Clique trees of infinite locally finite chordal
graphs

Florian Lehner* & Christoph Temmel

Abstract

We investigate clique trees of infinite, locally finite chordal graphs. Our
key tool is a bijection between the set of clique trees and the product of
local families of finite trees. This enables us to enumerate all clique trees
of a chordal graph. It also induces a local projection onto clique trees of
finite chordal graphs, allowing us to lift various classic properties of clique
trees of finite graphs to infinite clique trees.

1 Introduction

A chordal graph is a graph, where every cycle of length greater than three
contains a chord, i.e. an edge connecting two non-consecutive vertices along
the cycle. Chordal graphs are a classic object in graph theory and computer
science | ]. They are equivalent to the class of graphs representable as a
family of subtrees of a tree | , ]. Each finite and connected chordal
graph has natural representations of this form, with the trees being a subclass
of the spanning graphs of its clique graph. These trees are called clique trees.
There are a number of characterisations of clique trees among all spanning trees
of the clique graph. They relate various properties of a clique tree to minimal
vertex separators of the original graph, or maximality with respect to particular
edge weights in the clique graph, or properties of paths in the tree, among others.

The present paper investigates clique trees of infinite, locally finite chordal
graphs. We first prove the existence of at least one clique tree. Classic proofs
of the various properties of clique trees often rely heavily on the finiteness of
the setting. All of the known characterising properties are either not sensible
in the infinite setting (as the maximality with respect to edge weights), or are
of unbounded range (running intersection property of paths), or have at least
overlapping constraints.

Our core contribution is a local partition of the edge set of the clique graph
and a corresponding set of constraints, one for each element of the partition,
which a clique tree has to fulfil. Each constraint only depends on the edges
within its partition element, whence the constraints can be satisfied or violated
independently from each other. This allows a local construction of a clique tree

*Florian Lehner acknowledges the support of the Austrian Science Fund (FWF), project
W1230-N13.



Florian Lehner & Christoph Temmel Section 2

by fixing a satisfying subset of the edges in each element of the partition. A
characterisation of all clique trees is possible via a bijection with the product of
the local choices.

In the case of a finite chordal graph, our characterisation permits an enu-
meration of the clique trees. It turns out that this enumeration is equivalent to a
prior enumeration via a local partitioning of constraints by Ho and Lee [ ]
Their partition is indexed by the minimal vertex separators of the chordal graph.
We use a different approach based on families of cliques and recover the minimal
vertex separators a posteriori. Specifically, the intersections of the cliques in a
clique family is a minimal vertex separator, and vice-versa.

We derive classic properties of clique trees for infinite graphs from the above
local decomposition property. A finer analysis of the structures appearing in the
local decomposition points out connections with minimal vertex separators and
the reduced clique graph | ].

The structure of this paper is as follows: Section 2 introduces basic notation,
clique trees and clique families. Section 3 contains our existence and character-
isation theorems for clique trees. Section 4 discusses counting and enumerating
the clique trees and section 5 derives the classic properties of clique trees. Sec-
tion 6 contains the proofs of the statements from section 3.

2 Notation and basic properties

2.1 Graphs

Throughout the present work, we only consider locally finite graphs. Let G =
(V,E) be a graph and W C V. Denote by G[W] the induced subgraph of G
with vertex set W. Contracting the set W into a single vertex yields the graph
G/W. It may contain multiple edges and loops, even if the graph G did not.
If Vi, Va,..., Vi are disjoint subsets of V, then G/{V1,Va,...,V;} denotes the
graph resulting from G by contracting each V; to a single vertex, where the order
of contractions has no influence on the final result. For an equivalence relation
~ on V, denote by G/ ~ the graph resulting from contracting each equivalence
class with respect to ~.

We call a set finite W C V' complete, ifft GIW] is a complete graph on W. A
clique is a maximal complete set of vertices of G. Denote by Cs the set of com-
plete subsets of V' and by M the set of all cliques of G. The clique graph Mg
of G has vertex set Mg and an edge for every pair of cliques with non-empty
intersection.

A tree T is a connected and acyclic graph. For two vertices v, w € T, there
is a unique path Pr(v,w) in T. A subgraph of G is spanning, iff it has the same
vertex set as G. The set of spanning trees of G is Tg. We admit the empty graph,
which is a graph without vertices, and consider it a tree. Also, the only spanning
tree of the empty graph is the empty graph.

9 20140115



Florian Lehner & Christoph Temmel Section 2

2.2 Chordal graphs and subtree representations

Our main reference for basic facts about chordal graphs is | . A chordal
graph has no cycle of length greater than 3. In other words, every closed path
of length greater than 3 has a chord, an edge connecting two non-consecutive
vertices of the cycle. Throughout this work, we assume that chordal graphs are
connected.

Let T be a tree and denote by T the family of subtrees of T. A function
t: V — T is a subtree representation of G on T, iff vive € E & t(v1)Nt(ve) # 0.

