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Abstract: In this paper we promote the use of Support Vector Machines (SVM) as
a machine learning tool for searches in high-energy physics. As an example for a new-
physics search we discuss the popular case of Supersymmetry at the Large Hadron Collider.
We demonstrate that the SVM is a valuable tool and show that an automated discovery-
significance based optimization of the SVM hyper-parameters is a highly efficient way to
prepare an SVM for such applications. A new C++ LIBSVM interface called SVM-HINT
is developed and available on Github.
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1 Introduction

Data analysis in High Energy Physics (HEP) is a genuine multivariate problem. Despite
the fact that multivariate techniques have been used in HEP for a long time, the explosive
growth of machine learning (ML) techniques during the last two decades had only a limited
impact on the accustomed style in which data analysis is performed in this field. TMVA [1]
is probably the most commonly used software package in this context and especially Boosted
Decision Trees (BDT) and Artificial Neural Networks are applied to explore the large and
complex datasets delivered by present-day experiments. Only recently an increased interest
in the machine learning expertise acquired in other areas of science can be observed [2–4].

In this paper we promote the application of Support Vector Machines (SVM) [5–7] for
new-physics searches. Support Vector Machines are a competitive and widely used approach
to binary classification. The search for new physics can be considered as a classification
task where the rare new-physics signal and the dominant Standard Model (SM) background
constitute the two distinct classes. Although there are a few HEP papers on SVMs [8–12],
this approach seems to be heavily undervalued amongst HEP researchers considering the
many thousands of publications on SVM applications that a simple literature search yields.

– 1 –



After an introduction to SVMs in Section 2, the hyper-parameter tuning is described in
Section 3 (and Appendix A) within the context of our new SVM framework: SVM-Hint.
In Section 4 we first discuss a toy model and then an example for an actual new-physics
search, targeted at a supersymmetric partner of the top quark at the LHC. We demonstrate
that the SVM is a valuable tool for HEP searches and that the partial neglect of the SVM
approach within the HEP community can be related to the limited performance of its
implementation in TMVA without an automated hyper-parameter search. Moreover, we
show that a significance-based optimization of the hyper-parameters is a highly efficient
way to prepare an SVM for a HEP search.

In addition, we provide a software package [13] that performs such a significance-based
optimization of hyper-parameters and interfaces ROOT [14] trees with the popular SVM
implementation LIBSVM [15].

2 Support vector machines

A HEP search typically starts with a set of physical variables and cuts on these variables.
The cuts are defined to select a new-physics signal against the background of known physics
and are often chosen in a more or less ad-hoc style. The optimal use of these variables is
a typical machine learning problem. Monte Carlo (MC) simulation samples for the signal
and background class can be used to train a supervised1 machine learning algorithm which
is potentially a more efficient classifier than a set of cuts.

We write for a set of N training events:

(y1,x1), (y2,x2), ..., (xi, yi), ..., (yN ,xN ) yi ∈ {−1, 1}, (2.1)

xi = (x
(1)
i , . . . , x

(n)
i ) (2.2)

where for an event i = 1 . . . N the label yi distinguishes between signal and background
and xi is an n-dimensional vector formed from the physical variables under consideration.
These vectors constitute an n-dimensional real vector space V.

A support vector machine is a supervised binary classifier based on the intuitive concept
of an n-dimensional hyperplane separating two distinct classes. In this approach, finding
the best separating hyperplane is considered to be a convex optimization problem. In its
simplest form a SVM defines the eponymous support vectors as those elements of the train-
ing sample which are closest to the hyperplane. The separation margin between the classes
is completely defined by the support vectors and maximized by the algorithm. This idea
can be extended to overlapping distributions and eventually, by an implicit transformation
of the variables, known as the Kernel trick, to non-linear problems. The last two modifi-
cations introduce additional hyper-parameters that must be set to some best value before
the SVM training. In the following we give a short introduction to the concepts behind the
SVM algorithm and to the hyper-parameter tuning. The reader who is more interested in
applications may continue with Section 4.
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• Maximize the distance 
between 2 different 
classes. 

• However, not all cases 
are linearly separable.  ⇠ = 1

⇠ > 1
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Figure 1. The events represented by blue circles belong to the first class (y = −1), whereas the
green triangles belong to the second class (y = 1). The dashed lines represent the maximum margin
boundaries, and the corresponding support vectors are circled by dashed lines. From all possible
hyperplanes dividing the two samples, the one with the largest margin is chosen. The blue circle at
ξ > 1 is not linearly separable, see Sec. 2.2.

