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Elements of a theory for multiparton intera
tions inQCD
Markus Diehl,a Daniel Ostermeierb and Andreas S
h�aferbaDeuts
hes Elektronen-Syn
hroton DESY, 22603 Hamburg, GermanybInstitut f�ur Theoretis
he Physik, Universit�at Regensburg, 93040 Regensburg, GermanyAbstra
t: We perform a detailed investigation of multiple hard intera
tions in hadron-hadron 
ollisions. We dis
uss the spa
e-time, spin and 
olor stru
ture of multiple intera
-tions, 
lassify di�erent 
ontributions a

ording to their power behavior and provide severalelements required for establishing all-order fa
torization. This also allows us to analyzethe stru
ture of Sudakov logarithms in double hard s
attering. We show how multipartondistributions 
an be 
onstrained by 
onne
ting them with generalized parton distributionsand by 
al
ulating their behavior at large transverse parton momenta.
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1 Introdu
tionWhen two hadrons 
ollide at high energies, more than one parton in one hadron 
an havea hard intera
tion with a parton in the other hadron and produ
e parti
les with large massor transverse momentum. The e�e
ts of su
h multiparton intera
tions are suppressed oraverage out in suÆ
iently in
lusive observables, but they have important 
onsequen
es forthe details of the hadroni
 �nal state. The possible importan
e of multiparton intera
tionshas been realized long ago [1, 2℄ and phenomenologi
al estimates have been given formany �nal states su
h as four jets (possibly in
luding b quarks) [3{9℄, jets asso
iated withphotons or leptons [10℄, four leptons produ
ed by the double Drell-Yan pro
ess [11{13℄ orfrom two 
harmonium states [14{16℄, as well as a number of 
hannels with ele
troweakgauge bosons [17{26℄. Experimental eviden
e for multiple hard s
attering has been foundin the produ
tion of multijets [27{29℄ and of a photon asso
iated with three jets [30{33℄.A mini-review of the subje
t 
an be found in [34℄ and an overview of how multipartonintera
tions are modeled in 
urrent Monte Carlo event generators is given in [35℄.At LHC energies, the phase spa
e for having several hard intera
tions in a proton-proton 
ollision is greatly in
reased 
ompared with previous experiments, and it is expe
tedthat the e�e
ts of multiple intera
tions will be important in many pro
esses [36{39℄. Thisposes a 
hallenge in sear
hes for new physi
s and at the same time o�ers the possibility tostudy multiple intera
tions in mu
h more detail than before. First experimental results on{ 1 {



multiple hard s
attering at the LHC have already appeared [40℄ and more 
an be expe
tedin the near future [41℄.Understanding multiparton intera
tions is also important for heavy-ion physi
s, wherepp or proton-nu
leus 
ollisions are used as a baseline for 
olle
tive e�e
ts in nu
leus-nu
leus
ollisions. Compared with pp 
ollisions, multiparton intera
tions with nu
lei have theadditional feature that the di�erent s
attering partons may 
ome from the same nu
leonor from di�erent nu
leons in the nu
leus. Dedi
ated investigations of multiple intera
tionsin pA 
ollisions 
an be found in [42{46℄.Phenomenologi
al estimates of multiparton intera
tions, as well as their implementa-tion in event generators, are based on a rather simple and physi
ally intuitive pi
ture, whosebasi
 ingredient is the probability to �nd several partons inside a proton. On the otherhand, a systemati
 des
ription of multiparton intera
tions in QCD has not been a
hievedso far. In the present work, we present a number of steps in this dire
tion. A brief a

ountof our main results has been given in [47℄. We require all parton-level s
atters to have ahard s
ale, so that the 
on
epts of hard-s
attering fa
torization and of parton distributions
an be applied. Sin
e transverse momenta of �nal-state parti
les play a 
ru
ial role in the
hara
terization of multiple intera
tions, we fully keep tra
k of this degree of freedom andbase our dis
ussion on transverse-momentum dependent multiparton distributions.In se
tion 2 we give a lowest-order analysis of multiple hard s
attering. We �nd thatthe intuitive pi
ture just mentioned emerges for a subset of all relevant 
ontributions tothe 
ross se
tion, but that there are other 
ontributions whi
h may be of 
omparable sizeand hen
e 
all for further investigation. In se
tion 3 we take �rst steps to extend exist-ing fa
torization theorems for single-hard s
attering pro
esses with measured transversemomentum [48{51℄ to the 
ase of multiple hard s
attering. While many ingredients for afull proof of fa
torization are still missing (and the possibility that fa
torization is broken
annot be ruled out), we obtain a number of en
ouraging results that allow us in parti
-ular to analyze the stru
ture of Sudakov logarithms. Se
tion 4 gives more details aboutthe distribution of two quarks or antiquarks in the proton, in parti
ular about the e�e
tsof spin 
orrelations and the possibility to learn more about multiparton distributions by
al
ulating their moments in latti
e QCD or by linking them to generalized parton dis-tributions. The predi
tive power of perturbation theory is in
reased in kinemati
s whereall observed transverse momenta (as well as their ve
tors sums) are large on a pertur-bative s
ale. Compli
ations and simpli�
ations that arise in this regime are dis
ussed inse
tion 5, where we will also en
ounter the 
on
eptual problem of separating single frommultiple hard-s
attering 
ontributions in a systemati
 and 
onsistent fashion. Se
tion 6
ontains our 
on
lusions.2 Lowest order analysis2.1 Momentum and position spa
e stru
tureIn this se
tion we investigate the stru
ture of multiparton intera
tions in momentum andposition spa
e, restri
ting ourselves to graphs with the lowest order in the strong 
oupling.To avoid a 
lutter of indi
es we 
onsider s
alar partons des
ribed by a hermitian �eld �,{ 2 {



deferring the in
lusion of spin and 
olor degrees of freedom to se
tions 2.2 and 2.3. Ourderivation of the 
ross se
tion formula for multiparton intera
tions uses standard methods.For 
ross se
tions integrated over transverse momenta in the �nal state, similar derivations
an be found in the literature [52, 53℄. The extension to 
ross se
tions di�erential intransverse momenta is new. For ease of language we refer to the 
olliding hadrons asprotons throughout this work, bearing in mind that our results apply without 
hange top�p 
ollisions or to any other hadron-hadron 
ollision.2.1.1 De�nition of multiparton distributionsWe begin by de�ning the multiparton distributions that appear in the 
ross se
tion formulawe will derive shortly. The following de�nitions need to be 
ompleted by a pres
riptionto renormalize ultraviolet divergen
es and by Wilson lines that take into a

ount 
ollinearand soft gluons as required to a
hieve fa
torization for the 
ross se
tion. These issues willbe dis
ussed in se
tion 3.The building blo
k from whi
h multiparton distributions 
an be de�ned is the n parton
orrelation fun
tion�(li; l0i) = � n�1Yi=1 Z d4�i(2�)4 d4�0i(2�)4 ei�ili�i�0i l0i �� Z d4�n(2�)4 ei�nln 
p�� �T��(0) n�1Yi=1 �(�0i)�T� nYi=1�(�i)���p� ; (2.1)where T denotes time-ordering and �T anti-time-ordering of the �elds. This fun
tion de-s
ribes the emission of n partons in a s
attering amplitude and in its 
omplex 
onjugate.Throughout this work we assume an unpolarized target: if the target 
arries spin then anaverage over its polarization is impli
it in (2.1) and all subsequent expressions. The partonfour-momenta in the 
orrelation fun
tion are subje
t to the 
onstraintnXi=1 li = nXi=1 l0i : (2.2)In (2.1) we have 
hosen the position of the �rst �eld in the matrix element to be �0n = 0.Taking this position as arbitrary and integrating over it with a fa
tor exp(�i�0n l0n) yieldsa delta fun
tion for the 
onstraint (2.2). The stru
ture of the 
ross se
tion will be moretransparent if we use symmetri
 variablesli = ki � 12ri ; l0i = ki + 12ri : (2.3)The 
onstraint (2.2) then turns into nXi=1 ri = 0 (2.4)
{ 3 {
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orrelation fun
-tions and distributions. The dashed line denotes the �nal-state 
ut.and we 
an rewrite the 
orrelation fun
tion (2.1) as�(ki; ri) = � n�1Yi=1 Z d4�i(2�)4 d4�0i(2�)4 ei(�i��0i)ki�i(�i+�0i)ri=2� Z d4�n(2�)4 ei�nkn+i�nPn�1i=1 ri=2� 
p�� �T����12�n� n�1Yi=1 ���0i � 12�n��T���12�n� n�1Yi=1 ���i � 12�n����p� ; (2.5)where we have repla
ed rn using (2.4). In addition we have used translation invarian
eto shift position arguments in the matrix element by �n=2. Substituting position variablesa

ording toyi + 12zi = �i � 12�n; yi � 12zi = �0i � 12�n for i = 1 : : : n� 1 (2.6)and zn = �n, we obtain�(ki; ri) = � nYi=1 Z d4zi(2�)4 eiziki�� n�1Yi=1 Z d4yi(2�)4 e�iyiri�� 
p�� �T����12zn� n�1Yi=1 ��yi � 12zi��T���12zn� n�1Yi=1 ��yi + 12zi����p� : (2.7)The assignment of momentum and position arguments is shown in �gure 1.We now introdu
e light-
one 
oordinates v� = (v0 � v3)=p2 and v = (v1; v2) for anyfour-ve
tor v. In a frame where p = 0 we de�ne multiparton distributionsF (xi;ki; ri) = � nYi=1 k+i Z dk�i �� n�1Yi=1 (2�)3 2p+Z dr�i ��(ki; ri) ����k+i =xip+; r+i =0 : (2.8)This 
an be written asF (xi;ki; ri) = � nYi=1 Z dz�i2� eixiz�i p+ Z d2zi(2�)2 e�iziki� � n�1Yi=1 2p+Z dy�i d2yi eiyiri�� 
p��O(0; zn) n�1Yi=1 O(yi; zi)��p� ; (2.9)
{ 4 {



where we have used the abbreviationO(yi; zi) = ��yi � 12zi� i�$+��yi + 12zi����z+i =y+i =0 (2.10)for the bilinear parton operators and traded the fa
tors k+i for derivatives �$+ = 12(�!�� )+a
ting on the �elds. When going from (2.8) to (2.9) we have repla
ed the time- or anti-time-ordered produ
ts appearing in (2.7) by usual produ
ts, whi
h are understood to benormal ordered. To justify this it is 
ru
ial that the arguments of all �elds in the operators(2.10) have a vanishing plus-
omponent. For a generi
 
on�guration with all yi and zidi�erent from zero and from ea
h other, all �elds in (2.10) have a spa
elike separation, sothat they 
ommute be
ause of 
ausality and 
an be written in any order. The 
ase where�elds have a lightlike separation requires spe
ial treatment, and di�erent methods for this
ase have been used in the literature for related matrix elements, see [54, 55℄ and [56℄. Aswe shall see in se
tion 5, lightlike �eld separations in (2.9) also lead to divergen
es thatneed to be regulated.We also introdu
e distributions that depend partially or entirely on transverse positions(yi and zi) instead of transverse momenta (ki and ri):F (xi;ki;yi) = � n�1Yi=1 Z d2ri(2�)2 e�iyiri�F (xi;ki; ri)= � nYi=1 Z dz�i2� eixiz�i p+ Z d2zi(2�)2 e�iziki� � n�1Yi=1 2p+Z dy�i �� 
p��O(0; zn) n�1Yi=1 O(yi; zi)��p� (2.11)andF (xi;zi;yi) = � nYi=1 Z d2ki eiziki�F (xi;ki;yi)= � nYi=1 Z dz�i2� eixiz�i p+� � n�1Yi=1 2p+Z dy�i � 
p��O(0; zn) n�1Yi=1 O(yi; zi)��p� (2.12)In the arguments of (2.11) and (2.12) it is understood that the average transverse positionof the �rst two �eld operators is yn = 0. The three forms (2.9), (2.11) and (2.12) 
an beused inter
hangeably, and ea
h of them has advantages in di�erent situations. As we shallsee, the momentum representation (2.9) naturally appears in Feynman graph 
al
ulations,the mixed representation (2.11) has a rather simple physi
al interpretation, and the positionspa
e representation (2.12) is most 
onvenient for the dis
ussion of Sudakov logarithms.The fa
tors of 2�, k+i , and 2p+ in (2.8) to (2.12) have been 
hosen su
h that the
ollinear (i.e. transverse-momentum integrated) distributionF (xi;yi) = � nYi=1 Z d2ki�F (xi;ki;yi) = F (xi;zi = 0;yi) (2.13)
{ 5 {



as well as the distribution � n�1Yi=1 Z d2yi�F (xi;ki;yi) = F (xi;ki; ri = 0) (2.14)admit a probability interpretation. F (xi;yi) is the probability to �nd n partons withplus-momentum fra
tions xi and transverse distan
es yi from parton number n, andF (xi;ki; ri = 0) is the probability to �nd n partons with plus-momentum fra
tions xiand transverse momenta ki.By 
ontrast, F (xi;ki;yi) is not a probability (due to the un
ertainty relation one
annot simultaneously �x transverse momentum and transverse position) but rather hasthe stru
ture of a Wigner distribution [57℄ in the transverse variables. Its integral over allki gives the probability to �nd partons at transverse positions yi, and its integral over all yigives the probability to �nd partons with transverse momenta ki. A related interpretationfor generalized parton distributions 
an be found in [58℄. In �gure 1 we 
an identify kias the \average" transverse momenta of the partons and yi as their \average" transverseposition, where the \average" is taken between the partons to the left and to the rightof the �nal-state 
ut in the �gure. In a physi
al pro
ess, this 
orresponds to an averagebetween partons in the s
attering amplitude and its 
omplex 
onjugate.The interpretation of multiparton distributions be
omes more expli
it if one representsthem in terms of the light-
one wave fun
tions of the target, see [59℄. Most 
onvenientlyderived in the framework of light-
one quantization, this representation is analogous tothe wave fun
tion representation for single-parton densities [60℄ and generalized partondistributions [61, 62℄. The distributions in (2.13) and (2.14) 
an be written in terms ofsquared wave fun
tions in impa
t parameter or transverse-momentum spa
e, whi
h makestheir probability interpretation manifest. The wave fun
tion representation also o�ers away to model multiparton distributions in the region of large momentum fra
tions, whereone 
an expe
t a small number of partoni
 Fo
k states to be dominant. We shall not pursuethis avenue in the present work.In later 
hapters we will also need 
ollinear distributions that depend on the momentumtransfer variables ri,F (xi; ri) = � nYi=1 Z d2ki�F (xi;ki; ri) = � n�1Yi=1 Z d2yi eiyiri�F (xi;yi) : (2.15)We will see in the following se
tion that F (xi;yi) or equivalently F (xi; ri) appear inmultiple-s
attering 
ross se
tions. This is not the 
ase for the distributionsF (xi) = F (xi; ri = 0) = � nYi=1 Z d2ki� � n�1Yi=1 Z d2yi�F (xi;ki;yi) ; (2.16)whi
h give the probability to �nd n partons with momentum fra
tions xi and unspe
i-�ed transverse positions or transverse momenta. We note that the integrals over ki in(2.13), (2.15) and (2.16) are logarithmi
ally divergent and require appropriate regulariza-tion, whi
h will be dis
ussed in se
tions 5.1.2 and 5.3.2.{ 6 {
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Figure 2. Graph for the 
ross se
tion of a 
ollision with n hard s
atters at parton level. Thedashed line denotes the �nal-state 
ut. Here and in the following, the lower blob is asso
iated withthe right-moving proton and the upper blob with the left-moving proton in the 
ollision.The de�nitions in this se
tion are given for right-moving partons, with xi being plus-momentum fra
tions. Analogous de�nitions for left-moving partons are obtained by ex-
hanging the plus- and minus-
omponents of all position and momentum ve
tors.2.1.2 Cross se
tion for n hard s
attersWe now evaluate the 
ross se
tion for a pro
ess with n s
atters at parton level, as sket
hedin �gure 2. We work in a referen
e frame with p = �p = 0 and 
onsider kinemati
s wherethe squared 
.m. energy q2i of ea
h s
atter is large and where ea
h transverse momentumjqij is mu
h smaller than q+i and q�i . De�ningxi = q+i =p+ ; �xi = q�i =�p� ; (2.17)we 
an then approximate q2i � 2q+i q�i � xi�xis ; (2.18)where s = (p+ �p)2 is the squared overall 
.m. energy. We negle
t the target mass through-out, so that s � 2p�p � 2p+�p� and the 
ux fa
tor in the 
ross se
tion is 1=(4p�p). One 
antrade the momentum fra
tions xi and �xi for q2i and the rapiditiesYi = 12 log q+iq�i (2.19)with dxi d�xi = 1s d(q2i ) dYi ; (2.20)where we have again used (2.18). We note that for the very high s a
hieved at the LHC,both xi and �xi are rather small, ex
ept if jYij or q2i is very large.
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The 
ross se
tion for n hard s
atters is given byd� = 1C 14p�p � nYi=1 d4qi(2�)4 �XX; �X � mYj=1Z d3pX;j(2�)32p0X;j �� �mYj=1Z d3p �X;j(2�)32p0�X;j �� � n�1Yi=1 Z d4li(2�)4 d4�li(2�)4 (2�)4Æ(4)(qi � li � �li)Z d4l0i(2�)4 d4�l0i(2�)4 (2�)4Æ(4)(qi � l0i � �l0i)�� (2�)4Æ(4)� nXi=1 qi + mXj=1 pX;j + �mXj=1 p �X;j � p� �p�� nYi=1Hi(qi; li; �li; l0i; �l0i)�� 
p�� �T��(0) n�1Yi=1 d4�0i e�i�0i l0i �(�0i)���X� 
X��T��(0) n�1Yi=1 d4�i ei�ili �(�i)���p�� 
�p�� �T��(0) n�1Yi=1 d4 ��0i e�i��0i�l0i �(��0i)��� �X� 
 �X��T��(0) n�1Yi=1 d4 ��i ei��i�li �(��i)����p� ; (2.21)where the 
ombinatorial fa
tor C 
ontains a fa
tor k! for ea
h set of k identi
al hard-s
attering �nal states.1 The remnant of proton p (�p) 
onsists of m ( �m) spe
tators withmomenta pX;j (p �X;j). Hi denotes the squared matrix element for the ith hard s
atter,with trun
ated propagators of the in
oming parton lines. Hi in
ludes integration over theinternal phase spa
e of the �nal state produ
ed by the hard s
atter, with only the four-momentum qi kept �xed. If su
h a �nal state is the de
ay produ
t of a single parti
le withmass M and width � (e.g. a W or a Higgs boson) then Hi in
ludes a fa
tor1q2i �M2 + i�M 1q2i �M2 � i�M ��M� ��M Æ(q2i �M2) ; (2.22)whi
h in the limit of narrow width 
onstrains qi to be on the mass shell. If the �nal stateis a stable single parti
le with mass M , then Hi in
ludes a delta fun
tion2�Æ(q2i �M2) (2.23)so that together with the integration element d4qi=(2�)4 in (2.21) one obtains the 
orre
tone-parti
le integration measure d3qiÆ�2q0i (2�)3 �. We now rewrite the 
ross se
tion interms of the 
orrelation fun
tions (2.1). To this end we useXX � mYj=1Z d3pX;j(2�)32p0X;j �(2�)4Æ(4)� nXi=1 li + mXj=1 pX;j � p�� 
p�� �T��(0) n�1Yi=1 Z d4�0i e�i�0i l0i �(�0i)���X� 
X��T��(0) n�1Yi=1 Z d4�i ei�ili �(�i)���p�=XX � mYj=1Z d3pX;j(2�)32p0X;j � Z d4�n e�i�n(p�Pni=1 li�Pmj=1 pX;j) ei�n(p�Pmj=1 pX;j)1An often used notation for two hard s
atters is to write m=2 in the pla
e of 1=C, with m = 1 if thehard-s
attering �nal states are identi
al and m = 2 if they are distin
t.
{ 8 {



� 
p�� �T��(0) n�1Yi=1 Z d4�0i e�i�0i l0i �(�0i)���X� 
X��T��(�n) n�1Yi=1 Z d4�i ei�ili�(�i + �n)���p�=XX � mYj=1Z d3pX;j(2�)32p0X;j �� 
p�� �T��(0) n�1Yi=1 Z d4�0i e�i�0i l0i �(�0i)���X� 
X��T� nYi=1 Z d4�i ei�ili �(�i)���p�= � n�1Yi=1 Z d4�0i e�i�0i l0i�� nYi=1 Z d4�i ei�ili�
p�� �T��(0) n�1Yi=1 �(�0i)�T� nYi=1�(�i)���p�= (2�)4(2n�1) �(li; l0i) : (2.24)Using the analogous relation for the matrix element between �X and �p and rewriting themomentum 
onservation 
onstraint in (2.21) as(2�)4Æ(4)� nXi=1 qi + mXj=1 pX;j + �mXj=1 p �X;j � p� �p�= Z d4ln(2�)4 d4�ln(2�)4 (2�)4Æ(4)� nXi=1 qi � nXi=1 li � nXi=1 �li�� (2�)4Æ(4)� nXi=1 li + mXj=1 pX;j � p� (2�)4Æ(4)� nXi=1 �li + �mXj=1 p �X;j � �p� ; (2.25)we 
an express the 
ross se
tion asd� = 1C 14p�p � nYi=1 d4qi(2�)4 �� nYi=1 Z d4li d4�li (2�)4Æ(4)(qi � li � �li)�� � n�1Yi=1 Z d4l0i d4�l0i (2�)4Æ(4)(qi � l0i � �l0i)�� � nYi=1Hi(qi; li; �li; l0i; �l0i)��(li; l0i) ��(�li; �l0i)= 1C 14p�p � nYi=1 d4qi(2�)4 �� nYi=1 Z d4ki d4�ki (2�)4Æ(4)(qi � ki � �ki)�� � n�1Yi=1 Z d4ri d4�ri (2�)4Æ(4)(ri + �ri)�� � nYi=1Hi(qi; ki; �ki; ri; �ri)��(ki; ri) ��(�ki; �ri) ; (2.26)where in the last step we have swit
hed to the set of symmetri
 variables (2.3). Theyhave the important property that the kinemati
 
onstraints on ri and �ri do not involve the�nal-state momenta qi, whi
h will lead to a great simpli�
ation below.{ 9 {



Hard-s
attering approximation. The parton-level s
attering pro
esses involve a hards
ale, whi
h we 
olle
tively denote by Q2 � q2i without assuming a parti
ular hierar
hyamong the individual squared momenta q2i . The 
ase where one of them is mu
h largerthan the others is of parti
ular relevan
e for the des
ription of the underlying event, but weshall not investigate the 
onsequen
es of su
h a hierar
hy in the present work. In the graphof �gure 2 it is understood that partons emerging from the shaded blobs have virtualitiesmu
h smaller than Q2. The 
omponents of the various four-momenta thus s
ale likek+i � r+i � p+ � q+i � Q ; �k�i � �r�i � �p� � q�i � Q ;k�i � r�i � p� � �2=Q ; �k+i � �r+i � �p+ � �2=Q (2.27)and jkij � jrij � j�kij � j�rij � jqij � � ; (2.28)where � denotes the size of the transverse momenta jqij or the s
ale of non-perturbativeintera
tions, whi
hever is larger. The momentum 
onservation 
onstraint Æ(4)(ri + �ri)enfor
es that the 
omponents r+i � �r�i � �2=Q (2.29)are small, although by general s
aling arguments they 
ould be of order Q. The 
onstraintÆ(4)(qi � ki � �ki) leads tok+i � q+i �k�i � q�i (2.30)up to relative 
orre
tions of order �2=Q2. We make these approximations in the 
orrelationfun
tions � and �� and see that the longitudinal momenta of the partons entering the hards
attering are �xed by the �nal-state kinemati
s. In the squared hard-s
attering matrixelement Hi(qi; ki; �ki; ri; �ri) we 
an negle
t all transverse momenta and all 
omponents oforder �2=Q. With (2.30) this only leaves a dependen
e on the independent variables q+iand q�i . Sin
e Hi is invariant under a boost along the z axis, it 
an then only depend on2q+i q�i � q2i . Altogether we then have� nYi=1 Z dk+i d�k+i Æ(q+i � k+i � �k+i ) Z dk�i d�k�i Æ(q�i � k�i � �k�i )�� � n�1Yi=1 Z dr+i d�r+i Æ(r+i + �r+i ) Z dr�i d�r�i Æ(r�i + �r�i )�� � nYi=1Hi(qi; ki; �ki; ri; �ri)��(ki; ri) ��(�ki; �ri)= � nYi=1 Z dk+i dk�i �� n�1Yi=1 Z dr+i dr�i �� � nYi=1Hi(qi; ki; �ki; ri; �ri)��(ki; ri) ��(�ki; �ri) ����k+i =q+i ��k+i ; r+i =��r�i�k�i =q�i �k�i ; �r�i =�r+i{ 10 {



� � nYi=1Hi(q2i )� � nYi=1 Z dk�i �� n�1Yi=1 Z dr�i ��(ki; ri) ����k+i =q+i ;r+i =0� � nYi=1 Z d�k+i �� n�1Yi=1 Z d�r+i ���(�ki; �ri) �����k�i =q�i ;�r�i =0 : (2.31)Inserting this into the 
ross se
tion (2.26) and using the de�nition (2.8) of the multipartondistributions givesd� = 1C 14p�p 1(4p+�p�)n�1� nYi=1 d4qi 1q+i q�i Hi(q2i )� � nYi=1 Z d2ki d2�ki Æ(2)(qi � ki � �ki)�� � n�1Yi=1 Z d2ri(2�)2 �F (xi;ki; ri)F (�xi; �ki;�ri) : (2.32)Rewriting d4qi = p+�p�dxi d�xi d2qi, we obtain our �nal result for the 
ross se
tion in mo-mentum representation,d�Qni=1 dxi d�xi d2qi = 1C � nYi=1 �̂i(xi�xis)� � nYi=1 Z d2ki d2�ki Æ(2)(qi � ki � �ki)�� � n�1Yi=1 Z d2ri(2�)2 �F (xi;ki; ri)F (�xi; �ki;�ri) ; (2.33)where we have introdu
ed the 
ross se
tion�̂i(q2i ) = 12q2i Hi(q2i ) (2.34)for the ith parton-level subpro
ess and used the approximation (2.18). We have 
arried outthe integrations over �ri using the 
onstraints Æ(2)(ri+ �ri), so that the distributions for thetwo protons are evaluated at opposite values of their last arguments. Fourier transformingthese to position spa
e, we haved�Qni=1 dxi d�xi d2qi = 1C � nYi=1 �̂i(xi�xis)� � nYi=1 Z d2ki d2�ki Æ(2)(qi � ki � �ki)�� � n�1Yi=1 Z d2yi�F (xi;ki;yi)F (�xi; �ki;yi) (2.35)and the distributions are evaluated at equal values of yi. Transforming also the argumentski and �ki, we have d�Qni=1 dxi d�xi d2qi = 1C � nYi=1 �̂i(xi�xis)� � nYi=1 Z d2zi(2�)2 e�iziqi�� � n�1Yi=1 Z d2yi�F (xi;zi;yi)F (�xi;zi;yi) ; (2.36)
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where all position arguments in the two distributions 
oin
ide.The interpretation of the distributions F (xi;ki;yi) dis
ussed in se
tion 2.1.1 extendsto the 
ross se
tion formula (2.35). In ea
h individual hard subpro
ess, two partons withaverage transverse momenta ki and �ki produ
e a �nal state with transverse momentum qi.The ith s
atter o

urs at an average transverse distan
e yi from the nth s
atter. The hards
atters are approximated to be lo
al in transverse spa
e, so that their average distan
e isequal to the average distan
e between the 
olliding partons in ea
h proton. We thus �nd arather intuitive interpretation of the variables in our 
ross se
tion formula, provided that we\average" the transverse momenta and positions between the amplitude and its 
onjugate.Let us however emphasize that we have obtained (2.35) from 
al
ulating Feynman graphsusing standard hard-s
attering approximations, without any appeal to 
lassi
al or semi-
lassi
al arguments.Integrating the 
ross se
tion over all transverse momenta qi we obtain a simple resultd�Qni=1 dxi d�xi = 1C � nYi=1 �̂i(xi�xis)�� n�1Yi=1 Z d2yi�F (xi;yi)F (�xi;yi) (2.37)in terms of 
ollinear multiparton distributions. This formula has long been known andprovides the basis of most phenomenologi
al analyses of multiple intera
tions in the liter-ature. It was derived in [52℄ for s
alar partons in a way very similar to the one we haveemployed here.2.1.3 Single vs. multiple hard s
atteringThe approximations we have made in the previous se
tion give the leading term of anexpansion in powers of �=Q. Let us investigate how the resulting 
ross se
tion (2.35)s
ales with Q. As 
an readily be seen from its de�nition (2.11), the mass dimension ofF (xi;ki;yi) is �2 and one has F (xi;ki;yi) � ��2. To obtain this power behavior, it isessential that the distribution is invariant under a boost along the z axis. For instan
e,a hadroni
 matrix element that transforms like the plus-
omponent of a ve
tor wouldbe proportional to p+ or another large plus 
omponent and thus s
ale like Q times theappropriate power of �. Note that the dependen
e of F (xi;ki;yi) on the large s
ale Qvia renormalization group or Sudakov logarithms (see se
tion 3) is negle
ted at the levelof power 
ounting. The hard-s
attering 
ross se
tions have a power behavior �̂i � Q�2,and the integrations over transverse momenta 
ount as d2ki d2�ki Æ(2)(qi � ki � �ki) � �2.Finally, the distan
es yi in (2.35) are generi
ally of size 1=� so that d2yi � ��2. Puttingall ingredients together, one �nds d�Qni=1 dxi d�xi d2qi ����multiple � 1�2Q2n (2.38)for the 
ross se
tion of n hard s
atters. One obtains of 
ourse the same result if the power
ounting is done for the representations (2.33) in momentum spa
e or (2.36) in positionspa
e, using d2ri � �2 or d2zi � 1=�2.
{ 12 {



Let us 
ompare this with the 
ross se
tion for produ
ing the �nal states with momentaqi in a single hard s
attering. Withq = nXi=1 qi ; x = nXi=1 xi = q+p+ ; �x = nXi=1 �xi = q��p� (2.39)the fa
torization formula for this 
ase readsd�dxd�xdq ����single = �̂(x�xs)Z d2k d2�k Æ(2)(q � k � �k) f(x;k) f(�x; �k) ; (2.40)where �̂ is the appropriate hard-s
attering 
ross se
tion and f(x;k) and f(�x; �k) are trans-verse-momentum dependent single-parton densities. The de�nition of f(x;k) 
an be ob-tained from (2.11) by setting n = 1, whi
h gives a power behavior f(x;k) � ��2. We nowmake (2.40) di�erential in the internal momentum variables of the �nal state, whi
h we
hoose as ui = xi=x = q+i =q+ ; �ui = �xi=x = q�i =q� (2.41)and qi with i = 1; : : : ; n� 1. We then haved�Qni=1 dxi d�xi d2qi ����single = d�̂Qn�1i=1 dui d�ui d2qi Z d2k d2�k Æ(2)(q � k � �k) f(x;k)xn�1 f(�x; �k)�xn�1 :(2.42)The di�erential hard-s
attering 
ross se
tion on the r.h.s. behaves as Q�2n, so that we haved�Qni=1 dxi d�xi d2qi ����single � 1�2Q2n : (2.43)We obtain the important result that if one leaves the 
ross se
tion di�erential in the trans-verse momenta qi, the 
ontributions from single and from multiple hard s
attering havethe same power behavior in the large s
ale Q, so that multiple hard s
attering is not powersuppressed. It is easy to see that the power behavior in (2.38) and (2.43) holds for any
ombination of single and multiple hard s
atters, e.g. when produ
ing the �nal states withmomenta q1 and q2 in a single hard s
atter and ea
h �nal state with momentum q3, q4,et
. in a hard s
atter of its own.Let us now see what happens if we integrate over the qi. In the multiple-s
atteringme
hanism, ea
h transverse momentum qi is the sum ki + �ki of two parton momenta andthus limited to be of size �, so that the phase spa
e volume is Qni=1 d2qi � �2n. With asingle hard s
attering, however, the individual momenta qi 
an be as large as the hard s
aleQ, and only their sum q is limited to be of order � by the 
onstraint q = k + �k in (2.42).The phase spa
e volume in this 
ase is therefore Qni=1 d2qi = d2q Qn�1i=1 d2qi � �2Q2n�2,and we have d�Qni=1 dxi d�xi ����multiple � �2n�2Q2n ; d�Qni=1 dxi d�xi ����single � 1Q2 (2.44)
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for the 
ross se
tions integrated over all transverse momenta. Multiple-s
attering 
ontribu-tions are now suppressed by at least one power of �2=Q2 and are hen
e power 
orre
tionsto the 
ontribution from a single hard s
attering, as has been known for a long time [63℄.This is indeed ne
essary for the validity of the familiar 
ollinear fa
torization theorems,whi
h only take into a

ount single hard s
atters.Power 
ounting in the hard s
aleQ provides an essential 
riterion for determining whi
h
ontributions to the 
ross se
tion are important. There are, however, other importantfa
tors to keep in mind. We already mentioned Sudakov logarithms in q2i =Q2, whi
happear in the 
ross se
tion di�erential in qi and are di�erent for single and multiple hards
attering. They will be dis
ussed in se
tion 3.4. Another aspe
t in whi
h single andmultiple s
attering 
ontributions di�er is the dependen
e on the momentum fra
tions xiand �xi, whi
h 
an be rather small as we remarked after (2.20). We will return to this pointin se
tion 2.4.2.1.4 Impa
t parameter representationThe 
ross se
tion in (2.36) involves distributions F (xi;zi;yi) that depend on the transversepositions of the s
attering partons but still refer to proton states with de�nite (zero) trans-verse momenta. In this se
tion we give a formulation 
ompletely in transverse positionspa
e, 
losely following the 
onstru
tion of impa
t-parameter dependent parton distribu-tions in [62, 64, 65℄.To begin with, we de�ne a non-forward 
orrelation fun
tion �(li; l0i; p; p0) exa
tly asin (2.1) but with a state hp0j having a di�erent momentum than the state jpi. Using thesame arguments as in se
tion 2.1.1 we 
an derive a representation of the form (2.7) for�(li; l0i; p; p0), with hp j repla
ed by hp0j. The 
onstraints on the parton momenta readp� nXi=1 li = p0 � nXi=1 l0i ; nXi=1 ri = p0 � p : (2.45)in this 
ase. In the same manner we de�ne multiparton distributions F (xi;ki; ri;p;p0),F (xi;ki;yi;p;p0) and F (xi;zi;yi;p;p0) as in (2.8) to (2.12), but taken between stateshp+;p0j and jp+;pi. Note that we take the same plus-momentum in the bra and ket state,even if their transverse momenta are di�erent.We now 
onsider a transverse boost, i.e. a Lorentz transformation that 
hanges thetransverse 
omponents of a four-ve
tor v asv ! v � v+ p+ p02p+ (2.46)and leaves plus-
omponents un
hanged. Invarian
e under this transformation impliesF (xi;ki; ri;p;p0) = F �xi;ki � xiP ; ri;�12�; 12�� (2.47)with P = 12(p+ p0) ; � = p0 � p : (2.48)
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In impa
t parameter spa
e we then haveF (xi;zi;yi;p;p0) = � nYi=1 Z d2ki eiziki� � n�1Yi=1 Z d2ri(2�)2 e�iyiri�F (xi;ki; ri;p;p0)= � nYi=1 eizixiP �� nYi=1 Z d2ki eizi(ki�xiP )� � n�1Yi=1 Z d2ri(2�)2 e�iriyi�� F �xi;ki � xiP ; ri;�12�; 12��= eiP Pni=1 xizi F �xi;z;yi;�12�; 12�� : (2.49)We now introdu
e proton states with de�nite impa
t parameter:jp+; bi = Z d2p(2�)2 e�ibp jp+;pi : (2.50)One readily obtains their normalizationhp0+; b0jp+; bi = 4�p+Æ(p0+ � p+) Æ(2)(b0 � b) (2.51)from the usual relativisti
 normalization hp0+;p0jp+;pi = (2�)3 2p+ Æ(p0+� p+) Æ(2)(p0�p)of momentum eigenstates (re
all that at �xed p one has dp0=p0 = dp+=p+ in the invariantintegration element). For later use we also give the proje
tor on one-parti
le states,11 = Z dp+d2b4�p+ jp+; bihp+; bj ; (2.52)whi
h is readily 
he
ked by taking the matrix element between the one-parti
le states in(2.50) and using (2.51). We �nally de�ne the 
enter of momentum of m parti
les withplus-momenta p+i and transverse positions bi asb = mXi=1 p+i bi � mXi=1 p+i : (2.53)By virtue of Lorentz invarian
e, this is a 
onserved quantity. Note the analogy between(2.46) and non-relativisti
 boosts if v is a momentum and if one repla
es plus-momentaby masses. The 
enter of momentum is thus the analog of the 
enter of mass in thenon-relativisti
 
