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A Turán connected graph TCn,α is obtained from α cliques of size bnαc
or dnαe by joining all cliques by an edge to one central vertex in one of the
larger cliques. The graph TCn,α was shown recently by Bruyère and Mélot to
maximise the number of independent sets among connected graphs of order
n and independence number α. We prove a generalisation of this result by
showing that TCn,α in fact maximises the number of independent sets of any
fixed cardinality β ≤ α. Several results (both old and new) on the number of
independent sets or maximum independent sets follow as corollaries.

1 Introduction

Turán’s theorem [18], which characterises the Kr-free graphs with greatest number of
edges, is probably the most classical result in extremal graph theory. It has been modified
and extended in various ways: one such extension, due to Erdős [6, 7] (and rediscovered
by Sauer [17] and Roman [15]), states that the complete (r − 1)-partite graph whose
partite sets are as equal in size as possible (this graph is often called a Turán graph,
but we will rather use this name for its complement later) even has the greatest number
of copies of Kk among all Kr-free graphs of given order for every k ∈ {1, 2, . . . , r − 1}
(and thus also the greatest total number of induced complete subgraphs); for k > 1, it
is unique with this property. See also [1, Chapter VI, Corollary 1.10]. A similar result,
due to Hedman [10], states that the same type of graph also has the greatest number of
cliques (maximal complete subgraphs) among all graphs of order n with clique number
ω if ω < n

2 .
We will be working with the dual setting, considering independent (stable) sets rather

than complete subgraphs. The number of independent sets, known also as the Fibonacci
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number (in view of the fact that the number of independent sets of a path is a Fibonacci
number, see [14] for the first reference) or Merrifield-Simmons index (a name that stems
from the work of chemists Merrifield and Simmons [13]) of a graph, has received quite
a lot of attention recently, with a specific focus on extremal problems, see the survey
[19] for a collection of results. It is very natural to ask the following question: among
all graphs of order n whose independence number is α, which graphs have the greatest
number of independent sets? Of course, the answer to this question follows trivially
from the aforementioned theorem of Erdős if no further assumptions are made, since
independent sets of a graph correspond to complete subgraphs in the complement.
We note, however, that the complement of a complete multipartite graph is not con-

nected; in a recent paper, Bruyère and Mélot [5] address the natural question how the
situation changes if only connected graphs are considered. They prove that the answer
in this case is given by what they call Turán-connected graphs. These graphs are ob-
tained from a union of α cliques whose sizes are as equal as possible (the complement
of the aforementioned complete multipartite graphs) by adding additional edges going
out from a vertex in one of the “large” cliques to render the graph connected. For trees,
Bruyère, Joret and Mélot considered the analogous minimisation problem (least number
of independent sets) in [4] and obtained a partial characterisation of the extremal trees.
The main result of this paper is to show that a more general statement, paralleling the

result of Erdős, holds: the Turán-connected graph has the greatest number of independent
sets of any cardinality among connected graphs of given order and independence number.
Apart from the theorem of Bruyère and Mélot, this has other implications as well: in
particular, the Turán-connected graph maximises the number of maximum independent
sets among connected graphs of given order and independence number. Comparing the
number of maximum independent sets for different independence numbers, we find the
greatest possible number of maximum independent sets a graph of order n can have, and
characterise the corresponding extremal graphs. This result was originally obtained by
Jou and Chang [11], based on work of Griggs, Grinstead and Guichard [9] and Füredi
[8].
One also notes that the Turán-connected graph is a tree whenever α ≥ n

2 (there are no
trees whose independence number is lower). Therefore, we obtain the solution to another
problem, which was solved by Zito [20] (and generalised by Sagan and Vatter [16]), as
a special case: which tree of order n has the greatest number of maximum independent
sets?
This paper is organised as follows: we first review some important notation and pre-

liminaries, then formally state and prove the main result in Section 3. Our approach
mostly follows [5], adapted to the more general setting. Several corollaries conclude the
paper.

