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COUNTABLE CONNECTED-HOMOGENEOUS DIGRAPHS

MATTHIAS HAMANN

Abstract. A digraph is connected-homogeneous if every isomorphism be-
tween two finite connected induced subdigraphs extends to an automorphism
of the whole digraph. In this paper, we completely classify the countable
connected-homogeneous digraphs.

1. Introduction

A graph is homogeneous if every isomorphism between two isomorphic finite
induced subgraphs extends to an automorphism of the whole graph. This restrictive
property led to a complete classification of the countable homogeneous graphs [7,
10, 21, 25]. Homogeneous graphs are in particular vertex-transitive. Whereas
vertex-transitive graphs are too rich to obtain a full classification, there are various
ways to relax the notion of homogeneity naturally to obtain a larger set of graphs
that still admits a full classification. Examples of relaxations of homogeneity for
graphs are distance-transitivity where we require transitivity on pairs of vertices
with the same distance, see [1, 16, 22], and set-homogeneity where we require only
that some isomorphism between every two isomorphic finite induced subgraph has
to extend to an automorphism of the whole graph, see [5]. In both these cases, there
is no complete classification of the countable such graphs yet. Another relaxation
of homogeneity is the following: We call a graph connected-homogeneous, or C-
homogeneous for short, if every isomorphism between two isomorphic finite induced
connected subgraphs extends to an automorphism of the whole graph. Countable
C-homogeneous graphs have been classified in [6, 8, 11, 16, 17].

When it comes to digraphs, the analogous notions of homogeneity and C-homo-
geneity apply. Countable homogeneous digraphs have been classified in [3, 4, 19, 20].
In this paper we will complete the classificaion of the countable C-homogeneous
digraph, which was started by Gray and Möller [12] and continued in [13, 15]. So
far, the connected C-homogeneous digraphs of finite degree and those with more
than one end have been classified. So the purpose of this paper is to classify
the countable C-homogeneous digraphs that have precisely one end and thereby
complete the classification of the countable C-homogeneous digraphs.

Another structure for which homogeneity and and C-homogeneity have been con-
sidered are partial orders. Schmerl [24] classified the countable homogeneous partial
orders and Gray and Macpherson [11] classified the countable C-homogeneous par-
tial orders. For more details on homogeneous structures we refer to Macpherson’s
survey [23].

On our way to the classification of the countable C-homogeneous digraphs, we
shall use classification results of various other homogeneous structures: we shall
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use the classifications of the countable homogeneous digraphs [4], of the count-
able homogeneous bipartite graphs [9], and of the countable homogeneous 2-partite
digraphs [14].

The paper is structured as follows: After introducing in Section 2 all necessary
notations for the remainder of the paper, we state the classification result of the
countable C-homogeneous digraph (Theorem 3.1) and give brief descriptions of the
involved digraphs in Section 3. In Section 4, we shall give a rough overview of the
proof of Theorem 3.1. Then we state the classification of the countable homoge-
neous bipartite graphs, of the countable homogeneous 2-partite digraphs, and of the
countable homogeneous digraphs in Section 6, which will all be part of our proof of
Theorem 3.1. In Section 5, we will introduce and discuss the reachability relation,
another tool for the proof of our main theorem. Then, we have everything we need
to tackle the proof of our main theorem, which will be done in Sections 7 and 8.

2. Basics

A digraph D is a pair of a non-empty set V D of vertices and an asymmetric
(i.e. irreflexive and antisymmetric) binary relation ED on V D, its edges. For a
subset of vertices X ⊆ V D, let D[X ] := (X,ED ∩X ×X) be the digraph induced
by X . Two vertices x, y ∈ V D are adjacent if either xy ∈ ED or yx ∈ ED. The
out-neighbours or successors of x ∈ V D are the elements of the out-neighbourhood
N+(x) := {y ∈ V D | xy ∈ ED} and its in-neighbours or predecessors are the
elements of the in-neighbourhood N−(x) := {y ∈ V D | yx ∈ ED}. Furthermore,
let D+(x) := D[N+(x)] and D−(x) := D[N−(x)]. If D is vertex-transitive, that
is, if the automorphisms of D act transitively on V D, then the digraphs D+(x)
and D+(y) (the digraphs D−(x) and D−(y)) are isomorphic for any two vertices
x, y and we denote by D+ (by D−, respectively) one element of their isomorphism
class. For induced subdigraphs A and B of D and x ∈ V D, let A+B be the digraph
D[V A ∪ V B], let A+ x = D[V A ∪ {x}], and let A− x = D[V Ar {x}]. If B ⊆ A,
let A− B = D[V A r V B]. An independent vertex set is a set whose elements are
pairwise non-adjacent. By Ik we denote an independent vertex set of cardinality k
and also a digraph whose vertex set is an independet set of cardinality k. It will
always be obvious from the context, whether In describes a vertex set or a digraph.
A tournament is a digraph such that each two of its vertices are adjacent.

For k ∈ N, a k-arc is a sequence x0 . . . xk or k + 1 vertices with xixi+1 ∈ ED
for all i ≤ k − 1. A path (of length ℓ ∈ N) is a sequence x0 . . . xℓ of ℓ + 1 distinct
vertices such that for all i ≤ ℓ− 1 the vertices xi and xi+1 are adjacent. If we have
xixi+1 ∈ ED for all i ≤ ℓ−1 then we call the path directed. Hence, a directed path
of length ℓ is an ℓ-arc all whose vertices are distinct. A digraph is connected if each
two vertices are joined by a path. A vertex, vertex set, or subdigraph separates a
digraph if its deletion leaves more than one component. It separates two vertices,
vertex sets, or subgraphs if these lie in distinct components after the deletion.

A cycle (of length ℓ ≥ 3) is a path of length ℓ− 1 whose end vertices are joined
by an edge. A directed cycle, denoted by Cℓ, is a cycle x1 . . . xℓ−1 either with
xixi+1 ∈ ED and xℓ−1x1 ∈ ED or with xi+1xi ∈ ED and x1xℓ−1 ∈ ED. Triangles
are cycles of length 3. Up to isomorphism, there are two distinct kinds of triangles.
We call those triangles that are not directed transitive. We also denote graphs that
are cycles of length ℓ by Cℓ. It will always be clear from the context whether Cℓ is
a graph or a digraph.
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For an equivalence relation ∼ on V D let D
∼
be the digraph whose vertices are

the equivalence classes of ∼ and where XY ∈ ED
∼
if and only if there are x ∈ X

and y ∈ Y with xy ∈ ED. We call D
∼
a quotient digraph of D (induced by ∼). In

general, this is not a digraph since it may have loops as well as edges XY and Y X .
However, we only consider equivalence relations ∼ such that ED

∼
is an asymmetric

relation. But in each situation in which we consider quotient digraphs D
∼
we will

prove that ED
∼
is asymmetric.

The underlying undirected graph of a digraph D = (V,E) is the graph G =
(V, {{x, y} | xy ∈ E}). A tournament is a digraph whose underlying undirected
graph is a complete graph.

For the remainder of the paper, let N∞ = N∪{ω}. The diameter of D is defined
by

diam(D) = inf{n ∈ N∞ | d(x, y) ≤ n for all x, y ∈ V D}.

A ray in a graph is a one-way infinite path and a double ray is a two-way infinite
path. Two rays are equivalent if for every finite vertex set S both rays lie eventually
in the same component of G− S. This is an equivalence relation whose classes are
the ends of the graph. Rays, double rays, and ends of a digraph are those of its
underlying undirected graph. For abbreviation, we denote by C∞ the directed
double ray.

If the underlying undirected graph of a digraphD is bipartite then D is 2-partite.
If in addition all edges are directed from the same partition set to the other then
we call D bipartite.

3. The main result

In this section, we state our main theorem, the classification of the countable
C-homogeneous digraphs (Theorem 3.1). Afterwards, we describe all the digraphs
that occur in the list and that need some explanations.

Theorem 3.1. A countable digraph is C-homogeneous if and only if it is a disjoint
union of countably many copies of one of the following digraphs:

(i) a countable homogeneous digraph;
(ii) H [In] for some n ∈ N∞ and with either H = S(3) or H = T∧ for some

countable homogeneous tournament T 6= S(2);
(iii) Xλ(T ) for some countable homogeneous tournament T and λ ∈ N∞;
(iv) a regular tree;
(v) DL(∆), where ∆ is a bipartite digraph such that G(∆) is one of

(a) C2m for some integer m ≥ 2,
(b) CPk for some k ∈ N∞ with k ≥ 3,
(c) Kk,l for k, l ∈ N∞, k, l ≥ 2, or
(d) the countable generic bipartite graph;

(vi) M(k,m) for some k ∈ N∞ with k ≥ 3 and some integer m ≥ 2;
(vii) M ′(2m) for some integer m ≥ 2;
(viii) Yk for some k ∈ N∞ with k ≥ 3;
(ix) Cm[Ik] for some k,m ∈ N∞ with m ≥ 3;
(x) Rm for some m ∈ N∞ with m ≥ 3;
(xi) X2(C3)∼, where ∼ is a non-universal Aut(X2(C3))-invariant equivalence re-

lation on V X2(C3); or
(xii) the generic orientation of the countable generic bipartite graph.



4 MATTHIAS HAMANN

Those countable homogeneous digraphs that are not explicitely mentioned within
Theorem 3.1 will be described in Section 6.3.

For a tournament T , let T+ be T together with a new vertex x such that xv ∈
ET+ for all v ∈ V T . Then T∧ is the disjoint union of two copies T+ϕ1, T

+ϕ2

with isomorphisms ϕ1, ϕ2 and with vϕ1uϕ2 ∈ ED if and only if uv ∈ ET+ and
vϕ2uϕ1 ∈ ED if and only if uv ∈ ED.

Let V S(2) be a dense subset of the unit circle such that the angle between any
two points is rational. A vertex x is the successor of a vertex y if the angle between
them is smaller than π modulo 2π (counterclockwise). The resulting tournament
is S(2). Similarly, let V S(3) be a dense subset of the unit circle such that the angle
between any two points is rational, too. Two vertices in S(3) are adjacent if the
angle between them is smaller than 3π/2 modulo 2π (counterclockwise).

For two digraphs D,D′ let the lexicographic product D[D′] be the digraph with
vertex set V D × V D′ and edge set

{(x, x′)(y, y′) | xy ∈ ED or (x = y and x′y′ ∈ ED′)}.1

For a homogeneous tournament T 6= I1 and a cardinal λ, let Xλ(T ) be the
digraph such that every vertex is a cut vertex and lies in λ distinct blocks each of
which is isomorphic to T .

For a bipartite edge-transitive digraph ∆, let DL(∆) be the digraph such that
every vertex is a cut vertex and lies in precisely two blocks each of which is isomor-
phic to ∆ and such that the vertex has its successors in one of the two blocks and
its predecessors in the other.

The complete bipartite graph with one side of size k and the other of size ℓ is
Kk,ℓ. The (bipartite) complement of a perfect matching CPk is a complete bipartite
graph Kk,k where the edges of a perfect matching are removed. A generic bipartite
graph is a bipartite graph with partition {X,Y } such that for each two disjoint
subsets A,B of the same side we find a vertex in the other partition set with A
inside and B outside its neighbourhood.

A digraph is a tree if its underlying undirected graph is a tree. It is regular if
all vertices have the same in-degree and all vertices have the same out-degree (but
these two values need not coincide).

An undirected tree is semiregular if for the canonical bipartition {X,Y } of the
vertices of the tree the vertices in X have the same degree and the vertices in Y
have the same degree. If the degree of the vertices in X is k ∈ N∞ and those in Y
is ℓ ∈ N∞, then we denote the semiregular tree by Tk,ℓ.

Given 2 ≤ m ∈ N and a some k ∈ N∞ with k ≥ 3 consider the tree Tk,m and
let {X,Y } be its canonical bipartition such that the vertices in X have degree m.
Subdivide each edge once and endow the neighbourhood of each x ∈ X with a
cyclic order. For each new vertex v let xv be its unique neighbour in X and denote
by σ(v) the successor of v in N(xv). Then for each y ∈ Y and each w ∈ N(y) we
add an edge directed from w to all σ(u) with u ∈ N(y)r{w}. Finally, we delete the
vertices of the Tk,m together with all edges incident with such a vertex to obtain
the digraph M(k,m).

For 2 ≤ m ∈ N consider the tree T2,2m and let {X,Y } be its canonical biparti-
tion such that the vertices in X have degree 2m. Subdivide every edge once and

1Note that if X ⊆ V D, then D[X] is a subdigraph of D (the restiction of D onto X) and, if
D

′ is a digraph, D[D′] is a new digraph (the lexicographic product).
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enumerate the neighbourhood of each x ∈ X from 1 to 2m in a such way that the
two neighbours of each y ∈ Y have distinct parity. For each new vertex v let xv
be its unique neighbour in X and define σ(v) to be the successor of v in the cyclic
order of N(xv). For any y ∈ Y we have a neighbour ay with even index, and a
neighbour by with odd index. Then we add edges from both ay and σ(ay) to both
by and σ(by). Finally we delete the vertices of T2,2m together with all edges incident
with such a vertex. By M ′(2m) we denote the resulting digraph.

A tripartite digraph D is a digraph whose vertex set can be partitioned into
three sets V1, V2, V3 such that

V E ⊆ (V1 × V2) ∪ (V2 × V3) ∪ (V3 × V1).

The directed tripartite complement of D is the digraph

(V D, (
⋃

i=1,2,3

(Vi × Vi+1))r ED),

where V4 = V1.
For k ∈ N∞, let Yk be the digraph with vertex set V1∪V2∪V3 where the Vi denote

pairwise disjoint independent sets of the same cardinality k such that the induced
subdigraphs Yk[Vi, Vi+1] with vertex sets Vi ∪Vi+1 (for i = 1, 2, 3 with V4 = V1) are
complements of perfect matchings such that all edges are directed from Vi to Vi+1

and such that the directed tripartite complement of Yk is the disjoint union of k
copies of the directed triangle C3.

The digraph Rm for m ∈ N∞ with m ≥ 3 is constructed as follows: take m
pairwise disjoint countably infinite sets Vi for i = 1 . . .m if m is finite and i ∈ Z

otherwise. Then Rm has vertex set
⋃
Vi and edges only between Vi and Vi+1 (with

Vm+1 = V1) such that the digraph induced by Vi and Vi+1 is a countable generic
bipartite digraph such that the edges are directed from Vi to Vi+1.

We call a 2-partite digraph D with partition {X,Y } a generic orientation of
the countable generic bipartite graph if for all finite A,B,C ⊆ X (and all finite
A,B,C ⊆ Y ) there is a vertex v ∈ X (a vertex v ∈ Y , respectively) with A ⊆ N+(v)
and B ⊆ N−(v) and such that v is not adjacent to any vertex of C. A back-and-
forth argument shows that, up to isomorphism, there is a unique generic orientation
of the countable generic bipartite graph. It is easy to verify that the underlying
undirected graph of D is the countable generic bipartite graph (see Section 6.1 for
the definition of a generic bipartite graph).

For most of the digraphs in Theorem 3.1, we refer to their proof of the C-homo-
geneity to [13, 15]. In some cases this was only done for finite menbers of their
class (e.g. in the case of Yk, this was done only for k ∈ N), but the proof for
the infinite members of the classes is completely analogous. The only digraphs of
Theorem 3.1 we have to consider here are the digraphs S(3)[In], the digraphs Rm,
and the generic orientation of the countable generic bipartite graph. Whereas the
latter is a direct consequence of the fact, that it is a homogeneous 2-partite digraph
that has an automorphism that switches its partition sets, we only have to consider
the digraphs Rm and S(3)[In]. The fact that S(3)[In] is C-homogeneous follows
from the homogeneity of S(3) and in the case of Rm, it is an easy consequence of
the fact that Rm[Vi ∪ Vi+1] is the countable homogeneous bipartite digraph and
that two vertices in finite induced subdigraphs lie in the same set Vi if and only
if any path between them has the same number of forward and backward directed
edges modulo m.
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4. Overview of the proof of Theorem 3.1

Let us give a very brief overview of the proof of Theorem 3.1. The main lemma
that we shall use throughout the proof is Lemma 7.1 which says that the out-
neighbourhood of each vertex as well as the in-neighbourhood of each vertex in-
duce a homogeneous digraph. With this in mind, we consider Cherlin’s classifica-
tion of the countable homogeneous digraphs and investigate each of its cases one
after another. If the out-neighbourhood of some vertex is not an independent set
(Section 7), then we can prove the outcome of each case relatively easy. Inter-
estingly, some of the ideas of the proofs of the corresponding cases for undirected
C-homogeneous graphs [11] carries over but have to deal with the new situation
of directed edges. These cases are for example the generic H-free digraphs (ver-
sus generic Kn-free graphs), the generic In-free digraphs (versus generic In-free
graphs), and the (semi-)generic n-partite digraphs (versus the complete n-partite
graphs).

In Section 8, we consider the case that the successors of each vertex form an in-
dependent set. By considering the results of Section 7 for the digraph with all edges
directed in the inverse way, also the predecessors of each vertex form an independent
set. In this situation, we can make use of the notion of the reachability relation by
Cameron et al. [2]. They showed (see Proposition 5.1) that either this equivalence
relation is universal, or every equivalence class induces a bipartite digraph. In the
latter case (Section 8.1), we use the classification of the C-homogeneous bipartite
(di-)graphs (Theorem 6.2) in analogy to the situation where D is locally finite. The
case where the reachability relation is universal does not occur for locally finite
digraphs; but for digraphs of infinite degree, there are such examples. We treat
this case in Section 8.2. The main tool for that part is the classification of the
homogeneous 2-partite digraphs.

In the Sections 7 and 8 we prove that no other digraphs but those listed in Theo-
rem 3.1 are C-homogeneous. The converse implication, that is, that all the digraphs
in Theorem 3.1 are indeed C-homogeneous, was already treated in Section 3.

5. Reachability relation

Let D be a digraph. A walk is a sequence x0 . . . xk of vertices such that xi and
xi+1 are adjacent for all 0 ≤ i < k. If xi−1 ∈ N+(xi) ⇔ xi+1 ∈ N+(xi) for all 0 <
i < k then the walk is called alternating. Two edges on a common alternating walk
are reachable from each other. This defines an equivalence relation, the reachability
relation A. For an edge e ∈ ED, let A(e) be the equivalence class of e and let
〈A(e)〉 be the reachability digraph of D that contains e, that is, the vertex set
incident with some edge in A(e) and edge set A(e). If D acts transitively on the
edges of D, that is, if D is 1-arc transitive, then the digraphs 〈A(e)〉 are isomorphic
for all e ∈ ED and we denote by ∆(D) one digraph of their isomorphism class.

The following proposition is due to Cameron et al.

Proposition 5.1. [2, Proposition 1.1] Let D be a connected 1-arc transitive digraph.
Then ∆(D) is 1-arc transitive and connected. Furthermore, either

(a) A is the universal relation on ED and ∆(D) ∼= D, or
(b) ∆(D) is a bipartite reachability digraph. �

We say that a cycle C witnesses that A is universal if C contains an induced 2-arc
and if there is an edge e on C such that C without the edge e is an alternating walk.
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Lemma 5.2. Let D be a non-empty vertex-transitive and 1-arc transitive digraph
whose reachability relation A is universal. Then D contains a cycle that witnesses
that A is universal.

Proof. AsD is non-empty, it contains some edge xy and, sinceD is vertex-transitive,
it also has some edge yz. Hence, D contains a (not necessarily induced) 2-arc xyz.
By universality of A, there must be a minimal alternating walk P in D whose first
edge is xy and whose last edge is yz. Either this walk is a cycle or there is a vertex
incident with at least three edges of that walk. If the walk is a cycle, then it ob-
viously witnesses that A is universal. If the walk contains a vertex v incident with
three edges of the walk, then one edge incident with v is directed towards v and one
is directed away from v, as otherwise we have a contradiction to the minimality of
the alternating walk. So v is the middle vertex of two 2-arcs uvw and either u′vw
or uvw′ in the digraph (V P,EP ), say u′vw. Then we find a shorter alternating
walk – a proper subwalk of P – either between uv and vw or between u′v and vw
and we are done by induction. (Note that this is not necessarily a contradiction
since, e.g., xyz might be an induced 2-arc but uvw induces a triangle.) �

Lemma 5.2 just tells us that we find some cycle witnessing that A is universal.
Next, we show that we can even find an induced cycle with the same property.