ase, whi
h is of 
ourse 
onserved.Let us 
onsider the matrix element of the same operator as in (2.12), but taken betweenimpa
t parameter instead of transverse-momentum eigenstates. We have� nYi=1 Z dz�i2� eixiz�i p+� � n�1Yi=1 2p+Z dy�i �
p+;�b� 12d ��O(0; zn) n�1Yi=1 O(yi; zi)��p+;�b+ 12d �= Z d2p0(2�)2 d2p(2�)2 e�i(p0�p) b�i(p0+p)d=2 F (xi;zi;yi;p;p0)= Z d2�(2�)2 d2P(2�)2 e�ib��iP d+iP Pni=1 xizi F �xi;zi;yi;�12�; 12��= Æ(2)�d� nXi=1 xizi� Z d2�(2�)2 e�ib�F �xi;zi;yi;�12�; 12�� : (2.54)
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The delta fun
tion in the last line re
e
ts the 
onservation of the 
enter of momentum,whi
h equals �b� 12d = n�1Xi=1 xi�yi � 12zi�� 12xnzn + xszs ;�b+ 12d = n�1Xi=1 xi�yi + 12zi�+ 12xnzn + xszs (2.55)for the bra and ket states in the matrix element, respe
tively. Here xs = 1 �Pni=1 xiand zs is the 
enter of momentum of the spe
tator partons. We de�ne impa
t-parameterdependent multiparton distributions byF (xi;zi;yi; b) = Z d2�(2�)2 e�ib�F �xi;zi;yi;�12�; 12�� : (2.56)If we set zi = 0 then the matrix element in (2.54) is taken at d = 0 and hen
e be
omesdiagonal. We 
an interpret F (xi;zi = 0;yi; b) as the probability to �nd n partons withplus-momentum fra
tions xi in a target that is lo
alized in impa
t parameter spa
e, withparton number n at a transverse distan
e b from the 
enter of the target and partons 1 ton� 1 at relative transverse distan
es yi from parton n.Inverting (2.56) and setting � = 0 we getF �xi;zi;yi) = Z d2bF (xi;zi;yi; b) (2.57)and 
an therefore represent the multiple-s
attering 
ross se
tion (2.36) asd�Qni=1 dxi d�xi d2qi = 1C � nYi=1 �̂i(xi�xis)� � nYi=1 Z d2zi(2�)2 e�iziqi�� � n�1Yi=1 Z d2yi� Z d2b d2�b F (xi;zi;yi; b)F (�xi;zi;yi; �b) : (2.58)Integration over qi leads to zi = 0 as in (2.37). The resulting 
ross se
tion formula wasalready derived in [66℄, and it has a very intuitive geometri
 interpretation shown in �gure 3.As already noted after (2.36), the approximations we have made for the hard-s
atteringsubpro
esses imply that ea
h pair of 
olliding partons in the hadrons p and �p must be at thesame position in impa
t parameter spa
e. The relative distan
es yi between the partonsare hen
e the same in both hadrons, but the distan
e of the partons from the 
enter oftheir parent hadron is in general di�erent in p and �p. The relative transverse distan
e b��bbetween the hadrons is integrated over in the 
ross se
tion.Our result (2.58) shows that the representation of the 
ross se
tion in terms of impa
t-parameter dependent distributions remains simple even if the transverse momenta qi arekept �xed. In the geometri
 interpretation just des
ribed, we then have to repla
e \dis-tan
es" by \average distan
es", with the average taken between the amplitude and its
onjugate. What is lost in this 
ase is a probability interpretation of the multiparton dis-tributions. The two �elds asso
iated with a parton in the target are now taken at a relativetransverse distan
e zi, whose typi
al size is jzij � 1=jqij.{ 16 {
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x̄2Figure 3. Visualization of the 
ross se
tion formula (2.58) for n = 2 when q1 and q2 are integratedover. Ea
h hard s
atter produ
es a heavy gauge boson in this example.2.1.5 Redu
tion to single-parton distributionsIn order to build a phenomenology of multiple intera
tions, one needs a simple ansatz formultiparton distributions as a starting point. It is natural to approximate those distribu-tions that have a probability interpretation by the produ
t of single-parton densities. Inthis se
tion we show how one 
an formally implement this approximation and generalize itto the distributions F (xi;zi;yi) or F (xi;ki;yi), whi
h do not represent probabilities.To this end we insert 
omplete sets of intermediate hadron states in the operatorprodu
t appearing in the multiparton distributions:O(0; zn) n�1Yi=1 O(yi; zi) = O(0; zn)� n�1Yi=1 XXi ��Xi�
Xi��O(yi; zi)�= XXn�1;:::;X1O(0; zn)��Xn�1�� n�1Yi=2 
Xi��O(yi; zi)��Xi�1��
X1��O(y1; z1) : (2.59)Note that the two parton �elds in ea
h operator O(yi; zi) are asso
iated with the sameplus-momentum fra
tion xi in the multiparton distributions.The approximation that gives a produ
t of single-parton distributions is to assumethat among all intermediate states jXii the dominant ones are single-proton states. Thisredu
es the 
omplete sets of intermediate states to the proje
tion operators (2.52), and oneobtainsÆ(2)�d� nXi=1 xizi� F (xi;zi;yi; b) � � nYi=1 Z dz�i2� eixiz�i p+� � n�1Yi=1 2p+Z dy�i �� � n�1Yi=1 Z dp+i d2bi4�p+i �
p+;�b� 12d ��O(0; zn)��p+n�1; bn�1�� � n�1Yi=2 
p+i ; bi ��O(yi; zi)��p+i�1; bi�1��
p+1 ; b1 ��O(y1; z1)��p+;�b+ 12d � : (2.60)Translation invarian
e and the de�nition (2.50) of impa
t-parameter states imply
p+i ; bi ��O(yi; zi)��p+i�1; bi�1� = eiy�i (p+i �p+i�1) 
p+i ; bi�yi ��O(0; zi)��p+i�1; bi�1�yi�1� (2.61)
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and hen
eÆ(2)�d� nXi=1 xizi� F (xi;zi;yi; b)� � n�1Yi=1 Z d2bi� Z dz�n2� eixnz�n p+ 
p+;�b� 12d ��O(0; zn)��p+; bn�1�� � n�1Yi=2 Z dz�i2� eixiz�i p+ 
p+; bi � yi ��O(0; zi)��p+; bi�1 � yi�1��� Z dz�12� eix1z�1 p+ 
p+; b1 � y1 ��O(0; z1)��p+;�b� y1 + 12d � : (2.62)Using (2.54) for n = 1, we haveZ dz�2� eixz�p+ 
p+;�b� 12d ��O(0; z)��p+;�b+ 12d � = Æ(2)�d� xz� f(x;z; b) ; (2.63)where f(x;z; b) 
an be written asf(x;z; b) = Z d2�(2�)2 e�ib�f(x;z;�) (2.64)with f(x;z;�) = Z dz�2� eixz�p+ 
p+; 12���O(0; z)��p+;�12�� : (2.65)A reader familiar with generalized parton distributions will re
ognize thatf(x;k;�) = Z d2z(2�)2 e�izk f(x;z;�) (2.66)is a transverse-momentum dependent generalized parton distribution at zero skewness. Wewill shortly need the 
ollinear distributionsf(x; b) = f(x;z = 0; b) ; f(x;�) = f(x;z = 0;�) (2.67)as well. Introdu
ed long ago in [64, 65℄, the impa
t parameter density f(x; b) gives theprobability to �nd a parton with momentum fra
tion x at a transverse distan
e b from the
enter of the proton.The delta fun
tion on the r.h.s. of (2.63) implies thatbn�1 = �b� 12 n�1Xi=1 xizi + 12xnzn bi�1 = bi + xizi for 1 < i < n� 1 (2.68)in (2.62), so that we obtain the desired approximationF (xi;zi;yi; b) � f�xn;zn; b+ 12 (x1z1 + : : :+ xn�1zn�1)�� � n�1Yi=2 f�xi;zi; b+ yi + 12 (x1z1 + : : :+ xi�1zi�1)� 12(xi+1zi+1 � : : : xnzn)��� f�x1;z1; b+ y1 � 12(x2z2 + : : : xnzn)� (2.69)
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Figure 4. Illustration of the approximate relation (2.70) for n = 2.of a multiparton distribution. Setting zi = 0 and integrating over b, we obtain in parti
ularthe 
ollinear multiparton distribution F (xi;yi) in terms of impa
t-parameter dependentsingle-parton densities,F (xi;yi) � Z d2b f(xn; b) n�1Yi=1 f(xi; b+ yi) : (2.70)This relation is illustrated in �gure 4, whi
h uses the representation of parton distributionsas squared light-
one wave fun
tions we mentioned brie
y before (2.15).Let us now insert (2.69) into the 
ross se
tion (2.58). For measured transverse momentaqi, the di�erent single-parton distributions are entangled by their zi dependen
e. By
ontrast, the qi integrated 
ross se
tion simpli�es tod�Qni=1 dxi d�xi � 1C � nYi=1 �̂i(xi�xis)� Z d2b d2�b f(xn; b) f(�xn; �b)� � n�1Yi=1 Z d2yi f(xi; b+ yi) f(�xi; �b+ yi)�= 1C Z d2� � nYi=1 �̂i(xi�xis)Z d2yi f(xi;yi � �) f(�xi;yi) � ; (2.71)where the only integration variable linking the di�erent fa
tors is the relative distan
e� = b� �b, and where we have renamed the integration variable �b to yn in the se
ond step.In di�erent forms, this relation (or more pre
isely its analog for quarks and gluons insteadof s
alar partons) has long been used as a starting point of phenomenologi
al studies, seee.g. [67{71℄ and [8, 72℄.2As observed in [59℄ for the 
ase of 
ollinear distributions, the redu
tion of multipartonto single-parton distributions also takes a simple form in the transverse-momentum repre-sentation. This remains true if one keeps the transverse parton momenta unintegrated. Tosee this, we integrate (2.69) over b and Fourier transform w.r.t. yi and zi as spe
i�ed by(2.11) and (2.12). Changing integration variables from b and yi to the impa
t parameter2We note that in [8, 72℄ the impa
t parameter arguments of f are ��yi and yi instead of yi�� and yi(if we translate to our notation). This is equivalent in the spin independent se
tor, where the single-partondistributions are independent of the dire
tion of the impa
t parameter.
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arguments of the distributions on the r.h.s. of (2.69), we obtainF (xi;ki; ri) � f�xn;kn � 12 xn�r1 + : : :+ rn�1); rn�� � n�1Yi=2 f�xi;ki � 12 xi (r1 + : : :+ ri�1) + 12 xi (ri+1 + : : : rn); ri��� f�x1;k1 + 12 x1(r2 + : : :+ rn); r1� ; (2.72)where we re
all that rn = � n�1Pi=1 ri. Integrated over the momenta ki this simply readsF (xi; ri) � nYi=1 f(xi; ri) ; (2.73)so that the 
ross se
tion (2.71) be
omesd�Qni=1 dxi d�xi � 1C � n�1Yi=1 Z d2ri(2�)2 � � nYi=1 �̂i(xi�xis) f(xi; ri) f(�xi;�ri)� : (2.74)The arguments ri in (2.73) 
an easily be anti
ipated from �gure 1.We emphasize that the relations (2.69) to (2.73) have been obtained by restri
tinga sum over all intermediate states to a single proton. We do not have a motivation forthis restri
tion other than observing that it results in negle
ting 
orrelations between dif-ferent partons in the proton. It seems plausible to assume that this is a reasonable �rstapproximation, at least in a 
ertain region of variables, but one should not expe
t it tobe very pre
ise. Possible deviations from this approximation and their phenomenologi
al
onsequen
es have re
ently been dis
ussed in [8, 73{77℄.2.2 Parton spinLet us now see how the s
attering formulae (2.33) to (2.37) are modi�ed in QCD, wherepartons have nonzero spin. In (2.21) to (2.31) the squared amplitude Hi of the ith hards
attering and the hadroni
 matrix elements of parton �eld operators a
quire spinor indi
esin the 
ase of quarks and Lorentz indi
es in the 
ase of gluons. These indi
es 
an be treatedas in the 
ase of a single hard s
attering. For the time being we still omit 
olor degrees offreedom, whi
h will be dis
ussed in se
tion 2.3.2.2.1 QuarksThe 
orrelation fun
tion for n quarks entering the hard s
attering is��1�1:::�n�n(ki; ri) = � nYi=1 Z d4zi(2�)4 eiziki�� n�1Yi=1 Z d4yi(2�)4 e�iyiri�� 
p�� �T h �q�1�y1 � 12z1� � � � �q�n��12zn�iT h q�n�12zn� � � � q�1�y1 + 12z1�i��p� : (2.75)
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When this is integrated over the parton minus-momenta, the anti-time and time ordering
an be omitted and one 
an reorder the �elds as� n�1Yi=1 �q�i�yi � 12zi� q�i�yi + 12zi� ��q�n��12zn� q�n�12zn� (2.76)by an even permutation. For antiquarks entering the s
attering, one has an operatorprodu
t q�i(yi � 12zi) �q�i(yi + 12zi) instead of �q�i(yi � 12zi) q�i(yi + 12zi).Consider the 
ase of a quark entering the hard s
attering. We wish to rearrange thespinor indi
es in the produ
t ���Hi;��, where for brevity we write �; � instead of �i; �iand leave out all other indi
es on whi
h Hi and � depend. The rearrangement is a
hievedby the Fierz transformHi;�� = 12 Æ�� tr�12Hi�+ 12 (
5)�� tr�12
5Hi�+ 12(
�)�� tr�12
�Hi�+ 12(
�
5)�� tr�12
5
�Hi�+ 12 i(���
5)�� tr�14 i���
5Hi� : (2.77)The Dira
 matri
es with open indi
es on the r.h.s. multiply �elds �q�(yi � 12zi) q�(yi + 12zi)in the 
orrelation fun
tion ��� for the right-moving proton. The dominant terms in the
ross se
tion are those where that matrix is � = 12
+; 12
+
5 or 12 i�+j
5 with j = 1; 2,be
ause ������ is then proportional to the large momentum 
omponent p+ � Q by virtueof Lorentz invarian
e. The tra
es over the hard s
attering matrix Hi on the r.h.s. of (2.77)have both large plus and minus 
omponents sin
e Hi depends on the boson momentum qi.One thus has���Hi;�� = tr�12
+�� tr�12
�Hi�+ tr�12
+
5�� tr�12
5
�Hi�+ tr�12 i�j+
5�� tr�12 i�j�
5Hi�+ fpower suppressed termsg ; (2.78)where a sum over the transverse index j = 1; 2 is understood.When de�ning distributions for s
alar partons in (2.8), we in
luded a fa
tor k+i forea
h parton i = 1; : : : ; n. For quarks we do not do this, but instead in
lude this fa
tor k+iin the de�nition of the parton-level 
ross se
tion �i from the squared matrix element Hi.Writing ki;
 for the 
ollinear approximation of ki (i.e. k+i;
 = k+i , k�i;
 = 0 and ki;
 = 0) were
ognize in k+i tr�12
�Hi� = 12 tr�=ki;
Hi� = 12Xs �us(ki;
)Hi us(ki;
) (2.79)the spin averaged squared amplitude for an in
oming on-shell quark. The 
orrespondingterms with 
�
5 and i��j
5 = 
5
j
� are respe
tively asso
iated with s
attering on alongitudinally and transversely polarized quark.Integrating (2.75) over the minus 
omponents of the parton momenta, one obtainsmulti-parton distributions as in (2.9) with the s
alar �eld operators (2.10) repla
ed byquark bilinears Oa(yi; zi) = �q(yi � 12zi) �a q(yi + 12zi)���z+i =y+i =0 ; (2.80)
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Figure 5. The numbering of �elds in two-parton distributions spe
i�ed in (2.85). The 
olor indi
esj; j0; k and k0 will be dis
ussed in se
tion 2.3.1.where a = q;�q; Æq labels the polarization and�q = 12
+ ; ��q = 12
+
5 ; �jÆq = 12 i�j+
5 : (2.81)We re
ognize the operators that appear in the de�nition of single-parton densities for un-polarized, longitudinally polarized and transversely polarized quarks, see e.g. [78, 79℄. Forantiquarks entering the hard s
attering one pro
eeds in an analogous way. The 
orrespond-ing operators are O�a(yi; zi) = ��q(yi + 12zi) ��aq(yi � 12zi)���z+i =y+i =0 (2.82)with ��q = �q ; ���q = ���q ; �jÆ�q = �jÆq : (2.83)The overall minus sign in (2.82) re
e
ts a 
hange in the order of �eld operators fromq�(yi� 12zi) �q�(yi+ 12zi) to �q�(yi+ 12zi) q�(yi� 12zi), 
f. our remark after (2.76). In the 
aseof O��q a further minus sign is in
luded in ���q, so that the operator 
orresponds to thedi�eren
e of antiquarks with positive and negative heli
ity.From now on we 
on
entrate on two-parton distributions. The formalism 
an be ex-tended without 
on
eptual diÆ
ulties to higher multiple intera
tions, but the resultingexpressions be
ome rather unwieldy. As one en
ounters nontrivial features already fordouble hard s
attering, it is natural to elaborate this 
ase �rst. To simplify the dis
ussion,we introdu
e a 
ompa
t notation

'4 '3 '2 '1 �� = � 2Yi=1 Z dz�i d2zi(2�)3 eixiz�i p+�iziki�� 2p+Z dy�
p��'(y � 12z1)'(�12z2)'(12z2)'(y + 12z1)��p����z+1 =z+2 =y+=0 (2.84)
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for the Fourier transformed matrix element of a produ
t of �eld operators '. Their indi
esare assigned a

ording to1 $ y + 12z1 $ momentum fra
tion x1 in amplitude2 $ 12z2 $ momentum fra
tion x2 in amplitude3 $ � 12z2 $ momentum fra
tion x2 in 
onjugate amplitude4 $ y � 12z1 $ momentum fra
tion x1 in 
onjugate amplitude (2.85)as shown in �gure 5. Throughout this paper we 
onsider unpolarized in
ident hadrons, sothat an average over the proton spin is understood in (2.84). A two-quark distribution isthen given by Fa1;a2(xi;ki;y) = 

(�q3�a2 q2) (�q4�a1 q1)�� ; (2.86)and if the parton with momentum fra
tion x2 is an antiquark one has insteadFa1;�a2(xi;ki;y) = 

(�q2��a2 q3) (�q4�a1 q1)�� : (2.87)In straightforward extension of the 
ase of single-parton distributions [79℄, the matrixelements de�ning distributions for quarks and antiquarks are thus 
onne
ted asFa1;�a2(x1; x2;k1;k2;y) = �a2Fa1;a2(x1;�x2;k1;�k2;y) (2.88)with sign fa
tors �q = �Æq = +1 and ��q = �1. De�nitions and relations analogous to(2.86), (2.87) and (2.88) hold for the 
ase where the parton with momentum fra
tion x1 isan antiquark.The previous arguments 
an be repeated for the partons in the left-moving proton,with the roles of plus and minus 
omponents inter
hanged. We de�ne the hard-s
attering
ross se
tion for a right-moving quark and a left-moving antiquark as�̂i;a�a = 12q2i �Pa(ki)��� �P�a(�ki)����� Hi;�� ���� (2.89)with spin proje
torsPq(k) = P�q(k
) = 12=k
 ; P�q(k) = �P��q(k
) = 12
5 =k
 ;P jÆq(k) = P jÆ�q(k
) = 12
5 =k

j (2.90)
onstru
ted from the 
ollinear momenta ki;
 introdu
ed before (2.79), i.e. k+i;
 = k+i forright-moving partons and k�i;
 = k�i for left-moving ones, with all other 
omponents equalto zero. The spin proje
tors mat
h the Fierz de
omposition (2.78) and the operators in(2.80) and (2.82), and they 
an be expressed in terms of quark or antiquark spinors as in(2.79). It is understood that for ea
h label Æq or Æ�q the 
ross se
tion (2.89) depends on atransverse Lorentz index, whi
h has not been expli
itly displayed. In most rea
tions thepartoni
 subpro
ess involves only 
hirality 
onserving intera
tions. Sin
e in
oming quarksand antiquarks are approximated as massless in the hard s
attering, only the 
ombinations{ 23 {



H1

Fa1,a2
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Figure 6. Graphs for double hard s
attering initiated by di�erent 
ombinations of quarks andantiquarks in the amplitude and the 
onjugate amplitude.�̂q;�q, �̂�q;��q, �̂q;��q, �̂�q;�q and �̂Æq;Æ�q are then nonzero. For parity 
onserving pro
essessu
h as the produ
tion of a virtual photon, one is left with only �̂q;�q, �̂�q;��q and �̂Æq;Æ�q.Hard-s
attering 
ross se
tions �̂i;�aa for right-moving antiquarks and left-moving quarks arede�ned as in (2.89) with an appropriate 
hange of spinor indi
es.We now have everything at hand to write down the expression for the double-s
atteringgraphs of �gure 6a and b. For a single quark 
avor, one hasd�Q2i=1 dxi d�xi d2qi ������g. 6a,b = 1C Xa1;a2=q;�q;Æq�a1;�a2=�q;��q;Æ�q � 2Yi=1 Z d2ki d2�ki Æ(2)(qi � ki � �ki)�� Z d2y ��̂1;a1�a1(x1�x1s) �̂2;a2�a2(x2 �x2s)Fa1 ;a2(xi;ki;y)F�a1 ;�a2(�xi; �ki;y)+ �̂1;a1�a1(x1�x1s) �̂2;�a2a2(x2 �x2s)Fa1;�a2(xi;ki;y)F�a1;a2(�xi; �ki;y)� ; (2.91)where S = 2 if the �nal states of the two hard s
atters are identi
al and S = 1 otherwise. Itis straightforward to Fourier transform the previous expressions either from the interpartondistan
e y to the relative transverse momentum r, or from average transverse momentaki; �ki to transverse positions zi, as we did in (2.9), (2.12) and (2.33), (2.36) for s
alarpartons.
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Noti
e that (2.91) involves a polarization dependen
e in the multiparton distributionsand hard-s
attering 
ross se
tion. This is be
ause, even for unpolarized hadron beams,the polarization of the two partons with momentum fra
tions x1 and x2 
an be 
orrelatedamong themselves. We will dis
uss this in more detail in se
tion 4.1.1.The two-quark and quark-antiquark distributions 
onsidered so far have the form

O1O2��, where the Oi are bilinear operators from (2.80) or (2.82). As we dis
ussedafter (2.14), these distributions 
an be interpreted as probabilities or pseudo-probabilitiesin the sense of Wigner distributions for two partons in the proton that 
arry momentumfra
tions x1 and x2, respe
tively.There are further double-s
attering graphs that 
ontribute to the 
ross se
tion and in-volve distributions whi
h represent interferen
e terms rather than probabilities. In �gure 6
we show the 
ase where the parton with momentum fra
tion x1 is a quark in the s
atteringamplitude and an antiquark in the 
onjugate s
attering amplitude. Su
h interferen
e termsin fermion number have no equivalent in single hard-s
attering pro
esses, where they areforbidden by fermion number 
onservation. For their des
ription we introdu
e interferen
edistributions Ia1;�a2(xi;ki;y) = 

(�q2��a2 q4) (�q3�a1 q1)�� ;I�a1;a2(xi;ki;y) = 

(�q4�a2 q2) (�q1��a1 q3)�� : (2.92)In the absen
e of a probability interpretation, the 
hoi
e of quark vs. antiquark labels inthe Dira
 matri
es is pure 
onvention. We assign labels su
h that a indi
ates a quark and�a an antiquark in the amplitude, i.e. for the parton indi
es 1 and 2 in �gure 5. The graphin �gure 6
 
ontributes to the 
ross se
tion asd�Q2i=1 dxi d�xi d2qi ������g. 6
 = 1C Xa1;a2=q;�q;Æq�a1;�a2=�q;��q;Æ�q H1; �1�1 ��1 ��1(k1; �k1) �Pa1(k1)��1�2 �P�a2(k2)��1�2�H2; �2�2 ��2 ��2(k2; �k2) �P�a1(�k1)���2 ��1 �Pa2(�k2)���2 ��1� � 2Yi=1 Z d2ki d2�ki Æ(2)(qi � ki � �ki)� Z d2y Ia1;�a2(xi;ki;y) I�a1;a2(�xi; �ki;y) : (2.93)We see that the 
ontra
tion of Dira
 indi
es ties together the two hard-s
attering kernelsand the spin proje
tors P , so that one 
annot de�ne separate partoni
 
ross se
tions �̂1and �̂2. The power behavior of this 
ontribution is the same as in (2.91).Taking di�erent quark 
avors into a

ount, we obtain further interferen
e terms. The
ontributions in �gure 7a and b involve the interferen
e of di�erent quark 
avors, and thosein �gure 7
 and d the 
ombined interferen
e in fermion number and 
avor. The relevantmatrix elements are easily written down, reading e.g. 

(�u3�a2 d2) ( �d4�a1 u1)�� for the lowerpart of �gure 7a.Whi
h interferen
e distributions are of appre
iable size is interesting from the point ofview of nu
leon stru
ture and important for phenomenology. One may for instan
e imaginethat diquark-like 
orrelations in the nu
leon wave fun
tion play an important role in this{ 25 {
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dFigure 7. Graphs for double hard s
attering with interferen
e in quark 
avor. For simpli
ity, theblobs indi
ating the hadroni
 matrix elements are not shown.
ontext. In se
tion 2.5 we will argue that for small values of xi both fermion number andquark 
avor interferen
e distributions should be
ome relatively small.2.2.2 GluonsIf gluons enter a hard-s
attering subpro
ess, spe
ial attention needs to be paid to theirpolarization. In 
ovariant gauges su
h as Feynman gauge, an unlimited number of right-moving gluons with polarization in the plus dire
tion 
an be atta
hed to a hard s
atteringgraph without any power suppression. The e�e
t of these gluons is resummed into Wilsonlines, whi
h we will dis
uss in detail in se
tion 3.2.1. Alternatively, one may work in light-
one gauge A+ = 0, where the 
orresponding gluon polarization is absent. One then hasto be 
areful about subtle e�e
ts from Wilson lines at in�nity, see our remark at the endof se
tion 3.2.1.On
e the right-moving gluons with plus polarization (and the left-moving gluons withminus polarization) are taken into a

ount, the leading 
ontribution to the 
ross se
tion
omes from gluons with transverse polarization, 
orresponding to �eld operators Aj withj = 1; 2. It is for these gluons that one introdu
es parton distributions similar to those ofquarks. To de
ompose the produ
t of two gluon potentials with transverse polarization,we use the relations �jj0�kk0 = ÆjkÆj0k0 � Æjk0Æj0k ;� jj0;kk0 = 12�ÆjkÆj0k0 + Æjk0Æj0k � Æjj0Ækk0� ; (2.94)
{ 26 {



where the indi
es j; j0; k; k0 = 1; 2 are restri
ted to be transverse and where �jj0 is thetwo-dimensional antisymmetri
 tensor with �12 = 1. The tensor � jj0;kk0 is symmetri
 andtra
eless in ea
h of the index pairs (jj0) and (kk0). As an analog of the de
omposition(2.77) for fermions, we 
an thus writeHjj0i = �12Æjj0Ækk0 + 12�jj0�kk0 + � jj0;kk0�Hkk0i= Æjj0�12Ækk0Hkk0i �� i�jj0�12 i�kk0Hkk0i �+ � jj0;l l0�� l l0;kk0Hkk0i � (2.95)for the squared hard-s
attering matrix element, where in the last step we have used therelation � jj0;l l0� l l0;kk0 = � jj0;k0k.The tensors depending on j; j0 in (2.95) are to be 
ontra
ted with a produ
t Aj0Aj ofgluon potentials in the multigluon 
orrelation fun
tion�j1j01:::jnj0n(ki; ri) = � nYi=1 Z d4zi(2�)4 eiziki�� n�1Yi=1 Z d4yi(2�)4 e�iyiri�� 
p�� �T�Aj0n��12zn� n�1Yi=1 Aj0i�yi � 12zi��T�Ajn�12zn� n�1Yi=1 Aji�yi + 12zi����p� : (2.96)In analogy to the de�nition (2.8) for s
alar partons (and in 
ontrast to the one for quarks)we in
lude a fa
tor k+i for ea
h gluon i when de�ning multi-gluon distributions F from �.One then obtainsFa1;:::;an(xi;ki;yi) = � nYi=1 1xip+ Z dz�i2� eixiz�i p+ Z d2zi(2�)2 e�iziki� � n�1Yi=1 2p+Z dy�i �� 
p��Oan(0; zn) n�1Yi=1 Oai(yi; zi)��p� ; (2.97)where Oa(yi; zi) = �jj0a G+j0(yi � 12zi)G+j(yi + 12zi) (2.98)with polarization labels a = g;�g; Æg and�jj0g = Æjj0 ; �jj0�g = i�jj0 ; ��l l0Æg �jj0 = � jj0;l l0 : (2.99)The operators Og and O�g appear in the usual densities for unpolarized and longitudinallypolarized gluons. By 
ontrast, O l l0Æg des
ribes the interferen
e of two gluons whose heli
itiesdi�er by two units, or equivalently the di�eren
e between linear gluon polarization intwo orthogonal dire
tions. Su
h distributions have previously been dis
ussed in di�erent
ontexts, see [80, 81℄ and [82{87℄.In going from (2.96) to (2.97) we have traded gluon potentials for �eld strengthsusing the relation G+j = �+Aj valid in the light-
one gauge A+ = 0. Under the Fouriertransform this turns k+i Aj0Aj into (k+i )�1G+j0G+j and explains the fa
tor 1=(xip+) forea
h parton in (2.97). It is plausible that gluon �eld strengths rather than potentials should
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appear in the de�nition of gluon distributions, sin
e G�� has a simple behavior under gaugetransformations and 
an be used to 
onstru
t gauge invariant operators. How a de�nitionwith G+j emerges in Feynman gauge is rather involved and has been shown expli
itly forthe 
ase of a single hard s
attering in [88℄.Parton-level 
ross se
tions for gluons are de�ned as in (2.89) with spin proje
torsP kk0g = 12Ækk0 ; P kk0�g = �12 i�kk0 ; �P l l0Æg �kk0 = � l l0;kk0 (2.100)following from (2.95). In Pg one readily re
ognizes the average over the two transversegluon polarization. The expressions (2.98) to (2.100) are for right-moving gluons. Forleft-moving gluons, one has to 
hange + into � 
oordinates in (2.98) and reverse the signof the � tensor in ��g and P�g. This is be
ause in a 
ovariant de
omposition of the matrixelements the two-dimensional � tensor arises from the four-dimensional one as �jj0 = �+�jj0and thus 
hanges sign when + and � 
oordinates are inter
hanged.Using our shorthand notation (2.84) we 
an write two-gluon distributions asFa1;a2(xi;ki;y) = (x1p+)�1(x2p+)�1 

(�kk0a2 G+k03 G+k2 ) (�jj0a1 G+j04 G+j1 )�� : (2.101)Of 
ourse, there are also multiparton distributions involving both quarks and gluons. Whendis
ussing the mixing of two-quark and two-gluon distributions in se
tion 5.1.3 we shallneed quark-gluon distributions of the typeFa1;a2(xi;ki;y) = (x1p+)�1 

(�q3�a2 q2) (�jj0a1 G+j04 G+j1 )�� (2.102)with a1 = g;�g and a2 = q;�q.2.3 ColorIn 
ontrast to single-parton densities, where two parton �elds are always 
oupled to a 
olorsinglet, multiparton distributions have a nontrivial 
olor stru
ture. We limit ourselvesto two-parton distributions here, i.e. to 
orrelation fun
tions with four parton �elds. Inthis se
tion we give general de
ompositions of their 
olor stru
ture. Dynami
al aspe
tswhere 
olor plays an essential role will be en
ountered throughout se
tion 3, as well as inse
tions 5.1.3 and 5.2.2.2.3.1 QuarksFor two-quark distributions we writeFjj0;kk0 = 

(�q3;k0�a2 q2;k) (�q4;j0�a1 q1;j)�� = 1N2 �1F Æjj0Ækk0 + 2NpN2 � 1 8F tajj0takk0� ;(2.103)where j; j0 and k; k0 are 
olor indi
es and N is the number of 
olors. The indi
es 1 and 2 onthe quark �elds are shorthand for the position spa
e arguments asso
iated with momentum
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fra
tions x1 and x2, as given in (2.86). For ease of writing we do not display the polarizationlabels a1; a2 of F when not ne
essary. The fun
tions 1F and 8F 
an be proje
ted out as1F = Æj0j Æk0k Fjj0;kk0 = 

(�q3�a2 q2) (�q4�a1 q1)�� ;8F = 2NpN2 � 1 taj0j tak0k Fjj0;kk0 = 2NpN2 � 1 

(�q3�a2 taq2) (�q4�a1taq1)�� : (2.104)We see that for N = 3 the quark lines 
arrying the same longitudinal momentum are
oupled to 
olor singlets and 
olor o
tets in 1F and 8F , respe
tively.3 Obviously, only 1Fadmits an interpretation as the joint density of quarks with momentum fra
tions x1 andx2, summed over their respe
tive 
olors. The prefa
tor of 8F in (2.103) has been 
hosensu
h that it also appears in the proje
tion (2.104). For this 
hoi
e the 
olor singlet and
olor o
tet distributions enter with equal weight�1F 1F + 8F 8F �ÆN2 (2.105)in the 
ross se
tion of pro
esses where hard s
atters produ
e 
olor-singlet systems. In thissense, the size of 8F relative to 1F dire
tly indi
ates its relevan
e to phenomenology.For parameterizing the 
olor stru
ture of Fjj0;kk0 one 
an alternatively use 1F and thematrix elementÆj0k Æk0j Fjj0;kk0 = 

(�q3;j�a2 q2;k) (�q4;k�a1 q1;j)�� = pN2 � 1N 8F + 1N 1F ; (2.106)in whi
h quark lines 
arrying di�erent longitudinal momentum 
ouple to 
olor singlets. Wenote that this 
ombination be
omes equal to 8F in the limit of large N . It 
an be rewrittenin terms of matrix elements 1~F = 

(�q4�a2 q2) (�q3�a1 q1)�� (2.107)that involve bilinear quark operators with no un
ontra
ted 
olor or spinor indi
es. This isa
hieved by a Fierz transform of �a2 �a1 w.r.t. the spinor indi
es of �q3;j and q1;j, followedby a Fierz transform w.r.t. the other two indi
es. WritingOa1;a2 = (�q3;j�a2 q2;k) (�q4;k�a1 q1;j) ; ~Oa1;a2 = (�q4;k�a2 q2;k) (�q3;j�a1 q1;j) (2.108)one has0BBBBBB� ~Oq;q + ~O�q;�q~Oq;q � ~O�q;�q~Oq;�q + ~O�q;q~Oq;�q � ~O�q;q~Ojj0Æq;Æq
1CCCCCCA = �0BBBBBB�1 0 0 0 00 0 0 0 Ækk00 0 1 0 00 0 0 0 i�kk00 12Æjj0 0 �12 i�jj0 � jj0;kk0

1CCCCCCA0BBBBBB�Oq;q +O�q;�qOq;q �O�q;�qOq;�q +O�q;qOq;�q �O�q;qOkk0Æq;Æq
1CCCCCCA (2.109)3For 
onvenien
e we use the notation 8F for general N .
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and 0BBBB� ~Ojq;Æq + ~OjÆq;q~Ojq;Æq � ~OjÆq;q~Oj�q;Æq + ~OjÆq;�q~Oj�q;Æq � ~OjÆq;�q
1CCCCA = �0BBBB��Æjk 0 0 00 0 0 i�jk0 0 �Æjk 00 i�jk 0 0

1CCCCA0BBBB� Okq;Æq +OkÆq;qOkq;Æq �OkÆq;qOk�q;Æq +OkÆq;�qOk�q;Æq �OkÆq;�q
1CCCCA ; (2.110)where � is de�ned in (2.94) and the transverse indi
es k; k0 of the tensor operators on ther.h.s. are summed over as appropriate. The global minus sign in both equations 
omes fromthe reordering of fermion �elds between O and ~O. The inverse transformation goes withthe same matri
es. Of 
ourse, the distributions 1~F do not have a probability interpretationsin
e the quark �elds 
oupled to 
olor singlets 
arry di�erent momentum fra
tions.To illustrate that the 
olor o
tet 
ombination 8F need not be small let us 
onsider athree-quark system, as is done in 
onstituent quark models. Irrespe
tive of the details inthe model, the 
olor part of the three-quark wave fun
tion is �jkl. The 
olor stru
ture of atwo-quark distribution is thus given byFjj0;kk0 / �jkl �j0k0l = Æjj0 Ækk0 � Æjk0 Ækj0 ; (2.111)where l is the 
olor index of the spe
tator quark and therefore summed over. With (2.104)one readily �nds 8F = �p2 (1F ). The 
ombination in (2.106), where the quark lines f13gand f24g are 
oupled to 
olor singlets is then 13�p8 8F + 1F � = �(1F ) and thus as large as1F itself.The pre
eding expressions 
an easily be adapted for the quark-antiquark distributionsFa1;�a2 de�ned in (2.87). With 
olor indi
es labeled as in �gure 5, the 
orresponding matrixelement reads 

(�q2;k��a2 q3;k0) (�q4;j0�a1 q1;j)�� and is de
omposed as on the r.h.s. of (2.103)with inter
hanged indi
es k and k0. An extra minus sign appears in the transformationlaws (2.109) and (2.110) whenever a label �q is 
hanged to ��q, be
ause ���q = ���q.An analogous 
olor de
omposition 
an �nally be made for the interferen
e distributionsIa1;�a2 de�ned in (2.92),Ijj0;kk0 = 

(�q2;k��a2 q4;j0) (�q3;k0�a1 q1;j)�� = 1N2 h1I Æjk0Æj0k + 2NpN2 � 1 8I tajk0taj0ki (2.112)with 1I = Æk0j Ækj0 Ijj0;kk0 = 

(�q2��a2 q4) (�q3�a1 q1)�� ;8I = 2NpN2 � 1 tak0j takj0 Ijj0;kk0 = 2NpN2 � 1 

(�q2��a2 taq4) (�q3�a1taq1)�� : (2.113)In analogy to (2.106) one 
an alternatively use 1I together withÆk0j0 Ækj Ijj0;kk0 = 

(�q2;j��a2 q4;j0) (�q3;j0�a1 q1;j)�� = pN2 � 1N 8I + 1N 1I : (2.114)By the same transformation as in (2.109) and (2.110), with appropriate sign 
hanges forthe antiquark matri
es ��a2 , one 
an rewrite this as a linear 
ombination of matrix elements1~I = 

(�q3��a2 q4) (�q2�a1 q1)�� ; (2.115)
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where the quark bilinears have no un
ontra
ted spin or 
olor indi
es. Using the relationtajk0taj0k = 12Æjk Æk0j0 � 12N Æjk0 Æj0k one 
an also rewrite (2.112) asIjj0;kk0 = 1N2"s N2(N � 1) �3I�Æjk0 Æj0k � Æjk Æj0k0�+s N2(N + 1) 6I�Æjk0 Æj0k + Æjk Æj0k0�#(2.116)with �3I =rN � 12N 1I �rN + 12N 8I ; 6I =rN + 12N 1I +rN � 12N 8I : (2.117)The transformation between 1I; 8I and �3I; 6I is orthogonal. For N = 3 we 
an rewriteÆjk0 Æj0k � Æjk Æj0k0 = �jj0l �k0kl and re
ognize that �3I des
ribes the 
ase where the quarkswith momentum fra
tion x1 are 
oupled to a 
olor antitriplet, whereas 6I des
ribes the
ase where they form a sextet.2.3.2 GluonsThe 
olor stru
ture for multi-gluon distributions requires the 
oupling of several 
olor o
tetsand is hen
e more involved than for quarks. For a two-gluon distribution we pro
eed by�rst 
oupling ea
h of the gluon pairs f14g and f23g to irredu
ible representations and then
oupling these pairs to an overall 
olor singlet. For the 
olor stru
tures that 
an mix withquarks we writeF aa0 ;bb0 = (x1p+)�1(x2p+)�1 

(Gb03 �a2Gb2) (Ga04 �a1Ga1)��= 1(N2 � 1)2 �1F Æaa0Æbb0 � pN2 � 1N AF faa0
f bb0
 + NpN2 � 1N2 � 4 SF daa0
dbb0
 + � � � �(2.118)with a shorthand notation Ga0�aiGa = �jj0ai Ga0;+j0Ga;+j for the 
ontra
tions of gluonpolarization indi
es. As is readily seen from(x1p+)(x2p+) 1F = 

(Gb3�a2Gb2) (Ga4�a1Ga1)�� ;(x1p+)(x2p+)AF = � pN2 � 1N 

(f 
bb0Gb03 �a2Gb2) (f 
aa0Ga04 �a1Ga1)�� ;(x1p+)(x2p+) SF = NpN2 � 1N2 � 4 

(d
bb0Gb03 �a2Gb2) (d
aa0Ga04 �a1Ga1)�� ; (2.119)ea
h of the pairs f14g and f23g in 1F , AF and SF is respe
tively 
oupled to a singlet,an antisymmetri
 and a symmetri
 o
tet. For hard-s
attering pro
esses produ
ing 
olorsinglet states, these distributions enter the 
ross se
tion as� 1F 1F + AF AF + SF SF + � � � �Æ(N2 � 1)2 : (2.120)
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The ellipsis in (2.118) and (2.120) stands for terms where the gluon pairs are in higher
olor representations. For SU(3) these are 10, 10, 27, and the full de
omposition readsF aa0;bb0 =N=3 164 h1F Æaa0Æbb0 � p83 AF faa0
f bb0
 + 3p85 SF daa0
dbb0
+ 2p10 10F taa0;bb010 + 2p10 10F �taa0;bb010 �� + 4p27 27F taa0;bb027 i (2.121)with tensors [89℄taa0;bb010 = ÆabÆa0b0 � Æab0Æa0b � 23 faa0
f bb0
 � i(dab
fa0b0
 + fab
da0b0
) ;taa0;bb027 = ÆabÆa0b0 + Æab0Æa0b � 14 Æaa0Æbb0 � 65 daa0
dbb0
 : (2.122)In 10F the indi
es (aa0) are 
oupled to 10 and (bb0) to 10, whereas in 10F the opposite isthe 
ase. The normalization fa
tors in (2.121) are su
h that the produ
tion of 
olor singletparti
les involves the 
ombination �1F 1F+AF AF+SF SF+10F 10F+10F 10F+27F 27F �Æ64.Useful relations between the f and d tensors 
an be found in [90℄.We 
on
lude this se
tion with the 
olor de
omposition of the quark-gluon distributionsintrodu
ed in (2.102). The quark lines 
an only 
ouple to a 
olor singlet or o
tet, whi
hhas to be mat
hed by the gluon lines in order to obtain an overall singlet. A 
ompletede
omposition is thus given byF aa0jj0 = (x1p+)�1 

(�q3;j0�a2 q2;j) (Ga04 �a1Ga1)��= 1N(N2 � 1) h1F Æaa0 Æjj0 � AF p2 if aa0
 t
jj0 +r 2N2N2 � 4 SF daa0
 t
jj0i (2.123)with (x1p+) 1F = 

(�q3�a2 q2) (Ga4�a1Ga1)�� ;(x1p+)AF = p2 

(�q3�a2 t
q2) (if 
aa0Ga04 �a1Ga1)�� ;(x1p+) SF =r 2N2N2 � 4 

(�q3�a2 t
q2) (d
aa0Ga04 �a1Ga1)�� : (2.124)The fa
tor i in (2.123) has been 
hosen so that AF is real valued (sin
e if aa0
 is Hermitianw.r.t. the indi
es a and a0). The normalization fa
tors multiplying AF and SF are thegeometri
 means of their 
ounterparts in (2.103) and (2.118).2.4 Power 
ounting and dominant graphsIn se
tion 2.1.3 we have already 
ompared the power behavior in �=Q of single and multiplehard s
attering 
ross se
tions. We now take a 
loser look at this issue and extend ouranalysis to the interferen
e of single and multiple s
attering.As building blo
ks for establishing the power behavior of the 
ross se
tion we take 
or-relation fun
tions �n involving n parton �elds and amplitudes Tk!m for hard-s
attering
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pro
esses with k in
oming partons and m �nal-state parti
les. The relevant parton 
orre-lation fun
tions are obtained by repla
ing the s
alar parton �elds in (2.1) by quark �elds�q and q, or by the transverse 
omponents Aj of the gluon potential as in (2.96). To treatquarks and gluons on a 
ommon footing, it is 
onvenient to use modi�ed 
orrelation fun
-tions �0n that are divided by pl+ for ea
h quark or antiquark line with momentum l, andmodi�ed hard-s
attering amplitudes T 0k!m that are multiplied with the 
orresponding fa
-tor pl+. Furthermore, pairs �q� and q� of quark �elds in �0n are 
ontra
ted with one ofthe Dira
 matri
es �a in (2.81) that give the dominant 
ontributions to the 
ross se
tion.4The produ
ts T 0k!m T 0�k0!m of modi�ed hard-s
attering amplitudes with their 
omplex 
on-jugates are to be 
ontra
ted with the 
orresponding Dira
 matri
es spe
i�ed in (2.78).Sin
e 1pl+l0+ �q
+q ; 1pl+l0+ �q
+
5q ; 1pl+l0+ �qi�+j
5q ; AjAk (2.125)have the same mass dimension and are invariant under boosts along the z axis, the powerbehavior of the modi�ed 
orrelation fun
tions is�0n � �2�3n (2.126)regardless of the parton spe
ies. The power on the r.h.s. is just the mass dimension of �0n.By de�nition, all internal lines of the hard-s
attering subgraphs are o� shell by order Q2,so that the power behavior of the amplitudes T 0k!m (where the propagators of externalparti
les are trun
ated) is also determined by their mass dimension. For the pro
esses
onsidered in the following, one hasT 0k!m � Q4�k�m ; (2.127)as 
an readily be 
he
ked for the example graphs in �gure 8.For de�niteness we 
onsider the produ
tion of two parti
les with large masses andrespe
tive four-momenta q1; q2. Examples are the weak gauge bosons W , Z or a Higgsboson. The power behavior of the 
ross se
tion is the same if we repla
e one or both of theheavy parti
les by a set of light parti
les su
h as a lepton pair or a pair of jets, providedthat we integrate over the internal phase spa
e of the �nal-state parti
les while keeping qi�xed. Repla
ing for instan
e a parti
le with momentum qi and mass Mi by two masslessparti
les with momenta p1 and p2, we have to 
hanged4qi 2�Æ(q2i �M2i )T 0k!1 T 0�k0!1 = dxi d�xi d2qi �Æ�xi�xi � M2i + q2is � T 0k!1 T 0�k0!1 (2.128)intod4qi(2�)2 Z d3p12p01 d3p22p02 Æ(4)(qi � p1 � p2)T 0k!2 T 0�k0!2 = dxi d�xi d2qi sZ d
1(8�)2 T 0k!2 T 0�k0!2 ;(2.129)4For the purpose of power 
ounting, it is not important whi
h of the matri
es �a is taken and whi
hpairs of quark �elds are 
ontra
ted together if there are more than two of them. We will not spe
ify thesedetails in the present se
tion and use �0n in a generi
 sense. Likewise, 
olor indi
es are not relevant forpower 
ounting and will be omitted. { 33 {
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Figure 8. Example graphs and power behavior for di�erent 
ombinations of single and double hards
attering 
ontributions to gauge boson pair produ
tion. It is understood that internal lines of thehard-s
attering subgraphs are o� shell by order Q2, whereas partons emerging from the protonmatrix elements are o� shell by order �2.where d
1 is the solid angle of p1 in the rest frame of qi. We re
all that xi = q+i =p+and �xi = q�i =�p� are de�ned in terms of �nal-state momenta and thus dire
tly observable.A

ording to (2.127) the s
aling behavior of the squared hard-s
attering amplitudes 
hangesby 1=Q2 when going from (2.128) to (2.129), whi
h is 
ompensated by the phase spa
evolume sd
1 � Q2. One may put restri
tions on the phase spa
e integration, su
h as aminimum transverse momentum of p1, as long as d
1 remains of order 1. For ea
h further�nal-state parti
le, the squared amplitude a
quires an extra 1=Q2, whi
h is 
ompensatedby an extra phase spa
e integration with volume of order Q2.After these preliminaries we 
an establish the power behavior of the 
onventionalme
hanism with a single hard s
attering, shown in �gure 8a. The 
ross se
tion formula
an be obtained in exa
tly the same way as in se
tion 2.1.2. Omitting all fa
tors that are
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not relevant for power 
ounting (in
luding the Æ fun
tions 
onstraining xi �xi in (2.128)) wehave sd�Q2i=1 dxi d�xi d2qi �����g. 8a � Z d4l d4�l Æ(4)(q1 + q2 � l � �l) ��T 02!2��2 �02 ��02� ��T 02!2��2 Z d2l d2�l Æ(2)(q1 + q2 � l� �l)� Z dl��02 ���l+=(x1+x2) p+ Z d�l+ ��02 ����l�=(�x1+�x2) �p� ; (2.130)where for simpli
ity we have not displayed the momentum arguments of T 0, �0 and ��0(whi
h 
an readily be inferred from �gure 8a). It is understood that in the se
ond step wehave made the 
ollinear approximation and negle
ted l and �l in the hard s
attering, as wellas l� 
ompared with �l�, and �l+ 
ompared with l+. The power behavior of the integrationregions is d2l � �2 and dl� � d�l+ � �2=Q, so that together with (2.126) and (2.127) weobtain sd�Q2i=1 dxi d�xi d2qi �����g. 8a � Q0 � �2 � ��2Q � ��4�2 = 1�2Q2 : (2.131)For the double hard-s
attering 
ontribution in �gure 8b one hassd�Q2i=1 dxi d�xi d2qi �����g. 8b � � 2Yi=1 Z d4li d4�li Æ(4)(qi � li � �li) �� Z d4l01 d4�l01 Æ(4)(q1 � l01 � �l01)T 02!1 T 0�2!1 T 02!1 T 0�2!1 �04 ��04� ��T 01!2��2 ��T 01!2��2 � 2Yi=1 Z d2li d2�li Æ(2)(qi � li � �li) � Z d2l01 d2�l01 Æ(2)(q1 � l01 � �l01)� Z dl�1 dl�2 dl0�1 �04 ���l+i = l0+i =xi p+ Z d�l+1 d�l+2 d�l0+1 ��04 ����l�i =�l0�i = �xi �p� : (2.132)Note that we have used the 
onstraint Æ(q+1 � l0+1 � �l0+1 ) to �x the large 
omponent l0+1at its value q+1 in the 
ollinear approximation, thus leaving the integral over the small
omponent �l0+1 . If instead one uses the 
onstraint to �x �l0+1 = q+1 � l0+1 one would have to
ount the integration element d�l0+1 as order �2=Q sin
e �l0+1 
an only vary by that amount.An analogous remark applies to the 
onstraint Æ(q�1 � l0�1 � �l0�1 ). The power behavior of(2.132) is sd�Q2i=1 dxi d�xi d2qi �����g. 8b � Q4 � �6 � � �6Q3 � ��10�2 = 1�2Q2 (2.133)and hen
e the same as for single hard s
attering, in agreement with the result we obtainedfor s
alar partons in se
tion 2.1.3.Let us now see how the power behavior 
hanges if on one side of the �nal-state 
ut thetwo quark-antiquark annihilation graphs are 
onne
ted by a hard gluon. We then have an
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interferen
e between double hard s
attering and a single hard-s
attering pro
ess as shownin �gure 8
, sd�Q2i=1 dxi d�xi d2qi �����g. 8
� � 2Yi=1 Z d4li d4�li Æ(4)(qi � li � �li) � Z d4l01 d4�l01 T 02!1 T 02!1 T 0�4!2 �04 ��04� T 02!1 T 02!1 Z dl0+1 d�l0�1 T 0�4!2 � 2Yi=1 Z d2li d2�li Æ(2)(qi � li � �li) �� Z dl�1 dl�2 dl0�1 d2l01 �04 ���l+i =xi p+ Z d�l+1 d�l+2 d�l0+1 d2�l01 ��04 ����l�i = �xi �p�� Q2 � �4 � � �6Q3 � �2 � ��10�2 = 1Q4 : (2.134)This is power suppressed 
ompared with the 
ontributions in �gures 8a and b and maytherefore be negle
ted. It is instru
tive to see why the power 
ounting 
hanges between(2.132) and (2.134). Compared with T 0�2!1 T 0�2!1, the hard-s
attering amplitude T 0�4!2 isdown by a fa
tor of 1=Q4, whi
h in the example of �gure 8
 is due to two additional quarkpropagators and one additional gluon propagator relative to �gure 8b. The additionalloop integrations over the large 
omponents l0+1 and �l0�1 in (2.134) ea
h s
ale like Q, butfor the transverse momentum integrations one now has d2l01 d2�l01 � �4 
ompared withd2l01 d2�l01 Æ(2)(q1 � l01 � �l01) � �2 before. Altogether one has thus lost a fa
tor of �2=Q2.By an analogous argument one �nds that the di�erential 
ross se
tion for the puresingle hard-s
attering me
hanism in �gure 8d is power suppressed by a fa
tor of �2=Q2
ompared with the one in �gure 8
.The graphs in �gure 8
 and d involve single hard s
atters with four in
oming partons.There is, however, also an interferen
e between double hard s
attering and single hards
attering with two in
oming partons. This involves 
orrelation fun
tions for three partons,of whi
h at least one must be a gluon due to fermion number 
onservation. An example isshown in �gure 9a, whi
h givessd�Q2i=1 dxi d�xi d2qi �����g. 9a � � 2Yi=1 Z d4li d4�li Æ(4)(qi � li � �li) �T 02!1 T 02!1 T 0�2!2 �03 ��03� T 02!1 T 02!1 T 0�2!2 � 2Yi=1 Z d2li d2�li Æ(2)(qi � li � �li) �� Z dl�1 dl�2 �03 ���l+i =xi p+ Z d�l+1 d�l+2 ��03 ����l�i = �xi �p�� Q2 � �4 � � �4Q2 � ��7�2 = 1�2Q2 : (2.135)This is the same power behavior as the squared single and double hard s
attering 
ontribu-tions in �gures 8a and b, so that interferen
e terms of this type are not power suppressed.The example graph at hand has a suppression by �s sin
e two-gluon fusion into gauge{ 36 {