2 Notions and preliminary results

As usual, let α(G) be the independence number of G, that is, α(G) is the greatest
cardinality of an independent set in G. Denote by iβ(G) the number of independent sets
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of size β in the graph G. Throughout this paper we say that a graph is extremal for β
if it maximises iβ among all connected graphs with the same independence number.

Definition 2.1. Let n, α ∈ N. The Turán graph Tn,α on n vertices is the disjoint union
of α cliques of sizes

⌈
n
α

⌉
and

⌊
n
α

⌋
. Note that this defines Tn,α up to isomorphism because

there is only one way to obtain n vertices.

Definition 2.2. The Turán connected graph TCn,α on n vertices is obtained from Tn,α

by taking a vertex c in a clique of size
⌈
n
α

⌉
and connecting it via an edge to exactly one

vertex in each of the other cliques. The vertex c is called the central vertex or centre of
the Turán connected graph, the clique containing c is called the central clique.

The following recursion is standard, yet very useful:

Proposition 2.3. For any vertex v of G, we have

iβ(G) = iβ−1(G−N [v]) + iβ(G− v),

where N [v] denotes the closed neighbourhood of v.

Proof. Every independent set of size β either contains v (and thus none of its neighbours)
or it does not.

Theorem 2.4 (see [15, Theorem 1]). Let α, β, n be integers with 1 < β ≤ α ≤ n. For
every graph G on n vertices with independence number α, the inequality

iβ(G) ≤ iβ(Tn,α)

holds, with equality only if G is isomorphic to Tn,α.

Lemma 2.5. If α, β ≥ 1 are fixed, then the value of iβ(Tn,α) is strictly increasing in n.

Proof. Note that Tn+1,α can be obtained from Tn,α by adding a vertex v to one of the
smaller cliques. In the larger graph we have all independent sets from the smaller graph
and some independent sets obtained by swapping in the new vertex v for one of the
vertices in the clique that v was added to, which proves that iβ(Tn+1,α) > iβ(Tn,α).

Call an edge e of G critical for α if α(G − e) > α(G). A graph is called critical if all
of its edges are critical. It is known that a critical graph cannot have a cutset spanning
a complete subgraph, thus in particular no cut vertex:

Lemma 2.6 (cf. [5, Lemma 1]). If G is critical and connected, then G is 2-connected,
i.e. G− v is connected for every vertex v.

For a proof, see [12, Problem 8.18].
If we remove edges from a graph, the number of independent sets (of any fixed cardi-

nality β) cannot decrease. Starting from any extremal graph, we can thus remove edges
until we reach an edge minimal graph, where removal of another edge either increases
the independence number or renders the graph disconnected. It is clear that if an edge
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minimal extremal (in particular connected) graph is not critical, then every uncritical
edge must be a bridge. Furthermore, the following lemma states that in this case we can
find an uncritical bridge such that one component of G − e is critical, and every edge
contained in this component is also a critical edge of G (we call this a critical decomposi-
tion). It is essentially identical to [5, Lemma 11], but since our definition of extremality
is different, we provide its proof for completeness.

Lemma 2.7 (cf. [5, Lemma 11]). An edge minimal connected graph that is extremal for
some β is either critical, or it has a critical decomposition.

Proof. Let G be an edge minimal connected graph, and suppose that G is not critical.
Any edge of G that is not critical has to be a bridge, for otherwise we could remove it
to obtain a connected graph of the same order and independence number, contradicting
edge minimality. Among all uncritical edges, pick an edge e for which the smaller of the
two components of G− e, which we call G1, has the smallest possible number of vertices.
Note that G1 cannot contain any uncritical bridge e′ of G, since the smaller component
of G− e′ would be strictly smaller than (and in fact contained in) G1, contradicting the
choice of e. Thus all edges of G1 are critical edges of G.
We claim that G1 itself is critical as well, which means that we have found the desired

critical decomposition. If this is not the case, then G1 has a noncritical edge f , i.e. α(G1−
f) = α(G1). Now if G2 is the other component of G− e, then we clearly have

α(G− f) ≤ α(G− e− f) = α(G1 − f) + α(G2) = α(G1) + α(G2) = α(G− e) = α(G),

where the last identity is due to the fact that e is uncritical by assumption. This implies
that f is uncritical for G as well, which is a contradiction, completing the proof.

