HOMOGENEOUS 2-PARTITE DIGRAPHS

MATTHIAS HAMANN

Abstract

We call a 2-partite digraph D homogeneous if every isomorphism between finite induced subdigraphs that respects the 2-partition of D extends to an automorphism of D that does the same. In this note, we classify the homogeneous 2-partite digraphs.

1. Introduction

A structure is homogeneous if every isomorphism between finite induced substructures extends to an automorphism of the whole structure. This notion is due to Fraïssé [4], see also [5]. Since his work appeared, several countable homogeneous structures have been classified. These classification results include partial orders by Schmerl [13], graphs by Gardiner [6] and by Lachlan and Woodrow [11], tournaments by Lachlan [10], directed graphs by Lachlan [9] and Cherlin [2, 3], bipartite graphs by Goldstern, Grossberg, and Kojman [7], and, recently, ordered graphs by Cherlin [1]. For more details on homogeneous structures, we refer to Macpherson's survey [12].

In this note, we classify the homogeneous 2-partite digraphs (Theorem 3.1). This classification problem occured during the classification of the countable connectedhomogeneous digraphs [8], where a digraph is connected-homogeneous if every isomorphism between finite induced connected subdigraphs extends to an automorphism of the whole digraph.

2. Preliminaries

In this note, a bipartite graph is a triple $G=(X, Y, E)$ of pairwise disjoint sets such that every $e \in E$ is a set consisting of one element of X and the one element of Y. We call $V G=X \cup Y$ the vertices of G and E the edges of G. A 2-partite digraph is a triple $D=(X, Y, E)$ of pairwise disjoint sets with $E \subseteq(X \times Y) \cup(Y \times X)$ and such that $(u, v) \in E$ implies $(v, u) \notin E$. Again, $V D=X \cup Y$ are the vertices of D and E are the edges of D. We write $u v$ instead of (u, v) for edges of D. A 2-partite digraph (X, Y, E) is bipartite if either $E \subseteq X \times Y$ or $E \subseteq Y \times X$. The underlying undirected bipartite graph of a 2-partite digraph (X, Y, E) is defined by

$$
(X, Y,\{\{u, v\} \mid u v \in E\})
$$

Two vertices u, v of a 2-partite digraph $D=(X, Y, E)$ are adjacent if either $u v \in E$ or $v u \in E$. The successors of $u \in V D$ are the elements of the outneighbourhood $N^{+}(u):=\{w \in V D \mid u w \in E\}$ and its predecessors are the elements of the in-neighbourhood $N^{-}(u):=\{w \in V D \mid w u \in E\}$. For $x \in X$, we define

$$
x^{\perp}=\{y \in Y \mid y \text { not adjacent to } x\}
$$

and, for $y \in Y$, we define

$$
y^{\perp}=\{x \in X \mid x \text { not adjacent to } y\}
$$

A bipartite graph $G=(X, Y, E)$ is homogeneous if every isomorphism φ between finite induced subgraphs A and B with $(V A \cap X) \varphi \subseteq X$ and $(V A \cap Y) \varphi \subseteq Y$ extends to an automorphism α of G with $X \alpha=X$ and $Y \alpha=Y$. Similarly, a 2-partite digraph $D=(X, Y, E)$ is homogeneous if every isomorphism φ between finite induced subdigraphs A and B with $(V A \cap X) \varphi \subseteq X$ and $(V A \cap Y) \varphi \subseteq Y$ extends to an automorphism α of D with $X \alpha=X$ and $Y \alpha=Y$.

A first step towards the classification of the homogeneous 2-partite digraphs was already done when Goldstern et al. [7] classified the homogeneous bipartite graphs. Thus, before moving on, we cite their result and discuss its effects towards the classification of the homogeneous 2-partite digraphs.
Theorem 2.1. [7, Remark 1.3] A bipartite graph is homogeneous if and only if it is isomorphic to one of the following bipartite graphs:
(i) a complete bipartite graph;
(ii) an empty bipartite graph;
(iii) a perfect matching;
(iv) the bipartite complement of a perfect matching;
(v) a generic bipartite graph.