2.1 Linearly separable distributions

A linear SVM separates the elements of two classes by an optimal hyperplane. Optimal in
this approach is a hyperplane that maximizes the margin between the two classes for a given
training sample. Those elements of the training sample sitting on the maximum margin
boundaries are called support vectors. The support vectors are sufficient to construct the
optimal hyperplane. Fig. 1 illustrates these ideas.

A separating hyperplane can be described as w ·x + b = 0, w ∈ V and b ∈ R. The
vectors of the training sample are either above or below2 this plane. We can always choose
the scale of w and b such that for the vectors which are closest to the hyperplane, i.e. the
support vectors xk, we obtain w ·xk + b = ±1. Multiplied with the class label yi, this
expression must always be positive for correctly classified points:

yi(w·xi + b)− 1 > 0 , (2.3)

and the equality is satisfied by the support vectors (circled in Fig. 1). The separation margin
is the distance ρ between the support vectors on both sides. With the normal vector to the
hyperplane w/|w| and two arbitrary support vectors from each side xk+,xk− the margin is
given by:

ρ(w, b) =
w·xk+
|w| −

w·xk−
|w| =

2

|w| , (2.4)

where the second equality follows from Eq. 2.3. Maximizing the margin ρ = 2/|w| is equiv-
alent to minimizing |w|2. Finding the optimal separating hyperplane is therefore identical

1A ML algorithm is called supervised when the class membership of all training vectors is known.
2For simplicity we use a 3 dimensional way of speaking. All described concepts are valid in n dimensions.
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to solving the following quadratic optimization problem where the correct classification is
enforced by the constraints from Eq. 2.3:

min
w∈V, b∈R

1
2 |w|2

subject to yi(w·xi + b) > 1 for all i = 1 . . . N .
(2.5)

This is a quadratic optimization problem with inequality constraints and can be solved
using Lagrange multipliers αi (with αi > 0). The Lagrangian can be written as:

L =
1

2
|w|2 −

N∑
i=1

αi[yi(w·xi + b)− 1] . (2.6)

The solution is a saddle point (w0, b0, α0
i ) where the Lagrangian becomes minimal with

respect to w and b and where the derivatives are:

∂L

∂w
= 0 = w −

N∑
i=1

αiyixi , (2.7)

∂L

∂b
= 0 =

N∑
i=1

αiyi . (2.8)

Substituting these conditions into Eq. 2.6 results in the dual Lagrangian:

L = −1

2

N∑
i=1

N∑
j=1

αiαjyiyj xi ·xj +
N∑
i=1

αi . (2.9)

Most SVM implementations search for a numerical solution to this dual problem. The
dual Lagrangian is maximized with respect to αi and must fulfill the Karush-Kuhn-Tucker
(KKT) conditions [16, 17]:

αi > 0, αi(yi(w·xi + b)− 1) = 0; i = 1 . . . N. (2.10)

Due to these conditions together with Eq. 2.3, all non-support vectors are forced to have
vanishing Lagrange multipliers αi = 0, and only the support vectors contribute to the sums
in Eq. 2.7 and 2.8, and in the calculation of w0 and b0 at the optimum.

The decision function, i.e. the expression to predict the class label ŷ of a new vector u,
follows from the hyperplane equation at the optimum:

ŷ = sign(

NSV∑
k=1

ykαkxk ·u− b0) , (2.11)

where NSV is the number of support vectors.
It is important to note that the dual form in Eq. 2.9 only depends on the scalar products

of input vectors, and the same is true for the decision function Eq. 2.11. This advantage of
the dual form is essential for the non-linear case in Sec. 2.3.
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2.2 Overlapping distributions

The method described so far works in the case of linearly separable data. Overlapping signal
and background distributions require a different treatment. By allowing misclassification,
the hard margin separation above can be modified into a soft margin approach. This can
be done by introducing slack variables [6] (ξi > 0, i = 1 . . . N) which measure for each
training vector the relative distance by which they are on the wrong side of the separating
hyperplane (shown for the one misclassified point in Fig. 1). They are used to weaken the
constraints 2.3:

yi(w·xi + b) > 1− ξi , (2.12)

and allow to introduce the sum of the slacks
∑N

i ξi as a penalty term into the optimization
problem. The modified Lagrangian becomes:

L =
1

2
|w|2 + C

∑
i

ξi −
∑

αi[yi(w·x + b)− 1 + ξi]−
∑

βiξi , (2.13)

and the extremum condition ∂L /∂ξi = 0 implies a relation between the Lagrange multi-
pliers, βi = C − αi, which allows to bring 2.13 into the same form as 2.6 and eventually
into the dual form 2.9. We are left with an optimization problem that is identical to the
hard margin case up to the modified constraints.

