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We study the resonant contributions in the process of B = K~-rtp*p~ with the K—nt
invariant mass square mi, € [1,5]GeV?. Width effects of the involved strange mesons,
K™ (1410), K (1430), K5 (1430), K*(1680), K5 (1780) and Kj(2045), are incorporated. In terms of
helicity amplitudes, we derive a compact form for the full angular distributions, through which the
branching ratios, forward-backward asymmetries and polarizations are attained. We propose that
the uncertainties in the B — K form factors can be pinned down by the measurements of a set
of SU(3)-related processes. Using results from the large energy limit, we derive the dependence of
branching fractions on the mx«, and find that the K3 resonance has a clear signature, in particular,

in the transverse polarizations.

PACS numbers: 13.20.He; 12.39.St 14.40.Be;

I. INTRODUCTION

It is anticipated that the LHC is able to answer some of the fundamental questions in particle physics. One of great
interests is in dertermining whether the new degrees of freedom are relevant for the phenomena at the TeV scale. On
the one hand, many new particles have signatures different from the standard model (SM) particles, and measurements
of their production and decays at the LHC may provide definitive evidence on their existence. On the other hand,
low energy processes may also be influenced by them. Rare B decays, with tiny decay probabilities in the SM, are
highly sensitive to the new degrees of freedom and thus can be exploited as indirect searches of these unknown effects.
In particular, b — sl*[~ especially B — K*(— Km)ITI~ provide a wealth of information on the weak interactions,
in terms of a number of observables ranging from the decay probabilities, forward-backward asymmetries (FBAs),
polarizations to a full angular analysis. The small branching fraction, of order 10~6 for B — K*I*]~, is compensated
by the high luminosity at the B factories and hadron colliders H—B] It is anticipated that the measurements by
the LHCDb detector will allow to probe the short-distance physics at an unprecedented level and will provide good
sensitivity to discriminate between the SM and different models of new physics. For instance, results by the LHCb
based on the data with the integrated luminosity 0.3fb~! M] are in good agreement with the theory predictions B],
which has placed a stringent constraint on new physics (NP) models.

In our previous work [6], we have explored the B — K3I*l~ decay mode in the SM and two specific NP scenarios
using the B — K3 form factors calculated in Ref. |1]. We provided a comprehensive analysis of the branching ratio,
FBAs, transversity amplitudes, and full angular distributions. It is pointed out that the B — KjITI~ decay has
several advantages in different aspects and is complementary to the commonly-studied mode B — K*I™[~. The

process B — K311~ has also received considerable attention in the SM and several variants of it in Refs. ] On
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TABLE I: Wilson coeflicients Cj(m3) in the leading logarithmic approximation, with mw = 80.4GeV, pu = my pole E]

C1 Co Cs Cy Cs Cs o Oy Cho
1.107 —0.248 —0.011 —0.026 —0.007 —0.031 —0.313 4.344 —4.669

the experimental side, however, its usefulness is challenged by the “pollution” from several other strange resonances
in this mass region namely K*(1410), K(1430), K*(1680), K;5(1780) and K (2045) M] The different contributions
can be separated by a partial wave analysis when a large amount of data is available, but it is necessary to explore
the interference effects in physical quantities, such as the branching ratios to have a benchmark for the possible
measurement in the first running of LHC. The aim of the present work is to achieve this goal. To do so, we will
study the B — K%lTl~ — Knritl~ with the invariant mass square my, ranging from 1 to 5 GeV>. Using the
helicity amplitudes technique we will derive a compact form for the angular distributions and a number of other
quantities. To reduce the uncertainties in B — K7 transition form factors, we will propose to measure a set of
useful but SU(3)-related channels. In terms of the results derived from the large energy symmetry, we will show
the differential distributions and their dependence on m%,. We further point out that for m%, ~ 2GeV?, the K3
dominates especially in the transverse polarization while at m?%._ ~ 3GeV?, the B — K*(1680) contribution is the
largest.

The rest of the paper is organized as follows. In Sec. [T, we give the theoretical framework including the effective
Hamiltonian and the hadronic form factors. Sec.[[IIlis devoted to the derivation of the differential decay distributions
and the integrated quantities. Sec.[[V]is devoted to the numerical predictions in the SM. We conclude in the last

section. The appendix contains our derivation of the angular distributions.