Lemma 5.3. Let D be a non-empty vertex-transitive and 1-arc transitive digraph
whose reachability relation A is universal. If D contains some cycle witnessing that
A is universal, then it contains an induced such cycle of at most the same length.

Proof. Let us suppose that none of the minimal cycles witnessing the universality
of A is induced. Let C be such a cycle of minimal length. This exists by Lemma 5.2.
Let xy ∈ EC such that C without the edge xy is an alternating walk P . Since C
is not induced, it has a chord uv. If u and v lie in the same set of the canonical
bipartition of V P , then the subwalk uPv together with the edge uv is a smaller
cycle witnessing that A is universal. By minimality of C, this cannot be. So u and v
lie in distinct sets of the canonical bipartition of P . But then we also find a smaller
cycle in C together with the edge uv: if the out-degree of v in P is 0, then we
take uv together with the subwalk of C that contains xy, and otherwise we take uv
together with uPv. This contradiction to the minimality of C shows the lemma. �

6. Some classification results of homogeneous structures

6.1. (C-)Homogeneous bipartite graphs and digraphs. In this section, we
cite the classifications of the countable (C-)homogeneous bipartite graphs. For
countable (C-)homogeneous bipartite digraphs, then the analogous theorems hold.

A bipartite graph G (with bipartition {X,Y }) is homogeneous bipartite if every
isomorphism between two isomorphic finite induced subgraphs A and B of G that
preserves the bipartition (that means that V A ∩ X is mapped onto V B ∩ X and
V A∩Y is mapped onto V B∩Y ) extends to an automorphism of G that preserves the
bipartition. We call G connected-homogeneous bipartite, or simply C-homogeneous
bipartite, if every isomorphism between two isomorphic finite induced connected
subgraphs A and B of G that preserves the bipartition extends to an automorphism
of G that preserves the bipartition. The same notions apply to bipartite and 2-
partite digraphs.

We begin with the classification of the homogeneous bipartite graphs.
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Theorem 6.1. [9, Remark 1.3] A countable bipartite graph is homogeneous if and
only if it is isomorphic to one of the following graphs:

(i) a complete bipartite graph;
(ii) an empty bipartite graph;
(iii) a perfect matching;
(iv) the bipartite complement of a perfect matching; or
(v) the countable generic bipartite graph. �

The generic bipartite graph is the bipartite graph G with bipartition {X,Y }
such that for every two finite subsets UX ,WX ⊆ X and every two finite subsets
UY , VY ⊆ Y there exists x ∈ X and y ∈ Y with UX ⊆ N(y) and VX ∩ N(y) = ∅
and with UY ⊆ N(x) and VY ∩N(x) = ∅.

The following theorem is the classification result of the countable C-homogeneous
bipartite graphs. Its proof is uses the just stated classification of the countable
homogeneous bipartite graphs, Theorem 6.1.

Theorem 6.2. [15, Theorem 6.4] Let G be a countable connected graph. Then G
is C-homogeneous bipartite if and only if it is isomorphic to one of the following
graphs:

(i) a cycle C2m for some m ∈ N with m ≥ 2;
(ii) an infinite semiregular tree Tk,ℓ for some k, ℓ ∈ N∞ with k, ℓ ≥ 2;
(iii) a complete bipartite graph Km,n for some m,n ∈ N∞ with m,n ≥ 1;
(iv) a complement of a perfect matching CPk for some k ∈ N∞ with k ≥ 3; or
(v) the countable generic bipartite graph. �

Note that Theorems 6.1 and 6.2 also apply to homogeneous and C-homogeneous
bipartite digraphs, but not to 2-partite digraphs. The 2-partite digraphs are in the
case of homogeneity subject of the next section.

6.2. Homogeneous 2-partite digraphs. As mentioned before, a 2-partite di-
graph D with partition {X,Y } is homogeneous if every isomorphism ϕ between
finite induced subdigraphs A and B with (V A∩X)ϕ ⊆ X as well as (V A∩Y )ϕ ⊆ Y
extends to an automorphism α of D with Xα = X and Y α = Y . Let us state the
classification of the countable 2-partite digraphs:

Theorem 6.3. [14, Theorem 3.1] Let D be a countable 2-partite digraph with par-
tition {X,Y }. Then D is homogeneous if and only if one of the following cases
holds:

(i) D is a homogeneous bipartite digraph;
(ii) D ∼= CP ′k for some k ∈ N∞ with k ≥ 2;
(iii) D is the countable generic 2-partite digraph; or
(iv) D is the generic orientation of the countable generic bipartite graph. �

For k ∈ N∞ with k ≥ 2, let CP ′k be the 2-partite digraph with partition {X,Y }
such that ECP ′k ∩ (X×Y ) induces a CPk on V CP ′k and ECP ′k ∩ (Y ×X) induces a
perfect matching on V CP ′k. Note that its underlying undirected graph is a complete
bipartite graph.

We call a 2-partite digraph D with partition {X,Y } generic if for every finite
A,B ⊆ X (for every finite A,B ⊆ Y ) there is a vertex v ∈ Y (a vertex v ∈ X ,
respectively) with A ⊆ N+(v) and B ⊆ N−(v). A back-and-forth argument shows
that there is a unique countable generic 2-partite digraph (up to isomorphism).
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Similarly, we call a 2-partite digraph D with partition {X,Y } a generic orientation
of a generic bipartite graph if for all pairwise disjoint finite subsets AX , BX , CX ⊆ X
and AY , BY , CY ⊆ Y there are vertices y ∈ Y and x ∈ X with AX ⊆ N+(y),
BX ⊆ N−(y) and CX ⊆ y⊥ as well as with AY ⊆ N+(x), BY ⊆ N−(x) and
CY ⊆ x⊥. It is easy to verify that its underlying undirected graph is a generic
bipartite graph.

6.3. Homogeneous digraphs. In this section, we state Cherlin’s classification of
the countable homogeneous digraphs.

Theorem 6.4. [4, 5.1] A countable digraph is homogeneous if and only if it is
isomorphic to one of the following digraphs:

(i) In for some n ∈ N∞;
(ii) T [In] for some homogeneous tournament T 6= I1 and some n ∈ N∞;
(iii) In[T ] for some homogeneous tournament T 6= I1 and some n ∈ N∞;
(iv) the countable generic H-free digraphs for some set H of finite tournaments;
(v) the countable generic In-free digraphs for some integer n ≥ 3;
(vi) T∧ for some tournament T ∈ {I1, C3,Q, T

∞};
(vii) the countable generic n-partite digraph for some n ∈ N∞ with n ≥ 2;
(viii) the countable semi-generic ω-partite digraph;
(ix) S(3);
(x) the countable generic partial order P; or
(xi) P(3). �

The homogeneous tournaments are the already defined tournaments I1, C3, and
S(2) together with two more (see [20, Theorem 3.6]): one is the generic tourna-
ment T∞ that is the Fräıssé limit (see [23] for more on these limits) of all finite
tournaments, so the unique homogeneous tournament that embeds all finite tour-
naments. The remaining tournament is the tournament Q with vertex set Q and
edges xy if and only if x < y.

For a set H of finite tournaments, the countable generic H-free digraph is the
Fräıssé limit of the class of all finite H-free digraph. Similarly, for n ∈ N, the
countable generic In-free digraph is the Fräıssé limit of the class of all finite In-
free digraphs and the countable generic n-partite digraph is the Fräıssé limit of all
orientations of finite complete n-partite graphs (where some partition classes may
have no element).

The countable semi-generic ω-partite digraph is the Fräıssé limit of those finite
complete ω-partite digraphs that have the additional property that

(1) for each two pairs (x1, x2), (y1, y2) from distinct classes, the number of
edges from {x1, x2} to {y1, y2} is even.

By P we denote the countable generic partial order, the Fräıssé limit of all finite
partial orders. Every partial order P is in a canonical way a digraph: for two
elements x, y of P we have xy ∈ EP if and only if x < y. We call digraphs that are
obtained from partial orders in this way also partial orders. Note that no partial
order contains an induced 2-arc.

It remains to define the variant P(3) of P . This digraph was first described in [4].
A subset X of V P is dense if for all a, b ∈ V P with ab ∈ EP there is a vertex c ∈ X
with ac, cb ∈ EP . Let {P0, P1, P2} be a partition of V P into three dense sets. For
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this definition, let x⊥y if x and y are not adjacent. Let H = (P0, P1, P2) be the
digraph on V P such that for all x, y ∈ Pi we have

xy ∈ EH if and only if xy ∈ EP

and such that for all x ∈ Pi and y ∈ Pi+1 we have

xy ∈ EH if and only if yx ∈ EP ,

yx ∈ EH if and only if x⊥y ∈ EP , and

x⊥y ∈ EH if and only if xy ∈ EP .

Let p be an element not in V P . Then P(3) is the digraph on the vertex set V P∪{p}
such that (p⊥, p→, p←) = H, where

p⊥ := V P rN(p),

p→ := N+(p), and

p← := N−(p).

7. The case: D+ 6∼= In 6∼= D−

In this section we will investigate the situation that D+ contains some edge.
Before we tackle this situation, we first show some general lemmas. The following
is our key lemma, which underlines our interest in the homogeneous digraphs:

Lemma 7.1. [13, Lemma 4.1] For every C-homogeneous digraph D, the two di-
graphs D+ and D− are homogeneous digraphs. �

By this lemma, we are able to go through the list of countable homogeneous
digraphs and look at each of them one by one, which is the general strategy for the
proof of our main theorem.

Lemma 7.2. Let D be a countable connected C-homogeneous digraph with infinite
out-degree. Then either the in-degree is also infinite or D+ is isomorphic to either
Iω or Iω [C3].

Proof. The claim follows directly from Theorem 6.4 and Lemma 7.1. �

As the locally finite C-homogeneous digraphs have already been classified [13],
the previous lemma allows to concentrate (mostly) on digraphs with infinite D+.

Lemma 7.3. Let D be a C-homogeneous digraphs such that it contains isomorphic
copies of every orientation of C5. Then the diameter of D is 2.

Proof. Since D contains some orientation of C5, it contains two non-adjacent ver-
tices. Hence, the diameter of D is at least 2. Let us suppose that D does not have
diameter 2. Let x and y be vertices of distance 3 in D and P be a shortest path
between them. Then there is an injection from P into one of the orientations of C5.
Let C be a copy of this orientation in D. By C-homogeneity, we find an automor-
phism α of D that maps P into C. Let z be the vertex on C that is adjacent to
the end vertices of Pα. Then zα−1 is adjacent to x and y, which is a contradiction
to the choice of these two vertices. Thus, D has diameter 2. �

Lemma 7.4. Let D be a C-homogeneous digraph such that it contains isomorphic
copies of all orientations of C4. Then each two non-adjacent vertices of D have a
common successor and a common predecessor.
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Proof. Let a and b be two non-adjacent vertices of D. By Lemma 7.3 there is a
vertex x that is adjacent to a and b. Since every orientation of C4 embeds into D,
there is one such copy that has an isomorphic image of D[a, x, b] in D such that the
images of a and b are the predecessors of the fourth vertex y, and there is one such
image such that the images of a and b are the successors of the fourth vertex y′.
By C-homogeneity, we can map D[a, x, b] onto such copies by automorphisms α, β
of D. Then yα−1 and y′β−1 verify the assertion. �

7.1. Generic In-free digraphs as D
+. Throughout this section, let D be a

countable connected C-homogeneous digraph such that D+ is isomorphic to the
countable generic In-free digraph for some integer n ≥ 3. (Note that n = 2 implies
that D+ is a tournament. We consider this case in a later section.) Our first step
is to show that D+ and D− are isomorphic.

Lemma 7.5. We have D+ ∼= D−.

Proof. Let F be any finite In-free digraph. Then we find an isomorphic copy of F
in D+ and, in addition, we find a vertex x ∈ V D+ with yx ∈ ED for all y ∈ V F .
Hence, D− contains an isomorphic copy of F .

Since D− contains every finite In-free digraph, it is a direct consequence of
Theorem 6.4 that D− is either a generic Im-free digraph for some m ≥ n or a
generic H-free digraph with H = ∅. The latter or the first with m > n is impossible
since they contain a vertex with n independent successors. So D− is also the
countable generic In-free digraph. �

Our next aim is to show that every finite induced In-free subdigraph of D lies
in D+(x) for some x ∈ V D. We do this in two steps and begin with the case that
the subdigraph is some Im with m < n.

Lemma 7.6. If H ⊆ D is an isomorphic copy of Im for some m < n, then there
exist vertices x, y ∈ V D with H ⊆ D+(x) and with H ⊆ D−(y).

Proof. Note that d− 6= 0. So for m = 1 the assertion is obvious and for m = 2
it follows from Lemma 7.4. Let m ≥ 3 and let H ∼= Im be a subdigraph of D
with V H = {x1, . . . , xm}. By induction, we find a, b ∈ V D with {x1, . . . , xm−1} ⊆
N+(a) and {x2, . . . , xm} ⊆ N+(b). The digraph F := H + a + b is connected
because of m ≥ 3. Since F is In-free, D

+(a) contains an isomorphic copy F ′ of F .
Applying C-homogeneity, we find an automorphism α of D that maps F ′ to F . So
we have H ⊆ F ′ ⊆ D+(aα).

By an analogous argument, we find y ∈ V D with H ⊆ D−(y). �

Lemma 7.7. If H ⊆ D is a finite induced In-free digraph, then there exist vertices
x, y ∈ V D with H ⊆ D+(x) and H ⊆ D−(y).

Proof. If H ∼= Im for some m < n, then the assertion follows from Lemma 7.6. So
we may assume that H has a vertex a with N+(a) ∩ V H 6= ∅. By induction, there
is a vertex u in D with H − a ⊆ D+(u). Thus, H + u is connected and In-free.
Applying an analogous argument as in the proof of Lemma 7.6, we find a vertex x
in D with H ⊆ H + u ⊆ D+(x).

The existence of y follows analogously. �

Our next aim is to show that, for any two disjoint finite induced In-free digraphs
A and B, we find a vertex x in D with A ⊆ D+(x) and B ⊆ D−(x). We do



12 MATTHIAS HAMANN

not know whether this is true, even if we assume that A is maximal In-free in
A + B. In particular, we need more structure on D[N(x)] than we have till now.
But if we make the additional assumption that we find an isomorphic situation
somewhere in D, that is, if we find subdigraphs A′ and B′ such that there exists an
isomorphism ϕ : A +B → A′ + B′ with Aϕ = A′ and Bϕ = B′ and if A′ + B′ has
the claimed property, then we find such a vertex x without any further knowledge
on the structure of D[N(x)].

Lemma 7.8. Let A be a finite induced In-free subdigraph of D and let z ∈ V D such
that z has a predecessor in A. Then there exists a vertex x ∈ V D with A ⊆ D−(x)
and z ∈ N+(x).

Proof. Due to Lemma 7.7, we find a vertex v ∈ V D with A ⊆ D+(v). Let a ∈ V A
be a predecessor of z. Let x1, . . . , xn−1 be n − 1 independent vertices in N+(v)
with a′xi ∈ ED for all a′ ∈ V A. These vertices exist as D[A, x1, . . . , xn−1] is
In-free by construction and as D+ is the generic In-free digraph. All the vertices
z, x1, . . . , xn−1 lie in N

−(a), so they cannot be independent. By the choice of the xi,
we know that z must be adjacent to at least one of them, say xi. As A + z is not
In-free, we do not have zxi ∈ ED. Hence, we have xiz ∈ ED and xi is a vertex we
are searching for. �

Lemma 7.9. Let A,B,A′, B′ be finite induced In-free subdigraphs of D such that
an isomorphism ϕ : A′ + B′ → A + B with A′ϕ = A and B′ϕ = B exists. If A is
maximal In-free in A+B and if D has a vertex v with A′ ⊆ D+(v) and B′ ⊆ D−(v),
then there exists x ∈ V D with A ⊆ D+(x) and B ⊆ D−(x).

Proof. If A+B is connected, then the assertion is a direct consequence of C-homo-
geneity and, if B has no vertex, then the assertion follows from Lemma 7.7. So we
may assume that there is some z ∈ V B. Let z′ = zϕ−1.

By induction, we find a vertex w with A ⊆ D+(w) and B − z ⊆ D−(w). Hence,
we can map A′ +B′ − z′+ v onto A+B− z +w by an automorphism α of D with
uα = uϕ for all u ∈ V (A + B − z). Taking A′α, B′α, z′α, and vα instead of A′,
B′, z′, and v shows that

(2) we may assume A′ = A and B′ − z′ = B − z.

Let u ∈ V A be in a component of A + B that does not contain z. Because of
n ≥ 3 and z′v ∈ ED, the subdigraph D[v, z, z′] is In-free. So by Lemma 7.8 we find
a vertex y with v, z, z′ ∈ N−(y) and u ∈ N+(y). The digraphs (A + y) + B and
(A+y)+B′ are isomorphic and have less components than A+B. As A′+y ⊆ D+(v)
and B′ ⊆ D−(v), we find x ∈ V D with A+y ⊆ D+(x) and B ⊆ D−(x) by induction
on the number of components, which finishes the proof. �

Now we are able to prove the main result of this section:

Proposition 7.10. Let D be a countable connected C-homogeneous digraph such
that D+ is the countable generic In-free digraph for some n ≥ 3. Then D is
homogeneous.

Proof. Let A and B be two finite isomorphic induced subdigraphs of D and let
ϕ : A→ B be an isomorphism. If A is conntected, then ϕ extends to an auto-
morphism of D by C-homogeneity. So let us assume that A is not connected. Let
A1 ⊆ A be maximal In-free with vertices from at least two distinct components of A
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and let A2 ⊆ A − A1 be maximal In-free such that for some x ∈ V D there is an
isomorphic copy of D[A1, A2] in D[N(x)] such that the image of A1 lies in D+(x)
and the image of A2 lies in D−(x). For B1 := A1ϕ ⊆ B and B2 := A2ϕ ⊆ B,
the corresponding statements hold. According to Lemma 7.9, we find two vertices
xA and xB with A1 ⊆ D+(xA) and A2 ⊆ D−(xA) and with B1 ⊆ D+(xB) and
B2 ⊆ D−(xB). Then xA has no neighbour in A − (A1 + A2) by the maximalities
of A1 and A2 and, analogously, xB has no neighbour in B−(B1+B2). Hence, ϕ ex-
tends to an isomorphism ϕ′ from A+xA to B+xB and these two subdigraphs of D
have less components than A and B. By induction on the number of components,
ϕ′ extends to an automorphism of D and so does ϕ. �

7.2. Generic H-free digraphs as D
+. In the following, let D be a countable

connected C-homogeneous digraph such that D+ is the countable generic H-free
digraph for some set H of finite tournaments on at least three vertices. (If we
exclude the tournament on two vertices, then D+ is an edgeless digraph. These
will be investigated in Section 8.) In this section, we investigate the largest class of
homogeneous digraphs: the class of the countable generic H-free digraphs contains
uncountably many elements, as Henson [18] proved, whereas all the other classes
contain only countably many elements.

Lemma 7.11. There is a set H′ of finite tournaments on at least three vertices
such that D− is the generic H′-free digraph.

Proof. With a similar argument as in the proof of Lemma 7.5, the assertion follows
from Theorem 6.4. �

For the remainder of this section, let H′ be the finite set of tournaments we
obtain from Lemma 7.11.

Our next aim is to show that every finite induced H-free subdigraph of D lies in
D+(x) for some x ∈ V D.

Lemma 7.12. For every two disjoint finite induced H-free tournaments A and B
in D, there exists a vertex x with A+B ⊆ D+(x).