Remark 2.8. As can be seen from the proof, the result of Lemma 2.7 holds for all edge
minimal graphs, it does not depend on extremality with respect to iβ .

3 Main result

Theorem 3.1. Let α, β, n be integers with 1 ≤ β ≤ α < n. For every connected graph
G on n vertices with independence number α, we have

iβ(G) ≤ iβ(TCn,α).

For β > 2, the graph TCn,α is the only edge minimal extremal graph.

Before we give the proof (in several steps), let us state and prove the following corollary:

Corollary 3.2. For 2 < β ≤ min{α, n−α} the graph TCn,α is the only extremal graph.

Proof. It suffices to prove that adding an edge to TCn,α strictly decreases the number of
independent sets of size β. In other words, we must show that any two vertices that are
not connected by an edge are contained in an independent set of size β.
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Pick two arbitrary non-adjacent vertices u, v. Of the α cliques that form TCn,α, there
are at least min{α, n − α} whose size is at least 2. Since at most two of them can be
fully contained in N [u] ∪N [v], we can find β − 2 cliques which are not contained in this
set. From each of these cliques select a vertex to obtain an independent set of size β
containing both u and v.

Remark 3.3. For β = 1, evidently all graphs are extremal. The extremal graphs for β = 2
were characterised by Bougard and Joret in [2]: they are obtained from either a Turán
graph or a graph whose components are odd cycles and/or single edges by adding the
minimum number of edges (possibly zero) required to obtain a connected graph.
If α > n

2 and β > n − α, there are also other extremal graphs besides the Turán
connected graph: they are obtained from TCn,α by adding additional edges incident
with the central vertex.
The proof of Theorem 3.1 is inductive. It is easy to see that the theorem holds for

n ≤ 3. From now on we will assume that we have shown the theorem for all graphs on
less than n vertices.

Lemma 3.4. Complete graphs are extremal if and only if α = 1.

Proof. They are the only graphs with α = 1.

Lemma 3.5. Odd cycles are extremal if and only if α = n−1
2 and β = 2.

Proof. The independence number of an odd cycle is α = n−1
2 , hence we only consider

graphs with this independence number.
Clearly being extremal for β = 2 is equivalent to having the smallest possible number

of edges. The only connected graphs with fewer edges than cycles are trees. However,
every tree with an odd number of vertices has an independent set of cardinality at least
n+1

2 (the larger part of its bipartition). Thus a graph with independence number α = n−1
2

cannot have more independent 2-sets than the cycle.
Conversely assume β > 2. In this case we will show that TCn,n−1

2
contains more

independent sets of size β than Cn. Observe that the graph TCn,n−1
2

consists of a triangle
with n−3

2 paths of length 2 attached to one of its vertices. Choosing v in Proposition 2.3
as one of the other two vertices of the triangle we obtain

iβ(TCn,n−1
2

) = iβ(TCn−1,n−1
2

) + iβ−1(Tn−3,n−3
2

).

On the other hand we have

iβ(Cn) = iβ(Pn−1) + iβ−1(Pn−3).

By our general induction hypothesis iβ(Pn−1) ≤ iβ(TCn−1,n−1
2

), and by Theorem 2.4
iβ−1(Pn−3) < iβ−1(Tn−3,n−3

2
). Hence Cn is not extremal.