II. THEORETICAL FRAMEWORK

The decay amplitude for B — K%(— K)lTl™ consists of two separate parts: the short distance physics and the
long-distance physics. The former arises from the degrees of freedom higher than m;, and thus can be computed by
perturbation theory. The low-energy effect is usually parameterized in terms of heavy-to-light form factors.

The b — slti~ effective Hamiltonian

G 10
Hog = —TQthVt; ; Ci(1)0s (1)

involves the four-quark and the magnetic penguin operators O; and their explicit forms can be found in Ref. E]

],
which are listed in Table[l, G is the Fermi constant, V;;, = 0.999176 and V;, = —0.03972 ] are the CKM matrix

elements. The double Cabibbo suppressed terms, proportional to V,,;,V,, have been omitted. m; = 4.67f8j(l)§GeV

Here C;(u) are the Wilson coefficients for these local operators O;, and we use the leading logarithmic values

and ms = 0.10110027GeV are the b and s quark masses ]

With the neglect of QCD corrections, only the operators Oz, O9 and Oy contribute to the decay amplitudes

iGF Qem . Co + Cho ,_ Co —Cho . _ _
iGr (u lO[Sb]VfA[ll]VfA

iMb—sltl™) = —5 —VaV 7 [56)v_allllysa + QT

13 _ 13 _
+Crpmy[Fio,, (1 + 75)b]((11—2 x [y"1] + Crpmp[Fior, (1 — 75)b]((11—2 x Wl]) : 1)



TABLE II: Properties of the resonances K. The isospin symmetry relation B(K} — K~ n") = 2/3B(K} — K) will be used.

Ky JP n®*L; m (MeV) I (MeV) B(Kj; — Kn)(%) ar Br
K*(1410) 1-  2%6,? 1414 +15 232+ 21 6.6+ 1.3 11
K} (1430) 01 1Py, 2°Py? 14254+ 50 270 + 80 93410 -
K3(1430) 2+ :p, 143244+ 1.3 109+5 49.9 +1.2 2 /3
K*(1680) 1=  1°D, 1717 +27 322+110  38.7+25 11
K3(1780) 3= 1°Ds 1776 +7 159 + 21 18.8 4+ 1.0 \/g \/%
K;(2045) 4% 13 Fy 2045+9 198430 9.9+1.2 \/g \/;

TABLE III: B — K form factors taken from Ref. dﬂ]

Kj &l §1

0.22 +0.03 0.28 +£0.04
0.22 +0.03 -

0.22 +0.03 0.28 +£0.04
0.18 =0.03 0.24 +£0.05
0.16 & 0.03 0.23 £0.05
0.13 +0.03 0.19 £0.05

1430
1430
1680
1780

)
)
)
)
)
)

me
my

where Cy, = C7 and Crgr = 2=2Crp. On the other hand, the operators O; — Og also contribute starting from the one

loop diagrams. The factorizable loop terms can be incorporated into the Wilson coefficients C; and Cy, and thus it

is convenient to define the Wilson coefficients combinations C$¥ and Cgf @]

Cs" = Cr —C5/3 - Cs,
1
C5(q*) = Co(w) + h(me, 8)Co — Sh(1,8)(4Cs + 4Cs + 3C5 + Co)

1 2
—5h(0, 8)(C5 +3Cy) + 5(303 +Cy + 3C5 + Cp), (2)

with § = ¢?/m?, Cy = C1 + 3C> + 3C3 + Cy + 3C5 + Cg, and 1. = m./my. The auxiliary functions used above are

2
8 8 8 4 9 ln‘”*“l‘—iw for z =42 <1
h(z,8) = ——ln@——lnz+—+—x——(2+m)|1—m|1/2 vi-z-1 . ,
9 w9 27 9 9 2:3L1“ctam\/mlTl for z =% >1
8 4 8 4
h0,3) = —gln%—gln§+2—7+§iﬂ. (3)

In the following, we shall also drop the superscripts for C§f and C£® for brevity.
The B — K{(1430) transition form factors are defined by