A graph is chordal, iff is has a subtree representation on some tree | ,

]. This does not hold for general countable, non locally-finite graphs | ].

If G is finite, there is combinatorial representation | ], where T is a span-

ning tree of Mg and t(v) := T[{M € Mg | v € M}]. We call T a clique tree

of the chordal graph G. The set of all clique trees TCq of G is the set of all all
spanning trees T' € T, fulfilling

YoeV: THM e Mg|ve M}]is a tree. (1)

2.3 The lattice of clique families
Let W C V. The clique family generated by W is
KW)={MeMg|WCM}.
The set of clique families associated with G is
Lo:={KW)|WCV}. (2)
Generation is anti-monotone:
WCowW = K(W')CKW). (3)

If W ¢ Cg, then K(W) = (). The largest clique family is () = Mg. It is
infinite and the only infinite clique family, iff G is infinite itself. The set of finite
clique families is

Ll ={KeLs:|K| < oo} (4)

For infinite G, cl = L\ {Mc¢}, and, for finite G, Eé =La.

By abuse of notation, we write K(v) instead of K({v}), for v € V. These
particular clique families are building blocks for all other clique families:

KW)= (] K(v). (5)

veW

For a non-empty clique family IC, every connected vertex subset C € Cg
with IC(C) = K is a generator of K. The set of generators of a clique family K
is C(K). A generator C of K is minimal/mazimal, iff it is so for set inclusion in
C(K). There may be more than one minimal generator (see example 2.2). There
is a unique mazximal generator:

3 20140115



Florian Lehner & Christoph Temmel Section 2

cky= M= |J c. (6)

MeKk CeC(K)

In particular, for each non-empty clique family IC, we have
K(C(K)) =K. (7)

Proposition 2.1. Let K and K’ be clique families. Their sets of generators
coincide, iff the clique families do so, and are disjoint otherwise.

Proof. We have the equivalence relation C ~ C' < K£(C) = K(C') on Cq. O

Ezample 2.2. Let G := ({v1, v, v3,v4}, {(v1,v2), (v2,v3), (v1,v3), (v3,v4)}). The
cliques are K := {vy,v9,v3} and L := {v3,v4}. The clique families, their gener-
ators and maximal generators are:

K ‘ C(K) ‘ C(K)
{K,L} = Mg {0,{vs} = KNL} {vs}
{K} {{’Ul},{1)2}7{’01,1)2},{1}2,1]3},{1)1,’03},.[{} K
{g} {{va}, L} L

everything else missing from P (V') 1%

w

The clique family {K} has two minimal generators.

The clique families form a lattice with respect to set inclusion. All the chains
in the lattice are finite and the lattice is both atomistic and co-atomistic. We
use these facts later on, to reason inductively over this lattice.

Proposition 2.3. Lg is a lattice with respect to set inclusion.
Proof. For K1,Kqe € Lg, define
IC1 V ICQ = ’C(O(’Cl) n C(ICQ)) y
KiANKy = K:(C(K:l) U C(’Cg)) .

We claim that this is indeed the supremum and infimum of K; and K5 in Lg
with respect to inclusion.

For the supremum property observe that each M € K; contains C(K;) and
hence also C(K1) N C(K2). Thus M must also be contained in Ky V KCy. The
same is true for every M € K, so K1 V Ky is a common upper bound for &y
and KCo. To show that it is the least upper bound let K be an arbitrary upper
bound. Then

C(IC):Mﬂ)CMgM DK M = C(K1)NC(Ky).

Hence, by the same argument as above, each M € K1 V o must be contained
in K showing that /C; V Iy C K.

A dual argument shows that the definition of the infimum is correct. O

Note that 1 Ao = K1 NKs. In particular, Lg is closed under intersections.
Furthermore, the lattice has the following properties:

4 20140115



Florian Lehner & Christoph Temmel Section 3

e It is bounded with greatest element Mg = K(0) and smallest element
) = K(V). By the remark following (4), all intervals not containing Mg
and, hence, all chains in Lg are finite.

o L is an atomistic lattice, the atoms being of the form {M} = K(M),
for M € Mg. Since these sets are singletons, there is no K € Lg with
0 CKC{M}.

Every clique family K # Mg is the supremum of a finite set of atoms
(see (6) and 7):

K=KCK)=K(( M)=K( (| M=\ {M}.

MeK {M}CK {M}CK

o L isa co-atomistic lattice, the co-atoms being of the form K(v), forv € V.
There is no K € Lg such that K(v) € K C M. In this case, C(K) = (
would hold, implying that £ = Mg . Each £ € L is the infimum of
finitely many co-atoms (see (5)):

K=KCE) = U vth= A K@.

veC(K) veC(K)

3 Main result

3.1 Existence of clique trees of infinite chordal graphs

We investigate clique trees of infinite chordal graphs and extend the combinato-
rial construction of a subtree representation for finite graphs | ]. A sensible
definition of an infinite clique tree encompasses the fact that, for every induced
subgraph, a corresponding induction on the cliques yields a clique tree of the
induced subgraph. This gives a straightforward extension of the definition from
the finite case.

