ation for the pure gravity an be written as followsSgrav = � 12� Z d4xp�g R ; (18)where g = Det(g��) (19)and the Einstein parameter � is proportional to the Newton onstant � = 8 �  : (20)The salar urvature R is related to the Riemann tensor by the ontration of indiesR = R�� g�� : (21)In turn, R�� is expressed in terms of the Riemann tensor of the fourth rankR�� = R��;�� ; R��;�� = ������ � ������ + ���� ���� � ���� ���� : (22)The matter ation an be written as an integral from the Lagrangian LmSm = Z d4xp�g Lm : (23)Its variation in the metri tensor is expressed in terms of the energy-momentum tensor T ��ÆSm = 12 Z d4xp�g Æg�� T �� ; (24)whih is onserved D� T �� = 0 : (25)Performing also the variation of the gravity ationÆSgrav = 12� Z d4xp�g Æg�� G�� ; G�� � R�� � 12 g��R ; (26)we obtain from the stationarity ondition for the total ation ÆS = 0 the Einstein equationsG�� = ��T �� (27)4



Due to the general ovariane of the ation Sgrav the left hand side of this equality satis�esthe identity D�G�� = 0 ; (28)whih is ompatible with the onservation of the energy-momentum tensor T �� .We want to onstrut the interation of the Reggeized gravitons and usual gravitonsto desribe quasi-multi-Regge proesses at high energies. In these proesses intermediatepartiles are produed in lusters with �x invariant masses mr. The partiles in eah lusterhave approximately the same rapidities y � yr in the intervaljy � yrj < � ; (29)where the intermediate parameter � is assumed to satisfy the inequalitiesln s� � � 1 : (30)The relative rapidities of di�erent lusters produed in the multi-Regge kinematis are on-sidered to be large ln s� yr � yr�1 � � : (31)The interation between the lusters is performed through an exhange of the reggeizedgravitons desribed by two additional �elds A++ and A��. These new �elds orrespond tothe reggeon emission and absorption in the rossing hannel. In our quasi-multi-Regge kine-matis orresponding to the strongly ordered rapidities they satisfy the following kinematialonstraints (f. (32)) �+A++ = 0 ; ��A�� = 0 ; (32)where �� = n���� ; n2� = 0 ; n+n� = 1 (33)and the light-one vetors n� are expressed in terms of momenta pA; pB of olliding partilesn+ = pAs2s ; n� = pB s2s : (34)The above onstraints for A� follow from the fat that the Sudakov variables �r; �r for theprodued luster momentumkr = �rpA + �rpB + kr? ; k2r = s�r�r � k2r? = m2r (35)are strongly ordered1� �1 � �2 � :::� �n ; 1� �n � �n�1 � :::� �1 ; s�r�r � k2r? � m2r : (36)We derive in next setions the e�etive ation for high energy proesses in gravity. Thisation desribes the interation of gravitons inside eah luster with neighboring reggeonshaving approximately the same rapidities. In this ase apart from the usual Hilbert-Einsteination Sgrav one should introdue an additional ontribution �S ontaining the linear om-bination of the reggeon �elds A++ and A�� onsidered them as external souresSeff = Sgrav +�S : (37)5



It is well known, that the reggeon desribes a family of partiles with di�erent spins andmasses lying on the Regge trajetory. The reggeized graviton an be viewed as a naturalgeneralization of the usual massless graviton with the spin j = 2. Therefore it is natural toonsider the funtions A++ and A�� as �elds invariant under general ovariant transforma-tions ÆA++ = ÆA�� = 0 (38)with the orresponding loal parameters � dereasing at large x. Of ourse, A++ and A��are transformed under the global Poinare group. The indued ontribution �S an bewritten in the form �S = � 12� Z d4x  j++ �2�A++2 + j�� �2�A��2 ! : (39)Here the Laplaian operators �2� are introdued to avoid simultaneous singularities in theoverlapping diret and rossing hannels beause they anel neighboring reggeon propaga-tors 1=q2. These propagators appear due to a kineti term bilinear in the �elds A��. As itis shown below, due to general ovariane the urrents j++ and j�� ontain the non-loaloperators ��1+ and ��1� whih should be interpreted as propagators of the partiles in otherlusters emitting the gravitons into the given rapidity interval �.In the perturbation theory the urrents j++; j�� ontain ontributions linear in the metritensor g�� j++ � g++ + ::: ; j�� � g�� + ::: :The orresponding solution of the Einstein equation for g�� in the external �elds A++ andA�� will have the formg�� = ��� + Æ�+Æ�+A++ + Æ��Æ��A�� +O(A2) : (40)Therefore the reggeon �elds A++ and A�� an be onsidered as lassial omponents of thegravity �eld.The indued term �S should be invariant under general oordinate transformationsproviding that A�� satisfy the kinematial onstraints (32). As it was argued above, theurrents j++ and j�� desribe the graviton emission into the given interval of rapidities fromother lusters having di�erent rapidities. In an aordane with the ondition ��A�� = 0two neighboring reggeons for the luster r have the momentum omponents k�r whih aretransferred almost ompletely to the partiles in the luster. These momenta are sharedby the partiles in other lusters with higher values of k�. Beause the urrents j� areuniversal, for their alulation one an onsider an arbitrary proess in the external �eldhaving partiles with the larger omponents k� of their momenta.3 General ovariane of the e�etive ationTo alulate the e�etive urrents j++ and j�� we use their invariane under the generaloordinate transformations up to the total derivatives in x+ and x�, taking into aountthe fat that the �elds A++ and A�� are invariant under these transformations and satisfyadditional onstraints �+A++ = ��A�� = 0 : (41)6



As a gravitational �eld we hose the tensor h�� in the following deomposition of the ovariantmetri tensor g�� = ��� + h�� : (42)The omponents of the ontravariant metri tensor g�� an be found from the linear equationg�� g�� = Æ�� : (43)and are obtained by the perturbation expansiong�� = ��� � h�� + h��h�� � h��h�ÆhÆ� + ::: : (44)Note, that for the tensor h�� and its derivatives we shall use only lower omponents implyingthe Minkowski signature in summation over the repeated indies. The e�etive urrents j++and j�� an be alulated in the perturbation series over the tensor omponents h�� . Forexample, j++ an be presented as followsj++ = h++ + P (2)++(h) + P (3)++(h) + ::: ; (45)where the polynomials P (k)++ an ontain derivatives �� and integral operators 1=�+ atingon the �elds h. Furthermore, generally we di�er the omponents h++; h�+ and h��. Theorresponding set of reurrent equations for the homogeneous polynomials P (n)++ are obtainedfrom the general ovariane of the indued ation using the in�nitesimal transformationswith parameters �� and �+ÆP (n)++Æh�� 2 ���� + ÆP (n)++Æh�+ �+�� = n�1Xk=1 ÆP (k)++Æh�� 2������ ; (46)ÆP (n)++Æh++ 2 �+�+ + ÆP (n)++Æh�+ ���+ = 0 : (47)In the right hand side of the �rst equation one should leave only the terms of the order nin the perturbation series over h�� using the above expansion for g��. It is implied also inthese equations, that after the di�erentiation over h��; h�+ and h++ the orresponding tensoromponents in P++ should be replaed by the subsequent fators.The seond equation an be easily solved. Namely, P (n)++ should ontain the dependenefrom h�+ and h++ only in the form of the following linear ombinationX�+ = X+� = h�+ � 12 ���+ h++ : (48)Moreover, we an add to the solution of the �rst equation an arbitrary funtion of anotherlinear ombination Z�� = h�� � 2 ���+ h�+ : (49)It is onvenient to introdue two independent variables: X�+ andY�� = h�� � 2 ���+ h�+ + �����2+ h++ = h�� � 2 ���+ X�+ : (50)7