sd�Q2i=1 dxi d�xi d2qi sd�Q2i=1 dxi d�xia
l1 l2

l̄1 l̄2 1�2Q2 �2Q2
b 1Q4 �2Q2

 1Q4 �2Q2
d 1Q4 �2Q2
Figure 9. As �gure 8, but with parton 
orrelation fun
tions that involve gluons.bosons only starts at one-loop level, but for other �nal states like jets there is no su
h sup-pression. We will en
ounter these interferen
e terms again in se
tion 5.2.1 (see �gure 38).Adding a hard gluon between the two single s
atters on the left of �gure 9a leads tothe interferen
e between di�erent single hard-s
attering pro
esses in �gure 9b. In the sameway as above one �nds that it is power suppressed by �2=Q2 
ompared with the leading
ontributions to the 
ross se
tion.The 
ontributions dis
ussed so far have hard-s
attering subpro
esses with the samenumber of in
oming partons from one and the other proton. One 
an, however, also havea parton in one proton s
atter on two partons in the other proton. Examples for thisare shown in �gures 9
 and d, and one �nds that their power behavior is the same as for�gure 9b.The pattern emerging from the pre
eding examples is 
lear: leading-power 
ontri-butions are obtained as long as all hard-s
attering pro
esses involve only two in
omingpartons. This in
ludes 
ontributions from single s
attering, double s
attering and their
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interferen
e. For ea
h hard s
attering initiated by four partons one has a suppressionby �2=Q2, and ea
h hard s
attering initiated by three partons 
omes with a suppressionfa
tor �=Q.2.4.1 Cross se
tion integrated over transverse momentaSo far we have 
onsidered the 
ross se
tion di�erential in q1 and q2. We now dis
uss howthe power 
ounting is 
hanged when the 
ross se
tion is integrated over these transversemomenta. As we already observed in se
tion 2.1.3, the integration measure d2q1 d2q2
ounts di�erently depending on whether q1 and q2 are both restri
ted to be of order �,or whether they 
an individually be of order Q and only their sum q1 + q2 is restri
ted tosize �. The latter requires a single hard-s
attering pro
ess in both the amplitude and its
onjugate. For our examples we thus �nd an integration volume d2q1 d2q2 of order �2Q2for graphs 8a, d and 9b, 
, d, whereas in the other 
ases the integration volume is of order�4. The resulting power behavior of the 
ross se
tion is given in the �gures.We see that the pattern of power suppression is di�erent from the one we found forthe 
ross se
tion di�erential in q1 and q2. In parti
ular, the leading-power 
ontributionnow 
omes only from the standard single hard-s
attering in graph 8a.The power behavior of the other 
ontributions 
an be made more transparent by takinga 
loser look at the 
orrelation fun
tions they involve. As is evident from (2.130), the single-hard-s
attering 
ontribution of graph 8a goes with the transverse-momentum integrated
orrelation fun
tion R dl� d2l�02 and its 
ounterpart for ��02, whi
h are proportional to theusual 
ollinear quark or antiquark densities. By 
ontrast, integration of (2.134) over q1and q2 gives a four-parton 
orrelation fun
tionZ dl�1 dl�2 dl0�1 d2l1 d2l2 d2l01 �04 / Z d��1 d��2 d�0�1 ei��1 l+1 +i��2 l+2 �i�0�1 l0+1� 
p�� �q(0)�a2 q(�2) �q(�01)�a1 q(�1)��p�����+1 =�+2 =�0+1 =0; �1=�2=�01=0 (2.136)and its 
ounterpart for ��04. In these 
orrelation fun
tions all independent transverse partonmomenta are integrated over, and 
orrespondingly all �eld operators have the same trans-verse position. In physi
al terms, the single hard s
attering in the 
onjugate amplitudehas for
ed all hard s
atters in �gure 8
 to take pla
e at the same transverse position.5 By
ontrast, the double hard s
attering 
ontribution in �gure 8b has two pairs of �elds with arelative transverse distan
e y as we have seen in se
tion 2.1.2, 
orresponding to two hards
atters taking pla
e at positions that 
an be separated by a typi
al hadron size. This dif-feren
e has re
ently been pointed out in [66℄. One obtains the same twist-four 
orrelators(2.136) when integrating the 
ontribution of graphs 8d and 9d over q1 and q2.5As is well known, integrals over transverse parton momenta in the 
orrelation fun
tions are logarith-mi
ally divergent. If these divergen
es are avoided by a transverse-momentum 
uto� of order Q (whi
h isthe largest s
ale in the pro
ess) then the relative transverse positions of the partons are of order 1=Q.
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Similarly, one �nds that the transverse-momentum integrated 
ross se
tions fromgraphs 9a, b and 
 involve 
orrelation fun
tionsZ dl�1 dl�2 d2l1 d2l2 ��03/ Z d��1 d��2 ei��1 l+1 +i��2 l+2 
p��Aj(0) �q(�2)�aq(�1)��p�����+1 =�+2 =0; �1=�2=0 ; (2.137)whi
h are proportional to 
ollinear twist-three distributions. Again, a single hard s
atteringin the amplitude or its 
onjugate is enough to put all �elds at the same transverse position.The power behavior like �4=Q4 of the integrated 
ross se
tions for graphs 8
 and d isnow readily understood, as it involves a 
ollinear twist-four distribution for both 
ollidingprotons, ea
h of whi
h is responsible for a power suppression by �2=Q2. Likewise, graphs 9a,b and 
 involve the produ
t of two 
ollinear twist-three distributions, and graph 9d theprodu
t of a twist-two with a twist-four distribution. In both 
ases the integrated 
rossse
tion is therefore suppressed by �2=Q2 (whi
h happens to be the same suppression fa
toras for the double-hard-s
attering 
ontribution of graph 8b).In the transverse-momentum integrated 
ross se
tion, graphs 8
 and 9a with a doublehard s
attering in the amplitude play no parti
ular role 
ompared with their respe
tive
ounterparts, graphs 8d and 9b, whi
h involve the same 
orrelation fun
tions and have thesame power behavior. Indeed, one may regard graphs 8
 and 9a simply as higher-twist
ontributions with dis
onne
ted hard-s
attering graphs on one side of the �nal-state 
ut,rather than asso
iating them with multiple hard s
attering. This was re
ently advo
atedin [66℄.We emphasize that su
h a view is appropriate only if the 
ross se
tion is integrated overtransverse momenta. For observed transverse momenta q1 and q2 we have a di�erent powerbehavior for graphs 8
 and d, as well as for graphs 9a and b. In parti
ular, the interferen
e
ontribution from graph 9a then has the same leading-power behavior as graphs 8a and b.Let us also note that for graph 9a the quark and antiquark in ea
h proton are not at thesame transverse position for �xed q1 and q2. If we express the 
orrelation fun
tions �03 and��03 through matrix elements hpjAj(0) �q(�2)�aq(�1) jpi and hpjAk(0) �q(��1)��aq(��2) jpi thenthe transverse-momentum integrations in (2.135) 
an be 
arried out and giveZ d2li d2�li Æ(2)(qi � li � �li) e�i�ili�i��i�li = (2�)2Æ(2)(�i � ��i) e�i�iqi (2.138)for i = 1; 2. With jqij � � we thus have a typi
al quark-antiquark distan
e j�1��2j � 1=�.2.5 E�e
ts at small xTypi
al values of xi and �xi at the LHC 
an be quite small, as we already noted after(2.20). At ps = 7TeV and q2i = m2Z one has for instan
e pxi �xi = 1:3 � 10�2. Althoughphenomena at small x are not the main fo
us of this work, we wish to make a few 
ommentson them in the present se
tion.We begin by re
alling that the usual densities for quarks, antiquarks and gluons risewith small x. This rise 
an be approximately des
ribed by power laws q(x) � �q(x) �
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x�1��q and g(x) � x�1��g , with exponents �q and �g between 0 and 1 that dependon the fa
torization s
ale �. The abundan
e of small-x partons 
an be understood as a
onsequen
e of repeated radiation, whi
h is essentially des
ribed by ladder graphs. Su
hgraphs are in parti
ular resummed by the DGLAP evolution equations, whi
h make therise at small x steeper when � is in
reased.In the simple approximation where 
orrelations between partons are negle
ted, multi-parton distributions are the produ
t of single-parton densities as dis
ussed in se
tion 2.1.5.The distribution of n quarks or antiquarks then approximately behaves like F (xi;ki;yi) �(x1x2 � � � xn)�1��q if all momentum fra
tions are suÆ
iently small. If all momentum fra
-tions are of similar size, xi � �xi � x, this gives a fa
tor x�2n(1+�q) in the 
ross se
tion(2.35). If the same �nal state is produ
ed by a single quark-antiquark annihilation, the
orresponding fa
tor is only x�2(n+�q) a

ording to (2.42).6 The multiple s
attering me
h-anism is thus enhan
ed for small momentum fra
tions, both for observed and integratedtransverse momenta qi. In terms of graphs, this enhan
ement 
an be tra
ed ba
k to mul-tiple ladders, one for ea
h pair of partons with the same momentum fra
tion xi in �gure 2.We expe
t that su
h an enhan
ement exists, although the above estimate based on 
om-pletely un
orrelated partons is likely too simplisti
.Note that a strong rise at small x is only observed for parton densities that mix withgluons under evolution, but not for 
ombinations like q(x) � �q(x) or u(x) � d(x), whi
hrise more slowly than x�1. A 
orresponding pattern is expe
ted for multi-parton distribu-tions. Sin
e they 
annot mix with multigluon distributions, the interferen
e distributionsin fermion number or quark 
avor dis
ussed at the end of se
tion 2.2.1 are not enhan
edat small x. We hen
e expe
t them to play a minor role in small-x kinemati
s.The pre
eding arguments apply to both quark and gluon distributions in the frameworkof hard-s
attering fa
torization, and based on the experien
e with single-parton densitiesone expe
ts them to be relevant for momentum fra
tions xi � �xi of order 10�2 or smaller.At very small x the gluon is by far the dominant parton spe
ies in the proton, and onemay use high-energy fa
torization and the BFKL approa
h to des
ribe the dynami
s ofgluon ladders. The primary expansion variable of this approa
h is log 1x , rather than theratio Q=� used in the power 
ounting arguments on whi
h hard-s
attering fa
torizationis based. Basi
 quantities in high-energy fa
torization are Green fun
tions depending ontransverse gluon momenta, whi
h bear 
lose resemblan
e with the transverse-momentumdependent gluon distributions dis
ussed in this work and naturally allow one to keep tra
kof transverse momenta qi in the �nal state.Investigations of multiparton s
attering in the BFKL approa
h 
an be found in [91{95℄.In agreement with the arguments given above, one �nds that the two-gluon distributionre
eives a 
ontribution from two independent BFKL ladders, with a small-x exponent twi
eas large as for a single BFKL ladder [92℄. More 
ompli
ated graphs with four gluons inthe t 
hannel have been analyzed in [92, 94, 95℄. As to the high-energy behavior of three t6For this 
omparison it is important that the hard-s
attering 
ross se
tion on the r.h.s. of (2.42) dependsonly on the momenta qi and not on p or �p. It is hen
e proportional to Q�2n (without any further fa
torsof xi or �xi) and thus of the same order as the produ
t �̂1�̂2 � � � �̂n in (2.35).
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hannel gluons, all solutions found so far for the 
orresponding evolution equations have aweaker small-x growth than a single BFKL pomeron [96, 97℄.Let us see how small-x dynami
s a�e
ts the di�erent graphs investigated in se
tion 2.4.In line with our above dis
ussion, we assume that 
orrelation fun
tions for four partons givea faster growth of the 
ross se
tion with energy than 
orrelation fun
tions for two partons.We have no de�nite expe
tation for the 
orresponding behavior of three-parton 
orrelationfun
tions; if the results just mentioned for gluons in the small-x limit are a guide, then
ontributions with three t 
hannel partons are not favored for small momentum fra
tions.For the 
ross se
tion di�erential in qi we then �nd that the multiple-s
attering me
hanismof �gure 8b is a
tually favored over the single-s
attering graph 8a, whi
h has the samepower behavior in �=Q but a weaker rise at small x. With the 
aveat just mentioned, theinterferen
e 
ontribution in �gure 9a is expe
ted to be less important.The 
ross se
tion integrated over qi is dominated by the 
onventional single-s
atteringme
hanism in �gure 8a by power 
ounting in �=Q. Among the 
ontributions that aresuppressed by �2=Q2 the double-s
attering graph 8b is enhan
ed at small x. To a lesserextent the same is true for graph 9d, whi
h involves four t 
hannel partons in only one ofthe two protons. There may be situations where the small-x enhan
ement over
ompensatesthe power suppression by �2=Q2, for instan
e in the high-energy produ
tion of minijets,where the hard s
ale Q is not too large. In su
h 
ases the BFKL approa
h may be moreadequate than the one using hard-s
attering fa
torization.2.6 The \e�e
tive 
ross se
tion"The 
ross se
tion for double hard s
attering is often written as �ds = �1 �2=(C�e�), where�1 and �2 are single hard s
attering 
ross se
tions, C is the 
ombinatorial fa
tor introdu
edbelow (2.21) and �e� is an \e�e
tive 
ross se
tion" 
hara
terizing the strength of multipleintera
tions. Let us see to whi
h extent su
h a formula holds true in the light of the resultswe have derived so far.Under the assumption that there are no 
orrelations between di�erent partons in thetarget hadron we derived the fa
torized form (2.70) for multiparton distributions in a modeltheory with s
alar partons. This derivation 
arries over to the 
olor singlet distributionsof two unpolarized quarks, antiquarks or gluons, i.e. to 1Fq1;q2 , 1Fq1;�q2, 1F�q1;q2 , 1F�q1;�q2 and1Fg;g, where the two quark 
avors q1 and q2 may be di�erent. If one further assumes thatthe impa
t-parameter dependent distributions of a single quark, antiquark and gluon havethe form f
(x; b) � F (b) f
(x) with a 
ommon impa
t parameter pro�le F (b) for all partonspe
ies 
, then the 
ross se
tion (2.71) for double hard s
attering takes the formd�dsQ2i=1 dxi d�xi � 1C�e� d�1dx1 d�x1 d�2dx2 d�x2 (2.139)with d�idxi d�xi = X
=q;�q;g Xd=q;�q;g �̂i;
d(xi�xis)f
(xi)fd(�xi) (2.140)
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and 1�e� = Z d2� � Z d2y F (y � �)F (y) �2 = Z d2r(2�)2 �F (r)�4 : (2.141)The se
ond form of (2.141) has re
ently been given in [98℄ and uses that the Fouriertransform F (r) of F (b) depends only on r2 be
ause of rotation invarian
e.It is natural to ask whether (2.139) extends to the 
ross se
tion di�erential in qi. Ifone has f
(x;z; b) � F (b) f
(x;z) for all parton types 
 then the fa
torized approximationin (2.69) gives F
1;
2(xi;zi;y; b) � F (b + 12x1z1)F (b + y � 12x2z2) f
2(x2;z2) f
1(x1;z1).Inserting this into the 
ross se
tion formula (2.36) does not lead to a fa
torized form,be
ause xizi appears in the arguments of the impa
t parameter pro�le F . A simpli�
ationo

urs however if the measured transverse momenta qi are large 
ompared to a hadroni
s
ale � (while being mu
h smaller than Q).7 The typi
al values of zi in the 
ross se
tionare then small 
ompared with 1=�, whereas typi
al values of b and b + y are of hadroni
size. We 
an thus approximate F (b+ 12x1y1)F (b+y� 12x2z2) � F (b)F (b+y) and obtaind�dsQ2i=1 dxi d�xi d2qi � 1C�e� d�1dx1 d�x1 d2q1 d�2dx2 d�x2 d2q2 for jqij � � (2.142)with d�idxi d�xi d2qi = Z d2zi(2�)2 e�iziqi X
=q;�q;g Xd=q;�q;g �̂i;
d(xi�xis)f
(xi;zi)fd(�xi;zi) (2.143)and �e� as in (2.141). Both (2.139) and (2.142) 
an be made di�erential in further variablesdes
ribing the sets of parti
les produ
ed by the two hard s
atters. If one integrates theserelations over kinemati
 variables in the presen
e of 
uts, they only retain their validity ifea
h 
ut refers to parti
les in one of the two sets but not in both.The assumptions that allow one to relate the 
ross se
tions for double and single hards
attering by a single pro
ess independent 
onstant �e� are quite strong, and a number ofe�e
ts 
an invalidate (2.139) and (2.142):� an impa
t parameter pro�le F
 (b) that is not the same for di�erent parton distribu-tions. The e�e
t of this was estimated for a spe
i�
 model in [75℄.� a 
orrelation between the x and b dependen
e in the single-parton distributionsf
(x; b) or f
(x;z; b). Eviden
e that su
h a 
orrelation is appre
iable for x above 0:1
omes from the 
al
ulation of the Mellin moments R dxxn�1�fq(x; b)+(�1)nf�q(x; b)�with n = 1; 2; 3 in latti
e QCD, see [99, se
tion 4.4.5℄ and referen
es therein. Theinterpretation of HERA measurements [100, 101℄ for 
p ! J=	 p in terms of gener-alized parton distributions shows that the average squared impa
t parameter hb2i ofsmall-x gluons in the proton has a weak logarithmi
 dependen
e on x [72, 102, 103℄.An estimate of how a 
orrelation between x and b in f
(x; b) a�e
ts multipartonintera
tions has been made in [104℄.7This kinemati
 region is examined in detail in se
tion 5. Noti
e the 
hange of notation 
ompared withthe previous se
tions, where � denotes a hadroni
 s
ale or the size of jqij, whi
hever is larger.{ 42 {



� 
orrelations between di�erent partons in the proton, whi
h invalidate the relations(2.69) and (2.70) between two-parton and single-parton distributions. In [105℄ it wasargued that su
h 
orrelations are signi�
ant.� an appre
iable size of multiparton distributions that des
ribe spin 
orrelations be-tween two partons (se
tion 2.2), of distributions where partons with the same mo-mentum fra
tion xi are not 
oupled to 
olor singlets (se
tion 2.3), or of interferen
edistributions in fermion number or quark 
avor (se
tion 2.2.1).Finally, the assumption that the observed 
ross se
tion is given by 
ontributions fromeither single or double hard s
attering is invalid if their interferen
e (see �gure 9a) isimportant. All in all, we feel that (2.139) or (2.142) may be useful for order-of-magnitudeestimates but should be used with great 
aution. Of 
ourse, one may de�ne �e� as the ratio(d�1=d�1) (d�2=d�2)Æ(Sd�ds=d�1 d�2) of di�erential 
ross se
tions for single and doubles
attering. Sin
e this ratio 
an depend on the pro
ess and on all kinemati
 variables, �e�is then not a universal 
onstant.3 Beyond lowest order: fa
torization and Sudakov logarithmsSo far we have analyzed the lowest-order graphs that 
ontribute to multiple s
atteringpro
esses. For a systemati
 treatment in QCD we need to go beyond this approximationand in parti
ular take into a

ount graphs where additional gluons are ex
hanged. A
omplete analysis should eventually establish whether an all-order fa
torization formula
an be written down for a given observable. We will not attempt to do this here, butprovide some building blo
ks for su
h an analysis. We use the framework of hard-s
atteringfa
torization, whi
h essentially organizes the dynami
s a

ording to virtualities (as opposedto high-energy or small-x fa
torization, where the organizing prin
iple is based on rapidity).We fo
us on the 
ross se
tion di�erential in small transverse momenta and in parti
ularinvestigate the stru
ture of Sudakov logarithms. In se
tion 3.5 we will make some remarkson transverse-momentum integrated 
ross se
tions, des
ribed by 
ollinear fa
torization.For reasons given in se
tion 3.2 we will 
on
entrate on the double Drell-Yan pro
ess, i.e.on the produ
tion of two ele
troweak gauge bosons, whi
h for de�niteness we take to bevirtual photons. Likewise, we will use the single Drell-Yan pro
ess as an example when were
all the ingredients for fa
torization with a single hard s
attering.3.1 Dominant graphsOne of the �rst tasks when establishing fa
torization for a given pro
ess is to identify thedominant graphs in the kinemati
 limit one is interested in. The appropriate tool for hard-s
attering fa
torization is the method of Libby and Sterman [106, 107℄, whi
h we brie
yre
apitulate. The �rst step is to trade the limit of large kinemati
 invariants (whi
h we
olle
tively denoted by Q earlier) for the limit of vanishing masses of all partons. In doingso, one uses that up to an overall normalization the quantities of interest depend on theratio of Q and the masses. If we keep small transverse momenta in the di�erential 
ross
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se
tion, those must be sent to zero as well.8 One is thus led to examine whi
h graphs andwhi
h phase spa
e regions give rise to mass divergen
es. Su
h divergen
es 
ome from thepoles of Feynman propagators, but only if for a suitable loop integration variable there arepoles on both sides of the real axis, whi
h \pin
h" the 
ontour of the loop integration. Ifthere is no pin
h, the poles 
an be avoided by deforming the integration 
ontour. One �ndsthat lines that give pin
h singularities are either soft (i.e. all their momentum 
omponentsare 
lose to zero) or 
ollinear to one of the in
oming or outgoing parti
les of the pro
ess.All other lines are far o�-shell (possibly after 
omplex 
ontour deformation). The leading
ontribution in the large Q limit of a given graph 
omes from regions of phase spa
e inthe vi
inity of the pin
h singular 
on�gurations just des
ribed. To obtain a fa
torizationformula, one has to express subgraphs with 
ollinear or soft lines in terms of matrix elementsthat make sense beyond perturbation theory. Parton densities and related quantities are
onstru
ted from these matrix elements. O�-shell lines are organized into hard subgraphs,whi
h 
an be 
al
ulated perturbatively.A physi
ally intuitive interpretation of the previous 
onstru
tion is provided by theColeman-Norton theorem [108℄. The pin
h singular 
on�gurations of a graph 
orrespondto a s
attering pro
ess where the lines with 
ollinear momenta 
orrespond to 
lassi
altraje
tories in spa
e-time. The traje
tory asso
iated with ea
h line is proportional toits four-momentum, so that it shrinks to a point for soft lines. In the \redu
ed graph"that represents the 
orresponding 
lassi
al pro
ess, o�-shell lines in the original graph arelikewise 
ontra
ted to points.The pre
eding analysis is based on the denominators of Feynman propagators andgives only a ne
essary 
ondition for the o

urren
e of mass singularities. A power 
ountinganalysis taking into a

ount the numerators of Feynman graphs (similar to the one we gavein se
tion 2.4) provides further restri
tions on the 
ontributions that a
tually dominate agiven observable. At this level, the polarization of gluon lines is found to play a 
ru
ialrole.For single Drell-Yan produ
tion at �xed small transverse photon momentum, one �ndsthat the dominant graphs have the stru
ture shown in �gure 10a. For ea
h of the 
ollidingprotons there is a 
ollinear subgraph. On either side of the �nal-state 
ut there is onehard subgraph produ
ing the �nal state boson, 
onne
ted with ea
h 
ollinear subgraphby exa
tly one fermion line and an arbitrary number of gluon lines, whi
h must havepolarization in the plus dire
tion for right-moving and in the minus dire
tion for left-moving 
ollinear gluons. Finally, there is a soft subgraph with soft gluons atta
hing toeither of the 
ollinear subgraphs. There are no soft gluons 
oupling to the hard subgraphs.The dominant graphs for double Drell-Yan produ
tion are easily identi�ed and justhave an additional hard subgraph for the se
ond produ
ed gauge boson on either sideof the �nal-state 
ut. As we have already seen in se
tion 2.4, hard subgraphs that are
onne
ted to ea
h 
ollinear graph by a single parton line have leading power behavior. Thepower 
ounting for the soft graph is not a�e
ted by having one or two hard subpro
esses.8This was not stated in the original work by Libby and Sterman, who 
onsidered transverse-momentumintegrated quantities.
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a bFigure 10. Leading graphs for the single (a) and double (b) Drell-Yan pro
ess at measured qT � Q.The upper and lower blobs denote 
ollinear subgraphs, the blob 
rossing the �nal-state 
ut (dashedline) denotes a soft subgraph, and the blobs with a �nal-state gauge boson denote hard subgraphs.
t

z a bFigure 11. Spa
e-time representation of the leading graphs for the single (a) and double (b) Drell-Yan pro
ess at measured qT � Q. The parton lines move along light-like paths and have beendrawn with a slight 
urvature only for 
larity. Likewise, the two bosons in �gure (b) are meant tobe produ
ed at the same point in t and z.Finally, the absen
e of soft gluons 
oupling to a hard subgraph has the same reason asin the single Drell-Yan 
ase, namely that su
h soft gluons in
rease the number of hardpropagator denominators in the hard subgraph, without providing a 
ompensating largenumerator fa
tor or phase spa
e volume.The spa
e-time representation in the sense of the Coleman-Norton theorem is shown in�gure 11 for the graphs in �gure 10. Parton lines from one and the other proton meet at onepoint in the t-z plane and annihilate into a gauge boson. For double Drell-Yan produ
tion,the two bosons are produ
ed at the same point in t and z. The transverse momenta ofpartons and the produ
ed bosons are negle
ted in this interpretation (see above), so thatthe 
lassi
al s
attering pro
ess takes pla
e at �xed transverse 
oordinates (x and y).3.1.1 \Res
attering" 
ontributionsBefore dis
ussing in detail the leading graphs in �gure 10, we wish to 
omment on graphsof the type shown in �gure 12a. They have been asso
iated with \res
attering" in the
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l̄
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k

bFigure 12. (a) A graph asso
iated with \res
attering" in the literature. (b) Spa
e-time represen-tation for the produ
tion of two high-pT partons in a single hard 2 ! 2 s
attering pro
ess. Thedashed lines have momentum 
omponents in the transverse x-y plane; all other lines move on thelight-
one z = �t.literature [109, 110℄ and were 
al
ulated in terms of two hard 2! 2 QCD pro
esses, wherethe parton with momentum k in the �gure is treated as an outgoing parton in the �rsts
attering and as an in
oming parton in the se
ond one. It is understood that the transversemomenta p1, p2 and �p are all large (we denote their order by pT below).We argue here that this is not a 
orre
t way to 
al
ulate the graph, at least notwithin the usual hard-s
attering fa
torization framework used in [109, 110℄. A

ordingto our dis
ussion in the previous se
tion, the lines that enter or exit a hard-s
atteringsubgraph must 
orrespond to pin
hed singularities and thus admit a 
lassi
al spa
e-timeinterpretation in the sense of the Coleman-Norton theorem. This is not possible for the linewith momentum k in �gure 12a. As illustrated in �gure 12b, the two partons emerging froma hard 2 ! 2 pro
ess have large transverse momenta and, being on shell, thus have �niterapidities. In other words, their velo
ity in the z dire
tion is smaller than the speed of light.As soon as su
h a parton has propagated over a �nite distan
e, it 
an no longer s
atter onanother parton from one of the two initial protons, sin
e those partons do move with thespeed of light along z. The proper treatment of the parton with momentum k is thus toregard it as an internal line in a single hard-s
attering pro
ess with three in
oming partons(l1; l2; �l) and three outgoing ones (p1; p2; �p). As we saw in se
tion 2.4 su
h a 
ontributionis power suppressed (if p1 + p2 + �p is integrated over, it involves a parton distribution ofhigher twist) and 
an hen
e be negle
ted.Put di�erently, the parton with momentum k is generi
ally far o�-shell in the leadingregion of the graph in �gure 12a. A kinemati
al analysis readily shows that the �nal-statemomenta p1; p2; �p �x the sum l+1 + l+2 to a large value of order pT , up to small 
orre
tionsof order 1=pT . The value of l+1 is however integrated over a large interval of order pT . Fora parti
ular value of l+1 in this interval, the propagator of k does have a pole, but this poleis not a pin
h singularity (the gluons adja
ent to k are far o�-shell when k2 = 0 and theirpropagator poles are a distan
e of order pT away in the 
omplex l+1 plane). One 
an thus
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deform the integration 
ontour of l+1 su
h that k2 is always of order p2T and thus large.93.2 Collinear and soft gluonsWe now return to the graphs in �gure 10. They 
ontain an arbitrary number of 
ollinearand soft gluons, and further simpli�
ations are required to obtain a useful fa
torizationformula that involves a limited number of nonperturbative quantities.In existing fa
torization theorems, the e�e
ts of 
ollinear and of soft gluons are de-s
ribed by Wilson line operators, to all orders in the strong 
oupling. The possibility toobtain su
h a simple stru
ture is 
ru
ial for establishing fa
torization. Detailed analyses ofthis issue 
an be found in [48{51℄ for single Drell-Yan produ
tion or for its 
rossed-
hannelanalogs, the produ
tion of ba
k-to-ba
k hadrons in e+e� annihilation or semi-in
lusive deepinelasti
 s
attering (SIDIS). By 
ontrast, for hadron-hadron 
ollisions produ
ing ba
k-to-ba
k jets or hadrons with measured transverse momenta, serious obsta
les to establishingfa
torization have been identi�ed in [111℄ and in previous work 
ited therein. A systemati
treatment of transverse-momentum dependent fa
torization for jet or hadron produ
tionin multiple hard s
attering will probably need to wait until a suitable formulation for singlehard s
attering has been found.We therefore limit our 
onsiderations in this se
tion to the double Drell-Yan pro
ess.Extending our arguments to the produ
tion of other 
olorless parti
les is trivial if the hards
attering is initiated by quarks or antiquarks and should be possible if it is initiated bygluons. We shall not attempt to give a full proof of fa
torization even for double Drell-Yanprodu
tion. Instead, we will analyze the lowest-order graphs with an additional ex
hanged
ollinear or soft gluon. To a large part this will be a re
apitulation of the 
orrespondinganalysis for the single Drell-Yan pro
ess. We nevertheless give the ne
essary steps in somedetail, in order to see how the arguments generalize to double hard s
attering. We will payparti
ular attention to the 
olor indi
es for quarks and antiquarks, sin
e the 
olor stru
tureof two-parton distributions is nontrivial 
ompared with the single-parton 
ase. Finally, wewill point out whi
h further issues need to be settled to obtain a full proof of fa
torization.3.2.1 From 
ollinear gluons to Wilson lines in parton distributionsFigure 13 shows an example where several gluons 
ollinear to the right-moving protonp 
ouple to a left-moving quark or antiquark. The quark or antiquark is thus taken faro� shell, so that its propagator and its 
oupling to the gluon belong to one of the hard-s
attering subpro
esses.We now re
apitulate the analysis of one su
h 
oupling, whi
h is well-known from singleDrell-Yan produ
tion, taking parti
ular 
are of 
olor indi
es and of the distin
tion betweenquarks and antiquarks. The relevant part of the graph in �gure 14a 
an be written asTa = h: : : �qj A�;a : : :i i
 (`+ �l
) (�ig) tajj0
� u(�l
) h: : : qj0 : : :i ; (3.1)9When a
tually 
al
ulating the hard s
attering, one 
an nevertheless integrate l+1 along the real axis;the pole of 1=(k2 + i�) then provides an absorptive part to the hard-s
attering amplitude. The possibilityto deform the integration 
ontour of l+1 justi�es the perturbative treatment of the propagator for k.
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Figure 13. Example graph for the double Drell-Yan pro
ess with 
ollinear gluons 
oupling toleft-moving quarks or antiquarks before those undergo a hard s
attering.
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aFigure 14. Collinear gluons in the Drell-Yan pro
ess. Top row: subgraphs with a right-movinggluon 
oupling to a left-moving quark or antiquark before it annihilates. Bottom row: 
orrespondinggraphs after the o�-shell propagators have been repla
ed by eikonal lines.where in a shorthand notation we write h: : : �qj A�;a : : :i and h: : : qj0 : : :i for the hadroni
matrix elements of the right and left moving proton, respe
tively. The subs
ript 
 on �lindi
ates the 
ollinear approximation spe
i�ed after (2.90), i.e. �l�
 = �l�, �l+
 = 0 and �l
 = 0.Instead of the spinor u(�l
) for the in
oming quark we 
ould also use the proje
tion operatorP (�l), see the dis
ussion after (2.79) and (2.90). The vertex with the produ
ed photon andthe spinor for the in
oming right-moving quark are not needed for our argument and havebeen omitted. Our sign 
onvention for the strong 
oupling g is su
h that the 
ovariantderivative reads D� = �� + igA�.The expression in (3.1) has the stru
ture R�H�, where R is the matrix element of
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the right-moving proton and H a hard-s
attering amplitude. One therefore has jR+j �jR�j; jRj, whereas all 
omponents of H� are generi
ally of the same size. To leading-powera

ura
y we therefore have R�H� � R+H�. We now introdu
e an auxiliary spa
elikeve
tor v with v� > 0 ; v+ < 0 ; v = 0 (3.2)and either jv+j � v� or jv+j � v�. We 
an then writeRH � R+H� = R+v� 1`+v� + i� `+H� � Rv 1`v + i� `H ; (3.3)where in the last step we have used the 
onditions on the 
omponents of R�, H� and v�just stated, as well as j`+j � j`�j; j`j for the momentum ` of the right-moving gluon. Forreasons given in the next se
tion, we have provided an i� pres
ription to the fa
tor 1=`v in(3.3) su
h that the pole in `+ is on the same side of the real axis as in the propagator ofthe o�-shell quark that 
ouples to the photon in �gure 14a:`v + i� = `+v� � `�jv+j+ i� ; (`+ �l
)2 + i� = 2`+�l� + i� ; (3.4)where it is important that �l� > 0. With (3.3) we 
an rewrite (3.1) asTa = h: : : �qj A�;a : : :i(�igtajj0 v�) i`v + i�� 1
(`+ �l
) (
`)u(�l
)�h: : : qj0 : : :i : (3.5)With 
` = 
 (`+ �l
)� 
�l
 and (
�l
)u(�l
) = 0 we �nally obtainTa = h: : : �qj A�;a : : :i(�igtajj0 v�) i`v + i� u(�l
) h: : : qj0 : : :i : (3.6)In the hard-s
attering amplitude we have thus traded the 
oupling �igta
� of the gluon tothe quark and the adja
ent quark propagator iÆ
(` + �l
) for the 
oupling �igtav� of thegluon to a so-
alled eikonal line and the eikonal propagator i=(`v + i�).Repeating the same steps for the graph in �gure 14b givesTb = h: : : �qj : : :i �v(�l
) 
� �i
 (`+ �l
) (�ig) tajj0 h: : : A�;a qj0 : : :i= h: : : �qj : : :i �v(�l
) �i`v + i� (�igtajj0 v�) h: : : A�;a qj0 : : :i : (3.7)The 
hange from an in
oming quark to an in
oming antiquark in the hard s
attering has
hanged the overall sign of the propagator iÆ
(`+ �l
), whi
h is re
e
ted in an overall sign
hange of the eikonal propagator i=(`v + i�). On the other hand, the momentum 
ow inthe graph and the resulting i� pres
riptions have remained the same.It is instru
tive in this 
ontext to 
ompare Drell-Yan produ
tion with SIDIS, whereone has an outgoing quark or antiquark in the hard s
attering. The 
orresponding graphs
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ℓl − ℓ

ℓ

aj ′Figure 15. As �gure 14, but for semi-in
lusive deep inelasti
 s
attering.are shown in �gure 15a and b. Taking the same ve
tor v as before, we haveT 0a = h: : : �qj A�;a : : :i i
 (`� �l
) (�ig) tajj0
� v(�l
) h: : : qj0 : : :i ;= h: : : �qj A�;a : : :i(�igtajj0v�) i`v � i� v(�l
) h: : : qj0 : : :i :T 0b = h: : : �qj : : :i �u(�l
) 
� �i
 (`� �l
) (�ig) tajj0 h: : : A�;a qj0 : : :i= h: : : �qj : : :i �u(�l
) �i`v � i� (�igtajj0v�) h: : : A�;a qj0 : : :i : (3.8)Compared with graphs 14a and b, the relative 
ow of the momenta ` and �l
 in the o�-shellquark or antiquark has 
hanged. Hen
e the 
orresponding propagator has a denominator(`� �l
)2 + i� = �2`+�l� + i� (3.9)instead of the one in the se
ond equation of (3.4). As a result, the sign of i� in the eikonalpropagator is now reversed.A graphi
al notation for eikonal lines needs to spe
ify the 
ow of the momentum `relative to1. the 
olor 
ow (and hen
e the fermion number 
ow in the quark line whi
h is repre-sented by the eikonal line). This determines the overall sign of the eikonal propagator.We denote the 
olor 
ow by an arrow on the eikonal line, whi
h points in the samedire
tion as the arrow on the original fermion line.2. the 
ow of the large momentum �l
 in the original fermion line, whi
h is either anin
oming or an outgoing line in the hard-s
attering subpro
ess. This determines thesign of i� in the eikonal propagator. We indi
ate this graphi
ally by a full or an empty
ir
le at the end of the eikonal line, su
h that the large momentum 
ows from the{ 50 {
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Figure 16. Feynman rules for eikonal lines representing quarks or antiquarks. The rules for linesto the left of the �nal-state 
ut (denoted by the dashed line) dire
tly follow from (3.6) to (3.8), andthose for lines to the right of the �nal-state 
ut are obtained as usual by 
omplex 
onjugation.full to the empty 
ir
le. Sin
e in
oming and outgoing partons in the hard s
attering
an be asso
iated with a 
lassi
al path in spa
e-time a

ording to se
tion 3.1, the full
ir
le represents the past and the empty 
ir
le the future time dire
tion.The 
orresponding Feynman rules are given in �gure 16, and the graphs 
orrespondingto the eikonal representation in (3.6), (3.7) and (3.8) are shown in the bottom rows of�gures 14 and 15.10We now brie
y review how eikonal lines are generated by Wilson line operators inthe hadroni
 matrix elements that appear in a fa
torization formula. The relevant part ofthe expression (3.6), together with the relevant integrations over momentum and positionvariables readsXj0 = Z d4` ei�(l�`) �qj(�)Z d4�(2�)4 ei�` vAa(�) (�igtajj0) i`v + i� : (3.10)Using the representation i`v + i� = Z 10 d� ei�(`v+i�) (3.11)we 
an rewrite this asXj0 = ei�l �qj(�)Z d4` Z d4�(2�)4 Z 10 d� ei(�v+���)` vAa(�) (�igtajj0)= ei�l �qj(�)��ig Z 10 d� vAa(� � �v) tajj0� : (3.12)10Our graphi
al notation di�ers from that in the literature. In [48℄ for instan
e, an arrow on the eikonalline was asso
iated with the 
ow of the large momentum, and the overall sign due to the 
olor 
ow wasindi
ated by expli
it 
olor indi
es and taken into a

ount in the vertex between a gluon and an eikonal line,rather than in the eikonal propagator.
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Introdu
ing the Wilson lineW (�; v) = P exp�ig Z 10 d� vAa(� � �v) ta� ; (3.13)where P denotes path ordering, we re
ognize the term in square bra
kets in (3.12) as theterm of order g in the expansion of W y(�; v). In a full fa
torization proof, one has to showthat the 
oupling of two or more 
ollinear gluons to the in
oming quark line in �gure 14aexponentiates, so that their 
ombined e�e
t is the repla
ement�qj0(�)! �qj(�) �W y(�; v)�jj0 (3.14)in the operator de�ning the parton distribution. Likewise, the expression in (3.7) 
orre-sponds to the one-gluon term in the repla
ementqj(�)! �W (�; v)�jj0 qj0(�) : (3.15)The 
onditions we imposed on v after (3.2) hold in a frame where p moves fast to theright. One readily �nds that in the rest frame of p one has v0 > 0, so that the Wilson line(3.13) relevant for Drell-Yan produ
tion has a path pointing into the past. By 
ontrast,the reversed sign of i� in the eikonal propagators for SIDIS 
orresponds to�qj0(�) !SIDIS �qj(�) �W 0y(�; v)�jj0 ; qj(�) !SIDIS �W 0(�; v)�jj0 qj0(�) (3.16)with a future-pointing Wilson lineW 0(�; v) = P exp��ig Z 10 d� vAa(� + �v) ta� : (3.17)The pre
eding dis
ussion was for right-moving 
ollinear gluons and generalizes trivially toleft-moving 
ollinear gluons in the proton with momentum �p. The 
orresponding Wilsonlines are to be de�ned with an auxiliary ve
tor w that satis�esw+ > 0 ; w� < 0 ; w = 0 (3.18)and either jw�j � w+ or jw�j � w+ in a frame where �p moves fast to the left. In the restframe of �p one then has w0 > 0.The manipulations in the pre
eding arguments are all 
on
erned with a single hard-s
attering subpro
ess at a time, so that they readily apply to double Drell-Yan graphs su
has in �gure 13, where they give the order g part of a Wilson line for ea
h quark or antiquarkoperator in the multiparton distributions. The full operator for a two-quark distributionthen reads for instan
e� �q(�12z2)W y(�12z2; v)�k0 �a2 �W (12z2; v) q(12z2)�k� � �q(y � 12z1)W y(y � 12z1; v)�j0 �a1 �W (y + 12z1; v) q(y + 12z1)�j ���z+2 =z+1 =y+=0 : (3.19)The open 
olor indi
es j; j0; k; k0, whi
h were 
arried by quark �elds in the lowest-order for-mula, are now 
arried by the \ends" of the four past-pointing Wilson lines. The proje
tionon 
olor singlet and 
olor o
tet distributions is done as in (2.103).Let us now mention how the previous arguments need to be generalized to obtain a
omplete fa
torization proof for double Drell-Yan produ
tion.{ 52 {