Next we characterise all critical extremal graphs, paralleling part of the proof of The-
orem 12 in [5]. This also fixes a small flaw of the proof in [5], where an upper bound for
the number of independent sets of TCn,α is used in one case rather than a lower bound.
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Lemma 3.6. The only extremal critical graphs for β ≥ 2 are complete graphs and odd
cycles.

Proof. Assume that we have a critical graph G which is neither complete nor an odd
cycle. We will show that in this case G cannot be extremal.

Brooks’ theorem [3] tells us that the chromatic number χ of G is less or equal to the
maximum degree ∆. Using the trivial lower bound n

α for the chromatic number we obtain

∆ ≥ χ ≥ n

α
,

which immediately implies that

n−∆− 1 ≤ n−
⌈n
α

⌉
− 1.

Let v be a vertex of G with maximum degree. Since G is critical, G − v must be
connected by Lemma 2.6. Hence we have

iβ(G) = iβ(G− v) + iβ−1(G−N [v])

≤ iβ(TCn−1,α) + iβ−1 (Tn−∆−1,α−1)

≤ iβ(TCn−1,α) + iβ−1

(
Tn−dnαe−1,α−1

)
.

If n ≡ 1 mod α, there is exactly one clique of size dnαe in TCn,α. In this case, applying
Proposition 2.3 to a vertex in this clique other than the central vertex gives us

iβ(TCn,α) = iβ(TCn−1,α) + iβ−1

(
Tn−dnαe,α−1

)
> iβ(TCn−1,α) + iβ−1

(
Tn−dnαe−1,α−1

)
,

the inequality being a consequence of Lemma 2.5. Otherwise, we choose a clique of size
dnαe that does not contain the central vertex and apply Proposition 2.3 to a vertex in
this clique that is not adjacent to the central vertex. This gives us

iβ(TCn,α) = iβ(TCn−1,α) + iβ−1

(
TCn−dnαe,α−1

)
≥ iβ(TCn−1,α) + iβ−1

(
Tn−dnαe−1,α−1

)
,

where the inequality is due to fact that Tn−dnαe−1,α−1 is a proper subgraph of TCn−dnαe,α−1

(it is obtained by removing the central vertex). In either case, we end up with

iβ(G) ≤ iβ(TCn,α).

Hence for G being extremal it is necessary that all the inequalities hold with equality. In
the first case (n ≡ 1 mod α), we have already seen that this is impossible. In the second
case, we must have

iβ−1

(
Tn−dnαe−1,α−1

)
= iβ−1

(
TCn−dnαe,α−1

)
,
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which can only happen if there is no independent set of cardinality β−1 in TCn−dnαe,α−1

that contains the central vertex, or equivalently no independent set of cardinality β in
TCn,α that contains the central vertex. This happens if and only if α ≥ n − β + 1 (cf.
the proof of Corollary 3.2). But then 2α ≥ α+ β ≥ n+ 1, so dnαe = 2. Now Lemma 2.5
tells us that the inequality

iβ−1 (Tn−∆−1,α−1) ≤ iβ−1

(
Tn−dnαe−1,α−1

)
can only be sharp if ∆ =

⌈
n
α

⌉
= 2. Since G is connected, this means that G is either a

path or a cycle. Even cycles are not critical, and neither are paths with more than two
vertices, so this completes the proof.

Before we start the proof of our main theorem, we need one last definition:

Definition 3.7. Call a graph almost Turán connected if there is a vertex v (the central
vertex) such that G−v is the disjoint union of cliques, there is a clique (the central clique,
possibly empty) such that v is adjacent to each of its vertices, and for every other clique
there is exactly one edge connecting it to v. In other words, it has the same structure as
a Turán connected graph, but the sizes of the cliques are not necessarily balanced.