The constant C that controls the strength of the penalty term appears now only as an
upper limit on the Lagrange multipliers 0 6 αi 6 C, restoring the hard margin case in the
limit of C → ∞. Furthermore, it controls the trade-off between simplicity of the decision
rule and error frequency and is one of the hyper-parameters that must be set to a sensible
value before the SVM training.

2.3 Non-linear distributions

The linear SVM presented in the two previous sections is quite limited. For HEP searches
we expect complicated, non-linear hyper-surfaces separating the two classes, for which the
presented approach can easily be extended to create non-linear decision boundaries. The
basic idea for a non-linear SVM [5] is to map the input vectors xi into a higher dimensional
feature space F where the problem becomes linearly separable: xi 7→ φ(xi) ∈ F . The
construction of a linear SVM in this feature space follows the same lines as before and the
dual Lagrangian from Eq. 2.9 will contain an inner product 〈φ(xi), φ(xj)〉 of elements of F .
The peculiar fact that the input vectors only appear in the dual Lagrangian, as well as in
the decision function of Eq. 2.11, in form of scalar products allows us to avoid the explicit
mapping and to use instead a kernel function K(xi,xj) ≡ 〈φ(xi), φ(xj)〉, such that the dual
Lagrangian and the decision function become

L = −1

2

∑
i

∑
j

αiαjyiyj K(xi,xj) +
∑

αi, (2.14)

ŷ = sign(f̂), f̂ =

NSV∑
k=1

ykαk K(xk,u)− b0. (2.15)
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The existence of the mapping x 7→ φ(x) is guaranteed by Mercer’s theorem, given that the
kernel function fulfills certain conditions [5, 18], and in general the feature space F may be
an even infinite dimensional Hilbert space. For an in-depth exposition on kernel techniques
in machine learning see for example [19]. A common and in many applications successful
choice [20] is the Gaussian radial basis function (RBF) kernel:

K(xi,xj) = e−γ|xi−xj |2 . (2.16)

The width of this kernel function is controlled by the value of γ which is the second hyper-
parameter that must be set to a sensible value before the training of the SVM. We note that
the RBF kernel only contains one parameter and that the components of the data vectors
are added quadratically. Therefore, it is useful to normalize the individual components of
the input vectors in an appropriate way. Such a scaling ensures that all components of the
input vectors may contribute equally. For this paper we use the range between minimum
and maximum value for each component. The training data from Eq. 2.1 is replaced by

xi = (xi,0, . . . , xi,n)→ x′i = (c0xi,0, . . . , cnxi,n), i = 1 . . . N, (2.17)

ck = 1/( max
i=1...N

xi,k − min
i=1...N

xi,k), k = 1 . . . n, (2.18)

where N is the size of the training sample and n the dimension of the data vectors x. Later,
in the test phase, the identical scaling constants 2.18 must be applied to the test data.

2.4 Probabilistic output

The SVM described so far is a binary classifier with a yes or no output. In many cases
a posterior probability P that quantifies the belief in the class label is useful and offers
an easier interpretation. In Section 3, a probability cut, P > P0, is used to modify the
signal-to-background ratio and the total number of selected events. Such a classification
probability can be estimated [21, 22] by fitting a sigmoid model to the training data (yi,xi):

P (y = 1|f̂) =

{
exp(−t)

1+exp(−t) : t ≡ A+Bf̂ > 0
1

1+exp(t) : t < 0
, (2.19)

where the decision value f̂ is given in 2.15.
In general, especially for the non-linear SVM, the result will be biased if the SVM

training data itself is used for the fit. In LIBSVM the bias is avoided by a five-fold cross-
validation3. It is important to note that a strictly decreasing function of the decision value,
as 2.19, does not change the order of any sequence of decision values. Since the cross-
validation increases the computational burden we do not calculate the probabilities during
the parameter scan but only for presenting the final results.