� The step from (3.5) to (3.6), whi
h eliminates an internal fermion propagator in thehard-s
attering graph, is elementary when applied to the lowest-order hard s
attering.For more 
ompli
ated graphs (with loop 
orre
tions or further external gluons) oneneeds a Ward identity to a
hieve this simpli�
ation. In a model theory with Abeliangluons, this is quite simple to establish, see e.g. [50, 
hapter 10.8℄. The formulationfor QCD is more 
ompli
ated and involves external ghost lines in addition to externalgluons in the hard s
attering (see [50, 
hapters 11.3 and 11.9℄).� We have 
onsidered only one gluon 
oupling to ea
h hard-s
attering subgraph. Oneneeds to show that the 
oupling of an arbitrary number of gluons exponentiates andgives a full Wilson line W (y; v) or its 
omplex 
onjugate. Again, this is simple toshow for Abelian gluons (see [50, 
hapter 10.8℄). To the best of our knowledge, anexpli
it proof for transverse-momentum dependent distributions in QCD has not yetbeen given.We note that the present and the previous point only 
on
ern one hard-s
atteringsubpro
ess at a time. It should therefore be straightforward to extend argumentsvalid for the single Drell-Yan pro
ess to the 
ase of double Drell-Yan produ
tion.� The two Wilson lines W (12z2; v) and W (y + 12z1; v) in (3.19) 
orrespond to gluonsin the s
attering amplitude, where all gluons �elds should be time ordered. Withv2 < 0 the gluon operators in one Wilson line have a spa
elike separation, so thatthey 
ommute and 
an readily be brought into the order required by path ordering.Two gluon operators in di�erent Wilson lines do not ne
essarily have this property,and the possibility to reorder the �elds needs to be investigated. A similar statementholds for the two Wilson lines W y(�12z2; v) and W y(y � 12z1; v) that 
orrespond togluons in the 
onjugate s
attering amplitude.� The operator in (3.19) is not expli
itly gauge invariant, be
ause the Wilson linesend at di�erent positions at in�nity, namely at ai �1v with �nite spa
elike ai fori = 1; 2; 3; 4. The same issue already arises for single-parton distributions and hasbeen dis
ussed in [113, 114℄ for lightlike Wilson lines, i.e. for v2 = 0. In a gaugewhere the gluon potential (and any produ
t of gluon potentials) has zero expe
tationvalue at a � 1v, one 
an trivially 
omplement the operator (3.19) with Wilsonlines that go in the transverse dire
tion and 
onne
t the lightlike Wilson lines to a
ommon referen
e point, e.g. to �1v. After proje
ting the open 
olor indi
es at thisreferen
e point onto 
olor-singlet or 
olor-o
tet 
ombinations, the resulting operatoris expli
itly invariant under lo
al gauge transformations. The extra Wilson lines inthe transverse dire
tion are essential in the gauge vA = 0, where the Wilson lines in(3.19) redu
e to unity, see the dis
ussion in [113℄.As we will see in se
tion 3.2.3, the 
hoi
e v2 = 0 is not suitable for transverse-momentum dependent fa
torization. To obtain a gauge invariant de�nition of therelevant parton distributions, one needs to extend the pro
edure just des
ribed tothe 
ase where v2 < 0. This holds both for single and multiple hard s
attering.
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Figure 17. Coupling of a soft gluon to a 
ollinear parton that (a) enters the hard s
attering or (b)is a spe
tator.3.2.2 Soft gluons and the soft fa
torWe now turn to the ex
hange of soft gluons between right- and left-moving partons, i.e. tothe soft subgraph in �gure 10, and show how it 
an be des
ribed in terms of a soft fa
torthat is de�ned as the va
uum expe
tation value of Wilson lines.For de�niteness we 
onsider one soft gluon with momentum `, ex
hanged between thesoft subgraph S� and the 
ollinear subgraph R� of the right-moving partons. Here � is thepolarization index of the gluon 
onsidered, and the indi
es for any other external gluonsare omitted for simpli
ity. We assume that the 
omponents of ` are of 
omparable size,j`+j � j`�j � j`j, as well as the momentum 
omponents of all other soft gluons atta
hedto S. The 
omponents of S� are then also 
omparable to ea
h other. Sin
e jR+j � jR�j; jRjwe then have `R � `�R+ ; SR � S�R+ : (3.20)Introdu
ing an auxiliary spa
elike ve
tor w as in (3.18) with jw�j � w+, we furthermorehave Sw � S�w+, so that we 
an writeS�R� � S� w+`�w+ + i� `�R+ � S� w�`w + i� `R (3.21)with a fa
tor w�=(`w+ i�) that will eventually turn into a Wilson line. The i� pres
riptionfor the pole at `w = 0 is adequate for ` 
owing from S into R in the s
attering amplitude,i.e. on the left of the �nal-state 
ut in �gure 10. We note that this pres
ription 
orrespondsto the one for 
ollinear gluons in the previous se
tion, 
f. �gures 14 and 17a.The approximations in (3.20) and (3.21) break down in the so-
alled Glauber region,i.e. for soft momenta dominated by their transverse 
omponents, j`j � j`+j; j`�j. A majorpart of a fa
torization proof for hadron-hadron 
ollisions is to establish that this momentumregion does not 
ontribute to the �nal fa
torization formula. With the i� pres
ription wehave 
hosen, the pole of 1=(`w+i�) is on the same side of the real `� axis as the propagatorpole of the quark with momentum l + ` in �gure 17a, whi
h is readily seen by adapting(3.4). In the graph of �gure 17a one 
an avoid the Glauber region by a 
ontour deformationto 
omplex `�. With the same 
ontour deformation one 
an however not avoid propagatorpoles in graphs where the gluon 
ouples to a spe
tator parton (rather than to the parton
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Figure 18. Graphi
al illustration of the Ward identity (3.22). Shown is only the part of thequark-antiquark distribution to the left of the �nal-state 
ut. The Feynman rules for eikonal linesare given in �gure 16.entering the hard subpro
ess). An example is shown in �gure 17b, where the pole in `� ofthe propagator for the line p� l � ` is on the opposite side of the real axis than the poleof the propagator for the line l + ` in �gure 17a. To apply the Ward identities dis
ussedbelow, one has to make the same 
ontour deformation for `� in both graphs of �gure 17 andwill thus pi
k up a residue 
ontribution from the propagator of the spe
tator parton. Forsingle Drell-Yan produ
tion one 
an show that the sum over all su
h residue 
ontributions
an
els due to unitarity, see the dis
ussion in [50, 
hapters 14.3 and 14.4℄ and in the originalliterature 
ited therein. We do not know whether and how su
h arguments 
an be extendedto the 
ase of double hard s
attering and leave this issue as an important task for furtherinvestigation. We will pro
eed under the assumption that su
h an extension 
an be made.Following the pro
edure for single Drell-Yan produ
tion, the next step in our argumentis to use a Ward identity to relate the 
ollinear subgraph with a gluon atta
hment to thesame subgraph without a gluon. For the 
orrelation fun
tion des
ribing quark-antiquarkemission and an additional gluon in the amplitude, this identity readsSw`w + i� `���;ajj0;kk0(`; l1; l2; l01; l02) = Sw (�igtajm) i`w + i� �mj0;kk0(l1 � `; l2; l01; l02)+ Sw (�igtamk) �i`w + i� �jj0;mk0(l1; l2 � `; l01; l02) (3.22)and is depi
ted in �gure 18. Analogous identities 
an be written down for the emission oftwo quarks or two antiquarks, with a fa
tor i=(`w+ i�) for ea
h quark line and �i=(`w+ i�)for ea
h antiquark line in the amplitude. We leave it to future work to give a general proofof these identities, but verify them here for two simple examples.Our �rst example is a quark-antiquark pair with a pointlike 
oupling to a target. The
orresponding two-parton distribution is then proportional to Æjk i(
 l1)�1 
 (�i)(
 l2)�1,where l1 and l2 are the respe
tive momenta of the quark and antiquark, and j and k aretheir respe
tive 
olor indi
es. The tensor produ
t 
 refers to the spinor indi
es, whose
oupling at the vertex with the target we need not spe
ify for our argument. Atta
hing asoft gluon in the amplitude, we have to add the graphs in �gure 19a and b. Contra
tingthe gluon polarization index � with `� and using the same tri
k as in the step from (3.5)
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l2Figure 19. Graphs for a gluon 
oupling to a quark-antiquark system that originates from a 
olorlesstarget via a pointlike vertex. The indi
es j, k and a refer to 
olor.
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Figure 20. Graphs for a gluon 
oupling to a three-quark system that originates from a 
olorlessfermion via a pointlike vertex. j, k, l and a are 
olor indi
es.to (3.6), we obtain(�ig) tajk i
 l1 (
`) i
 (l1 � `) 
 �i
 l2 + (�ig) tajk i
 l1 
 �i
 (l2 � `) (
`) �i
 l2= gtajk� i
 (l1 � `) � i
 l1�
 �i
 l2 � gtajk i
 l1 
� �i
 (l2 � `) � �i
 l2�= +i (�igtajm) Æmk i
 (l1 � `) 
 �i
 l2 � i (�igtamk) Æjm i
 l1 
 �i
 (l2 � `) : (3.23)Multipli
ation with Sw=(`w + i�) gives (3.22) for this parti
ular 
ase.As a se
ond example we take a 
olorless fermion target 
oupled to three quarks by apointlike vertex. The two-quark distribution is then proportional to�jkl i
 l1 
 i
 l2 
 �u(l3) ; (3.24)where l3 is the momentum of the spe
tator quark. Coupling a gluon to this system, we getthe three graphs shown in �gure 20, whi
h after 
ontra
tion with `� give(�ig) tajm�mkl i
 l1 (
`) i
 (l1 � `) 
 i
 l2 
 �u(l3)+ (�ig) takm�jml i
 l1 
 i
 l2 (
`) i
 (l2 � `) 
 �u(l3)+ (�ig) talm�jkm i
 l1 
 i
 l2 
 �u(l3) (
`) i
 (l3 � `){ 56 {
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Figure 21. Diagram with one soft gluon ex
hanged between the left- and right-moving partons tothe left of the �nal-state 
ut.= gtajm�mkl� i
 (l1 � `) � i
 l1�
 i
 l2 
 �u(l3)+ gtakm�jml i
 l1 
� i
 (l2 � `) � i
 l2�
 �u(l3)� gtalm�jkm i
 l1 
 i
 l2 
 �u(l3)= +i (�ig) tajm �mkl i
 (l1 � `) 
 i
 l2 
 �u(l3) + i (�ig) takm �jml i
 l1 
 i
 (l2 � `) 
 �u(l3)� gV aijk i
 l1 
 i
 l2 
 �u(l3) (3.25)with the tensor V aijk = tajm�mkl + takm�jml + talm�jkm. This tensor is zero, be
ause it is
ompletely antisymmetri
 and hen
e proportional to V aijk �ijk = 2(tajj + takk + tall) = 0.Multipli
ation with Sw=(`w + i�) �nally gives the equivalent of (3.22) for a two-quarkdistribution.The pre
eding arguments 
an readily be adapted for a soft gluon atta
hed to left-moving 
ollinear partons by ex
hanging + and � 
omponents of the relevant ve
tors. Theauxiliary ve
tor w is then repla
ed by v as in (3.2), with jv+j � v�. Likewise, one 
anrepeat all arguments for soft gluons in the 
onjugate amplitude, i.e. to the right of the�nal-state 
ut in �gure 10. In the 
orresponding Ward identities one then has to use theFeynman rules on the r.h.s. of �gure 16.Consider now the diagram in �gure 21, where in the amplitude one gluon is ex
hangedbetween the left- and right-moving partons. Its 
ontribution to the 
ross se
tion is propor-tional toZ d4`(2�)4 d4 �̀(2�)4 (2�)4Æ(4)(`+ �̀)Sab��(`; �̀)� � 2Yi=1 Z d4li d4�li (2�)4Æ(4)(qi � li � �li) � Z d4l01 d4�l01 (2�)4Æ(4)(qi � l01 � �l01)� ��a1;�a2��;ajj0;kk0(`; l1; l2; l01; l02) ���a1;a2��;bjj0;kk0(�̀; �l1; �l2; �l01; �l02)� Z d4`(2�)4 d4 �̀(2�)4 (2�)4Æ(4)(`+ �̀) iw�`w + i� Sab��(`; �̀) iv��̀v + i�{ 57 {



� � 2Yi=1 Z d4li d4�li (2�)4Æ(4)(qi � li � �li) � Z d4l01 d4�l01 (2�)4Æ(4)(q1 � l01 � �l01)� �(�igtajm)��a1;�a2�mj0;kk0(l1 � `; l2; l01; l02)� (�igtamk)��a1;�a2�jj0;mk0(l1; l2 � `; l01; l02)�� �(�igtbkn)���a1;a2�jj0;nk0(�l1; �l2 � �̀; �l01; �l02)� (�igtbnj)���a1;a2�nj0;kk0(�l1 � �̀; �l2; �l01; �l02)�= Z d4`(2�)4 d4 �̀(2�)4 (2�)4Æ(4)(`+ �̀) (�igtajm) iw�`w + i� Sab��(`; �̀) (�igtbkn) iv��̀v + i�� Z d4l1 d4�l1 (2�)4Æ(4)(q1 � l1 � �l1 � `) Z d4l2 d4�l2 (2�)4Æ(4)(q2 � l2 � �l2 � �̀)� Z d4l01 d4�l01 (2�)4Æ(4)(q1 � l01 � �l01)� ��a1;�a2�mj0;kk0(l1; l2; l01; l02) ���a1;a2�jj0;nk0(�l1; �l2; �l01; �l02) + fthree more termsg ; (3.26)where in the last step we have shifted the integration variables l1 and �l2. For simpli
itywe have omitted a global fa
tor, as well as the expressions for q�q ! 
�, whi
h in the hard-s
attering approximation only depend on the external momenta q1 and q2 and thus do notappear under the loop integrals (see se
tion 2.1.2).To provide a representation beyond perturbation theory, we represent the soft subgraph(whi
h for two external gluons is just the gluon propagator) as a matrix element,(2�)4Æ(4)(`+ �̀)Sab��(`; �̀) = Z d4� d4 �� ei�`+i�� �̀h0jAa�(�)Ab�(��)j0i : (3.27)Here we have omitted the time ordering between the �elds, whi
h requires justi�
ationwhen � and �� do not have a spa
elike separation. We gloss over this point here (see alsoour dis
ussion at the end of se
tion 3.2.1) but return to it brie
y at the end of se
tion 3.3.1.Using (3.27) and (3.11) we then have for the �rst term in (3.26)Z d4 �̀d4 ��(2�)4 Z d4` d4�(2�)4 ei�`+i�� �̀ Z 10 d�Z 10 d�� ei�`w+i���̀v (�igtajm) (�igtbkn)h0jwAa(�) vAb(��)j0i� Z d4l1 d4�l1 (2�)2 Æ(q+1 � l+1 ) Æ(q�1 � �l�1 )Z d2�1 e�i�1(q1�l1��l1�`)� Z d4l2 d4�l2 (2�)2 Æ(q+2 � l+2 ) Æ(q�2 � �l�2 )Z d2�2 e�i�2(q2�l2��l2��̀)� Z d4l01 d4�l01 (2�)2 Æ(q+1 � l0+1 ) Æ(q�1 � �l 0�1 )Z d2�01 e�i�01(q1�l01��l 01)� ��a1;�a2�mj0;kk0(l1; l2; l01; l02) ���a1;a2�jj0;nk0(�l1; �l2; �l01; �l02)= Z d2�1 d2�1 d2�01 e�i�1q1�i�2q2�i�01q1� Z d4l1 d4l2 d4l01 ei�1l1+i�2l2+i�01l 01 (2�)3 Æ(q+1 � l+1 ) Æ(q+2 � l+2 ) Æ(q+1 � l0+1 )� ��a1;�a2�mj0;kk0(l1; l2; l01; l02)
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� Z d4�l1 d4�l2 d4�l01 ei�1�l1+i�2�l2+i�01�l 01 (2�)3 Æ(q�1 � �l�1 ) Æ(q�2 � �l�2 ) Æ(q�1 � �l 0�1 )� ���a1;a2�jj0;nk0(�l1; �l2; �l01; �l02)� 
0����ig Z 10 d�wAa(�1T � �w) tajm���ig Z 10 d�� vAb(�2T � ��v) tbkn���0� ; (3.28)where �iT denotes the four-ve
tor with �+iT = ��iT = 0 and transverse 
omponents �i.The 
orresponding expression for the diagram without soft gluon ex
hange is obtainedby repla
ing the last line in (3.28) by ÆjmÆkn. Using (3.13), we re
ognize the fa
tors insquare bra
kets in that line as the order g terms in 
onjugate Wilson lines W y(�1T ;w) andW y(�2T ; v). In the transverse plane, the paths of these Wilson lines are at the positions thatare Fourier 
onjugate to the transverse quark momenta l1 and �l2 in (3.28). The three otherterms in (3.26) give analogous 
ontributions, with Wilson lines W (�2T ;w) and W (�1T ; v)at the positions that are Fourier 
onjugate to the transverse antiquark momenta l2 and �l1,respe
tively.After a 
hange to symmetri
 momentum and position variables as spe
i�ed between(2.1) and (2.7), and after restoration of global kinemati
 fa
tors, the se
ond to �fth lineson the r.h.s. of (3.28) turn into the produ
t Fa1;�a2(xi;zi;y)F�a1;a2(�xi;zi;y) of two-partondistributions in transverse position spa
e, and the Wilson lines are to be evaluated at theappropriate transverse positions of the quark or antiquark �elds in the de�nition of thesedistributions.It is straightforward to repeat the pre
eding derivation for a soft gluon ex
hanged tothe right of the �nal-state 
ut, as well as for the 
ase where the gluon 
rosses this 
ut. Foran model theory with Abelian gluons, it is not diÆ
ult to see how soft subgraphs with anarbitrary number of external gluons add up to full Wilson lines, in 
lose analogy to the
ase of single Drell-Yan produ
tion. We do not attempt here to give a 
orresponding prooffor the nonabelian theory, given that even for the single Drell-Yan pro
ess this is quiteinvolved. The stru
ture suggested by our analysis of one-gluon ex
hange is however 
lear:the e�e
t of all soft subgraphs is to multiply the Born-level 
ross se
tion (2.36) in positionspa
e representation by a soft fa
tor. This fa
tor is the va
uum expe
tation value of aprodu
t of Wilson lines, with one Wilson line for ea
h external quark or antiquark in themultiparton distributions. We thus haved�Q2i=1 dxi d�xi d2qi = 1C � 2Yi=1 �̂i(xi�xis)� � 2Yi=1 Z d2zi(2�)2 e�iziqi� Z d2y� �F�a1;a2�mm0;nn0(�xi;zi;y) �Sq�q�mm0;nn0;jj0;kk0(zi;y)�Fa1;�a2�jj0;kk0(xi;zi;y)+ ffurther termsg ; (3.29)where the \further terms" des
ribe the remaining 
ombinations of quarks or antiquarks inthe two-parton distributions, as dis
ussed in se
tion 2.2.1. The soft fa
tor reads�Sq�q�mm0;nn0;jj0;kk0(zi;y)
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= 
0 ���W (yT + 12z1T ; v)W y(yT + 12z1T ;w)�mj �W (yT � 12z1T ;w)W y(yT � 12z1T ; v)�j0m0� �W (12z2T ;w)W y(12z2T ; v)�kn �W (�12z2T ; v)W y(�12z2T ;w)�n0k0�� 0� : (3.30)We noti
e that Wilson linesW (�; v)W y(�;w) andW (�;w)W y(�; v) are 
ontra
ted pairwisein their 
olor indi
es. From our derivation we see that this 
olor 
ontra
tion follows fromthe fa
t that the hard s
atters produ
e 
olor-singlet parti
les, so that the 
olor indi
es ofannihilating quarks and antiquarks are dire
tly 
ontra
ted with ea
h other. The \furtherterms" in (3.29) have a soft fa
tor Sqq multiplying F�a1;�a2Fa1;a2 and a soft fa
tor SI mul-tiplying the produ
t of interferen
e distributions I�a1;a2 Ia1;�a2 . These fa
tors are de�ned inanalogy to (3.30) with an appropriate inter
hange of arguments and indi
es forW andW y.In analogy to two-parton distributions, we 
an represent Sq�q in a singlet-o
tet basisfor index pairs jj0, kk0, et
.�Sq�q�mm0;nn0;jj0;kk0 = 1N2 �11Sq�q Æmm0 Æn0nÆj0j Ækk0 + 2NpN2 � 1 18Sq�q Æmm0 Æn0n taj0j takk0+ 2NpN2 � 1 81Sq�q tbmm0 tbn0nÆj0j Ækk0 + 4N2N2 � 1 88Sq�q tbmm0 tbn0n taj0j takk0� : (3.31)De�ning the matrix Sq�q =  11Sq�q 18Sq�q81Sq�q 88Sq�q! (3.32)we then haved�Q2i=1 dxi d�xi d2qi = 1C � 2Yi=1 �̂i(xi�xis)� � 2Yi=1 Z d2zi(2�)2 e�iziqi� Z d2y� 1F �a1;a2(�xi;zi;y)8F�a1;a2(�xi;zi;y)!T Sq�q(zi;y) 1Fa1;�a2(xi;zi;y)8Fa1;�a2(xi;zi;y)!+ ffurther termsg : (3.33)One 
an of 
ourse rewrite the 
ross se
tion in terms of distributionsF (xi;ki;y) or F (xi;ki; r)depending on transverse momenta. The result involves a Fourier transformed soft fa
torand is a 
onvolution in transverse-momentum variables.The soft fa
tor (3.30) for double Drell-Yan produ
tion generalizes the 
orrespondingfa
tor appearing in the single Drell-Yan pro
ess, whi
h readsSq(z) = 1N 
0 ���W (12zT ; v)W y(12zT ;w)�mj �W (�12zT ;w)W y(�12zT ; v)�jm �� 0� (3.34)for the annihilation of a right-moving quark with a left-moving antiquark. The 
olor indi
esare now 
ontra
ted to an overall singlet, as they are in 11Sq�q. The analog of (3.33) isd�dx d�x d2q = �̂i(x�xs) Z d2z(2�)2 e�izq f�q(�x; z)Sq(z) fq(x;z) + ffurther termg ; (3.35)where the \further term" 
orresponds to a right-moving antiquark and a left-moving quark.For the dis
ussion in subsequent se
tions we note that at z = 0 the produ
t of Wilson lines{ 60 {



in (3.34) redu
es to the tra
e of the unit matrix, so that Sq(0) = 1. Similarly, one �ndsfrom (3.30) and (3.31) that Sq�q(zi = 0;y = 0) =  1 00 1! : (3.36)To 
lose this se
tion let us 
olle
t the issues in the soft-gluon se
tor that need to beworked out for a full fa
torization proof. Some of them we have already mentioned.� One needs to show that the ex
hange of gluons in the Glauber region 
an
els inthe 
ross se
tion. Su
h a 
an
ellation requires a spe
i�
 
hoi
e of i� pres
ription inthe eikonal propagators. For the pres
ription in (3.21), whi
h 
orresponds to past-pointing Wilson lines, one 
an show that Glauber gluons do 
an
el in single Drell-Yanprodu
tion. It is natural to expe
t that the same pres
ription is appropriate for thedouble Drell-Yan pro
ess, if there is any 
hoi
e for whi
h Glauber gluons de
ouplein that 
ase.� The Ward identity (3.22) for atta
hing one gluon to a 
ollinear subgraph needs to beproven, and it needs to be extended to the 
ase where additional gluons are atta
hedto the subgraph. One then needs to show that the atta
hment of an arbitrary numberof gluons exponentiates to the Wilson lines in the soft fa
tor (3.30).In a model theory with Abelian gluons, a 
orresponding proof should be a rather sim-ple extension of the 
orresponding arguments for single-parton distributions, whi
h
an be found in [50, 
hapter 10.8℄. An expli
it proof for transverse-momentum de-pendent fa
torization in QCD is still la
king even for single hard s
attering, as far aswe know.� It must be shown that expli
it time ordering of the gluon operators in the soft fa
tor(3.30) 
an be omitted. It must also be established that one 
an 
omplement theWilson lines along v and w in the soft fa
tor in su
h a way that one has an expli
itlygauge invariant de�nition. We expe
t that for both issues it should be possible toextend a proof for single Drell-Yan produ
tion to the double Drell-Yan pro
ess, butwe are not aware of an expli
it proof for the single Drell-Yan 
ase.The se
ond and third bullet items are 
losely 
onne
ted with the 
orresponding points for
ollinear gluons, whi
h we dis
ussed at the end of the previous se
tion.3.2.3 Towards a fa
torization formulaIn se
tion 3.2.1 we have seen how 
ollinear gluons give rise to the Wilson line operators(3.19) in the matrix elements de�ning multiparton distributions. However, these Wilsonline operators 
ontain not only 
ollinear but also soft gluons, whi
h are already taken intoa

ount in the soft fa
tor (3.30). At the level of graphs, this is re
e
ted in the fa
t thatthe gluon momentum ` in �gures 14 and 17a 
an be either 
ollinear or soft. To preventdouble 
ounting of soft gluon 
ontributions, the fa
torization formula for the 
ross se
tionrequires appropriate subtra
tions. { 61 {



Let us brie
y re
apitulate how this problem 
an be solved for single Drell-Yan pro-du
tion. The ne
essary subtra
tions 
an be performed by dividing out va
uum matrixelements of the form (3.34). There is a 
ertain freedom of whether to absorb these matrixelements into the soft fa
tor or into the parton distributions that appear in the �nal fa
-torization formula . The former 
hoi
e was made in the original work [48℄ of Collins andSoper,11 whereas both [49℄ and [51℄ have made the latter 
hoi
e. Finally, in re
ent workby Collins [50℄ (see [115℄ for a brief summary) all matrix elements of the form (3.34) havebeen absorbed into the parton distributions, whi
h gives a fa
torization formula without anexpli
it soft fa
tor. Whi
hever 
hoi
e is made, a 
onsistent formulation requires one to takemat
hing i� pres
riptions in eikonal lines when treating 
ollinear or soft gluon atta
hments,as we did in (3.3) and (3.21).Another detail that admits several 
hoi
es is the dire
tion of the path in Wilson lines.In se
tion 3.2.1 we have seen that the approximations needed for right-moving 
ollineargluons require a ve
tor v that 
orresponds either to large negative or to 
entral rapidity,where we de�ne the rapidity of a spa
elike ve
tor asyv = 12 log ����v+v� ���� : (3.37)One 
annot take the limit yv ! �1, i.e. one 
annot take v lightlike in the parton density,sin
e this would give divergen
es from the region where gluons 
oupling to eikonal lines havesmall `+ but large `�, i.e. from the region of large negative gluon rapidities [48, 50, 116℄.The approximations for soft gluons in se
tion 3.2.2 require a ve
tor v with large negativerapidity and a ve
tor w with large positive rapidity. Again one 
annot take the limit whereyv ! �1 and yw ! +1, as we shall see expli
itly in se
tion 3.3.1. However, this limit
an be taken for appropriate 
ombinations of matrix elements, whi
h leads to importantsimpli�
ations, see [49℄ and [50℄.A further te
hni
al point is that the matrix elements dis
ussed so far in
lude 
ontribu-tions from self energy graphs of Wilson lines and from graphs where gluons are ex
hangedbetween di�erent Wilson lines pointing in the same dire
tion (see e.g. �gure 24 below). Forspa
elike ve
tors v and w su
h graphs give in�nite results already at tree level, as shownin appendix A of [117℄. Su
h graphs do not appear in the derivation of the fa
torizationformula: as we have seen in the two previous se
tions, Wilson lines appear when treatinggluon ex
hange between partons that have a large rapidity di�eren
e. The o�ending graphs
an
el in the 
ombination of matrix elements that appears in the �nal fa
torization for-mula, but in the individual fa
tors they must be expli
itly ex
luded. (Only in the s
hemeof [50℄ do these graphs already 
an
el in the parton distributions.)Finally, the hard-s
attering subgraphs have radiative 
orre
tions themselves. Sin
ewe require the produ
ed bosons to have small transverse momenta, there are only virtual
orre
tions: radiation into the �nal state 
an only be 
ollinear or soft and is in
luded inthe 
ollinear or soft fa
tors. For Drell-Yan produ
tion at one-loop a

ura
y, one thus onlyhas the vertex 
orre
tion to the quark-antiquark-photon three-point fun
tion. The regionsof soft and 
ollinear gluon momenta in the virtual graphs have to be expli
itly subtra
ted11This may not be quite obvious in [48℄ but has been 
learly pointed out in se
tion X.A of [49℄.{ 62 {



in the de�nition of the hard-s
attering 
ross se
tion, in order to ensure that this fa
tor isdominated by large virtualities. This removes in parti
ular the well-known soft divergen
esof the virtual graphs (whi
h in the more familiar 
ase of in
lusive observables 
an
el whenreal emission graphs are added).We expe
t that the above pro
edure 
an be generalized to the 
ase of double Drell-Yanprodu
tion. The division by va
uum expe
tation values of the form (3.34) will be repla
edby multipli
ation with the inverse of the matrix (3.30) in 
olor spa
e. We leave it to futurework to show that this 
an a
tually be done. In the remainder of this se
tion, we will takea 
loser look at the elementary building blo
ks of fa
torization, namely at the soft fa
torin (3.30) and at the dependen
e of the proton matrix elements of the operator (3.19) onthe dire
tion v of the Wilson lines.To 
on
lude this se
tion we note that a fa
torization theorem for the double Drell-Yan pro
ess also needs to provide a proper separation between the produ
tion of the twogauge bosons by one or two hard-s
attering pro
esses. We will dis
uss this problem inse
tion 5.2.3.3.3 The soft fa
tor at small transverse distan
esIf all three transverse distan
es y;z1;z2 are small 
ompared with a hadroni
 s
ale ��1,the soft fa
tor in (3.30) is dominated by perturbative dynami
s and 
an be evaluated inperturbation theory. In this se
tion we 
ompute the short-distan
e form of this fa
tor toleading order in the strong 
oupling.From (3.11) and (3.12) one obtains the representationig Z 10 d� vAa(� � �v) ta = �igtav� Z d4`(2�)4 e�i�` �i`v + i� Z d4� ei�`Aa�(�) (3.38)for the exponent of the Wilson line W (�; v). Together with the Feynman rules for eikonallines and their 
oupling to gluons in �gure 16 this gives a Feynman rule for the order gterm of the Wilson line to the left of the �nal-state 
ut, as shown in �gure 22.3.3.1 The basi
 graphsThe expansion at O(�s) of the soft fa
tor (3.30) involves the three types of graphs shown in�gure 23, whi
h we now 
al
ulate. Graphs a and b already appear in the soft fa
tor (3.34)for the single Drell-Yan pro
ess, whereas graph 
 is spe
i�
 for multiparton intera
tions.As dis
ussed in the previous se
tion, we dis
ard graphs as in �gure 24, where gluons areex
hanged between Wilson lines pointing both along v or both along w.To regulate ultraviolet divergen
es, we work in 4�2� dimensions, and to exhibit infrareddivergen
es in individual graphs we use a small gluon mass �. For the time being we omitthe 
olor matri
es ta in the Feynman rules. One �nds that ea
h pair of graphs in �gure 23gives the same result, so that in the following we only list the expressions of the left-handgraphs and multiply by two.
{ 63 {



ℓ
W †(ξ) →

∫
d4ℓ

(2π)4
e−iξℓ

ℓ∫
d4ℓ

(2π)4
eiξℓ
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Figure 22. Feynman rules for the term of order g in the expansion of the Wilson lines de�ned in(3.13). The rules for lines to the left of the �nal-state 
ut (indi
ated by the dashed line) follow from(3.38), and those for lines to the right of the �nal-state 
ut are obtained by 
omplex 
onjugation.
+

a

+

b

ξ ξ′

ξ ξ′

+

c

ξ

Figure 23. Basi
 graphs 
ontributing to the soft fa
tor at order �s.Before renormalization, the vertex 
orre
tion graphs in �gure 23a giveUa = 2�2�Z d4�2�`(2�)4�2� ei�T `�i�T ` i�`w + i� (�igw�) �ig��`2 � �2 + i� (�igv�) �i`v + i�= �4i�s vwv+w+ �2�Z d2�2�`(2�)2�2� Z 1�1 d`+ Z 1�1 d`�2� 12`+`� � `2 � �2 + i�� 1`� + w�w+ `+ � i� 1`� + v�v+ `+ � i� ; (3.39)
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Figure 24. Graphs with gluon ex
hange between eikonal lines having the same rapidity. Thesegraphs are ex
luded in the evaluation of soft fa
tors, as dis
ussed in the text.where we re
all that the ve
tors v and w have zero transverse momenta and satisfy v� > 0,v+ < 0, w+ > 0, w� < 0. For `+ < 0 all poles in `� are on the same side of the real axis,so that this region gives a zero 
ontribution to the integral over `�. For `+ > 0 we 
losethe integration 
ontour in `� around the pole of the gluon propagator and obtainUa = ��s vwv�w� �2�Z d2�2�`(2�)2�2� Z 10 d(`+)2� 1(`+)2 + 12 w+w� (`2 + �2) + i� 1(`+)2 + 12 v+v� (`2 + �2) + i� : (3.40)As both poles in (`+)2 are on the same side of the real axis, one 
an deform the integration
ontour to �1 < (`+)2 < 0 and obtainsUa = �2�s vwv�w+ � v+v� log�v�w+v+w���2�Z d2�2�`(2�)2�2� 1`2 + �2= ��s2� v�w+ + v+v�v�w+ � v+v� log�v�w+v+w���(�)�4��2�2 �� : (3.41)We see that both ve
tors v and w must be 
hosen away from the light 
one, sin
e takingeven one of them lightlike gives an in�nite result for Ua. With the de�nition (3.37) for therapidity of a spa
elike ve
tor, we havelog�v�w+v+w�� = 2(yw � yv) ; v�w+ + v+v�v�w+ � v+v� = tanh(yw � yv) : (3.42)We require a large rapidity di�eren
e, jyw � yvj � 1, i.e. v�w+ � v+w�. This is satis�edby the 
hoi
e yv � 1 and yw � 1 made in se
tion 3.2.2, but it also allows one of v or w tohave 
entral rapidity, as long as the rapidity of the other one is large (positive or negative).We 
an then approximate tanh(yw�yv) � 1. The expression (3.41) is ultraviolet divergent,and using MS subtra
tion we obtain the renormalized resultSa(�) = �Ua(�)�ren = ��s� (yw � yv) log �2�2 : (3.43)
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For the graphs in �gure 23b, whi
h des
ribe gluon emission into the �nal state, we haveUb = 2�2�Z d4�2�`(2�)3�2� �(`+) Æ(`2 � �2) ei�T `�i�0T ` i�`w + i� (�igw�) (�g��) (igv�) i�`v � i�= 4�s vwv+w+ �2�Z d2�2�`(2�)2�2� ei(���0)` Z 10 d`+ Z 1�1 d`� Æ(2`+`� � `2 � �2)� 1`� + w�w+ `+ � i� 1`� + v�v+ `+ � i�= �s vwv�w� �2�Z d2�2�`(2�)2�2� ei(���0)` Z 10 d(`+)2� 1(`+)2 + 12 w+w� (`2 + �2) + i� 1(`+)2 + 12 v+v� (`2 + �2) + i� : (3.44)Comparing with (3.40) we observe that Ua+Ub = 0 at � = �0. For � 6= �0 the integral over` in (3.44) is ultraviolet �nite and no subtra
tion is needed before we set � = 0. We thusobtainSb(z) =z 6=0 �Ub(z)��=0 = 4�s (yw � yv) Z d2`(2�)2 eiz` 1`2 + �2 = �s� (yw � yv) 2K0�� jzj�=�!0 ��s� (yw � yv) log �2z2b20 ; (3.45)where b0 = 2e�
 and 
 is the Euler number.The graphs in �gure 23a and b give the full O(�s) 
ontribution for the va
uum matrixelement Sq de�ned in (3.34), whi
h appears in single Drell-Yan produ
tion. Let us evaluatethis 
ontribution as a side result. The 
olor fa
tor for all graphs is N�1 tr(tata) = CF inthis 
ase, so that we have Sq(z; �) = 1 + S(z; �) +O(�2s) withS(z; �) = CF �Sa(�) + Sb(z)� = ��s� CF (yw � yv) log �2z2b20 (3.46)for z 6= 0. Noti
e that the infrared divergen
es regulated by a gluon mass � have 
an
elledin the sum over all graphs, as is required for a perturbative evaluation of Sq. For z = 0the relation Ua + Ub = 0 ensures that the 
ondition Sq(0) = 1 does not re
eive radiative
orre
tions, in agreement with the general result dis
ussed below (3.34). This 
omplete
an
ellation between real and virtual 
orre
tions plays a 
ru
ial role for 
ollinear fa
tor-ization, see se
tion 3.5. The fa
t that the limit z ! 0 of (3.46) is in�nite rather than zerois due to our use of modi�ed minimal subtra
tion. For z = 0 the ultraviolet divergen
esin Ua and Ub 
an
el ea
h other (as do the �nite parts of the graphs), so that there is noultraviolet subtra
tion for their sum. At z 6= 0, however, Ua + Ub does require ultravioletsubtra
tion sin
e the �rst term is ultraviolet divergent whereas the se
ond term is not.
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Finally, the graphs in �gure 23
 giveU
 = 2�2�Z d4�2�`(2�)4�2� ei�T `�i�0T ` i�`w + i� (�igw�) �ig��`2 � �2 + i� (�igv�) i`v + i�= 4�s vwv+w+ �2�Z d2�2�`(2�)2�2� ei(���0)` Z 1�1 d`+ Z 1�1 d`�2� i2`+`� � `2 � �2 + i�� 1`� + w�w+ `+ � i� 1`� + v�v+ `+ � i� : (3.47)For `+ < 0 all poles in `� are on the same side of the real axis and give a zero net result,whereas for `+ > 0 the integral over `� 
an be obtained from the residue of the gluonpropagator. This gives the same expression as in the se
ond step of (3.44). The graphs in�gure 23
 hen
e give the same result as those in �gure 23b:S
(z) = Sb(z) : (3.48)Note that the graphs in �gure 23b and 
 only di�er by the position of the �nal-state
ut. The result (3.48) shows that this does not matter and provides a 
onsisten
y 
he
kfor the omission of expli
it time ordering in (3.27). Namely, time ordering of the two�elds A(�) and A(��) asso
iated with the gluon propagator is required when the gluon doesnot 
ross the �nal-state 
ut. When it does 
ross the 
ut, no time ordering pres
riptionarises, however, sin
e the two �elds then have a 
omplete set of �nal states between them:PX A(�)jXi hXjA(��) = A(�)A(��).The identity (3.48) also holds before setting � = 0 and 
an then be used also at z = 0.This provides a simple explanation of the relation Ub(0) = �Ua dis
ussed above. Indeed,the equality U
(0) = �Ua is already evident from the starting expressions (3.39) and(3.47), whi
h only di�er by the sign of the eikonal propagator �i=(`v+ i�). This is a dire
t
onsequen
e of the Feynman rules in �gures 16, sin
e the upper eikonal lines to whi
h thegluon 
ouples in �gures 23a and 
 only di�er by the 
ow of 
olor 
harge.For later use we note that the graphs in �gures 23b and 
 
hange sign when the 
owof 
olor 
harge in one of their eikonal lines is reversed, whereas those in �gure 23a remainthe same.3.3.2 Soft fa
tor asso
iated with two-quark distributionsWith these building blo
ks at hand we 
an 
onstru
t the soft fa
tor asso
iated with two-parton distributions in the 
ross se
tion formula (3.33). We �rst dis
uss the fa
tor Sqq insome detail and give the results for Sq�q and SI in the end.The graphs 
ontributing to Sqq are those in �gure 25. In the graphs of �gure 25a andb1 there is either no gluon 
oupling to the pair f14g or no gluon 
oupling to the pair f23gof eikonal lines, so that the lines have the same 
olor 
oupling at the bottom and the top ofthe graph. The 
olor fa
tor for the vertex 
orre
tion graphs 25a is CF , independent of the
olor 
ow along the eikonal lines and of the way in whi
h their 
olor indi
es are 
oupled.
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For �gure 25b1 we have 
olor fa
tors1N2 tr(ta ta) tr 11 = CF for 11Sqq ;4N2 � 1 tr(ta t
 tb t
) tr(ta tb) = � 12N for 88Sqq ; (3.49)where the prefa
tors 1=N2 and 4=(N2�1) 
ome from the analog of the 
olor de
omposition(3.31) for Sqq. We note that these 
olor fa
tors are the same as for the ladder graphs weshall dis
uss in se
tion 5.1.3.By 
ontrast, the graphs in �gure 25b2 and 
 
an 
hange the 
olor 
oupling of the eikonallines. As an illustration, 
onsider the �rst graph in �gure 25b2 with the 
olor indi
es atthe bottom multiplied by o
tet matri
es tbjj0 tbkk0 . The 
olor stru
ture is then�tatb�mm0 �tbta�nn0 = 12� 1N ÆabÆmm0 + dab
 t
mm0 + ifab
 t
mm0��tbta�nn0= 12�CFN Æmm0 Ænn0 + N2 � 42N tamm0 tann0 + N2 tamm0 tann0�= N2 � 14N2 Æmm0 Ænn0 +�CF � 12N� tamm0 tann0 (3.50)and we see that this graph 
ontributes to both 81S and 88S. If the indi
es jj0 and kk0 are
oupled to singlets, then the graph is proportional to tamm0 tann0 and thus 
ontributes to 18S.For the �rst graph in �gure 25
 the 
olor fa
tors are analogous, with the di�eren
e thatone has �tatb�mm0 �tatb�nn0 = 12�CFN Æmm0 Ænn0 + N2 � 42N tamm0 tann0 � N2 tamm0 tann0�= N2 � 14N2 Æmm0 Ænn0 � 1N tamm0 tann0 (3.51)instead of (3.50). Putting everything together and using the results of the previous se
tion,we have 11Sqq = 1 +CF �2Sa(�) + Sb(z1) + Sb(z2)� ;88Sqq = 1 + 2CFSa(�)� 12N �Sb(z1) + Sb(z2)�+�CF � 12N ��Sb�y + z1 + z22 �+ Sb�y � z1 + z22 ��+ 1N �S
�y + z1 � z22 �+ S
�y � z1 � z22 �� ;18Sqq = 81Sqq =rCF2N �Sb�y + z1 + z22 �+ Sb�y � z1 + z22 �� S
�y + z1 � z22 �� S
�y � z1 � z22 �� : (3.52)
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Figure 25. Graphs for the soft fa
tor asso
iated with two-quark distributions. The \mirror graphs"not shown are as in �gure 23. The numbers, position arguments and 
olor labels on the eikonallines 
orrespond to those of the quark lines in the distribution Fa1;a2 , see �gure 5.The terms S
 
ome with an overall minus sign, be
ause in graph 25
 one of the eikonal lines
oupled to a gluon has its 
olor 
ow reversed 
ompared with graph 23
, whi
h reverses thesign in the eikonal propagator a

ording to the Feynman rules in �gure 16.The matrix elements in (3.52) are su
h that we 
an repla
e Sa and Sb = S
 by their
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Figure 26. A higher-order graph for the soft fa
tor, whi
h 
onne
ts more than two eikonal lines.sum, whi
h is infrared �nite a

ording to (3.46). Using S = CF (Sa + Sb) we haveSqq(zi;y; �) = �1 + S(z1; �) + S(z2; �)� 1 00 1!+ 0 
Sd
Sd �(1 + 
2)Sy � 2
2Sd! ; (3.53)with a 
olor fa
tor 
 = 1p2NCF = 1pN2 � 1 (3.54)and linear 
ombinationsSd(zi;y) = S�y + z1 + z22 ; ��+ S�y � z1 + z22 ; ��� S�y + z1 � z22 ; ��� S�y � z1 � z22 ; �� ;Sy(zi;y) = S(z1; �) + S(z2; �)� S�y + z1 + z22 ; ��� S�y � z1 + z22 ; �� : (3.55)Note that the � dependen
e of S has 
an
eled in Sd and Sy.At one-loop level the soft fa
tor for two-quark distributions 
an thus be expressed interms of its analog S for single-parton distributions. This simpli�
ation will most likely nolonger hold at higher orders in �s, sin
e one then has graphs like in �gure 26, where morethan two eikonal lines are 
onne
ted.It is easy to see that the soft fa
tor Sq�q(zi;y) for quark-antiquark distributions isobtained from Sqq(zi;y) by repla
ing z2 ! �z2. This 
orresponds to the inter
hange ofthe labels 2 and 3 in the de�nitions of Fa1;a2 and Fa1;�a2 (see (2.85) to (2.87)) and uses theresult that the kernels Sb and S
 for gluons that 
ross or do not 
ross the �nal-state 
utare identi
al.The soft fa
tor multiplying the interferen
e distributions is obtained from the samegraphs as those in �gure 25, apart from 
hanges in the 
olor labels and in the 
olor 
owof the eikonal lines. Making the appropriate repla
ements of position arguments in Sqq we
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get 11SI = 1 + CF�2Sa(�) + Sb�y + z1 + z22 �+ Sb�y � z1 + z22 �� ;88SI = 1 + 2CFSa(�)� 12N �Sb�y + z1 + z22 �+ Sb�y � z1 + z22 ��+�CF � 12N��S
�y + z1 � z22 �+ S
�y � z1 � z22 ��+ 1N �Sb(z1) + Sb(z2)� ;18SI = 81SI =rCF2N �S
�y + z1 � z22 �+ S
�y � z1 � z22 �� Sb(z1)� Sb(z2)� ; (3.56)whi
h 
an be rewritten asSI(z1;z2;y) = �1 + S(z1; �) + S(z2; �)� 1 00 1!� Sy 
(Sy + Sd)
(Sy + Sd) (1� 2
2)(Sy + Sd) + 
2Sd! : (3.57)3.4 Collins-Soper equationAs is well-known, 
ross se
tions with measured transverse momenta jqij � qT mu
h smallerthan the hardest s
ale Q in the pro
ess 
ontain large logarithms in qT =Q, whi
h need tobe summed to all orders in �s in order to have a perturbatively stable result. A powerfulmethod to resum these Sudakov logarithms is due to Collins, Soper and Sterman (CSS)[118℄. This method uses transverse-momentum-dependent fa
torization and is therefore,up to now, limited to the produ
tion of 
olor singlet parti
les, su
h as a Drell-Yan leptonpair or a Higgs boson. In this se
tion we show how this formalism extends to double Drell-Yan produ
tion, and we 
al
ulate the 
orresponding Sudakov fa
tor to next-to-leadinglogarithmi
 a