Proof of Theorem 3.1. For β = 1, every graph is extremal, and the case β = 2 is settled
by [2, Proposition 5] (cf. Remark 3.3). For the rest of this proof assume that β ≥ 3 and
that G is an edge-minimal extremal graph for β.
By Lemma 2.7 we know that either G is critical, or there is a critical decomposition

of G. In the first case Lemma 3.6 provides a full answer: G is complete, since it cannot
be an odd cycle for β ≥ 3 in view of Lemma 3.5.

Hence consider the case where there is a critical decomposition of G. The induction
step in this case consists of four parts:

(i) show that the critical component of a critical decomposition must be extremal as
well,

(ii) show that there is a critical decomposition where the critical component is complete,

(iii) show that G is almost Turán connected, and

(iv) show that it is best possible to have balanced clique sizes.

For the first step, assume that we have a critical decomposition of G into parts G1

and G2; we will denote their orders by n1 and n2 and their independence numbers by α1

and α2 respectively. Without loss of generality assume that G1 is the critical component.
Let e = uv be the bridge connecting G1 and G2, with u ∈ G1 and v ∈ G2. Since e is an
uncritical bridge, the independence number of G is α = α1 + α2. Proposition 2.3 gives

iβ(G) =
∑
γ≥0

(
iγ(G1)iβ−γ(G2 − v) + iγ(G1 − u)iβ−γ−1(G2 −N [v])

)
. (1)
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Note that this sum contains only finitely many non-zero summands and that at least one
of the summands must be non-zero unless β > α. By the induction hypothesis,

iγ(G1) ≤ iγ(TCn1,α1). (2)

Furthermore we have α(G1 − u) ≤ α1 and hence

iγ(G1 − u) ≤ iγ(Tn1−1,α1). (3)

Note here that G1 − u need not be connected. Summing up yields

iβ(G) ≤
β∑
γ=0

(
iγ(TCn1,α1)iβ−γ(G2 − v) + iγ(Tn1−1,α1)iβ−γ−1(G2 −N [v])

)
.

Equality holds for every γ if G1 is the Turán connected graph TCn1,α1 , u being the
central vertex. Thus equality in (2) must hold for every γ ≤ α1 where iβ−γ(G2 − v) 6= 0
as we assumed G to be extremal. If β ≤ α1, we can take γ = β, for which we trivially
have i0(G2 − v) = 1 6= 0. Thus G1 is extremal for β in this case. Otherwise, we take
γ = α1. Since the independence number of G2−v is at least α2−1 = α−α1−1, we have
iβ−γ(G2 − v) 6= 0 unless β − γ ≥ α2, which is only possible if β = α. So G1 is extremal
for α1, except perhaps for the case that β = α and iα2(G2 − v) = 0. In that case, every
maximum independent set of G2 (and thus also every maximum independent set of G)
contains v.
In conclusion, either G1 is extremal for min{β, α1}, or every maximum independent

set of G contains v (and hence does not contain u). In the latter case, any edge incident
to u in G1 is uncritical for G and hence G1 is either a singleton (which already proves
(i) and (ii)) or it contains an uncritical edge, which is a contradiction. Thus the proof
of (i) is complete.
Note that we only used the criticality of G1 at the end. So by the same arguments

as above we can show that G2 either is extremal for min{β, α2}, or every maximum
independent set of G contains u and does not contain v. We will use this fact later.
For step (ii) assume that neither G1 nor G2 is complete, otherwise there is nothing

to show. In particular, α1 ≥ 2 and α2 ≥ 2. We already know that G1 is extremal for
γ = min{α1, β} and thus it must be an odd cycle.