(K5 (P2)|57u750[B(PB)) =

(K3 (P2)|30,,q"v5b| B(Pp)) =



while the parametrization of the B — K%(J > 1) form factors is as follows dﬂ, Ia]

* = D 2V(q2) vpo
(K7 (P2, €)|37"b|B(Pp)) = —WEM P7€y, PppPac,

* _ >3 . € - . « € -
(K5 (Poy s B(Pa) = 2imic; Ao(a”) Lt + i +mc;) s ) [%— gzqqﬂ]

. 2
) €% -
_1A2(q2)J7q

2
g 2mK; 7|,
mB + MK q
(K%(Py,€)|50"" q,b|B(Pg)) = —2iTi(q?)e""*” €%, Pp,Pao,
2
* = v ) * * * q
(K3(Py,€)|50"" v5q,b|B(PB)) = T2(q°) [(m2B - m%{;)GJu —€5 qP“] +T3(¢%)ey - q |¢" — mpu ’
B K*%

which is in general analogous to the B — K™ ones. Here ¢ = Pgp — P>, and P = Pp + P». We have the relation
2mcs Ao(0) = (mp + mrs)A1(0) — (mp — mis) A2 (0) in order to smear the pole at ¢> = 0. The polarization vector

in the above equations is constructed by the J-rank polarization tensor

1 14 12 vy—
GJM(h) = FGMVIVZ---VJ—I(h)PBIPBz"'PBJ 1, (5)

B

with A = 0,£1 being the helicity. Using the expression for €,u,1,..1,,_,(h) which is a product of the polarization
vectors with the Clebsch-Gordan coefficients, we simplify the above equation as €, (h) ~ (|ﬁK;|/mK;)J_1€Ju, with
€7u(0) = afe,(0) and €y, (+1) = Bfe,u(£1) and |Fxs| ~ Ex in the large recoil region. af and Sy are products of

the Clebsch-Gordan coefficients

J _ ~J0 J—1,0 2,0

ap = 0170;J—1,00170;J—2,0"'0170;1,0’

J _ ~d1 J—1,0 2,0

Br = Cl,l;Jfl,OCLO;sz,O"'01,0;1,0' (6)

The B — K form factors are nonperturbative in nature and the application of QCD theory to them mostly resorts
to the Lattice QCD simulations, which is quite limited at this stage. The crucial input we use in this work is the
observation that, in the heavy quark m; — oo and the large energy E — oo limit, interactions of the heavy and
light systems can be expanded in small ratios Agcp/E and Agcp/mp. At the leading power, the lalﬁ energy

]. As a

concrete application, the current 3I'b in QCD can be matched onto the current 3,00, constructed in terms of the

symmetry is obtained and such symmetry to a large extent simplifies the heavy-to-light transition [18,

fields in the effective theory. Here v denotes the velocity of the heavy meson and n is a light-like vector along the K7

moving direction. This procedure constrains the independent Lorentz structures and reduces the seven independent



TABLE IV: B — K} form factors at ¢> = 0 in the ISGW2 model B] (using the updated inputs B]), the covariant light-front
quark model B, E] and the light-cone QCD sum rules [17] and perturbative QCD approach [7].

ISGW?2 [22] CLFQM [22, 23] LCSR [17] LEET+BSW [10] PQCD [7]

VBK: 0.38 0.29 0.16+£0.02  0.2140.03 021739
APRE por 0.23 0.25+0.04 0.15+002  0.18%9%
AP 024 0.22 014+0.02 0.14+002  0.1373%
AP 22 0.21 0.05+0.02 0.14+002  0.08+39
TP%: 0.28 014+0.02 0.16+002 017133
TP%: —0.25 0.0119:02 0.10 £0.02  0.1412:93

hadronic form factors for each B — K (J > 1) type to two universal functions £, and §|. Explicitly, we have

- J—1 2
* |pK*| K* off Uly’e K* MEK* K*
AKJ 2 J = A%0 ~ (1= J J (A2 J T (A2
0’ (q) (mK; 0 ( mBE)gu (@) + — £07(a),