The bipartite complement of a perfect matching is a complete bipartite graph with sides of equal cardinality where a perfect matching is removed from the edge set. A bipartite graph $G=(X, Y, E)$ is generic if for each two disjoint finite subsets U_{X}, W_{X} of X and each two disjoint finite subsets U_{Y}, V_{Y} of Y there exist $y \in Y$ and $x \in X$ with $U_{X} \subseteq N(y)$ and $V_{X} \cap N(y)=\emptyset$ as well as with $U_{Y} \subseteq N(x)$ and $V_{Y} \cap N(x)=\emptyset$.

For bipartite digraphs (X, Y, E), Theorem 2.1 applies analogously in the following sense: as we have either $E \subseteq X \times Y$ or $E \subseteq Y \times X$, the underlying undirected bipartite graph is homogeneous, so belongs to some class of the list in Theorem 2.1. Conversely, every orientation of a homogeneous bipartite graph that results in a bipartite digraph gives a homogeneous bipartite digraph. Note that homogeneous bipartite digraphs are in particular homogeneous 2-partite digraphs. Hence, the above classification gives us a partial classification in the case of the homogeneous 2-partite digraphs in that it gives a full classification of the homogeneous bipartite digraphs. In the remainder of this note we extend this partial classification by classifying those homogeneous 2-partite digraphs that are not bipartite.

3. The main result

In this section, we shall prove our main theorem, the classification of the homogeneous 2-partite digraphs (Theorem 3.1).

Theorem 3.1. A 2-partite digraph is homogeneous if and only if it is isomorphic to one of the following 2-partite digraphs:
(i) a homogeneous bipartite digraph;
(ii) an M_{κ} for some cardinal $\kappa \geq 2$;
(iii) a generic 2-partite digraph;
(iv) a generic orientation of a generic bipartite graph.

For a cardinal $\kappa \geq 2$, let M_{κ} be a bipartite digraph (X, Y, E) with $|X|=\kappa=|Y|$ such that either $(X, Y, E \cap(X \times Y))$ or $(X, Y, E \cap(Y \times X))$ is a perfect matching and the other is the bipartite complement of a perfect matching. In particular, the underlying undirected bipartite graph is a complete bipartite graph.

We call a 2-partite digraph (X, Y, E) generic if its underlying undirected bipartite graph is a complete bipartite graph and if for all pairwise disjoint finite subsets $A_{X}, B_{X} \subseteq X$ and $A_{Y}, B_{Y} \subseteq Y$ there are vertices $y \in Y$ and $x \in X$ with $A_{X} \subseteq$ $N^{+}(y)$ and $B_{X} \subseteq N^{-}(y)$ as well as $A_{Y} \subseteq N^{+}(x)$ and $B_{Y} \subseteq N^{-}(x)$. Similarly, we call a 2-partite digraph (X, Y, E) a generic orientation of a generic bipartite graph if for all pairwise disjoint finite subsets $A_{X}, B_{X}, C_{X} \subseteq X$ and $A_{Y}, B_{Y}, C_{Y} \subseteq Y$ there are vertices $y \in Y$ and $x \in X$ with $A_{X} \subseteq N^{+}(y), B_{X} \subseteq N^{-}(y)$ and $C_{X} \subseteq y^{\perp}$ as well as with $A_{Y} \subseteq N^{+}(x), B_{Y} \subseteq N^{-}(x)$ and $C_{Y} \subseteq x^{\perp}$. It is easy to verify that its underlying undirected graph is a generic bipartite graph.

Note that standard back-and-forth arguments show that, up to isomorphism, there are a unique countable generic 2-partite digraph and a unique countable generic orientation of the (unique) countable generic bipartite graph.

It is worthwhile noting that by Theorem 3.1 the underlying undirected bipartite graph of a homogeneous 2-partite digraph is always homogeneous, which is false for arbitrary homogeneous digraphs and their underlying undirected graphs.