Then the left hand sides of the above equations do not ontain the derivative in Y�� and the�rst equation an be written as follows�P (n)++�X�+ �+�� = n�1Xk=1 ÆP (k)++Æh�� 2������ : (51)Here the right hand side should be expressed in terms of the variables X�+ and Y��. Inpartiular using P (1)++ = h++ (52)for P (2)++ one an obtain the equation�P (2)++�X�+ �+�� = �2X�+ �+�� ; (53)where the following relation was usedÆh++ = 2�+�+ � 2���+X�+ (54)with the subsequent integration over x+ by parts. Note, that the �rst term 2�+�+ in Æh++gives a vanishing ontribution to the indued ation �S in this order due to the kinematialonstraint �+A++ = 0 : (55)Therefore from eq. (53) we obtain P (2)++ = �X2�+ : (56)To �nd P++ in upper orders of the perturbation theory one should use the following relationsÆh�+ = ���+ + �+�� � �� (�+h�� + ��h+� � ��h+�) ; (57)Æh�� = ���� + ���� � �� (��h�� + ��h�� � ��h��) : (58)Thus, in the third order we obtain the equation�P (3)++�X�+ �+�� = �2��h���+X�+ + 2X�+ Æ(2)X�+ ; (59)where Æ(2)X�+ = ��� (�+Y�� + ��X�+ + ��X�+) + ���+ ���+X�+ (60)enters in the in�nitesimal transformation of X�+ÆX�+ = �+�� + Æ(2)X�+ : (61)With the integration over x+ by parts one an rewrite the equation (59) in the form�P (3)++�X�+ �+�� = (�+��)X�+ (Y�� + Y��)8



�2��  ���+ XÆ+! �+XÆ+ � 2(���Æ) 1�+ X�+! �+XÆ+ � 2(�2+�Æ) ���+ XÆ+! 1�+ X�+ : (62)After that its solution an be easily foundP (3)++ = X�+XÆ+ Y�Æ � 2  1�+ X�+! ���+ XÆ+! �+XÆ+ : (63)Integration by parts and using the expression for Y�Æ one an simplify this resultP (3)++ = X�+X�+ h�� �X�+ ���+ X2�+ : (64)Therefore we obtain for the e�etive urrents j++ and j�� the perturbative expansionj++ = h++ �X2�+ +X�+X�+h�� �X�+ ���+ X2�+ + ::: ; (65)j�� = h�� �X2�� +X��X��h�� �X�� ���� X2�� + ::: : (66)One an verify, that with our auray these urrents are transformed under the oordi-nate hange as followsÆj�� � 2�� (�� � h����) + �� (�� � h����) ���� �h++ �X2�+� : (67)It allows us to guess the law of transformations of j�� in a general aseÆj�� = 2 �� �� + �� �� ���� j�� ; �� = g�� �� : (68)4 Rapidly moving salar partile in a gravity �eldThe general ovariane onditions for the e�etive reggeon urrents(Æh��) ÆÆh�� j++ = (Æh��) ÆÆh�� j�� = 0 (69)are equivalent to equations of motion for the relativisti matter propagating in the orre-sponding gravitational �eld beause the e�etive ation an be viewed as a bakward reationof the rapidly moving olliding partiles on the proesses taking plae at a given intervalof rapidity. Due to the universality of the ation for its alulation one an onsider anarbitrary type of the olliding matter.Let us restrit ourselves to the sattering of the high energy salar partile o� the gravi-tational �eld. The ation for the free massless salar �eld � in the gravitational bakgroundan be written as follows Ss = Z d4xp�g 12 (���) g�� (���) : (70)9



The orresponding energy-momentum tensor isT�� = (���) (���)� 12 g�� g�� (���) (���) : (71)We introdue the ovariant d'Alambert operatorr2 = 1p�g�� g��p�g �� = D��� ; (72)whih is symmetri for the following salar produt of the �eldsZ d4xp�g  r2 � = Z d4xp�g �r2  : (73)The equations of motion for � are r2� = 0 : (74)The energy-momentum tensor is onservedD�T�� = 0 (75)due to the equations of motion.One an onstrut also the equation for the Green funtion G(x; x0) of the salar partile�r2(x)G(x; x0) = Æ4(x� x0) : (76)Its arguments an be interhanged with a similarity transformationG(x; x0) = q�g(x0)G(x0; x) 1q�g(x) : (77)The variation of the Green funtion over the metri tensor an be written as followsÆG(x; x0) = Z d4y G(x; y) Æ(p�gr2)G(y; x0)= � Z d4y �G(x; y)�y� Æ(g��p�g) �G(y; x0)�y� : (78)Under the general ovariant transformations whih an be written in the formÆ(g��p�g) = p�g (g��D��� + g��D��� � g��D���) : (79)the Green funtion is transformed as followsÆG(x; x0) = ��(x) ��x�G(x; x0) + ��(x0) ��x0�G(x; x0) : (80)The orresponding S-matrix exists providing that at in�nity the metri has the Minkowskiform limx!1 g�� = ��� : (81)10



In this ase the sattering amplitude f(p; p0) is expressed in terms of the matrix element ofthe Green funtion with amputated free propagatorsf(p; p0) �< p0j limt!1 limt0!�1 �2� G(x; x0) �2�0 jp > ; (82)where the initial and �nal partiles are on mass shellp2 = p02 = 0 : (83)The sattering amplitude is invariant under the general oordinate transformations, be-ause the in�nitesimal parameter � tends to zero at in�nity. Note, however, that generallythe energy and momentum are not onserved.For our purpose it is enough to �nd the Green funtion only at high energiesp� � p0� !1 : (84)For example let us onsider the olliding partile with the momentumpA = n+rs2 : (85)In this ase the wave funtions < pAj and < pA0j are rapidly osillate and we an write theovariant d'Alambert operator in the equation for G(x; x0) as followsr2 = �2� + h���2� + 2(��h��)�� + 12(�+h��)g���� + 12h��(��h��)g���� ; (86)where we introdued the notationsg�� = ��� + h�� ; h�� = �h�+ + h��h�+ + ::: ; (87)h�� = �h++ + h+�h�+ � h+�h��h�+ + ::: : (88)We imply also the following deomposition of the usual Laplae operator�2� = �+�� + ���� : (89)The losed expression for the indued urrent j++ is given belowj++ = �2��� r�2 �2��� ; (90)where it is implied, that the di�erential operators in the end of the expression at to theleft after their integration by parts. One an use also a semilassial approximation for theGreen funtion. We shall return to the semilassial approah in another form in subsequentsetions.
11



5 "Eikonal" ontribution to the e�etive ationAs it was mentioned above, in the perturbation theory the salar partile in the intermediatestates is strongly virtual in an aordane with the fat, that in our kinematis the gravitonsemitted from it belong to the lusters with their rapidity signi�antly di�erent from thepartile rapidity. Therefore we an expand its free propagator as follows� 1�2� � � 1�+�� + 1�+���?� �?� 1�+�� : (91)The leading terms � h++ are aneled partly in the perturbation expansion between on-tributions of various Feynman diagrams orresponding to a di�erent ordering of the vertiesSint in time, beause the eikonal term with intermediate partiles on mass shell in our ase isnegligible. To larify this important fat we alulate here several terms of the expansion ofsattering amplitude in the Fourier transform V (k) of the interation term h++. Omittingthe normalization fators and the verties V (ki), the sattering amplitude for the salar par-tile with the large momentum p an be written in the seond order of perturbation theoryas followsAeik2 = 1(p+ k1)2 + 1(p+ k2)2 = (p+ k1 + k2)2 � 2(k1k2)(p+ k1)2(p+ k1 + k2)2 � � (k1k2)2(pk1) (pk2) ; (92)where we used the reality requirement for the initial and �nal state partilesp2 = (p+ k1 + k2)2 = 0 (93)and the ondition of the strong virtuality for the partile in the intermediate states2(pk1) � 2(pk2)� k21 � k22 � (k1k2) : (94)In an analogous way one an obtain the following ontributions from the eikonal diagramsin the thirdAeik3 = 1(p+ k1)2 1(p+ k1 + k2)2 + 1(p+ k2)2 1(p+ k1 + k2)2 + 1(p+ k1)2 1(p+ k1 + k3)2+ 1(p+ k3)2 1(p+ k1 + k3)2 + 1(p+ k2)2 1(p+ k2 + k3)2 + 1(p + k3)2 1(p+ k2 + k3)2� k3(k1 + k2)4pk3 p(k1 + k2) k1k2pk1 pk2 + k2(k1 + k3)4pk2 p(k1 + k3) k1k3pk1 pk3 + k1(k2 + k3)4pk1 p(k2 + k3) k2k3pk2 pk3 (95)and fourth orderAeik4 � � k1k28 pk1 pk2  k4(k1 + k2 + k3)pk4 p(k1 + k2 + k3) k3(k1 + k2)pk3 p(k1 + k2) + k3(k1 + k2 + k4)pk3 p(k1 + k2 + k4) k4(k1 + k2)pk4 p(k1 + k2)!� k1k38 pk1 pk3  k4(k1 + k2 + k3)pk4 p(k1 + k2 + k3) k2(k1 + k3)pk2 p(k1 + k3) + k2(k1 + k3 + k4)pk2 p(k1 + k3 + k4) k4(k1 + k3)pk4 p(k1 + k3)!12