Ay () 2 e 2B
1 \¢ mic =44 _mB+mK;lq,

— J—1
K* |pK* K*7 fF mK* K* mK* K*
AK3 (¢?) (—) = AP e (1 Dyl ) - TS )

mgx FE
K, oy |PK;| o K% off MK\ K5, o
VEIg) | —= =VEhS > (14 )€L7 (@),
mK; mpg

o J—1
K% | Dk | K% eff K%
) (B = )

mK;
— —1 2

K%, 2 |pK;|> K7 eff q K%, o

TS = J ~ (1= J

) (e 6 (1 L @)
K%, o [ 1PK T Kieff K%, o m%(f, MEs K%, o
1) () = ) - - TR Ml ), ™

J

For the sake of simplicity we will use the latter set of form factors but as in the case of Cy and C7, we drop the

superscript “eff” as well. In the case of B to scalar meson transition, the large energy limit gives

B = =B _ (K}
WFT(Q2) =R = 5% Fo(q®) = €50 (¢°). 8)

The results for E‘I‘(; and §f; derived from the Bauer-Stech-Wirbel (BSW) model dﬂ] in Ref. dﬂ] will be used in this
B K

work and we collect these results in Tab. [TTl For the B — K¢ transition, it is plausible to employ (5750 = §

since both K and K3 are p-wave states.

Several remarks on the form factors are given in order.

e Due to the lack of Lattice QCD simulations, the calculation of B — K7 form factors rely on different phe-
nomenological models. In Tab. [[V] as an example we show the results for the B — Kj form factors at ¢ = 0
in the ISGW2 model ] (using the updated inputs ]), the covariant light-front quark model , ] and the
light-cone QCD sum rules ] and perturbative QCD approach [7] (using the light meson’s light-cone distribu-
tion amplitudes M]) From this table we can see the LEET+BSW results used here are close to the ones in the
light-cone sum rules (except for T3) and the perturbative QCD approach.
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e The large energy effective theory B, Iﬂ] has neglected the interaction between the soft sector and collinear
sector and it is refined by the soft-collinear effective theory |, in which at leading power in 1/m; a form

factor takes the generic expression
F¢) = Cié(@*) + C! [ dra (). ©9)

Here C; and C} are the short-distance Wilson coefficients obtained by integrating out degrees of freedom with
virtuality of O(m7). ¢ is one of the above universal functions entering the large-recoil symmetries. Z,(7,¢?) is
a symmetry breaking function, which can be factorized into a convolution of light-cone distribution amplitudes
with the jet function. The detailed expressions of the B — K} form factors (with the subscript “eff”) have a
similar form with the B — V transition, for instance, as Eqgs.(21, 22) in Ref. Q] and in particular, two relations
for form factors remain

mp mp + Mg+

VK = LA, T = 22T (10)

mp +mis 2F
Again, the function £ can only be calculated in some nonperturbative QCD methods. The calculation in light-
cone sum rules in conjunction with the soft-collinear effective theory indicates that the ¢ dominates in B — 7
transition while the =, gives corrections at the order of 5% — 10% [31] *. One may expect a similar size for =,

in B — K7 transition which will be one of the main sources of uncertainties.

e It is noteworthy to point out that there are ambiguities in the internal structures of K, thus large discrepancies
on form factors can be found in the literature. For instance, using two different assignments of K, namely
p-wave states without or with one unit of radial excitation, we have calculated the B to scalar meson form
factors in perturbative QCD approach M] and the results can differ up to a factor of 3 @] We propose that
the SU(3)-symmetry related processes can be used to pin down the uncertainties. Channels of this type include
the semi-leptonic B — ao(1450)l7, By — Ko decays and the exclusive channels B — ag (1450)D; /D,
B~ — a)(1450)D;, B, — K;"D~. Semileptonic decays provide the information of form factors in the full
kinematics region through the differential decay width distribution. The above exclusive processes are color-
favored and free of annihilation diagrams; therefore the factorization method works phenomenologically well for
them. In the factorization context, the decay amplitudes, taking B® — D7 ag (1450) as an example, are written
as

A(B® = D5 af) = LV Vi fo, (my = iy, ) FE (), (1)
where a; ~ 1 being the Wilson coefficients and fp, denoting the decay constant of the Dy meson. In particular,
most of the inputs will be canceled if the ratio

[(B° - D;af) _ [Fy " (m})]

D(B° = Dynt) — [FP77(mp))?

r =

is considered. The decay B — D, 7+ has a quite large branching ratio B = (2.4 + 0.4) x 10°° M] The
measurement of B — DTal in the future will consequently determine the F?~% and also F° %0 up to
SU(3) symmetry breaking effects. Replacing D by D*~, one can extract the form factor FlB ~2/K5 from the

relevant data in future.