The fact that the listed 2-partite digraphs in Theorem 3.1 are homogeneous is already discussed in the previous section for case (i), while in case (ii) it is a consequence of the fact that the bipartite complement of a perfect matching is homogeneous. The cases (iii) and (iv) can be easily verified by the above mentioned back-and-forth argument. (This can also be applied if they are not countable to show that they are homogeneous.) Before we start with the remaining direction of the proof of Theorem 3.1, we show some lemmas.

Lemma 3.2. Let $D=(X, Y, E)$ be a homogeneous 2-partite digraph. If $N^{+}(v)$ and $N^{-}(v)$ are infinite and v^{\perp} is finite for some $v \in V D$, then $v^{\perp}=\emptyset$.

Proof. Let $x \in X$. First, let us suppose that $m:=\left|x^{\perp}\right|=1$. We note that any automorphism of D that fixes x must also fix the unique element $x_{Y} \in x^{\perp}$. Indeed, since D is homogeneous and each of the two sets $\left\{y_{1}, y_{2}\right\}$ and $\left\{y, x_{Y}\right\}$ induces a digraph without any edge, we can extend every isomorphism between them to an automorphism α of D and, if x^{\prime} is the common predecessor of y_{1} and y_{2}, then $x^{\prime} \alpha$ is the common predecessor of y and x_{Y}. Let y be a successor of x. As $N^{+}(x)$ is infinite, we find two vertices y_{1}, y_{2} in Y that have a common predecessor. Homogeneity then implies that the two vertices y and x_{Y} in Y have a common predecessor z. Let z^{\prime} be a successor of x_{Y}. By homogeneity, we find an automorphism β of D that fixes x and maps z to z^{\prime}. As mentioned above, β must fix x_{Y} as it fixes x. But we have $z x_{Y} \in E$ and $\left(x_{Y} z\right) \alpha=x_{Y} z^{\prime} \in E$, which is impossible.

Now let us suppose that $\left|x^{\perp}\right| \geq 2$. By homogeneity and as m is finite, we find for any subset A of Y of cardinality m a vertex $a \in X$ with $a^{\perp}=A$. As Y is infinite, there are two subsets A_{1}, A_{2} of Y of cardinality m with $\left|A_{1} \cap A_{2}\right|=m-1$ and two such subsets B_{1}, B_{2} with $\left|B_{1} \cap B_{2}\right|=m-2$. Let $a_{i}, b_{i} \in X$ with $a_{i}^{\perp}=$ A_{i} and $b_{i}^{\perp}=B_{i}$, respectively. Then there is no automorphism of D that maps a_{1} to b_{1} and a_{2} to b_{2} even though D is homogeneous as the number of vertices that are not adjacent to a_{1} and a_{2} is larger than the corresponding number for b_{1}
and b_{2}. Analogous contradictions for any vertex in Y instead of $x \in X$ show the assertion.

Lemma 3.3. Let $D=(X, Y, E)$ be a homogeneous 2-partite digraph. If $N^{+}(v)$ and $N^{-}(v)$ are infinite and $v^{\perp}=\emptyset$ for all $v \in V D$, then D is a generic 2-partite digraph.
Proof. It suffices to show that for any two disjoint finite subsets A and B of X we find a vertex $v \in Y$ with $A \subseteq N^{+}(v)$ and $B \subseteq N^{-}(v)$. Indeed, the corresponding property for subsets of Y then follows analogously. Note that we find for every $y \in Y$ two sets $A_{y} \subseteq N^{+}(y)$ and $B_{y} \subseteq N^{-}(y)$ with $|A|=\left|A_{y}\right|$ and $|B|=\left|B_{y}\right|$. As D is homogeneous and as $A \cup B$ and $A_{y} \cup B_{y}$ induce (empty) isomorphic finite subdigraphs of D, there exists an automorphism α of D that maps A_{y} to A and B_{y} to B. So $y \alpha$ is a vertex we are searching for.

Lemma 3.4. Let $D=(X, Y, E)$ be a homogeneous 2-partite digraph. If $N^{+}(v)$, $N^{-}(v)$, and v^{\perp} are infinite for all $v \in V D$, then D is a generic orientation of a generic bipartite graph.