Let G be infinite. A spanning tree T' € T, is a clique tree of G, iff it
fulfils (1), i.e. if every K(v) induces a tree.

Proposition 3.1. Every infinite and locally finite chordal graph has a clique
tree.

The proof of proposition 3.1 is in section 6.1.

3.2 The characterisation via clique families

Let G be a (possibly infinite) chordal graph, let K € L, and denote by L5 (K)
the strict subfamilies of IC, i.e. the set

LK) ={K € Ls:K CK}. (8)

Define a graph I'x with vertex set K and an edge KL € Tk, iff there is
K'e L&(K) with KN L € C(K'). Tt follows, that 't is a subgraph of M¢[K].

5 20140115



Florian Lehner & Christoph Temmel Section 4

Denote by ~x the equivalence relation whose classes are the connected com-
ponents of ' and by [K]., the equivalence class of K with respect to the
relation ~x.

Theorem 3.2. Let G be a locally finite chordal graph. A spanning subgraph T of
Mg is a clique tree of G, iff it fulfils one of the following equivalent conditions:

VK € Lo TIK] is a tree, (9a)
VK € Lg: T[K]/ ~k is a tree. (9b)

If one takes K = Mg, then (9a) says that T[Mg] = T is a tree. In (9b), this
fact is not so obvious, but follows from an inductive bottom-up construction
over the lattice of clique families. The proof of theorem 3.2 is in section 6.2.
Theorem 4.2 in the following sections shows that the conditions in (9b) are in
fact non-overlapping.

4 Edge bijections and enumerating the set of
clique trees

In the present section we take another look at the characterisation of clique trees
via clique families in theorem 3.2 and disentangle the seemingly overlapping lo-
cal conditions into disjoint local conditions. The key is differentiating between
the restrictions imposed by a clique family and the restrictions imposed by its
strict subfamilies. In this way, every restriction is dependent of and attached
to a unique member of the lattice of clique families. We state this partition of
the constraints in theorem 4.2 and apply it to counting and enumerating clique
trees in the remainder of the section.

For K € Lg, define a graph Zx with vertex set K and an edge KL € Z,
iff KL € Mg and KN L e C(K), equivalent to K(K N L) = K. The graphs T'x
and Ex are edge-dual subgraphs of Mg[K]: they have the same vertex set K
and partition the edges of M[K] into two disjoint sets.

Let A := Ex/ ~k. The edges of A are injectively labelled by edges from
Zi, as subgraph of M.

Proposition 4.1. The graph Ax is complete, possibly with multi-edges and
multi-loops. For each edge in Ak, its edge label KL fulfils KNL = C(K), i.e.
all the intersections of the edge labels coincide with the maximal generator.

Proof. If KL is not an edge of Z, then K ~x L, whence they are identified in
Aj. This shows the completeness of Ax.

By the definition of Zx, KNL € C(K) and thus KNL C C(K). On the other
hand, C(K) = g K’ € KN L. Whence, K N L = C(K). O

If G is infinite, then Mg = K(0) is the only infinite clique family and Ay
consists of a single vertex and has no loops.

6 20140115



Florian Lehner & Christoph Temmel Section 4

Theorem 4.2. There is a bijection between the edges of Mg and the disjoint
union over all clique families IC of edges of Zx. Via edge-labelling, this extends
to the disjoint union of edges of Ax.

MG edges E‘J E)C edge-libelling L‘lj A]C. (10)
KeLla KeLea

Proof of theorem 4.2. Choose KL € Mg and K € Eé. We know that KL €
Ex, ifft KNL e C(K), equivalent to K(K N L) = K. Proposition 2.1 and the
identification between edges of Zx and edge-labels of Ax imply that we may
partition the set of edges U according to the clique family:

—  edges — edge-labelling
vim U 2 ) s a

Keck Keck, Keck

edges
Mg C U:If KL € Mg, then KN L # () and KL is an edge in Zcxnr).-

edges

U C Mg:IfK e, and KL € Z¢, then 0 # KN L and KL € Mg. [

Theorem 4.2 tells us that condition (9b) factorises into a series of indepen-
dent conditions. The characterisation (9b) of clique trees reduces the problem of
choosing a clique tree to the problem of choosing a spanning tree of Mg[K]/ ~x,
for each L € L. Theorem 4.2 ensures that these choices are independent of
each other. This is in contrast to characterisations (1) and (9a), where each edge
might be subject to constraints from several clique families.

Corollary 4.3. Let G be a locally finite chordal graph. Then TCq, the set of
clique trees of G, is in bijection with

I 72« - (11)

KeLea

Proof. Using the bijection from theorem 4.2, we decompose the edges of a clique
tree T' € TC¢ into disjoint sets, indexed by Eé. For K € Lé, statement (9b) tell
us that Tic must be a spanning tree of Ax.

