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1. Introduction

The charm quark mass and strong coupling constant are fundamental parameters of the Stan-
dard Model and thus there is an interest per se in their calculation. They are essential input param-
eters for the calculation of processes involving charm quarks, such asinclusive radiativeB-decays
and exclusive Kaon-decays [1]. Moreover they play an important rolein the estimation of CKM
matrix elements and the search for new physics beyond the Standard Model[2].

Recently the HPQCD collaboration extracted theMS charm quark mass and strong coupling
constant using temporal moments of charmed lattice current correlators [3]. Using the highly
improved staggered quark action and a Bayesian prior fitting analysis a fewpercent precision could
be reached. Here we report on an ongoing effort to apply this method using a different fermion
discretization, namely Wilson twisted mass Lattice QCD. In this work, we will not rely on any
Bayesian prior in the fits of our data and it is one of our goals to understand, whether a similar
accuracy can be reached as given in [3].

2. Low momentum expansion of polarization functions in perturbative QCD

The general strategy of the current correlator method is the non-perturbative estimation of
derivativesMn of the polarization functions of in our case the pseudoscalar and vector currents
from lattice data and to compare them to their continuum counterparts determinedin perturbation
theory. The derivatives are readily deduced from the momentum expansion of the polarization
functions in the limitq2 ≪ m̄2
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with δ = v,a, κ = p,s, Jp = c̄γ5c, Js = c̄c, Jv
µ = c̄γµc, Ja

µ = c̄γµγ5c. The perturbative expansion

of the coefficientsC̄κ,δ
k has nowadays reached the 4 loop level (O

(

α3
s

)

) ( cf. [4] and references
therein).

3. Lattice Formulation

The calculation we report on here is based on gauge configurations produced by the Euro-
pean Twisted Mass collaboration (ETMC) usingNf = 2 flavors of maximally twisted and mass
degenerate Wilson fermions. We refer the reader to ref. [5] and references therein. We treat the
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charm degrees of freedom in a partially quenched framework by addinga doublet of heavy quarks
χ = (χ+, χ−) in the valence sector with valence quark action

Sval = ∑
x

χ̄(x)
(

DW +mcr+ iµhγ5τ3)χ(x) . (3.1)

In this framework automaticO (a) improvement [6] is in place with the same critical Wilson mass
mcr as used in the light quark sector. For the lattice operators representing thephysical charm
currents for a given spin structureΓ we have three natural choices (given in the physical basis).

J0
Γ = ψ̄ Γ⊗1ψ ; J3

Γ = ψ̄ Γ⊗ τ3 ψ ; J±Γ = ψ̄ Γ⊗ τ± ψ . (3.2)

At non-zero lattice spacing the correlation of these operators with themselves will give a different
results for each operator due to lattice artifacts. Concerning the physicalcharm fields we would
need to use the singlet currents and their corresponding translation in termsof the χ fields in
the twisted basis. However, in our calculation we will not consider contributions from quark-
disconnected diagrams. This is not a source of error given the fact that the perturbative expressions
we will compare to will not include singlet contributions as well (entering atO

(

α3
s

)

for the vector
andO

(

α2
s

)

for the pseudoscalar currents). But given the absence of quark-disconnected diagrams
the two-point correlator ofJ0

Γ will coincide with that ofJ3
Γ. In the continuum limit vector flavor

symmetry restoration will entail the latter to become equal to the correlation function of J±Γ . This
circumstance allows us to exploit the features of tmLQCD when it comes to the multiplicative
renormalization of the bare current correlators to our advantage.

In terms of the currents defined above the renormalized and dimensionless vector and pseu-
doscalar moments read in the twisted basis
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Using µR
h = µh/ZP we introduced additional factors ofaµh such that only the scale indepen-

dent ratioZS/ZP is needed for the scalar moments and no renormalization factor for the pseu-
doscalar moments. For the scale independent renormalization factorsZP/ZS, ZA, ZV we use the
non-perturbative renormalization data provided by ETMC ([7] and private communication).