� k1k48 pk1 pk4  k3(k1 + k2 + k4)pk3 p(k1 + k2 + k4) k2(k1 + k4)pk2 p(k1 + k4) + k2(k1 + k3 + k4)pk2 p(k1 + k3 + k4) k3(k1 + k4)pk3 p(k1 + k4)!� k2k38 pk2 pk3  k4(k1 + k2 + k3)pk4 p(k1 + k2 + k3) k1(k2 + k3)pk1 p(k2 + k3) + k1(k2 + k3 + k4)pk1 p(k2 + k3 + k4) k4(k2 + k3)pk4 p(k2 + k3)!� k2k48 pk2 pk4  k3(k1 + k2 + k4)pk3 p(k1 + k2 + k4) k1(k2 + k4)pk1 p(k2 + k4) + k1(k2 + k3 + k4)pk1 p(k2 + k3 + k4) k3(k2 + k4)pk3 p(k2 + k4)!� k3k48 pk3 pk4  k2(k1 + k3 + k4)pk2 p(k1 + k3 + k4) k1(k3 + k4)pk1 p(k3 + k4) + k1(k2 + k3 + k4)pk1 p(k2 + k3 + k4) k2(k3 + k4)pk2 p(k3 + k4)!� (k3 + k4)(k1 + k2)8p(k3 + k4) p(k1 + k2) k1k2pk1 pk2 k3k4pk3 pk4 � (k2 + k4)(k1 + k3)8p(k2 + k4) p(k1 + k3) k1k3pk1 pk3 k2k4pk2 pk4� (k2 + k3)(k1 + k4)8p(k2 + k3) p(k1 + k4) k1k4pk1 pk4 k2k3pk2 pk3 : (96)The orresponding "eikonal" terms indeed appear in the e�etive urrentsjeik++ � g++ �X2�+ �X�+ ���+ X2�+ �X�+ ���+X�+ ���+ X2�+ � 14  ���+ X2�+!2 + ::: ; (97)jeik�� � g�� �X2�� �X�� ���� X2�� �X�� ����X�� ���� X2�� � 14  ���� X2��!2 + ::: ; (98)where we took into aount, that due to the general ovariane the light-one omponents h++and h�� an enter in the �nal expressions only inside the tensors X�+ and X��, respetively.Looking at these expressions and omparing them with the above perturbative ontribu-tions obtained from general ovariane onsiderations one an formulate the hypothesis, thatthe omplete result for the generally invariant urrents is obtained from the "eikonal" ex-pression by its "ovariantization" orresponding to the substitution of the Minkowski tensor��� everywhere by the world metri tensor:��� ! g�� : (99)This hypothesis leads to the following result in the perturbation theoryj++ = h++ �X�+g��X�+ �X�+g�� ���+ X�+g��X�+�X�+g�� ���+ X�+g�� ���+ X�+g��X�+ � g��4  ���+ X�+g��X�+! ���+ X�+g��X�+ + ::: ; (100)j�� = h�� �X��g��X�� �X��g�� ���� X��g��X���X��g�� ���� X��g�� ���� X��g��X�� � g��4  ���� X��g��X��! ���� X��g��X�� + ::: : (101)13



Moreover, it allows to formulate a losed equation for the important "eikonal" ontribution(�+��) ÆÆX�+ jeik++ = ((����) + (����)) ÆÆ��� jei++� ��(��X�+) + (����)X�+ �  ���+ (�+��)X�+!! ÆÆX�+ jeik++ ; (102)where, as usual, the fators in front of derivatives should substitute in the same position theorresponding variables X�+ and ��� removed by the di�erentiation. The �rst term in theright hand side of this equation orresponds to the in�nitesimal transformation of h�� in thelowest order of the perturbation theory.For example, in the fourth order from this "eikonal" equation we derive the identity�(�+��) ���+X�+ ���+ X2�+ �X�+ ���+ (�+��) ���+ X2�+�2X�+ ���+X�+ ���+X�+�+�� �  ���+ X2�+! ���+ X�+�+��� �X�+ ((����) + (����)) ���+X2�+ � 2X�+ ���+X�+(���Æ)XÆ++ ��(��X�+) + (����)X�+ �  ���+ (�+��)X�+!! ���+X2�++2X�+ ���+X�+  ��(��X�+) + (����)X�+)� ���+ (�+��)X�+! ; (103)whih an be veri�ed with integration over x+ by parts.In the �fth order one an obtain the relation(�+��) ÆÆX�+ P eik (5)++ = �X�+(����) ���+ X�+ ���+X2�+ �X�+ ���+ X�+ (���Æ) �Æ�+X2�+�12 (����) ���+X2�+! ���+X2�+!+  ��(��X�+)�  ���+ (�+��)X�+!! ���+ XÆ+ �Æ�+X2�++X�+ ���+  �Æ(�ÆX�+)�  ���+ (�+�Æ)XÆ+!! ���+X2�++ 2X�+ ���+ X�+ +  ���+X2�+!! ���+X�+  �Æ(�ÆX�+)� ���+ (�+�Æ)XÆ+! : (104)It gives a possibility to alulate the orresponding "eikonal" ontribution to j++ in thisorder P eik (5)++ = �X�+ ���+X�+ ���+X�+ ���+ X2�+�14 X�+ ���+  ���+ X2�+!2 � 12  ���+ X�+ ���+ X2�+! ���+ X2�+! : (105)14



In the sixth order we obtain in a similar wayP eik (6)++ = �XÆ+ �Æ�+X�+ ���+X�+ ���+X�+ ���+ X2�+�14 XÆ+ �Æ�+X�+ ���+  ���+ X2�+!2 � 12 XÆ+ �Æ�+  ���+ X�+ ���+ X2�+! ���+ X2�+!�14  ���+ X�+ ���+ X2�+!2 � 18 0� ���+  �Æ�+ X2�+!21A ���+ X2�+! : (106)To �nd a general struture for the urrents jeik++ and jeik�� we should investigate in a moreaurate way the reurrent relation following from the eikonal equation (102).To begin with, one an use the following formulas (see (60))2X�+Æ(2)X�+ �X�+X�+ (���� + ����)= �X�+ ���+ 2X�+(�+��)� (�+��) ���+X2�+ + �+�� ���+ X2�+ : (107)for the variation of the struture X2�+ present in the previous order. On the other hand, thesum of the �rst two terms in the right hand side an be interpreted as the variation of theexpression �X�+ ���+ X2�+ (108)appearing in the next order. The last term in (107) gives a vanishing ontribution in theseond order. For higher orders it is multiplied with two possible struture X���=�+ or��=�+. The seond struture is ontrated with the index � with the operator ��=�+ atingon another funtion. Let us onsider these two possibilities separately.We obtain for the variation of the �rst strutureÆ(2)X�+ ���+ �X�+ (���� + ����) ���+= ����X�+ ���+ �X�+���� ���+ �  ���+ (�+��)X�+! ���+ : (109)The seond term in the right hand side anels the ontribution from the last term in forthe variation of X2� (107) due to the relation�X�+���� ���+X2�+ +X�+���� ���+ X2�+ = 0 (110)The last term in (109) orresponds to the variation of the following struture in the nextorder �14  ���+ X2�+!2 (111)15



provided that the operator X�+ ���+ was applied to X2�+. In other ases we obtain from thelast term the term aneling the variation of the ontribution�12  ���+ X2�+! ���+ : (112)in the next order. The �rst term in (109) an be written as follows�(�+��) ���+X�+ ���+ + �+�� ���+X�+ ���+ : (113)Here the �rst ontribution leads to the following struture in the next order�X�+ ���+X�+ ���+ (114)and the seond term vanishes provided it is not multiplied by X���=�+ or ��=�+ ontratedby the index � with the operator ��=�+ ating on another funtion. In the these two aseswe should repeat alulations performed above for the last term in the variation of X2�.At last we onsider the variation of a produt of the operators ��=�+ in h�� of�(���� + ����) ���+ ::: ���+ = � ���� ���+ :::! ���+ � ���+ :::���� ���+ + ����  ���+ ::: ���+ :::! : (115)Two �rst terms are aneled with the last terms in Eqs. (107) and (113). The last term anbe written as follows�(�+��) ���+  ���+ ::: ���+ :::!+ �+�� ���+  ���+ ::: ���+ :::! : (116)The �rst term here orresponds to the following struture in the next order�X�+ ���+  ���+ ::: ���+ :::! : (117)The seond term is not zero only if it is multiplied by X���=�+ or ��=�+ ontrated by theindex � with the operator ��=�+ ating on another funtion. In these ases again we shouldperform alulations similar to that with the last term in eq. (107). Thus, after anelationof some terms in the variation of j++ in the previous order we an obtain the result in nextorder, using the above substitutions.Even more, one an write the following representation for the e�etive "eikonal" urrentsin an arbitrary order jeik++ = h++ � �+Jeik+ ; j�� = h�� � ��Jeik� : (118)The above perturbative alulations allow to onstrut the following "fan" equations for thequantities Jeik� (�� �X����) Jeik� = X2�� + 14 ���Jeik� �2 : (119)16