3The procedure of k-fold cross-validation splits the training data randomly into k equal sized subsamples.
One subsample is retained for validation while the remaining k-1 subsamples are used for training. The
training is repeated k times with changing roles such that each subsample is used exactly once for validation.
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3 Hyper-parameter tuning

The two parameters C and γ, introduced in the previous section, must be set to sensible
values before the training of the support vector machine. These values are crucial for the
performance of the algorithm, and different strategies to optimize the parameter choice are
possible. The easiest approach is a simple grid search. A two dimensional grid is defined,
at each grid point the SVM training is performed on a training dataset, and the trained
machine is applied to an independent test data sample where some performance measure is
evaluated. Eventually, the (C, γ)-pair with the highest performance index is used. We first
consider what could be an appropriate performance measure for a new physics search and
describe then the tuning algorithm in some detail.

3.1 Performance measures

Machine learning performance measures. From a machine learning perspective, a
natural performance measure describes how well a classifier separates the two distinct
classes. On a sample of test data we know the true class labels. There are 2x2 cate-
gories formed by the true label y ∈ {−1, 1} and the label ŷ ∈ {−1, 1} estimated by the
SVM. The relative amount of test data in these categories can be used to quantify the per-
formance of a machine learning algorithm. Typical ML measures are the accuracy which
gives the percentage of correctly predicted labels, or the precision which, in our case, is
the percentage of correctly predicted signal events. Another frequently used measure is
the AUC, the area under the receiver operator curve (ROC). The ROC curve shows the
background rejection (false positive) against the signal efficiency (true positive) at various
threshold values of the decision function. While the use of these and other performance
measures is common also in HEP [1], we will follow a different approach to optimize the
SVM.

Physics motivated performance measures. The maximum number of correctly clas-
sified events is of secondary importance for a HEP search. There is a much more physically
and statistically motivated measure: the discovery significance. Optimizing the significance
is a common procedure in HEP. Typically the search area is optimized for a statistically
relevant signal to background ratio that allows to prove or reject a certain hypothesis. Here,
we consider the case of a cut-and-count analysis for which several significance estimators
are commonly used [23][24]. Optimizing a certain, statistically motivated, figure of merit is
common practice in HEP to select different ML algorithms or different sets of input vari-
ables. The new insight of this paper is that such a procedure can successfully be applied in
the stage of model selection, i.e. during the hyper-parameter tuning.

Asimov estimate. The exact numerical calculation of the statistical significance may
become computationally costly. A well performing estimate for the discovery significance
has been given in [23]. For the case of Poisson distributed background and signal events (s,b)
with background uncertainty σb the approximated median discovery significance becomes

ZA =

[
2

(
(s+ b) ln

[
(s+ b)(b+ σ2b )

b2 + (s+ b)σ2b

]
− b2

σ2b
ln

[
1 +

σ2bs

b(b+ σ2b )

])]1/2
. (3.1)
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3.2 Hyper-parameter search

The SVM with RBF kernel requires two hyper-parameters: C (Sec. 2.2) and γ (Sec. 2.3).
In addition to the hyper-parameters, the number of selected signal and selected background
events (s, b) depends on the probability cutoff P0 (Sec. 2.4), or a corresponding decision
value f̂0. The easiest algorithm to find the optimal values for these parameters is a grid
search. At each point of a logarithmically spaced grid in (C, γ) a SVM is trained and, on
an independent test dataset, the Asimov significance ZA is calculated as function of P0.
In general, the best cut P0 is selected as the value with the highest significance. To avoid
artificially high significance values due to statistical fluctuation of a small signal at very low
values of b, a further requirement of at least 5 signal events is applied. While conceptually
the plain grid search is sufficient to find good values for (C, γ), computationally it may be
advantageous to use a more refined algorithm for the hyper-parameter tuning. The details
of the iterative algorithm used for the results in this paper are given in Appendix A.

4 Case studies

4.1 Performance comparison on a toy model

Comparing speed and classification performance of different classifiers is not always straight-
forward. In order to have simple and well defined conditions, we start with a toy model
and compare our SVM-HINT framework with a BDT and an SVM, both implemented with
the TMVA library. The toy model includes the following variables Vi generated with the
random numbers xi (the tilde means sampled from):

V1 = sin(x1); x1 ∼ g(x1|a, b)
V2 = x2; x2 ∼ exp(−x2/c)
V3 = x3; x3 ∼ g(x3|d, e)
V4 =

√
x4; x4 ∼ exp(−x4/f)

(4.1)

where g(x|µ, σ) is a Gaussian distribution with mean µ and width σ, and a, b, c, d, e, f > 0

are constants with different values for signal and background samples. This model does
not have any hidden correlation between the variables and each ML algorithm needs only
to find a set of independent optimal cuts. Due to its simplicity, the toy model enables us
to generate large quantities of events to study the training time as function of the training
sample size for the different codes.