Proof. If |V A| = 1 = |V B|, then the assertion follows directly from Lemma 7.4,
because D+ embeds every orientation of C4. So we may assume |V A| ≥ 2 and
|V A| ≥ |V B|. Let a ∈ V A such that a has a successor in A− := A − a. By
induction on |V A| + |V B|, we find a vertex v with A− + B ⊆ D+(v). Since D+

is generic H-free, there is a vertex w ∈ N+(v) that has precisely one successor a′

in A− and one successor b in B. If a and w are not adjacent, then A + B + w is
connected and H-free. Hence, the out-neighbourhood of some vertex of D contains
an isomorphic copy of A + B + w and, by C-homogeneity, there exists a vertex x
with A+B+w ⊆ D+(x). So we assume in the following that w and a are adjacent.
Note that the only triangle in A+B+w is the transitive triangle D[a, a′, w]. Hence,
if H does not contain the transitive triangle, then A+B+w is H-free and connected
and we find a vertex x with A+B + w ⊆ D+(x). So we assume for the remainder
of this proof that H contains the transitive triangle.

First, we consider the case |V A| = 2 and |V B| = 1. If wa ∈ ED, then A+B ⊆
D+(w) and w is a vertex we are searching for. If aw ∈ ED, let w′ ∈ N+(w)
with w′a′, w′b ∈ ED, which exists as D+(w) is generic H-free. If aw′ ∈ ED, then
D[w,w′, a′] is a transitive triangle that lies in D+(a), which is impossible by the
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choice ofH. Hence, either w′a ∈ ED or a and w′ are not adjacent, and the assertion
follows as before, just with w instead of w′.

The next case that we look at is |V A| = 2 = |V B|. Let b′ be the second vertex
in B. As D+(v) is generic H-free, we find a vertex c ∈ N+(v) with cb′ ∈ ED but
that is adjacent to neither a′ nor b. If a and c are adjacent, then D[a, a′, c, b′, b]
is connected and H-free, so we find x ∈ V D with A + B + c ⊆ D+(x). Thus, let
us assume that a and c are not adjacent. Then let d ∈ N+(v) with da′, dc ∈ ED
and b, b′ /∈ N(d), which exists as D+(v) is generic H-free. If a and d are not
adjacent, then D[a, a′, d, c, b′, b] is connected and H-free, so we find x ∈ V D with
A + B + c + d ⊆ D+(x) as before. Hence, we may assume that a and d are
adjacent. Considering the edge between b and b′ and the edge between a and d,
we find by induction a vertex v′ with a, b′, d ∈ N+(v′). The connected subdigraphs
D[a′, d, v′, b′, b] and D[a′, a, v′, b′, b] are isomorphic, so we find by C-homogeneity
and automorphism α of D that fixes a′, v′, b′, and b and maps d to a. Then A+B =
(A− +B + d)α ⊆ D+(vα) proves the assertion in this case.

The only remaining case is |V A| ≥ 3. Let â be a vertex in N+(v) such that there
exists an isomorphism from A−+B+â to A+B that fixes A−+B. This vertex exists
as A+B is H-free and hence has an isomorphic copy in the generic H-free digraph
D+(v). As D+(v) is homogeneous, we then may assume that this copy conincides
with A+B on A−+B. Note that we may have chosen w such that w and â are not
adjacent. Let c ∈ V A− be a vertex that is not adjacent to w. If a and â are adjacent,
let F = D[â, a, w, b] and let F = D[â, c, a, w, b] otherwise. Then F is connected
contains no triangle, so it is H-free and we find a vertex x with F ⊆ D+(x). Then
there is an isomorphism from A− +B + x+ â to A+B + x that fixes A− +B + x.
This isomorphism extends to an automorphism α of D by C-homogeneity. Then
A+B = (A− +B + â)α ⊆ D+(vα) shows the remaining case of the lemma. �

Lemma 7.13. For every finite induced H-free subdigraph A of D, there exists a
vertex x with A ⊆ D+(x).

Proof. If A is connected, then we find an isomorphic copy of A in some D+(y),
as D+ is generic H-free. So C-homogeneity implies the assertion. Next, let us
assume that A has precisely two components A1 and A2. If both these components
are tournaments, then Lemma 7.12 implies the assertion. So we may assume that
A1 has two non-adjacent vertices a1 and a2. Furthermore, we may assume that
A−1 := A1 − a1 is connected. By induction, there exists a vertex v ∈ V D with
A−1 + A2 ⊆ D+(v). As D+(v) is generic H-free, we find a vertex w ∈ N+(v) with
precisely one neighbour in A2 and such that a2 is its only neighbour in A−1 . As a1
and a2 are not adjacent, the digraph A+ w is connected and H-free. So we find a
vertex x of D with A ⊆ A+ w ⊆ D+(x).

Let us now assume that A consists of more than two components A1, . . . , An with
n ≥ 3. Let a ∈ V A1. By induction, we find a vertex v ∈ V D with A− a ⊆ D+(v).
As D+(v) is generic H-free, there is a vertex w ∈ N+(v) that has no neighbour
in A1 − a and precisely one neighbour in each Ai for 2 ≤ i ≤ n. Then A + w is
H-free and has at most two components. By the previous cases, we find a vertex x
with A ⊆ A+ w ⊆ D+(x) as claimed. �

Note that we also obtain with the same arguments as in the proofs of Lemma 7.12
and 7.13 that for every finite induced H′-free subdigraph A of D we find some
x ∈ V D with A ⊆ D−(x).
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Lemma 7.14. Let A and A′ be finite induced H-free subdigraphs of D and let
B and B′ be finite induced H′-free subdigraphs of D such that an isomorphism
ϕ : A′ + B′ → A + B with A′ϕ = A and B′ϕ = B exists. If A is maximal H-free
in A + B and if D has a vertex v with A′ ⊆ D+(v) and B′ ⊆ D−(v), then there
exists a vertex x ∈ V D with A ⊆ D+(x) and B ⊆ D−(x).

Proof. If A + B is connected, then the assertion is a direct consequence of C-
homogeneity and, if |V B| = 0, then the assertion follows from Lemma 7.13. So let
us assume that A+B is not connected and that B has some vertex z. Let z′ = zϕ.
As in the proof of Lemma 7.9,

(3) we may assume A′ = A and B′ − z′ = B − z.

By maximality of A in A + B being H-free, we conclude z /∈ N+(v) and that A
contains from each component of A + B at least one vertex. Let a ∈ V A be in a
component of A+B that does not contain z. Note that we may assume z /∈ N−(v),
as otherwise v is a vertex we are searching for. Hence, z and v are not adjacent.
So D[a, v, z, z′] is H′-free and we find y ∈ V D with D[a, v, z, z′] ⊆ D−(y) due
to the corresponding statement of Lemma 7.13 for H′ instead of H. Because of
vy ∈ ED, we know that A′ + y is H-free. Note that there exists an isomorphism
from (A + y) + B to (A′ + y) + B′ extending ϕ and that A′ + y ⊆ D+(v) and
B′ ⊆ D−(v). By induction on the number of components of A + B, we find a
vertex x ∈ V D with A+y ⊆ D+(x) and B ⊆ D−(x). This shows the assertion. �

Now we are ready to prove the main result of this section:

Proposition 7.15. Let D be a countable connected C-homogeneous digraph such
that D+ is the countable generic H-free digraph for some set H of finite tourna-
ments. Then D is homogeneous.

Proof. Let A and B be two isomorphic finite induced subdigraphs of D and let
ϕ : A→ B be an isomorphism. Let A+ be a maximal induced H-free subdigraph
of A. Note that A+ contains at least one vertex from each component of A. Let
A− ⊆ A − A+ be maximal H′-free such that for some vertex v of D there exists
an embedding ψ : A+ + A− → D[N(v)] with A+ψ ⊆ D+(v) and A−ψ ⊆ D−(v).
According to Lemma 7.14, there is a vertex x ∈ V D with A+ ⊆ D+(x) and A− ⊆
D−(x). By the maximimal choices of A+ and A−, we conclude that x is not adjacent
to any vertex of A outside A++A−. Let B+ = A+ϕ and B− = A−ϕ. By the same
argument as above, there is also a vertex y with B+ ⊆ D+(y) and B− ⊆ D−(y)
such that no other vertex of B is adjacent to y. So ϕ extends to an isomorphism
ϕ′ from A+ x to B + y. Since A+ x is connected, we can extend ϕ′, and thus also
ϕ, to an automorphism of D by C-homogeneity. �

7.3. Generic n-partite or semi-generic ω-partite digraph as D
+. Within

this section, let us assume that D is a countable connected C-homogeneous digraph
such that D+ is either a countable generic n-partite digraph for some n ∈ N∞ with
n ≥ 2 or the countable semi-generic ω-partite digraph.

Lemma 7.16. We have D+ ∼= D−.

Proof. First, let us assume that D+ is either generic n-partite for some n ≥ 3 or
semi-generic ω-partite. Since for every k < n every finite complete k-partite digraph
(with the property (1) if D+ is semi-generic ω-partite) lies in D−(y) ∩ D+(x) for
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some edge xy ∈ ED, we conclude from Theorem 6.4 that D− is either a countable
generic H-free digraph for some set H of finite tournaments or a countable generic
m-partite digraph for some m ≥ n − 1 or the countable semi-generic ω-partite
digraph. The first digraph is excluded by Section 7.2.

If D+ is generic n-partite, then we can also exclude the countable semi-generic ω-
partite digraph for D−, since D− contains every finite complete k-partite digraph.
For xy ∈ ED, we find some (k + 1)-partite digraph in D−(y): the digraph A + x
where A is an arbitrary complete k-partite digraph in D+(x) ∩D−(y). Hence, we
have m ≥ n and by symmetry we also have n ≥ m, so D+ ∼= D−.

If D+ is semi-generic ω-partite, then we find for every k < ω some complete k-
partite digraph in D−, so D− is either generic or semi-generi ω-partite. We exclude
the first possibility by our previous situation. Thus, we have also D+ ∼= D− in this
case.

Now we consider the remaining situation, that is, that D+ is the countable
generic 2-partite digraph. Then, for every edge xy ∈ ED, the digraph D−(y)
contains the complete 2-partite digraph with x on one side and with infinitely many
successors of x on the other side. Due to Theorem 6.4, we conclude that the only
possibilities for D− are P , P(3), T [Iω] for some homogeneous tournament T 6= I1,
the genericH-free digraphs, which are excluded by Section 7.2, or the (semi-)generic
n-partite digraph, which must be the generic 2-partite digraph due to our previous
situations. If D− is either P or P(3), then D− has a vertex with three successors
in D− that induce an edge with an isolated vertex. Since this digraph does not lie
in the countable generic 2-partite digraph, D− is neither P nor P(3).

If D− ∼= T [Iω] for an infinite homogeneous tournament T , then D+ contains an
arbitrarily large tournament, which cannot lie in any 2-partite digraph. Let us sup-
pose D− ∼= C3[Iω ]. Let x ∈ V D and D[v1, v2, v3] be a directed triangle in D−(x).
Considering D+(vi), we know that vi has successors in precisely one set of the 2-
partition of D+(x). Hence for two vi, these sets coincide. Applying C-homogeneity
to fix x and rotate D[v1, v2, v3] by an automorphism of D, we conclude that these
sets coincide for all vi and, applying C-homogeneity once more, we know that the
same holds for all directed triangles in D−(x). Thus, all vertices in N−(x) have
their successors in N+(x) in the same partition set of D+(x), which contradicts
C-homogeneity, as we can fix x and map one vertex of N+(x)∩N+(v1) onto one of
its successors in D+(x) by an automorphism of D since D is C-homogeneous. So
we have D− 6∼= C3[I∞]. Hence, we have shown the assertion in this case, too. �

Now we are able to prove the main result of this section:

Proposition 7.17. Let D be a countable connected C-homogeneous digraph such
that D+ is either the countable generic n-partite digraph for some n ∈ N∞ with
n ≥ 2 or the countable semi-generic ω-partite digraph. Then D is homogeneous.

Proof. Let x ∈ V D and a, b ∈ N+(x) with ab ∈ ED. As D− ∼= D+ holds by
Lemma 7.16, we have

(4) N−(b)rN(x) ⊆ N(a).

Note that all partition sets of D−(b) except for the one containing x have elements
in N+(x). A direct consequence is the following:
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(5) For every maximal tournament in D+(x) that contains b and has no
edge directed away from b, this tournament has vertices of each parti-
tion set of D−(b) except for the one containing x.

Let us show that also

(6) N+(b)rN(x) ⊆ N(a)

holds. Let us suppose that (6) does not hold. Then we find y ∈ N+(b) that is
adjacent to neither a nor x. As an induced directed cycle of length 4 embeds
into D+, C-homogeneity implies the existence of a vertex c ∈ N+(y)∩N−(a) such
that b and c are not adjacent and, furthermore, we find a vertex z ∈ V D with
D[a, b, y, c] ⊆ D+(z) by C-homogeneity. The structure of D−(a) implies that x is
adjacent to either c or z. First, let us assume that x and z are adjacent. Since
D[a, x, y] does not embed into D+(z), we have xz ∈ ED and, as D[a, b, z] is a
triangle in D+(x), we have n ≥ 3 if D+ is generic n-partite. Let {vi | i ∈ I} be
a maximal set in N+(z) such that X := {a, b, vi | i ∈ I} induces a tournament
and such that D[a, b, c, y] ⊆ D+(vi) for all i ∈ I. By its maximality and due to
the structure of D+, the set X contains vertices from each maximal independent
set in N+(z). Due an analogue of (5) for z instead of x, we know that X meets
every maximal independent set of N−(b) but the one that contains z. So x must
be non-adjacent to some vi. As D[vi, c, x] ⊆ D−(a), we conclude that x and c are
adjacent. So if we replace z by vi if necessary, we may assume that x and c are
adjacent but x and z are not.

Because D[x, y, z], a digraph on three vertices with precisely one edge, cannot
lie in D−(c), we have xc /∈ ED. So cx ∈ ED and D[x, b, y, c] is an induced directed
cycle. As C4 embeds into D+, we find z′ ∈ V D with D[x, b, y, c] ⊆ D+(z′) by
C-homogeneity. Considering D−(b), we conclude that z and z′ are adjacent. The
corresponding edge is not z′z, as D[x, y, z] cannot lie in D+(z′). Hence, we have
zz′ ∈ ED. Because D[a, y, z′] lies in D+(z), we know that a and z′ are adjacent
and, as D[a, x, y] cannot lie in D+(z′), the corresponding edge must be az′. Since
D+(z) contains the triangle D[b, y, z′], we have n ≥ 3 if D+ is generic n-partite.
Similarly as above, we choose a maximal set {wi | i ∈ I} in N+(z′) such that the
set X = {b, y, wi | i ∈ I} induces a tournament and such that D[b, y, c, x] ⊆ D+(wi)
for all i ∈ I. By its maximality, the set X contains vertices from each maximal
independent set in N+(z′). Then an analogue of (5) for z′ instead of x implies that
X meets every maximal independent set of N−(b) but the one that contains z′.
So a must be non-adjacent to some wi and z is adjacent to every wj , in particular
to wi. But zwi ∈ ED is impossible, as D[a, wi, y] does not embed into D+(z),
and wiz ∈ ED is impossible, as D[x, y, z] does not embed into D+(wi). This
contradiction proves (6).

Now we have shown N(b) r N(x) ⊆ N(a). For an induced directed cycle
x1x2 . . . xm (with m ≤ 5) in N+(x) with xm−1 = a and x1 = b = xm, we use
C-homogeneity to find an automorphism that fixes x and rotates the cycle back-
wards so that we can conclude inductively

N(xm)rN(x) ⊆ N(xm−1)rN(x) ⊆ . . . ⊆ N(x2)rN(x) ⊆ N(x1)rN(x).

Because of x1 = xm, all inclusions are equalities of the involved sets. In particular,
we have N(a) r N(x) = N(b) r N(x). Note that any two vertices in N+(x) lie
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on an induced directed cycle of length at most 4. Hence, we can apply the above
argument and obtain

(7) N(u)rN(x) = N(v)rN(x) for all u, v ∈ N+(x).

By symmetry and as D+ ∼= D− due to Lemma 7.16, we have

(8) N(u)rN(x) = N(v)rN(x) for all u, v ∈ N−(x).

Let us show for A := N(a)rN(x) the following:

(9) A is an independent set.

Let us suppose that there are two vertices u, v ∈ A with uv ∈ ED. Note that b
is adajcent to u and v by (7). We find w ∈ N+(u) ∩N+(v). The analogue of (7)
for u instead of x gives us N(v)rN(u) = N(w)rN(u), which shows that w is not
adjacent to x. If av ∈ ED, then we obtain a contradiction to an analogue of (8)
as x lies in N(a) r N(v) but not in N(u) r N(v). Thus, we have va ∈ ED and
we conclude vb ∈ ED analogously. Due to the structure of D+(v) we know that w
has to be adjacent to either a or b. First, let us assume that a and w are adjacent.
If aw ∈ ED, then we conclude x ∈ N(a) r N(w) = N(v) rN(w) by an analogue
of (8), which contradicts v ∈ A, and if wa ∈ ED, then x is not adjacent to both end
vertices of vw, which is impossible in D−(a). We obtain analogous contradictions
if w and b are adjacent. Hence, we have shown (9).

Let us show

(10) V D = A ∪N(x).

First, let y ∈ N(x) and let u be a neighbour of y. If u lies outside N(x), then we
find a vertex v with D[x, y, u] ⊆ D−(v) due to C-homogeneity and as D− contains
an isomorphic copy of D[x, y, u]. So we conclude u ∈ A due to (7). Now let y ∈ A
and let u be a neighbour of y. If u is adjacent to a, then u ∈ A ∪N(x). So let us
assume that a and u are not adjacent. Then we find by C-homogeneity a vertex v
with D[a, y, u] ⊆ D−(v). As v is adjacent to a, it lies in N(x) ∪ A and as it is
adjacent to y, it cannot lie in A due to (9). So v lies in N(x) and by the first case
we conclude that u lies in A ∪N(x). This shows (10).

Our last step, before we show the homogeneity of D, is to show that

(11) D is complete m-partite for some m ∈ N∞.

Let I be the set of maximal independent sets in N+(x). Let A′ = A∪ {x} and, for
every I ∈ I, let I ′ be a maximal independent set in D that contains I. Due to (7),
every vertex of A′ is adjacent to all vertices of N+(x). As D[x, a, a′] with a′ ∈ A
embeds into D−(x), we find by C-homogeneity a vertex v with D[x, a, a′] ⊆ D−(v).
So every vertex of A′ is adjacent to some vertex of N−(x) and hence by (8) to
every vertex of N−(x). So by (10), every vertex of A′ is adjacent to every vertex
outside A′. AsD is vertex-transitive, the same holds for every maximal independent
vertex set of D. Thus, (11) holds.

To show that D is homogeneous, let F and H be two isomorphic induced subdi-
graphs of D. If they are connected, then C-homogeneity implies that every isomor-
phism from F to H extends to an automorphism of D. So we may assume that they
are not connected. As D is complete m-partite, we conclude that V F is an indepen-
dent set and the same is true for V H . Then we find uF and uH with V F ⊆ N(uF )
and V H ⊆ N(uH). Note that due to the structure of D+(x), we find subdigraphs
F ′ and H ′ of D+(x) that are isomorphic to F + uF and H + uH , respectively. By
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C-homogeneity, we find an automorphism ϕF of D that maps F + uF to F ′ and an
automorphism ϕH that maps H + uH to H ′. Then F + xϕ−1F and H + xϕ−1H are
connected and every isomorphism from F to H extends to an isomorphism from
F + xϕ−1F to H + xϕ−1H , so C-homogeneity implies the assertion. �

7.4. The digraphs T∧ as D+. In this section, we investigate countable connected
C-homogeneous digraphs D with D+ ∼= T∧ for some T ∈ {I1, C3,Q, T

∞}. If T is
either I1 or C3, then we obtain from Lemma 7.2 that D is locally finite and due to
Lemmas 4.2 and 4.3 of [13] we obtain that no such C-homogeneous digraph exists.
Hence, it suffices to consider only the cases T ∼= Q and T ∼= T∞ in the proof of
Proposition 7.18.