The ensembles we choose comprise four different lattice spacings ranging from a ≈ 0.05fm
to a≈ 0.1fm and light pseudoscalar masses in the range 280MeV. mPS. 650MeV as well as up
to two lattice volumes. For each triple(a, L, mPS) the current two-point functions were measured
with four to seven charm valence quark masses such that the charmed meson massesamJ/ψ/a fPS,
amηc/a fPS andamD±/a fPS in units of the light pseudoscalar decay constant covered the physical
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value [8]. We are thus able to study the dependence of the momentsG = G(a,L,mPS,µc) on all
lattice parameters. The values of the light pseudoscalar decay constants at the physical point for all
four lattice spacings were calculated in a separate dedicated fit along the linesof [5].

4. Analysis and results

4.1 General outline

In our analysis we will model the dependence of the moments on the lattice parametersµq, µc

anda. For extrapolating to the physical light quark mass we shall use the charged pion massmPS,
for interpolating to the physical charm quark mass the ground state mass determined from thecc̄
non-singlet vector current correlatormJ/ψ and the lattice spacing dependence will be studied using
a/ fPS. Finite volume effects turn out to be negligible in the charm sector.

We shall use two methods:

• interpolate the lattice data at each value of the lattice spacing to common reference points
(

(mPS/ fPS) ,
(

mJ/ψ/ fPS
))ref

. This strategy we shall denote with "re f".

• perform a combined fit to our data describing the combined(mPS/ fPS, mJ/ψ/ fPS, a) depen-
dence. This method we shall denote with "all " and it is based on splitting the fit function
into a continuum part and one that models lattice artifacts as follows

F
(
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)

= Fcont×Flatt =
M

∑
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N

∑
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j
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.

(4.1)

We then read of the value of the moments at zero lattice spacing and at the physical point by
setting

G|physical= Fcont
(

mπ/ fπ , mJ/ψ/ fπ
)

. (4.2)

Either way we will end up with estimates for the continuum values of the moments or functions
thereof. With these estimates we can then set up determining equations for theMS quark mass
m̄c and the strong couplingαs using the perturbative representation of the moments from the low
momentum expansion of the polarization functions. We thus set

G|physical=
L

∑
l=0

(αs

π

)l
C̄(l) (m̄c, µ̄) (4.3)

where similar toG the coefficientsC(l) will be functions of the original expansion coefficients
in equation 2.2. In the two cases we consider we either use the charm quarkmass or the strong
coupling as input and solve the equation for the remaining quantity. Errors are estimated using a
bootstrap method.
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Figure 1: Example for continuum andmPS extrapolation ofGV
4 with there f method.

4.2 Moments from the vector current correlator

The moments of the vector current correlator provide a benchmark of the method because their
values are accessible using a dispersion integral and measurements of thehadronic cross section
ratio R(s). We can thus make a comparison of lattice and continuum data already on the level of
individual moments. The values of the continuum moments we compare to have been provided by
the authors of [9] and recently in [1] (cf. the detailed description of the extraction of the charm
piece in [9]).

Taking into account all the explicit factors of the lattice spacing in equation 3.3dimensional
analysis implies the relation of dimensionless lattice momentsGV

n and the corresponding continuum
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No. fπ
[

Mv
n(2n+2)!/(12π2)/Q2

c

]1/(2n)
GV 1/(2n)

2n+2 fπ (ref) GV 1/(2n)
2n+2 fπ (all)

1 0.04107 (32) 0.04170 (25) 0.04146 (77)
2 0.08792 (48) 0.08810 (52) 0.08696 (87)
3 0.13081 (60) 0.13059 (68) 0.12945 (94)
4 0.17106 (70) 0.17098 (82) 0.16959 (102)

Table 1: Comparison of continuum vector moments with results fromre f andall methods.

quantitiesgV
n at non-zero lattice spacing

GV
n =

gV
n

(am̄c)n−2 + lattice artifacts. (4.4)

In figure 1 we show exemplary data for there f method: the left panel shows the continuum ex-
trapolation of the vector momentGV