L A direct fit of the hadronic B — 7m decay data results in a large =2

- ﬂﬂ], while a numerically small EaB_"o seems to be favored by
the B — pp data [33].



FIG. 1: Kinematics in B — K,(— K~nt)ITI~. K} moves along the z axis in the B rest frame. 0x(6;) is defined in K}
(lepton pair) rest frame as the angle between z-axis and the flight direction of K~ (u~), respectively. The azimuth angle ¢ is

the angle between the K7 decay and lepton pair planes.

III. DIFFERENTIAL DECAY DISTRIBUTIONS AND FORWARD-BACKWARD ASYMMETRIES

The convention on the kinematics in B — K%(— K)l*l™ is illustrated in Fig. [l The moving direction of K% in
the B rest frame is chosen as the z axis. The polar angle 8 (6;) is defined as the angle between the flight direction
of K~ (u ) and the z axis in the K (lepton pair) rest frame. ¢ is the angle defined by the decay planes of K% and
the lepton pair.

B — K%(— Km)lTl™ is a quasi four-body decay process and proceeds via three steps: B meson first decays into a
nearly onshell strange meson plus a pair of leptons; the K} meson propagates followed by its strong decay into the
K state. The decay amplitudes of B — (K~ 7")ITI~ are obtained by sandwiching Eq. () between the initial and
final states, in which the spinor product [3b] by hadronic matrix element will be replaced by hadronic form factors.
The operator realization of this picture is

(Kr|K3)(K3|[55]B")

702 _ 2 : T’
Pk mK;—}—meJFKJ

(1| 0) (K (3] B ~ <l+l_l[l_l]|0>/d4pz< (12)

with p%{; = m?2, . In appendix A, we will compute the required quantities in the three steps with the use of helicity

amplitudes. Combining the individual pieces, we obtain the angular distributions

d4F c S c s H M
7t dcos Oredcos 6idd = [Il + 27 + (IS + 2I5) cos(26;) + 215 sin® 6; cos(2¢) + 2v/2I, sin(26;) cos ¢

+2v/2I sin(6;) cos ¢ + 215 cosb; + 2/2I; sin(6;) sin ¢
+2v/215 sin(26;) sin ¢ + 2Ty sin 6 sin(2¢)], (13)



with the angular coefficients

c 2 2 m * m 2

I = (Awl +|AnoP) + 85 RelAroAje] + 45 AP

s 3 4m? 4m? . .
B = F0A0P 4 g P+ Are P+ Am P (1= 57 ) + 5 RelAr AR, + Ar Ay
I = =B (|Aol® + |Arol),

.1
I3 = 1ﬁ?(|ALL|2 + AL P+ [ArL® + ARy %),

1
I = §ﬁl2(|ALL|2 — A >+ |ARL® — |ARy %),
1

I = ﬁﬂf [Re(ALoAL) + Re(Aro AR, Is = V2pi[Re(ALoAL 1) — Re(Aro AR )],
Iy = 2ﬂl[Re(AL||AzL) - Re(ARHA;zL)]a I; = \/iﬂl[lm(ALoAzH) - Im(AROAEH)]a
Iy = %ﬂf[lm(ALoAh) +Im(ApoAR )], o = B [Im(Ar) A7 1) + Im(AR) AR.)): (14)

The lepton mass correction factor is §; = /1 — 4m7/q%. The functions Ap g; are defined by

; mr+Urks Skxr
A - Nic; Y2(6,0)Mp (K3, L/R,0/t : \/7
L/Ro/t Z x;Y7 (0,0 Mp(K}, L/R, /)mﬁ(w—m%(3+imK;FK; m ,