ura
y.We begin by a brief a

ount of the CSS method for pro
esses with a single hards
attering initiated by quark-antiquark annihilation. As we mentioned in se
tion 3.2.3,the Wilson lines in the de�nition of transverse-momentum dependent parton distributionsmust be taken along a dire
tion v with a �nite rapidity. Their dependen
e on this rapidityis governed by the Collins-Soper (CS) equation [48℄, whose solution resums Sudakov log-arithms to all orders. By Lorentz invarian
e, the distributions depend on v via the s
alarparameter12 �2 = (2pv)2jv2j : (3.58)12To avoid the appearan
e of square roots, our de�nition (3.58) follows the 
onvention of Ji et al. [51℄and di�ers from the one of Collins and Soper [48℄, with �2jhere = �[48℄.
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Figure 27. Graphs des
ribing the dependen
e of a single parton distribution on the Wilson linerapidity yv at order �s. The 
omplex 
onjugate graphs are not shown. Note that graph b in
ludesthe 
ase where the gluon 
ouples to the left quark line, i.e. graph a is in
luded in b.As dis
ussed earlier, we require v to be spa
elike (although the manipulations in the fol-lowing would also work for timelike v, whi
h is the 
hoi
e adopted in [51℄). In terms of therapidities yv of v and yp of the proton, we have� = 2M sinh(yp � yv) �Meyp�yv ; �� log � = � tanh(yp � yv) ��yv � � ��yv (3.59)for a right-moving proton, where M is the proton mass. The approximations are valid foryv � yp, whi
h we have seen to be ne
essary in se
tion 3.2.1. This implies � �M .Following the original paper [48℄ we work here with \unsubtra
ted parton distribu-tions" in the parlan
e of [51, 119℄ and [50℄, i.e. with matrix elements of operators 
on-stru
ted from quark �elds and Wilson lines along v as in (3.19). Subtra
tions for the softmomentum region are not made in the parton distributions but in the soft fa
tor thatappears in the 
ross se
tion (see [49℄). The �elds in the operator are renormalized, sothat the distributions depend on an ultraviolet renormalization s
ale �. Fourier transform-ing from transverse momentum to position spa
e, we then have single-quark distributionsf(x;z; �; �). The � dependen
e is given by a homogeneous renormalization group equa-tion [48℄ dd log �f(x;z; �; �) = 2
q��s(�)� f(x;z; �; �) ; (3.60)where 
q = 3CF�s=(4�) + O(�2s) 
an be identi�ed with the anomalous dimension of thequark �eld in the axial gauge vA = 0 (where the Wilson lines redu
e to unity). In a
ovariant gauge it 
orresponds to renormalization of the 
omposite operator W (�)q(�) or�q(�)W y(�), see (3.19).In terms of graphs, the dependen
e of f on v arises from the propagators of eikonallines and from their 
oupling to gluons, as is obvious from the Feynman rules in �gure 16.A power 
ounting analysis shows that dominant 
ontributions to �f=�� 
ome from regionswhere the momentum ` 
owing through eikonal lines is either hard or soft; 
ontributionswith ` 
ollinear to the proton are power suppressed. The only important graphs where ` is ahard momentum have the form of a vertex 
orre
tion shown in �gure 27a (at higher ordersthis vertex graph be
omes dressed with further gluon and quark lines). If the momentum `
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ows through spe
tator partons (see �gure 27b and 
), the hard region is power suppressedand only the region of soft ` is important.The 
ontribution from the region of hard momenta ` reads�� log � f(x;z; �; �)���hard = G(x�=�) f(x;z; �; �) : (3.61)Sin
e ` is hard, the kernel G 
an be 
al
ulated perturbatively. G is extra
ted from sub-graphs whose external lines are the quark on the left of the �nal-state 
ut and the adja
enteikonal line, or the 
orresponding two lines on the right of the 
ut. As a result, G is inde-pendent of the transverse distan
e z between the two quark �eld operators. Furthermore,it depends only on the longitudinal quark momentum xp rather than on the proton mo-mentum p, so that the dependen
e on � is via the 
ombination x� = 2(xp)v=pjv2j. Fordimensional reasons this parameter must be divided by �, sin
e G is dominated by hardmomenta and hen
e independent of nonperturbative s
ales. At leading order in �s, oneobtains G from the graph of �gure 27a and the 
omplex 
onjugate graph, with subtra
tionsmade for the region of soft `. Using MS subtra
tion for the ultraviolet divergen
es, one�nds [48, 119℄ G(x�=�) = ��s� CF �log�x2�2�2 �� 1�+O(�2s) : (3.62)If the momentum 
arried by the eikonal lines and hen
e by the gluons they 
oupleto is soft, we have graphs with soft gluons 
oupling to parton lines that move fast to theright. We 
an then use the same pro
edure as in se
tion 3.2.2, i.e. approximate the gluon
oupling to the right-moving parti
les and then use a Ward identity. The gluons then
ouple to eikonal lines with large positive rapidity, asso
iated with a ve
tor w, with oneeikonal line for ea
h parton line atta
hed to the 
ollinear subgraph. This gives�� log � f(x;z; �; �)���soft = ��Sv;wq (z; �)�yv 1Sv;wq (z; �) f(x;z; �; �) ; (3.63)where we used �=(� log �) = ��=(�yv) and where we have expli
itly displayed the depen-den
e of Sq de�ned in (3.34) on the two ve
tors v and w. As shown in [50℄, one 
an takethe limit of lightlike w in (3.63) and thus has�� log � f(x;z; �; �) = �G(x�=�) +K(z; �)�f(x;z; �; �) (3.64)with K(z; �) = � limyw!1 �Sv;wq (z; �)�yv 1Sv;wq (z; �) : (3.65)Having taken the limit of in�nite yw the dependen
e of K on yv has disappeared as well,sin
e by Lorentz invarian
e K 
ould only depend on yw � yv. For large z the kernel Kis dominated by nonperturbative dynami
s, just as Sq. For suÆ
iently small z we 
an
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however use the perturbative expression of Sq derived in the previous se
tion. From (3.46)we readily obtain K(z; �) = ��s� CF log �2z2b20 ; (3.66)verifying that at lowest order K is independent of v and w.An analysis of the ultraviolet divergen
es in G and K shows that they satisfy renor-malization group equations [48℄dd log � G�x�=�; �s(�)� = � dd log � K(z; �) = 
K��s(�)� ; (3.67)so that the sum G +K is independent of �. At lowest order in �s this is readily veri�edfrom (3.62) and (3.66), whi
h also give the leading term
K(�s) = 2�s� CF +O(�2s) (3.68)of the anomalous dimension. The O(�2s) term is also known [118℄.We are now ready to generalize the CS equation to (unsubtra
ted) two-quark distri-butions. The 
ontribution from hard eikonal momenta ` is again given by vertex graphsas in �gure 27a, with one graph for ea
h of the four quark legs. This gives just the sum ofkernels G(x1�=�) +G(x2�=�). As for the soft momentum region, the argument leading to(3.63) 
an be repeated. In se
tion 3.2.2 we have seen that the Ward identity for soft gluons
oupling to 
ollinear lines in a two-parton distribution has a nontrivial 
olor stru
ture. Wetherefore now have a matrix equation in 
olor spa
e,�� log �  1Fa1;a2(xi;zi;y; �; �)8Fa1;a2(xi;zi;y; �; �)!�����soft = Kqq(zi;y;�)  1Fa1;a2(xi;zi;y; �; �)8Fa1;a2(xi;zi;y; �; �)! (3.69)with a kernel Kqq(zi;y;�) = � limyw!1 �Sv;wqq (zi;y;�)�yv �Sv;wqq (zi;y;�)��1 : (3.70)Analogous equations hold for quark-antiquark and for interferen
e distributions, with ker-nels K 
onstru
ted from the appropriate soft fa
tors S. Note that the kernels are sensitiveto the 
olor 
harge of partons (i.e. to the di�eren
e between quarks and antiquarks) butnot to their polarization. For K this follows from the analogous property of S, whereasfor G it follows from parity invarian
e applied to the relevant subgraph with one externalquark and one eikonal line. Putting everything together, we 
an write the CS equation fora two-quark distribution into the formdd log �  1F8F! = �G(x1�; �) +G(x2�; �) +K(z1; �) +K(z2; �)� 1F8F!+M(z1;z2;y) 1F8F! (3.71)
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with M(z1;z2;y) = K(z1;z2;y;�)� �K(z1; �) +K(z2; �)� 1 00 1! : (3.72)A

ording to (3.67) the � dependen
e 
an
els between the kernels G and K in (3.71). Thematrix M is independent of � as well. This 
an be tra
ed ba
k to the fa
t that the onlyultraviolet divergent graphs for S (and hen
e for K) have the form of a vertex 
orre
tion asin �gure 25a. As dis
ussed in the previous se
tion, these graphs only 
ontribute to the 
olordiagonal elements 11S and 88S and are the same in both 
ases, sin
e they are insensitive tothe 
olor of the di�erent eikonal lines.Finally, the dependen
e of Fa1;a2 , Fa1;�a2 et
. on the renormalization s
ale is given bydd log �F (xi;zi;y; �; �) = 4
q��s(�)�F (xi;zi;y; �; �) (3.73)for both 1F and 8F . This is be
ause ultraviolet renormalization in F is performed forindividual operators W (�)q(�) and �q(�)W y(�).3.4.1 General solutionBefore solving (3.71) let us �rst 
onsider the simpler equationdd log � F (xi;zi;y; �; �) = hG�x1�=�; �s(�)�+G�x2�=�; �s(�)�+ 2K12(z1;z2; �)iF (xi;zi;y; �; �) ; (3.74)where we have abbreviatedK12(z1;z2; �) = 12 hK(z1; �) +K(z2; �)i : (3.75)We have in
luded the argument of the running 
oupling in G sin
e this will be neededshortly. For the moment we do not assume that K is given by a perturbative expansion.The solution of (3.74) 
an be obtained by adapting the well-known solution of the CSequation for single-parton distributions [48, 118, 120℄. We haveF (xi;zi;y; �; �) = exp��S(x1�;z1;z2; �0)� S(x2 �;z1;z2; �0)�F �0(xi;zi;y;�) ; (3.76)where F �0 spe
i�es the initial 
ondition of evolution in �. The s
ale �0 should be 
hosensu
h that F �0 does not depend on widely disparate s
ales. If this is not possible be
ausezi and y widely di�er in size, further steps may be required in order to resum all largelogarithms. We note that sin
e S is � independent (see below), the � dependen
e of F �0is given by the same renormalization group equation as in (3.73). The Sudakov exponentin (3.76) readsS(x�; z1;z2; �0) = �Z x��0 d� 0� 0 �G�x� 0=�; �s(�)�+K12(z1;z2; �)� (3.77)
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with x equal to x1 or x2. It is well-known from the solutionf(x;z; �; �) = exp��S(x�; z;z;�0)� f�0(x;z;�) (3.78)of the CS equation (3.64) for single-quark distributions. We note that a more general setof solutions 
an be obtained by multiplying x� with a 
onstant C2 in the upper integrationlimit of (3.77); the initial 
ondition F �0 in (3.76) then depends on that 
onstant. One 
aneasily restore the C2 dependen
e of the expressions to follow, but for simpli
ity we limitourselves to the 
hoi
e C2 = 1 here.The integrand of (3.77) 
ontains fun
tions that depend on the ratio of two large s
ales.To make this dependen
e expli
it, one uses the renormalization group equation (3.67) forG and K. Obviously, K12 has the same � dependen
e as K, so that the � dependen
e
an
els between G and K12 in (3.74) and (3.77). Using (3.67) one 
an rewriteG�x� 0=�; �s(�)�+K12(z1;z2; �)= G�1; �s(x� 0)�+K12(z1;z2; �0)� Z x�0�0 d�0�0 
K��s(�0)� : (3.79)Inserting this into (3.77) one 
an perform the integration over � 0 for the terms 
ontaining
K or K12 and obtainsS(x�; z1;z2; �0) = Z x��0 d�� �
K��s(�)� log x�� �G�1; �s(�)���K12(z1;z2; �0) log x��0 : (3.80)The term with 
K in (3.80) gives rise to the leading double logarithm in x�=�0, whereasthe other terms give only single logarithms. Using (3.62) and (3.68) and negle
ting therunning of �s one hasS(x�; z1;z2; �0) = �s� CF log2 x��0 � ��s� CF +K12(z1;z2; �0)� log x��0 +O(�2s) (3.81)at leading order in �s. A more pre
ise expression is obtained by rewriting R d�=� =12 R d�s=�(�s), where � = d�s(�)=d log �2. After expanding 1=�(�s) in �s, the integralin (3.80) is straightforward to evaluate for the one-loop expression (3.62) of G and thetwo-loop expression of 
K (given e.g. in [118℄).The form (3.80) is valid even if K12(z1;z2; �) 
annot be evaluated perturbativelybe
ause one or both of z1 and z2 are large. If both distan
es are small, K(zi; �) and thusK12(z1;z2; �) is given by a power series in �s(�). An alternative form of the Sudakovexponent [118℄ is then obtained by rewriting (3.79) asG�x� 0=�; �s(�)�+K12�z1;z2; �; �(�)�= G�1; �s(x� 0)�+K12�z1;z2; �0; �s(x� 0)�� Z x�0�0 d�0�0 A�z1;z2; �0; �s(�0)� (3.82)
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with A(z1;z2; �0; �s) = 
K��s�+ 2�(�s) ���sK12�z1;z2; �0; �s� ; (3.83)where we now distinguish between the expli
it � dependen
e of K12 and the impli
it de-penden
e via the running 
oupling. One then obtainsS(x�; z1;z2; �0) = Z x��0 d�� �A�z1;z2; �0; �s(�)� log x�� �G�1; �s(�)��K12�z1;z2; �0; �s(�)�� ; (3.84)where all perturbative fun
tions are evaluated with �s at the same s
ale. With the one-loopexpression of K in (3.66) we haveK12(z1;z2; �; �s) = ��s� CF log �2 jz1j jz2jb20 +O(�2s) : (3.85)A natural 
hoi
e for the starting s
ale of evolution in � is thus�20 = C1jz1j jz2j (3.86)with a 
onstant C1 of order 1. If one takes C1 = b20 then K12 vanishes.It is now easy to write down the solution of the full CS equation (3.71) for a two-partondistribution. It is given by 1F (xi;zi;y; �; �)8F (xi;zi;y; �; �)! = exp��S(x1�;z1;z2; �0)� S(x2�;z1;z2; �0)�� exp�M(z1;z2;y) log px1x2 ��0 �  1F �0(xi;zi;y;�)8F �0(xi;zi;y;�)! (3.87)with S given by (3.80) for arbitrary values of zi and by (3.84) if both z1 and z2 aresmall. The logarithm in the se
ond line has been 
hosen su
h that it 
oin
ides with theone that multiplies 2K12 when one evaluates �S(x1�)�S(x2�) from (3.80). Other 
hoi
esare possible and lead to di�erent initial 
onditions 1F �0 and 8F �0 .Unless all distan
es z1, z2 and y are small, the matrixM 
annot be 
al
ulated pertur-batively and we 
annot further simplify the exponentiated matrix in (3.87). Nevertheless,(3.87) 
ontains some important information, sin
e it gives the expli
it form of the de-penden
e on the large s
ales x1� and x2�. In parti
ular, we see that to leading doublelogarithmi
 a

ura
y, where only squared logarithms of x1�=�0 and x2�=�0 are retained,the Sudakov fa
tor for two-quark distributions is the same for 1F and for 8F and given bythe produ
t of the 
orresponding Sudakov fa
tors for single-quark densities with momen-tum fra
tions x1 and x2. At next-to-leading logarithmi
 a

ura
y, 1F and 8F mix underevolution in �, with the amount of mixing depending on the transverse distan
es z1, z2and y. { 77 {



It should be possible to generalize the CS equation (3.71) and its general solution (3.87)to the 
ase of multiparton distributions for more than two partons. The same holds formulti-gluon distributions, where the general stru
ture will remain the same but the kernelsG and K will be di�erent.3.4.2 Small transverse distan
esLet us now 
onsider the situation when z1, z2 and y are all small enough to 
al
ulate Min perturbation theory. The kernels K(zi; �) in (3.71) are then given by (3.66) at leadingorder in �s, and the Sudakov exponent S in the solution (3.87) of the CS equation 
anbe evaluated from (3.84). It remains to investigate the matrix eLM in (3.87), where weabbreviate L = log px1x2 ��0 : (3.88)We treat the kernelMqq for two-quark distributions Fa1;a2 in detail and dis
uss its analogsfor quark-antiquark distributions Fa1;�a2 and interferen
e distributions Ia1;a2 later.Using the de�nitions (3.70), (3.72) and our perturbative result (3.53) for Sqq, we readily�nd Mqq(z1;z2;y) =  0 
Kd
Kd �(1 + 
2)Ky � 2
2Kd! (3.89)with 
 given in (3.54) andKd(zi;y) = K�y + z1 + z22 ; ��+K�y � z1 + z22 ; ���K�y + z1 � z22 ; ���K�y � z1 � z22 ; ��Ky(zi;y) = K(z1; �) +K(z2; �)�K�y + z1 + z22 ; ���K�y � z1 + z22 ; �� (3.90)in analogy to (3.55). Using the expli
it form (3.66) or the renormalization group equation(3.67) for K, we see thatM is � independent, as we anti
ipated earlier. We must of 
ourse
hoose a s
ale in �s when using the one-loop result (3.66) for evaluating Kd and Ky, whi
hgives rise to a residual s
ale dependen
e of order �2s. The situation is the same as for aphysi
al (and hen
e formally � independent) quantity evaluated in �xed-order perturbationtheory. An appropriate s
ale of �s in Kd and Ky will be 
onstru
ted from zi and y.Let Dqq be the diagonal matrix with the eigenvalues ofMqq and let Eqq be the matrixwhose 
olumns are the 
orresponding eigenve
tors, i.e.MqqEqq = EqqDqq with Dqq =  d+ 00 d�! : (3.91)One then has eLMqq = Eqq eLDqq E�1qq : (3.92)
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The matrix (3.89) has eigenvaluesd� = 12 ��(1 + 
2)Ky � 2
2Kd �q�(1 + 
2)Ky + 2
2Kd�2 + �2
Kd�2 � (3.93)and a matrix of eigenve
tors Eqq = 0B��d� � d+
Kd
Kd 1 1CA ; (3.94)so that eLMqq = 1d+ � d�  d+eLd� � d�eLd+ 
Kd�eLd+ � eLd��
Kd �eLd+ � eLd�� d+eLd+ � d�eLd� ! : (3.95)Let us see how this matrix behaves forj
Kd j � jKyj : (3.96)One 
an then Taylor expand the square root in (3.93) and obtainsd+ = 
21 + 
2 K2dKy +O�
4 K3dK2y � ; d� = �(1 + 
2)Ky +O(
2Kd) (3.97)if Ky > 0, whereas the role of d+ and d� in (3.97) is inter
hanged if Ky < 0. In both 
asesone getseLMqq � exp�L 1N2 K2dKy �0BB� 1 1Nb KdKy �1� e�Lb2Ky�1Nb KdKy �1� e�Lb2Ky� e�Lb2Ky + � 1Nb KdKy �21CCA ; (3.98)where we have traded the 
olor fa
tor 
 = 1=pN2 � 1 forb = NpN2 � 1 : (3.99)Sin
e 
 � 1=N , the 
ondition (3.96) holds in the large-N limit. Inserting (3.98) into(3.87), we see that 1F (�) is then 
ontrolled by the initial 
ondition 1F �0 be
ause the ad-mixture from 8F �0 is suppressed, although only by 1=N . Whether 8F (�) is dominated by1F �0 or 8F �0 depends on whether the 1=N suppressed fa
tor in the lower row of (3.98)or the exponential e�Lb2Ky is smaller. In either 
ase 8F (�) is parametri
ally smaller than1F (�). To whi
h extent the large-N limit gives a valid des
ription of the physi
s for N = 3depends on the relative size of Ky and Kd, as well as the relative size of 1F �0 and 8F �0 .This 
an only be de
ided by a more detailed analysis, whi
h we will not attempt here.There is, however, a region of phase spa
e where (3.96) holds beyond the large-N limit.From its de�nition (3.90) we see that Kd vanishes if z1 = z2 = 0. In the double-s
attering
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pro
ess one has jz1j � jz2j � 1=qT , so that the limit jz1j; jz2j � jyj is relevant in theregion where jyj is mu
h larger than 1=qT . Taylor expansion then givesKd = �s� 2CF � 2(yz1)(yz2)(y2)2 � z1z2y2 �+O� jzij4jyj4 � ;Ky = �s� 2CF log y2jz1j jz2j +O� jzij2y2 � : (3.100)This implies ����KdKy ���� � jz1j jz2jy2 � log y2jz1j jz2j��1 +O� jzij4jyj4 � (3.101)for the fa
tor in the o�-diagonal elements of the matrix (3.98), whereas for the exponentialfa
tor we �nde�Lb2Ky � � jz1j jz2jy2 �Np with p = �s� L = �s2� log jz1j jz2jx1x2 �2C1 ; (3.102)where we have 
hosen �0 as in (3.86). We thus �nd that the o
tet admixture in the �evolution of 1F (�) is power suppressed by jz1j jz2jÆy2, and that 8F (�) is power suppressed
ompared with 1F (�) by8Fa1;a2(xi;zi;y; �; �)1Fa1;a2(xi;zi;y; �; �) � 8F �0a1;a2(xi;zi;y;�)1F �0a1;a2(xi;zi;y;�) � jz1j jz2jy2 �min(1;Np) : (3.103)In straightforward generalization of single Drell-Yan produ
tion [48, 50℄, an adequate 
hoi
eof � in the 
ross se
tion for double hard s
attering is x1x2�2 � Q2. Together with jz1j jz2j �1=q2T this gives p � (�s=�) log(Q=qT ). Again, a more quantitative pi
ture 
an only beobtained by a detailed analysis.The pre
eding results all rely on the validity of perturbation theory for the soft CSkernel and thus require not only z1 and z2 but also y to be perturbatively small. We
annot draw any stri
t 
on
lusions about the 
ase where z1 and z2 are small, whereas y isin the nonperturbative region. However, we observe that the power suppression parameterjz1j jz2jÆy2 be
omes smaller rather than larger in this 
ase. One may thus spe
ulate thatthe general features of our analysis, namely the autonomous � evolution of 1F and thesuppression of 8F will 
ontinue in the nonperturbative regime.We 
on
lude this se
tion by noting that the CS equation and its solution for quark-antiquark distributions Fa1;�a2 is readily obtained from the previous results by repla
ingz2 ! �z2 and that 
orresponding repla
ements are to be made for F�a1;a2 and F�a1;�a2 .This follows from the 
orresponding property of the soft fa
tor Sq�q dis
ussed at the end ofse
tion 3.3.2.Interferen
e distributions. The Collins-Soper equation for interferen
e distributions1Ia1;�a2 and 8I�a1;�a2 has the same form as (3.71) with F repla
ed by I. The appropriate kernelMI in the perturbative regime follows from SI in (3.57) and readsMI(z1;z2;y) = � Ky 
(Ky +Kd)
(Ky +Kd) (1� 2
2)(Ky +Kd) + 
2Kd! (3.104)
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with Kd and Ky given in (3.90). This matrix has eigenvaluesd 0� = 12 ��(1� 
2)(2Ky +Kd)�p1 + 
2q
2 (2Ky +Kd)2 +K2d � (3.105)and exponentiates toeLMI = 1d 0+ � d 0�  d 0+eLd0� � d 0�eLd0+ �
Kd�eLd0+ � eLd0���
Kd �eLd0+ � eLd0�� d 0+eLd0+ � d 0�eLd0� !
� Ky (eLd0+ � eLd0�)d 0+ � d 0�  1 

 �1! (3.106)For jKdj � Ky, i.e. if jz1j; jz2j � jyj, we 
an Taylor expand the eigenvalues asd 0+ = �N � 2N � 1 Ky +O(Kd) ; d 0� = �N + 2N + 1 Ky +O(Kd) : (3.107)The result simpli�es if we use the orthogonal matrixU = 1p2N  pN � 1 �pN + 1pN + 1 pN � 1! (3.108)that implements the basis transformation from 1I; 8I to the 
ombinations �3I; 6I introdu
edin (2.117). We then haveU eLMI UT � exp��L N � 2N � 1 Ky� 0BB� 1 Kd4
Ky �1� e�LKy=CF �Kd4
Ky �1� e�LKy=CF � e�LKy=CF 1CCA :(3.109)Repeating the argument that led to (3.103) we obtain6I(xi;zi;y; �; �)�3I(xi;zi;y; �; �) � 6I�0(xi;zi;y;�)�3I�0(xi;zi;y;�) � jz1j jz2jy2 �min(1;2p) (3.110)with p given in (3.102). Likewise, 
omparing (3.109) with (3.98) we �nd�3I(xi;zi;y; �; �)1F (xi;zi;y; �; �) � �3I�0(xi;zi;y;�)1F �0(xi;zi;y;�) � jz1j jz2jy2 � (N+1)(N�2)N p : (3.111)For jz1j; jz2j � jyj the sextet 
ombination of I is hen
e suppressed 
ompared with theantitriplet one, whi
h in its turn is small 
ompared with the singlet 
ombination 1F .We �nally note that, in 
ontrast to the 
ase of F , the limit jKdj � Ky just dis
usseddoes not give the same result as the large-N limit. In the latter one �ndseLMI � e�LKy 0B� 1 � 1N �1 + KyKd� �1� e�LKy=CF �� 1N �1 + KyKd� �1� e�LKy=CF � e�LKy=CF 1CA(3.112)with relative 
orre
tions of order Ky=(NKd). This expansion is obviously not useful if onehas jKdj � Ky. More generally, the large-N limit for the � evolution of I will only beuseful in kinemati
al regions where Ky=(NKd) is small enough for N = 3.{ 81 {



3.5 Collinear fa
torizationThe analysis in the previous se
tions was 
on
erned with transverse-momentum dependent(TMD) fa
torization, i.e. with 
ross se
tions di�erential in transverse momenta that aresmall 
ompared with the large s
ale. We now turn to 
ollinear fa
torization, adequatefor 
ross se
tions with integrated transverse momenta. We point out the main 
hanges
ompared with TMD fa
torization but do not work out the formalism in detail.As in previous se
tions, we �rst re
apitulate the situation for single Drell-Yan produ
-tion. The main 
hanges 
ompared with TMD fa
torization are as follows.� We re
all from se
tion 3.2.2 that, after a 
omplex 
ontour deformation that avoidsthe Glauber region, the e�e
t of soft gluon ex
hange is des
ribed by a soft fa
torSq(z). Integration of the 
ross se
tion (3.35) over q sets z equal to zero in thisfa
tor. Be
ause the 
an
ellation between real and virtual graphs gives Sq(0) = 1 asdis
ussed in se
tion 3.3.1, there is no net e�e
t of soft gluons in the qT integrated
ross se
tion.With the elementary soft fa
tor Sq redu
ed to unity, subtra
tions of soft-gluon 
on-tributions as dis
ussed in se
tion 3.2.3 are not required, neither for the parton dis-tributions nor for the hard-s
attering subpro
ess.� Setting z = 0 in the quark and antiquark distributions f(x;z), whi
h is equivalentto integrating f(x;k) over k, gives rise to short distan
e singularities in addition tothose that are removed by de�ning the distributions with renormalized quarks �eldsand Wilson lines. The dependen
e on the ultraviolet subtra
tion s
ale � is des
ribedby the well-known DGLAP evolution equations.The rapidity divergen
es (from gluons with small `+ and large `�) that prevent usfrom taking lightlike Wilson lines in the de�nition of f(x;z) 
an
el between real andvirtual 
orre
tions when z = 0 [116℄. Indeed, the relevant one-loop graphs are thosein �gure 27b and 
 (without the derivative ��=�yv), and the approximation dis
ussedin se
tion 3.4 , whi
h 
onne
ts these graphs to the soft fa
tor Sq(z), is valid for any`� as long as `+ is small.Collinear parton distributions 
an hen
e be de�ned with lightlike Wilson lines anddo not depend on a parameter �. Correspondingly, the qT integrated 
ross se
tionis free of Sudakov logarithms. In the operator de�nition of f(x; �), the Wilson linesin �q(�12z)W y(�12z; v) and W (12z; v)q(12z) merge to a single Wilson line W [�12z; 12z℄,given by W [�0; �℄ = P exp�ig Z 10 d�A+a�� � �(� � �0)� ta� : (3.113)The se
tions of the paths that go to in�nity in W y(�12z; v) and W (12z; v) have 
an-
elled, and a path of �nite length between �12z and 12z remains.� The hard-s
attering subpro
ess now re
eives radiative 
orre
tions not only from vir-tual graphs but also from real ones, sin
e emission of partons with large transverse{ 82 {



momenta in the �nal state is permitted on
e we do not �x the transverse momentumqT of the Drell-Yan photon. As already mentioned, a subtra
tion for the soft-gluonregion is not required in this 
ase, in 
ontrast to the situation for TMD fa
torizationdis
ussed in se
tion 3.2.3. Subtra
tions are however needed for the regions wheremomenta are 
ollinear to one of the partons entering the hard subpro
ess. Thesesubtra
tions must be performed in a way that mat
hes the ultraviolet subtra
tionsin the parton densities. In parti
ular, the � dependen
e due to 
ollinear subtra
-tions in the hard subpro
ess has to 
an
el against the � dependen
e of the partondistributions in the 
ross se
tion.Let us now investigate the situation for double Drell-Yan produ
tion, limiting our-selves to a one-loop analysis as we have done throughout the pre
eding se
tions. A keyto understanding the role of soft gluons is to set zi = 0 in Sqq(zi;y), whi
h results fromintegrating the 
ross se
tion (3.33) over qi. Our dis
ussion in se
tion 3.3.1 implies thatSb(0; �) = �Ub(0; �)�ren = ��Ua(�)�ren = �Sa(�) for the graphs in �gure 23. Togetherwith the relation S
(z) = Sb(z), this turns our general one-loop result (3.52) into11Sqq � 1 = 18Sqq = 81Sqq = 0 ; 88Sqq � 1 = 2(1 + 
2)S(y; �) (3.114)at z1 = z2 = 0. The one-loop 
ontributions to 11Sqq 
an
el between the vertex 
orre
tions25a and the real graphs 25b1, in full analogy with the 
ase of Sq dis
ussed above. In 18Sqqand 81Sqq we have a 
an
ellation between the real graphs 25b2 and the virtual graphs 25
.We see from (3.114) that in the qT integrated 
ross se
tion for double Drell-Yan produ
-tion the 
ontributions from 
olor singlet and 
olor o
tet distributions de
ouple from ea
hother, and that they have a di�erent behavior 
on
erning soft gluon ex
hange. In the termwith 
olor singlet distributions 1F we have a 
an
ellation of soft gluon e�e
ts, in full anal-ogy to single Drell-Yan produ
tion. Also, the graphs for the hard-s
attering subpro
ess areexa
tly as in the single Drell-Yan pro
ess, with a 
an
ellation of the soft-gluon region butwith ne
essary subtra
tions for the regions of 
ollinear parton momenta. From our abovedis
ussion it follows that 
ollinear two-parton distributions 1F 
an be de�ned with the sameoperators as their single-parton analogs, with lightlike Wilson linesW [y� 12z1; y+ 12z1℄ andW [�12z2; 12z2℄ between quark and antiquark �elds, and that their 
ontribution to the qT in-tegrated 
ross se
tion is free of Sudakov logarithms. Like their single-parton 
ounterparts,the distributions have ultraviolet divergen
es; the s
ale dependen
e that follows from theirsubtra
tion will be dis
ussed in se
tion 5.3.2.The 
ontribution of 
ollinear 
olor-o
tet distributions 8F is quite di�erent. Be
ausereal and virtual graphs have di�erent 
olor fa
tors, soft gluon e�e
ts do not 
an
el betweenthem, and their net e�e
t is des
ribed by 88Sqq(y). As a 
onsequen
e, the di�erent fa
tors inthe 
ross se
tion formula require soft subtra
tions, as they do in the 
ase of measured trans-verse momenta. Sin
e the 
olor indi
es of [�q(�12z2)W y(�12z2; v)℄k0 and [W (12z2; v)q(12z2)℄kare not 
ontra
ted, the two Wilson lines do not merge into a single one of �nite length, andthe same holds for their analogs with arguments y � 12z1 and y + 12z1. The ve
tor v in theWilson lines 
annot be taken lightlike, so that 
ollinear o
tet distributions will depend on aparameter �. The resulting Collins-Soper equation gives rise to Sudakov logarithms, whi
h{ 83 {



suppress the 
olor o
tet 
ontribution to the qT integrated 
ross se
tion. This importantresult was already obtained in [121℄, based on the observation that in the hard-s
atteringsubpro
esses there is no 
an
ellation of the soft-gluon region. An adequate s
ale �0 forthe initial 
ondition of the CS equation will in this 
ase be a hadroni
 s
ale, inverse to thetypi
al distan
e jyj between the two s
attering partons.Let us �nally take a look at the interferen
e distributions Ia1;�a2 . From (3.56) we �nda soft fa
tor SI =  1 00 1!+ 2S(y; �) 1 

 1� 2
2! (3.115)at z1 = z2 = 0. There is hen
e no 
an
ellation of soft-gluon e�e
ts, so that a formulation of
ollinear fa
torization will in this 
ase be similar to the one for the 
olor o
tet distributions8F just dis
ussed, with the additional 
ompli
ation of mixing between the 
olor singlet ando
tet 
hannels.4 Some properties of two-quark and quark-antiquark distributions4.1 Spin stru
tureMultiparton distributions have a nontrivial spin stru
ture be
ause the polarizations ofdi�erent partons 
an be 
orrelated among themselves, even in an unpolarized proton. Inthe following two se
tions we �rst investigate some general properties of spin 
orrelationsbetween two quarks and then show that they have observable 
onsequen
es in multiples
attering 
ross se
tions. We will en
ounter several examples for parton spin 
orrelationsin se
tion 5.2.2.4.1.1 Spin de
ompositionLet us �rst take a 
loser look at the spin dependen
e of the two-quark distributions Fa1;a2introdu
ed in (2.86), making use of rotation and parity invarian
e. We always assume thatthe hadron is unpolarized, i.e. that the matrix element (2.86) is averaged over the hadronspin. The simplest 
ases are the distributionsFq;q(xi;ki;y) = fq;q(x1; x2;k21;k22;k1k2;k1y;k2y;y2) ;F�q;�q(xi;ki;y) = f�q;�q(x1; x2;k21;k22;k1k2;k1y;k2y;y2) ; (4.1)whi
h are parity even, i.e. s
alar fun
tions. By 
ontrast, the distributions Fq;�q and F�q;qare parity odd, i.e. pseudos
alar fun
tions. Their general form isFq;�q(xi;ki;y) = �jj0kj1yj0 f 1q;�q + �jj0kj2yj0 f 2q;�q + �jj0kj1kj02 f 3q;�q ;F�q;q(xi;ki;y) = �jj0kj1yj0 f 1�q;q + �jj0kj2yj0 f 2�q;q + �jj0kj1kj02 f 3�q;q ; (4.2)where f1, f2 and f3 are s
alar fun
tions with the same arguments as in (4.1). The s
alarfun
tions are in general neither even nor odd in ki or y sin
e their dependen
e on k1y, k2yand k1k2 is not 
onstrained by symmetry. Note that the three two-dimensional ve
tors{ 84 {



y, k1 and k2 are linearly dependent, so that the three 
ross produ
ts in (4.2) are linearlydependent as well. Expressing e.g. y as a linear 
ombination of k1 and k2 one obtains�jj0kj1yj0 = � k21 (k2y)� (k1k2)(k1y)k21k22 � (k1k2)2 �jj0kj1kj02 ;�jj0kj2yj0 = k22 (k1y)� (k1k2)(k2y)k21k22 � (k1k2)2 �jj0kj1kj02 (4.3)and 
an thus write Fq;�q as �jj0kj1kj02 times a single s
alar fun
tion. However, that s
alarfun
tion is singular when k1 and k2 be
ome 
ollinear, as is evident from the denominatorsin (4.3). To avoid su
h arti�
ial singularities, one 
an use (4.2) if it is ne
essary to makethe appearan
e of �jj0 expli
it.Using that 12(1� 
5) proje
ts on quarks with de�nite heli
ity, one 
an readily identifythe 
ombinations of quark polarizations that are des
ribed by the above fun
tions. In as
hemati
 notation one has Fq;q $ q+1 q+2 + q�1 q�2 + q+1 q�2 + q�1 q+2 ;F�q;�q $ q+1 q+2 + q�1 q�2 � q+1 q�2 � q�1 q+2 ;Fq;�q $ q+1 q+2 � q�1 q�2 � q+1 q�2 + q�1 q+2 ;F�q;q $ q+1 q+2 � q�1 q�2 + q+1 q�2 � q�1 q+2 ; (4.4)where the supers
ript in q� denotes the quark heli
ity. The distribution F�q;�q thusdes
ribes the degree to whi
h the two quark heli
ities are aligned rather than antialigned,whereas Fq;�q and F�q;q des
ribe the 
orrelation between the heli
ity of one of the quarksand one of the 
ross produ
ts in (4.2).To illustrate that spin 
orrelations between two partons need not be small, let us
onsider the simple 
ase of a SU(6) symmetri
 three-quark wave fun
tion of the proton.Its spin-
avor part reads1p6 �ju+u�d+i+ ju�u+d+i � 2ju+u+d�i� ; (4.5)where + and � respe
tively indi
ate that the quark spin is aligned and antialigned withthe proton spin. As is well known, this wave fun
tion gives �u=u = 2=3 and �d=d = �1=3for the longitudinal polarization of u and d quarks, whi
h reprodu
es at least the trend ofwhat is empiri
ally found for the lowest x moments of the polarized quark densities. Fortwo-quark distributions one �ndsF�u;�u=Fu;u = 1=3 ; F�u;�d=Fu;d = �2=3 (4.6)and thus an appre
iable 
orrelation between the longitudinal polarizations of the quarks.Of 
ourse, the study of a three-quark wave fun
tion tells us little about partons withx � 10�2 or smaller, whi
h are of parti
ular relevan
e for LHC phenomenology. To theextent that they are known, polarized single-parton densities in this x range are small
ompared with their unpolarized 
ounterparts, whi
h means that there is only a weakspin 
orrelation between a small-x quark and the proton as a whole. This is not too{ 85 {



surprising, given that a small-x quark and the proton are far apart in phase spa
e. Itdoes however not imply small spin 
orrelations between two quarks that have small but
omparable momentum fra
tions x1 � x2 and are thus 
loser in phase spa
e. How largesu
h 
orrelations are is an important open question.The distributions de�ned with one or two tensor operators OjÆq are asso
iated withtransverse quark polarization, sin
e 12(
++ sji�j+
5) proje
ts on quarks with a transversespin ve
tor sj. We now dis
uss their parametrization in terms of s
alar or pseudos
alarfun
tions. Let us begin with F j�q;Æq and F jÆq;�q, whi
h transform like two-dimensionalve
tors. They 
an hen
e be written as a sum of three s
alar fun
tions that are respe
tivelymultiplied by yj , kj1 and kj2. Only two of these fun
tions are independent be
ause of thelinear dependen
e of the three ve
tors. A minimal parametrization is obtained by takingyj and ~yj = �jj0yj0 (4.7)as basis ve
tors. This givesF j�q;Æq(xi;ki;y) = yjMf�q;Æq + ~yjMg�q;Æq ;F jÆq;�q(xi;ki;y) = yjMfÆq;�q + ~yjMgÆq;�q ; (4.8)where we have inserted the proton mass M on the r.h.s. so that f and g have the samemass dimension as F . Here and in the following we denote s
alar fun
tions by f andpseudos
alar ones by g. The latter 
an be represented in the same way as Fq;�q. If onewants to avoid pseudos
alar fun
tions, one 
an repla
e the basis ve
tor ~yj bykjy = (k1 + k2)j � (k1 + k2)yy2 yj : (4.9)Sin
e both ~y and ky are orthogonal to y, they must be proportional to ea
h other, andexpli
itly one �nds ~yj = y2 �ll0(k1 + k2)ly l0y2 (k1 + k2)2 � [(k1 + k2)y ℄2 kjy : (4.10)If one inserts this into (4.8) then kjy is multiplied by s
alar fun
tions, whi
h are howeversingular when k1 + k2 and y be
ome 
ollinear. One 
ould repla
e k1 + k2 in (4.9) byanother linear 
ombination of k1 and k2, but this would only move the singularities to adi�erent part of phase spa
e.The distributions F jq;Æq and F jÆq;q transform like axial ve
tors, so that one hasF jq;Æq(xi;ki;y) = ~yjMfq;Æq + yjMgq;Æq ;F jÆq;q(xi;ki;y) = ~yjMfÆq;q + yjMgÆq;q : (4.11)A de
omposition in terms of s
alar fun
tions 
an be obtained by repla
ing yj with �jj0kjy.The tensor distribution F jj0Æq;Æq 
an �nally be written asF jj0Æq;Æq(xi;ki;y) = Æjj0fÆq;Æq + �2yjyj0 � Æjj0y2�M2f tÆq;Æq+ �yj~yj0 + ~yjyj0�M2gsÆq;Æq + �yj~yj0 � ~yjyj0�M2gaÆq;Æq : (4.12)
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Noti
e that the four basis tensors tjj0p in this de
omposition are orthogonal to ea
h other,i.e. tjj0p tjj0q / Æpq with p; q = 1; 2; 3; 4. Contra
ting (4.12) with the transverse polarizationve
tors sj1sj02 of the quarks, we see in parti
ular that fÆq;Æq goes with s1s2 and thus des
ribesthe 
orrelation between the two transverse quark spins.In summary, we 
an represent the spin stru
ture of Fa1;a2(xi;ki;y) by eight s
alarand eight pseudos
alar fun
tions for ea
h 
ombination of quark 
avors. The pseudos
alarfun
tions 
an be traded for s
alar ones, whi
h have however arti�
ial singularities forparti
ular values of the ve
tors y, k1 and k2.If one integrates over transverse momenta to obtain 
ollinear distributions, one �ndsF�q;q(xi;y) = Fq;�q(xi;y) = 0 (4.13)be
ause one 
annot 
onstru
t a pseudos
alar fun
tion with only one ve
tor y. Likewise,the fun
tions g in (4.8), (4.11) and (4.12) integrate to zero, so that we are left withFq;q(xi;y) = fq;q ; F�q;�q(xi;y) = f�q;�q ;F jq;Æq(xi;y) = ~yjMfq;Æq ; F j�q;Æq(xi;y) = yjMf�q;Æq ;F jÆq;q(xi;y) = ~yjMfÆq;q ; F jÆq;�q(xi;y) = yjMfÆq;�q ;F jj0Æq;Æq(xi;y) = Æjj0fÆq;Æq + �2yjyj0 � Æjj0y2�M2f tÆq;Æq : (4.14)The eight fun
tions f on the right-hand side now depend on x1, x2 and y2 and are obtainedfrom their 
ounterparts in (4.1), (4.8), (4.11) and (4.12) by integration over k1 and k2.The above de
ompositions are given for distributions in a right-moving proton. For aleft-moving proton one has to 
hange the sign of �jj0 and hen
e of ~y and of all pseudos
alarfun
tions, see our remark below (2.100). Analogous de
ompositions 
an be written downfor distributions Fa1;�a2 , F�a1 ;a2 , F�a1;�a2 that involve antiquarks, as well as for interferen
edistributions Ia1; �a2 and I�a1;a2 .Symmetry properties The terms appearing in the de
ompositions (4.1) to (4.14) are
onsistent with rotation and parity invarian
e. Let us now dis
uss their symmetry proper-ties. Using that the operators in (2.80) satisfy O�a(yi; zi) = Oa(yi;�zi) one �nds that thedistributions Fa1;a2(xi;ki;y) are real valued,F �a1;a2(xi;ki;y) = Fa1;a2(xi;ki;y) : (4.15)For distributions that are purely de�ned in momentum or position spa
e, see (2.9) and(2.12), this implies F �a1 ;a2(xi;ki; ri) = Fa1;a2(xi;ki;�ri) ;F �a1;a2(xi;zi;y) = Fa1;a2(xi;�zi;y) : (4.16)These fun
tions are in general not real-valued, nor are the s
alar or pseudos
alar fun
tionsone 
an introdu
e to parameterize them in analogy to (4.1) to (4.12).For the symmetry properties of parton distributions with respe
t to time reversal, theWilson lines appearing in their de�nition are essential. As we argued in se
tion 3.2.1,{ 87 {



multiparton distributions involve the past pointing Wilson lines W given in (3.13). Upontime reversal these turn into the future pointing Wilson linesW 0 in (3.17). A distribution is
alled T even (odd) if it is even (odd) under time reversal without taking into a

ount this
hange of Wilson lines. The time reversal invarian
e of strong intera
tions thus implies thatT odd distributions are only nonzero thanks to Wilson line e�e
ts; a prominent examplefrom spin physi
s is the Sivers distribution fun
tion [122℄. However, time reversal doesfor
e distributions to vanish if they are T odd and have Wilson lines that are invariantunder time reversal. This is the 
ase for the Wilson lines along a �nite lightlike path thatappear in 
ollinear single-parton densities and in the 
ollinear two-parton distributions 1Fin the 
olor singlet se
tor, as we dis
ussed in se
tion 3.5. By 
ontrast, 
ollinear 
olor o
tetdistributions 8F , as well as interferen
e distributions 1I and 8I, have Wilson lines that do
hange under time reversal.After these preliminaries we 
an now investigate the time reversal properties of two-quark distributions. We �ndFWa1;a2(xi;ki;y) = �a1�a2 FW 0a1;a2(xi;ki;�y) (4.17)with sign fa
tors �q = +1 and ��q = �Æq = �1, where the supers
ripts indi
ate the type ofWilson line in the matrix element de�ning the distributions. The relations (4.15) to (4.17)also hold for the distributions Fa1 ;�a2 , F�a1;a2 , F�a1;�a2 with antiquarks and for the interferen
edistributions Ia1; �a2 , I�a1;a2 .Sin
e the s
alar fun
tions parameterizing FWa1;a2(xi;ki;y) are in general neither evennor odd in y, they are not T even or odd either. The s
alar fun
tions that parameterizethe 
ollinear distributions in (4.14) are however even in y. As a 
onsequen
e, F j�q;Æq(xi;y)and F jÆq;�q(xi;y) are T odd and all other distributions in (4.14) are T even. For the 
olorsinglet se
tor this implies 1F j�q;Æq(xi;y) = 1F jÆq;�q(xi;y) = 0 ; (4.18)whereas the 
orresponding 
olor-o
tet distributions 8F j�q;Æq(xi;y) and 8F jÆq;�q(xi;y) 
anbe nonzero due to the Wilson lines appearing in their de�nitions. Analogous statementshold for the 
orresponding distributions with one or two antiquarks. Collinear interferen
edistributions 1I and 8I are not restri
ted by time reversal invarian
e.4.1.2 Spin e�e
ts in gauge boson pair produ
tionIn this se
tion we show that the quark spin 
orrelations dis
ussed in the previous se
tionhave observable 
onsequen
es in multiparton intera
tions. As we did earlier in this paper,we 
onsider the produ
tion of a pair of gauge bosons 
, Z or W . We in
lude the de
ayof ea
h boson into a lepton pair, whi
h 
arries information on the spin state of the gaugeboson. While these pro
esses have a rather small 
ross se
tion, they may be suited forexperimental studies due to their 
lean �nal-state signature. We do not present a fullanalysis here, but highlight the e�e
ts of sele
ted parton spin 
orrelations.For simpli
ity we limit our attention to those distributions that do not involve expli
itve
tors y or ~y on the r.h.s. of the de
ompositions in the previous se
tion, i.e. to Fq;q, F�q;�q{ 88 {