As explained in Sec. 3, SVM-HINT provides a hyper-parameter search. The hyper-
parameter search is performed beforehand and is not part of the timing performance study.
The SVM implementation provided by the TMVA library lacks such an automated hyper-
paramter search. We therefore apply the same hyper-parameter values as obtained by the
SVM-HINT tuning algorithm. The out-of-the-box performance of the TMVA-BDT cannot
compete in most cases with the automatically tuned SVM-HINT. There is a trade-off be-
tween classification performance and time consumption of the BDT which can be controlled
by an appropriate choice of the BDT parameters, e.g. the number of trees, minimum node
size, and cut values, as introduced in Sec. B. For comparing the training times, we follow
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the strategy to optimize the BDT parameters manually4 to accomplish a similar discovery
significance as achieved with the SVM-HINT. This allows us to compare the time consump-
tion of equally performing algorithms. Blindly optimizing for maximal performance on a
fixed evaluation training sample could otherwise produce slow, over-sized trees and would
place a disadvantage on the BDT implementation.

t (
se

c)

1

10

100

1000

training events

0 10000 20000 30000 40000 50000 60000

TMVA BDT (1 thread)
TMVA SVM (1 thread)
SVM-HINT with prob. (1 thread)
SVM-HINT w/o  prob. (1 thread)
SVM-HINT w/o  prob. (12 threads)

Figure 2. The timing performance of the classifiers are compared on a computer with two Intel R©

Xeon R© E5-2440 CPUs and 12 physical threads running at 2.40 GHz clock speed. Number of threads
used by each classifier implementations are stated within parentheses in the legend.

Fig. 2 shows the results for the different classifiers. At low numbers of training events
the BDT performs better than the other single-threaded classifiers. With increasing training
sample size the number of trees needed to achieve a competitive classification performance
becomes larger with negative impact on the training time. The TMVA-SVM does not scale
well in terms of timing performance and it performs poorly on bigger samples. Overall the
SVM-HINT performs similar or better compared to TMVA-BDT and TMVA-SVM. In ad-
dition, the SVM-HINT can efficiently take advantage of multi-core architectures. Naturally,
the multi-threaded performance of the SVM-HINT with 12 threads outperforms the other
implementations.

4.2 Third generation supersymmetric partner search

Monte Carlo samples As a real-world physics example we consider a search for the
supersymmetric partner of the top quark, called top squark, at the LHC. The search is
designed for the case of direct top-squark pair production with subsequent decay of the top
squarks into the lightest supersymmetric particle (LSP) and a top quark. Several searches
for such a scenario have been performed at TeVatron as well as at the LHC [25–32]. After
preselection of the data, the remaining dominant background is given by top-antitop (tt)
quark production. Top quarks decay to almost 100% to a a b quark and a W boson, with
the latter decaying either to two quarks or to a lepton and a neutrino. When requiring

4Configuration files are available at [13].
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one lepton in the final state, we mainly expect to select semi-leptonic decays of top quarks
(where one W boson decays to two jets and the other to a lepton and a neutrino), but
dileptonic top decays (where both W bosons decay to a lepton and a neutrino) might be
selected as well, if one lepton is not identified (lost) for various reasons. A leading order
simulation is sufficient for our purpose and we only take into account NLO results for the
total cross sections of signal [33] and background [34, 35] processes. Pythia6 [36] is used
for the event simulation and Delphes3 [37] to model the detector response. The detector
model is a combined ATLAS and CMS detector, as it had been used for the 2013 Snowmass
effort [38].

We categorize the physical variables with respect to their mathematical complexity as
high-level and low-level variables. The low-level variables consist of basic properties of the
reconstructed physics objects measured by the detector, while the high-level variables are
constructed from the low-level variables using physical insight to improve the classification
performance. The physics objects are jets and leptons, where lepton is used as generic
term for electrons and muons. For simplicity, we do not consider tau leptons since their
experimental reconstruction is more complex.

Low-level variables are the transverse momentum pT and the pseudorapidity η of the
single lepton, of the four highest-pT (called ‘leading’) jets, and of the leading b-quark jet.
In hadron collider experiments the missing energy perpendicular to the beam direction, ET/ ,
is commonly reconstructed as an independent variable. It is therefore treated as a low-level
quantity, as well as HT, the scalar sum over the transverse momenta of all preselected jets.
In many SUSY models, we expect large ET/ due to the LSP, which is expected to be neutral
and weakly interacting and will therefore not be detected. As SUSY particles are heavy,
we also expect a large amount of energy in the detector leading to large HT. In addition,
the multiplicities of jets (njet) and b-quark jets (nbjet) are included.