Proof. Similarly to the proof of Lemma 3.3, it suffices to show that for any three pairwise disjoint finite subsets A, B, C of X we find a vertex $v \in Y$ with $A \subseteq N^{-}(v)$ and $B \subseteq N^{+}(v)$ and $C \subseteq v^{\perp}$. For every $y \in Y$, we find subsets $A_{y} \subseteq N^{+}(y)$ and $B_{y} \subseteq N^{-}(y)$ and $C_{y} \subseteq y^{\perp}$ with $|A|=\left|A_{y}\right|$ and $|B|=\left|B_{y}\right|$ and $|C|=\left|C_{y}\right|$. Note that each of the two sets $A \cup B \cup C$ and $A_{y} \cup B_{y} \cup C_{y}$ has no edge. Applying homogeneity, we find an automorphism α of D that maps A_{y} to A and B_{y} to B and C_{y} to C. So $y \alpha$ is a vertex that has the desired properties.

Now we are able to prove our main theorem.
Proof of Theorem 3.1. Let $D=(X, Y, E)$ be a homogeneous 2-partite digraph that is not bipartite. Then we find in X some vertex with a predecessor in Y and some vertex with a successor in Y. By homogeneity, we can map the first onto the second and conclude the existence of a vertex in X that has a predecessor and a successor in Y. Analogously, we obtain the same for some vertex of Y. By homogeneity, every vertex of D has predecessors and successors. In particular, we have $|X| \geq 2$ and $|Y| \geq 2$.

Let us suppose that two vertices $u, v \in X$ have the same successors, that is, $N^{+}(u)=N^{+}(v)$. By homogeneity, we can fix u and map v onto any vertex w of $X \backslash\{u\}$ by some automorphism of D and thus obtain $N^{+}(w)=N^{+}(u)$ for every $w \in X$. So no vertex in $N^{+}(u)$ has successors in X, which is impossible as we saw earlier. Hence, we have $N^{+}(u) \neq N^{+}(v)$ for each two distinct vertices $u, v \in X$. Analogously, the same holds for each two distinct vertices in Y and also for the set of predecessors of every two vertices either in X or in Y. Thus, we have shown

$$
\begin{equation*}
N^{+}(u) \neq N^{+}(v) \quad \text { and } \quad N^{-}(u) \neq N^{-}(v) \quad \text { for all } u \neq v \in X \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
N^{+}(u) \neq N^{+}(v) \quad \text { and } \quad N^{-}(u) \neq N^{-}(v) \quad \text { for all } u \neq v \in Y . \tag{2}
\end{equation*}
$$

Let us assume that $n:=\left|N^{+}(u)\right|$ is finite for some $u \in X$. Note that, for any subset A of Y of cardinality n, we find a vertex $a \in X$ with $N^{+}(a)=A$ by homogeneity. If $|Y|>n+1$ and $n \geq 2$, then we find two subsets of Y of cardinality n whose intersection has $n-1$ elements and two such sets whose intersection has $n-2$ elements. So we find two vertices in X with $n-1$ common successors and we
also find two vertices in X with $n-2$ common successors. This is a contradiction to homogeneity, because we cannot map the first pair of vertices onto the second pair. Thus, we have either $n=1$ or $|Y|=n+1$. If $|Y|=n+1$, then we directly obtain $D \cong M_{n+1}$ since every vertex in X also has some predecessor in Y. So let us assume $n=1$. If we have $1<k \in \mathbb{N}$ for $k:=\left|N^{-}(u)\right|$, then we obtain $D \cong M_{k+1}$, analogously. So let us assume that either $\left|N^{-}(u)\right|=1$ or $N^{-}(u)$ is infinite. First, we consider the case that $N^{-}(u)$ is infinite. An empty set u^{\perp} directly implies $D \cong M_{|Y|}$. So let us suppose $u^{\perp} \neq \emptyset$. Let u^{+}be the unique vertex in $N^{+}(u)$. Since $u^{\perp} \neq \emptyset$, we find for some and hence by homogeneity for every vertex in Y some vertex in X it is not adjacent to. Let $w \in\left(u^{+}\right)^{\perp}$ and let $v \in N^{+}\left(u^{+}\right)$. By homogeneity, we find an automorphism α of D that fixes u and maps v to w. Since α fixes u, it must also fix u^{+}. But since $u^{+} v \in E$ and $\left(u^{+} v\right) \alpha=u^{+} w \notin E$, this is not possible. Hence, if $N^{+}(u)$ is finite, it remains to consider the case $n=1=k$. Due to (1), no two vertices of X have a common predecessor or a common successor. Thus, also every vertex in Y has precisely one predecessor and one successor. Let $v \in Y$ and $w \in X$ with $u v, v w \in E$. Then we can map the pair (u, w) onto any pair of distinct vertices of X, as D is homogeneous. Thus, for all $x \neq z \in X$, there exists $y \in Y$ with $x y, y z \in E$. This shows $|X|=2$ as every vertex of D has precisely one successor. Hence, D is a directed cycle of length 4 , which is isomorphic to M_{2}.