and the term Æjj0fÆq;Æq in F jj0Æq;Æq. For de�niteness we analyze the graph of �gure 6a, withtwo quarks emitted from the right-moving proton and two antiquarks from the left-movingone. We approximate the transverse momenta qi of the bosons by zero when 
al
ulatingtheir produ
tion and de
ay, as deviations from this limit are suppressed by powers of qT =Q.The partoni
 
ross se
tion for the produ
tion of a lepton pair 
an be written as the produ
tof a produ
tion tensor of the boson and a tensor for its de
ay,�̂a;�a = (�̂a;�a)��0 D��0 ; (4.19)where � is asso
iated with the boson in the amplitude and �0 with the one in the 
omplex
onjugate amplitude. For unpolarized or longitudinally polarized quarks one easily �nds(�̂q;�q)��0 = �(�̂�q;��q)��0 = �Ag��0? �Bi���0? ;(�̂�q;�q)��0 = �(�̂q;��q)��0 = �Bg��0? �Ai���0? ; (4.20)with 
oeÆ
ients A and B depending on kinemati
 variables and the ve
tor and axial-ve
tor 
ouplings of the gauge boson to the quark q. In the 
ase of a photon one hasB = 0. The transverse tensors g��0? and ���0? have as nonzero 
omponents g11? = g22? = �1and �12? = ��21? = 1. From (4.20) it follows that the overall 
ross se
tion depends on the
ombinationsFq;q F�q;�q + F�q;�q F��q;��q and Fq;q F��q;��q + F�q;�q F�q;�q (4.21)of multiparton distributions. The 
ontra
tion of g��0? and ���0? with the ve
tor boson de
aymatri
es results in di�erent angular distributions of the leptons. If one integrates over theirangles then only the 
ontribution from g��0? remains. We thus �nd that nonzero values ofF�q;�q and F��q;��q modify both the total rate and the lepton angular distribution 
omparedwith the 
ontribution from the unpolarized term Fq;q F�q;�q.We now turn to transverse quark polarization. In this 
ase the produ
tion tensorfrom ea
h hard s
attering depends also on the transverse indi
es asso
iated with the quarkpolarization. We re
all that the quark �eld bilinears �qi�+j
5q are 
hiral odd, so that inthe heli
ity basis they 
orrespond to quarks or antiquarks with opposite heli
ities in thes
attering amplitude and its 
onjugate. As a result transverse quark polarization doesnot 
ontribute to the produ
tion of a W boson. Keeping only the term Æjj0fÆq;Æq in thede
omposition (4.12) of F jj0Æq;Æq and the 
orresponding term in the de
omposition of F kk0Æ�q;Æ�q,one �nds for the neutral bosons 
 or ZÆjj0Ækk0 (�̂jk1;Æq;Æ�q���0 (�̂j0k02;Æq;Æ�q���0 / g��? g�0�0? + g��0? g�0�? � g��0? g��0? ; (4.22)where the polarization indi
es �; �0 belong to the boson with momentum q1 and the indi
es�; � 0 to the boson with momentum q2. We observe that the polarization indi
es of the twobosons are entangled in (4.22). Contra
ting with the well-known boson de
ay matri
es,one obtains an azimuthal dependen
e like 
os(2'), where ' is the relative azimuthal anglebetween the two leptons (as opposed to the antileptons).13 We thus obtain the important13Sin
e we are working in the approximation q1 = q2 = 0, the azimuthal angles for the leptons of bothboson de
ays are naturally de�ned w.r.t. the z axis in the pp 
enter-of-mass.{ 89 {
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Figure 28. Parton-level graphs for q�q annihilation into four leptons. Further graphs are obtainedby inter
hanging the leptons `1 and `2 together with the 
orresponding antileptons in a and 
, andby reversing the 
harge 
ow of the 
entral fermion line in 
. Graph b requires at least one of theprodu
ed bosons to be a W .result that a 
orrelation between transverse quark and antiquark spins, as expressed bythe distribution fÆq;Æq in (4.12), leads to a 
orrelation between the de
ay planes of the twoprodu
ed bosons.It is instru
tive to rewrite the produ
tion tensors in terms of boson polarization ve
tors�+ = �(0; 1; i; 0)=p2 and �� = (0; 1;�i; 0)=p2, whi
h respe
tively 
orrespond to angularmomentum +1 or �1 along the z axis. One �nds�g��0? = ��+ ���0+ + ��� ���0� ; �i���0? = ��+ ���0+ � ��� ���0� (4.23)and 12�g��? g�0�0? + g��0? g�0�? � g��0? g��0? � = ��+ ���0� ��� ���0+ + ��� ���0+ ��+ ���0� : (4.24)We 
an easily understand why ea
h boson is transversely polarized. Re
all that a masslessquark and antiquark 
an only annihilate into a ve
tor boson if their heli
ities are 
oupledto �1. Sin
e we negle
t the transverse momentum of the bosons, their angular momentumalong z must also be �1. The tensors g��0? and i���0? in (4.23) 
orrespond to the sameboson polarization in amplitude and 
onjugate amplitude and thus do not give rise to anazimuthal dependen
e in the leptoni
 de
ays, but they do give di�erent distributions in thepolar angles of the leptons, or equivalently in their rapidities. By 
ontrast, (4.24) involvesthe interferen
e between Jz = 1 and �1 for ea
h of the bosons, whi
h readily translatesinto the 
os(2') dependen
e already mentioned.It is natural to expe
t that spin 
orrelations between partons also lead to angular
orrelations in the �nal state for other double-s
attering pro
esses, su
h as the produ
tionof two dijets. In this 
ase two-parton distributions involving linear gluon polarization 
an
ontribute as well. We note that in the analysis of [9℄ un
orrelated dijet planes were takenas a 
hara
teristi
 feature of the double-s
attering me
hanism. This is only adequate ifparton spin 
orrelations in the proton are negligible.Returning to four-lepton produ
tion, let us 
ompare our results for double hard s
at-tering with the 
ontribution from a single q�q annihilation, remaining in kinemati
s whereq1 and q2 
an be negle
ted 
ompared with Q. The 
orresponding Feynman graphs involveeither quark ex
hange in the t or u 
hannel, or an intermediate boson in the s 
hannelin 
ase one or both �nal-state bosons are 
harged, see �gure 28a and b. In addition, the{ 90 {



four-lepton �nal state 
an be produ
ed by graphs as in �gure 28
, where only one leptonpair 
omes from the de
ay of a ve
tor boson. Su
h graphs were re
ently dis
ussed andtermed \single-resonan
e graphs" in [13℄. They should be taken into a

ount unless ea
hlepton pair has an invariant mass inside the Z or W mass peaks.The dependen
e of the single-s
attering 
ross se
tion on the azimuthal angle ' betweenthe leptons 
an be dedu
ed from symmetry arguments sin
e we set q1 and q2 to zero in theparton-level pro
ess. Let us assume that the initial q�q pair has total angular momentumJz = 1 along the z axis. This must then hold for both the s
attering amplitude and its
onjugate, sin
e a single quark or antiquark in an unpolarized proton is unpolarized. Oneof the lepton pairs originates from the de
ay of a gauge boson and is thus in a partialwave with J = 1. The possible 
ombinations of (Jz1 ; Jz2 ) for the two lepton pairs are thus(2;�1), (1; 0), (0; 1) and (�1; 2), where the �rst and last possibilities are only possiblefor single-resonan
e graphs. In the 
ross se
tion this gives a ' independent term and amodulation with 
os' from all graphs, as well as modulations with 
os(2') and 
os(3')from single-resonan
e graphs. The same angular terms are obtained when the initial q�qpair has Jz = �1, whereas the 
on�guration where the pair has Jz = 0 de
ouples inthe hard-s
attering graphs of �gure 28. In summary, the 
os(2') modulation we found inthe double-s
attering me
hanism 
ompetes with single-s
attering 
ontributions involvingsingle-resonan
e graphs.14 One may hope that the two sour
es of 
os(2') dependen
e
an be separated by a more detailed analysis | making for instan
e use of the fa
t thatthe single-resonan
e graphs also give a 
os(3') term | but this issue must be left to adedi
ated study.4.2 Mellin moments and latti
e 
al
ulationsIf one takes Mellin moments in x1 and x2 of the 
olor singlet distributions 1F , then thelight-
one operators Oa in their de�nition turn into lo
al operators. The 
orrespondingmoments of single-parton densities 
an be 
al
ulated in latti
e QCD, and we will nowinvestigate to whi
h extent the same 
an be done for two-parton distributions. From ourdis
ussion in se
tion 3.5 it follows that the Mellin moments of 
olor o
tet distributions 8Fdo not involve lo
al operators be
ause of their Wilson line stru
ture. We therefore limitourselves to the 
olor singlet se
tor.Using the relation (2.88) and its analogs for Fa1;�a2 and F�a1;�a2 , one obtains doubleMellin momentsMn1;n2a1;a2 (y2) = Z 10 dx1 xn1�11 Z 10 dx2 xn2�12 h1Fa1;a2(x1; x2;y) + (�1)n1 �a11F�a1;a2(x1; x2;y)+ (�1)n2 �a21Fa1;�a2(x1; x2;y) + (�1)n1+n2 �a1�a21F�a1;�a2(x1; x2;y)i= 2(p+)1�n1�n2 Z dy�
p��O+���+a1 (0)O+���+a2 (y)��p�y+=0 (4.25)with �q = �Æq = +1 and ��q = �1. For ea
h label Æq the moments Mn1;n2a1;a2 and the 
orre-sponding operator on the r.h.s. 
arry an additional transverse Lorentz index not displayed14This was not realized in [47℄, where single-resonan
e graphs were not taken into a

ount.
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in (4.25). On the r.h.s. we have the twist-two quark operators familiar from the operatorprodu
t expansion,O�1����nq (y) = T(�1����n) S(�1����n) �q(y)
�1 iD$�2(y) � � � iD$�n(y) q(y) ;O�1����n�q (y) = T(�1����n) S(�1����n) �q(y)
�1
5 iD$�2(y) � � � iD$�n(y) q(y) ;O��1����nÆq (y) = T(��1����n) A(��1) S(�1����n) �q(y)i���1
5 iD$�2(y) � � � iD$�n(y) q(y) ; (4.26)where D$�(y) = 12(�!� � � �) + igA�(y) is the antisymmetrized 
ovariant derivative. S, Aand T respe
tively denotes symmetrization, antisymmetrization and subtra
tion of tra
esin the indi
ated indi
es. It is understood that the 
omposite operators Oa1(y) and Oa2(0)in (4.25) are ea
h renormalized in a standard manner, e.g. in the MS s
heme. As long asthey are taken at a �nite spa
elike distan
e y, no further ultraviolet divergen
es appear.The operators Oq and O�q mix of 
ourse with their gluon 
ounterparts Og and O�gunder renormalization. We shall return to the renormalization of 
ollinear multipartondistributions in se
tion 5.3.2.Let us rewrite the r.h.s. of (4.25) in a manifestly 
ovariant form. We �rst introdu
ethe 
ovariant de
omposition
p��O�1����n2q (0)O�1 ����n1q (y)��p� = 2p�1 � � � p�n2 p�1 � � � p�n1 hOn2q On1q i(py; y2) + � � � ; (4.27)where the ellipsis represents terms with un
ontra
ted ve
tors y� and terms involving themetri
 tensor g�� . The redu
ed matrix element hOn2q On1q i 
an only depend on the invariantspy and y2. We then 
hoose a frame where p = 0 and y+ = 0, so that py = p+y� andy2 = �y2. This allows us to write (4.25) in the desired formMn1;n2q;q (�y2) = Z d(py) hOn2q On1q i(py; y2) : (4.28)A 
orresponding representation is readily obtained forMn1;n2�q;�q. For one or two polarizationlabels Æq the analogs of (4.27) involve the tensor stru
tures in the de
omposition (4.14) ofthe two-quark distributions.The matrix element in (4.27) and its 
ounterparts with polarized quarks 
an be eval-uated on a latti
e in Eu
lidean spa
etime if one 
hooses y0 = 0. This is rather similarto latti
e studies of transverse-momentum dependent single-quark distributions [123, 124℄,with the main di�eren
e that the operators taken at di�erent spa
etime points are singlequark �elds in that 
ase, whereas they are gauge invariant bilinear operators here. Therestri
tion y0 = 0 entails (py)2�y2 = (~p~y)2~y2 � ~p2 ; (4.29)where ~p and ~y denote the spa
elike three-ve
tors. Thus, the integral over all py at �xedy2 on the r.h.s. of (4.28) 
an unfortunately not be evaluated from results on a dis
reteEu
lidean latti
e, where the maximal momentum is �xed by the latti
e spa
ing. This is{ 92 {




ompletely analogous to the single-quark 
ase, as dis
ussed in [124℄. Despite this limita-tion of prin
iple, we hope that latti
e data in a 
ertain range of py and y2 will in thefuture provide genuinely nonperturbative information about the behavior of multi-partondistributions.We note that a latti
e 
al
ulation has been reported in [125℄ for the 
orrelation fun
tionof two ve
tor 
urrents at equal time in a proton at rest. This 
orresponds to settingn1 = n2 = 1 and py = 0 in (4.27). The redu
ed matrix element hOn2a2 On1a1 i at py = 0 isdire
tly related to an integral of the two-quark 
orrelation fun
tion �(k1; k2; r) de�ned in(2.75). The relative plus-momentum r+ is integrated over in that 
ase, rather than being setto zero as required for the distributions F (xi;ki; r) that appear in double hard-s
attering
ross se
tions.4.3 Relation with generalized parton distributionsIn se
tion 2.1.5 we derived an approximate relation between multi- and single-parton distri-butions in a model theory with s
alar partons. We now extend this relation to distributionsfor two quarks or antiquarks, taking into a

ount the di�erent 
ombinations of fermionnumber and 
olor. For the time being we negle
t aspe
ts related to the proton spin, whi
hwill be dis
ussed in se
tion 4.3.1. The distributions we will deal with are1Fa1;a2 = 

(�q3�a2 q2) (�q4�a1 q1)�� ; 1~Fa1;a2 = 

(�q4�a2 q2) (�q3�a1 q1)�� ;1Fa1;�a2 = 

(�q2��a2 q3) (�q4�a1 q1)�� ; 1~Fa1;�a2 = 

(�q4��a2 q3) (�q2�a1 q1)�� ;1Ia1;�a2 = 

(�q2��a2 q4) (�q3�a1 q1)�� ; 1~Ia1;�a2 = 

(�q3��a2 q4) (�q2�a1 q1)�� : (4.30)The general result (2.69) for n s
alar partons readily 
arries over to the two-quarkdistributions 1F :1Fa1;a2(xi;zi;y) � Z d2b fa2�x2;z2; b+ 12x1z1� fa1�x1;z1; b+ y � 12x2z2� ; (4.31)where the impa
t parameter dependent single-quark distributions fa(x;z; b) are de�ned inanalogy to the s
alar 
ase in (2.64) and (2.65). Setting z1 = z2 = 0 in (4.31), one obtains
ollinear distributions on both sides and has the probability interpretation represented in�gure 4. As a 
ounterpart to (2.72) one 
an transform the relation (4.31) into transverse-momentum spa
e, where it reads1Fa1;a2(xi;ki; r) � fa2�x2;k2 � 12x2r;�r� fa1�x1;k1 � 12x1r; r� (4.32)with distributions fa(x;k;�) de�ned in analogy to (2.66). Integrating over ki we obtainthe relation re
ently given in [59℄. Relations analogous to (4.31) and (4.32) are obtainedfor 1Fa1;�a2 by repla
ing the label a2 with �a2 on both sides.To redu
e 1~F to single-parti
le distributions we 
ould repeat our earlier derivation thatstarted with (2.59). We �nd it more 
onvenient to work in the transverse-momentum ratherthan impa
t parameter representation. We insert a 
omplete set jXi of intermediate states
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between the 
olor singlet operators (�q4�a2 q2) and (�q3�a1 q1) and assume that single-protonintermediate states dominate. We then have1~Fa1;a2(xi;ki; r) =XX 2p+Z dy�d2y eiyr � 2Yi=1 Z dz�i d2zi(2�)3 eixiz�i p+�iziki�� 
p+;p ��Oa2(y; z2) ��X� 
X ��Oa1(y; z1) �� p+;p� ���p=0� Z dp0+ d2p02p0+ (2�)3 2p+Z dy�d2y eiyr � 2Yi=1 Z dz�i d2zi(2�)3 eixiz�i p+�iziki�� 
p+;p ��Oa2(y; z2) �� p0+;p0� 
p0+;p0 ��Oa1(y; z1) �� p+;p� ���p=0 : (4.33)After an appropriate shift of the position arguments in the bilinear �eld operators and a
hange of integration variables from y; z1; z2 to u0 = 12 (z1 � z2), u1 = 12 (z1 + z2) + y andu2 = 12(z1 + z2)� y this gives1~Fa1;a2(xi;ki; r) � p+p0+ Z dp0+ d2p0 � 2Yi=0 Z du�i d2ui(2�)3 � eiu�0 (p0�[1�x1+x2℄ p)+�iu0 (p0�k1+k2)� ei(u�1 +u�2 )(x1+x2)p+=2�iu1(k1+k2�r)=2�iu2(k1+k2+r)=2� 
p+;p ��Oa2(0; u2) �� p0+;p0� 
p0+;p0 ��Oa1(0; u1) �� p+;p� ���p=0 : (4.34)The integrations over u�0 and u0 �x the momentum p0 of the intermediate state. In parti
-ular, its plus-momentum is p0+ = (1�x1+x2)p+, whi
h re
e
ts that the operator �q3�a1 q1des
ribes the emission of a quark with plus-momentum x1p+ and the reabsorption of aquark with plus-momentum x2p+. The matrix elements in the approximation (4.34) arethus given by generalized parton distributions (GPDs), whi
h play a prominent role in thedes
ription of hard ex
lusive pro
esses, see [126{128℄ and the reviews [129{131℄. To evalu-ate the unapproximated form in (4.33) one would need the 
orresponding matrix elementsfor all transitions p! X. This is obviously impra
ti
al, although for sele
ted transitions tosingle baryons, e.g. for p! �(1232), some information 
an be obtained [129, 131℄. GPDsare de�ned byfa(x; �;k;p;p0) = Z dz�2� eixz�P+ Z d2z(2�)2 e�ikP 
p0+;p0 ��Oa(0; z) �� p+;p� ; (4.35)where P = 12(p+ p0) and �a is one of the matri
es in (2.81). The parameter� = p+ � p0+p+ + p0+ (4.36)is often 
alled skewness. One �nds that k is the average transverse momentum of the twoquark legs and x their average plus-momentum divided by the average plus-momentum P+of the proton states. For ease of notation we do not indi
ate the polarization states of theprotons, whi
h are in general di�erent. A parameterization of the matrix elements (4.35){ 94 {



for spin 1=2 hadrons in terms of s
alar fun
tions 
an be found in [132℄. Invarian
e underthe transverse boost spe
i�ed by v ! v� (v+=P+)P gives the relation fa(x; �;k;p;p0) =fa(x; �;k � xP ;�12�; 12�) with � = (1 + �)p0 � (1� �)p. Abbreviatingfa(x; �;k;�) = fa(x; �;k;�12�; 12�) (4.37)we 
an thus rewrite the relation (4.34) as1~Fa1;a2(xi;ki;y) � 1 + �1� � fa2�x;��; 12(k+ + r + xk�); (1 + �)k��� fa1�x; �; 12(k+ � r + xk�);�(1 + �)k�� ; (4.38)where k� = k1 � k2 andx = x1 + x22� x1 + x2 ; � = x1 � x22� x1 + x2 : (4.39)In 
omplete analogy one derives1Ia1;�a2(xi;ki; r) � 1 + �1� � f�a2�x;��; 12(k+ + r + xk�); (1 + �)k��� fa1�x; �; 12(k+ � r + xk�);�(1 + �)k�� ; (4.40)where the generalized parton distributions f�a for antiquarks are de�ned by repla
ingOa(0; z) with O�a(0; z) in (4.35). One �ndsf�a(x; �;k;�) = �a fa(�x; �;�k;�) (4.41)with the same sign fa
tors �q = �Æq = +1 and ��q = �1 that appeared in (2.88). We alsonote that generalized parton distributions with positive and negative skewness parameterare easily related to ea
h other by taking the 
omplex 
onjugate of (4.35).For the distributions 1~Fa1;�a2 and 1~Ia1;�a2 we obtain1~Fa1;�a2(xi;ki; r) � 1 + �1� � f�a2��x;��;�12(k� + r + xk+); (1 + �)k+�� fa1�x; �; 12(k� � r + xk+);�(1 + �)k+�1~Ia1;�a2(xi;ki; r) � 1 + �1� � f�a2�x;��; 12(k� + r + xk+); (1 + �)k+�� fa1�x; �; 12(k� � r + xk+);�(1 + �)k+� ; (4.42)where we have again k� = k1 � k2 but nowx = x1 � x22� x1 � x2 ; � = x1 + x22� x1 � x2 : (4.43)In this 
ase we have jxj � �, whi
h des
ribes the emission of a quark-antiquark pair. Again,this 
ould be anti
ipated from �gure 5 sin
e now the parton lines 
ombined to 
olor singlets{ 95 {



are f12g and f34g, with ea
h pair being on the same side of the �nal-state 
ut in the doubleparton distribution.An important di�eren
e between the approximations for 1~F , 1I, 1~I and the one for 1Fgiven in (4.31) is that the generalized distributions on the r.h.s. of (4.38), (4.40) and (4.42)do not redu
e to 
ollinear fun
tions if we integrate over k1 and k2, be
ause these momentaappear in their fourth arguments.The pre
eding derivations 
an easily be extended to distributions des
ribing inter-feren
e between di�erent quark 
avors. The distributions 
orresponding to �gure 7 arede�ned with bilinear operators �d�u or �u�d. For a proton target, the ground state inthe sum over intermediate states inserted between the two operators is then a neutron.Isospin symmetry relates the resulting matrix elements to matrix elements in the proton:hnj �d�ujpi = hpj�u�djni = hpj�u�ujpi � hpj �d�djpi. Under the assumption of SU(3) 
a-vor symmetry one 
an derive similar relations for distributions involving strange quarks[129, 131℄.Although the relation between multiparton distributions and GPDs is an approxima-tion whose a

ura
y is not easy to estimate (and although our 
urrent knowledge of GPDsis far less advan
ed than that of ordinary parton densities) this relation provides opportu-nities to obtain information about multiple intera
tions that is hard to get by other means.One example are the di�erent interferen
e distributions dis
ussed above, whi
h are so farentirely unknown. Perhaps even more important is that GPDs give rather dire
t informa-tion about the distribution of single partons in the impa
t parameter b, whi
h is Fourier
onjugate to a transverse momentum transfer � that 
an be measured in physi
al pro-
esses. This is in stark 
ontrast to the interparton distan
e y in two-parton distributions,whi
h appears as an integration variable in 
ross se
tion formulae like (2.91) and is notdire
tly related to observable kinemati
 quantities. We already mentioned in se
tion 2.6that studies of GPDs give eviden
e for a 
orrelation between the longitudinal momentumand the impa
t parameter of partons in the proton. For values of the momentum fra
tionwhere su
h a 
orrelation is strong, it is hardly plausible that there should be no 
orrelationbetween x1; x2 and y in two-parton distributions, even if there were important 
orre
tionsto approximations like (4.31).4.3.1 Spin 
orrelationsWe now take a 
loser look at the role of the proton spin in the approximate relationbetween double and single parton distributions, whi
h we have glossed over up to now. Forour purpose, a suitable 
hoi
e to des
ribe the spin state of a proton is the light-
one heli
ity� = �12 , whi
h is equal to the usual heli
ity in a frame where the proton plus-momentump+ tends to in�nity (see e.g. [133℄ or [130, se
tion 3.5.1℄). We denote the 
orrespondingmomentum eigenstates by jp+;p; �i.When inserting intermediate proton states between the two 
olor singlet operators ina two-parton distribution for an unpolarized proton, we s
hemati
ally have12 X� 
p+;p; � ��Oa2 Oa1 �� p+;p; ��
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� 12 X�;�0 Z dp0+ d2p02p0+ (2�)3 
p+;p; � ��Oa2 �� p0+;p0; �0� 
p0+;p0; �0 �� Oa1 �� p+;p; �� (4.44)or an analogous relation with states jp+; b; �i of de�nite transverse position. The sum overstates on the r.h.s. thus in
ludes single-parton matrix elements where the proton heli
itydi�ers in the bra and the ket state. Corresponding sums over polarization states shouldhen
e be inserted in the relations (4.31), (4.38), (4.40) and (4.42).To dis
uss the impli
ations of this observation, let us fo
us on the 
ollinear distribution1F (xi; r). At the level of matrix elements we have a relation1Fa1;a2(xi; r) � 12 X�;�0 f�;�0a2 (x2;�r) f�0;�a1 (x1; r) ; (4.45)where the supers
ripts � and �0 of fa denote the proton heli
ities as in (4.44) and anaverage over proton heli
ities is understood in 1F . A standard de
omposition of the spindependen
e of generalized parton distributions involves two distributions H and E forunpolarized quarks and two distributions ~H and ~E for longitudinally polarized quarks.The distribution ~E does not 
ontribute in the 
ase of zero skewness � = 0 we are dealingwith here. Using the 
onventions and the matrix elements for de�nite proton light-
oneheli
ity in eq. (54) of [130℄, we havef++q (x; r) = Hq(x; 0;�r2) ; f��q (x; r) = Hq(x; 0;�r2) ;f�+q (x; r) = r1 + ir22M Eq(x; 0;�r2) ; f+�q (x; r) = �r1 � ir22M Eq(x; 0;�r2) (4.46)andf++�q (x; r) = ~Hq(x; 0;�r2) ; f���q (x; r) = � ~Hq(x; 0;�r2) ;f�+�q (x; r) = 0 ; f+��q (x; r) = 0 ; (4.47)where M is the proton mass and Hq(x; �; t), Eq(x; �; t) and ~Hq(x; �; t) are the usual GPDsde�ned in [130℄. Hq and ~Hq are the respe
tive generalizations of the unpolarized andlongitudinally polarized quark densities q and �q. Changing the basis of the proton spinstates, one 
an see that Eq is related to unpolarized quarks in a transversely polarizedproton [65℄. Inserting (4.46) into (4.45), we get1Fq;q(xi; r) � Hq(x2; 0;�r2)Hq(x1; 0;�r2) + r24M2 Eq(x2; 0;�r2)Eq(x1; 0;�r2) : (4.48)The term with H 
orresponds to the simplest approximation of the two-parton distributionas a produ
t of single-parton distributions, whereas the one with E appears in addition.E des
ribes a 
orrelation between the position of a single quark and the proton spin,and (4.48) shows how su
h a 
orrelation may lead to a 
orrelation between two quarksin an unpolarized proton. It is diÆ
ult to say whether this 
orre
tion term alone alreadyprovides an improved approximation of 1Fq;q(xi; r), but one may take it as an indi
ator
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for the possible departure from a simple fa
torized ansatz that negle
ts all 
orrelations.In 
ases where the 
orre
tion from E is large, it is plausible to expe
t that the fa
torizedansatz involving only H will fail.Applying the same method to the distribution 1F�q;�q, we obtain from (4.47)1F�q;�q(xi; r) � ~H(x2; 0;�r2) ~H(x1; 0;�r2) : (4.49)Again one should be 
autious regarding the validity of this approximation. For the regionof small but similar x1 and x2 we already argued in se
tion 4.1.1 that one may well havesizeable 
orrelations between the longitudinal polarization of two quarks, even if there islittle 
orrelation between the longitudinal polarizations of one quark and the proton as awhole. Conversely, in kinemati
s where the produ
t of quark-proton spin 
orrelations in(4.49) is sizeable it seems natural to assume that quark-quark spin 
orrelations are sizeableas well.5 Perturbatively large transverse momentumSo far we have treated multiple intera
tions as a two-s
ale problem, in whi
h the virtualitiesq21 ; q22 � Q2 de�ne a large s
ale whereas the transverse momenta jq1j, jq2j and the s
ale �of nonperturbative intera
tions are treated as small. We now make a distin
tion betweenthe di�erent s
ales previously treated as small, requiring jq1j � jq2j � qT to be large
ompared with the hadroni
 s
ale �. We thus have a three-s
ale problem 
hara
terized bythe hierar
hy �� qT � Q : (5.1)Large qi implies that at least some of the transverse parton momenta ki and �ki mustbe large. The o

urren
e of partons with large transverse momentum kT 
an be thoughtof as resulting from the perturbative splitting of partons with low kT , whi
h leads to afa
torization formula for transverse-momentum dependent parton distributions in termsof a hard-s
attering kernel and 
ollinear distributions. This signi�
antly adds predi
tivepower sin
e 
ollinear distributions depend on fewer variables than kT dependent ones.Example graphs for the 
ase of a single-quark distribution are shown in �gure 29.The des
ription based on su
h graphs was extensively used for spin e�e
ts and azimuthal
orrelations in Drell-Yan produ
tion [134{136℄ and semi-in
lusive DIS in [117, 136, 137℄,building on the seminal work in [48, 118℄.This des
ription 
arries over to the 
ase of two-parton distributions and is dis
ussedin se
tion 5.1. In the subsequent se
tions we investigate a 
ompeting me
hanism for thegeneration of high transverse momentum, in whi
h the two partons with momentum fra
-tions x1 and x2 originate from the perturbative splitting of a single parton. We will seethat this me
hanism has profound 
onsequen
es for the theoreti
al des
ription of multipleintera
tions.
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a baFigure 29. Graphs for a single-parton distribution f(x;k) at perturbatively large k. Here andin the following it is understood that lines emerging from the lower blob have virtualities of order� � jkj. The eikonal line in graph b results from the Wilson lines in the de�nition of f(x;k), seese
tion 3.2.1.5.1 Ladder graphs at large yThe single and double ladder graphs in �gure 30 are natural generalizations of the laddergraph for a single parton density in �gure 29a. In the following we 
on
entrate on theseladder graphs, bearing in mind that in a 
ovariant gauge there are further graphs witheikonal lines as in �gure 29b. Those do not 
hange the 
on
lusions we obtain for the laddergraphs. Indeed, they are absent in the axial gauge vA = 0, where the Wilson lines in thede�nition of parton distributions redu
e to unity (apart from pie
es at in�nity, as dis
ussedat the end of se
tion 3.2.1).When interpreting the graphs in �gures 29 and 30 it is important to bear in mind thatthey represent a separation of dynami
s at di�erent s
ales, with lines atta
hed to the lowerblob having virtualities of order �, whereas propagators in the upper part of the graphs arefor virtualities of the order of the large transverse momentum qT . An important feature of�gure 30 is that no hard gluons are ex
hanged between the parton lines that have di�erentmomentum fra
tions x1 and x2 at the top of the graphs. The requirement that both l� 12rand l+ 12r have small virtualities for
es jrj to be of order �, whi
h translates into interpartondistan
es jyj of hadroni
 size in the Fourier transformed distributions F (xi;ki;y).
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Figure 30. Ladder graphs for the region of small r with large k1 (a) or large k1 and k2 (b). Thepower behavior refers to F (xi;ki; r) and is dis
ussed in the text. Here and in the following we omitthe dashed line that indi
ates the �nal-state 
ut as in �gure 29.
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5.1.1 Power behaviorLet us �rst investigate the general power behavior asso
iated with ladder graphs. In thefollowing we refer to qT as the hard s
ale (
ompared with �), keeping in mind that qT isstill mu
h smaller than Q.We pro
eed in a similar way as in se
tion 2.4. In parti
ular, we use the modi�edparton 
orrelation fun
tions �0n, whi
h 
ontain a fa
tor 1=pl+ for ea
h quark or antiquarkof momentum l and in whi
h pairs of quark �elds are 
ontra
ted with a Dira
 matrix �afrom (2.81). For the transition from k to m partons in the t 
hannel, we 
orrespondinglyuse hard-s
attering 
oeÆ
ients V 0k!m that in
lude a fa
tor pl+ for ea
h in
oming quark orantiquark and a fa
tor 1=pl+ for ea
h outgoing one. Spinor indi
es in V 0 are 
ontra
tedwith an appropriate matrix 12
+, 12
+
5, 12 i�+j
5 for outgoing lines and with 12
�, 12
5
�,12 i��j
5 for in
oming ones. V 0 is invariant under a boost along z and thus 
an only dependon the s
ale qT but not on Q (
f. the 
orresponding argument for �0 in se
tion 2.4). Onethus obtains V 0k!m � q4�k�3mT ; (5.2)as one 
an easily 
he
k for the example graphs below. Note that 
ompared with thehard-s
attering amplitudes in (2.127) we now have 3m instead of m be
ause V 0 in
ludesthe propagators of the outgoing partons, as is appropriate for the 
al
ulation of partondistributions.The power behavior for the single-ladder graph in �gure 30a 
an be obtained fromF (xi;ki; r)���g. 30a = p+k+1 k+2 Z dr� dk�1 dk�2 d4l1 V 02!2 �04� p+k+1 k+2 Z dk�1 dl+1 V 02!2 Z dr� dk�2 dl�1 d2l1 �04 : (5.3)The fa
tor p+ and the integrations over minus-momenta 
ome from the de�nition of F ,whereas k+1 k+2 
ompensates the 
orresponding fa
tors in V 0 and �0. It is understood thatV 0 in
ludes a Æ fun
tion for ea
h parton line going a
ross the �nal-state 
ut. This doesnot a�e
t the power 
ounting, sin
e one 
ould �rst 
onsider the hard-s
attering amplitudewithout 
ut and then take the appropriate dis
ontinuity in the s 
hannel. The momentak2� 12r and l1� 12r atta
h to the parton distribution at the bottom of the graph and hen
ehave virtualities of order �, whereas k1 � 12r emerges from the hard s
attering and hen
ehas virtuality of order qT . As a result, the momentum 
omponents k�2 ; l�1 ; r� � �2=p+and jl1j � � are small and 
an be negle
ted in the hard-s
attering kernel V 0. We usedthis when rearranging the order of integrations in the se
ond step. By 
ontrast, the large
omponents k�1 � q2T =p+ and k+1 ; k+2 ; l+1 � p+ are to be kept in V 0. For the power behaviorwe obtain F (xi;ki; r)���g. 30a � �s � q2T � q�4T � (�2)4 � ��10 = �s � 1�2q2T (5.4)with (2.126) and (5.2). We re
ognize the 1=q2T behavior that is 
hara
teristi
 of the splittingof one parton (the in
oming quark) into two partons (the outgoing quark and the gluon).{ 100 {



The power behavior for the double-ladder graph in �gure 30b is obtained by the same typeof analysis:F (xi;ki; r)���g. 30b � p+k+1 k+2 Z dk�1 dl+1 V 02!2 Z dk�2 dl+2 V 02!2 Z dr� dl�1 dl�2 d2l1 d2l2�04� �2s � (q2T � q�4T )2 � (�2)5 � ��10 = �2s � 1q4T : (5.5)If all transverse momenta are small, the distribution F (xi;ki; r) s
ales of 
ourse like ��4.Let us now see how the power behavior of the two-parton distributions translates intothe power behavior of the 
ross se
tions2d�Q2i=1 dxi d�xi d2qi �����gs. 31a,b / � 2Yi=1 s�̂i(xi�xis)� � 2Yi=1 Z d2ki d2�ki Æ(2)(qi � ki � �ki)�� Z d2r F (xi;ki; r)F (�xi; �ki;�r) ; (5.6)where we have omitted numeri
al fa
tors as well as labels for parton spe
ies, spin and
olor. We have multiplied the 
ross se
tion with s2 for 
onvenien
e, sin
e this gives fa
torss�̂(xi�xis) of order 1 on the r.h.s.To have both large q1 and q2 requires at lowest order in �s either a single-laddergraph in the distribution for ea
h 
olliding proton, or a double-ladder graph in one of thedistributions with no hard gluons in the other, as shown in �gure 31. In both 
ases one hasF (xi;ki; r)F (�xi; �ki;�r) � �2s=(�4 q4T ) for the produ
t of distributions, and the integrationvolume d2k1 d2�k1 Æ(2)(q1� k1 � �k1) is of order �2 sin
e �k1 and thus k1� q1 are restri
tedto be of size �. Similarly, one �nds d2k2 d2�k2 Æ(2)(q2 � k2 � �k2) � �2 in both 
ases, sothat the overall power behavior iss2d�Q2i=1 dxi d�xi d2qi �����gs. 31a,b � �2s � (�2)3 � � 1�2q2T �2 = �2s � �2q4T : (5.7)By similar arguments one �nds that the power behavior remains the same at higher orderin �s, when one 
an have more than two ladders in the graphs for the 
ross se
tion. Anyde
rease by a fa
tor �2=q2T in the produ
t F (xi;ki; r)F (�xi; �ki;�r) is 
ompensated by anin
rease from �2 to q2T in the integration volume over the transverse parton momenta kior �ki.5.1.2 Fa
torization formulaeLet us now investigate the stru
ture of the fa
torization formulae for ladder graphs. Stillomitting spin and 
olor indi
es for the moment, we write our result (5.3) asF (xi;ki; r)���g. 30a = Z (p�k2)+k+1 dl+1l+1 �k+1 Z dk�1 V 02!2�� �p+l+1 k+2 Z dr� dl�1 dk�2 d2l1 �04(l1; k2; r)�r+=0 : (5.8)
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a bFigure 31. Ladder graphs 
ontributing to the 
ross se
tion for boson pair produ
tion at large qT .The lower limit on the l+1 integration re
e
ts that the gluon with momentum l1 � k1
rosses the �nal-state 
ut and hen
e 
annot have negative plus-momentum. Up to a nu-meri
al fa
tor, the se
ond expression in square bra
kets is just the transverse-momentumdependent double-parton distribution F (u1; x2; l1;k2; r) with u1 = l+1 =p+. The �rst fa
torin square bra
kets is invariant under boosts along z and 
an thus only depend on k1 andl+1 =k+1 = u1=x1. We 
an write it as a numeri
al fa
tor times k�21 P �u1=x1;k1�, where Pis dimensionless. If P is a s
alar it depends on k1 only via k21 and only be
ause there areother dimensionful variables � and �, whi
h we have not displayed for ease of writing. For
ertain parton polarizations, P is a tensor with transverse indi
es and 
an hen
e dependon the 
omponents of k1, as dis
ussed below.We 
an �nally Fourier transform (5.8) from r to y and then haveF (x1; x2;k1;k2;y)���g. 30a = 1�k21 Z 1�x2x1 du1u1 P�x1u1 ;k1� Z d2l1 F (u; x2; l1;k2;y) ; (5.9)where the fa
tor 1=� has been 
hosen for 
onvenien
e. Inserting this and its analog forF (�x1; �x2; �k1; �k2;y) in the 
ross se
tion formula (2.35), we haved�Q2i=1 dxi d�xi d2qi �����g. 31a = 1C �̂1(x1�x1s) �̂2(x2�x2s) Z d2�k1 d2k2 1� (q1 � �k1)2 1� (q2 � k2)2� Z 1�x2x1 du1u1 P�x1u1 ; q1 � �k1� Z 1��x1�x2 d�u2�u2 P� �x2�u2 ; q2 � k2�� Z d2y Z d2l1 F (u1; x2; l1;k2;y)Z d2�l2 F (�x1; �u2; �k1;�l2;y) ; (5.10)where we have used the Æ fun
tion 
onstraints in (2.35) to eliminate k1 and �k2. We 
annow approximate q1 � �k1 � q1 and q2 � k2 � q2, after whi
h the integrations over �k1and k2 only 
on
ern the double-parton distributions, whi
h are then integrated over bothtransverse-momentum arguments. The result isd�Q2i=1 dxi d�xi d2qi �����g. 31a = 1C �̂1(x1�x1s) �̂2(x2�x2s) 1�q21 1�q22 Z 1�x2x1 du1u1 P�x1u1 ; q1�� Z 1��x1�x2 d�u2�u2 P� �x2�u2 ; q2�Z d2y F (u1; x2;y)F (�x1; �u2;y) : (5.11)
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Only 
ollinear two-parton distributions appear on the r.h.s., so that the relation (5.9) isonly needed in the formZ d2k2 F (x1; x2;k1;k2;y)���g. 30a = 1�k21 Z 1�x2x1 du1u1 P�x1u1 ;k1�F (u; x2;y) : (5.12)Repeating the pre
eding arguments for the double-ladder graph, one obtainsF (x1; x2;k1;k2;y)���g. 30b = 1�k21 1�k22 Z 1�x2x1 du1u1 P�x1u1 ;k1�� Z 1�u1x2 du2u2 P�x1u2 ;k2�F (u1; u2;y) (5.13)from the result (5.5) andd�Q2i=1 dxi d�xi d2qi �����g. 31b = 1C �̂1(x1�x1s) �̂2(x2�x2s) 1�q21 1�q22 Z 1�x2x1 du1u1 P�x1u1 ; q1�� Z 1�u1x2 du2u2 P�x2u2 ; q2�Z d2y F (u1; u2;y)F (�x1; �x2;y) (5.14)for the 
ontribution of �gure 31b to the 
ross se
tion, where again only 
ollinear two-partondistributions appear.The analog of (5.12) for single-parton distribution readsf(x;k)���g. 29 = 1�k2 Z 1x duu P�xu;k� f(u) : (5.15)At order �s the kernel P (x=u) is just the usual DGLAP splitting fun
tion, up to termsproportional to Æ(1� x=u) whi
h will be dis
ussed shortly. To see this, let us 
onsider thekT integrated parton density de�ned with a naive 
uto�,f(x;�) naive= Z d2k �(�2 � k2) f(x;k2) : (5.16)Using that the transverse-momentum dependent density depends only on the square of kwe then have �2 dd�2 f(x;�) naive= ��2 f(x;k2 = �2) ; (5.17)and 
omparing with the DGLAP equation for the l.h.s. we 
an identify the kernel in (5.15)as the familiar splitting fun
tion.The pre
eding argument is oversimpli�ed in two respe
ts. Firstly, the 
al
ulation off(x;k) for large k only involves real graphs like those in �gure 29 at leading order in �s,be
ause to obtain a parton with large k one needs a re
oiling parton in the �nal state.(Higher-order graphs 
an in
lude virtual loops, so that our argument 
annot be appliedany more.) By 
ontrast, the evolution equation for the 
ollinear parton density f(x), whi
his integrated over all k, involves both real and virtual graphs at order �s. The latter give
ontributions proportional to Æ(1�x=u) to the DGLAP splitting kernels, whi
h are absent{ 103 {