As high-level variables we consider the following variables: the transverse mass mT, de-
fined as mT =

√
2 pT,l ET/ (1− cos ∆φ(l ,ET/ )), can be used to suppress the background from

W-boson production, as mT of leptonic W decay events does not exceed the the W mass.
Dileptonic tt-events with one lost lepton are an important background since the lost lepton
mimics large missing energy from the LSP. The mW

T2 variable [39] is constructed exploiting
the knowledge of the tt-decay kinematics to separate such events. Top-squark production
is a high-mass process with large missing energy. High-mass production is typically related
to more centrally distributed particles in the detector, such that the Centrality, defined as∑

jets,l pT /
∑

jets,l p, can be used to enhance such events. Commonly used relations between
the hadronic activity and the missing energy are Y = ET/ /

√
HT, often referred to as ET/ sig-

nificance, and the HT-ratio, the normalized hadronic activity in the hemisphere of ET/ . The
last group of variables exploit topological relations between the event particles: ∆φ(W , l)

is the angle between the W boson and lepton, ∆rmin(l , b)is the radial distance between
closest lepton and b-jet and m(l , b)is the invariant mass of the b-jet and the closest lepton.

A compilation of all low-level and high-level variables is given in Table 1, together
with the definition of four sets of variables which are considered to investigate the influence
of the variable multiplicity and complexity in the multivariate analysis. We define one
set containing all variables, one using only low- or high-level variables, respectively, and a
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subset of two low-level and two high-level variables with relatively large separation power.

Table 1. Summary of all low-level and high-level variables used in the analysis. Set 1 includes all
variables. Set 2 and set 3 consist of low- and high-level variables, respectively. Set 4 is a smaller
subset of high- and low-level variables.

Variable Set 1 Set 2 Set 3 Set 4
lo
w
-le

ve
l

pT,l • •
ηl • •
pT,jet(1,2,3,4) • •
ηjet(1,2,3,4) • •
pT,b jet1 • •
ηb jet1 • •
njet • •
nb jet • •
ET/ • • •
HT • • •

hi
gh

-le
ve
l

mT • • •
mW

T2 • • •
∆φ(W , l) • •
m(l , b) • •
Centrality • •
Y • •
HT-ratio • •
∆rmin(l , b) • •
∆φmin(j1,2, ET/ ) • •

Analysis strategy In order to reduce the time required for training and optimization, a
baseline selection, summarized in Table 2, is applied to the signal and background samples.
Figure 3 shows the distribution of signal and background for two low-level and two high-level
variables, HT, ET/ , mT and mW

T2 after the baseline selection, normalized to the expected
luminosity at the end of the LHC run in the year 2023, corresponding to 300 fb−1. The
background is several orders of magnitude higher than the signal, and the distributions of
signal and background are quite similar due to their similar kinematics.

The samples are separated into three independent subsamples: training, test and eval-
uation sample. Each classification method is optimized over the training and test samples
and the best-performing configuration is applied to the independent evaluation sample for
the final performance assessment.

The TMVA-BDT has been manually trained and tested over 8 different settings for each
of the four variable sets in order to obtain optimal parameters as described in Appendix B,
while the SVM-HINT is auto-tuned by the iterative grid search, as described in Sec. 3
and Appendix A. Without modifying the default SVM-HINT settings, the two step grid
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Figure 3. The distribution of signal (red line) and background (blue filled histogram) after the
baseline selection for two low-level and two high-level variables that are used in the analysis: HT, ET/ ,
mT andmW

T2. The y-axis shows the number of events (normalized to the integrated luminosity), and
the x-axis shows the variable value for a given bin. Statistical errors are represented by transparent
bands.

Table 2. Top-squark search: List of baseline selection requirements

|ηl , jet| < 2.4

pT,l > 30GeV
pT,jet > 40GeV
pT,jet1 > 80GeV
pT,jet2 > 60GeV

ET/ > 200GeV
HT > 300GeV
njet > 3

nb jet > 0

search hyper-parameter optimization function provides the optimal parameters using test
and training samples. We calculate the final significance with an independent evaluation
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Figure 4. The SVM-HINT and TMVA BDT responses trained with the variable sets set 1 and
set 2, as defined in 1. Even though the optimal ZA efficiency information is not available in
data, it is included to demonstrate the reliability of the optimal discriminator cut output from the
classifier implementations. The y-axis on the left shows the number of events (normalized to the
aimed integrated luminosity), whereas the y-axis on the right shows the Asimov significance for the
discriminator cut per bin.