Conversely, select a spanning tree Tk € Ta,., for each K € ﬁé, and let E be
the union of their edge labels. By theorem 4.2, no edge in E appears twice as
an edge-label of a Tx. Let T be the subgraph of Mg induced by E. By (9b) it
is a clique tree. O

A similar bijection to (11) between the clique trees of a finite chordal graph
and a product of trees indexed by the minimal vertex separators (see section 5.3)
of the graph is known | ]. The bijection is in fact the same, and we make
the exact relation clear in corollary 5.10. An immediate consequence of (11) is
a formula for the number of clique trees of a finite chordal graph:

1TCal = ] Taxl- (12)

KeLla

The value of |Ta.| is explicitely given in terms of the structure of Ax as a
complete multigraph in | ]

7 20140115



Florian Lehner & Christoph Temmel Section 5

Corollary 4.4. Let G be a finite chordal graph with maximal degree D. One
can loop through all clique trees of G with only O(|V'|) memory.

The restriction amounts to a sequential processing of the clique trees.

Proof. As the degree is uniformly bounded, so is the size X and 7a,, for every
K e Eé. Furthermore, as each vertex is only contained in a uniformly bounded
number of cliques and, hence, clique families, the size of EfG is linear in |V]. O

For infinite chordal graphs, we have a dichotomy in the number of clique
trees:

Corollary 4.5. Let G be an infinite chordal graph. It has either finitely or ¥y
many clique trees.

Proof. We look at {|Tax|},c,s - If a finite number of these numbers are greater
G

than 1, then the number of clique trees is finite. If an unbounded number of
these numbers are greater than 1, then there are at least a countable number of
independent choices between more than two spanning trees and the number of
clique trees is uncountable. O

5 Classic properties of clique trees

We discuss classic properties of clique trees: the running intersection property,
the maximal weight spanning tree property and the relation with minimal vertex
separators and the reduced clique graph. We generalise several known results
for finite graphs to the infinite graphs. For K € Lé, let V(K) :={veKeK}
be the set of vertices covered by K. We start with a projection statement, which
is our tool to lift properties from the finite to the infinite setting.

Lemma 5.1. A spanning tree T € Tamg is a clique tree of G, iff, T[K] is a
clique tree of G[V(K)], for every K € Cé,

Proof. The clique families of G[V(K)] are exactly {K} & L5(K). Hence, the
bijection theorem 4.2 works the same way on all graphs considered. O

5.1 The running intersection property

A tree T € Tm,, fulfils the running intersection property, iff

VK, Le Mg: VK €Pr(K,L): KNLCK'. (13)
Lemma 5.2 ([ D). Let G be a finite, chordal graph and T € Tam, . Then
T € TCq, iff it has the running intersection property.

Corollary 5.3. A spanning tree T of Mg is a clique tree of G, iff it has the
running intersection property.

Proof. A tree T' € T, fulfils the running intersection property, iff it fulfils the
running intersection property for cliques K, L, with K N L # . In particular,
for such pairs of cliques, K(KNL) € Eé and by (9a) the path Pr(K, L) lies in
M¢[K(K N L)).

The corollary follows from lemma 5.1 and the statement for the finite chordal
graphs G[V(K)]. O

8 20140115



Florian Lehner & Christoph Temmel Section 6

5.2 The maximal weight spanning tree property

Let w be the weight function on the edges of Mg given by w(KL) := |K N LJ.
Extend the weight function to 7' € Tmy, by setting w(T) := > ppcpw(KL).
Another classic characterisation of clique trees is:

Lemma 5.4 (] ). Let G be a finite, chordal graph and T € Tm.. Then
T € TCq, iff
T € argmax{w(S) | S € Tm.} - (14)

Condition (14) makes no sense in the infinite case. We can localise (14),
though:

Corollary 5.5. The tree T € Tm,, is a clique tree, iff

VK e £ . TIK] € argmax{w(S) | S € Tmaix)} - (15)
Proof. Observing that Mg[K] = Mgy k), we apply the projection lemma 5.1
and the statement for the finite chordal graphs G[V (K)]. O

5.3 Minimal separators and the reduced clique graphs

A non-empty subset W C V is a separator, iff G[V \ W] has more than one
connected component. It is a minimal separator, iff it is minimal with respect
to inclusion.

Lemma 5.6 (] ). A (possibly infinite) graph is chordal, iff every minimal
separator is complete.

Every minimal separator C' separates two vertices adjacent to all of C'. In
particular, C' is a minimal separator in G[V (K(C))].

The reduced clique graph | ] R of G is the subgraph of Mg retaining
those edges KL with K N L a minimal separator and deleting the others. The
importance of Rg comes from:

Lemma 5.7 (] ). Let G be a finite chordal graph. The union of all clique
trees of G is Rg.

Corollary 5.8. The union of clique trees of a chordal graph G is Rg.