The solutions of these equations should have the following transformation properties follow-ing from the general oordinate invariane of j��ÆJeik� = � 2�� �� ��X�� = 2�� X�� ���� : (120)One an verify, that indeed these properties are ompatible with the transformations ofvarious operators entering in the "fan" equationsÆ (X����) = (����)�� �  ���� (����)X��! �� � (����) ����X���� ; (121)ÆX2�� = 2X������ �X�� ���� 2X��(����)� (����) ����X2�� (122)and Æ ��:::��::: = �(����) ���� (��:::��:::) : (123)Here we negleted the terms aneled between various struture (see last ontributions inEqs. (107), (113) and (116))� Æ (X����) = �X�������� + ���� ����X���� ; � ÆX2�� = ���� ����X2�� (124)and � Æ ��:::��::: = � (������:::) �� � ��:::������ + ���� ���� (��:::��:::) : (125)They generate unessential orretions to j�� proportional to ��� j� = �������J� : (126)6 Hamilton - Jaobi equation for e�etive urrentsTo onstrut ovariant equations for the e�etive urrents in all orders we take into aount,that j�� are invariant under general oordinate transformations up to total derivatives inx�. Let us introdue the urrents j� related diretly to j��j� � � 1�� j�� = J� � 1�� h�� : (127)Using these relations one an transform the "eikonal" equation (119) for Jeik� to the form� (�� � h����) j�eik = h�� � (h��)2 � 14 ���j�eik�2 : (128)In "eikonal" approximation the possible ontributions ontaining the matrix elements h��with �; � 6= � are absent. To restore suh terms we should impose on the equation theproperty of general ovariane. To begin with, the inhomogeneous term an be modi�ed in17



suh a way, that it beomes proportional to a matrix element of the ontravariant metritensor h�� � (h��)2 ! h�� � g�� h�� h�� = �g�� : (129)Here and later the tensors with ovariant and ontravariant indies are onsidered to bedi�erent. They are related by a ontration with the metri tensor.Using similar modi�ations for the linear and quadrati term, one an obtain the generallyovariant "fan" equation for the urrents j�g�� ��j� = g�� + g��4 ���j�� ���j�� : (130)In an aordane with the general ovariane the urrents j� are transformed as followsÆj� = 2�� + ����j� ; (131)where the in�nitesimal parameters �� and �� tend to zero at large x in an aordane withthe fat, that j� are de�ned up to the ontributions vanishing at x� ! 1. Indeed, theindued part of the e�etive ation with an integration over x� an be written as follows�S = � 12�  Z d2x?dx� limx+!1 j� �2�A++2 !+ Z d2x?dx+ limx�!1 j+ �2�A��2 !! (132)and this expression is not hanged under suh transformations.The equation for j� an be presented in a simpler formg�� �12 ��j� � g�� � �12 ��j� � g�� � = 0 : (133)Its formal solution is j� = 2 x� � !� ; (134)where the quantities !� satisfy the light front equationg�� ��!� ��!� = 0 : (135)The last equation an be obtained in an independent way if we would searh the solutionof the generally ovariant d'Alambert equation (see eq. (72) in Setion 4)r2�(x) = 0 (136)for the wave funtion of the salar partile moving with a large momentum p� in the semi-lassial ansatz ��(x) = exp ��ijpj x� + i ��(x)� ; ��(x) = jpj2 j�(x) ; (137)where ��(x) is a rapidly hanging phase and j� is the e�etive urrent in our normaliza-tion. Indeed, by negleting the derivatives from the metri tensors in omparison with largederivatives from �� we obtain from the d'Alambert equation its semilassial versiong�� �12 ��j� � g�� � �12 ��j� � g�� � = 0 ; (138)18



whih oinides with the equation (133) for j� derived above.The S-matrix for the partile sattering at a given impat parameter o� the gravitational�eld in the semilassial approximation has the following formS = limx�!1 exp i jpj2 j�(x)! ; (139)providing that the initial onditions for j� arelimx�!�1 j�(x) = 0 : (140)In partiular this S-matrix ontains pure eikonal ontributions for whih the partile in theintermediate states lies on mass shell. Suh ontributions should be absent in the e�etiveation, although they are reprodued by the iteration of e�etive verties in the s-hannel. Itis the reason, why the e�etive urrent j� entering in the ation at large x� is proportionalto the logarithm of the S-matrix limx�!1 j�(x) = �i 2p� lnS : (141)It is well known [38℄, that the solution of the light front equationg�� ��! ��! = 0 (142)an be expressed in terms of the null-geodesi trajetories of partiles in the gravitational�eld satisfying the equation of motiond2x�(d�)2 = ���� dx�d� dx�d� ; (143)where � is a parameter inreasing along the trajetory and ���� is the Christo�el symbol.The geodesi equation is presented in the form of the Hamilton equationsdx�d� = g�� !� ; d!�d� = �12 !� !��� g�� ; (144)where !� � ��! = g�� dx�dp (145)plays a role of the partile momentum.Note, that the light front equation an be onsidered as the Hamilton-Jaobi (HJ) equa-tion for the ation !. Its general integral ontains an arbitrary funtion, but it is wellknown [39℄, that this general solution is expressed in terms of the so-alled omplete integralontaining only 4 arbitrary onstants! = a f(x�; 1; 2) + A : (146)The appearane of the parameters a and A is related to the loality and the homogeneityof the HJ equation (its invariane under the transformation ! ! b ! + B). Really the HJ19



equation is an integral of motion for the Hamilton equations allowing to �nd the anonialvariables x� and !� as some funtions of � . Indeed, providing that the HJ equation is ful�lledat some � = �0 it will be valid at arbitrary � due to the relationdd� g�� ��! ��! = 0 ; (147)whih follows from the Hamilton equations. On the ontrary, the general solution of theHamilton equations an be obtained in terms of the omplete integral for !. Indeed, onean prove [39℄, that the derivatives of ! over the parameters a; 1; 2�!�a = f = d ; �!�1 = d1 ; �!�2 = d2 (148)are also integrals of motion and therefore one an �nd from the last relations the oordinatesxi (i = 1; 2; 3) as funtions of t and six parameters a; 1; 2; d; d1; d2, whih orresponds to ageneral solution of equations of motion.To onstrut a omplete integral ! for our ase of the massless partile sattering o� thegravitation �eld from the solution of the Hamilton equations we write the light front surfaefor arbitrary � in the form !(x0; x1; x2; x3) = onst : (149)Let us assume, that at large distanes and large negative times t0, where g�� = ���, thissurfae is a plane ontaining the points parametrised by two numbers u and v~x = t0~n+ u~n1 + v ~n2 ; (150)where ~n; ~n1; ~n2 are orthogonal unit vetors~n2 = ~n21 = ~n22 ; (~n; ~n1) = (~n; ~n2) = (~n1; ~n2) = 0 : (151)The initial values of momenta are given below~r! = ~n ; !20 = 2 ; (152)where  is an arbitrary parameter whih depends generally on u and v (note, that ! is de�nedup to a ommon fator). Then from the Hamilton equations one an alulate x� and !� forall values of � and parameters u and v. Thus, we an obtain x� = x�(�; u; v; t0;~n), whihis a parametrised form of the light front surfae !(n) = onst, depending on the light-onevetor n = 1p2(1; ~n): (153)In the usual form this surfae an be obtained by exluding the initial data (u; v; t0) fromfour omponents of the vetor x�.In partiular, to obtain the e�etive urrents j� we should put!� = !(n�) ; n� = 1p2(1;�1; 0; 0) (154)20