Results Figures 4 and 5 show the performance of the SVM-HINT and the TMVA-BDT for
the four different variable sets. Both the SVM-HINT as well as the TMVA-BDT obtain the
highest accuracy with the largest number of variables (set 1). Both methods perform much
worse with only low-level variables (set 2), while the high-level variables (set 3) are clearly
able to separate signal and background. Despite the poor performance of the low-level
variables, they add a substantial amount of extra information to enlarge the significance
when adding them to the high-level variables. Here we conclude that even with variable
multiplicity of 25, SVM-HINT as well as TMVA-BDT do not require a preselection of vari-
ables. Reducing the number of variables to two low-level and two high-level variables gives
slightly better results for the SVM-HINT than for the TMVA-BDT. Here we have to note
that this study is not meant to compare the two methods, but to put the results obtained
by SVM-HINT into a more known context in HEP with the TMVA-BDT. The SVM-HINT
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Figure 5. The SVM-HINT and TMVA BDT responses trained with the variables sets set 3 and
set 4, as defined in 1. Even though the optimal ZA efficiency information is not available in
data, it is included to demonstrate the reliability of the optimal discriminator cut output from the
classifier implementations. The y-axis on the left shows the number of events (normalized to the
aimed integrated luminosity), whereas the y-axis on the right shows the Asimov significance for the
discriminator cut per bin.

with the automated hyperparameter tuning needs no further manual optimization and can
make use of high number of variables simultaneously with an increasing classification power.

Furthermore, the importance of the performance measures is visible on the discrimi-
nator cut decisions by the classifier implementations. The TMVA BDT uses simply S√

S+B
as the performance measure, where S and B correspond to the number of signal and
background events, respectively. This formula performs differently than a log-likelihood
significance calculation. Therefore, the optimal cut provided by TMVA reduces the signifi-
cance obtained from the classifier implementation. SVM-HINT uses the Asimov significance
which gives very similar results to the log-likelihood calculation, and therefore, the results
obtained from SVM-HINT not only provide good out-of-the-box estimation of the actual
significance, but the discriminator cut given by SVM-HINT maximizes the significance
between background and signal.
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5 Conclusions

Our results show that a Support Vector Machine is an efficient machine learning algorithm
for new physics searches in high-energy physics. The rare applications of this tool in our
field may be related to the limited implementation provided by the popular TMVA library.
An appropriate designed automatic search for the two hyper-parameters easily overcomes
this limitations and reveals the full potential of this approach. The Support Vector Ma-
chine is certainly able to compete with a Boosted Decision Tree which currently is the
prevalent machine learning tool in high-energy physics. We do not intent to claim that
one of the algorithms out-performs the other. This would need a diligent optimization of
our Boosted Decision Tree, which is beyond the scope of this paper. The performance of
a Boosted Decision Trees depends on a larger number of parameters which complicates
the construction of an automated tuning procedure. The clear advantage of the Support
Vector Machine is rather the straightforward hyper-parameter tuning. We demonstrate
that the approximated median discovery significance (Asimov significance) is an effective
figure of merit for the parameter tuning and that only two parameters need to be adapted
to define a well performing search tool. The SVM maximum margin concept guarantees
good generalization properties of the trained algorithm while at the same time the hyper-
parameter tuning allows to find a non-linearly bounded area with maximized significance.
Furthermore, Support Vector Machines are known to be robust against an large number of
even partially correlated input variables. This is in agreement with our studies, a lengthy
selection of useful input variables was not necessary. The algorithm reliably exploits all
available information.
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A Iterative grid search

As shown in section 3.2 an SVM with RBF kernel requires two different hyper-parameters
to be adjusted: C and γ. While in principle a brute force grid search is sufficient to
find the best hyper-parameters, we used an adaptive search strategy for the results in this
paper which we describe here for completeness. The SVM-HINT grid search algorithm uses
a modified version of the Asimov Significance 3.1, a significance score Z̃A based on the
difference between the significance value observed in the test sample and the significance
value from the training sample.