from P (x=u) in (5.15). Se
ondly, the distribution f(x;k) must be de�ned with non-lightlikeWilson lines as dis
ussed in se
tion 3, whi
h leads to a dependen
e on the parameter �de�ned in (3.58). Sin
e the 
ollinear distribution f(x) has no su
h dependen
e, it is thekernel in (5.15) that must depend on �. The expli
it 
al
ulation in [117℄ shows that the �dependen
e of P (x=u) 
omes with a fa
tor Æ(1� x=u), whi
h in the light of our dis
ussionin se
tion 3.2.3 is plausible if one observes that the point x = u in (5.15) 
orresponds toin�nite negative gluon rapidity in �gure 29.Let us mention that there is an analog of (5.15) for the distribution f(x;z) at smalltransverse distan
e z. The 
orresponding hard-s
attering kernel di�ers again from P (x=u)by terms proportional to Æ(1 � x=u). This is be
ause f(x;z) is given by an integralR d2k eizk f(x;k) over all k, so that already at order �s virtual graphs appear in addi-tion to real ones.We now turn our attention to the role of 
olor in two-parton distributions at hightransverse momentum, whi
h we have glossed over so far. Sin
e the graphs we are dis
ussingdo not 
onne
t parton lines with di�erent momentum fra
tions x1 and x2, the 
olor 
ouplingof the distributions on the left and on the right of the fa
torization formulae (5.12) and(5.13) are the same. For distributions 1F (xi;ki;y) in the 
olor singlet 
hannel, the kernelsP in (5.12) and (5.13) 
oin
ide with the one in (5.15) at least at leading order in �s,sin
e the relevant hard-s
attering graphs to be 
al
ulated are identi
al. The leading-orderkernels for the 
olor o
tet distributions 8F (xi;ki;y) di�er by an overall 
olor fa
tor fromthose for 1F (xi;ki;y), whi
h is the subje
t of the next se
tion. Note that, unlike their 
olorsinglet analogs, the 
ollinear 
olor o
tet distributions appearing on the r.h.s. of (5.12) and(5.13) depend on � as dis
ussed in se
tion 3.5. Given our dis
ussion of the 
an
ellation ornon-
an
ellation of soft 
ontributions between real and virtual graphs in se
tion 3.5, weexpe
t that the kernels for the position spa
e distributions 1F (xi;zi;y) and 8F (xi;zi;y)at small zi will di�er by more than an overall 
olor fa
tor already at leading order. Asystemati
 investigation of this is left to future work.The power 
ounting in se
tion 5.1.1 and the dis
ussion in the present se
tion do notdepend on whether the parton lines in the ladder graphs are quarks or gluons. As iswell-known for single parton distributions, a quark with high transverse momentum 
anoriginate from a gluon with low transverse momentum and vi
e versa. The 
orrespondingelementary ladder graphs are shown in �gure 32 below.We now dis
uss the spin stru
ture of the ladder graphs. As we have seen in se
-tions 2.2.1 and 2.2.2, there are three polarization 
ombinations for ea
h quark or gluon ina two-parton distribution, whi
h we 
an 
hoose as unpolarized (q; g), longitudinally po-larized (�q;�g) and transversely (Æq) or linearly (Æg) polarized. The possible transitionsbetween these 
ombinations in the fa
torization formulae (5.12) and (5.13) are restri
tedby symmetries. Transverse quark polarization Æq is des
ribed by a 
hiral-odd operator�q i�+j
5 q and the 
hirality of light quarks is 
onserved in hard-s
attering subpro
esses, sothat the only transitions for transversely polarized quarks are of the form Æq ! Æq. Inthe longitudinally polarized se
tor one has all possible transitions between �q and �g onthe left and on the right of (5.12) and (5.13), with transitions to other polarizations beingforbidden by parity invarian
e. Likewise, one has all possible transitions between unpo-{ 104 {



larized quarks and gluons. In addition, ladder graphs allow the transitions g ! Æg andq ! Æg from unpolarized 
ollinear distributions to linearly polarized gluons at high k, ashas been observed in the study of single Higgs produ
tion in [83, 84℄. Sin
e Æg 
orrespondsto a heli
ity di�eren
e of two units between the gluon on the left and the gluon the rightof the �nal-state 
ut, there is no 
ollinear distribution for a single linearly polarized gluonin a proton, so that transitions Æg ! g and Æg ! q played no role in [83, 84℄. However,one �nds that the 
orresponding hard-s
attering kernels are nonzero and hen
e allow thesetransitions for two-parton distributions. One thus has all possible transitions between q; gand Æg.For distributions that involve polarizations Æq or Æg the kernels P in (5.12) and (5.13)are tensors with transverse Lorentz indi
es, 
onstru
ted from Æjl and from the large trans-verse momentum k1 or k2 in the ladder. Expli
it 
al
ulation at order �s shows that thekernel P jlÆqÆq for the transition from F lÆq;a to F jÆq;a (with arbitrary a) is proportional to Æjl.As a result, ladder graphs do not generate the distributions gsÆq;Æq and gaÆq;Æq in the de
om-position (4.12) of F jj0Æq;Æq(xi;ki;y), given that they 
ome with tensors that are absent in the
ollinear distributions F l l0Æq;Æq(xi;y) a

ording to (4.14). This adds to the predi
tive power ofthe perturbative me
hanism at large transverse momenta. For transitions involving lineargluon polarization we �nd kernelsP jj0;l l0ÆgÆg / � jj0;l l0 ; P ll0Ægg / P ll0Ægq / P l l0gÆg / P l l0qÆg / 2klikl0i � Æl l0k2i ; (5.18)where the transition from F l l0Æg;a to F jj0Æg;a is des
ribed by P jj0;l l0ÆgÆg , the transition from Fg;a toF l l0Æg;a by P l l0Ægg et
., and where ki is k1 or k2. The se
ond tensor in (5.18) is symmetri
 andtra
eless and des
ribes two units of orbital angular momentum, whi
h 
ompensates themismat
h of heli
ities in the transitions g ! Æg, q ! Æg, Æg ! g and Æg ! q. For later usewe note that terms involving this tensor vanish by rotation invarian
e when (5.9) or (5.13)is integrated over k1 and k2.The representation of the 
ross se
tion derived in this se
tion is based on a two-steppro
edure. In the �rst step we have used fa
torization to separate the annihilation pro
essesq�q ! V into ve
tor bosons V with mass or virtuality of order Q from transverse-momentumdependent two-parton distributions, in whi
h the largest s
ale is qT . In a se
ond step, wehave used fa
torization to 
ompute these distributions in terms of hard-s
attering pro
essesat s
ale qT and distributions that re
e
t physi
s at a hadroni
 s
ale �, where it turned outthat in the 
ross se
tion we only need the latter distributions integrated over k1 and k2.An alternative pro
edure is to �rst use fa
torization to represent the graphs in �gure 31as the produ
t of 
ollinear two-parton distributions and in
lusive hard-s
attering pro
essesq�q ! V + X, where at lowest order in �s the unobserved system X 
onsists of just onegluon. In a se
ond step one 
an then simplify the 
orresponding hard-s
attering kernels bytaking the limit qT � Q we are interested in. The relation between these two pro
edureshas been studied in detail for single Drell-Yan produ
tion or for semi-in
lusive deep inelasti
s
attering in [117℄ and [134{137℄. An important property of the pro
edure using transverse-momentum dependent distributions in a �rst step is that it permits the resummation ofSudakov logarithms with the method of Collins, Soper and Sterman [118℄.
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j j ′Figure 32. Elementary ladder graphs for transitions between quarks and gluons.5.1.3 Color fa
tors and quark-gluon transitionsLet us now 
ompute the 
olor fa
tors for the transitions from 
ollinear to transverse-momentum dependent two-parton distributions, restri
ting ourselves to the leading orderin �s. For this it is suÆ
ient to 
onsider ladder graphs for the hard s
attering, be
ausegraphs with eikonal lines as in �gure 29b 
an be eliminated by 
hoosing the gauge vA = 0.Multiplying the 
olor stru
ture of the ladder graphs in �gure 32 with the appropriate 
olormatrix for the in
oming partons, one obtains the following 
olor transitions:1q ! 1q : tajk tak0j0 Ækk0 = CF Æjj0 ;8q ! 8q : tajk tak0j0 t
kk0 = � 12N t
jj0 ;1g ! 1g : fabd fa0b0d Æbb0 = N Æaa0 ;Ag ! Ag : fabd fa0b0d f 
bb0 = N2 f 
aa0 ;Sg ! Sg : fabd fa0b0d d
bb0 = N2 d
aa0 ;1g ! 1q : tajk ta0kj0 Æaa0 = N2 � 12N Æjj0 ;Ag ! 8q : tajk ta0kj0 (�if 
aa0) = N2 t
jj0 ;Sg ! 8q : tajk ta0kj0 d
aa0 = N2 � 42N t
jj0 ;1q ! 1g : ta0j0k takj Æjj0 = 12 Æaa0 ;8q ! Ag; Sg : ta0j0k takj t
jj0 = �14 if 
aa0 + 14 d
aa0 : (5.19)Reversing the fermion lines in the ladder graphs 
hanges the order of multipli
ation for thet matri
es on the l.h.s. of the above relations. This leads to a 
hange of sign on the r.h.s.for the transitions Ag ! 8q and 8q ! Ag, whereas transitions between 8q and Sg or betweensinglets are un
hanged. This implies that the di�eren
e of distributions for q and �q doesnot mix with gluons in the singlet or the symmetri
 o
tet 
hannel but does mix with gluons
oupled to an antisymmetri
 o
tet.In the 
ases where there is mixing, the relation (5.12) for a double-parton distribution
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at large k1 be
omes a matrix equation, whi
h 
an be written asZ d2k2 F J(x1; x2;k1;k2;y) = 1�k21 XJ 0 Z 1�x2x1 du1u1 P JJ 0�x1u1�F J 0(u1; x2;y) ; (5.20)where the arguments of F and P are as in (5.12). For polarizations Æq and Æg the distribu-tions and kernels 
arry tensor indi
es, whi
h were dis
ussed in the previous se
tion and willbe omitted here. The matrix stru
ture in (5.20) 
an be generalized to the relation (5.13)for double-ladder graphs, but the resulting expressions are rather 
luttered with indi
esand will not be given here.In the 
olor singlet se
tor one has1F J = 0BB�Pq [1Fq;a + 1F�q;a℄1Fg;a1FÆg;a 1CCA ; 1P JJ 0 = 0BB�CFPqq nFPqg nFPqÆgCFPgq NPgg NPgÆgCFPÆgq NPÆgg NPÆgÆg1CCA ; (5.21)where nF is the number of quark 
avors and where the se
ond parton a may be an un-polarized or polarized quark, antiquark or gluon.15 To obtain the 
olor fa
tors for theo�-diagonal elements one must take into a

ount the prefa
tors in the de�nitions (2.103),(2.118) and (2.123). In the upper left 2� 2 submatrix of 1P we re
ognize the stru
ture ofthe mixing matrix in the usual DGLAP equations. Mixing in the symmetri
 o
tet se
torinvolves the ve
torsSF J = 0BB�Pq [8Fq;a + 8F�q;a℄SFg;aSFÆg;a 1CCA ; AF J = 0BB�Pq [8Fq;a � 8F�q;a℄AFg;aAFÆg;a 1CCA : (5.22)If a indi
ates a gluon, one should repla
e 8Fq;a + 8F�q;a by SFq;a + SF�q;a and 8Fq;a � 8F�q;a byAFq;a � AF�q;a. The splitting matri
es now readSP JJ 0 = 0BBBB� � 12N Pqq q N2�42(N2�1) nFPqg q N2�42(N2�1) nFPqÆgqN2�18 qN2�4N2 Pgq N2 Pgg N2 PgÆgqN2�18 qN2�4N2 PÆgq N2 PÆgg N2 PÆgÆg
1CCCCA (5.23)and AP JJ 0 = 0BBBB� � 12N Pqq q N22(N2�1) nFPqg q N22(N2�1) nFPqÆgqN2�18 Pgq N2 Pgg N2 PgÆgqN2�18 PÆgq N2 PÆgg N2 PÆgÆg

1CCCCA : (5.24)15We note that in [47℄ the possibility of transitions between q; g and Æg was overlooked, and only themixing between q and g was 
onsidered.
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There is no mixing for the 
ombinations Pq [1Fq;a � 1F�q;q℄, nor for the di�eren
e of distri-butions for two quark 
avors, nor for matrix elements where the quark 
avors di�er onthe two sides of the �nal-state 
ut as in �gure 7. In these 
ases the behavior at large k1is des
ribed by (5.12) with P repla
ed by CFPqq for 
olor singlet and by � 12N Pqq for 
oloro
tet 
ombinations.Experien
e with the usual parton densities tells us that gluons qui
kly dominate oversea quarks as one goes to momentum fra
tions below 0:1 (ex
ept possibly if one 
onsidersvery low fa
torization s
ales). One therefore expe
ts that for typi
al values of x1 and x2at LHC, two-parton distributions at high transverse momentum are dominated by those
ombinations that 
an originate from gluons in (5.20).Comparing (5.21) with (5.23) and (5.24) we �nd that the 
olor fa
tors are alwayssmaller in the o
tet 
hannels than in the singlet 
hannel, with the biggest suppressiono

urring for Pqq. In the large-N limit the singlet matrix 1P has one eigenvalue N2 Pqq andtwo eigenvalues with 
olor fa
tors N for the submatrix in the g; Æg se
tor. Both SP andAP have the same two eigenvalues, but with 
olor fa
tors N2 instead of N , and anothereigenvalue of order 1. One 
an hen
e expe
t a dominan
e of 
olor singlet distributions forsuÆ
iently large transverse momentum, whi
h would signi�
antly simplify the theoreti
aldes
ription and the phenomenology of multiple intera
tions. How strong the suppressionof 
olor o
tet 
hannels is in given kinemati
s should, however, be studied quantitativelybefore drawing strong 
on
lusions.We have also 
al
ulated the 
olor fa
tors for higher 
olor representations of gluondistributions, restri
ting ourselves to N = 3 as we did in (2.121). Mixing with quarkdistributions is of 
ourse not possible in this 
ase. We �nd that the 
olor fa
tors forde
uplet and antide
uplet distributions are zero, so that ladder graphs do not admit these
olor 
ombinations, at least not at leading order in �s. For the 27 representation we obtain27F J =  27Fg;a27FÆg;a! ; 27P JJ 0 =N=3 � Pgg PgÆgPÆgg PÆgÆg! ; (5.25)where a = g or Æg. The 
olor fa
tor is equal to �1 and thus smaller in magnitude than thefa
tors N or 12N we have in the singlet and o
tet se
tors, respe
tively.The 
olor fa
tors we have obtained agree with those given in [138℄, provided that onerestores a missing fa
tor p2=N in the expression of P8f in eq. (54b) of that paper.16 Our
olor fa
tors for transitions in the gluon se
tor are also in agreement with eq. (A.6) in [140℄.The splitting matri
es for longitudinally polarized quarks and gluons in (5.20) areobtained from the upper left submatri
es for unpolarized quarks and gluons in (5.21) to(5.24) by 
hanging the kernels but keeping the 
olor fa
tors. Likewise, the splitting kernelPÆqÆq for transverse quark polarization 
omes with the same 
olor fa
tors as Pqq. In both
ases, it is again the 
olor singlet se
tor that has the largest 
olor fa
tors and will thereforebe enhan
ed at high transverse parton momentum.Let us �nally 
onsider ladder graphs for the quark-antiquark interferen
e distributionsI represented in �gure 5
. The 
olor independent part of the splitting kernel is di�erent16The proje
tor P0 in [138℄ appears only for SU(N) with N > 3 [139℄.
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Figure 33. Graphs for a quark-antiquark distribution that involve the perturbative splitting ofone into two partons on both sides of the �nal-state 
ut. The power behavior refers to F (xi;ki; r)and is dis
ussed in the text.for distributions I and F be
ause of their di�erent spin stru
ture (in one 
ase a gluon isex
hanged between a quark and an antiquark line and in the other 
ase between two quarklines), but we shall not pursue this issue further here. We 
an, however, easily determinethe 
olor stru
ture of the graphs. For de�niteness, 
onsider the ex
hange of a gluon betweenthe two lines with momentum fra
tion x1 and 
olor indi
es j, j0. The 
olor de
ompositionthat remains invariant under this ex
hange is the one in (2.116), sin
etajl taj0l0 �Ælk0 Æl0k + Ælk Æl0k0� = tajk0 taj0k + tajk taj0k0 = N � 12N �Æjk0 Æj0k + Æjk Æj0k0�tajl taj0l0 �Ælk0 Æl0k � Ælk Æl0k0� = tajk0 taj0k � tajk taj0k0 = �N + 12N �Æjk0 Æj0k � Æjk Æj0k0� (5.26)For N = 3 we thus �nd a 
olor fa
tor 13 if the quarks are 
oupled to a sextet and �23 if theyare 
oupled to an antitriplet. Both fa
tors are smaller than CF = 43 in the 
olor singlet
hannel.5.2 Parton splitting at high transverse parton momentaWe now turn to another me
hanism that generates large transverse momenta in multipartondistributions: the perturbative splitting of one parton into two partons, both of whi
hsubsequently take part in hard-s
attering pro
esses. This me
hanism turns out to beenhan
ed by powers of qT =� in the 
ross se
tion. In addition, it leads to 
on
eptual issues
on
erning the very notion of multiparton intera
tions. In the following se
tions we deriveseveral results about the splitting me
hanism, but we will be left with a number of openquestions for future resear
h.5.2.1 Power behaviorThere are a multitude of graphs involving the splitting of one parton into two partons, andin order to assess their importan
e we use power 
ounting as our �rst guiding prin
iple.Simple examples for parton splitting are shown in �gure 33. They allow all transversemomenta k1, k2 and r to be large. This leads to large virtualities for k1, k2 and r, so thattheir minus 
omponents are large as well,k1 � k2 � r � qT ; k�1 � k�2 � r� � q2T=p+ : (5.27)
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At lowest order in �s one has dis
onne
ted graphs as in �gure 33a, whi
h leads to thekinemati
 
onstraintk1 + k2 � � ; k�1 + k�2 � �2=p+ : (5.28)We will see shortly that this 
onstraint plays a spe
ial role when two-parton distribu-tions are 
ombined to 
al
ulate a 
ross se
tion. The power behavior of graph 33a 
an bedetermined using the same method as in se
tion 5.1.1, and we haveF (xi;ki; r)���g. 33a = p+k+1 k+2 Z dr�dk�1 ��V 01!2��2k�2 =�k�1 ;k2=�k1 Z dk�2 �02(k1 + k2)� �s � q4T � (q�3T )2 � �2 � ��4 = �s � 1�2 q2T ; (5.29)where the power 
ounting of integration volumes is dr� � dk�1 � q2T =p+ and dk�2 � �2=p+in order to ful�ll the 
onstraint (5.28). Noti
e that in V 0 one should set k�2 = �k�1 be
ausethe di�eren
e of k�2 and �k�1 is negligible 
ompared with k�1 . Likewise, one should setk2 equal to �k1 in V 0. The fa
tor R dk�2 �02(k1 + k2) in (5.29) is proportional to thetransverse-momentum dependent distribution of a gluon in the proton.Starting at order �2s one has 
onne
ted graphs as in �gure 33b. The restri
tions (5.28)are then lifted, and we obtain a power behaviorF (xi;ki; r)���g. 33b = p+k+1 k+2 Z dl+ dr� dk�1 dk�2 V 02!4 Z dl� d2l�02� �2s � q6T � q�10T � �4 � ��4 = �2s � 1q4T : (5.30)The graphs just dis
ussed des
ribe the transition from two to four partons in the t
hannel. Let us 
ompare them with transitions starting from three or four partons. The
orresponding graphs admit a variety of topologies, and we shall not give a 
omprehensivetreatment here. Important examples are shown in �gures 34 and 35. They are subje
t todi�erent kinemati
 restri
tions:� graphs 34a and 35a require jk1 + k2j � � and are thus analogous to 33a,� in analogy to 33b, graphs 34b and 35b produ
e partons with un
onstrained transversemomenta,� in graphs 34d and 35d one must have jk1+ 12rj � � sin
e the rightmost quark line isdis
onne
ted,� graphs 34
 and 35
 are subje
t to both 
onstraints jk1 + k2j � � and jk1 + 12rj � �.The power behavior of the resulting two-parton distributions 
an be obtained by the samemethods as previously and is given in the �gures. We see that within a given kinemati
group, the graph with the smallest number of partons initiating the hard s
attering isdominant by power 
ounting, i.e. two partons in 
ases a and b, and three partons in 
ases
 and d. The graph with the leading power behavior also has the lowest power of �s.{ 110 {
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Figure 34. Example graphs for the transition of three to four partons in the t 
hannel and the
orresponding power behavior of F (xi;ki; r). They involve the splitting of one into two partonsonly on one side of the �nal-state 
ut.
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Figure 35. As �gure 34, but for the transition of four to four partons in the t 
hannel.We note that for graphs starting with four partons there are topologies leading to di�erentkinemati
 
onstraints, su
h as those in �gure 36. We shall not dis
uss these in the following.So far we have assumed that the transverse momenta k1, k2, r are all large. How-ever, the graphs we have dis
ussed remain under perturbative 
ontrol in more restri
tedkinemati
s as well. In graph 33a for instan
e, we need large transverse momenta for thefour upper parton lines, i.e. large k1 � 12r (re
all that k2 � �k1 for this graph). Thisallows either r or k1 to be small, as long as the other is large. Both 
on�gurations will beimportant in our further dis
ussion. The power behavior we have derived above remainsun
hanged in those kinemati
 regions, as we shall see expli
itly in se
tion 5.2.2.Cross se
tion. Let us now see how the di�erent 
ontributions to multiparton distribu-tions enter the 
ross se
tion for large q1 and q2. Taking the lowest-order parton splitting{ 111 {
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Figure 36. Ladder graphs with the kinemati
 
onstraint jk1 � k2j � � and the resulting powerbehavior of F (xi;ki; r).
ontribution of �gure 33a for both protons, we arrive at the graph in �gure 37a. Bothk1 + k2 and �k1 + �k2 are restri
ted to be of order � in this 
ase, whi
h impliesq1 + q2 = k1 + �k1 + k2 + �k2 � � : (5.31)In other words, the produ
ed bosons must be almost ba
k to ba
k in transverse momen-tum. To determine the power behavior of the 
ross se
tion, we note that the integrationelement d2k1 d2�k1 Æ(2)(q1�k1� �k1) s
ales like q2T sin
e k1 
an be freely 
hosen of size qT .On
e this 
hoi
e is made, k2 
an only di�er from �k1 by an amount of order �, so thatd2k2 d2�k2 Æ(2)(q2�k2� �k2) s
ales like �2. The 
orresponding 
onstraint on �k1+�k2 is thenautomati
ally ful�lled by virtue of (5.31). With d2r � q2T and the s
aling behavior (5.29)the 
ross se
tion formula (5.6) then givess2d�Q2i=1 dxi d�xi d2qi ����jq1+q2j���g. 37a � �2s � (q2T )2 � �2 � � 1�2q2T �2 = �2s � 1�2 : (5.32)Going one order higher in �s, one has graphs as in �gure 37b with a 
onne
ted two-to-fourparton transition on one side. The 
onstraint (5.31) is then lifted, and q1 and q2 
an be
hosen independently. The integration elements in the 
ross se
tion formula s
ale as in theprevious 
ase, but due to the stronger fallo� in qT in (5.30), one now hass2d�Q2i=1 dxi d�xi d2qi �����g. 37b � �3s � (q2T )2 � �2 � 1q2T � 1�2 q2T = �3s � 1q2T : (5.33)At yet higher order in �s one obtains the same power behavior if both two-parton distri-butions 
ontain a 
onne
ted two-to-four parton transition: the extra fa
tor �2=q2T fromthe two-parton distribution is 
ompensated by an in
rease from �2 to q2T in the loop phasespa
e, sin
e both k1 and k2 
an then be 
hosen independently of order qT .We note that both (5.32) and (5.33) 
ontribute at the same power of �2=q2T if oneintegrates the 
ross se
tion over q1 and q2 in a region of size qT . This is be
ause the 
on-tribution (5.32) has a restri
ted phase spa
e of order d2q1 d2q2 � �2q2T . In the di�erential
ross se
tion, however, the 
ontribution (5.32) gives a peak in the distribution of q1 + q2,whi
h is enhan
ed not only by a power of �s but also by q2T=�2.There are more 
ontributions to the 
ross se
tion with the same power behavior asthe one we have just en
ountered. We re
all from our dis
ussion in se
tion 2.4 that inthe di�erential 
ross se
tion, double parton s
attering has the same power behavior as{ 112 {
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a bFigure 37. Graphs for the 
ross se
tion with two-to-four parton transitions in the t 
hannel forboth 
olliding protons. Graph a only 
ontributes when jq1 + q2j � �.
a bFigure 38. Graphs for the 
ross se
tion with two-to-three parton transitions in the t 
hannel forboth protons.

a bFigure 39. Graphs for the 
ross se
tion with a single hard s
attering.the interferen
e of two hard s
atters in the amplitude with a single hard s
atter in the
onjugate amplitude (see graph 9a). If the two partons initiating the two hard s
atters inthe amplitude 
ome from the splitting of a single parton, we have graphs like in �gure 38.17For graph 38a one �nds the same s
aling behavior (5.32) as for graph 37a, and for graph17The single hard s
attering to the right of the �nal-state 
ut pro
eeds through a loop in our example,be
ause gluons have no dire
t 
oupling with ele
troweak gauge bosons. Other pro
esses, like the produ
tionof two dijets, 
an pro
eed already at tree level. The powers of �s in our example are thus not representativeof the generi
 
ase, whereas powers of �=qT are.
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38b one �nds the same s
aling behavior (5.33) as for graph 37b.The same power behavior is again found for the 
ase where the two gauge bosonsare produ
ed in a single hard s
atter, both in the amplitude and its 
onjugate. The
orresponding 
ross se
tion formula 
an be found in (2.42). For in
oming gluons the hards
attering pro
eeds through a loop as on the r.h.s. of graphs 38 a and b, whereas forin
oming quarks or antiquarks one has graphs as those in �gure 39. If jq1 + q2j � �then one needs no parton ex
hange of virtuality qT in any of the parton densities, and oneimmediately �nds the same power behavior as in (5.32). If jq1 + q2j � qT then at lowestorder in �s one parton distribution has large transverse momentum generated by a laddergraph as shown in �g. 39b. A

ording to (5.15) one has f(x;k) � �s=q2T for jkj � qT , andfor the 
ross se
tion one obtains the same power behavior as in (5.33).Adapting our dis
ussion at the end of se
tion 5.1.2 we see that the graph in �gure 39b
an be 
al
ulated either in terms of transverse-momentum dependent parton densities, oneof whi
h involves a ladder graph, or in terms of 
ollinear parton distributions and theparton-level pro
ess q�q ! V1V2 + g, where V1 and V2 denote the produ
ed ve
tor bosons.The result is the same in both 
ases.In a similar way, �gures 37 and 38 
an be interpreted as graphs for two-boson produ
-tion by a single hard s
attering pro
ess at one-loop level, namely by gg ! V1V2 for graphs aand gg ! V1V2+g for graphs b. The quark lines in ea
h loop are then typi
ally o�-shell byorder Q, whi
h is the hard s
ale set by the �nal state. Note that this di�ers from the 
asewhen one interprets the same graphs as representing double hard s
attering (�gure 37) orthe interferen
e of double and single hard s
attering (�gure 38). In that 
ase the quarklines in the loops (ex
ept for those on the r.h.s. of graphs 38a and b) are understood tohave typi
al virtualities of order qT , whi
h allows one to treat them as in
oming on-shellpartons in the tree-level subpro
esses q�q ! V , whose large s
ale is Q. Detailed inspe
tionof the quark loops in �gure 37 shows that they re
eive 
ontributions with the same s
alingbehavior in qT =Q from the two regions where all quark virtualities are either of order qTor of order Q.18 One thus obtains the same power behavior for the graphs in ea
h of thetwo interpretations just dis
ussed. The interpretation in terms of a single hard-s
atteringpro
ess produ
ing two gauge bosons for graphs 37a, 38a and 39a and two gauge bosonsplus a gluon for graphs 37b, 38b and 39b makes it 
lear that ea
h group of graphs has thesame s
aling behavior, respe
tively given by (5.32) and (5.33).In se
tion 5.1.1 we found that ladder graphs as in �gure 31 
ontribute to the s
aled
ross se
tion with a power �2=q4T , with no distin
tion between the 
ases where q1 + q2 isof order � or qT . This means that the 
ontributions of �gures 37, 38 and 39 are enhan
edover the ladder graphs by q2T =�2 for jq1 + q2j � qT and by q4T =�4 for jq1 + q2j � �. Aswe already dis
ussed in se
tion 2.5, one 
an however expe
t that at small x1 and x2 thisenhan
ement is 
ountera
ted by the stronger rise of the ladder graphs with de
reasing par-ton momentum fra
tions, sin
e the ladder 
ontributions involve two-parton distributions,whereas the graphs in �gures 37, 38 and 39 depend on single-parton distributions. Whether18By 
ontrast, there is no kinemati
 region where all quark lines in the loops on the r.h.s. of graphs 38aor b are o� shell by order qT . This is easily seen by analyzing the 
ow of large plus and minus momenta.
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a b cFigure 40. Contribution of the perturbative transition from two to four quarks in one proton, forthe region of small r.
a b cFigure 41. As �gure 40 but for the region of perturbatively large r.this small-x enhan
ement is more important than powers of q2T=�2 
annot be determinedon generi
 grounds, so that one will want to keep both types of 
ontribution in a 
exibletheoreti
al des
ription.With this in mind, we now turn our attention to the graphs in �gures 40 and 41, whi
hinvolve parton splitting and thus single-parton distributions for one proton but a two-parton distribution for the other. In the graphs of �gure 40 the two-parton distributionsin one proton for
e r to be of order �, whereas in �gure 41 an additional gluon ex
hangedbetween partons with momentum fra
tion x1 and x2 allows r to be of order qT .The 
orresponding power behavior is readily obtained from our results for the relevantparton distributions (given in �gures 30, 33 and 35) and the available loop phase spa
e inea
h graph. We �nd s2d�Q2i=1 dxi d�xi d2qi ����jq1+q2j ���g. 40a � �s � 1q2T ;s2d�Q2i=1 dxi d�xi d2qi �����gs. 40b,
 � �2s � �2q4T (5.34)and the analogous s
aling behavior with an extra power of �s for the graphs in �gure 41.For jq1 + q2j � qT , we thus �nd the same behavior as for the ladder graphs in �gure 31,whi
h involve however two two-parton distribution in the 
ross se
tion and therefore havea stronger small-x enhan
ement. In the region jq1 + q2j � � we have an extra power ofq2T =�2, as in the other parton splitting 
ontributions dis
ussed so far.{ 115 {



a bFigure 42. Graphs with three partons in the t 
hannel for one proton (a) or for both (b).In �gure 34 we have graphs initiated by proton matrix elements with three partons inthe t 
hannel. Examples for their 
ontribution to the 
ross se
tions are given in �gure 42.They behave as s2d�Q2i=1 dxi d�xi d2qi ����jq1+q2j ���g. 42a � �3=2s � 1�qT ;s2d�Q2i=1 dxi d�xi d2qi ����jq1+q2j ���g. 42b � �s � 1q2T : (5.35)The 
ontribution from graph 42a is thus suppressed 
ompared with the one from graph 37a,although only by a power of �=qT , whi
h 
orresponds to the loss of one power �=qT betweenthe splitting graphs initiated by two or three partons in the t 
hannel (
f. �gures 33a and34
). Likewise, graph 42b is suppressed by �2=q2T 
ompared with graph 37a, thus havingthe same power behavior as graph 40a, but la
king the small-x enhan
ement of the latter.An analogous situation is found for graphs that are like in �gure 42 but have an extra gluona
ross the �nal-state 
ut (
onstru
ted e.g. from graphs 33b or 34d) and thus 
ontributeto the region jq1 + q2j � qT . To the extent that one power of �=qT is a small enoughsuppression parameter and that the small-x enhan
ement of four-parton matrix elementsis important, one 
an hen
e negle
t 
ontributions involving three-parton matrix elements.Our results for the power behavior of the di�erent 
ontributions are 
olle
ted in table 1.The 
ontributions in the �rst three rows of the table were re
ently investigated in[98℄. It was pointed out in that work that the 2� 4 
ontribution in our table has a furtherenhan
ement 
ompared with the 4�4 term, whi
h is due to the fa
t that the latter involvesthe produ
t F (xi; r)F (�xi;�r) of two distributions that de
rease with r, whereas the formerinvolves only one fa
tor F (xi; r) multiplied by the perturbative splitting 
ontribution thatis approximately r independent for jrj � �.To 
ompare our results with those in [98℄ we note that jq1 + q2j � Æ0 was required tobe in the perturbative domain in that work, whereas we treat it as 
omparable to a softs
ale. Our power 
ounting results apply to this 
ase as well as far as the qT behavior is
on
erned, if one understands � as either jq1 + q2j or a generi
ally soft s
ale, without theability to distinguish between them. What is important for our results is the hierar
hy�� qT � Q, whi
h in the notation of [98℄ reads Æ0 � Æ � Q. The fa
t that in [98℄ four-jetprodu
tion rather than the double Drell-Yan pro
ess was studied does not prevent us from a{ 116 {



partons example graphs power behavior(t 
hannel) jq1 + q2j � � jq1 + q2j � qT4� 4 31 �2=q4T �2=q4T4� 2 40, 41 1=q2T �2=q4T2� 2 37, 38, 39 1=�2 1=q2T2� 3 42a 1=(�qT ) �=q3T3� 3 42b 1=q2T �2=q4TTable 1. Power behavior to the s
aled 
ross se
tion s2d�=(dx1 dx2d�x1d�x2d2q1d2q2) from various
ontributions. An entry m � n in the �rst 
olumn means that the 
ross se
tion involves matrixelements with m and n partons in the t 
hannel for the �rst and the se
ond proton, respe
tively.
omparison sin
e, as we pointed out earlier, our power 
ounting results hold independentlyof the parti
ular hard-s
attering pro
esses. We agree with [98℄ that the 2 � 4 and the4 � 4 
ontributions to the 
ross se
tion respe
tively behave like 1=q2T and 1=q4T , and thatthe 2 � 2 
ontribution does not have a 1=q2T behavior but depends logarithmi
ally on qT .However, the authors of [98℄ write that the 2� 2 term is 
omparable to the 2� 4 and 4� 4terms. We emphasize that the 2� 2 
ontribution goes like 1=�2 in the s
aled 
ross se
tionand is therefore power enhan
ed 
ompared with the other two 
ontributions for qT � �.This 
omes out of our power 
ounting analysis and is 
on�rmed by expli
it 
al
ulation, see(5.74) below. What 
an potentially make the 2�4 and 4�4 terms more important is theirsmall-x behavior, as we noted above.5.2.2 Splitting in two-parton distributionsAfter the general analysis in se
tion 5.2.1 we now investigate splitting 
ontributions totwo-parton distributions in more detail. We begin with the graph in �gure 33a, whi
hdes
ribes the splitting pro
ess g ! q�q.From the 
olor stru
ture of the graph we readily �nd that it gives rise to 
olor o
tetdistributions that are suppressed 
ompared with the 
olor singlet ones by a fa
tor8Fa1;�a21Fa1;�a2 ����g!q�q = � 1pN2 � 1 : (5.36)The 
olor singlet distributions are given by1Fa1;�a2(xi;ki; r) ���g!q�q = 4��s(2�)5 12 2p+Z dr�dk�1 dk�2 �g��(k1 + k2)� tr��a1 (k1 � 12r)
(k1 � 12r)2 + i� 
� (k2 + 12r)
(k2 + 12r)2 + i�� ��a2 (k2 � 12r)
(k2 � 12r)2 � i� 
� (k1 + 12r)
(k1 + 12r)2 � i� �k�2 =�k�1 ;k2 =�k1 ; (5.37)
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where � and � are polarization indi
es of the gluon potentials in the 
orrelation fun
tion �g,whose de�nition follows from (2.96). �g is already summed over the gluon 
olor indi
es,and the 
orresponding tra
e over 
olor matri
es has given a fa
tor 12 . As dis
ussed inse
tion 2.2.2, � and � are restri
ted to be transverse at leading-power a

ura
y. These
ond and third line of (5.37) represent the hard part of the pro
ess, where we 
an negle
tthe di�eren
e between the transverse and minus-
omponents of k1 and k2, see (5.29). Weintrodu
e k = 12(k1 � k2) ; � = k1 + k2 (5.38)and 
hange integration variables from k�1 and k�2 to k� and ��. The integration over ��only 
on
erns the gluon 
orrelation fun
tion �g, whi
h 
an be de
omposed as [82℄xp+Z d���g;jj0(�)�����+=xp+ = 12 Æjj0fg1 (x;�) + 2�j�j0 � Æjj0�24M2 h?g1 (x;�) ; (5.39)where M denotes the proton mass. In terms of the operators introdu
ed in (2.98) we havefg1 (x;�) = 1xp+ Z dz�d2z(2�)3 eixz�p+�iz� 
p��Og(0; z)��p� ;2�j�j0 � Æjj0�24M2 h?g1 (x;�) = 1xp+ Z dz�d2z(2�)3 eixz�p+�iz� 
p��Ojj0Æg (0; z)��p� : (5.40)fg1 is the usual transverse-momentum dependent density of gluons, whereas the gluonBoer-Mulders fun
tion h?g1 des
ribes linearly polarized gluons and is essentially unknownat present (see [85{87℄ for pro
esses where this distribution 
ould be studied). Writing theprodu
t of propagator denominators in (5.37) as12x1p+�k � 12r�� � �k � 12r�2 + i� 12x2p+�k � 12r�� + �k � 12r�2 � i�� 12x2p+�k + 12r�� + �k + 12r�2 + i� 12x1p+�k + 12r�� � �k + 12r�2 � i� (5.41)we see that the integrations over r� and k� 
an 
onveniently be performed using thetheorem of residues, after a 
hange of variables to (k � 12r)� and (k + 12r)�. Performingthe fermion tra
e, we �nally obtain1Fa1 ;�a2(xi;ki; r) ���g!q�q = �s4�2 " fg1 (x1 + x2;�)x1 + x2 T l l0a1;�a2� x1x1 + x2�+ 2�m�m0 � Æmm0�22M2� h?g1 (x1 + x2;�)x1 + x2 U l l0mm0a1;�a2 � x1x1 + x2�# �k+ 12r�l�k � 12r�l0�k + 12r�2�k � 12r�2 : (5.42)With the abbreviation �u = 1� u the kernels readT l l0q;�q(u) = �T l l0�q;��q(u) = Æl l0 (u2 + �u2) ;T l l0�q;�q(u) = �T l l0q;��q(u) = i�l l0 (u� �u) ;�T l l0Æq;Æ�q(u)�jj0 = �2Æl l0 Æjj0u�u (5.43)
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and U l l0mm0q;�q (u) = �U l l0mm0�q;��q (u) = �2� l l0;mm0 u�u ;�U l l0mm0Æq;Æ�q (u)�jj0 = 2� l l0;j0m0 Æjmu+ 2� l l0;jm0 Æj0m �u� 2� l l0;mm0 Æjj0u�u ; (5.44)where j and j0 are the indi
es of the Dira
 matri
es i�+j
5 in the de�nition of the distribu-tions. The kernels T and U not listed in (5.43) or (5.44) are zero. Note that k� 12r is halfthe di�eren
e between the transverse parton momenta k1 � 12r and k2 + 12r on the left of�gure 33a, whereas k+ 12r is half the 
orresponding momentum di�eren
e on the right. Toensure that the quark lines with momenta k1� 12r and k2� 12r in �gure 33a are far o�-shellit is suÆ
ient that one of the transverse momenta r and k is large, as already mentionedearlier. This implies that (5.42) des
ribes the large r behavior of Fa1 ;�a2(xi;ki; r) for smallk1 and k2, as well as its behavior for large k at small r.We see that the short-distan
e splitting pro
ess gives rise to a ri
h spin stru
ture, withall 
hiral even two-parton distributions being nonzero. The relations Fq;�q = �F�q;��q andF�q;�q = �Fq;��q re
e
t that the perturbative gluon splitting leads to a 100% 
orrelationbetween the heli
ities of the quark and antiquark: if the quark has positive heli
ity theantiquark has negative one, and vi
e versa. For values of u around 12 , the transverse spin
orrelation en
oded in FÆq;Æ�q is as large as the unpolarized distribution Fq;q.The splitting 
ontributions to other two-parton distributions are obtained in 
loseanalogy to the 
ase we have just dis
ussed, and in the following we only give the relevantstarting expressions and results. A reader not interested in the details may skip forwardto the paragraph after equation (5.60).The graph in �gure 33a also 
ontributes to the interferen
e distributions Ia1;�a2 , withthe same ratio 8Ia1;�a2Æ 1Ia1;�a2 = �1ÆpN2 � 1 of o
tet and singlet distributions as in (5.36).The expression for 1Ia1;�a2 
an be obtained from the one in (5.37) by inter
hanging (k2� 12r)
and (k1 + 12r)
 in the fermion tra
e. The result has the same stru
ture as in (5.42), withthe kernels Ta1;�a2 repla
ed byV l l0q;�q(u) = �V l l0�q;��q(u) = �2Æl l0 u�u ;�V l l0Æq;Æ�q(u)�jj0 = Æl l0Æjj0 (u2 + �u2) + (ÆjlÆj0l0 � Æjl0Æj0l)(u� �u) (5.45)and the kernels Ua1;�a2 repla
ed byW l l0mm0q;�q (u) = �W l l0mm0�q;��q (u) = � l l0;mm0 (u2 + �u2) ;W l l0mm0�q;�q (u) = �W l l0mm0q;��q (u) = � l l0;mn i�m0n (u� �u) ;�W l l0mm0Æq;Æ�q (u)�jj0 = ��Æjl0Æj0mÆlm0 + Æj0lÆjmÆl0m0�u� �ÆjlÆj0mÆl0m0 + Æj0l0ÆjmÆlm0��u+ � jj0;mm0Æl l0 + � ll0;mm0Æjj0 (u2 + �u2) : (5.46)All other kernels are zero. We see that the splitting 
ontribution to the interferen
e distri-butions Ia1;�a2 is generi
ally of the same size as for the distributions Fa1;�a2 .We now turn to the analog of �gure 33a for the splitting pro
ess q ! gq. This graph(not shown here for brevity) involves propagators for the outgoing gluons and requires a{ 119 {




hoi
e of gauge. If we work in the light-
one gauge An = A+ = 0 with n = (1; 0; 0;�1)=p2,then the gluon propagator has a numeratorD��(`) = �g�� + n�`� + `�n�`+ (5.47)and the q ! gq splitting 
ontribution to quark-gluon distributions reads1Fa1;a2(xi;ki; r) ���q!gq = 4��s(2�)5 CF (x1p+) 2p+Z dr�dk�1 dk�2� D�j(k1 � 12r)(k1 � 12r)2 + i� �jj0a1 Dj0�(k1 + 12r)(k1 + 12r)2 � i�� tr�
� (k2 � 12r)
(k2 � 12r)2 � i� ��a2 (k2 + 12r)
(k2 + 12r)2 + i� 
� �q(k1 + k2) �k�2 =�k�1 ;k2 =�k1 : (5.48)Sin
e j is a transverse index, the numerator fa
tor of the �rst gluon propagator simpli�esto �g�j +n�(k1� 12r)j=(k1� 12r)+. If we work in 
ovariant gauge instead, these two terms
orrespond to the �rst two terms of the gluon �eld strength G+j = �+Aj��jA++O(g) inthe operator de�nition of the quark-gluon distribution. An analogous statement holds forthe se
ond gluon propagator. The expression (5.48) involves the quark 
orrelation fun
tion�q for an unpolarized proton, for whi
h one hasZ d�� �q(�)�����+=xp+ = 12 
�f q1 (x;�) + 12 i�j�
5 �jj0�j0M h?q1 (x;�) (5.49)to leading-twist a