There is a maximum independent set in G1 that does not contain the vertex u, so G2

is extremal for min{β, α2} by the remark at the end of step (i). Since β ≥ 3 we can use
the induction hypothesis to show that either G2 is a Turán connected graph or α2 = 2. If
G2 is a Turán connected graph, then it contains an uncritical bridge that we can remove
to obtain a critical decomposition with a complete critical component.
If G2 is not a Turán connected graph then α2 = 2, and since G2 is extremal for α2 as

well, G2 is a C5.
So the only remaining problematic case is when G consists of a 5-cycle and another

odd cycle connected by a single edge. In this scenario, we have α = n
2 −1 (recall that n is

the number of vertices), so the corresponding Turán connected graph TCn,α = TCn,n
2
−1

has two cliques of three vertices, all other cliques are of size 2. Apply Proposition 2.3 to
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an arbitrary vertex x of G that is not adjacent to either endpoint of the bridge, and to
a vertex of the 3-vertex clique in TCn−1,n

2
−1 that does not contain the central vertex, to

obtain the following inequality:

iβ(G) = iβ(G− x) + iβ−1(G−N [x])

< iβ(TCn−1,n
2
−1) + iβ−1(TCn−3,n

2
−2)

= iβ(TCn,n
2
−1)

This shows that G is not extremal, completing the proof of (ii). In the following, we can
assume that G1 is complete.
For the proof of (iii) once again recall that G2 must be extremal for γ = min{β, α2}

unless every independent set of size β in G uses the vertex u.
Since G1 is complete it is easy to see that in the latter case G1 can only be a singleton,

so that (1) reduces to

iβ(G) = iβ(G2) + iβ−1(G2 − v) ≤ iβ(TCn−1,α2) + iβ−1(Tn−2,α2).

The only way that equality can hold here if G2 is not isomorphic to TCn−2,a2 is that
β > α2, so α2 = β − 1. However, G2 − v must still be isomorphic to Tn−1,α2 . Every
component of G− v must be connected to v by at least one edge in G. Since G is edge
minimal, we conclude that there is exactly one edge from each component to v and hence
G is almost Turán connected in this case.
Hence we may assume that G2 is extremal for min{β, α2}. If this minimum is 1 then

α2 = 1 and G2 is a clique. If the minimum is 2 then α2 = 2 and we can argue as before:
either G2 is a C5, or it is Turán connected. The former possibility can be ruled out
directly again: in this case, α = β = 3, i3(G) = 5n− 27 (recall that G1 is complete), and

i3(TCn,3) =


n3−18n+27

27 n ≡ 0 mod 3,
n3−21n+47

27 n ≡ 1 mod 3,
n3−21n+34

27 n ≡ 2 mod 3,

so it is easily verified that i3(G) < i3(TCn,3).
Thus G2 is Turán connected if min{β, α2} = 2, and if min{β, α2} ≥ 3 this is also the

case by the induction hypothesis. For the proof of (iii) it only remains to show that it
is best possible to have v at the centre c of the Turán connected graph. Assume that
v 6= c and let G′ be the graph obtained from G by replacing e = uv by e′ = uc. Every
independent set of G which does not contain u is also an independent set of G′ and vice
versa. Similarly the independent sets which do contain u but neither v nor c are the
same for G and G′. Hence we only have to compare the number of independent sets of
G containing u and c to the number of independent sets in G′ containing u and v.
To investigate those numbers, observe that G− (N [u] ∪N [c]) and G′ − (N [u] ∪N [v])

are both disjoint unions of cliques, and that the cliques of G′ − (N [u] ∪ N [v]) are even
balanced, i.e., it is a Turán graph. Thus

iβ−2(G− (N [u] ∪N [c])) ≤ iβ−2

(
T
n2−

⌈
n2
α2

⌉
−α2+1,α2−1

)
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with equality if and only if v is a neighbour of c, and

iβ−2(G′ − (N [u] ∪N [v])) ≥ iβ−2

(
T
n2−

⌈
n2
α2

⌉
−1,α2−1

)
with equality if and only if v is contained in a non-central clique of size

⌈
n2
α2

⌉
. Since

β ≥ 3 and α2 ≥ 3, Lemma 2.5 tells us that

iβ−2(G− (N [u] ∪N [c])) < iβ−2(G′ − (N [u] ∪N [v])),

and hence G cannot be extremal. This contradiction completes the proof of (iii).
So we know that G is almost Turán connected. It only remains to show that balanced