J=0,1,2...
i Img=Tr kxn
AL R||/L — NK*YJ_l(OaO)MB(K}’L/R’||/ J—) . . . ’
v J:gl:,z... ’ Micr — Mics +imics Ty m

with Ny = VLB Mp is the decay amplitudes of B — K3V to be given in the appendix. In the narrow-width

3
256m3m?

limit, the integration over the K7 invariant mass will be conducted as

mp: L 1
dm3, —I—1 =1 (15)
/ K T (mk. —mk,)? + mi. Tk,

Integrating out the angles 6;,0x and ¢, we obtain the dilepton mass spectrum

Ty 2 [
_— = - 2rwdcos Oy (3IF — IS
dqzdm%ﬁr 3/_1 wd cos O (317 2) s
d’T'r 2 [
_— = = 2nd cos Ok (617 — 215,
dq2dm%(7r 3/_1 mdcos Ok (617 3)
4T _ a’Ty, PTr (16)
dg2dm?._  dg?dm?%_ = dg?dm?.’
and its expression in the massless limit
d’T; 8 1
_— = = 2nd cos O (|ALil? + |ARil? 17
T = 3 2rdeosticlAL P + 4r ) (1)

with ¢ =0,£1 ori=0,1,||
The differential FBA in this process is defined by

d?Arp L d*T 2 [t
@Ars [ [ deost—— =2 [ 2rcosbg3, 1
dg2dm3,, [/0 /1] oS dgPd cos 6,dm?2., 3/,1 ™ cos Ol (18)

while the normalized differential FBA is given by

S d’Ars 1
d?Arp _ dgZam3, [, dcosOx3Ig 19)
dg*dmic, il [l deosOx[3I7 + 617 — I§ — 23]



e
SR~
v o
R
& BR S e o e ) 5 o & BR. 20
— RS (107°GeV ™)1
dq” dmyp ¥ I HZ

do? dm? 10

(10°%Gev?) 2

S |
'/ |

o BRy 84 Zz
(107°GeV ™% o4 A2 RIS,
o oy 7 LBLTLT
A

LT
—
S

Vay, s
’\.’

MA(Gev?)  (c)

L7
¢A(Gev?)

FIG. 2: Differential branching ratios dqdzd%, with ¢ denoting the total (a), longitudinal (b) and transverse polarizations (c),
Km
) PA — _ . .
and the normalized FBA djzd% (d) for B° = K~ 7" u*p™ in the mass region 1GeV? < m%, < 5GeV?
K
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FIG. 3: Differential branching ratios —=
MK =

(solid) curve denotes the total contribution, while individual terms are given by the green (dashed) line for K (1430), blue
dotted line for K3(1430), the black (dot-dashed) line for K*(1680) and K*(1410) with the interference incorporated, and the
red (dotted) curve with a very small magnitude for K3(1780). The contribution from K} (2045) is negligibly small.

IV. NUMERICAL RESULTS AND DISCUSSIONS

Before presenting the numerical results, we start with an estimate of the contributions from different mesons. It
is noticed that larger the J is the smaller is the contribution. (1) The K} with a larger spin is heavier and thus the
phase space is smaller. (2) The Clebsch-Gordan coefficient products aj and (7 decrease with the increase of J. (3)
The B — K% form factors suppress the heavier K% further. Moreover, the tiny branching ratios of K*(1410) and
K;(2045) into K~ 7" result in very smaller effects. As a consequence we find that the K} (2045) is negligibly small.

We plot the differential branching ratios dj;dﬂ;m%” (in units of 10-3GeV *), with the subscript i denoting the total,
longitudinal and transverse polarizations) and the normalized FBA % for B® - K—ntutu~ in Fig. @ By
integrating the differential distributions over ¢, we obtain their dependence on m?%. . Fig. Bl shows the differential

branching ratios 522& (EO — K—rtptp~) (in units of 1078GeV ~?) integrated over the kinematics region 4m? <
K
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FIG. 4: Same as Fig. B but integrated over 1GeV? < ¢ < 6GeV?