4 at light pseudoscalar reference massamPS/a fPS= 2.5 for five
charm meson reference massesamJ/ψ/a fPS= 22.5, 23.0, . . . , 24.5 (physical point atmJ/ψ/ fπ =

23.69(7) [8]). The reference points with lower light pseudoscalar masses than shown in the plot
(amPS/a fPS= 2.0, 2.2) are not entirely covered by the data from the coarsest lattice which is why
we leave it out of the extrapolation and use a linear ansatz ina2. The right-hand side panel shows
the extrapolation to the physical value of the light pseudoscalar mass(amPS/a fPS)

ref → mπ/ fπ =

1.068(3) [8]. For the second extrapolation we again use a polynomial ansatz of maximally second
degree. The "all " method gives comparable results.

In table 1 we compare values our continuum extrapolated results for the four lowest lattice
moments at the physical point to the continuum moments [9] (second column) determined using
experimental data. Apart from the lowest momentMv

1 / GV
4 we find good agreement between both

the two methods and the lattice and continuum moments.
By comparing to perturbation theory we are now able to extract theMS charm quark mass. To

that end we use the strong coupling as an input parameter: starting from thePDG valueαs(µ =

MZ,Nf = 5) = 0.1184(7) [8] we evolve it toαs(µ = 3GeV,Nf = 4) = 0.255(4) using theRunDec
program [10]. The results for the solution for the four lowest vector moments are collected in
table 2. The first contribution to the uncertainty stems from the statistical errorof the moment
extrapolation, the physical scale (fπ ) and the value ofαs. The second one represents the systematic
uncertainty from the choice of the renormalization scale: it is obtained by matching lattice and
continuum moments atµ = (3±1)GeV and evolving the result back to the reference scaleµ =

3GeV using 4-loop evolution [9].
If for each individual method we combine the quark masses from the different moments (taking

into account their strong correlation) we find for the combined values

m̄c(µ = 3GeV,Nf = 3+1) =

{

0.979(09)GeV (ref)
0.998(14)GeV (all)

. (4.5)

The results from both extrapolation methods turn out to be compatible with the findings of reference
[3], m̄c(µ = 3GeV,Nf = 3+1) = 0.986(6)GeV.

A consistency check with the lowest pseudoscalar moment using the determined charm quark
mass as input leads to a value of the strong coupling in good agreement with thevalue used as input
for the charm mass. This will be discussed in detail elsewhere.
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No. m̄c(µ = 3GeV)[GeV] (ref) m̄c(µ = 3GeV)[GeV] (all)

1 0.971 (09) (01) 0.979 (24) (01)
2 0.981 (10) (02) 0.998 (15) (02)
3 0.990 (10) (11) 1.001 (12) (11)
4 1.014 (08) (35) 1.024 (09) (34)

Table 2: Comparison of results for the charm quark mass usingre f andall extrapolated vector moments.

5. Summary and Outlook

With this intermediate report we showed that within the twisted mass formalism and with
presently available statistics we can determine the moments of the charm vector current correlator
in agreement with experimental results and with comparable uncertainty. Following two different
analysis methods we can extract theMS charm quark mass from both methods and find agreement
taking into account both the statistical and systematic uncertainties. Yet from the comparison of
the central values of both analysis methods we infer that with the presently available quality of data
a systematic error ofO(20)MeV must be taken into account for the charm quark mass value.

A consistency check with the lowest pseudoscalar moment using the determined charm quark
mass as input leads to a value of the strong coupling in good agreement with thevalue used as input
for the charm mass. Currently we also investigate other methods to extract thestrong coupling from
flavor singlet current diagrams as recently presented in ref. [11].

As a next step it will be very interesting to apply the methods discussed here tothe Nf =

2+1+1 gauge configurations of ETMC [12].
We thank all members of ETMC for the most enjoyable collaboration. This workis funded in

part by the DFG within SFB/TR9-03. The computing time was made available to us byFZ-Jülich
on JUROPA and JUGENE.
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