and normalize the funtions !� in suh a way, that!� = 2x� � j� : (155)A possible generalization of the developed e�etive �eld theory ould inlude a superpositionof the urrents jn with di�erent light-one vetors n.The lassial equations for the e�etive ations apart from the usual Einstein term G��ontain the indued terms for the omponents of the metri tensor g��, g�� and g��. Theseterms are equal to the orresponding funtional derivatives of the ation �S. The on-tributions proportional to A++ and A�� ontain the derivatives from the urrents j�(x)and j+(x), respetively. Due to the Hamilton-Jaobi equations these derivatives satisfy therelations 2g�� (��!�) �� Æj�(x)Æg��(y) = (��!�) (��!�) Æ4(x� y) : (156)The indued terms in the Einstein equation play role of the energy-momentum tensor T��(y)whih is onserved due to the general ovariane of the ation �S.7 E�etive ation for shok wave gravitational �eldsTo illustrate the general approah based on the e�etive ation, let us onsider the Hamilton-Jaobi equation for the massless partile sattering o� the gravitation enter with the metritensor given by the Shwarzshild solution [40℄d2s = �r � �r + �� d2t� �r + �r � �� d2r � (r + �)2 �d2� + sin2 � d2�� ; (157)where we used the spherial oordinates. The parameter � is proportional to the mass m ofthe attration enter � =  m ; �2 = 8 �  : (158)The Einstein equations for the massless partile moving around the entral body in the plane(x; y) orresponding to � = �=2 are redued to two ordinary di�erential equations [38℄ drd�!2 = (r + �)4b2 � (r2 � �2) ; (159)and (r + �)3r � � drdt = q(r + �)4 � (r2 � �2) b2 ; (160)where b in our ase is the impat parameter of the olliding partile whih moves for t! �1along the line parallel to the axes x, whih orresponds to the following initial ondition forthe �rst equation, desribing its trajetory,r(�)j�!0 � b� !1 : (161)
21



The solution of this equation an be expressed in terms of the ellipti integral of the �rstkind Z 1r b drq(r + �)4 � (r2 � �2) b2 = � : (162)It allows to �nd r as a funtion of � and b. Inverting this funtion, one an �nd bb = b(r; �;�) : (163)The solution of the seond equation an be written in the formf(t; r; b; �) � t� Z r0 drq(r + �)4 � (r2 � �2) b2 (r + �)3r � � = C ; (164)where the onstant C is found from the initial onditions for r at t! �1. In an aordanewith our normalization we an onstrut the omplete integral for the Hamilton-Jaobiequation !(n) = 2 f(t; r; b(r; �;�); �) ; (165)where the unit vetor �!n de�nes the diretion of the initial partile momentum and theimpat parameter vetor �!� is orthogonal to it. The angle � is in fat the polar angle withthe respet to the vetor �!n .To obtain the e�etive urrents j� we should put �!n = ��!e 3 and write ! in the form!� = !(n�) = 2x� � j� : (166)To simplify the perturbative expansion of the e�etive urrents we onsider below themassless partile sattering o� the gravitation enter moving with the relativisti veloityv !  in the diretion of the third axes �!e 3. Due to the Lorentz ontration the �eld of thisenter is given by the metri orresponding to the shok wave solution of Aihelburg andSexl (ds)2 = ��� dx� dx� + h��(dx�)2 (167)where h�� = 8p2 G� ln j�!x j Æ(x�) ; (168)where �!x is the transverse omponent of the vetor x�.The Hamilton equation for the partile moving in this �eld has the formdx�d� = ���!� � Æ�+ h��!+ ; d!�d� = 12 !+ !+�� h�� : (169)Before reahing the shok wave the partile propagates along the straight linex� = x�0 + !�0 � ; !�0 = ��� (!�)0 ; ���!�0!�0 = 0 ; (170)where x�0 and (!�)0 are initial values of oordinates and momenta. The ollision with themoving plane x� = 0 takes plae at the moment � �xed by the equationz = t ; (171)22



where the oordinates of the partile arez = z0 + !30 � ; t = t0 + !00 � ; �!� = �!x 0 ��!! 0 � : (172)Here we introdued the notation �!� for the transverse oordinate �!x at � = �.At � > � the new values of !� are!+ = (!+)0 ; !� = (!�)0 + 4p2 !+G� ln� Æ(x�) ; �!! = �!! 0 + 4p2 G��!��2 !+ ; (173)where �!� is �xed by the initial onditions.From the equation for x� we obtain!� !� dg��d� = !� !� (���!� � Æ�+ h��!+) dg��dx�= �!2+  � 8p2 G��!!�!��2 Æ(x�) + !+ 8p2 G� ln� ��Æ(x�)! : (174)This relation is ompatible with the Hamilton-Jaobi equationg�� !� !� = 0 ; (175)whih an be veri�ed by its di�erentiation in � with the use of the Hamilton equation for!�. From the above expliit expressions for !� we derive also, that the metri tensor g��,alulated in the points of the partile trajetory x� = x�(�) isg�� = ��� � Æ�+Æ�+ 8p2 G� ln� Æ(x�)�  �!� �!! 0�2 !+ + 2p2 G� 1�2 �(x�)! �(x�)! : (176)The oordinates of the massless partile arex� = x� + !�0 (� � �) ; �!x = �!� ��!! 0(� � �) (177)before its ollision with the plane wave andx� = !+(� � �) ; �!x = � �!! 0!+ + 4p2 G��!��2!!+(� � �) +�!� ;x+ = x+ +  !+0!+ + 4p2 G� �!! 0�!�!+�2 + 2p2 G� 1�2!! !+(� � �)� 4p2 G� ln � (178)after its ollision at � > �. Here we used the identityZ dx� �(x�) Æ(x�) = 12 : (179)Note, that the partile moves along the light ray g��dx�dx� = 0.Finding � � � and � from two �rst equations and putting the result in the right handside of third relation we obtain the omplete integral for the orresponding Hamilton-Jaobiequation in our normalization! = 2x+ = 2x+0 + 2!+0 (� � �) + j; (180)23



where the e�etive urrentj = 8p2 G�  �!! 0�!�!+�2 x� + 2p2 G� 1�2 x� � ln �! : (181)Note, that this urrent an be written as followsj = �2 !+0!+ x� + (�!� ��!x )2x� � 8p2 G� ln � (182)and the equation for �!� is simpli�ed �!� j = 2 �!! 0!+ : (183)Let us onsider the simplest ase when the partile olliding with the shok wave has thefollowing initial onditions �!! 0 = !+0 = 0 : (184)In this ase we have for the e�etive urrentj+ = j(g) = 8p2 G�  2p2 G�x��2 � ln�! : (185)where the vetor �!� satis�es the equation�!x = �!�  1� 4p2 G� x��2 ! : (186)Its solution is given below �!� = �!x f(z) ; z = 8p2 G� x�jxj2 ; (187)where f(z) = 12 �1 +p1 + 2z� = 1 + z2 � z24 + z34 � 5z416 + ::: : (188)The urrent j+ an be written in the formj+ = a  14 jxj2j�j2 z � ln �! = �a (lnx + �(z)) ; a = 8p2 G� (189)where �(z) = ln f(z)� 14 zf 2(z) = z4 � z28 + 548 z3 � 764 z4 + ::: : (190)On the other hand, using expressions (97), (98) and (105) for the eikonal urrents jeik�� and(48) for X�� we an write the urrent j+ (127) for the shok wave �eld (168) in the formj+ = �a lnx+ a2�� � x�2x2�2 � a3�� x�2x2 ���� � x�2x2�2 + a4�� x�2x2 ���� x�2x2 ���� � x�2x2�224