ura
y, or equivalentlyf q1 (x;�) = Z dz�d2z(2�)3 eixz�p+�iz� 
p��Oq(0; z)��p� ;�jj0�j0M h?q1 (x;�) = Z dz�d2z(2�)3 eixz�p+�iz� 
p��OjÆq(0; z)��p� : (5.50)The q ! gq splitting pro
ess gives rise to all possible 
olor 
ouplings in the quark-gluondistribution in (2.123), with 
olor fa
torsSFa1;a21Fa1;a2 ����q!gq =rN2 � 42 ; AFa1;a21Fa1;a2 ����q!gq = � Np2 : (5.51)Contrary to the 
ase of g ! q�q analyzed above, the splitting me
hanism now favors 
oloro
tet distributions over 
olor singlet ones. Evaluating (5.48) we obtain1Fa1;a2(xi;ki; r) ���q!gq = �s2�2 CF " f q1 (x1 + x2;�)x1 + x2 T l l0a1;a2� x1x1 + x2�+ �mm0�m0M h?q1 (x1 + x2;�)x1 + x2 U l l0ma1;a2� x1x1 + x2�# �k+ 12r�l�k � 12r�l0�k + 12r�2�k � 12r�2 (5.52)
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with T l l0g;q(u) = Æl l0 (1 + �u2)=u ; T l l0�g;�q(u) = Æl l0 (1 + �u) ;T l l0�g;q(u) = �i�l l0 (1 + �u2)=u ; T l l0g;�q(u) = �i�l l0 (1 + �u) ;�T l l0Æg;q(u)�jj0 = 2� l l0;jj0�u=u (5.53)and �U l l0mg;Æq (u)�k = 2Æl l0Ækm �u=u ; �U l l0m�g;Æq(u)�k = �2i�l l0Ækm �u=u ;�U l l0mÆg;Æq(u)�jj0;k = � jj0;mlÆkl0 + � jj0;ml0Ækl � (� jj0;klÆml0 + � jj0;kl0Æml) �u� � jj0;kmÆl l0 u+ 2� jj0;l l0Ækm �u=u : (5.54)All other kernels are zero, in parti
ular FÆg;�q is not generated by the splitting me
hanismat leading order in �s. Analogous results 
an be derived for the splitting �q ! g�q.The splitting of one gluon into two gives a 
ontribution to two-gluon distributions,whi
h reads1Fa1;a2(xi;ki; r) ���g!gg= 4��s(2�)5 N (x1p+) (x2p+) 2p+Z dr�dk�1 dk�2 �g��(k1 + k2) ����g. 33a� � D�j(k1 � 12r)(k1 � 12r)2 + i� �jj0a1 Dj0�0(k1 + 12r)(k1 + 12r)2 � i� D�k(k2 + 12r)(k2 + 12r)2 + i� �kk0a2 Dk0�0(k2 � 12r)(k2 � 12r)2 � i�� �g�0�0(k1 � k2 + r)� � g��0(2k1 + k2 + 12r)�0 + g��0(k1 + 2k2 � 12r)�0�� �g��(k1 � k2 � r)� � g��(2k1 + k2 � 12r)� + g��(k1 + 2k2 + 12r)���k�2 =�k�1k2=�k1 (5.55)in the gauge A+ = 0. Evaluating this expression, we obtain a result with the same stru
tureas for g ! q�q in (5.42),1Fa1;a2(xi;ki; r) ���g!gg = �s2�2 N " fg1 (x1 + x2;�)x1 + x2 T l l0a1;a2� x1x1 + x2�+ 2�m�m0 � Æmm0�22M2� h?g1 (x1 + x2;�)x1 + x2 U l l0mm0a1;a2 � x1x1 + x2�# �k + 12r�l�k� 12r�l0�k + 12r�2�k � 12r�2 (5.56)with T l l0g;g(u) = 2Æl l0 (u=�u+ �u=u+ u�u) ; T l l0�g;�g(u) = 2Æl l0 (2� u�u) ;T l l0g;�g(u) = �2i�l l0 (2�u+ u=�u) ; �T l l0g;Æg(u)�kk0 = 2� l l0;kk0 u=�u ;�T l l0Æg;Æg(u)�jj0;kk0 = Æl l0 � jj0;kk0u�u (5.57)
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and U l l0mm0g;g (u) = �U l l0mm0�g;�g (u) = 2� ll0;mm0u�u ;�U l l0mm0g;Æg (u)�kk0 = Æl l0�kk0;mm0 �u=u ; �U l l0mm0�g;Æg (u)�kk0 = �i�ll0�kk0;mm0 �u=u ;�U l l0mm0Æg;Æg (u)�jj0;kk0 = � l l0;kk0 �mm0;jj0 u=�u+ � l l0;jj0 �mm0;kk0 �u=u+ � l l0;mm0 � jj0;kk0 u�u+ � lm;jj0 � l0m0;kk0 + � l0m;jj0 � lm0;kk0� �� jj0;mn �nl0;kk0 Ælm0 + � jj0;mn �nl;kk0 Æl0m0�u� ��kk0;mn �nl0;jj0 Ælm0 + �kk0;mn �nl;jj0 Æl0m0� �u : (5.58)The kernels T�g;g, TÆg;g, UÆg;g and UÆg;�g are respe
tively obtained from Tg;�g, Tg;Æg, Ug;Ægand U�g;Æg by inter
hanging u$ �u and the appropriate indi
es. The remaining kernels arezero. For the di�erent 
olor 
ombinations we �ndSFa1;a21Fa1;a2 ����g!gg = � AFa1;a21Fa1;a2 ����g!gg = pN2 � 12 =N=3 p2 ; (5.59)where as in the 
ase q ! gq 
olor o
tet distributions are enhan
ed over 
olor singlet ones.The fa
tors for the higher 
olor representations in the 
ase N = 3 are10Fa1;a2 ��g!gg = 10Fa1;a2 ��g!gg = 0 ; 27Fa1;a21Fa1;a2 ����g!gg = �p3 : (5.60)The 27 representation is hen
e even more strongly enhan
ed than the two 
olor o
tet
ombinations. De
uplet and antide
uplet distributions are not generated by perturbativesplitting at lowest order. We re
all that this was also the 
ase for the ladder graphsdis
ussed in se
tion 5.1.3.We see that the perturbative splitting me
hanism gives rise to a multitude of two-parton distributions at high transverse momentum, whi
h we have 
olle
ted in table 2. Asthe 
omparison of (5.42), (5.52) and (5.56) shows, a 
ommon feature of all 
hannels is thedependen
e on the transverse momenta k and r.Position spa
e. The Feynman graphs for the splitting 
ontributions are naturally eval-uated in momentum representation. We now transform our results to position spa
e. Werestri
t our attention to the splitting g ! q�q sin
e the other distributions 
an be treatedin 
lose analogy. Using the relation12� Z d2k eikz klk2 = i zlz2 (5.61)one 
an easily transform (5.42) to impa
t parameter spa
e,1Fa1;�a2(xi;zi;y) ���g!q�q = �s4�2 " fg1 (x1 + x2; �)x1 + x2 T l l0a1;�a2� x1x1 + x2� � 4�m�m0 � 2Æmm0�2M2�� ���2�2 h?g1 (x1 + x2; �)x1 + x2 U l l0mm0a1;�a2 � x1x1 + x2�# �y + 12z�l�y � 12z�l0�y + 12z�2�y � 12z�2 ; (5.62)
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Fq;�q F�q;��q F�q;�q Fq;��q FÆq;Æ�q FÆq;�q FÆq;��q Fq;Æ�q F�q;Æ�qfg1 � � � � �h?g1 � � �Iq;�q I�q;��q I�q;�q Iq;��q IÆq;Æ�q IÆq;�q IÆq;��q Iq;Æ�q I�q;Æ�qfg1 � � �h?g1 � � � � �Fg;q F�g;�q F�g;q Fg;�q FÆg;Æq FÆg;q FÆg;�q Fg;Æq F�g;Æqf q1 � � � � �h?q1 � � �Fg;g F�g;�g F�g;g Fg;�g FÆg;Æg FÆg;g FÆg;�g Fg;Æg F�g;Ægfg1 � � � � � � �h?g1 � � � � � � �Table 2. Overview of the two-parton distributions that re
eive nonzero 
ontributions from pertur-bative splitting of a single quark or gluon. A 
ross indi
ates a nonzero 
ontribution at order �s.Not shown are entries for Fq;g and its analogs with polarization, whi
h are like those for Fg;q andits polarized 
ounterparts.where z = z1 � z2 ; � = 12(z1 + z2) : (5.63)fg1 (x; �) and h?g1 (x; �) are the Fourier transforms of the transverse-momentum dependentparton densities in (5.42). The distribution in (5.62) is singular at y� 12z1 = �12z2 and aty + 12z1 = 12z2, i.e. at the points where in the operator de�nition of F (xi;zi;y) either thetwo �elds on the left or the two �elds on the right of the �nal-state 
ut are taken at equaltransverse positions (see (2.85)).The form of the distributions Fa1;�a2(xi;ki;y) in the mixed representation is slightlymore involved. For 
onvenien
e we introdu
e the fun
tionD(k; r) = �k+ 12r��k � 12r��k + 12r�2�k � 12r�2 = 12 Z 1�1 dt k2 � 14r2�k2 + 14r2 + tkr�2 ; (5.64)whi
h appears in Fq;�q, F�q;��q and FÆq;Æ�q . Its Fourier transform 
an be written asD(k;y) = Z d2r(2�)2 eiryD(k; r)= 12 Z d2r(2�)2 Z 1�1 dtZ 10 d���k2 � 14r2� eiry��(k2+ 14r2+tkr) ; (5.65)where the Gaussian integral over r is straightforward to perform. Using the representation12 Z 10 d��p�1 exp���a2 � z24�� = 1a2p �za2 �pKp(az) (5.66)
{ 123 {



of the Ma
Donald fun
tions we obtainD(k;y) = 1� Z 1�1 dt e�2itky h �2itky � 1�K0�2p1� t2 jkjjyj�+ 2p1� t2 jkjjyjK1�2p1� t2 jkjjyj� i : (5.67)For the fa
tor appearing in Fq;��q and F�q;�q one �nds in a similar fashion~D(k;y) = Z d2r(2�)2 eiry i�l l0�k+ 12r�l�k � 12r�l0�k + 12r�2�k � 12r�2= �l l0klyl0 2� Z 1�1 dt e�2itkyK0�2p1� t2 jkjjyj� : (5.68)For small k2y2 we 
an approximate the Ma
Donald fun
tions and perform the integralover t, whi
h givesD(k;y) = 1� h log(4k2y2) + 2
 +O(k2y2)i ;~D(k;y) = �l l0klyl0 2� h log(4k2y2) + 2
 � 2 +O(k2y2)i ; (5.69)where 
 is the Euler number. In the short-distan
e limit y2 ! 0 we thus have a logarithmi
divergen
e in D(k;y) and hen
e in the distributions Fq;�q(xi;ki;y), F�q;��q(xi;ki;y) andFÆq;Æ�q(xi;ki;y).5.2.3 Contribution to the 
ross se
tionWe now investigate how the splitting 
ontribution to quark-antiquark distributions in �g-ure 33a enters in the 
ross se
tion for double hard s
attering, as shown in �gure 37a.Con
entrating on the fa
tors that depend on transverse momenta, we have with the 
rossse
tion formula (2.33) and the distributions from (5.42)� 2Yi=1 Z d2ki d2�ki Æ(2)(qi � ki � �ki)� Z d2r(2�)2 Fa1;�a2(xi;ki; r)F�a1;a2(�xi; �ki;�r) ����g!q�q/ Z d2�d2�� Æ(2)(�+ ��� q1 � q2) �fg1 (x1 + x2;�) fg1 (�x1 + �x2; ��) + : : : �� Z d2r d2k d2�k Æ(2)(k + �k� q) �k � 12r�l�k+ 12r�l0�k � 12r�2�k + 12r�2 ��k+ 12r�m��k � 12r�m0��k + 12r�2��k � 12r�2 (5.70)with q = 12(q1 � q2), where the ellipsis stands for terms involving the gluon Boer-Muldersfun
tions h?g1 . Changing integration variables to k+ = k + 12r and k� = k � 12r, we 
anrewrite the last line asZ d2k+ kl+(k+ � q)mk2+(k+ � q)2 Z d2k� kl0�(k� � q)m0k2�(k� � q)2 : (5.71)
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Ea
h integral is infrared �nite but has a logarithmi
 divergen
e at large k�. This logarith-mi
 divergen
e also appears if we use the impa
t parameter spa
e representation (5.62).A

ording to (2.36) the 
ross se
tion is then proportional toZ d2z1 d2z2 d2y e�iq1z1�iq2z2 Fa1;�a2(xi;zi;y)F�a1 ;a2(�xi;zi;y) ����g!q�q/ Z d2� e�i(q1+q2)� �fg1 (x1 + x2; �) fg1 (�x1 + �x2; �) + : : : �� Z d2z d2y e�iqz �y � 12z�l�y � 12z�m�y � 12z�4 �y + 12z�l0�y + 12z�m0�y + 12z�4 : (5.72)The last line diverges logarithmi
ally for y = 12z and y = �12z. At these points onerespe
tively has y � 12z1 = �12z2 and y + 12z1 = 12z2, so that the singularities 
orrespondto 
on�gurations where partons are at the same transverse position, either to the right orto the left of the �nal-state 
ut.To understand the origin of this ultraviolet divergen
e, we go ba
k to the graph in�gure 37a. As mentioned in se
tion 5.2.1 this graph re
eives leading 
ontributions fromtwo kinemati
 regions. In the �rst region, the virtualities and transverse momenta of thequarks are of order qT and thus mu
h smaller than Q, whereas in the se
ond region theyare of order Q. The approximations that are ne
essary to derive fa
torization for doublehard s
attering are only valid in the �rst region. However, the integrand in (5.71) doesnot de
rease fast enough with k� = 12(k1 � k2 � r) to suppress the se
ond region, sothat the fa
torization formula (2.33) requires a suitable regularization in order to remove
ontributions from that region. A 
orresponding statement holds in the position spa
eformulation.A simple way to regularize the 
ross se
tion formula in impa
t parameter spa
e is toimpose a lower 
uto� 1=�2 on (y + 12z)2 and (y � 12z)2. The integral in the last line of(5.72) then be
omes�� Ælm Z 1jqj=� dww J0(w) +�Ælm � 2qlqmq2 � �jqj J1� jqj� �� (5.73)times the same expression with l ! l0 and m ! m0. The integral in (5.73) behaves likelog��=jqj� for � � jqj. The � dependen
e of the 
ross se
tion obtained in this way must
an
el when one adds the 
ontribution from �gure 37a in the region of transverse loopmomenta of order Q. That region is naturally asso
iated with single hard s
attering asdis
ussed in se
tion 5.2.1. At this point, one must obviously be 
areful to avoid double
ounting between the parts of the graph that one asso
iates with single or with doublehard s
attering. The analogous double 
ounting problem in multijet produ
tion has beenpointed out in [141℄.To use a 
uto� in (5.72) is of 
ourse rather ad ho
, and there should be better waysto 
onstru
t a 
onsistent fa
torization s
heme in whi
h the formula for double-parton s
at-tering has a 
ontrolled ultraviolet behavior and in whi
h the double 
ounting problem isproperly taken 
are of. One may for instan
e think of subtra
ting the perturbative splitting{ 125 {




ontribution of �gure 33 at large momenta or small transverse distan
es in the de�nitionof the two-parton distributions, so that graphs like in �gure 37 are not in
luded in doublehard s
attering at all. To solve this issue is a nontrivial task and must be left to futurework.We already remarked that the integrals in (5.71) are �nite in the infrared. This is dueto the numerator fa
tors and 
an be understood in simple physi
al terms, as noted in thedetailed analysis given in [142℄. The points where one of the four momenta k+, k+ � q,k� or k�� q vanishes 
orrespond to 
on�gurations where one of the four g ! q�q splittingpro
esses in �gure 37a pro
eeds in stri
tly 
ollinear kinemati
s. The amplitude for the
ollinear splitting g ! q�q is zero be
ause an on-shell gluon has heli
ity �1, whereas theheli
ities of q and �q add up to zero due to 
hirality 
onservation for massless quarks.Referring to the end of se
tion 5.2.1 we �nally determine the dependen
e of (5.70) onqT and on �. With jq1 + q2j � � the se
ond line s
ales like 1=�2, and with the behaviorof the third line just dis
ussed we �nds2d�Q2i=1 dxi d�xi d2qi �����g. 37a � 1�2 log2 �2q2T ; (5.74)where � is an ultraviolet 
uto� mu
h larger than qT .5.3 Parton splitting in 
ollinear distributionsThe results of the previous se
tion are relevant not only for transverse-momentum de-pendent two-parton distributions but also for 
ollinear ones. As we have seen, 
ollineartwo-parton distributions appear in transverse-momentum integrated 
ross se
tions and in
ross se
tions at perturbatively large qT via the ladder graphs dis
ussed in se
tion 5.1.Sin
e k1 and k2 are not �xed in 
ollinear distributions, the splitting 
ontributions we 
om-puted in se
tion 5.2.2 are relevant for F (xi; r) at large r and, after Fourier transform, forF (xi;y) at small y.5.3.1 Ultraviolet behaviorIntegrating (5.42) over k1 and k2, i.e. over k and �, one formally obtains� 2Yi=1 Z d2ki(2�)2 � 1Fa1;�a2(xi;ki; r) ���g!q�q = �s4�2 1x1 + x2 fg1 (x1 + x2) T l l0a1;�a2� x1x1 + x2�� Z d2k(2�)2 �k+ 12r�l�k � 12r�l0�k + 12r�2�k � 12r�2 ; (5.75)where the integration over � gives the 
ollinear gluon distribution fg1 (x1+x2), whereas theterm with h?g1 disappears due to rotation invarian
e. In the 
ase where T l l0a1;�a2 / Æl l0 , i.e.for Fq;�q, F�q;��q and FÆq;Æ�q, the integral over k is ultraviolet divergent. The 
orrespondingintegrals of Fq;��q and F�q;�q are proportional to �l l0 rlrl0 and hen
e vanish, as they musta

ording to the 
onstraint (4.13) from parity invarian
e. An analogous dis
ussion 
anbe given for the interferen
e distributions Ia1;�a2 and for the distributions resulting from
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the splitting pro
esses q ! gq or g ! gg. In all 
ases, 
ontributions going with theBoer-Mulders fun
tions h?q1 or h?g1 vanish after integration over � and one is left with
ontributions from the unpolarized distributions f q1 or fg1 .With the kernels T or V given in (5.43), (5.45), (5.53) and (5.57) we �nd that thesplitting me
hanism generates nonzero 
ollinear two-parton distributionsFq;�q ; F�q;��q ; FÆq;Æ�q ; Iq;�q ; I�q;��q ; IÆq;Æ�q ; Fg;q ; F�g;�q ; FÆg;q ;Fg;g ; F�g;�g ; Fg;Æg ; FÆg;Æg ; (5.76)as well as the distributions obtained by inter
hanging the �rst and se
ond subs
ripts in(5.76) or by repla
ing quarks with antiquarks in Fg;q and its polarized 
ounterparts. Withthe ex
eption of FÆg;�q (and F�q;Æg, FÆg;��q, F��q;Æg) these are indeed all 
ollinear distribu-tions that are allowed by parity invarian
e and that are 
hiral even. For the distributionsdepending on polarization indi
es we haveF jj0Æq;Æ�q / Ijj0Æq;Æ�q / Æjj0 ; F jj0;kk0Æg;Æg / � jj0;kk0 ;F jj0Æg;q / F jj0g;Æg / 2� jj0;l l0rlrl0 = 2rj rj0 � Æjj0r2 : (5.77)To further investigate the ultraviolet divergen
e mentioned below (5.75) we fo
us onFq;�q for de�niteness. Sin
e D(k; r) in (5.64) falls o� as 1=k2 for �xed r and as 1=r2 for�xed k, one obtains logarithmi
 divergen
es if one integrates over one or both of thesevariables. To regulate these divergen
es one may work in 4� 2� dimensions. The result forFq;�q(xi;ki; r) is then the same as in (5.42) with a modi�ed kernelT l l0q;�q(u; �) = Æl l0 �u2 + (1� u)2 � �� : (5.78)Integrating over both transverse momenta and 
hanging integration variables to k+ =k + 12r and k� = k � 12r, one obtainsZ d2�2�r d2�2�kD(k; r) = Z d2�2�k+ kl+k2+ Z d2�2�k� kl�k2� ; (5.79)whi
h is zero due to rotation invarian
e. We note that integrating over k1, k2 and r putsall four �elds in the matrix element de�ning Fq;�q at the same transverse position, so thatone obtains a twist-four operator. If (5.79) were not zero but �nite after subtra
tion ofthe logarithmi
ally divergent pie
es, the graph in �gure 33a would 
ontribute to the s
aleevolution of a twist-four distribution. The vanishing of (5.79) thus re
e
ts the fa
t thatdistributions of twist four and of twist two (the 
ollinear gluon distribution in (5.75)) donot mix under evolution. The same zero result is obtained in any regularization s
hemethat respe
ts rotational invarian
e.Integrating over k at �xed nonzero r and using the integral representation in (5.64),one obtains �2� Z d2�2�k D(k; r) = �1�� �2(1� �)�(1� 2�) �(�)�r2�2���= ��1� + log �2r2 + 
onst. +O(�)� : (5.80)
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This 
ontains an ultraviolet pole and an asso
iated logarithm of the renormalization s
ale �2.The value of the 
onstant is not of relevan
e for our dis
ussion. If r = 0 then the integralon the l.h.s. is s
aleless and therefore vanishes. To isolate the ultraviolet singularity in that
ase, one 
an for instan
e give a small mass to the quarks. Up to 
orre
tions of order m2this leads to �2� Z d2�2�k 1k2 +m2 = �1�� �(�)�m2�2 ��� : (5.81)The ultraviolet pole and the asso
iated logarithm are hen
e the same as for nonzero r.If one de�nes the 
ollinear distribution Fq;�q(xi; r) = R d2k1 d2k2 Fq;�q(xi;ki; r) in theMS s
heme, the above 1=� pole is subtra
ted, together with a 
onstant. To leading orderin �s one �nds for the s
ale dependen
e19dd log �2 Fq;�q(xi; r) ���g!q�q = 1x1 + x2 fg1 (x1 + x2) Pq;g� x1x1 + x2� ; (5.82)where Pq;g(u) = �s2� u2 + (1� u)22 (5.83)is the familiar DGLAP splitting fun
tion (now in
luding a 
olor fa
tor TR = 1=2, unlikethe fun
tion Pqg we used in se
tion 5.1.3). We 
ome ba
k to this in the next se
tion. Let usnote that with the results in (5.52), (5.53) and (5.56), (5.57) we obtain relations analogousto (5.82) for Fg;q and Fg;g. On the r.h.s. of these relations we respe
tively �nd the DGLAPsplitting fun
tions Pg;q(u) and Pg;g(u), ex
ept for terms proportional to Æ(1�u) in Pg;g(u).Quite interestingly, the situation 
hanges if we 
onsider Fq;�q(xi;y) instead of Fq;�q(xi; r).The Fourier transform of (r2)�� in 2� 2� transverse dimensions isZ d2�2�r e�iry (r2)�� = 41�2��1�� �(1� 2�)�(�) (y2)�1+2� ; (5.84)whi
h 
an be seen by writing (r2)�� = ��1(�) R10 d����1 e��r2 , performing the integralover r and then the one over �. The fa
tor �(�) responsible for the ultraviolet divergen
ein (5.80) is thus 
an
eled if one Fourier transforms from r to y, and the result is �nite for� = 0, Z d2k d2r(2�)2 e�iryD(k; r) = 1y2 : (5.85)The 1=y2 behavior 
an be obtained dire
tly in 4 dimensions by setting z = 0 in (5.62).We thus �nd that Fq;�q(xi; r) requires an ultraviolet subtra
tion for the graph in �g-ure 33a, whereas Fq;�q(xi;y) does not. Let us see what we obtain if we de�ne a modi�ed y19We note that both �s and the gluon distribution fg in (5.75) also have a s
ale dependen
e, whi
hbe
omes relevant at order �2s in the evolution equation.
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dependent distribution as the Fourier transform of the ultraviolet subtra
ted distributionFq;�q(xi; r), Fmodq;�q (xi;y) = Z d2r(2�)2 e�iry Fq;�q(xi; r) : (5.86)We have Fq;�q(xi; r) ���g!q�q = f(x1; x2)� log �2r2 + g(x1; x2) ; (5.87)Fq;�q(xi;y) ���g!q�q = f(x1; x2) 1y2 ; (5.88)where the expli
it expressions of f and g are easily obtained but not relevant for ourdis
ussion. As shown in appendix A the Fourier transform of (5.87) givesFmodq;�q (xi;y) ���g!q�q = f(x1; x2) � 1y2�+(�) + g(x1; x2) Æ(2)(y) ; (5.89)where� 1y2 �+(�) = lim"!0 � 1y2 �(y2 � ")� Æ(2)(y)Z d2y0 1y02 �(y02 � ") �(b20 � �2y02)� (5.90)with b0 = 2e�
 . We thus �nd the same y dependen
e in (5.88) and (5.89), up to terms
on
entrated at the singular point y = 0. This is not surprising sin
e the ultravioletdivergent term in (5.80) is independent of r.In se
tion 5.1.1 we have shown that the 
ontribution of ladder graphs at large y to the
ross se
tion involves an integral Z d2y F (ui;y)F (�ui;y) (5.91)a

ording to (5.11) and (5.14). Sin
e the 
ollinear two-parton distributions behave like1=y2 at small y, the above integral has a linear divergen
e for small y2 and is hen
e notde�ned as it stands. A 
orresponding linear divergen
e is found if one Fourier transformsfrom y to r, Z d2r F (ui; r)F (�ui;�r) ; (5.92)where a

ording to (5.87) the distributions behave like log(r2=�2) for large r. The ultra-violet subtra
tion already in
luded in the de�nition of F (ui; r) is hen
e not suÆ
ient torender the integral in (5.92) �nite.The reason for the unphysi
al divergen
es in (5.91) and (5.92) is that the 
ross se
tionformulae 
ontaining these integrals have been derived for the region where 1=y2 or r2 ismu
h smaller than q2T . We thus en
ounter a similar problem as in se
tion 5.2.3, with thedi�eren
e that the divergen
e to be regulated is now linear instead of logarithmi
. Tomake the 
ross se
tion formulae (5.11) and (5.14) well-de�ned, one must either remove or{ 129 {



suppress the y integral in the region where jyj is not large 
ompared with 1=qT , or onemust de�ne F (xi;y) su
h that in this region the 
ontribution from perturbative splittingas in �gure 33 is subtra
ted. Along with su
h a pro
edure, one must provide a pres
riptionfor evaluating the splitting 
ontribution at small jyj in su
h a way that there is no double
ounting, as dis
ussed in se
tion 5.2.3.Integrating the 
ross se
tion (2.91) over q1 and q2, we readily obtain the integral in(5.91) with ui = xi and �ui = �xi. The dis
ussion of the previous paragraph 
arries overto that 
ase, with the di�eren
e that the requirement for the validity of the 
ross se
tionformula is then jyj � 1=Q instead of jyj � 1=qT . For the 
orresponding momentumintegral (5.92) with ui = xi and �ui = �xi one must require jrj � Q instead of jrj � qT .We note that in [143℄ it was proposed to regulate this integral by imposing an upper 
uto�r2 < min(q21 ; q22). By itself this is 
learly insuÆ
ient to obtain a reliable result, sin
e the
ontribution from r2 outside that region is large and needs to be evaluated as well.5.3.2 S
ale evolutionLet us now investigate the s
ale evolution of 
ollinear two-parton distributions. We fo
uson the 
olor-singlet 
ombinations 1F , whi
h are most 
losely related with single-partondensities as we already saw in se
tion 3.5. For de�niteness we 
onsider the quark-antiquarkdistribution 1Fq;�q, whi
h we studied extensively in the previous se
tion. The generalizationto other parton and polarization 
ombinations is straightforward.The dependen
e on the s
ale � of 
ollinear parton distributions arises from the reg-ularization and subtra
tion of ultraviolet divergen
es in their de�nition. This involvesdivergen
es from self-energy graphs (whi
h also o

ur in transverse-momentum dependentdistributions and 
an be expressed in terms of suitable Z fa
tors) and divergen
es from re-gions of large transverse parton momenta. For a single-parton distribution the 
ontributionfrom the high-transverse-momentum tail was already dis
ussed in se
tion 5.1.2.The s
ale dependen
e in the 
ollinear distributions 1F (xi;y) arises from self-energygraphs and in addition from the ladder graphs in �gure 30, whi
h a

ording to (5.12)and (5.13) give rise to ultraviolet divergent integrals R d2k1 d2k2 1F (xi;ki;y) unless oneperforms suitable subtra
tions. Sin
e the ladder and self-energy graphs have exa
tly thesame stru
ture as for single-parton distributions, the 
orresponding evolution equationreads dd log �2 1Fq;�q(x1; x2;y) = Xb1=q;g Z 1�x2x1 du1u1 Pq;b1�x1u1� 1Fb1;�q(u1; x2;y)+ Xb2=�q;g Z 1�x1x2 du2u2 P�q;b2�x2u2� 1Fq;b2(x1; u2;y) (5.93)for a quark-antiquark distribution. The splitting fun
tions Pa;b now in
lude the 
ontribu-tions from virtual 
orre
tions, unlike the 
orresponding kernels in se
tion 5.1.3. Note thatthe labels b1 and b2 do not take the value Æg here, be
ause the 
orresponding kernels Pq;Ægand P�q;Æg vanish due to rotation invarian
e, see our remark below (5.18).
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The evolution equation (5.93) has the stru
ture of a usual DGLAP equation for ea
hparton. The 
orresponding operator appearing in the distribution Fq;�q(xi;y) isn �q��12z2�W [�12z2; 12z2℄ ��q q�12z2�oren;�z+2 =0;z2=0� n �q�y � 12z1�W [y � 12z1; y + 12z1℄ �q q�y + 12z1�oren;�z+1 =y+=0;z1=0 ; (5.94)where the Wilson line W [�0; �℄ is de�ned in (3.113) and where f : : : gren;� indi
ates thatea
h bilinear operator �qWq is renormalized at s
ale � in the same way as for single-partondistributions. As long as the transverse distan
e y between the two bilinear operatorsremains �nite, no further ultraviolet divergen
es appear, and one has the produ
t of tworenormalized twist-two operators. As remarked earlier in the literature, one may 
hoosedi�erent renormalization s
ales �1 and �2 for the two operators, whi
h appears usefulwhen one has two hard-s
attering pro
esses with rather di�erent hard s
ales. The separateevolution equations in �1 and �2 are then simply the usual ones with a single DGLAPkernel.For the 
ollinear distributions 1Fa1;a2(xi; r) that depend on the relative momentum rthe situation is di�erent, as we have seen in the previous se
tion. The splitting graph in�gure 33a and higher-order 
orre
tions as in �gure 33b give rise to additional ultravioletdivergen
es. Their subtra
tion leads to an inhomogeneous term in the evolution equation.At leading order in �s one hasdd log �2 1Fq;�q(x1; x2; r) = Xb1=q;g Z 1�x2x1 du1u1 Pq;b1�x1u1� 1Fb1;�q(u1; x2; r)+ Xb2=�q;g Z 1�x1x2 du2u2 P�q;b2�x2u2� 1Fq;b2(x1; u2; r)+ 1x1 + x2 Pq;g� x1x1 + x2� fg1 (x1 + x2) ; (5.95)where the extra term follows from (5.82). At higher orders in �s, the inhomogeneous termwill involve a 
onvolution integral, as 
an be anti
ipated from the graph in �gure 33b.The appearan
e of the extra term in the evolution equation 
an also be understood in theimpa
t parameter representation by writing Fq;�q(xi; r) as a Fourier transformFq;�q(xi; r;�) = � Z d2y e�iry Fq;�q(xi;y;�) �ren;� : (5.96)Sin
e Fq;�q(xi;y) has a 1=y2 singularity at small y, the integral over this variable is log-arithmi
ally divergent and requires a subtra
tion in addition to those already made inFq;�q(xi;y). We have indi
ated this extra subtra
tion by [ : : : ℄ren;�.For the distributionFq;�q(xi;�) =def Fq;�q(xi; r = 0;�) = � Z d2y Fq;�q(xi;y;�) �ren;� (5.97)
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the evolution equation (5.95) has long been known in the literature, see [144{146℄ and there
ent detailed study [147℄. We wish to 
omment in this 
ontext on an ansatz that is oftenmade in phenomenologi
al studies, in whi
h the y dependent two-parton distributions arewritten as F (xi;y;�) = f(y)F (xi;�) ; (5.98)where f(y) is a smooth fun
tion normalized as R d2y f(y) = 1. A typi
al 
hoi
e for f(y)is e.g. a Gaussian or a sum of Gaussians. This type of ansatz is obviously in
onsistent ifF (xi;y;�) is de�ned from the produ
t (5.94) of twist-two operators, sin
e the � dependen
eof the l.h.s. is then given by the homogeneous evolution equation whereas the � dependen
eon the r.h.s. is governed by the inhomogeneous evolution equation (5.95). If one insteadde�nes the y dependent distribution as the Fourier transform of F (xi; r) as in (5.86) thenthe ansatz (5.98) is 
onsistent regarding evolution sin
e by 
onstru
tion Fmod(xi;y;�)evolves as in (5.95). We do however not think that this pro
edure is satisfa
tory. Aswe have seen in (5.89), F (xi;y)mod di�ers from F (xi;y) only by terms proportional toÆ(2)(y), and su
h terms do not appear in the ansatz (5.98), whi
h is smooth and �nite aty = 0. In more physi
al terms, we re
all that the inhomogeneous term in the evolutionequation (5.95) has its origin in the 1=y2 behavior of F (xi;y) at short distan
es, whi
h isnot des
ribed by (5.98).We have seen in se
tion 5.2.3 that this short-distan
e behavior prevents us from usingeither F (xi;y) or Fmod(xi;y) in the double-s
attering fa
torization formula as it stands.An ansatz like (5.98) with a smooth fun
tion f(y) does not have this problem and may beregarded as modeling a y distribution where the perturbative splitting 
ontribution thatgives rise to the 1=y2 singularity has been removed. Sin
e the ansatz is ad ho
, one 
annotsay whi
h evolution equation should then be used on both sides of (5.98). Our dis
ussionsuggests that the homogeneous form (5.93) may be more appropriate, at least for valuesy of typi
al hadroni
 size, whi
h are of 
ourse most important when the ansatz is used inthe fa
torization formula. With this 
hoi
e, one also retains 
onsisten
y with respe
t toevolution if one makes the additional ansatz F (xi; �) = f(x1; �)f(x2; �), as is often done.To �nd a systemati
 solution that treats both splitting and non-splitting 
ontributions ina 
onsistent manner remains a task for future work.For the reasons dis
ussed in se
tion 3.5, the evolution of 
olor o
tet distributions 8Fdi�ers from the one of 1F , and these di�eren
es have not yet been worked out in detail.However, the issues dis
ussed in the present se
tion a�e
t 8F in the same way as 1F , giventhat both the ladder graphs in �gure 30 and the splitting graph in �gure 33a di�er only byoverall fa
tors between the singlet and o
tet 
hannels. They hen
e give rise to the samelogarithmi
 divergen
es when the relevant transverse momenta are integrated over. Onemay therefore expe
t that, on
e a solution of the above problems for singlet distributionsis found, it will be possible to adapt it to the o
tet se
tor.
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6 Con
lusionsWe have investigated several aspe
ts of multiparton intera
tions in QCD. Su
h intera
tions
an 
ontribute to hadron-hadron 
ollisions whenever one has a �nal state with severalgroups of parti
les for whi
h the ve
tor sum of transverse momenta is small 
ompared withthe large s
ale Q that 
hara
terizes the pro
ess. As we have shown in se
tions 2.1.3 and 2.4,multiple intera
tions are then not power suppressed in 1=Q 
ompared with the me
hanismwhere these groups of parti
les are produ
ed in a single hard s
attering. Examples arethe produ
tion of two lepton pairs originating from the de
ay of two ve
tor bosons withlow transverse momenta, or the produ
tion of two dijet pairs that are approximately ba
k-to-ba
k. For small parton momentum fra
tions x, whi
h are typi
al of 
ollisions at theLHC, multiple hard s
attering 
an even be enhan
ed be
ause one expe
ts multipartondistributions to rise faster with de
reasing x than single-parton densities, as we argued inse
tion 2.5.Given the importan
e of transverse momenta in the �nal state, we have given a fa
-torization formula for multiple hard s
attering in terms of multiparton distributions thatdepend on the transverse momenta of the partons. Su
h a formula 
an be fully derivedfor lowest-order Feynman graphs and generalizes the more familiar des
ription in termsof 
ollinear (i.e. transverse-momentum integrated) multiparton distributions given in theliterature [52, 53, 66℄. A physi
ally intuitive interpretation is obtained if one expresses the
ross se
tion in a mixed representation, in whi
h the multiparton distributions depend onthe average transverse momentum of the partons and on their average transverse distan
efrom ea
h other, where the \average" refers to the s
attering amplitude of the pro
ess andits 
omplex 
onjugate. These distributions have the stru
ture of Wigner fun
tions.The simple pi
ture just sket
hed is however 
ompli
ated by the presen
e of 
orrelationand interferen
e e�e
ts, some of whi
h have been pointed out earlier in the literature[89℄. The spin and 
olor of the partons des
ribed by a multiparton distribution 
an be
orrelated, and su
h 
orrelations 
hange the overall rate of multiple intera
tions. Two-quark distributions allow two 
olor 
ouplings, whi
h we 
lassi�ed as 
olor singlet and 
oloro
tet, whereas for gluons a number of 
olor 
ouplings appear in addition to the 
olor singletone, see se
tion 2.3. In se
tion 4.1.2 we have shown that spin 
orrelations 
an also a�e
tthe distribution of parti
les in the �nal state, using four-lepton produ
tion as an example.Further 
ontributions to the 
ross se
tion 
an 
ome from interferen
e e�e
ts in fermionnumber or in quark 
avor (�gures 6
 and 7) and from the interferen
e between single andmultiple hard s
attering (�gure 9a). One 
an however expe
t that these interferen
e e�e
tswill not bene�t from the small-x enhan
ement of multiple intera
tions mentioned above(although in the 
ase of interferen
e between single and multiple s
attering the situationis not entirely settled as explained in se
tion 2.5). Regarding \res
attering 
ontributions"of the type shown in �gure 12a, we have shown that their evaluation in terms of twosequential s
attering pro
esses with on-shell external partons is inappropriate and that,when 
al
ulated properly, su
h 
ontributions are suppressed by powers of 1=Q.How large the above 
orrelations and interferen
e e�e
ts are remains an importantopen question, both for the phenomenology of multiple intera
tions and from the point of
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view of hadron stru
ture. The possibility to study moments of multiparton distributions onthe latti
e as explained in se
tion 4.2, as well as the approximate relations with generalizedparton distributions we derived in se
tions 2.1.5 and 4.3 provide two possible avenues toinvestigate these issues further.A proper fa
torization formula in QCD requires mu
h more than an analysis of thelowest-order Feynman graphs 
ontributing to the pro
ess in question. In se
tion 3 wehave taken �rst steps towards a fa
torization proof for double hard s
attering in terms oftransverse-momentum dependent distributions. Our investigation only applies to pro
esseswhere ea
h hard s
atter produ
es 
olor-singlet parti
les, given the limitation of our 
urrentunderstanding for single hard-s
attering pro
esses [111℄. For de�niteness we have restri
tedour analysis to the double Drell-Yan pro
ess. We have shown how 
ollinear and soft gluonex
hange at order �s 
an be arranged into Wilson lines, whi
h are basi
 building blo
ksin the 
onstru
tion of an all-order fa
torization formula. We have also seen that at thisorder soft-gluon e�e
ts 
an
el in fa
torization formulae that involve 
ollinear two-partondistributions in the 
olor singlet se
tor, whereas they do not 
an
el in the 
olor o
tet se
tor.In se
tion 3.2 we have listed the many issues that remain to be 
lari�ed and worked out fora full fa
torization proof. The most 
riti
al questions are probably whether one 
an showthat the e�e
t of soft gluons in the Glauber region 
an
els in the 
ross se
tion and whetherthe double 
ounting problem mentioned below 
an be solved in a satisfa
tory way.Our 
al
ulation of soft-gluon e�e
ts at leading order in �s also allows us to investigatethe stru
ture of Sudakov logarithms in the double Drell-Yan pro
ess, extending the methodof Collins, Soper and Sterman [118℄. We �nd that the leading double logarithms are givenby the produ
t of the 
orresponding Sudakov fa
tors for ea
h single s
attering pro
ess,whereas beyond this approximation soft gluon e�e
ts 
onne
t the two hard s
atters ina nontrivial way. In the region where all transverse parton momenta are large and thetransverse distan
e y between the two partons is small 
ompared to a hadroni
 s
ale, we�nd that Sudakov e�e
ts favor the 
olor singlet 
oupling in two-quark distributions. If thisresult 
ould be generalized to large y, it would provide a valuable simpli�
ation.In generi
 kinemati
s, the des
ription of multiple intera
tions involves a multitude ofterms, with many unknown distributions that des
ribe 
orrelation e�e
ts already in the
ase of double hard s
attering (not to speak of the 
ase with three or more s
atters).The predi
tive power of the theory is in
reased in the region where the net transversemomentum qT for ea
h �nal state produ
ed by a hard s
attering is large 
ompared withthe s
ale � of nonperturbative intera
tions (while still being small 
ompared with the s
aleQ 
hara
terizing the hard-s
attering pro
esses). Apart from the possible simpli�
ationdue to Sudakov e�e
ts just mentioned, the transverse-momentum dependent multipartondistributions 
an then be 
omputed in terms of 
ollinear distributions and a hard s
atteringat s
ale qT . The generation of high transverse momenta 
an pro
eed by ladder graphs as in�gure 30, and we �nd that the 
olor fa
tors of these graphs favor the 
olor singlet 
ouplingin two-parton distributions.A di�erent me
hanism is shown in �gure 33, where one parton splits into two partonsthat subsequently take part in a hard s
atter. By expli
it 
al
ulation at order �s we �ndthat this splitting me
hanism generates a multitude of spin 
orrelations between the two{ 134 {



emerging partons. For q�q distributions the 
olor singlet 
oupling is preferred, whereas forqg and gg distributions the opposite is the 
ase. Contributions from ladder graphs andfrom parton splitting graphs 
ompete with ea
h other in the double s
attering 
ross se
-tion. An overview is given in table 1, where we see that 
ompared with splitting graphsthe 
ontribution of ladder graphs is suppressed by powers of �=qT . On the other hand, thesplitting graphs la
k the small-x enhan
ement dis
ussed earlier, so that one 
annot de
ideon generi
 grounds whi
h me
hanism is more important in given kinemati
s. Finally, we�nd that splitting 
ontributions require a modi�
ation of the formalism outlined so far,be
ause they in
rease so strongly for de
reasing interparton distan
e y that one obtainsdivergent integrals when inserting them into the fa
torization formulae. This is 
loselyrelated with the problem that graphs like in �gure 37a 
an either be interpreted as repre-senting double hard s
attering with parton splitting in ea
h two-parton distribution, or asrepresenting a single hard-s
attering pro
ess at two-loop level. A 
onsistent fa
torizations
heme must ensure that there is no double 
ounting of this graph in di�erent kinemati
regions. A satisfa
tory solution of these problems remains to be found, and as we arguedin se
tion 5.3.2 su
h a solution will also have 
onsequen
es on the evolution equation for
ollinear multiparton distributions.In summary, we �nd that a systemati
 des
ription of multiparton intera
tions in QCDinvolves a 
onsiderable degree of 
omplexity, but that there are several elements that hintat possible simpli�
ations. More work is required to work out these simpli�
ations and toput the theory on �rmer ground.A Two-dimensional Fourier transform of the logarithmIn this appendix we prove the relationZ d2r4� eiry log �2r2 = lim"!0� 1y2 �(y2 � ")� Æ(2)(y)Z d2y0 1y02 �(y02 � ") �(b20 � �2y02)�(A.1)with b0 = 2e�
 , whi
h we used in (5.89). To this end we integrate the relation over a testfun
tion, whi
h must be di�erentiable and de
rease suÆ
iently fast for y2 !1. We haveI = Z d2y f(y)Z d2r4� eiry log �2r2 = Z d2y f(y)Z d2r4� �1i ��yj rjr2 eiry� log �2r2= Z d2y �i ��yj f(y)� Z d2r4� eiry rjr2 log �2r2 : (A.2)The integral over r is 
onvergent and givesZ d2r4� eiry rjr2 log �2r2 = i2 yjjyj Z 10 dr J1�rjyj� log �2r2 = i2 yjy2 log �2y2b20 ; (A.3)
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whi
h leads toI = �12 Z d2y yjy2 log �2y2b20 ��yj f(y)= �12 Z�2y2<b20d2y yjy2 log �2y2b20 ��yj �f(y)� f(0)�� 12 Z�2y2>b20d2y yjy2 log �2y2b20 ��yj f(y) :(A.4)The integration region has been split in su
h a way that integration by parts does not giveany boundary term, so that one hasI = Z�2y2<b20d2y f(y)� f(0)y2 + Z�2y2>b20d2y f(y)y2 = Z d2y f(y)� �(b20 � �2y2) f(0)y2 : (A.5)For an alternative derivation of the result in this form (with test fun
tions depending on y2)we refer to eqs. (129), (133) and (141) in [148℄. Further rewritingI = lim"!0 Zy2>"d2y f(y)� �(b20 � �2y2) f(0)y2 (A.6)we 
an separate the terms with f(y) and with f(0) and thus obtain (A.1).A
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Changes in arXiv version 2 
ompared with version 1abstra
t: removed referen
e to latti
e 
al
ulationsp.1 added Ref. [39℄p.2 added Ref. [40℄p.5 2 lines above (2.11): spe
i�ed transverse positions and momentap.8 in (2.21) and everywhere else in the paper: 
hanged notation for the symmetry fa
torfrom S to C, so as to avoid 
onfusion with the 
.m. energy. Added a footnote
omparing with a 
ommon notation in the literature.p.15 se
ond line of (2.54) 
orre
ted order of arguments p and p0 in Fp.37 se
ond line: added a forward referen
e to a later se
tionp.39 6 lines below (2.137): 
orre
ted \graph 9" to \graph 9d"p.50 �gure 15: 
orre
ted assignment of open and �lled 
ir
lesp.89 omitted unne
essary (and 
onfusing) subs
ripts on a and �a in (4.19)p.91 extended title of se
tion 4.2p.94 2 lines above (4.35): 
hanged formulation to avoid 
onfusion between � as a baryonand as a momentum transferp.102 equation (5.10) and text two lines below: 
orre
ted q2 � k1 to q2 � k2p.108 3 lines below (5.25): updated 
omparision of our results with [138℄ and added
omparision with (new) Ref. [140℄p.117 9 lines before se
tion 5.2.2: updated 
omparision with Ref. [98℄, whi
h has 
hangedfrom arXiv version 1 to 2p.119 9 lines above (5.45): added a small paragraph to help orient the readerp.123 
orre
ted exponent on the l.h.s. of (5.66)p.126 
orre
ted power of logarithm in (5.74)p.130 5 lines above se
tion 5.3.2: 
orre
ted jyj � qT to jyj � 1=qTIn addition, a small number of grammati
al mistakes have been 
orre
ted.
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