Proposition 7.18. No countable connected C-homogeneous digraph D with D+ ∼=
T∧ for any T ∈ {I1, C3,Q, T

∞} exists.

Proof. Let us suppose that some countable connected C-homogeneous digraph D
with D+ ∼= T∧ exists for some T ∈ {Q, T∞}. Note that it was already proven in [13]
that no such digraph exists if T ∈ {I1, C3}, as we have already mentioned earlier.
Due to Theorem 6.4 and the previous sections, the only possibilities for D− are
In[T0], T0[In], S(3), T

∧
0 , P , or P(3), where n ∈ N∞ and T0 is some homogeneous

tournament. Because the latter two digraphs contain the complete bipartite digraph
K1,3, but T

∧ contains no three independent vertices, we know that D− is one of
the first four digraphs. Since the first three digraphs in that list do not contain the
digraph D′ depicted in Figure 1, we have the following:

(12) if D′ embeds into D−, then D− ∼= T∧0 for some infinite homogeneous
tournament T0.

Figure 1. The digraph D′

Let xy ∈ ED. Note that D+(x)∩D+(y) ∼= T . The first statement that we shall
show is the following:

(13) There is a unique pair of vertices v, v̊ in D+(y) that are not adjacent
and each of which is not adjacent to x.

For each z ∈ N+(y), let z̊ denote the unique vertex in D+(y) that is not adjacent
to z. For every z ∈ N+(x) ∩ N+(y), either z̊ ∈ N−(x) or z̊ is not adjacent to x,
since D+(x) ∩D+(y) is a tournament. Let us suppose that z̊ is not adjacent to x.
By C-homogeneity, the same holds for every ů with u ∈ N+(x) ∩ N+(y). Let
u1, u2, u3 ∈ N+(x) ∩N+(y) with uiuj ∈ ED for i < j ≤ 3 and with uiz ∈ ED for
all i ≤ 3. These vertices exist as every vertex of Q and T∞ contains the directed
triangle in its in-neighbourhood, so the same holds for z in D+(x) ∩ D+(y). The
digraph D[x, y, u1, z̊, ů3] is isomorphic to D′ and lies in D−(u2). Due to (12), we
have D− ∼= T∧0 for some infinite homogeneous tournament T0. Hence, D−(u2)
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contains a unique vertex that is not adjacent to x which contradicts the fact that
z̊ and ů3 are not adjacent to x even though they lie in N−(u2). This contradiction
shows z̊x ∈ ED. By C-homogeneity, we conclude that for any w ∈ N+(y) that is
not adjacent to x also the vertex ẘ is not adjacent to x. Indeed, if not, then we
have ẘx ∈ ED by the previous situation. Hence, some automorphism of D fixes x
and y and maps z̊ to ẘ and we obtain xw ∈ ED, contrary to the choice of w. Since
D+ contains an induced 2-arc, there is a vertex in N+(y) that is not adjacent to x,
which shows the existence of a pair of vertices as described in (13). It remains to
show that this pair is unique.

Let us suppose that N+(y) r N(x) contains two vertices v, w with vw ∈ ED.
Among the vertices v, v̊, w, and ẘ, we find two adjacent ones, say v and w with
vw ∈ ED such that there are two vertices u1, u2 ∈ N+(x) ∩ N+(y) with u1, u2 ∈
N−(v) ∩N−(w) and with u1u2 ∈ ED. The digraph D[x, y, u1, v̊, ẘ] is isomorphic
to D′ and lies in D−(u2). Due to (12), we have D− ∼= T∧0 for some infinite ho-
mogeneous tournament T0. Note that T∧0 does not contain a subdigraph on three
vertices with precisely one edge. But D[̊v, ẘ, x] is such a digraph, which lies in
D−(u2) ∼= T∧0 . This contradiction shows the uniqueness of the vertex pair in (13),
as every maximal independent vertex set in D+(y) has precisely two vertices.

Let N = N+(x) ∩ N+(y). In the following, let v and v̊ be the vertices of (13).
Our next step is to show

(14) N ⊆ N+(v) or N ⊆ N−(v).

Let us suppose that we find vertices a ∈ N+(v) ∩N and b ∈ N−(v) ∩N . Note
that a and b are adjacent, since both lie in the tournament D+(x)∩D+(y). Since T
contains a transitive triangle, let c ∈ N such that D[a, b, c] is a transitive triangle.
Then either c ∈ N+(v) or c ∈ N−(v). If c ∈ N+(v), then we find an automorphism
of D that fixes x and y and maps the edge between a and b to the edge between a
and c by C-homogeneity. If c ∈ N−(v), then we find an automorphism of D that
fixes x and y and maps the edge between a and b to the edge between b and c. Any
of these automorphisms can neither fix v nor map it to v̊ even though its image
must lie in {v, v̊} by (13). This contradiction shows (14).

By symmetry, we may assume N ⊆ N+(v) and hence N ⊆ N−(̊v). Since D is
C-homogeneous, we find an automorphism α of D that fixes x and y and maps v
to v̊. Since α fixes x and y, we have Nα = N and hence

Nα = N ⊆ N+(v) = (N+(̊v))α.

Thus, we have N ⊆ N+(̊v). This is a contradiction to N ⊆ N−(̊v), which shows
the assertion. �

7.5. The digraph S(3) as D
+. In this section, we show that no countable con-

nected C-homogeneous digraphs D has the property D+ ∼= S(3). Our strategy in
the proof is to exclude all countable homogeneous digraphs for D−.

Proposition 7.19. No countable connected C-homogeneous digraph D with D+ ∼=
S(3) exists.

Proof. Let us suppose that some countable connected C-homogeneous digraph D
with D+ ∼= S(3) exists. Since D+ ∼= S(3), we have D+(x) ∩ D+(y) ∼= Q for every
edge xy ∈ ED. Let v ∈ N+(x) ∩ N+(y). As D+ contains a transitive triangle,
C-homogeneity implies the existence of some z ∈ V D with D[x, y, v] ⊆ D+(z). In
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D+(z) we find a vertex u with u ∈ N+(y) ∩N+(v) that is not adjacent to x. By
C-homogeneity, we can map xyu onto any other induced 2-arc xya and obtain

(15) N−(a) ∩N+(x) ∩N+(y) 6= ∅ for every a ∈ N+(y)rN(x).

As D+(x) ∩ D+(y) ∼= Q is a proper subdigraph of D+(y) ∼= S(3), we find a
predecessor w of v in N+(y) that lies outside N+(x) and has only successors in
N+(x) ∩ N+(y). The vertices x and w are adjacent due to (15). As w /∈ N+(x),
we have wx ∈ ED. Thus, D−(v) contains the directed triangle D[x, y, w].

Note that v has some predecessor w′ in N+(x) ∩ N+(y). This vertex must be
adjacent to w as each two predecessors of v are adjacent by the structure of S(3).
As N−(w) contains no vertex of D+(x) ∩D+(y), we have w′ ∈ N+(w). Note that
we also have D[x, y, w, w′] ⊆ D−(v).

Since D− contains a copy of D[x, y, w, w′] and a copy of Q, Theorem 6.4 implies
that the only possibilities for D− are either P(3), In[T

∞], or T∞[In] for some
n ∈ N∞ by the previous sections. We cannot have D− ∼= P(3), since P(3) contains
a vertex with three independent successors, but D+ contains no independent set of
three vertices. So we have D− ∼= In[T

∞] or D− ∼= T∞[In]. But then D
− contains a

vertex with a directed triangle in its out-neighbourhood. This is impossible, since
S(3) contains no directed triangle. As no possibility is left for D−, we have shown
the assertion. �

7.6. The digraph P(3) as D
+. In this section, we show that no countable con-

nected C-homogeneous digraph D has the property D+ ∼= P(3).

Proposition 7.20. No countable connected C-homogeneous digraph D with D+ ∼=
P(3) exists.

Proof. Let us suppose that there is a countable connected C-homogeneous di-
graph D with D+ ∼= P(3). Since the in-neighbourhood of any vertex contains
every finite partial order, we have D− ∼= P or D− ∼= P(3). Furthermore, we have
D−(y) ∩D−(x) ∼= P for every edge xy ∈ ED. As D+ contains a directed triangle,
C-homogeneity implies the existence of a vertex a ∈ N+(y) such that D[x, y, a] is
a directed triangle. Let

a⊥ := {b ∈ N+(y) | a not adjacent to b},

a→ := N+(a) ∩N+(y), and

a← := N−(a) ∩N+(y).

So we have H(a) := (a⊥, a→, a←) ∼= H. Note that D+(x) has an edge with both
its incident vertices in the same set a⊥, a→, or a←, as D+(x) ∩D+(y) contains a
tournament on four vertices. If either a⊥ or a← contains an edge uv of D+(x), then
we find an edge u′v′ in D−(u)∩D−(v) with u′, v′ ∈ a→ due to the structure of P(3).
If either u′ or v′ does not lie in N+(x), then xy together with this vertex induce
either a 2-arc or a directed triangle in D−(u)∩D−(v) ∼= P , which is impossible. So
we may assume that there are two adjacent vertices b and c of N+(x) in a→. Then
D[a, x, y] is a directed triangle in D−(b) ∩D−(c), which is impossible. �

7.7. Generic partial order P as D
+. Within this section, let D be a countable

connected C-homogeneous digraph with D+ ∼= P . Before we are able to prove that
D is homogeneous in this situation, we will prove several lemmas. Our first one
determines D−.
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Lemma 7.21. We have D− ∼= P.

Proof. Since, for every edge xy ∈ ED, the digraph D+(x) ∩ D−(y) contains ev-
ery finite partial order, the assertion follows from Theorem 6.4 together with the
previous sections. �

Our general strategy to prove that D is homogeneous is similar to those of the
Sections 7.1 and 7.2. In particular, one step is to show that every finite partial
order in D lies in D+(x) for some x ∈ V D (Lemma 7.23). As in the other two
cases, we prove it by induction. In this situation, the base case (Lemma 7.22) turns
out to be the most complicated part of the proof.

Lemma 7.22. Any two vertices in D have a common predecessor.

Proof. If D contains no induced 2-arc, then any induced path is an alternating walk
and lies in the out-neighbourhood of some vertex by C-homogeneity. Hence, any
two vertices have a common predecessor.

Thus, we assume that D contains induced 2-arcs. Our first aim is to show that

(16) the end vertices of any induced 2-arc have a common predecessor or a
common successor.

In order to prove (16) we investigate for xy ∈ ED the three sets:

x⊥ := {z ∈ N+(y) | x not adjacent to z},

x→ := N+(y) ∩N+(x), and

x← := N+(y) ∩N−(x).

If ba ∈ ED for some a ∈ x→ and some b ∈ x⊥, then xyb is an induced 2-arc in
D−(a). As D− ∼= P by Lemma 7.21 and P contains no induced 2-arc, we have
shown:

(17) no vertex in x⊥ has successors in x→.

If ba ∈ ED for some a ∈ x→ and some b ∈ x←, then the directed triangle
D[x, y, b] lies in D−(a) ∼=, which is not possible. Thus, we have

(18) no vertex in x← has successors in x→.

Let us suppose that no a ∈ x→ and b ∈ x⊥ are adjacent. In D+(y), we find a
common predecessor c and a common successor c′ of a and b. Since neither of them
can lie in x⊥ or in x→ by assumption, both lie in x←. Any predecessor of c in D+(y)
is also a predecessor of a and b and thus must lie in x←. By C-homogeneity, we find
an automorphism α of D that fixes x and y and maps c to c′. This is impossible,
as c′ = cα has predecessors in D+(y) that lie outside x← = (x←)α. Thus, we have
shown that some vertex of x→ has a neighbour in x⊥. By C-homogeneity and due
to (17), we have

(19) every vertex in x⊥ has a predecessor in x→ and every vertex in x→ has
a successor in x⊥.

If any vertex a in x⊥ has a predecessor in x←, then the end vertices of the
induced 2-arc xya have a common predecessor. Thus, we have shown:

(20) if (16) does not hold, then no vertex of x⊥ has a predecessor in x←.

Let us assume that we have ab ∈ ED for all a ∈ x→ and all b ∈ x⊥. Because of
D+ ∼= P , we find a vertex z ∈ N+(y) that is adjacent to neither a nor b. Hence, z
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lies neither in x⊥ nor in x→. Thus, we have z ∈ x←. Let u be a common successor
of z and b in D+(y). We have u /∈ x→ by (17) because of bu ∈ ED. By (20),
the edge zu implies that either (16) holds or u /∈ x⊥. So we may assume u ∈ x←.
Then (20) implies (16) as b ∈ x⊥ has the predecessor u ∈ x←. Due to (17), we have
shown

(21) if (16) does not hold, then for every vertex in x⊥ there is some vertex
in x→ such that these two vertices are not adjacent.

Since every two vertices in N+(y) have a common predecessor, the existence of
a vertex z1 in x← and a vertex z2 in x→ that are not adjacent implies that the end
vertices of the induced 2-arc z1xz2 have a common predecessor. Together with (18),
this implies that

(22) if (16) does not hold, then every vertex of x→ is a predecessor of every
vertex of x←.

Let ab ∈ ED with a ∈ x→ and b ∈ x⊥. This edge exists due to (19). By (21),
we may assume that there is some vertex c ∈ x→ with cb /∈ ED. Then (17) implies
that c and b are not adjacent.

If a and c are adjacent, then ca /∈ ED because we have cb /∈ ED and D+(y)
contains no induced 2-arc. So let us assume ac ∈ ED. In D+(y), we find a vertex
c′ ∈ N−(c) that is adjacent to neither a nor b. We have c′ /∈ x⊥ due to (17) because
of c ∈ x→. By (22), either (16) holds or c′ /∈ x←. Thus, we may assume c′ ∈ x→.
Taking c′ instead of c, we may assume that a and c are not adjacent. Thus, the
end vertices of D[c, x, a, b] lie in D+(y) and hence have a common predecessor. By
a symmetric argument, we obtain that

(23) if (16) does not hold, then the end vertices of any induced path isomor-
phic to either D[c, x, a, b] or the digraphs obtained from D[c, x, a, b] by
reversing the directions of all its edges have a common predecessor.

Let α be an automorphism of D that fixes x and y and interchanges a to c. For
b′ := bα we have b 6= b′ ∈ (x⊥)α = x⊥. Since ab′ /∈ ED and D+(y) ∼= P , we have
bb′ /∈ ED and, symmetrically, we have b′b /∈ ED. Hence, b and b′ are not adjacent.
Let u ∈ N+(y) with a, b, c ∈ N−(u) and such that u and b′ are not adjacent. If
u ∈ x⊥, then (23) applied to D[x, c, u, b] implies (16), since x and b are the end
vertices of the induced 2-arc xyb. Due to (17), the vertex u does not lie in x→.
Hence, we may assume u ∈ x←. Let v be a predecessor of b′ in D+(y) that has no
neighbour in {a, b, c, u}. Since v and u are not adjacent, (22) implies either (16) or
v /∈ x→. By (20) and as vb′ ∈ ED, either (16) holds or v /∈ x←. Thus, we may
assume v ∈ x⊥. Then (23) applied to D[x, c, b′, v] shows that the end vertices of
the induced 2-arc xyv have a common predecessor. This shows (16).

Due to (16), every two vertices of distance 2 have a common successor or a
common predecessor. If they have a common successor, then these three vertices
induce a connected finite partial order and, by C-homogeneity, we find a common
predecessor of all three vertices. Hence, we have shown

(24) any two vertices of distance 2 have a common predecessor.

To show the lemma, it thus suffices to show

(25) diam(D) = 2.
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We consider all possible induced paths P of length 3, not necessarily directed, one
by one and show that the end vertices of such a path have distance 2. If P is an
alternating walk, then it is a partial order and, for every x ∈ V D, the subdigraph
D+(x) contains an isomorphic copy of P . By C-homogeneity, we find a vertex z
with P ⊆ D+(z) and the claim follows directly.

Let a1, a2, a3, a4 be the vertices of P . Let us assume that a1a2, a2a3, and a4a3 are
the edges on P . Since D[a2, a3, a4] is a connected partial order, we find a vertex x
with a2, a3, a4 ∈ N+(x). If a1 and x are adjacent, then we have d(a1, a4) = 2. If a1
and x are not adjacent, then D[a1, a2, x, a4] is a connected partial order that lies
in D+(z) for some z ∈ V D by C-homogeneity. Thus, also in this case, a1 and a4
have a common neighbour. Similar orientations like in this case (e.g., with edges
a2a1, a2a3, and a3a4) follow by symmetric arguments.

The only remaining case is that P is an induced 3-arc. Then we find a common
predecessor of the first and the third vertex on P and obtain – either directly or
by the previous case – that the end vertices of P have distance 2. This shows (25)
and, as previously mentioned, the lemma. �

Lemma 7.23. For every finite partial order A in D, there exists some x ∈ V D
with A ⊆ D+(x).

Proof. If A is connected, then the assertion is a direct consequence of C-homo-
geneity, as for every x ∈ V D the subdigraph D+(x) contains an isomorphic copy
of A. So let us assume that A is not connected. If |V A| = 2, then the assertion
follows from Lemma 7.22. So we may assume |V A| ≥ 3. If V A is an independent
set, let a be an arbitrary vertex of A. If A has an edge, let a ∈ V A such that a has
a successor in A but no predecessor. By induction on |A|, we find x ∈ V D with
A − a ⊆ N+(x). If xa ∈ ED, then x is the vertex we are searching for. So let us
assume either that ax ∈ ED or that a and x are not adjacent. In each case, A+ x
is a partial order and it has less components than A. Thus, the assertion holds by
induction on the number of components of A. �

Lemma 7.24. Let A,A′, B,B′ be finite induced partial orders in D such that an
isomorphism ϕ : A′ + B′ → A + B with A′ϕ = A and B′ϕ = B exists. If A is
a maximal partial order in A + B and if D has a vertex v with A′ ⊆ D+(v) and
B′ ⊆ D−(v), then there exists x ∈ V D with A ⊆ D+(x) and B ⊆ D−(x).

Proof. If A+ B is connected or if B is empty, then the assertion follows either by
C-homogeneity or by Lemma 7.23. So let us assume that A + B has at least two
components and that B is not empty. By induction and similar to the proof of
Lemma 7.9, we may assume that there are z ∈ V B and z′ ∈ V B′ such that A = A′

and B − z = B′ − z′. Furthermore, we may assume that z does not lie in N−(v),
because the assertion follows directly in that case. Since A is a maximal partial or-
der in A+B, we know that A contains vertices from each component of A+B. Let
a1, . . . , an ∈ V A such that {a1, . . . , an, z} has precisely one vertex from each compo-
nent of A+B. By Lemma 7.23, we find a vertex y with {a1, . . . , an, z, z′} ⊆ N+(y).
The digraphs A+B+y and A′+B′+y are connected and isomorphic to each other.
By C-homogeneity, there is an automorphism α of D that fixes y and all vertices
of A and B − z and maps z to z′. Hence, vα is a vertex we are searching for. �

Proposition 7.25. Let D be a countable connected C-homogeneous digraph with
D+ ∼= P. Then D is homogeneous.
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Proof. Let A and B be isomorphic finite induced subdigraphs of D and ϕ : A→ B
be an isomorphism. Let A1 be a maximal partial order of A and A2 be a maximal
partial order of ArA1 such that for some vertex x ∈ V D there is an embedding τ
from A1 +A2 to D+(x) +D−(x) such that A1τ ⊆ D+(x) and A2τ ⊆ D−(x). Note
that A1 contains vertices from each component of A by its maximality. Let B1 =
A1ϕ and B2 = A2ϕ. Due to Lemma 7.24, we find a vertex y with A1 ⊆ D+(y) and
A2 ⊆ D−(y) and a vertex z with B1 ⊆ D+(z) and B2 ⊆ D−(z). By maximalities of
A1 and A2, we know that no vertex of Ar (A1+A2) is adjacent to y and, similarly,
no vertex of Br(B1+B2) is adjacent to z. The isomorphism ϕ extends canonically
to an isomorphism ϕ′ : A+y → B+z. Since A+y and B+z are connected, we can
extend ϕ′, and hence also ϕ, to an automorphism α of D by C-homogeneity. �

7.8. The digraphs T [In] as D
+. In this section, let D be a countable connected

C-homogeneous digraph with D+ ∼= T [In] for some countable homogeneous tour-
nament T 6= I1 and some n ∈ N∞. Our first aim in this section is to determine D−.