¢*> < (mp — mg,)?, while Fig. @ gives the results under the integration over 1GeV? < ¢ < 6GeV>. In these figures,
the black (solid) curve denotes the total contribution, while individual terms are given by the green (dashed) line for
K} (1430), blue dotted line for Kj(1430), the black (dot-dashed) line for K*(1680) and K*(1410) with the interference
incorporated, and the red (dotted) curve with a very small magnitude for K3 (1780). The contribution from K (2045)
is negligibly small.From these figures, we can see that for m%. = 2GeV?, the K3 dominates; while at m?%., ~ 3GeV?,
the B — K*(1680) contribution is the largest, especially in the transverse polarization.

Now let us analyze the zero crossing point sy of FBAs satisfying d;’;%bz:% = 0 and governed by the equation
K

my(mp + mg=) my(mp — mgs)
Re[Cg]Al (So)V(S[)) + C7L TJAl (So)Tl (So) + C7L TJTZ(SO)V(SO) =0. (20)
Substituting the relations from the large energy limit into the above equation, we find that the dependence on the

form factors cancels completely and more explicitly Eq. 20) gives
50 = (3.1+£0.1)GeV?, (21)

where the uncertainties are caused by m%(; /m% corrections in the form factor relations in Eq. (7). As we have discussed
in Sec. I, the interaction of collinear and soft sectors brings in symmetry breaking effects. After the inclusion of them,

only two relations among form factors remain as in Eq. (I0). Define the ratio

K
oy Mt ma T (g?)
K7r.2 = J 1 29
R (g7) = TS ) (22)
we find that Eq. (20) becomes
Re[Co] + 22 B 01 RKT (59) = 0. (23)

S0
The analaysis in Ref. @] indicates that the ratio R can deviate from 1 by 10% in the B — V transition (see Eq.(124)
of [30]). Using the PQCD H] and LCSR ] results for the B — K, form factors, we have

Ridep ~ 1.03, RiGsy ~ L.11, (24)

where the ¢?>-dependence is negligible since form factors 77 and V are found to have similar ¢?-distribution in both
model calculations. Suppose that the RX7 deviates from 1 by 10%, the s is also shifted by roughly 10%, namely 0.3
GeV2.

Our analysis of the mx, dependence can be generalized to similar channels such as B® — J/Y K% — (ptp~)(K—nt)
and B; — fs;(— KTK™)I*l". For the former processes, however, apart from the B — K form factors, it is likely

that the effective Wilson coefficients as depends on the spin of K% as well (for a recent discussion see Ref. [36]).
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Although the relative strengths among K% may be modified, the structure of the dependence on m%. is expected to
be similar. For the latter, uncertainties are presumably smaller, as a recent measurement of B; — J/9 K™K~ clearly
shows the peak at f3(1525) B]

V. CONCLUSION

In summary, we have analyzed the resonant contributions in the process B - K “rtuTpT with the
K~w" invariant mass square m%._ € [1,5]GeV2. Width effects of the strange mesons involved in this range,
K*(1410), K} (1430), K5(1430), K*(1680), K5(1780) and Kj(2045), are incorporated. In terms of the helicity am-
plitudes, we derive a compact form for the full angular distributions, through which the branching ratios, forward-
backward asymmetries and polarizations are attained. To pin down the uncertainties in the form factors, we suggest
the measurements of a set of SU(3)-related processes which are useful. Using the form factors from the large energy
limit, we derive the dependence of the branching fractions on mg,, and we point out that the K5 and K*(1680)
contributions can be separated from the rest, in particular, in the transverse polarizations. The generalization into
B — J/YK%(— K~7%) and Bs — f;(— KTK™)I*l~ is also discussed briefly.
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Appendix A: Helicity amplitudes

The differential distributions are divided into several individual pieces and each of them can be expressed in terms

of the helicity amplitudes which are Lorentz invariant.

e B decays into K;

The spin-0 K in the final state has only one polarization state and the longitudinal amplitudes are

(Co F Clo)ﬂFl (¢%) +2(Cr, — CrR)