Proof. We apply the projection lemma 5.1 and the statement for the finite case
in lemma 5.7, minding the remark after lemma 5.6. O

The following lemma has been originally formulated only for finite graphs,
but its proof is also valid in the infinite case:

Lemma 5.9 (| D). For T € TCq, let Cr be the multiset of intersections of
edge-labels of T. The multiset Cr is independent of T .

Corollary 5.10. A subset 0 # W C V is a minimal separator of G, iff W is
the mazimal generator of some clique family, i.e. W = C(K(W)). In particular,
W must be complete and finite.

Proof. By corollary 5.8, every intersection of an edge label of a clique tree is
a separator. By lemma 5.9, each minimal separator appears as intersection of
at least one edge-label of every clique tree of T'. By corollary 4.3 and proposi-
tion 4.1, the intersections of edge labels are exactly the maximal generators of
finite clique families. O

9 20140115



Florian Lehner & Christoph Temmel Section 6

6 Proofs

6.1 Proof of existence of infinite clique trees

We prove proposition 3.1 via a compactness argument, which is a rather stan-
dard approach in infinite graph theory (c.f. | , Chapter 8.1]). Arguments of
this type can often be used to obtain a result for infinite graphs from its finite
counterpart.

Proof of proposition 3.1 by compactness. Let G be the graph. Let (vy,)nen be
an enumeration of the vertices of G such that v,, is connected to at least one v;
for i < n. Denote by G,, the subgraph of G induced by Uzgn UKE,C(W) K, that
is, G, contains all maximal cliques which contain at least one of vq,...,v,.

Since G,, is a induced subgraph of a chordal graph it must be chordal as
well. It is also connected. By construction every clique in G,, corresponds to a
clique in G, hence Mg, is a subgraph of M. Since G, is finite, we know that
we can find a clique tree T,, of G,, that is, T,, is a spanning tree of M, such
that v — T,[K(v)] defines a subtree representation of G,,.

Consider T, as a subgraph of M and define a subgraph 7" of M¢ as follows.
By local finiteness of G and thus Mg, there is an infinite subsequence 7.} of
(Th)nen of trees which contain the same edges of M¢[K(v1)]. Add those edges
to T. Then choose an infinite sub-subsequence T2 of T} such that all elements
of the sequence T2 contain the same edges of Mg [K(vq)]. Proceed inductively.

We have to check that T is a tree and that T[/C(v)] is a subtree, for every
v € V. The last property holds by construction. The trees corresponding to v
and w overlap, iff K(v) NK(w) # (), which is the case, iff vw is an edge. Hence T'
is connected because G was assumed to be connected. If T' contains a cycle C,
then it lies in M, , for some ng. Hence C'is a cycle in T, a contradiction. [

6.2 Proof of the clique family characterisation

Recall the definition of the strict subfamilies I'xc of a clique family K and the
equivalence relation ~x from section 3.2. For ) # K’ € T'x and K € K, we
either have K' C [K]|., or K' N [K]. = 0.

The major issue in the proof of theorem 3.2 is to start from (9b). In this case
we build the tree bottom up, starting with the clique families { M}, for M € Mg.
An important issue in later stages of the construction, for bigger clique families,
is that overlapping constructions on strict subfamilies play well together. As
the construction only adds edges, the main problem is not connectedness, but
the possible introduction of cycles. Proposition 6.1 deals with this: for every
connected component [K]. . of T'x, it asserts that there are no cycles introduced
by the bottom up construction of the tree on smaller clique families.

Proposition 6.1. Assume that T is a subgraph of ' with verter set [K].,
such that TIK'] is a tree for every K' € L&(K) with K' C [K]... Then T is a
tree.

10 20140115



Florian Lehner & Christoph Temmel Section 6

The proof of proposition 6.1 is technical and is in section 6.2.2.

A second tool in the proof of theorem 3.2 is contracting and decontracting
subtrees of trees. The following propositions, whose proofs are section 6.2.1 allow
us to do the needed surgery on trees:

Proposition 6.2. Let V be the vertex set of a finite graph and let V1, Va, ..., Vg
be disjoint subsets of V. Every choice of two of the following statements implies
the third one:

G is a tree, (16a)
1<i<k: G/{W,....Vi}is a tree, (16b)
Vi<i<k: G[V] isa tree. (16¢)

Proposition 6.3. Let V =: V3 UV, be the vertex set of a tree T. If T[V1] and
T[Va] are trees, then T[Vi N V2] is also a tree.

Equipped with these tools, we can prove our characterisation theorem:

Proof of theorem 3.2. (9a) = (1): (9a) implies that T[K(v)] is a tree, for each
v € G, and that T[M¢g] = T is a tree. This is just the definition of a clique tree.