clique sizes are best possible and that the central clique must be one of the larger cliques.
For this purpose let k be the size of some clique C and let l be the size of the central
clique C0. If k = l or k = l − 1 there is nothing to show. We now consider the cases
k > l and k < l − 1 and show that in both cases G is not extremal.
This will be done by moving a vertex from a larger clique to a smaller clique, i.e.,

disconnecting this vertex from all of its neighbours and connecting it to every vertex of
the smaller clique. It is readily verified that the number of independent sets of size β
containing a vertex in at most one of the two involved cliques is invariant under this
transformation. For convenience, we simply denote this number by Aβ . We will show
that the number of independent sets of size β containing vertices in both cliques increases,
so that we obtain a graph with the same independence number and more independent
sets of size β.
In the case where k > l we move a vertex from C to C0 to obtain a new graph G′.

Before moving the vertex we have

iβ(G) = (k − 1)I−β−2 + k(l − 1)Iβ−2 +Aβ,

where Iβ−2 denotes the number of independent sets of size β−2 in the remaining cliques
and I−β−2 denotes the number of such cliques which do not contain vertices adjacent to
the centre.
After moving the vertex we have

iβ(G′) = (k − 2)I−β−2 + (k − 1)lIβ−2 +Aβ.

The difference of the two values is now easily seen to be positive:

iβ(G′)− iβ(G) = −I−β−2 + kIβ−2 − lIβ−2

> −Iβ−2 + kIβ−2 − lIβ−2

= (k − l − 1)Iβ−2

≥ 0

because k > l and both k and l are integers. Hence iβ(G′) > iβ(G). Since the indepen-
dence numbers of G and G′ coincide this contradicts G being extremal.
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Now assume that k < l − 1. In this case we move a vertex from C0 to C to obtain a
new graph G′′. We have

iβ(G′′) = kI−β−2 + (k + 1)(l − 2)Iβ−2 +Aβ.

Taking differences gives

iβ(G′′)− iβ(G) = I−β−2 + (l − k − 2)Iβ−2 > 0

by similar arguments as above. But this again contradicts G being extremal.
Hence we have shown that if G is edge minimal but not critical, then it must be a Turán

connected graph. Together with Lemma 3.6 this completes the proof of the theorem.

4 Consequences

As it has already been mentioned in the introduction, our main result has a number of
implications. First and foremost, it obviously implies the result of Bruyère and Mélot
that was the original motivation for this paper:

Corollary 4.1 (cf. [5, Theorem 12]). The Turán-connected graph TCn,α has the greatest
number of independent sets among all connected graphs of order n whose independence
number is α.

Since Theorem 3.1 holds in particular for β = α (i.e., the number of independent
sets whose cardinality is equal to the independence number), we also have the following
corollary:

Corollary 4.2. The Turán-connected graph TCn,α has the greatest number of maximum
independent sets among all connected graphs of order n whose independence number is
α.

Any tree of order n has independence number at least n2 . We notice that for any α ≥ n
2 ,

the Turán-connected graph TCn,α is indeed a tree. Therefore, we also immediately obtain
the following results:

Corollary 4.3 (cf. [5, Corollary 13]). For any α ≥ n
2 , the Turán-connected graph TCn,α

has the greatest number of independent sets among all trees of order n whose independence
number is α.

Corollary 4.4. For any α ≥ n
2 , the Turán-connected graph TCn,α has the greatest num-

ber of maximum independent sets among all trees of order n whose independence number
is α.