Vi

iMp(K:,L/R,0) = Nii

. X _ ) my — m%((,; 2
iMp(Kj,L/R,t) = Nii|(Co F Cho) N Fo(q?) |, (A1)
q

with Ny = f/% “em Vip V- The function A is related to the magnitude of the K; momentum in B meson rest
, and \(a?,b?,c?) = (a® — b — c?)? — 4b%c%. Here the script ¢ denotes

frame: \ = )\(sz,m%(;,qz) = 2mp|pk;
the time-like component of a virtual vector/axial-vector meson decays into a lepton pair. In the case of strange
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mesons with spin J > 1, the K ~nT system can be either longitudinally or transversely polarized:

al Nyi A
' K% L,0) = —L — — m% —m2. —¢?)(mp + mg:)A — ———A
iMp(K3, L,0) S [(C’g C10)[(m3p K: — 4 )(mp +mg:) A ———— 2]

A
+2my(Crp — Crr)[(mp + 3mie; — )T — ————T3]|,
mp — Mk
iMp(K%, L,+) = BiNyi [(Cy — Cro)[(mp + mp+)A LV]
By, Ly = Pria 9 10 B K3 1:FmB+mK;
_Zmb(C7qu+ C7R) (:t\/XTl) " 277%(07;,2_ C7R) (sz _ m%(j;)T2:| , (A2)
A
lMB(K}, L, t) = OéiiNl (09 - Clo)iAo. (A3)

V&

For the sake of convenience, we define

1
_[Z.MB(K*aLa_'_) + iMB(K*aLa _)]7

iMp(K*,L,L/||) 7

iMp(K* L, 1) = —iB/2N, |(Co — Cm)mB\/E;K; + 2mb(07qu+C7R)\/XT1 ,
iMp(K*,LIl) = iB5v/2N, [(cg — Cu)ms + macy) Ay + Z2AELZ ) m%{;)%] - (A1)
The right-handed decay amplitudes are defined in a similar way
Api = Avilcio——cio- (A5)

The combination of the time-like decay amplitude is used in the differential distribution

. * . * . * J: mZB B m%((; 2
iMp(Kj,t) = iMp(K§,R,t) —iMp(K§, L, t) = 2a3,iC1o Ny ————>Fy(q°), (A6)
/q2
- * . * - * J \/X 2
lMB(KJ,t) = lMB(KJ,R, t) — lMB(KJ,L,t) = 20&L7,N1010ﬁ140(q ) (A?)
q

e Nonzero leptonic amplitudes are given as follows

M r(N A\ Av) = To X DXL 5, (6,7 = 61,0),
1 -1 11 1 -1

11 — -
ML(ia Eat) = _ML(Tv 77'5) = _MR(§7 Eat) = MR(T? 77t) = —2my. (A8)

with ¢+ = +/q¢% + /% — 4ml2. The reduced matrix elements are given as

TY, =TH =T =TE L = —2my,
22 2 2 22 2 2
TY , =TR, =V2q_, TE, =TF , = —V2¢,. (A9)
2 2 2 2 2 2 2 2

e The propagation of K7 is parameterized by a Breit-Wigner formula while the K} — K decay is described by
the spherical harmonic functions: Y¥(0x,0), with i = 0 for K and i = 0, %1 for K%. It should be pointed out
that the dependence of the coupling between a virtual K% and the K7 state on m%__ is neglected. Since there is

no singularity in the coupling, it can be expanded in terms of m2%._ — m?2.. around the resonance region, which
’ Kr K% ’
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is also guaranteed by the Breit-Wigner propagation. For definiteness, we list the explicit forms of the spherical

harmonic functions used in this work

1 /3 /3 .
Y00(0K7¢) = \/—4—7[_7 1/10(91{7¢) = E COSGK? leil(aKa(é) =+ g SlnaK?

[5 [15 .
YL (0, b) = m(?)coszﬂK—l), Vi 0k, 0) = F 357 Sin(20x),

21

7 .
Yy (0, ¢) = 4/ 16—7r(5 cos® Ok — 3cosbk), Y (0k,¢) =F oir sin @ (5 cos? O — 1),

3 3vV5
Y 0k, ¢) = m(&’) cos* Ok — 30cos? O +3), Y (0k, ) = :F% sin O (7 cos® O — 3cosfx). (A10)
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