(1) = (9a): If £ = Mg or K = K(v), for some vertex v € V, then T[K] is a
tree. Let () # K € L¢ be arbitrary and assume that T[K] is not a tree. Assume
that C is a maximal element of L& with the property that T'[K] is not a tree.
Such an element exists, because there are only finitely many elements of Lg
which are larger than KC. Hence, if IC is not maximal with this property, choose
K’ 2 K such that T[K'] is not a tree. Such a maximal family is neither empty
(as T'[0] is a tree) nor induced by a single vertex. Let C' be a minimal generator
of K, i.e., C C C(K) and K(C) = K. The generator C' contains at least two
vertices. Therefore, for every () # C’ C C,

04K =KC)NKC\ ).

Maximality of K implies that T[K(C")] and T[IC(C \ C)] are trees. Proposi-
tion 6.3 implies that T[K] is a tree, too.

(9a) = (9b): let K € L. Proposition 6.1 together with the assumption that
T[K'] is a tree for every K’ implies that T[[K].,] is a tree, for every equiva-
lence class with respect to the relation ~x. If K # Mg, then there are only
finitely many equivalence classes. Hence we can apply proposition 6.2 to show
that T[K]/ ~x is a tree. For K = Mg, the connectedness of G implies that
there is only one equivalence class. Thus proposition 6.1 implies directly (with-
out application of proposition 6.2) that T[K] is a tree.

(9b) = (9a): Assume that there is some K € Lg such that T[K] is not a
tree. Choose K minimal with this property. This is possible because there are
only finitely many elements of L5 which are smaller than K. It follows from
proposition 6.1 that T[[K].,] is a tree for every equivalence class with respect
to ~x. Since there are only finitely many equivalence classes and T[K]/ ~ is
a tree we can invoke proposition 6.2 to prove that T[K] is indeed a tree, which
completes the proof of the theorem. O

1 20140115



Florian Lehner & Christoph Temmel Section 6

6.2.1 Surgery on trees

This section contains technical results about the relation between subtrees ob-
tained by inducing or contracting and the original tree and joining trees with
common parts. The proofs of propositions 6.2 and 6.3 are also in this sections.

Proposition 6.4. Let V be the vertex set of a finite graph G and let W C V.
Every choice of two of the following statements implies the third one:

G is a tree, (17a)
G/W s a tree, (17b)
G[W] is a tree. (17¢)

Proof. Denote by |G| and ||G|| the number of vertices and edges of a graph G
respectively. If G is a tree, then

Gl =Gl +1 (18)

holds. Contrarily, if (18) holds for a graph G and G is either acyclic or con-
nected, then G is a tree.

For every graph G, the following identities hold:
Gl =|G/W[=1+|GW]| and |G| = [|G/W] + |GW]| (19)

If two of the three statements in (17) hold, then (18) holds for them. Combined
with (19), this yields (18) for the third statement of (17). Thus, in all three
cases, we only need to show the acyclity or connectedness of the third graph.

(17a) (and (17b)) imply (17¢): Acyclicity is stable under taking inducing
subgraphs.

(17a) (and (17¢)) imply (17b): Connectedness is stable under contracting
subgraphs.

(17¢) and (17b) imply (17a): Every cycle in G is either contained in G[W]
or contracts to a cycle of G/W. O

Proof of proposition 6.2. Apply proposition 6.4 inductively. The key fact is that
G/{V1,...,Vi}[V;] is a tree, for all 1 <[ < j < k. O

Remark 6.5. Proposition 6.2 remains valid, if we consider locally finite graphs
and countably many disjoint sets V;. It can also be extended to nested contrac-
tions, as long as the nesting depth is finite. If the nesting depth is infinite, then
the limit object is no longer a spanning tree, but a topological spanning tree.

Proof of proposition 6.3. If either one of V1 \ V5 or V5 \ V7 is empty, then T[Vi N
Vo] = T[V4] and T[Vi N Vo] = T[V2] is a tree respectively. If V3 N Vo = 0, then
T[Vi N V3] is the empty tree. Therefore, let v € V1 NV, v; € V4 \ Vo and
vy € Vo \ V1. There is a unique path from v to v; and v in T respectively. Thus,
the edge v1v2 can not be in T', as it would create a cycle in T'. Hence, there are no
edges between V1 \ V5 and Vo \ V7 in T. As T and T'[V] are trees, proposition 6.4

12 20140115



Florian Lehner & Christoph Temmel Section 6

implies that T/V, = T[V1]/V1 NV, is a tree, too. As T[V;] is a tree, another
application of proposition 6.4 implies that T[V;][V1 N Va] = TV N V5] is a tree,
too. O

Proposition 6.6. Let G be a graph with vertices V. Let V. =: V1 U V4, be a
non-disjoint union of V. Assume that G[V1], G[Va], and G[V1 N Va] are trees,
and that there are no edges connecting Vi \ Vo to Vo \ V1. Then G is a tree.