+ a44��  ���� � x�2x2�2!2 � a5�� x�2x2 ���� x�2x2 ���� x�2x2 ���� � x�2x2�2� a54�� x�2x2 ����  ���� � x�2x2�2!2 � a52��  ���� x�2x2 ���� � x�2x2�2! ���� � x�2x2�2! : (191)Di�erentiating over x� and integrating over x+ we obtain the same expression for j�, whihan serve as a veri�ation of the approah.Let us onsider now a more general situation of the massless sattering o� the gravita-tional �eld with the metri g�� = ��� + Æ�� Æ�� V (�!x ) Æ(x�) ; (192)where the potential V is an arbitrary funtion of the points on the shok plane. Repeatingthe above alulation, we obtain the generalized equation for the point �!� in whih thepartile rosses the plane �!x = �!� � x�2 �!� V (�!� ) (193)and the expression for the e�etive urrent j+j+ = �V (�!� ) + x�4 ��!� V (�!� )�2 = �V (�!� ) + (�!� ��!x )2x� : (194)Note, that the equation for the point �!� an be written as the stationarity ondition for j+as a funtion of �!� �!� j+ = 0 : (195)Using the perturbation theory for the solution of the equation for �� = ���x� in metri ����� = x�2 V� � x�2 V��1 x�2 V�1 + 2 x�2 V��1 x�2 V�1�2 x�2 V�2 + ::: ; (196)where V�1;�2;:::�n � ��1��2 :::; ��nV (�!x ) ; (197)and putting the result in j+, we �ndj+eik = �V (x) + x� �12V��2 + (x�)22 V��� �12V��2 + ::: (198)in an agreement with the expressions (98) for the eikonal ontribution with the simpli�edexpression for X�� X�� ! � ���� g��: (199)
25



8 Variational priniple for the e�etive urrentsLet us onsider even more general on�guration of the gravitational �eld onsisting from nshok waves moving in the z-diretiong�� = ��� + Æ�� Æ�� nXr=1V (r)(�!x ) Æ(x� � x�r ) ; (200)where x�r are some parameters ordered in the following wayx�1 < x�2 < ::: < x�n : (201)By solving the Hamilton equations for the massless partile ying at � ! �1 along the z-axes from z = �1 with the impat parameter �!� and !+0 = �!! 0 = 0 for eah of the intervalsx�r < x� < x�r+1 for r = 1; 2; :::; n we obtain for the points �!� r in whih the trajetory rossesthe orresponding planes the following reurrene relation�!� 1 = �!� ; �!� 2 = �!� 1 � x�2 � x�12 �!� 1 V (1)(�!� 1) ; �!� 3 = �!� 2 � x�3 � x�22 2Xt=1�!� t V (t)(�!� t) ; :::�!� n = �!� n�1 � x�n � x�n�12 n�1Xt=1 �!� t V (t)(�!� t) ; �!x = �!� n � x� � x�n2 nXt=1�!� t V (t)(�!� t) ; (202)where �!x and x� are oordinates of the partile after its interation with all shok waves.Note, that the x�-oordinate of the partile and its momentum !+ are not hanged duringollisions x� = !+� + x�0 : (203)But the momenta !+ and �!! are di�erent in eah interval x�r < x� < x�r+1!� = !+2 nXr=1V (r)(�!� r) Æ(x� � x�r ) ; �!! = �!! r = !+2 rXt=1�!� tV (t)(�!� t) : (204)The metri tensor, alulated on the partile trajetory in this interval, has the formg�� = ��� � Æ�+Æ�+ nXr=1 V (r)(�!� r)Æ(x� � x�r )� �2(x� � x�r )4 rXt=1 ��!� tV (t)(�!� t)�2! ; (205)ompatible with the integral of motiong��!�!� = 2!+!� ��!! 2 + !2+g++ = 0 : (206)Note, that the total derivative of g++ in � is in an agreement with the Hamilton equationsdg++d� = �!+��g++ + 2�!!!2+ d�!wd� : (207)The oordinate x+ is also hanged after eah ollision and after all ollisions we havex+ = x+0 + 12 nXr=1(x�r+1 � x�r )0� rXt=1 �!�t2 V (t)(�!� t)1A2 � 12 nXr=1V (r)(�!� r) ; (208)26



where it is implied, that �!� n+1 = �!x and x�n+1 = x�. Thus, we obtain for the orrespondinge�etive urrent in the above gravitational �eld the following expressionj+ = nXr=1(x�r+1 � x�r )0� rXt=1 �!�t2 V (t)(�!� t)1A2 � nXr=1V (r)(�!� r) ; (209)where it is assumed, that the points �!� r are expressed in terms of �!x and x� with the useof equations (202). Due to these equations the e�etive urrent an be written even in asimpler form j+ = nXr=1 (�!� r+1 ��!� r)2x�r+1 � x�r � nXr=1V (r)(�!� r) ; �!� n+1 = �!x ; x�n+1 = x� : (210)Suh form of the e�etive urrent gives a possibility to write the equations for �!� r as itsstationarity onditions �!� r j+ = 0 : (211)One an verify the perturbative expansion of this e�etive urrent by omparing it with thegeneral expressions (98) for the eikonal ontribution.Let us onsider the ontinuous limit of the sattering problem, assuming that the numberof shok waves is in�nite and the distane between them tends to zero. In this ase the metritensor on the partile trajetory isg��(�!x ; x�) = ��� � Æ�+Æ�+  g++(�!� ; x�) + �!! 2!2+ ! ; (212)where �!! = !+ ���!� (213)and �!� is onsidered to be a funtion of x� and �!x alulated with the use of the equationof motion for the olliding partile. The e�etive urrent an be written in the integral formj+ = Z x��1 dy� �g++(y�;�!� (y�)) + (���!� )2� ; (214)where the variable y� enumerates the shok waves.This funtional an be onsidered as a lassial ation for the partile moving in thegravitational �eld, whih allows to formulate the variational priniple for the e�etive urrentj+. Indeed, j+ should be alulated on the partile geodesi trajetory �!� (x�;�!x ). Thetrajetory are found from the stationarity onditions for this funtional whih have the formof the non-relativisti Newton equations2 �2��!� = �!� g++ : (215)Note, that the "potential" g++ depends expliitly on x� and therefore the energy, whih is aformal integral of motion for this equation, is not onserved. But with taking into aount,that the partial derivatives in x� of !� and g++ are proportional, we an write the orretintegral of motion in the form (���!� )2 � g++ � 2 !�!+ = 0 ; (216)27



whih is really oinides with the Hamilton-Jaobi equation. Indeed, the variation over �!�in the integrand for j� after the use of the stationarity equations gives a total derivativeover x� leading after its integration to the relationÆj+ = 2 (���!� ) Æ�!� (217)and therefore we have the relation���!� = 12 �!� j+ = ��!w!+ : (218)As a result, the integral of motion (216) oinides with the HY equation for this ase.Therefore we obtain the non-linear equation for j+ ompatible with the above variationalpriniple j+ = Z x��1 dy� �g++(y�;�!� (y�)) + 14 ��!� j+�2� : (219)Here the funtions �!� (y�)) are solutions of the Hamilton equations. The iteration of thisequation over g++ reprodues results (98) for the pure eikonal ontributionj+eik = 1�� g++ � 1�� 0�12 �!��� g++1A2 + 1�� 0�12 �!��� g++1A �!��� 0�12 �!��� g++1A2 + ::: ; (220)where the ontributions from the expansion of g++ in �!� with the subsequent use of thehamilton equation and the integration by parts are also taken into aount.As we argued in the previous setions, the e�etive urrents j� as funtionals of themetri tensors in a general form satisfy the Hamilton{Jaobi equation (see (130))g����j� = g�� + g��4 ���j�� ���j�� : (221)It would be important to write the solution of this equation as an extremum of an loalfuntional similar to (214), beause in the perturbative expansion (65, 66) this loalityproperty is lost. Moreover, suh funtional ould help us in �nding quantum-mehanialorretions to the e�etive ation and its supersymmetri generalization. For this purposeone should present (214) in the form invariant under the general ovariant transformations.We hope to return to this problem in our future publiations.9 E�etive reggeon-graviton vertiesLet us apply the e�etive ation to the problem of alulations of the simplest e�etive ver-ties for the reggeon-graviton interations in the lowest order of the perturbation theory. Forthis purpose it is enough to leave in the urrents j�� only two �rst terms of the perturbativeexpansion j�� � h�� �X2�� ; X�� = h�� � 12 ���� h�� : (222)28