Comparing the numbers for different values of α, we also find the extremal connected
graphs or trees without restrictions on the independence number. Let us first consider
arbitrary connected graphs. Griggs, Grinstead and Guichard [9] and independently by
Füredi [8] for sufficiently large n determined the connected graphs of order n with the
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greatest number of maximal independent sets (maximal with respect to set inclusion
rather than cardinality), but since every maximum independent set is necessarily max-
imal independent as well, and conversely all maximal independent sets in the extremal
graphs are in fact also maximum independent sets, the result remains true for maximum
independent sets, as pointed out by Jou and Chang in [11]:

Corollary 4.5 (cf. [11, Theorem 17]). A connected graph of order n ≤ 5 has at most n
maximum independent sets, with equality for the complete graph or (if n = 5) the Turán
connected graph TC5,2. For n ≥ 6, the unique connected graph of order n with the greatest
number of maximum independent sets is the Turán connected graph TCn,bn

3
c.

Proof. For n ≤ 5, the statement can be verified directly, so assume that n ≥ 6. In view
of Corollary 4.4, the maximum must be attained by a Turán connected graph TCn,α for
some α. Consider such a Turán connected graph, assume that it has the greatest number
of maximum independent sets, and let l be the number of vertices in the central clique.
There are r = αl−n small cliques of size l−1 and α−r−1 large non-central cliques of size
l, so we obtain the following formula for the number iα(TCn,α) of maximum independent
sets of TCn,α:

iα(TCn,α) = lα−r−1(l − 1)r+1 + (l − 1)α−r−1(l − 2)r.

If l ≥ 5, we replace the central clique by a clique of l− 2 vertices and add another clique
of size 2 that is joined to the central vertex by an edge. Then the number of maximum
independent vertices changes to

2(l − 3) · lα−r−1(l − 1)r + (l − 1)α−r−1(l − 2)r ≥ iα(TCn,α),

with equality only if l = 5. In the latter case, however, the resulting graph is not Turán
connected (since n ≥ 6). Thus we can rule out the possibility that l ≥ 5. On the other
hand, if l = 2, then we replace two non-central cliques by a single one (two 2-cliques
become one 4-clique, a 2-clique and a singleton become a 3-clique, or two singletons
become a 2-clique). Again, the number of maximum independent sets does not decrease,
and the resulting graph is not Turán connected, so we reach a contradiction. Thus l = 3
or l = 4. Now we note that for l = 3, the function

3α−r−12r+1 + 2α−r−1 = 3n−2α−123α−n+1 + 2n−2α−1

is decreasing in α, while for l = 4, the function

4α−r−13r+1 + 3α−r−12r = 4n−3α−134α−n+1 + 3n−3α−124α−n

is increasing in α. This leaves us with the following options:

• if n = 3s, is(TC3s,s) = 2 · 3s−1 + 2s−1 or is−1(TC3s,s−1) = 16 · 3s−3 + 9 · 2s−4,

• if n = 3s+ 1, is+1(TC3s+1,s+1) = 8 · 3s−2 + 2s−2 or is(TC3s+1,s) = 3s + 2s−1,

• if n = 3s+2, is+1(TC3s+2,s+1) = 4 ·3s−1 +2s−1 or is(TC3s+2,s) = 4 ·3s−1 +3 ·2s−2.
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Direct comparison shows that TCn,bn
3
c is extremal in all cases.

In the same way, we also obtain the following corollary:

Corollary 4.6 (cf. [14, Theorem 2.1] and [20, Theorems 3 and 4]). The unique tree
(connected graph) of order n with the greatest number of independent sets is the star, and
the unique tree of order n with the greatest number of maximum independent sets is the
extended star TCn,dn

2
e, obtained by subdividing all but two edges of a star of order n+3

2

(if n is odd) or all but one edge of a star of order n+2
2 (if n is even).

Proof. Simply note that for α ≥ n
2 ,

i(TCn,α) = 3n−α−122α−n+1 + 2n−α−1,

which is increasing in α, while

iα(TCn,α) = 2n−α−1 +

{
1 α = n

2 ,

0 otherwise,

which is decreasing in α.
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