Lemma 7.26. If n ≥ 2, then D− ∼= T ′[Im] for some countable homogeneous
tournament T ′ 6= I1 and some m ∈ N∞.

Proof. Let xz ∈ ED. Note that V D− is not an independent set, since z has a
predecessor in D+(x). As n ≥ 2, there are two non-adjacent vertices y1, y2 ∈
N+(x) ∩ N−(z). Since the digraph D[x, y1, y2] ⊆ D−(z) cannot be embedded
into Ik[T

′] for any countable homogeneous tournament T ′ 6= I1 and any k ∈ N∞,
Theorem 6.4 together with the previous sections imply the assertion. �

Lemma 7.27. If D− ∼= T ′[Im] for some countable homogeneous tournament T ′ 6=
I1 and some m ∈ N∞, then D+ ∼= D−.

Proof. To show m = n, let x ∈ V D. As T 6= I1, any vertex in D+(x) has n
independent predecessors in D+(x). Hence, we conclude m ≥ n. By a symmetric
argument we also have n ≥ m. To show D+ ∼= D− it thus suffices to show T = T ′.

Note that T = C3 implies T ′ = C3 and vice versa because in any countable
infinite homogeneous tournament, we have arbitrarily large finite tournaments in
the out- and in the in-neighbourhood of every vertex.

Let us now show T = T ′ in the case T = T∞. Let x ∈ V D and let F be
a finite tournament in D+(x). As T∞ is homogeneous and embeds every finite
tournament, we find a vertex y ∈ N+(x) with F ⊆ D−(y). Thus, T ′ contains every
finite tournament. So we have T ′ = T∞ = T .

Next, we assume T = Q. Let us suppose T 6= T ′. Then we obtain from the
previous cases T ′ = S(2). Let xy ∈ ED. As x has a predecessor in D−(y), let
a ∈ N−(x)∩N−(y). Since D−(x) contains a directed triangle and is homogeneous,
we find b, c ∈ N−(x) with ab, bc, ca ∈ ED. Since D+(a) ∼= Q[In], we have by ∈ ED.
Similarly, we conclude cy ∈ ED. The digraph D[x, a, b, c] cannot be embedded into
S(2)[Im] even though it lies in D−(y). This contradiction shows T = T ′ if T = Q

and finishes the proof of the lemma. �

We remark that we will see in Section 7.9, that the assumption D− ∼= T ′[Im] in
Lemma 7.27 is not only satisfied if n ≥ 2 (due to Lemma 7.26) but also if n = 1
(due to Lemma 7.37).

If either n ≥ 2 orD+ ∼= T ∼= D−, then the next lemma will exclude the possibility
T = S(2):
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Lemma 7.28. If D+ ∼= D−, then T 6= S(2).

Proof. Let us suppose T = S(2). Let x ∈ V D and let a, b, c ∈ N+(x) with
ab, bc, ca ∈ ED. Since D[x, a, b] can be embedded into D+, we find a vertex y ∈ V D
with D[x, a, b] ⊆ D+(y) by C-homogeneity. Since D−(a) ∼= S(2)[In] and c and y
do not both lie either in D−(x) or in D+(x), these two vertices must be adjacent.
Because D[x, a, b, c] does not embed into D+, this edge cannot be yc, so it is cy. In
D−(b) we find a vertex z with z ∈ N+(a) ∩N+(x) ∩N−(y).

Since D is C-homogeneous, we find an automorphism α of D that fixes x and y
and maps ca to zb. Since b lies inN+(a)∩N−(c), its image bα lies inN+(b)∩N−(z).
ConsideringD+(x), we know that bα cannot lie inN+(a) asD+(x)∩D+(a) contains
no directed triangleD[b, bα, z] but bα must be adjacent to a. So we have bαa ∈ ED.
But then D[a, b, bα, x] is a digraph which lies in D+(y) even though it cannot be
embedded into S(2)[In]. This contradiction shows the assertion. �

The following lemma shows that we can restrict ourselves to the situation n = 1
in the remainder of this section: all the other C-homogeneous digraphs that satisfy
the assumptions of this section and that have the property n ≥ 2 arise from those
with n = 1 in a canonical way.

Lemma 7.29. If D+ ∼= D−, then there is a countable connected C-homogeneous
digraph D′ with D′+ ∼= T ∼= D′− and with D′[In] ∼= D.

Proof. Let x ∈ V D. Let us first show that

(26) N−(a) = N−(b) for each two non-adjacent vertices a, b ∈ N+(x).

Let y ∈ N−(a). First, let us assume that x and y are adjacent. If y ∈ N+(x), then
it is an immediate consequence of D+(x) ∼= T [In] that y lies in N−(b). So let us
assume yx ∈ ED. If D contains no directed triangle, then it contains a transitive
triangle and, by C-homogeneity, we find a vertex z ∈ V D with D[x, y, a] ⊆ D−(z).
Then D+(x) shows bz ∈ ED and D−(z) shows yb ∈ ED. If T contains a directed
triangle, let z ∈ N−(a) such that D[x, y, z] is a directed triangle. Let a⊥ be the
set of vertices in D that are not adjacent to a. Due to the structure of D+(y), we
observe N+(y) ∩ a⊥ ⊆ N+(x) ∩ a⊥ and conclude

N+(y) ∩ a⊥ ⊆ N+(x) ∩ a⊥ ⊆ N+(z) ∩ a⊥ ⊆ N+(y) ∩ a⊥.

So all inclusions are equalities, which shows yb ∈ ED.
Now we assume that x and y are not adjacent. Then we find z ∈ N−(a) with

x, y ∈ N+(z). So we have due to the previous situation that z lies in N−(b) and
hence that y lies in N−(b). This shows (26).

Let us define a relation ∼ on V D via

(27) u ∼ v :⇐⇒ N−(u) = N−(v) for all u, v ∈ V D.

Then ∼ is obviously an Aut(D)-invariant equivalence relation with no two adjacent
vertices in the same equivalence class. Let A,B be two equivalence classes and let
a1, a2 ∈ A and b1, b2 ∈ B with a1b1 ∈ ED. By definition, we know a1b2 ∈ ED. Let
c ∈ N−(a1) ∩N−(b1). By definition of ∼, we conclude ca2, cb1 ∈ ED. So we have
D[a1, a2, b1, b2] ⊆ D+(c). Due to the structure of D+(c) and as a1 and a2 are not
adjacent, a2 is a predecessor of b1 and of b2. Thus, we have shown that

(28) each two equivalence classes induce either a complete or an empty bi-
partite digraph.
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Thus, D
∼

is a digraph. Note that (28) implies that D
∼

inherits C-homogeneity
from D. By (26), we conclude D ∼= D

∼
[In] and D

+ ∼= T . �

Now we are able to complete the investigation for D if D+ ∼= C3[In] ∼= D−.

Lemma 7.30. If D+ ∼= C3[In] ∼= D−, then D ∼= C∧3 [In].

Proof. By Lemma 7.29, it suffices to show D ∼= C∧3 if n = 1. Note that D is locally
finite, if n = 1. So we obtain the assertion from [13, Lemma 4.5]. �

In the following we only have to look closer at the cases T = T∞ and T = Q. So
we assume for the remainder of this section that T is one of those two tournaments.
In both cases we obtain (among others) digraphs that are similar to those that we
obtain in the case of T = C3: the digraphs T∧[In]. The situation in which they
occur (in the case n = 1) is that every edge lies on precisely two induced 2-arcs,
once as the first edge and once as the last edge:

Lemma 7.31. If n = 1, if D+ ∼= D−, and if every edge of D is on precisely one
induced 2-arc the first edge and on precisely one induced 2-arc the last edge, then
D ∼= T∧.

Proof. Let x ∈ V D. We first show that

(29) there exists a unique vertex x⊥ such that every induced 2-arc that starts
at x ends at x⊥.

Suppose (29) does not hold. Then we find two distinct 2 arcs xyz and xuv in D.
By assumption, we have y 6= u. Since y and u lie in the tournament D+(x), they
are adjacent. So we may assume yu ∈ ED. Because there is a unique induced
2-arc whose second edge is uv, we know that y and v are adjacent. As x and v are
not adjacent, v cannot lie in D−(y), so we have v ∈ N+(y). But then the edge xy
lies on the two induced 2-arcs xyz and xyv. This contradiction to the assumption
shows (29).

Next, we show

(30) (x⊥)⊥ = x.

Let xyx⊥ be an induced 2-arc. Let a ∈ N+(y) ∩N−(x⊥). Since xya cannot be an
induced 2-arc by assumption, a and x are adjacent. This edge must be xa because
of D+(a) ∼= T . So there exists b ∈ V D with x, a ∈ N+(b) Since xax⊥ is an induced
2-arc, the edge ax⊥ cannot lie on a second induced 2-arc bax⊥. Hence, b and x⊥ are
adjacent. Note that x⊥ does not lie in N+(b) because of D+(b) ∼= T and x ∈ N+(b).
So x⊥b ∈ ED and x⊥bx is an induced 2-arc that shows (30).

Let us show that

(31) diam(D) = 2 and x⊥ is the only vertex in D that is not adjacent to x.

Since D contains induced 2-arcs, its diameter is at least 2. Let xux⊥ and x⊥vx
be induced 2-arcs. Any neighbour of x⊥ except for u and v must be adjacent to
either u or v because of D+ ∼= T ∼= D−, so its distance to x is at most 2. Because
of D+ ∼= T ∼= D−, any two vertices a, b with d(a, b) = 2 must be the end vertices of
an induced 2-arc. Hence, (29) and (30) show that every neighbour of x⊥ must be
adjacent to x. This shows (31).

Now we are able to show D ∼= T∧. Due to (31), we know that D is the union of
D1 := D+(x)+x and D2 := D−(x)+x⊥. Furthermore, we have D−(x) = D+(x⊥)
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because x and x⊥ have no common successor and no common predecessor. Let us
define

ϕ : D1 → D2, y 7→ y⊥.

Since D1 and D2 are tournaments, y⊥ does not lie in D1 for any y ∈ V D1, so ϕ is
well-defined. Similarly, ϕ is surjective. Due to (29) and (30), we also have that ϕ is
injective. Let uv ∈ ED1. Then vu

⊥ ∈ ED and u⊥v⊥ ∈ ED as D− is a tournament.
This shows that ϕ is an isomorphism. Let a ∈ D1 and b ∈ D2. If ab ∈ ED, then
ba⊥ ∈ ED and, if ba ∈ ED, then a⊥b ∈ ED. Thus, we have shown D ∼= T∧. �

Now we determine D in the case T = T∞ if D+ ∼= D−.

Lemma 7.32. If D+ ∼= T∞[In] ∼= D−, then either D ∼= (T∞)∧[In] or D ∼= T ′[In]
for some countable homogeneous tournament T ′.

Proof. Let us assume that n = 1 and that D is not a homogeneous tournament.
As any induced subdigraph of a tournament is connected, C-homogeneity implies
that D is no tournament at all.

Since D+ and D− are tournaments, we find between each two vertices x and y of
distance 2 an induced 2-arc xyz in D. Our aim is to apply Lemma 7.31. Therefore,
we prove that

(32) there is no z′ 6= z in V D such that xyz′ is an induced 2-arc.

Let us suppose that we find a vertex z′ 6= z such that xyz′ is an induced 2-arc.
Since D+(y) ∼= T∞, the vertices z and z′ are adjacent, say zz′ ∈ ED. Let a ∈
N+(y) ∩ N+(x). Because D−(a) is a tournament, neither z nor z′ lies in N−(a).
Since D+(y) is a tournament, a is adjacent to z and to z′. Thus, z and z′ lie
in N+(a). In D+(y) ∼= T∞, we find a vertex b with ba, bz, z′b ∈ ED. Considering
D−(a), we know that b and x are adjacent, but neither bx nor xb is an edge of D
since neither D+(b) can contain x and z nor D−(b) can contain x and z′. This
contradiction shows (32).

By an analogous proof as above, there is precisely one induced 2-arc whose second
edge is xy. Thus, the assertion follows from Lemma 7.31. �

It remains to determine D in the case T = Q.

Lemma 7.33. If D+ ∼= Q[In] ∼= D−, then D is isomorphic to one of the following
digraphs:

(i) Q∧[In];
(ii) S(3)[In]; or
(iii) T ′[In] for some countable homogeneous tournament T ′.

Proof. As in the proof of Lemma 7.32, we assume n = 1 and that D is not a
(homogeneous) tournament. If for every edge xy there is precisely one induced 2-
arc whose first edge is xy and precisely one induced 2-arc whose second edge is xy,
then Lemma 7.31 implies D ∼= Q∧. By symmetry, let us assume that xy lies on two
induced 2-arcs xyz and xyz′.

Considering D+(y), the vertices z and z′ are adjacent. We may assume zz′ ∈
ED. Let z′′ ∈ N+(y) ∩ N+(x). Note that D−(z′′) ∼= Q implies that neither z
nor z′ lies in N−(z′′). But as z, z′, z′′ ∈ N+(y), the vertex z′′ is adjacent to z and
to z′. Hence, we have z′′z ∈ ED and z′′z′ ∈ ED. By C-homogeneity, we find an
automorphism α of D that fixes y and z′ and maps z′′ to z. Since x ∈ N−(z′′) but
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x /∈ N(z′), we conclude x′ := xα 6= x. Note that x and x′ must be adjacent as
both vertices lie in D−(y) but x′x /∈ ED because not both of the two non-adjacent
vertices x and z can lie in D+(x′). Thus, we have xx′ ∈ ED and xx′zz′ is an
induced 3-arc. Thus, we have shown that

(33) the end vertices of any induced 2-arc are also end vertices of an induced
3-arc.

Let us show the following:

(34) D contains either an induced directed cycle or an induced directed dou-
ble ray.

First, let us assume that there is an integer m such that D contains an induced
m-arc but no induced (m + 1)-arc. Let m be smallest possible. Due to (33),
we have m ≥ 3. Let a0 . . . am be an induced m-arc and am+1 ∈ V D such that
a1 . . . am+1 is also an induced m-arc. To see that such a vertex am+1 exists, take
an automorphism α of D that maps a0 . . . am−1 to a1 . . . am, which exists by C-
homogeneity, and set am+1 := amα. By the choice of m, we know that a0 . . . am+1

is not an induced (m+ 1)-arc. If a0 = am+1, then a0 . . . am is an induced directed
cycle. So a0 and am+1 are distinct but adjacent. As m ≥ 2, the vertices a0 and
am are not adjacent. Hence, a0 cannot lie in the tournament D−(am+1). Thus, we
have am+1a0 ∈ ED and the vertices a0, . . . , am+1 form an induced directed cycle.

If no such m exists, then D contains an induced n-arc for every n ∈ N, as it
contains an induced 3-arc by (33). Hence, D contains an induced directed double
ray: by C-homogeneity, we can enlarge every n-arc a1 . . . an+1 to an (n + 2)-arc
a0 . . . an+2 in a similar way we enlarged the m-arc in the previous case. Continuing
in this way we obtain an induced directed double ray, which shows (34).

Next, we show that

(35) D contains no induced 4-arc.

Let us suppose that D contains an induced 4-arc a0 . . . a4. By (33) and C-homo-
geneity, we find a vertex b such that a0ba3 in an induced 2-arc. Since D−(b) does
not contain two non-adjacent vertices, we have a4b /∈ ED. So either a0ba4 is an
induced 2-arc or a0ba3a4 is an induced 3-arc and we find by (33) a vertex c such
that a0ca4 is an induced 2-arc. For simplicity, set c := b if a0ba4 is an induced
2-arc. Considering D+(a0) we know that a1 and c are adjacent. As an edge ca1
is a contradiction to D+(c) ∼= Q, we have a1c ∈ ED and we conclude as before
that a2 and c are adjacent. But an edge a2c implies that D−(c) contains the two
non-adjacent vertices a0 and a2 and an edge ca2 implies that D+(c) contains the
two non-adjacent vertices a2 and a4. This contradiction shows (35).

A direct consequence of (35) is that

(36) D contains neither an induced directed double ray nor an induced di-
rected cycle of length at least 6.

The next step is to show that

(37) D contains no directed triangle.

Let xy ∈ ED. For every a ∈ N−(y), we define
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a→ = {v ∈ N+(y) | av ∈ ED},

a← = {v ∈ N+(y) | va ∈ ED}, and

a⊥ = {v ∈ N+(y) | a not adjacent to v}.

Let a1 ∈ a→, a2 ∈ a← and a3 ∈ a⊥. These three vertices form a transitive triangle
as they lie in D+(y) ∼= Q. Since D+(a2) is a tournament and a ∈ N+(a2), we
have a3a2 ∈ ED and, since D−(a1) is a tournament and a ∈ N−(a1), we have
a1a3 ∈ ED. As D[a1, a2, a3] is transitive, we conclude a1a2 ∈ ED. So we have
a→ ∪ a⊥ ⊆ N−(a2) and a

← ∪ a⊥ ⊆ N+(a1).
Let us suppose that D contains some directed triangle. Let z, z′ ∈ x⊥ with

zz′ ∈ ED, let u ∈ x→, and let v ∈ x←. As D contains a directed triangle, we find a
vertex w such that D[w, y, u] is such a triangle. As we have w→∪w⊥ ⊆ N−(w′) for
every w′ ∈ w← and as u ∈ w←, we conclude N+(y) ∩N+(u) ⊆ w←. In particular,
we have x⊥ ⊆ N+(y) ∩ N+(u) ⊆ w←. In particular, we have z′w ∈ ED. By
C-homogeneity, we find an automorphism α of D that fixes y and z and maps v
to z′. Then we have xα 6= x, as vα = z′ ∈ x⊥ but v /∈ x⊥. Since w and xα lie in
D−(y), they are adjacent to x. But neither of them lies in N+(x), because both
lie in N+(z′) and D− is a tournament. Note that z ∈ x⊥ ∩ (xα)⊥. Thus, we have
x⊥ 6⊆ (xα)← and hence we do not find any automorphism of D that fixes x and y
and maps w to xα. This contradiction to C-homogeneity shows (37).

We know by (34)–(37) that the only induced directed cycles in D have length
either 4 or 5. Next, we show that

(38) D contains a directed cycle of length 4.

If D contains no induced directed cycle of length 4, then D contains only induced
directed cycles of length 5. Let a1 . . . a5a1 be such a cycle. Due to (33), there is
an induced 2-arc a1ua4 in D. Since a1ua4a5a1 is not an induced directed cycle of
length 4, the vertices u and a5 must be adjacent. But an edge ua5 implies that
a1ua5a1 is a directed triangle and an edge a5u implies that ua4a5u is a directed
triangle. These contradictions to (37) show (38).

Let us show that

(39) for every directed cycle C of length 4 every vertex of D outside C has
a predecessor u and a successor w on C with uw ∈ ED.

First, let v be a vertex outside C that has a neighbour on C. If v has a predecessor
on C, then there are at most two predecessors of v on C, since D−(v) is a tourna-
ment. Let u be that predecessor of v on C whose successor w on C does not lie
in N−(v). Since v and w lie in N+(u), they are adjacent and by the choice of u
we have vw ∈ ED. If v has a successor on C, then an analogous argument shows
the assertion for v. Since D+ ∼= Q ∼= D−, any neighbour of v that does not lie
on C must be adjacent to some neighbour of v on C – either to a predecessor or
a successor. Thus, every vertex of D r C is adjacent to some vertex of C and we
have shown (39).

A consequence of (39) is the following:

(40) the vertices that are not adjacent to a given vertex induce a tournament.