We expand also the Christo�el symbol���� � 12 (��h�� + ��h�� � ��h�� � h��(��h�� + ��h�� � ��h��)) (223)and the Hilbert-Einstein Lagrangianp�g R = p�g g�� ������� � ������ + �������� � ��������� � L2 + L3 ; (224)where L2 = ��h��2 (��h�� � ��h��) + 14 �(��h��)2 � (��h��)2� (225)andL3 = h��  (��h��)��h�� � ��h��4 ��h�� � ��h��2 (��h�� + ��h��) + ��h��2 (2��h�� � ��h��)!+h�� �h��(����h�� � 12 �2�h��) + 12 (��h��)2 � 38 (��h��)2 + 14 (��h��) ��h����h��8 (��h��)2 � h��4 h�� ����h�� : (226)These expressions are valid up to the terms proportional to total derivatives whih givevanishing ontributions to the ation SHE.The ation is invariant under the general oordinate transformationsÆSHE = 0 (227)with the same auray, whih an be veri�ed by heking the following relationsÆL2 = ��  h��2 (�2��� � ������) + h�������� � h���2���!+ �� a� ; ÆL3 = ��� a� ; (228)wherea� � �2�h��2 ��h�� � ��2�h��� �ÆhÆ� � ��h��2 ����h�� + �Æ��h��2 (��hÆ� + �Æh�� � ��hÆ�)+(����h��) ��h�� +  �2�h��2 � ���Æh�Æ! (��h�� + ��h�� � ��h��) : (229)Beause the indued ontributions to the ation are also generally ovariant, the Euler-Lagrange equations for the total ation are self-onsistent. We an write them in the formR�� � 12 g�� R = 12 ÆÆg�� Z d4x �j++�2�A++ + j���2�A��� ; (230)where in the right hand side it is implied as usual, that the alulation of the variationalderivative over g�� is ombined with the orresponding integration by parts. The solution ofthese equations an be expanded in the series over the reggeon �elds A��h�� = A�� +O(A2) (231)29



similar to the ase of the Euler-Lagrange equation for the e�etive ation in QCD [23℄. In-serting this solution in the e�etive ation one an obtain various e�etive verties for theself-interation of the reggeon �elds A�� in the tree approximation. The physial gravita-tional �elds will orrespond to the utuations Æh = h�h around the lassial solution. Thefuntional integration over these utuations in the quadrati approximation will lead to thegraviton Regge trajetories and to various reggeon ouplings in the one-loop approximation.This traditional approah will be onsidered in future publiations. Here we restrit ourselvesto the simple ases where the results an be obtained in the lowest orders of perturbationtheory.To begin with, we note, that performing the funtional gaussian integration over h�� fromthe exponent ontaining the indued ation with the terms linear h++ and h�� we obtainthe kineti term for the �elds A��� 12� Z d4x2 ����h++ ��h�� � h++�2�A�� � h���2�A++�! � 12� Z d4x ��A++ ��A��2 :(232)The kineti term for the reggeon �elds should have an opposite sign. Therefore we inludein the e�etive ation the bare kineti term for the reggeon �eldsSkin = 12� Z d4x ��A++ ��A�� (233)to have the orret renormalized ontribution. Stritly speaking the propagator of thereggeized graviton should ontain the �-funtion orresponding to the ordering of rapidi-ties y in the di�erent lusters< 0j (Ay1��(x1)Ay2++(x2)) = 4 ��2 �(y1 � y2) i(x1 � x2)2 : (234)Further, the next order orretions in eah of the indued ations� 12� Z d4x2 0��0�h++ � 14  ���+ h++!21A �2�A�� � 0�h�� � 14  ����h��!21A �2�A++1Alead with the use of the gaussian integration over the �elds h�� to the ubi interations ofthe reggeon �eldsS1!2 = � 12� Z d4x8 0� ���+A++!2 �2�A�� +  ����A��!2 �2�A++1A : (235)Note, that the usual triple graviton vertex gives a vanishing ontribution to this interation.In an analogous way one an alulate in the tree approximation the e�etive ation forthe reggeon transitions 1! nS1!n = � 12� Z d4x2 ��+Jeik+ (A++) �2�A�� + ��Jeik� (A��) �2�A++� ; (236)where the "eikonal" urrents Jeik� (h��) an be obtained from the solution of the "fan"equations  �� + 12  ���� h��! ��! Jeik� = 14  ���� h��!2 + 14 ���Jeik� �2 : (237)30



The e�etive ation for the reggeon transitions 2! n (n � 2) in the same approximationontains a ontribution from the usual triple graviton vertex. The general reggeon interationn! m is expressed in terms of the solution of the Euler-Lagrange equation for the e�etivetheory.Let us onsider now the e�etive ation for the reggeon-reggeon-graviton (RRG) inter-ation in a tree approximation SRRG. It ontains the ontribution from the triple gravitonvertex (gv) and from the seond order (so) orretion (� h2) to the indued ationSRRG = 12� Z d4xLRRG ; LRRG = LRRGgv + LRRGso ; (238)whereLRRGgv = A++   ��h�+ � ��h++2 ! ��A�� �  �+h�� + ��h�+ + ��h��2 ! ��A��!+A��   ��h�� � �+h��2 ! �+A++ �  ��h�+ + ��h�+ + ��h��2 ! ��A++!�h�� ��A++2 ��A�� � h+� (��A��)�+A++ � h+�(��A++)��A��+h�� ��12 A++ �2�A�� � 12 A�� �2�A++ � 34(��A++)��A�� + 12(�+A++)��A��� : (239)and LRRGso =  � h�+ � 12 ���+h++!A++ + 12  h�+ � 12 ���+h++!  ���+A++!! �2�A��+ � h�+ � 12 �+��h��!A�� + 12  h�� � 12 ����h��!  ����A��!! �2�A++ (240)The e�etive ation SRRG is invariantÆSRRG = 0 (241)under the "abelian" part of the general ovariant transformationÆh�� = ���� + ���� (242)beause the orresponding ontributions SRRGgv and SRRGso are transformed as follows (f.(228) and (229)) ÆSRRGgv = �ÆSRRGso = 12� Z d4x�(x) ;�(x) = �����+A++ + 12 ����A++� �2�A�� + ���+��A�� + 12 ����A��� �2�A++ : (243)For the �eld of the produed graviton on the mass shell we have additional onstraints�2�h�� = ��h�� = h�� = 0 (244)31



and the RRG lagrangian is simpli�ed as followsLRRG = A++  ���h++2 ��A�� � (�+h�� + ��h�+) ��A��!+A��  ��+h��2 �+A++ � (��h�+ + ��h�+) ��A++!�h�� ��A++2 ��A�� � h+� (��A��)�+A++ � h+�(��A++)��A��+ � h�+ � 12 ���+h++!A++ + 12  h�+ � 12 ���+h++!  ���+A++!! �2�A��+ � h�+ � 12 �+��h��!A�� + 12  h�� � 12 ����h��!  ����A��!! �2�A++ (245)Moreover, the orresponding RRG vertex an be written in the momentum spae asfollows [32, 33℄�RRG�� (q2; q1) = 12 C�(q2; q1)C�(q2; q1)� 12 N�(q2; q1)N�(q2; q1) : (246)Here C(q2; q1) is the e�etive vertex desribing the gluon prodution from the reggeized gluonC(q2; q1) = �q?1 � q?2 + pA  q21kpA + kpBpApB!� pB  q22kpB + kpApApB! ; (247)where q1; q2 are the momenta of the reggeized gluons, k = q1 � q2 is the momentum of theprodued gluon and pA; pB are the momenta of the olliding partiles. The vetor N(q2; q3)is proportional to the photon bremstrahlung fator in QEDN(q2; q1) = qq21q22  pApAk � pBpBk! : (248)Using the light-one gauge for the polarization tensor of the produed graviton the RRGvertex an be written in a simple form, whih allows one to onstrut the orrespondingterm in the e�etive ation for the sattering amplitude with the multi-regge unitarity [35℄.Let us onsider now the e�etive ation for the graviton sattering o� the reggeizedgravitons. It an be written as a sum of two termsSGGR = 12� Z d4x �LGGR(A++) + LGGR(A��)� ; (249)proportional to A++ and A��, respetively. We onsider only the �rst term, beause theseond one an be obtained from it by interhanging the light-one indies + and �. In turn,LGGR(A++) is the sum of ontributions from the triple reggeon vertex (rv) and the seondorder (so) orretion to the indued termLGGR(A++) = LA++gv + LA��so ; (250)32