Z̃A = Z
(test)
A

[
1− |Z

(test)
A − Z(train)

A |
Z

(test)
A + Z

(train)
A

]
. (A.1)

This way, the extreme significance values observed due to fluctuations or overtraining can
be penalized without a high computational effort. The search algorithm can be formalized
as follows:

1. For the given initial parameters γinitial and Cinitial, the iterative grid search algorithm
produces an array of logarithmically spaced γ values with a step size Kt around the
mid-value γ(1)m = γinitial such that:

γ
(l)
k = Kt · γ(l)k−1, where Kt =

1

2
(1 + ln(t/2)),

k = 0, . . . ,m, . . . , 2m = 18, t = int(l/4), l = 1, . . . , 20
(A.2)

where l indicates the number of iterations, the variable t is a focus parameter that
decreases the step size factor Kt every fourth iteration.
Z̃A is then evaluated for all of these C-γ-pairs.

2. For the next step C is increased to C(l+1) = 1.5 ·C(l) and Z̃A is again calculated with
each value in the γ array.

3. If the maximum Z̃
(l)
A value is at least 30% larger then the best Z̃ l−1A from the previ-

ous iteration the higher C parameter is accepted. The 30% hurdle is introduced to
stabilize against fluctuations.

4. After each fourth iteration, the C-γ-pair corresponding the highest significance score
is taken as the new initial γ and the algorithm returns to the first step; now with a
smaller step size factor Kt such that the new γ array has a tighter stepping around
the new initial γ value.

5. When the number of iterations reaches the pre-defined maximum value, the algorithm
stops and the γ-C-pair with the maximum Z̃A in the final iteration are returned as
the best hyper-parameter values.

The procedure assumes that a sufficiently small Cinitial had been chosen. In case that the
found best C value is identical with the Cinitial the algorithm is restarted with a smaller
value of Cinitial.
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B Boosted Decision Trees

BDT

44

pure y = �1

pure y = 1

⇥0 � #0 ⇥0 < #0

⇥1  #1 ⇥1 > #1

Figure 6. Representation of a simple binary decision tree structure: Each node is split with respect
to a variable Θi and a cut value θi determined by the performance measure.

Boosted decision trees (BDT) are probably the most common ML classifier in experi-
mental particle physics. We therefore compare the performance of our SVM framework to
a BDT implemented with TMVA. We shortly introduce the relevant BDT concepts used in
this comparison.

Decision Trees A binary decision tree [40] separates signal and background by a sequence
of binary cuts (Fig. 6). The terminating branches, or leaves, correspond to a cubical
separation in the multi-dimensional space of the input variables and the tree as a whole
forms a complex separation boundary between the two classes. Each node of the tree is
connected to two branches that are split with respect to only one of the variables x(1)i . . . x

(n)
i

defined in 2.2. At each node the algorithm selects one of the available physical variables
and searches for a best cut value. This process requires a suitable goodness-of-split measure
and a common choice is the Gini impurity index which is also used for the TMVA-BDT
in this paper. For the two class case the Gini index is given by g = 2p(1 − p), where the
purity p of a node is defined as the ratio of signal events over all events. The training starts
with the root node, and the tree is constructed recursively while at each split the reduction
in Gini impurity is maximized. The splitting stops when a node falls below a predefined
minimum of events.

Pruning The constructed decision tree is sensitive to statistical fluctuation. To avoid
overtraining it must be pruned to remove statistically insignificant nodes. Cost complex-
ity pruning [40] removes branches which increase the misclassification cost. The mis-
classification rate R = 1 − max(p, 1 − p) is used as a cost estimate at each node and
compared to the cost of the subtree below the node. The cost complexity is defined as
ρ = (Rnode −Rsubtree)/(Nst − 1), where Nst is the number of nodes in the subtree. The
node with the smallest ρ is recursively removed from the tree as long as ρ is below a certain
pruning strength value ρ0.
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Boosting A single decision tree is seldom an efficient classifier. Boosting is a powerful
iterative algorithm which improves the performance of weak classifiers. The boosting of a
decision tree extends this concept from one tree to a forrest of trees. The trees are derived
from the same training data by reweighting events, and are finally combined into a single
classifier of considerably enhanced performance. For this paper AdaBoost [41] is used.

The TMVA-BDT (AdaBoost) is trained and tested with 32 different settings to ob-
tain an optimal parameter set (TMVA: nEventsMin, NTrees, MinNodeSize, MaxDepth and
AdaBoostBeta) and the best performing configuration is used for evaluation5.
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