Proof. As G[V1] and G[V; N V3] are trees, we apply proposition 6.4 to see that
G[V1]/Vi N V4 is a tree. There is no edge connecting Vi \ V2 to Vu \ Vi, so
G/Va = GV4]/Vi N Va. As G/V; and G[Va] are trees, another application of
proposition 6.4 yields that G is also a tree. O]

6.2.2 The proof of proposition 6.1

First, we establish an additional property of cycles in chordal graphs, needed in
the proof of proposition 6.1.

Proposition 6.7. If G is a chordal graph, then every cycle of length > 4 in G
contains a 2-chord, i.e. a chord connecting two vertices with distance 2 along
the cycle.

Proof. Let C be a cycle of G of length k£ > 4. As G is chordal, it has a chord
e; which splits it up into two cycles. If one of those two cycles has length 3
(including the chord), then we are done. Otherwise, take one of the cycles, Cy,
and split it along a chord ey into two cycles. Denote by C5 the cycle from the
C1-splitting not containing e;. Its only non-C' edge is es. If Cy has length 3,
then we are done. Otherwise proceed recursively, with each C; having e; as its
only non-C' edge. Since the lengths of the cycles C; are strictly decreasing, the
recursion terminates. O

Proof of proposition 6.1. T is connected: If K’ ~x¢ K, then K’ is connected to
K by a path in I'i. Hence, we can find a sequence K1, o, ..., i of families
in £5(K) such that K € Ky, K’ € K and K; N K1 # 0, for 1 <@ < k. As
K € Ky, Ky is completely contained in [K].,.. Since K; and K;;; have non-
empty intersection, it follows by induction that each KC; contains some element
of [K]~, and is also completely contained in [K].,. As T[K,] is a tree, for every
i, it is connected. We choose and combine paths from T[K;] to obtain a path
from K to K’ in T.

T is acyclic: Assume that there is a cycle C':= K1 K5 ... K, in T. Since K,
and K, are connected by an edge in T'xc there must be some K’ € L5(K) which
contains both of them, that is (K, N K;) C K’ C K. Since this X' has non-
empty intersection with [K]., it is completely contained in [K]. ..

Define the indices i1, ..., %, inductively by:

il ::max{i Sn | K(KnﬁKlngﬁmKl) Q [K}NIC}
If i; < n, then define

ij+1 = max{i <n | IC(KZJ n KZ‘J.Jrl n...N Kz) - [K]N)c}

13 20140115



Florian Lehner & Christoph Temmel Section 6

As 1 <y <19 < ..., this construction stops after r < n steps with i, = n. Let

01 SZKnﬂKlﬂKgﬂ...ﬂKil7
CQ ::KilﬁKil_Hﬂ...ﬁKi

27

CT = K7;T71 N Kir,1+1 n...N Kn .

By construction, it holds that C; := K(C;) C [K] for 1 <j<r.

~rc s
We choose C' and its cyclic ordering minimizing the value of r.
Case r = 1: The tree T[K;] contains the cycle C, a contradiction.

Case r = 2: By the minimality of r, we have {K; , K;,} C K1 NKy =: K12 #
(. The graph T[K;i] U T[K2] is the graph T[K; U Kq] without the edges be-
tween (K1 \ K2) and (Kq \ K7). Furthermore, T'[K1] U T[K3] contains the cycle
C'. Because T[K1], T[K2] and T[K;2] are all trees we apply proposition 6.6 to
T[K1] UT[Ks] and deduce that it is a tree and does not contain the cycle C.

Case r = 3: We claim that
KinKankKs#0. (20)

Admitting the claim for the moment, we can finish the proof of the case r = 3.
We apply proposition 6.3 three times:

First, to the trees T'[K4], T[K1] and T'[K1 N3], deducing that T'[IC;|UT[Ks]
is a tree.

Second, to the trees T'[KC; N K3], T[Ke N Ks) and T[K; N Ko N 3], deducing
that T[K; N K3] UT[Ke N K3] is a tree.

Third, to T[K1] UT[Ks], T[K3] and T[K1 N3] UT[K2 N K3]. We check that
the third tree is indeed the intersection of the first two. For the vertex sets, we
have

(KiUK)NK3=(K1NK3)U(KaNKs).

For the edges, we have

KL e (T[K1)JUTI[Ks]) NT[Ks]
< KL e T[K1JUT[K:)AKL € T[Ks]
S (K, LeKiVK,LeEK)NK,LeKs
S (K, LeKiANK,LeKs)V (K, Le KaNK,Le€Ks)
& KLeT[KiNK3) VKL e T[KNKs)
& KLeT[KiNK]UT[Ky N Ks).

Hence T[KC1 U K2 U K] is a tree. It contains the cycle C, a contradiction.

14 20140115



Florian Lehner & Christoph Temmel Section 6

Proof of the claim (20): Since C; UCy € K;,, C1 UC3 € K;, and Cy U
Cs € K,,, they all induce complete subgraphs of G. For a collection of subsets
{Ci}iemn of V, we have:

Vi,j € [n]: C; UC; is complete < U C; is complete. (21)
i€[n]

Hence, C7 U C5 U C3 is a complete subset of G and there is a clique M € Mg
containing C7 U Cy U Cf, establishing (20).