Let C = x1x2x3x4x1 be a directed cycle of length 4, which exists by (38), and
let u and v be two vertices that are not adjacent to x1. By (39) we know that
each of u and v has a predecessor on C, which cannot be x4 since D+(x4) is a
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tournament. Furthermore, each of u and v has a successor on C, which cannot be
x2 since D−(x2) is a tournament. If u and v are not adjacent, then we may assume
that x3u, ux4 ∈ ED and x2v, vx3 ∈ ED as D+ and D− are tournaments. Note
that neither vx4 nor x2u lies in ED as u and v are not adjacent. Thus, ux4x1x2v
is an induced 4-arc. This contradiction to (35) proves (40).

We are now able to show D ∼= S(3). To show this, it suffices to show that D is
homogeneous, because the only homogeneous digraph with D+ ∼= Q that has two
distinct induced 2-arcs xyz and xyz′ is S(3).

Let A and B two isomorphic finite induced subdigraphs of D and ϕ : A→ B be
an isomorphism. If A is connected, then ϕ extends to an automorphism of D by C-
homogeneity. So let us assume that A has at least two components. Then (40) shows
that A has precisely two components A1 and A2 both of which are tournaments.
Furthermore, each component can be embedded into Q since D contains no directed
triangle by (37). Let a1 ∈ V A1 such that A1 − a1 ⊆ D+(a1) and let a2 ∈ V A2

such that A2 − a2 ⊆ D−(a2). Let C be a directed cycle of length 4. This exists
by (38). By C-homogeneity, we may assume a1 ∈ V C. Due to (39), we know
that D contains either an induced 2-arc from a1 to a2 or an induced 2-arc from a2
to a1. Indeed, if auvw is the cycle C, then a2 has a predecessor on C by (39) which
cannot be w since D+(w) does not contain two non-adjacent vertices. Similarly, u
is not a successor of a2. Hence, either a1ua2 or a2wa1 is the induced 2-arc we are
searching for. Since a1 and a2 lie on an induced 2-arc, C-homogeneity implies that
we may also assume a2 ∈ V C. So we find a vertex a ∈ V C ∩ N+(a1) ∩ N−(a2).
Note that a /∈ V A. Then every vertex a′1 ∈ A1 r {a1} must be adjacent to a since
a and a′1 lie in D+(a1) ∼= Q. If a is a predecessor of a′1, then D

+(a) contains the
two non-adjacent vertices a2 and a′1, which is impossible. Hence, a is a successor
of a′1. Similarly, we obtain that a is a predecessor of every vertex a′2 ∈ V A2. So
we have A1 ⊆ D−(a) and A2 ⊆ D+(a). Similarly, we find a vertex b ∈ V D with
A1ϕ ⊆ D−(b) and A2ϕ ⊆ D+(b). Then ϕ extends to an isomorphism from A+a to
B + b and hence by C-homogeneity to an automorphism of D. So we obtain that
D is homogeneous and hence isomorphic to S(3). �

Let us summarize the results of this section:

Proposition 7.34. Let D be a countable connected C-homogeneous digraph with
D+ ∼= T [In] for some countable homogeneous tournament T and some n ∈ N∞. If
either n ≥ 2 or if D+ ∼= T ∼= D−, then D is isomorphic to one of the following
digraphs:

(i) T∧[In] if T ∈ {C3,Q, T
∞}; or

(ii) S[In], where either S = S(3) or S is some countable homogeneous tournament.

Proof. Note that D+ ∼= D− also holds if n ≥ 2 due to Lemmas 7.26 and 7.27. Then
the assertion directly follows from Lemmas 7.28, 7.30, 7.31, 7.32, and 7.33. �

We will see in Section 7.9 (Lemma 7.37) that D+ ∼= T implies D− 6∼= Im[T ′] for
any m ∈ N∞ with m ≥ 2 and any countable homogeneous tournament T ′ 6= I1.
Thus, we have D− ∼= T ′[Im] for some countable homogeneous tournament T ′ 6= I1
and some m ∈ N∞. So Lemma 7.27 implies D+ ∼= D− and hence Proposition 7.34
covers this situation.
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7.9. D
+ ∼= In[T ] with T 6= I1. In this section, let D be a countable connected

C-homogeneous digraph with D+ ∼= In[T ] for some countable homogeneous tour-
nament T 6= I1 and some n ∈ N∞ with n ≥ 2. A direct consequence of the previous
sections together with the fact that T contains some edge is the following lemma:

Lemma 7.35. We have D− ∼= Im[T ′] for some m ∈ N∞ and some countable
homogeneous tournament T ′ 6= I1. �

Our next lemma says that T and T ′ are infinite tournaments. Note that we do
not know so far whether m > 1 or not. We will see this in Lemma 7.37.

Lemma 7.36. We have T 6= C3 6= T ′.

Proof. Seeking for a contradiction, let us suppose T = C3. Let xy ∈ ED and let
a, b ∈ N+(x) with ya, ab, by ∈ ED. Let z be a common predecessor of x and y.
Considering D−(y), the vertices z and b lie in the same component, which is a
tournament. Thus, they are adjacent. As an edge zb gives us a transitive triangle
D[x, y, b] inD+(z) and as this is not possible, we have bz ∈ ED. Hence, the directed
triangle D[a, b, y] ⊆ D+(x) contains one successor and one predecessor of z. So if
the third vertex is either a successor or a predecessor of z, then we can find an
automorphism of D that fixes x and z and rotates the directed triangle D[a, b, y].
More precisely, the automorphism maps a to either b or y and hence it must leave
the component D[a, b, y] of D+(x) invariant. Applying the same automorphism
once more, we obtain that the whole triangle D[a, b, y] lies either in D+(z) or in
D−(z). As neither of these two cases can occur, the third vertex of D[a, b, y] is not
adjacent to z.

Thus, in the directed triangle D[a, b, y] ⊆ D+(x), we find a predecessor of z,
a successor of z and a vertex not adjacent to z. By C-homogeneity, we find the
same in each directed triangle in D+(x). Indeed, if u is a vertex in another directed
triangle in D+(x), then we have D[u, x, z] ∼= D[v, x, z] for some v ∈ {a, b, y}. Thus,
x together with n ≥ 2 independent successors lies in D+(z), which is impossible.
This shows T 6= C3. So T is an infinite tournament and D+(x) ∩D−(y) contains a
transitive triangle. Thus, we also have T ′ 6= C3. �

Now we can describe the structure of the neighbourhood of any vertex:

Lemma 7.37. For every x ∈ V D, the digraph D+(x) +D−(x) is a disjoint union
of isomorphic homogeneous tournaments. Each of its components consists of one
component of D+(x) and one component of D−(x).

In particular, we have m = n.

Proof. For every u ∈ N−(x), there is a unique component of D+(x) that contains
successors of u because of D+(u) ∼= In[T ]. We denote this component by Au.

The first step is to show

(41) Au = Av for all adjacent vertices u, v ∈ N−(x).

Wemay assume uv ∈ ED. Since T is infinite by Lemma 7.36, it contains a transitive
triangle. Hence, there is a vertex y ∈ N+(x) ∩ N+(v) in D+(u). This vertex y
already shows us Au = Av.

By C-homogeneity, there is for every component C of D+(x) some vertex v ∈
D−(x) with C = Av. Thus, (41) implies n ≤ m. Symmetrically, we obtain m ≤ n.
Hence, we have n = m.



COUNTABLE CONNECTED-HOMOGENEOUS DIGRAPHS 33

Let us show

(42) N(v) ∩N+(x) ⊆ Av for every v ∈ N−(x).

Since D+(v) ∩ D+(x) is a tournament, we have N+(v) ∩ N+(x) ⊆ Av. Let us
suppose N(v) ∩N+(x) 6⊆ Av. Then we find a vertex y ∈ N+(x) ∩N−(v) that lies
outside Av. Let Cv be the component of D−(x) that contains v. Note that y has
no predecessor in Cv as y /∈ Av and due to (41). If v is the unique successor of y
in Cv, then we can find an automorphism of D that fixes x and y and maps some
predecessor v− of v in Cv to some successor v+ of v in Cv. Note that neither v

− nor
v+ is adjacent to y as we already mentioned. This automorphism fixes Cv setwise,
so it must fix v, the unique neighbour of y in Cv. But we have (v

−v)α = v+v /∈ ED
even though v−v ∈ ED. This shows that y has a second successor u 6= v in Cv. As
u and v are adjacent, we have Au = Av by (41). Hence, we may assume uv ∈ ED.
By C-homogeneity, we find an automorphism α of D that maps yu to vx. Then v
has a predecessor xα in N+(x) that is adjacent to vα ∈ Av. As Av contains some
predecessor of v, C-homogeneity implies that it contains every predecessor of v in
N+(x) in contradiction to y /∈ Av. Indeed, we find an automorphism that fixes x
and v and maps xα to y and this automorphism does not fix Av setwise even though
it fixes x and v. This shows (42).

Next, we show

(43) Av = N(v) ∩N+(x) for every v ∈ N−(x).

If Av contains some vertex y that is not adjacent to v, then, by C-homogeneity,
some automorphism of D maps y to some vertex z in N+(x)rAv and fixes x and v.
Note that z exists because of n ≥ 2. But then this automorphism does not fix Av

setwise even though it fixes x and v. This contradiction shows (43).
By symmetric arguments, there is for every u ∈ N+(x) a componentBu ofD−(x)

with Bu = N(u) ∩ N−(x) and for each two vertices u, v in the same component
of D+(x), the components Bu and Bv coincide. Thus, D+(x) + D−(x) is a dis-
joint union of isomorphic tournaments and each component of D+(x) + D−(x)
consists of precisely one component of D+(x) and one component of D−(x). That
every component of D+(x) + D−(x) is homogeneous is a direct consequence of
C-homogeneity. �

Note that with Lemma 7.37, we have completed the analysis of Section 7.8.
Furthermore, we have all lemmas we need to finish the situation if D+ is isomorphic
to In[T ] for some n ∈ N∞ with n ≥ 2 and some countable homogeneous tournament
T 6= I1. (Note that the case n = 1 was already completed in Section 7.8.)

Proposition 7.38. If D is a countable connected C-homogeneous digraph with
D+ ∼= In[T ] for some countable homogeneous tournament T 6= I1 and some n ∈ N∞

with n ≥ 2, then D ∼= Xλ(T
′) for some countable infinite homogeneous tourna-

ment T ′ and for some countable cardinal λ ≥ 2.

Proof. For x ∈ V D, let Dx := D+(x) +D−(x). Due to Lemma 7.37, the digraph
Dx is a disjoint union of isomorphic infinite tournaments. First, we show that

(44) for every x ∈ V D, no two components of Dx lie in the same component
of D − x.

Let us suppose that we find a path in D−x between vertices in distinct components
of Dx. Let P be such a path of minimal length and let u and v be its end vertices. If
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ux ∈ ED, let a and b two vertices in N+(u) such that a ∈ N−(x) and b ∈ N+(x). If
xu ∈ ED, we choose a and b in N−(u) such that a ∈ N−(x) and b ∈ N+(x). These
vertices exist asD+(u) andD−(u) are disjoint unions of homogeneous tournaments.
If a or b has a neighbour c on P other than u, this neighbour must be the neighbour
of u on P by the minimality of P . But then a, b, c, and x lie in the same component
of Du, which is a tournament. So c is already adjacent to x, which contradicts the
minimality of P . Hence, the paths vPua and vPub are isomorphic and, by C-homo-
geneity, we can find an automorphism α of D that maps the first onto the second
path by fixing P pointwise and mapping a to b. Since a lies in N−(x) and b lies
in N+(x), we have x 6= xα. But as xα is adjacent to u and to b, it lies in the
same component of Du as x. So x and xα are adjacent and xα lies in the same
component of Dx as a and b. Since xα is a neighbour of v = vα, also v lies in
the same component of Dx as xα and thus the vertices u and v are adjacent. This
contradiction to the choice of u and v shows (44).

For every x ∈ V D, each component of Dx is an infinite tournament and hence
contains a ray. Rays from distinct components of Dx cannot be equivalent as they
lie in distainct components of D − x due to (44). Hence, D has at least two ends.
Thus, the assertion follows from Theorem 7.6 in [15], the classification result of
connected C-homogeneous digraphs with more than one end. �

7.10. A first result. By summarizing the propositions of the previous sections
together with Cherlin’s classification of the homogeneous digraphs, Theorem 6.4,
we obtain the following theorem:

Theorem 7.39. Let D be a countable connected C-homogeneous digraph. Then
one of the following cases holds:

(i) D is homogeneous;
(ii) D ∼= T∧[In] for some n ∈ N∞ and some tournament T ∈ {C3,Q, T

∞};
(iii) D ∼= S(3)[In] for some n ∈ N∞;
(iv) D ∼= Xλ(T ) for some countable infinite homogeneous tournament T and for

some countable cardinal λ ≥ 2; or
(v) D+ ∼= In and D− ∼= Im for some m,n ∈ N∞. �

8. The case: D+ ∼= In and D− ∼= Im

Throughout this section, letD be a countable connected C-homogeneous digraph
with D+ ∼= In for some n ∈ N∞. By the previous sections, we also have D− ∼= In′

for some n′ ∈ N∞.
The following lemma is already proven in [13]. Therefore, we omit its proof here.

Lemma 8.1. [13, Lemma 5.1] If d+ = 1 or d− = 1, then D is either an infinite
tree or a directed cycle. �

Since connected C-homogeneous digraphs with more than one end have already
been classified [12, 15], we assume for the remainder of this section that D contains
at most one end.

In [13, Lemmas 5.2 and 5.5], the author showed that the reachability relation
of every locally finite C-homogeneous digraph with at most one end and whose
out-neighbourhood is independent is not universal. If we consider such digraphs of
arbitrary degree, this does no longer hold. For example, the countable generic 2-
partite digraph is a C-homogeneous digraph with independent out-neighbourhood
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and with precisely one end and its reachability relation is universal. In the following,
we distinguish the two cases whether the reachability relation A of D is universal
or not.

8.1. Non-universal reachability relation. Within this section, letD be a count-
able connected C-homogeneous digraph with D+ ∼= In for some n ∈ N∞, with
D− ∼= In′ for some n′ ∈ N∞, with at most one end. We assume that A is not
universal and, due to Lemma 8.1, that n, n′ ≥ 2. Hence, we obtain by Proposi-
tion 5.1 that ∆(D) is bipartite. That is the reason, why we turn our attention
towards the classification of the C-homogeneous bipartite graphs. The following
lemma due to Gray and Möller [12] underlines our interest in the C-homogeneous
bipartite graphs.

Lemma 8.2. [12, Lemma 4.3] The digraph ∆(D) is a connected C-homogeneous
bipartite digraph. �

By Lemma 8.2, we know thatG(∆(D)) belongs to one of the five classes described
in Theorem 6.2. In the following, we will treat these five possibilities one by one.
Let us start with the case G(∆(D)) ∼= C2m for some m ≥ 2, where we notice that
D must be locally finite as every vertex lies in at most two reachability digraphs:

Lemma 8.3. If G(∆(D)) ∼= C2m for some m ≥ 2, then D is locally finite. �

Thus, if G(∆(D)) is an even cycle, then we obtain this part of the classification
from Theorem 2.1 of [13]. In the following, we assume G(∆(D)) 6∼= C2m for any
m ∈ N. Since locally finite C-homogeneous digraphs have already been classified,
we may assume in the following that either d+ = ω or d− = ω. By reversing the
directions of each edge if necessary, we may assume d+ = ω.

For a reachability digraph ∆ of D, two vertices or a set of vertices of ∆ lie on
the same side of ∆ if their out-degree, and hence also their in-degree, in ∆ is the
same.

Lemma 8.4. For each two reachability digraphs ∆1 and ∆2 of D we have either
∆1 ∩∆2 = ∅ or |V (∆1 ∩∆2)| ≥ 2.

Proof. Let us suppose that the intersection of two distinct reachability digraphs
∆1 and ∆2 consists of precisely one vertex. Since every vertex lies in precisely two
reachability digraphs and since D is vertex-transitive, each two distinct reachability
digraphs either have trivial intersection or share precisely one vertex.

We distinguish the cases whether C3 embeds intoD or not. First, we assume that
D contains no directed triangle. Let xy ∈ ED and ∆ = 〈A(xy)〉. If G(∆) 6∼= CPk,
let P be any path of minimal length from any successor u of y to x avoiding y.
Such a path exists as the one-ended digraph D cannot contain any cut-vertex. If
G(∆) ∼= CPk, let P be any path of minimal length from any successor u of y to x
that avoids y and the unique neighbour ȳ of y in the bipartite complement of ∆.
As k = d+ = ω, both of the two reachability digraphs 〈A(yu)〉 and ∆ contain rays
that avoid y and ȳ and hence y and ȳ separate neither these rays nor u from x.
Thus, we also know in this situation that P exists.

By the minimality of P , the only successor of y on P is u. If y has a predecessor x′

on P , then xyu and x′yu are induced 2-arcs, so we find an automorphism of D that
maps one onto the other and we obtain a contradiction to the minimality of P .
Thus, y has no neighbour on P except for u and x. At most |V P | vertices of ∆
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that lie on the same side as y can have successors on P , since any two such vertices
with a common successor on P would lie in two common reachability digraphs.
Since N+(x) contains infinitely many vertices, all of which lie on the same side
of ∆ as y, we find one such vertex z that has no successor on P . If G(∆) is either
complete bipartite or the bipartite complement of a perfect matching, then every
predecessor of z on P is also a predecessor of y by the assumption that in the case
G(∆) ∼= CPk the path P does not contain ȳ. Hence, P contains predecessors of z
only if G(∆) is the generic bipartite graph or a tree Tk,ℓ. Note that any predecessor
of z on P is a predecessor in ∆ of z. Thus, in these two cases we may have chosen
z among the infinitely many vertices of N+(x) that have no predecessor on P . Let
v be the neighbour of u on P . Then both vertices y and z have only one neighbour
on vPx, the vertex x. By C-homogeneity, we find an automorphism α of D that
fixes vPx and interchanges y and z. Let w = uα.

If vu ∈ ED, then v and y lie on the same side of 〈A(yu)〉 and on this side lies also
yα = z as (vu)α = vw. But then y and z lie in two common reachability digraphs
which contradicts the assumption. Hence, we have uv ∈ ED and wv ∈ ED. The
two 2-arcs xyu and xzw induce a digraph that consists only of these two 2-arcs:
as z and u are not adjacent, neither are y = zα and w = uα. Note that no successor
of y can have w or z as a predecessor because otherwise either w or z lies in the
two reachability digraphs 〈A(yu)〉 and either 〈A(wv)〉 or ∆, which is impossible
by assumption. By the same assumption and similar as above, only finitely many
successors of u have successors on the 1-arc zw. Since d+ = ω, we find a vertex
u′ ∈ N+(y) that is adjacent to neither w nor z. Note that u′ and x are not adjacent
since D contains no triangle. Hence, we find by C-homogeneity an automorphism
β of D that fixes D[x, y, z, w] pointwise and maps u to u′. So u′ and w have a
common successor vβ and thus u and u′ lie on the same side of 〈A(uv)〉 and of
〈A(yu)〉. This contradiction shows the assertion in the situation that C3 does not
embed into D.

Now we consider the case that D contains a directed triangle. For every edge
xy those successors of y that are predecessors of x lie in two common reachability
digraphs. As the intersection of two distinct reachability digraphs contains at most
one vertex, we obtain that

(45) every edge lies on precisely one directed triangle.