whereLA++gv = A++  (��h��)2 � (��h��)24 � ��h��2 (��h�� + ��h��) + ��h��2 (2��h�� � ��h��)!�(��A++) h��2 ��h�� + h��(��h�� + ��h��)� h����h�� + h��2 ��h��!+h��  �A++  �2�h��2 + �2�h��4 !� h��2 �2�A++ + (��A++) ��h��2 � 3 ��h��4 !! (251)and LA++so = �12  h�� � 12 ����h��!2 �2�A++ : (252)The orresponding lagrangians are transformed under the general oordinate transformationsas followsÆLA++gv = ���  (��h�� � 12 ��h��) �2�A++ � (�2�h�� + �2�h�� � 2����h��) ��A++2 !��� �����h�� + �2� � ����h�� � ����h��� ��A++ (253)and ÆLA++so = �� ���h�� � 12 ��h��� �2�A++ (254)We an simplify the GGR lagrangian providing that gravitons are on the mass shell andtheir �elds satisfy additional onstraints (244)LGGR(A++) = A++  �(��h��)24 � ��h��2 (��h�� + ��h��)!�(��A++) h��2 ��h�� + h��(��h�� + ��h��)!� 12  h�� � 12 ����h��!2 �2�A++ : (255)The orresponding vertex for the graviton sattering o� the reggeon �eld A++ an be writtenas follows (see ref. [32, 33℄)�GGR��;�0�0 = 12 ��GGR��0 �GGR��0 + �GGR��0 �GGR��0 � ; (256)where �GGR��0 is the e�etive vertex for the gluon sattering o� the reggeized gluon �eld A+�GGR��0 = � ���0 � k0�pB�0 + k�0pB�kpB � q2 pB� pB�02(kpB)2! ; (257)where k and k0 are momenta of the initial and �nal gluons, pB is the momentum of theanother initial gluon and q is the momentum transfer. After the transition to the heliitybasis the above vertex �GGR��;�0�0 orresponds to the onservation of the graviton heliity andleads to the orresponding ontribution in the e�etive ation for the sattering amplitudewith the multi-Regge unitarity [35℄. 33



10 Graviton Regge trajetory and supergravityTo alulate the graviton Regge trajetory in one loop [32℄ it is needed to ontrat twoGGR verties appearing in LGGR(A++) and LGGR(A��) with two graviton propagators andintegrate the produt over the loop momentum. The integration over the Sudakov variables� and � of the virtual graviton momentum should give ln s equal to the relative rapidity ofthe initial partiles. To obtain a non-trivial s-dependene in eah of two GGR lagrangiansone should leave only the singular ontributions appearing in the indued termsLGGR(A��) � 0�12 h�� ����h�� � 18  ����h��!21A �2�A�� : (258)From these expressions one an derive the sattering amplitude desribed by the ontributionof the box diagrams orresponding to two graviton exhange in the rossing hannelF = Æ�A�A0 Æ�B�B0 �4L s2(2�)4i Z d2k?dk+dk�(k2? + 2k+k� + i�)((q � k)2? + 2k+k� + i�) f(k; q) ; (259)where �r are the heliities of the sattered partiles and the funtion f(k; q) is given belowf(k; q) = 12 (k; q � k)2(k+k�)2 + k2 + (q � k)2 + 4(k; q � k)k+k�= (k?; q? � k?)24(k+ � i�)2  1(k� + i�)2 + 1(k� � i�)2!+ q2?2(k+ � i�)  1k� + i� + 1k� � i�! : (260)Here we restored the analyti struture of the poles in an aordane with the Feynmani�-presription. The integral over k+ in F is non-zero only for k� > 0. Taking it by residueswith the subsequent integration over k� one an obtainF = FBorn !(t) ln s ; t = q2? ; (261)where FBorn = Æ�A�A0 Æ�B�B0 �2 s2t (262)is the sattering amplitude in the Born approximation and j = 2+!(t) is the graviton Reggetrajetory [32℄!(q2?) = �2(2�)3 Z q2? d2k?k2?(q � k)2?  (k; q � k)2?k2? + (k; q � k)2?(q � k)2? � q2? � N2 (k; q � k)?! : (263)Here we added the ontribution of N gravitinos for the N -extended supergravity [32℄. Othersuper-partners do not give any ontribution in this order.Note, that the infrared divergeny of the Regge trajetory is universal, but the logarithmidivergeny at large k? depends on N and is absent at N = 4. Really the sum of the one-loopdiagrams do not ontain any ultraviolet divergeny, beause the gravity is renormalized inone loop. It means, that the integral over k2? is restrited from above by the value of theorder of s, whih leads to the double-logarithmi asymptotis of the sattering amplitude34



with the graviton quantum numbers in the t-hannel. In Ref. [32℄ the orresponding ladderdiagrams in the double-logarithmi approximation were summed and the following result forthe amplitude in the N -extended supergravity was obtainedA2!2 = ��2 s2t Æ�A�A0 Æ�B�B0 1a� I1(2a�) ; (264)where �i are heliities of the initial and �nal gravitons, In(x) is the modi�ed Bessel funtionand the parameters a and � are given belowa =  (4�N) �216�2 (�t)! 12 ; � = st : (265)In priniple there ould be double-logarithmi ontributions from other diagrams ontain-ing three and more gravitons in the t-hannel. To investigate this possibility one shouldgeneralize the e�etive ation onstruted above to the supersymmetri ase, beause theontribution of the superpartners of the graviton is essential for its Regge trajetory in higherloops. But we onsider below for simpliity only the �rst non-trivial orretion to the ationin the N = 1 supergravity. In this ase apart from the vierbein em� , related to the metritensor g�� in the well-known way g�� =Xn e�n en� ; (266)the Rarita-Shwinger �eld  � desribing the gravitino with the spin 3=2 is introdued. Theation for this �eld is given belowS3=2 = Z d4xL3=2 ; L3=2 = �12����� � �5�D� � : (267)The ovariant derivative D� is de�ned by the relationD� = �� + 12 �mn !mn� ; �mn = 12 (mn � nm) ; (268)where !mn� is the spin onnetion expressed in terms of the Christo�el symbol!mn� = �e�n ��em� + e�n em� ����= 12 e�n (��em� � ��em� )� 12 e�m (��en� � ��en�) + 12 e�n e�m e�k (��ek� � ��ek�) : (269)The total ation of supergravity is invariant under the supersymmetry transformationÆem� = �2 ��m � ; Æ � = 1� D�� ; (270)where � is a loal parameter of these transformations being the antiommuting Majoranospinor. It is known, that to lose the SUSY ommutator algebra o�-shell one should introduethe auxiliary �elds S; P and Am. Here for simpliity of disussion we do not take into aountthem negleting total derivatives in the ation and in its variation.35



Let us start again with the Born ontribution to the indued ontribution to the e�etivelagrangian Lind = � 14�2 �j++�2�A�� + j���2�A++� ; j�� � h�� + ::: (271)and attempt to add to it radiative orretions in the �elds h�� and  � to derive its general-ization invariant under the loal supersymmetri transformations.We obtain the following in�nitesimal transformation of the metri tensor with the lightone omponents Æh�� = � ��� � (272)To anel this term one should add to j�� the ontribution�1j�� = �22 � � ���  � ; (273)beause up to a total derivative in the integrand for the ation its supersymmetri transfor-mation is equal to the expression Æ1 (�1j��) � �� ��� � (274)opposite to Æh�� in sign.Thus, in the N = 1 supersymmetri gravity we obtain for j�� with the next-to-leadingauray The following resultj�� � h�� �X2�� + �22 � � ���  � + ::: : (275)The upper order orretions an be alulated in a similar way.11 DisussionIn this paper the e�etive ation for the high energy proesses in gravity was onstrutedin terms of the urrents j� satisfying the Hamilton-Jaobi equation. This equation an besolved in the perturbation theory or for simple on�gurations of the external gravitational�elds. One an formulate a variational priniple for the urrents alulated at suh �elds.The e�etive ation an be used for the alulation of various elasti and inelasti satteringamplitudes in the Regge kinematis. The Feynman rules for the simple verties ontainingthe reggeized gravitons are extrated from the e�etive lagranjian. The one loop gravitonRegge trajetory does not ontain the ultraviolet divergeny only in the N=4 supergravity.In other models the amplitudes with the graviton quantum numbers in the rossing hannelhave the double-logarithmi terms. It is possible, that the onstruted e�etive ation anbe generalized to the ase of superstrings living in the anti-de-Sitter 10-dimensional spae.In this ase one ould use it for the disription of the Pomeron interations at the N=4supersymmetri gauge theory in the framework of the AdS/CFT orrespondene.
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