Case r > 4: We construct a cycle in G violating proposition 6.7. Our first
observation is

C;, UCy, is complete < |i; —iz mod r| < 1. (22)

To prove this observation, we assume that 1 < i < iy < rand D := C;, UC,,.
If i5 — iy = 1, then D € M,,. Hence D is complete. If i —i; > 2 and D = 0,
then there is a clique M containing D with M € K;; N K,;,. This allows the
creation of a cycle C’, by shortcutting C via a connection from M;, to M in
T[K;,] and from M to M;,_1 in T[K;,]. We can cover the cycle C’ by at most
io — 11 + 1 < r clique families, contradicting the minimality of 7.

Call a path vy ...v; two-chordless iff

Vk € [l — 2] : vg is non-adjacent to vgia, (
v;_1 is non-adjacent to vy , (23b
Vkel] v, € Cy, . (23¢
g1 <o <...<Ji. (23d

We construct a path in the following way: Choose non-adjacent vertices
vy € Cq and vg € C3. They exist by the observation (22). Let j; = 1, ja = 2,
j3 =3 and
Ja ::max{j <r ‘ CjU{”Ug} GCG,}.

where the maximum runs over a non-empty set, since by (22) vs is adjacent
to each vertex in Cy4. Every vertex in C}, is adjacent to w3, but, for every
4 < jy < j <r, there is a vertex in C; not adjacent to v3. Because of observa-
tion (22), we can choose non-adjacent vertices v € Cy and v4 € Cj,. The path
v102V3v4 18 two-chordless (23), for | = 4.

We extend this two-chordless path until we end up with a cycle contradicting
proposition 6.7. Because the path always fulfils (23d), it has at most length r.
Let v; € C}, be the last element of the path. We have two cases:

Case v; is adjacent to vi: We can complete the vy ...v; to a cycle. It ful-
fils (23a) and (23b), contradicting proposition 6.7.

Case v; is not adjacent to v1: We extend our path. This happens at most
r — 4 times. By (22), we know that j; < r. Hence, let

Jigr =max{j <r|C;U{u}elq,}.

15 20140115



Florian Lehner & Christoph Temmel Section 6

where the maximum is over a non-empty set, since by (22) v; is adjacent to
each vertex in Cj,41. In particular, this implies that jp11 > ji +1 > jg, ful-
filling (23d). By the definition of j; (with [ > 4) and observation (22), there
is a vertex v;11 € Cj,,, not adjacent to v;_;. Thus, the extension fulfils (23a)
and (23c). As vy is not adjacent to vy, the extension fulfils (23b). O

References

[BFMY83] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis.
On the desirability of acyclic database schemes. J. Assoc. Comput.
Mach., 30(3):479-513, 1983.

[BG81] Philip A. Bernstein and Nathan Goodman. Power of natural semi-
joins. SIAM J. Comput., 10(4):751-771, 1981.

[BP93] Jean R. S. Blair and Barry Peyton. An introduction to chordal
graphs and clique trees. In Graph theory and sparse matrix compu-
tation, volume 56 of IMA Vol. Math. Appl., pages 1-29. Springer,
New York, 1993.

[Die05] Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in
Mathematics. Springer-Verlag, Berlin, third edition, 2005.

[Dir61] G. A. Dirac. On rigid circuit graphs. Abh. Math. Sem. Univ. Ham-
burg, 25:71-76, 1961.

[Gav74]  Fanicd Gavril. The intersection graphs of subtrees in trees are ex-
actly the chordal graphs. J. Combinatorial Theory Ser. B, 16:47-56,
1974.

[GHP95] Philippe Galinier, Michel Habib, and Christophe Paul. Chordal
graphs and their clique graphs. In Graph-theoretic concepts in com-
puter science (Aachen, 1995), volume 1017 of Lecture Notes in Com-
put. Sci., pages 358-371. Springer, Berlin, 1995.

[Hal84] R. Halin. On the representation of triangulated graphs in trees.
European J. Combin., 5(1):23-28, 1984.

[HL89] Chin Wen Ho and R. C. T. Lee. Counting clique trees and comput-
ing perfect elimination schemes in parallel. Inform. Process. Lelt.,
31(2):61-68, 1989.

16 20140115



	Introduction
	Notation and basic properties
	Graphs
	Chordal graphs and subtree representations
	The lattice of clique families

	Main result
	Existence of clique trees of infinite chordal graphs
	The characterisation via clique families

	Edge bijections and enumerating the set of clique trees
	Classic properties of clique trees
	The running intersection property
	The maximal weight spanning tree property
	Minimal separators and the reduced clique graphs

	Proofs
	Proof of existence of infinite clique trees
	Proof of the clique family characterisation
	Surgery on trees
	The proof of proposition 6.1