We distinguish whether G(∆(D)) is a semi-regular tree or not. First, we consider
the case G(∆(D)) ∼= Tk,ℓ for some k, ℓ ∈ N∞ with k, ℓ ≥ 2. Let x ∈ V D and let
P be a shortest path in G − x between any two successors y and z of x. Since P
must contain some edge that does not lie in 〈A(xy)〉 and since any two distinct
reachability digraphs intersect in at most one vertex, P contains some vertex out-
side 〈A(xy)〉. Thus and by the assumption on the intersection of any two distinct
reachability digraphs, P has at least three edges. Let z2, z1, z be the last three
vertices of P . Let a be a third successor of x. This vertex exists as d+ = ω. By
minimality of P , it contains no neighbour of a as otherwise we find a shorter path
between a and either y or z, since neither a and y nor a and z have a common prede-
cessor, as they lie in only one common reachability digraph. Hence, the connected
subdigraphs zxyPz2 and axyPz2 are isomorphic and we find an automorphism α
of D that fixes xyPz2 and interchanges a and z, as D is C-homogeneous. So we
obtain that D′ := D[z, z1, z2, z1α, a] consists of four edges and, with z

′
1 := z1α, we
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have zz1 ∈ ED if and only if az′1 ∈ ED and the same for z1z2 and z′1z2. Since the
intersection of any two reachability digraphs contains at most one vertex, the path
D′ is not an alternating walk. Thus, D′ consists of two induced 2-arcs. If these
are z2z1z and z2z

′
1a, then z1 and z′1 lie in the intersection of the two reachabil-

ity digraphs 〈A(xz)〉 and 〈A(z2z1)〉. Thus, these 2-arcs must be zz1z2 and az′1z2.
If x and z1 are adjacent, then the edge between them must be z1x since N+(x)
is independent. But then, we have z′1x ∈ ED, too, and D[x, z1, z2, z

′
1] is a cycle

in 〈A(xz)〉, which is impossible. Similarly, x and z′1 are not adjacent. Hence, the
digraph D[x, z, z1, a, z

′
1] consists of only the two induced 2-arcs xzz1 and xaz′1 and

we can proceed as in the case that C3 does not embed into D to obtain a contradic-
tion with the additional requirement that u′ is not adjacent to x, which is possible
as only one successor of z is adjacent to x by (45) and d+ = ω.

It remains to consider the case that G(∆(D)) is not a semi-regular tree. Due to
the structure of G(∆(D)), both sides of each reachability digraph have the same
cardinality. As d+ = ω, we also have d− = ω. Let x ∈ V D and y and z be two
vertices in N+(x). Let u and v be the unique successors of y and z, respectively,
that lie on a common directed triangle with x, see (45). Since each edge lies on a
unique (directed) triangle, every common successor w 6= x of u and v is adjacent to
neither y nor z. As d− = ω and due to (45), we find a ∈ N−(v) that is adjacent to
neither w nor x. An edge au implies that u and v lie in two common reachability
digraphs and an edge ua leads to a cycle D[a, u, w, v] witnessing that A is universal.
As both situations are impossible, a and u are not adjacent. Furthermore, az cannot
be an edge because then D[a, v, y, x, z] is a cycle witnessing that A is universal. As
this is not the case, we have az /∈ ED. Let us suppose that za is an edge of D.
Then by C-homogeneity, we find an automorphism α of D that fixes w and maps
zu to av and v to u. Note that b := aα 6= z since za ∈ ED but ba = (az)α /∈ ED.
As bu ∈ ED, the digraph D[a, b, u, z] is a cycle witnessing that A is universal. This
contradiction shows that z and a are not adjacent. So we find an automorphism β
of D that fixes z, u, w, v and maps y to a, as D is C-homogeneous. Thus, xβ 6= x
is a common predecessor of a and z. So a lies in 〈A(xy)〉 on the same side as z.
Thus, a and y lie in two common reachability digraphs in contradiction to the
assumption. �

Now we are able to complete the investigation if G(∆(D)) is a semiregular tree:

Lemma 8.5. If G(∆(D)) ∼= Tk,ℓ for some k, ℓ ∈ N∞ with k, ℓ ≥ 2, then D either
is locally finite or has more than one end.

Proof. Let us assume that D is not locally finite. By reversing the direction of each
edge, we may assume k = d+ = ω. Let us suppose that D has at most one end.
First, we show that

(46) the intersection of two distinct reachability digraphs lies on the same
side of each of them.

Let us suppose that this is not the case. As D is vertex-transitive, each two reach-
ability digraphs with non-trivial intersection are a counterexample to (46). Let
∆1 and ∆2 be two distinct reachability digraphs with non-trivial intersection. By
Lemma 8.4, their intersection contains at least two vertices. Since V (∆1 ∩ ∆2)
does not lie on the same side of ∆1, we find two vertices x, y ∈ V (∆1 ∩∆2) of odd
distance in ∆1 such that x has no successors in ∆1. Let z be the predecessor of x on
the unique x–y path P in ∆1. Since d+ = ω, we find a successor x′ of z that does
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not lie on P . Then the digraph x′zPy is isomorphic to P and, by C-homogeneity,
we find an automorphism of D that fixes zPy and maps x to x′. So we conclude
that x′ lies also in the same two reachability digraphs as y. Hence, the two vertices
x and x′ of distance 2 lie on the same side of ∆1 and of ∆2. Inductively, all ver-
tices of ∆1 that lie on the same side of ∆1 as x, also lie in ∆2. In particular, this
holds for some successor y′ of y. Hence, ∆1 and ∆2 share all vertices of D. For
an edge ab ∈ E∆2 the a–b path in ∆1 is an alternating walk. Thus, Q together
with the edge ab is a cycle witnessing that A is universal. This contradiction to the
assumptions shows (46).

For the remainder of the proof, we fix two reachability digraphs ∆1 and ∆2 with
non-trivial intersection such that the vertices in ∆1 ∩∆2 have no successor in ∆1.

With the same argument as in the proof of (46), just taking a path P of even
length, we obtain that

(47) every vertex on the same side of ∆1 as V (∆1 ∩∆2) lies in ∆2.
The analogous property for ∆2 holds as soon as ℓ ≥ 3.

For the remainder of the proof, let x ∈ V∆1 r V∆2. Next, we show that

(48) no vertex of N+(x) separates in ∆2 any other two vertices of N+(x).

To show this, we suppose that y1 ∈ N+(x) separates in ∆2 the two vertices y2, y3 ∈
N+(x). By C-homogeneity and as N+(x) is independent, we find an automorphism
ofD that fixes x and y3 and switches y1 and y2. This automorphism fixes ∆2 setwise
and we obtain that y2 = y1α separates in ∆2 the vertices y1 = y2α and y3 = y3α
which is clearly impossible. This contradiction shows (48).

Let us show that

(49) D contains some directed triangle.

Let us suppose that D contains no directed triangle. Let y ∈ N+(x) and let
z1, z2 ∈ N+(y) such that z1 is the neighbour of y in that component of ∆2− y that
contains all other successors of x. Then the two 2-arcs xyz1 and xyz2 are induced
and we obtain an automorphism α of D that fixes x and y and maps z1 to z2, as
D is C-homogeneous. Thus, α does not fix the unique component of ∆2 − y that
contains all successors of x. This is impossible and hence we have shown (49).

Let y ∈ N+(x) and let z ∈ N+(y) such that z lies in the unique component
of ∆2 − y that contains all successors of x but y, see (48). By the same argument
as in the proof of (48) we obtain that

(50) either z is the only successor of y such that D[x, y, z] is a directed
triangle or z is the only successors of y such that D[x, y, z] is an induced
2-arc.

If D[x, y, z] is a directed triangle, then every edge of D lies on a unique directed
triangle due to (50). So the number of directed triangles that contain a given
vertex is d+ and it is also d−. Hence, we obtain d− = d+ = ω. If D[x, y, z] is
an induced 2-arc, then the edge xy lies on infinitely many directed triangles as
D+ = ω and by (50). Thus, x must have infinitely many predecessors and we
obtain d− = d+ = ω in this case, too. Hence, we have ℓ ≥ 3 and the second part
of (47) holds. Thus, there are two reachability digraphs distinct from ∆2 that cover
the vertices of ∆2. So the vertices of ∆2−∆1 lie in a reachability digraph ∆0 6= ∆1.
Since C3 embeds into D, we have

∆1 −∆2 = ∆0 ∩∆1 = ∆0 −∆2.
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As D is connected, we conclude that ∆0,∆1, and ∆2 are the only reachability
digraphs of D.

The next step is to show that D[x, y, z] is not an induced 2-arc:

(51) D[x, y, z] ∼= C3.

If (51) does not hold, then xyz is an induced 2-arc and, by (50), unique with the
property that xy is its first edge. Let x′ ∈ V D such that yzx′ is the unique induced
2-arc with yz as its first edge. Then we have x′ ∈ V (∆0∩∆1) and x and x′ lie on the
same side of ∆1. Note that xy already determines the vertex x′. So the stabilizer
of the edge xy must fix x′. Let u be the first vertex on the unique x–x′ path in ∆1

that is neither x nor y. Let v be another neighbour of x, if u is a neighbour of x,
and let v be another neighbour of y otherwise. Then we find an automorphism
of D that fixes the edge xy and maps u to v which is clearly impossible as this
automorphism does not fix x′. This shows (51).

Let us now show that D[x, y, z] cannot be a directed cycle, either, which will
be our desired contradiction. To simplify notations, let x0 = z, x1 = x, x2 = y.
Let Fi, Gi be the component of ∆i−xixi+1 that contains xi, xi+1, respectively (we
consider the indices modulo 3). Let u ∈ F1 ∩ V (∆1 ∩∆2). Then we find a second
vertex v in F1∩V (∆1∩∆2) that has distance d∆1

(x2, u) to each of x2 and u because
of d+ 6= 2 6= d−, where d∆1

denotes the distance in ∆1. Let w ∈ F1 be the unique
vertex in F1 that has the same distance to each of x2, u, v. By C-homogeneity, we
find an automorphism that fixes the unique w–u path in ∆1 and maps the unique
w–x2 path in ∆1 onto the unique w–v path in ∆1 and vice versa. As in the proof
of (48), we obtain that x2 does not separate u and v in ∆2. So u and v must lie
in the same component C of ∆2 − x2. Thus, all vertices a of F1 ∩ V (∆1 ∩ ∆2)
with d∆1

(a, x2) = d∆1
(x2, u) lie in C. Let us suppose C ⊆ F2. Since there are

infinitely many components of ∆2 − x2 in F2, we find one neighbour b1 of x2 in C
and one neighbour b2 in another component of F2 ∩ V (∆2 − x2). Both digraphs
x1x2b1 and x1x2b2 are induced 2-arcs as neither b1 nor b2 is x0 and due to (50).
By C-homogeneity, we find an automorphism α of D that fixes x1x2 and maps b1
to b2. Thus, α cannot fix C setwise even though it fixes F1 ∩ V (∆1 ∩∆2) setwise.
This contradiction shows C ⊆ G2. Thus, we have

F1 ∩ V (∆1 ∩∆2) ⊆ G2 ∩ V (∆1 ∩∆2).

By a symmetric argument, we obtain

F1 ∩ V (∆1 ∩∆2) = G2 ∩ V (∆1 ∩∆2).

Analogously, we obtain

Fi ∩ V (∆i ∩∆i+1) = Gi+1 ∩ V (∆i ∩∆i+1)

for all i and hence also

Gi ∩ V (∆i ∩∆i+1) = Fi+1 ∩ V (∆i ∩∆i+1).

Let D[a, b, c] be a directed triangle with a ∈ F1 ∩ V (∆0 ∩∆1) that is disjoint from
D[x, y, z]. Then we have

b ∈ F1 ∩ V (∆1 ∩∆2) = G2 ∩ V (∆1 ∩∆2)

and hence

c ∈ G2 ∩ V (∆2 ∩∆0) = F0 ∩ V (∆2 ∩∆0)
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and
a ∈ F0 ∩ V (∆0 ∩∆1) = G1 ∩ V (∆0 ∩∆1).

So ab is an edge in ∆1 between vertices of distinct components of ∆− x1x2, which
is impossible. This contradiction shows that D has more than one end. �

Thus, we can go through the list of locally finite C-homogeneous digraphs, The-
orem 2.1 in [13], and through the list of connected C-homogeneous digraphs with
more than one end, Theorems 4.2 and 7.6 in [15] and Theorem 6.2 in [12] by
Gray and Möller, and obtain all possibilities if G(∆(D)) is a semi-regular tree.
Hence, in addition to G(∆(D)) 6∼= C2m for any m ∈ N, we assume in the following
G(∆(D)) 6∼= Tk,ℓ for any k, ℓ ∈ N∞.

Lemma 8.6. For each two distinct reachability digraphs ∆1 and ∆2 of D, the set
V (∆1 ∩∆2) lies on the same side of ∆1.

Proof. We may assume that ∆1 and ∆2 have non-trivial intersection. Due to
Lemma 8.4, we have |V (∆1 ∩ ∆2)| ≥ 2. Let us suppose that V (∆1 ∩ ∆2) does
not lie on the same side of ∆1. Since ∆1 ∩ ∆2 contains no edge, G(∆(D)) is no
complete bipartite graph.

If G(∆(D)) is the countable generic bipartite graph, then any two of its vertices
have distance at most 3 in ∆(D). Since V (∆1 ∩∆2) does not lie on the same side
of ∆1, we find x, y ∈ V (∆1∩∆2) with d∆1

(x, y) = 3. So any two vertices of distance
three in ∆1 lie in the intersection of two reachability digraphs by C-homogeneity, as
we can extend them to an induced alternating path of length 3 within ∆1. This im-
plies that all the vertices of ∆1 lie in ∆2, which is impossible as we already saw in the
proof of Lemma 8.5. Thus, G(∆(D)) is not the countable generic bipartite graph.

So for the remainder of the proof, we may assume that G(∆(D)) ∼= CPk for
some k ∈ N∞ with k ≥ 4. Since it suffices to consider the case d+ = ω, we may
assume k = ω. As ∆1 ∩∆2 contains two vertices of distinct sides of ∆1 but no edge,
it consists of precisely two vertices that are adjacent in the bipartite complement
of ∆1. For the end vertices of any 2-arc x1x2x3, not necessarily induced, there
is no x′2 ∈ V D such that x1x

′
2x3 is also a 2-arc since otherwise x2 and x′2 lie in

two common reachability digraphs and on the same side of each of them, which is
impossible. In particular, every edge y1y2 lies on at most one directed triangle, since
two directed triangle both of which contain y1y2 have different 2-arcs from y2 to y1.

Let xy ∈ E∆1 with y ∈ V∆2. If C3 embeds into D, let a be the unique vertex
on a directed triangle with xy. Otherwise, let a be any successor of y. In both
cases, let a′ (let v) be the unique neighbour of a (of y, respectively) in the bipartite
complement of ∆2. So we have v ∈ V (∆1 ∩∆2). Since k = ω and each two distinct
reachability digraphs have only two common vertices, we find a common successor u
of x and v that is adjacent to neither a nor a′. Similar to the existence of u, we
find a vertex b ∈ N+(y) with b 6= a such that b and its unique neighbour b′ in the
bipartite complement of ∆2 are adjacent to neither x nor u.

Note that ∆1 contains rays avoiding y and v and that the reachability digraph
containing a and a′ that is distinct from ∆2 contains rays avoiding a and a′. As D
has at most one end, we find a path from each successor of a and each predecessor
of a′ to x such that the path avoids a, a′, b, b′, y, and v. Let P be any such path of
minimal length and let c be its first vertex. Note that if C3 embeds into D then P
is the trivial path consisting only of x. By its minimality, P contains no successor
of b and no predecessor of b′. Indeed, if P has such a vertex, then this is not c,
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since neither a and b nor a′ and b′ lie in two common reachability digraphs and
since c /∈ V∆2. By C-homogeneity, we find an automorphism of D that fixes xy and
maps b to a and b′ to a′. This would contradict the minimality of P . Note that, if P
contains either a predecessor of b or a successor of b′, then this is also a predecessor
of a or a successor of a′, respectively, and the analogue holds if P contains either a
predecessor of a or a successor of a′. Thus, if ac ∈ ED, we find an automorphism
of D that fixes P and yxuv and maps a′ to b′. Then yac and ybc = (yac)α are
2-arcs with the same end vertices, which cannot exist as we already mentioned. In
the situation ca′ ∈ ED, we obtain a similar contradiction by an automorphism that
fixes P and yxuv and maps a to b, where we find the two 2-arcs ca′v and cb′v. �

Now we are able to finish the situation for the cases that G(∆(D)) is either com-
plete bipartite, or the bipartite complement of a perfect matching, or the countable
generic bipartite graph. Due to the previous classifications of C-homogeneous di-
graphs [12, 13, 15], it suffices to describe those that have at most one end and are
not locally finite.

Lemma 8.7. If D has at most one end and is not locally finite, then it is isomorphic
to one of the following digraphs:

(i) Cm[Iω ] for some m ∈ N∞ with m ≥ 3;
(ii) Yω; or
(iii) Rm for some m ∈ N∞ with m ≥ 3.

Proof. Let us assume that D has at most one end and is not locally finite. Since
V (∆1 ∩ ∆2) lies on the same side of ∆1 by Lemma 8.6, we may assume that the
vertices in ∆1 ∩∆2 have their predecessors in ∆1 and their successors in ∆2. Let
{A,B} be the natural bipartition of V∆1 such that V (∆1 ∩∆2) ⊆ B. Since any
two vertices in B have a common predecessor in A, we conclude B ⊆ V∆2 by C-
homogeneity. Indeed, we can map any two vertices in V (∆1 ∩∆2) with a common
predecessor onto any two vertices in B with a common predecessor, so any two
vertices in B lie in two common reachability digraphs of D and hence B ⊆ V∆2.
Thus, we have B = V (∆1 ∩∆2). By an analogous argument, we obtain that every
vertex on the same side of ∆2 as B lies in B.

Let ∼ be a relation on V D defined by

(52) x ∼ y :⇐⇒ x and y lie on the same side of two reachability digraphs.

As we have just shown, ∼ is an equivalence relation on V D, which is Aut(D)-
invariant. Since each equivalence class is an independent set and since the reacha-
bility digraphs are bipartite, we conclude that D

∼
is a digraph. Since every vertex

of D lies in precisely two reachability digraphs, every vertex of D
∼
has precisely

one successor and one predecessor. Furthermore, D
∼
is connected. Thus, we have

D
∼

∼= Cm for somem ∈ N∞ withm ≥ 3. If G(∆(D)) ∼= Kk,ℓ for some k, ℓ ∈ N, then
we obtain k = ℓ because B is one side of ∆1 and one of ∆2. It is a direct consequence
that D ∼= Cm[Iω ] as D is not locally finite. Similarly, if G(∆(D)) is the countable
generic bipartite graph, then we directly obtainD ∼= Rm. It remains to consider the
case G(∆(D)) ∼= CPk. If m ≥ 4, then we find two distinct types of induced 2-arcs
xyz: one whose end vertices are not adjacent to the same vertex y′ with y′ ∼ y and
one whose end vertices do not have this property. Even thoughD is C-homogeneous,
we cannot map the first onto the second of these induced 2-arcs by automorphisms
of D. Thus, we have m = 3. Let D be the tripartite complement of D. Since the
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bipartite complement of each reachability digraph is a perfect matching, D is a dis-
joint union of directed cycles. Let us suppose that the length of one of these cycles
is more than 3. Then it has length at least 6 and there are two ∼-equivalent ver-
tices in D that have distance 3 on that cycle. Since these two ∼-equivalent vertices
have a common predecessor, the same is true for any two ∼-equivalent vertices by
C-homogeneity. So each two ∼-equivalent vertices lie on a common directed cycle
in D and have distance 3 on that cycle. Hence, D consists of precisely one cycle of
length at most 9 and D is locally finite in contradiction to the assumption. Thus,
D is the disjoint union of directed triangles, which shows D ∼= Yω . �

Let us summarize the results of this section. The following proposition follows
directly from Proposition 5.1 together with Lemmas 8.2, 8.3, 8.5, and 8.7.

Proposition 8.8. Let D be a countable connected C-homogeneous digraph with
D+ ∼= In for some n ∈ N∞ whose reachability relation is not universal. If D has at
most one end and is not locally finite, then it is isomorphic to one of the following
digraphs:

(i) Cm[Iω ] for some m ∈ N∞ with m ≥ 3;
(ii) Yω; or
(iii) Rm for some m ∈ N∞ with m ≥ 3. �

8.2. Universal reachability relation. Within this section, let D be a countable
connected C-homogeneous digraph with D+ ∼= In for some n ∈ N∞, with D− ∼= In′

for some n′ ∈ N∞ and with at most one end. We assume n, n′ ≥ 2 and that A is
universal. Due to Lemma 5.2, some cycle in D witnesses that A is universal. By
Lemma 5.3, we may assume that this is an induced cycle.