Analogous argumentations in the cases of finite $N^{-}(u), N^{+}(v)$ or $N^{-}(v)$ with $u \in X$ and $v \in Y$ show that the only remaining case is that every vertex in D has infinite in- and infinite out-neighbourhood. Due to Lemma 3.2, we know that $\left|u^{\perp}\right|$ is either 0 or infinite and that $\left|v^{\perp}\right|$ is either 0 or infinite. Since $x^{\perp} \neq \emptyset$ if and only if $y^{\perp} \neq \emptyset$ for all $x \in X$ and $y \in Y$, the assertion follows from Lemmas 3.3 and 3.4.

References

. G. Cherlin, The classification of homogeneous ordered graphs, in preparation, 2013.
2. G.L. Cherlin, Homogeneous directed graphs. the imprimitive case, Logic colloquium '85 (Orsay, 1985), Stud. Logic Found. Math., vol. 122, North-Holland, Amsterdam, 1987, pp. 67-88.
3. \qquad , The classification of countable homogeneous directed graphs and countable homogeneous n-tournaments, vol. 131, Mem. Amer. Math. Soc., no. 621, Amer. Math. Soc., 1998.
4. R. Fraïssé, Sur certain relations qui généralisent l'ordre des nombre rationnels, C. R. Acad. Sci. Paris 237 (1953), 540-542.
\qquad Theory of Relations, Revised edition. With an appendix by Norbert Sauer, Stud. Logic Found. Math., vol. 145, North-Holland Publishing Co., Amsterdam, 2000.
6. A. Gardiner, Homogeneous graphs, J. Combin. Theory (Series B) 20 (1976), no. 1, 94-102.
7. M. Goldstern, R. Grossberg, and M. Kojman, Infinite homogeneous bipartite graphs with unequal sides, Discrete Math. 149 (1996), no. 1-3, 69-82.
8. M. Hamann, Countable connected-homogeneous digraphs, in preparation.
9. A.H. Lachlan, Finite homogeneous simple digraphs, Proceedings of the Herbrand symposium (Marseilles, 1981) (J. Stern, ed.), Stud. Logic Found. Math., vol. 107, North-Holland, 1982, pp. 189-208.
10. \qquad , Countable homogeneous tournaments, Trans. Am. Math. Soc. 284 (1984), no. 2, 431-461.
11. A.H. Lachlan and R. Woodrow, Countable ultrahomogeneous undirected graphs, Trans. Am. Math. Soc. 262 (1980), no. 1, 51-94.
12. H.D. Macpherson, A survey of homogeneous structures, Discrete Math. 311 (2011), no. 15, 1599-1634.
13. J.H. Schmerl, Countable homogeneous partially ordered sets, Algebra Universalis 9 (1979), no. $3,317-321$.

Matthias Hamann, Department of Mathematics, University of Hamburg, BundesStrasse 55, 20146 Hamburg, Germany