Lemma 8.9. If D contains an induced cycle of odd length witnessing that A is
universal, then it contains an induced cycle of length 4 witnessing that A is univer-
sal.

Proof. Let C be an induced odd cycle witnessing that A is universal. Then C
contains a unique induced 2-arc xyz. The digraphs C−x and C− y are isomorphic
induced alternating paths. By C-homogeneity, we find an automorphism α ofD that
maps C − x onto C − y. Since N−(z) is independent and xα ∈ N−(z), the digraph
D[x, y, z, xα] is an induced cycle of length 4 witnessing that A is universal. �

In the following, we fix an induced cycle C of minimal length witnessing that A
is universal. Due to Lemma 8.9, this cycle has even length.

Lemma 8.10. There is an isomorphic copy of C4 in D.

Proof. Let xyz be a 2-arc on C. Since C has even length, C − y has a non-trivial
automorphism: one that maps x to z and vice versa. As C is induced, we can
extend this automorphism of C − y to an automorphism α of D by C-homogeneity
and obtain that D[x, y, z, yα] is a directed cycle of length 4. Note that any directed
cycle of length 4 is induced since D+ and D− are edgeless. �

Let xy ∈ ED, letX := N−(x)rN+(y), and let Y := N+(y)rN−(x). Obviously,
X and Y are disjoint. In the following, we investigate the subdigraph Γ := D[X∪Y ]
of D.

Lemma 8.11. The subdigraph Γ is a non-empty homogeneous 2-partite digraph.
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Proof. Let A and A′ be finite subdigraphs of D[X ] and let B and B′ be finite sub-
digraphs of D[Y ]. Because V (B+B′)∩N−(x) = ∅ and because D+(x) is edgeless,
x is adjacent to no vertex of B + B′. Similarly, because V (A+A′) ∩N+(y) = ∅
and because D−(y) is edgeless, y is adjacent to no vertex of A+A′. Hence, any iso-
morphism ϕ from A+B to A′+B′ extends to an isomorphism from A+B+x+y to
A′+B′+x+y, that fixes x and y, and thus by C-homogeneity it extends to an auto-
morphism α ofD with Xα = X and Y α = Y . In particular, the restriction of α to Γ
is an automorphism of Γ that extends ϕ and fixes both of X and Y setwise. Thus, Γ
is homogeneous 2-partite. As C4 embeds into D, the subdigraph Γ is not empty. �

Having shown that Γ is homogeneous 2-partite, we can apply the classification
of the countable such digraphs, Theorem 6.3. So we can investigate the possible
digraphs Γ one by one, similar to the different possibilities for D+. We start with
the situation that Γ is homogeneous bipartite and show that this cannot occur:

Lemma 8.12. The subdigraph Γ is not homogeneous bipartite.

Proof. Let us suppose that Γ is homogeneous bipartite. Since D contains some
directed cycle of length 4 by Lemma 8.10, we conclude that the edges of Γ are
directed from Y to X . We consider all possibilities of Theorem 6.1 one by one.
Note that due to Lemma 8.11 the digraph Γ is not empty. So there are only four
remaining possibilities for Γ.

If G(Γ) is complete bipartite, then xy cannot be the inner edge of any induced
3-arc. As Aut(D) acts transitively on the 1-arcs, we conclude that D contains
no induced 3-arc at all. Since every induced cycle of even length at least 6 that
witnesses that A is universalcontains an induced 3-arc, C has length 4. But as xy
is the inner edge of some 3-arc in a cycle isomorphic to C, the digraph Γ must
contain some edges that are directed from X to Y . This contradiction shows that
G(Γ) is not complete bipartite.

If G(Γ) is a perfect matching, then we know that every induced 2-arc lies on a
unique induced directed cycle of length 4. Due to the previous case, we may assume
|X | ≥ 2. So every edge lies on at least two directed cycles of length 4. Let xyuv and
xyab be two distinct directed cycles of length 4 and let yuwz be another directed
cycle of length 4 containing yu. Then neither v nor u is adjacent to any of a, b, w, z
since G(Γ) is a perfect matching and the same holds for the subdigraph defined by
the edge yu instead of xy. Note that |C| > 4, since |C| = 4 implies the existence
of some edge from X to Y . Thus, the digraph D[y, z, b, x] cannot be a cycle of
length 4 witnessing that A is universal. Hence, we have zb /∈ ED. If bz ∈ ED, then
a is not adjacent to z since neither zy lie in D−(a) nor bz lies in D+(a). Thus, yab
lies on two distinct induced directed cycles of length 4, once together with z and
once together with x. This is impossible as we already mentioned. Thus, b and z
are not adjacent. Hence, C-homogeneity implies the existence of an automorphism
α of D that fixes x, y, z and interchanges b and v. Since every induced 2-arc lies on
a unique induced directed cycle of length 4, we conclude aα = u and uα = a. As
u = aα and z = zα are not adjacent, a and z are not adjacent, too. Since w and v
are not adjacent, the same is true for b and wα. If either bw ∈ ED or wb ∈ ED,
then either D[x, b, w, u, v] orD[z, w, b, a, wα] is a cycle of length 5 witnessing that A
is universal. By Lemma 8.9, we conclude |C| = 4, a contradiction. Thus, we know
that b and w are not adjacent. So due to C-homogeneity, D has an automorphism β
that fixes x, y, z, w and maps v to b. Since β fixes y, z, w, it must also fix u, the
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unique vertex that forms with the 2-arc wzy an induced directed cycle of length 4.
But we have (uv)β = ub /∈ ED as previously mentioned, even though uv is an edge
of D. This contradiction shows that G(Γ) is not a perfect matching.

If G(Γ) is the complement of a perfect matching, then we may assume |X | ≥ 3 as
otherwise G(Γ) is also a perfect matching, which we treated before. Let z, u, v ∈ X
and let z′ be the unique vertex in Y that is not adjacent to z. Considering the
edge ux instead of xy, we obtain a unique vertex z′′ ∈ N+(x)rN−(u) that is not
adjacent to z′. Let us show that z′′ is adjacent to neither z nor v. By the structure
of Γ applied to the edge ux instead of xy, we find a vertex u− ∈ N−(u)rN+(x) that
is a common successor of y and z′′. Since u− ∈ Y abd u− 6= z′, we have u−z ∈ ED.
Hence, xz′′u−z is a directed cycle of length 4 and we conclude that z is not adjacent
to z′′ since N+(z) and N−(z) are independent sets. If u−v ∈ ED, then the same
argument applies for v and z′′ and hence they are not adjacent. As Γ is bipartite,
we do not have vu− ∈ ED. So let us assume that u− and v are not adjacent. Let
us suppose that v and z′′ are adjacent. Since D+(v) is edgeless, we do not have
vz′′ ∈ ED, so we have z′′v ∈ ED. Then D[z′′, v, z′, u, u−] is a cycle of length 5
witnessing that A is universal. As above, we conclude |C| = 4 by Lemma 8.9 and
the minimality of C, which is impossible as Γ is bipartite. Thus, v and z′′ are also
not adjacent if u− and v are not adjacent. We have shown that z′′ is adjacent to
neither v nor z. Hence, C-homogeneity implies the existence of an automorphism
α of D that fixes u, x, y, z′′ and maps z to v. Since α fixes u, x, z′′, it must also
fix the uniquely determined vertex in N−(u) r N+(x) that is not adjacent to z′′,
which is z′. But then α must also fix z, the unique vertex in X = N−(x)rN+(y)
that is not adjacent to z′, in contradiction to the definition of α. This shows that
G(Γ) is not the complement of a perfect matching.

It remains to consider the case that G(Γ) is the generic bipartite graph. As
mentioned earlier, we have |C| 6= 4 as otherwise Γ must contain edges from X to Y .
Let abcd be the induced 3-arc in C. Then C − b is an induced alternating path
and hence embeds into Γ. Let P be an isomorphic copy of C − b in Γ. As D is C-
homogeneous, we find an automorphism α of D with (C− b)α = P . Since both end
vertices of P have successors on P , they lie in Y . As G(Γ) is generic bipartite, the
end vertices of P have a common successor z in X . Then D[aα, bα, cα, z] is a cycle
of length 4 witnessing that A is universal. This contradiction to the minimality
of C shows that Γ is not homogeneous bipartite. �

Since Γ is not homogeneous bipartite, we find an edge uv ∈ EΓ with u ∈ X and
v ∈ Y . So D[x, y, u, v] is a cycle witnessing that A is universal and the minimality
of C implies |C| = 4. In the remainder of this section, we will concentrate on
arguments that involve the diameter of D. First, we show that D is homogeneous
if its diameter is 2:

Lemma 8.13. If diam(D) = 2, then D is homogeneous.

Proof. First, let us show that

(53) for every finite independent vertex set A, there are u, v ∈ V D with
A ⊆ N+(u) and A ⊆ N−(v).

We show (53) by induction: If |A| = 2, then we find a vertex w with A ⊆ N(w)
because of diam(D) = 2. Regardless which edges between w and the elements of A
lie in D, we can use C-homogeneity and the cycle C, into which every induced path
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of length 2 embeds, to conclude that some induced 2-arc has the two elements of A
as end vertices. By the same reasons, we find some vertex u with A ⊆ N+(u) and
some vertex v with A ⊆ N−(v).

Now, let us assume |A| > 2. First, we show the existence of some vertex with
A in its out-neighbourhood. By induction, we find some u ∈ V D and a ∈ A with
A r {a} ⊆ N+(u). Let a′ ∈ N+(u) r A. By induction, we find z ∈ V D with
a, a′ ∈ N+(z) and such that all but at most two elements of A lie in N+(z). For
all b ∈ ArN(z), the first case |A| = 2 gives us some zb ∈ V D with b, z ∈ N−(zb).
Since N+(z) is independent, zb is adjacent neither to a nor to a′. Then the digraphs

D1 := D[Ar {a} ∪ {zb | b ∈ ArN(z)} ∪ {z, a′}]

and

D2 := D[A ∪ {zb | b ∈ ArN(z)} ∪ {z}]

are isomorphic by an isomorphism ϕ that maps a′ to a and fixes all other vertices.
By construction, D1 and D2 are connected, so ϕ extends to an automorphism α
of D. Since (Ar {a})∪{a′} ⊆ N+(u), we conclude A ⊆ N+(uα). By an analogous
argument, we find some v ∈ V D with A ⊆ N−(v). Thus, we have shown (53).

Next, we show the following:

(54) Let A,B,A′, B′ be finite independent vertex sets of D such that some
isomorphism ϕ : D[A′ ∪ B′] → D[A ∪ B] with A′ϕ = A and B′ϕ = B
exists. If A is maximal independent in A ∪B and if D has a vertex v
with A′ ⊆ D+(v) and B′ ⊆ D−(v), then there exists some u ∈ V D
with A ⊆ D+(u) and B ⊆ D−(u).

If D[A ∪ B] is connected, then the assertion follows directly by C-homogeneity.
Since the case B = ∅ is done by (53), we may assume B 6= ∅. By induction on |B|
we find some vertex v′ ∈ V D with A ⊆ N+(v′) and B r {b} ⊆ N−(v′) for some
b ∈ B. Applying C-homogeneity, we may assume A′ = A and B′ r {b′} = B r {b}.
Since A is maximal independent in D[A ∪ B], we know that b has a neighbour c
in A ∪ B. This neighbour is also a neighbour of b′ with b ∈ N+(c) if and only if
b′ ∈ N+(c). So b and b′ are not adjacent as both lie either inN+(c) or in N−(c). Let
Z be a vertex set containing precisely one vertex from each component of D[A∪B]
that does not contain b. Then Z ∪ {b, b′} is an independent set and we find a ver-
tex z with Z ∪ {b, b′} ⊆ N+(z) by (53). Then the digraphs D[A ∪ B ∪ {z}] and
D[A ∪ (B r {b}) ∪ {b′, z}] are isomorphic by an isomorphism ψ that maps b to b′

and fixes all other vertices. Since both digraphs are connected, ψ extends to an auto-
morphism α of D. Then we have A ⊆ N+(vα) and B ⊆ N−(vα), which shows (54).

To show that D is homogeneous, let F and H be finite isomorphic induced subdi-
graphs ofD and let ϕ : F → H be an isomorphism. Let A ⊆ V F be a maximal inde-
pendent subset and let B ⊆ V F rA be maximal independent, too. By (54), we find
a vertex u with A ⊆ N+(u) and B ⊆ N−(u). We have N(u)∩V F = A∪B by max-
imalities of A and B. Analogously, we find v with Aϕ ⊆ N+(v) and Bϕ ⊆ N−(v).
Then F + u and H + v are connected and isomorphic via an isomorphism ϕ′ that
extends ϕ. By C-homogeneity, ϕ′ extends to an automorphism of D. This shows
that D is homogeneous. �

The previous lemma enables us to prove that D is homogeneous if Γ is not the
generic orientation of the countable generic bipartite graph:
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Lemma 8.14. If Γ is either the generic 2-partite digraph or CP ′k for some k ∈ N∞,
then D is homogeneous.

Proof. Up to isomorphism and/or reversing the direction of every edge, the only
paths abcd of length 3 in a digraph are of the form:

(a) ab, bc, cd ∈ ED;
(b) ab, bc, dc ∈ ED;
(c) ba, bc, dc ∈ ED.

If we can show that in each of these three cases the end vertices a and d have distance
at most 2, then we have diam(D) = 2 and the assertion follows from Lemma 8.13.
If in any of these three cases a is adjacent to c or b is adjacent to d, we can conclude
d(a, d) ≤ 2 directly. So we may assume that this is not the case. In case (a), we may
assume bc = xy as Aut(D) acts transitively on the 1-arcs of D. Since a and c are
not adjacent, we have a ∈ X and, since b and d are not adjacent, we have d ∈ Y . As
G(Γ) is a complete bipartite graph in both possibilities for Γ, we obtain d(a, d) = 1.
In cases (b) and (c), we may assume c = x, b ∈ X , and a ∈ Y by C-homogeneity.
Then either d ∈ N−(x) rN+(y) = X and d(a, d) = 1 or d ∈ N−(x) ∩N+(y) and
d(a, d) = 2 because of a, d ∈ N(y). This proves diam(D) = 2 and hence that D is
homogeneous. �

In the following, we assume due to Lemmas 8.12 and 8.14 and by Theorem 6.1
that Γ is the generic orientation of the countable generic bipartite graph.

Lemma 8.15. We have diam(D) ≤ 3.

Proof. Seeking for a contradiction, let us suppose diam(D) ≥ 4. Let P = x0 . . . x4
be a shortest (not necessarily directed) path between two vertices x0 and x4 with
d(x0, x4) = 4. Then P embeds into Γ, as every finite 2-partite digraph embeds
into Γ. Hence, we find an automorphism α of D that maps P into Γ. Then either
x0α and x4α lie inX or they lie in Y . In both cases, they have a common neighbour,
either x or y. Thus, x0 and x4 have a common neighbour. This contradiction to
d(x0, x4) = 4 shows diam(D) ≤ 3. �

Since we already investigated the case diam(D) = 2, the only remaining situation
is diam(D) = 3. We shall prove that in this situation D and Γ are isomorphic.

Lemma 8.16. If diam(D) 6= 2, then D is the generic orientation of the countable
generic bipartite graph.

Proof. By Lemma 8.13 and Lemma 8.15, we may assume diam(D) = 3. Let Di(x)
be the set of those vertices of D whose distance to x is i. The first observation in
this proof is that

(55) there are non-adjacent vertices a ∈ D1(x) and b ∈ D2(x).

Indeed, if all vertices a ∈ D1(x) and b ∈ D2(x) are adjacent, then every vertex in
V D = {x} ∪ D1(x) ∪ D2(x) ∪ D3(x) has distance at most 2 to a and we obtain
diam(D) = 2, a contradiction to our assumption.

Let us show that

(56) the end vertices of any induced path of length 3 have distance 3.

Let P1 be a path of length 3 whose end vertices have distance 3 and let P2 be
another induced path of length 3. By using C-homogeneity and the cycle C, we
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can modify P1 and obtain a path P3 with the same end vertices like P1 and such
that P2 and P3 are isomorphic. Hence, (56) holds.

Next, we show that

(57) D contains no triangle.

Let us suppose that D contains some triangle. Since N+(x) and N−(x) are in-
dependent sets, this triangle is a directed triangle. Let a ∈ Y , b ∈ X , x, and
d ∈ N−(x) ∩ N+(y). Then D[a, b, x, d] is an induced path of length 3 as N+(y)
and N−(x) are independent vertex sets. Due to (56), we have d(a, d) = 3, but y is
a common neighbour of a and d. This contradiction shows (57).

A direct consequence of (57) is that D1(x) is an independent set. Let us show
that

(58) D2(x) is an independent set.

If this is not the case, then two vertices a, b ∈ D2(x) are adjacent. Let c be a
common neighbour of b and x. By (57), we know that a and c are not adjacent.
Hence D[a, b, c, x] is an induced path of length 3. So its end vertices have distance 3
by (56) in contradiction to the choice of a.

We have almost proved that D is 2-partite. The only edges that might be an
obstacle for this are those with both its incident vertices in D3(x). So let us exclude
such edges:

(59) D3(x) is an independent set.

Let us suppose that some edge ab has both its incident vertices in D3(x). Let P
be a path of length 3 from x to a. Due to (57), Pab is induced and its end vertices
have distance 3. As Γ is the generic orientation of the countable generic bipartite
graph, we also find an isomorphic copy P ′ of P in Γ. By C-homogeneity, we find
an automorphism α of D that maps P to P ′. Since the end vertices of P ′ lie either
both in X or both in Y , they have a common neighbour, either x or y, respectively,
and thus they have distance 2. Therefore, the distance between the end vertices of
P = P ′α−1 must be 2, too. This contradiction to the choice of b shows (59).

As mentioned earlier, we obtain from (57), (58), and (59) that D is a 2-partite
digraph with partition sets U := {x} ∪D2(x) and W := D1(x) ∪D3(x). Let A,B,
and C be finite subsets of U . Then we find a finite set F ⊆ V D such that

H := D[A ∪B ∪ C ∪ F ]

is connected. As H ⊆ D is 2-partite and Γ is the gerneric orientation of the
countable generic bipartite graph, we find an isomorphic copy of H in Γ. By C-
homogeneity, there is an automorphism α of D with Hα ⊆ Γ such that either
(A ∪ B ∪ C)α ⊆ X or (A ∪ B ∪ C)α ⊆ Y . As Γ is the generic orientation of the
countable generic bipartite graph, there is a vertex v either in Y or in X with
Aα ⊆ N+(v) and Bα ⊆ N−(v) and Cα ∩ N(v) = ∅. Then vα−1 is a vertex we
are searching for. An analogous argument shows the existence of such a vertex if
A,B, and C are finite subsets of W . Hence, we have shown that D is the generic
orientation of the countable generic bipartite graph. �

Let us summarize the results of this section:

Proposition 8.17. Let D be a countable connected C-homogeneous digraph whose
reachability relation is universal. If D+ ∼= In for some n ∈ N∞, then D is either
homogeneous or the generic orientation of the countable generic bipartite graph. �
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8.3. A second result. By summarizing the propositions with Section 8, we obtain
the following theorem:

Theorem 8.18. Let D be a countable connected C-homogeneous digraph such that
D+ ∼= In for some n ∈ N∞. If D has at most one end and is not locally finite, then
it is isomorphic to one of the following digraphs:

(i) a homogeneous digraph;
(ii) Cm[Iω ] for some m ∈ N∞ with m ≥ 3;
(iii) Yω;
(iv) Rm for some m ∈ N∞ with m ≥ 3; or
(v) the generic orientation of the countable generic bipartite graph. �

Theorems 7.39 and 8.18 together with [13, Theorem 2.1] and [15, Theorems 4.2
and 7.6] and [12, Theorem 6.2] imply our main result, Theorem 3.1.
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