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1 IntrodutionWhen two hadrons ollide at high energies, more than one parton in one hadron an havea hard interation with a parton in the other hadron and produe partiles with large massor transverse momentum. The e�ets of suh multiparton interations are suppressed oraverage out in suÆiently inlusive observables, but they have important onsequenes forthe details of the hadroni �nal state. The possible importane of multiparton interationshas been realized long ago [1, 2℄ and phenomenologial estimates have been given formany �nal states suh as four jets (possibly inluding b quarks) [3{9℄, jets assoiated withphotons or leptons [10℄, four leptons produed by the double Drell-Yan proess [11{13℄ orfrom two harmonium states [14{16℄, as well as a number of hannels with eletroweakgauge bosons [17{26℄. Experimental evidene for multiple hard sattering has been foundin the prodution of multijets [27{29℄ and of a photon assoiated with three jets [30{33℄.A mini-review of the subjet an be found in [34℄ and an overview of how multipartoninterations are modeled in urrent Monte Carlo event generators is given in [35℄.At LHC energies, the phase spae for having several hard interations in a proton-proton ollision is greatly inreased ompared with previous experiments, and it is expetedthat the e�ets of multiple interations will be important in many proesses [36{39℄. Thisposes a hallenge in searhes for new physis and at the same time o�ers the possibility tostudy multiple interations in muh more detail than before. First experimental results on{ 1 {



multiple hard sattering at the LHC have already appeared [40℄ and more an be expetedin the near future [41℄.Understanding multiparton interations is also important for heavy-ion physis, wherepp or proton-nuleus ollisions are used as a baseline for olletive e�ets in nuleus-nuleusollisions. Compared with pp ollisions, multiparton interations with nulei have theadditional feature that the di�erent sattering partons may ome from the same nuleonor from di�erent nuleons in the nuleus. Dediated investigations of multiple interationsin pA ollisions an be found in [42{46℄.Phenomenologial estimates of multiparton interations, as well as their implementa-tion in event generators, are based on a rather simple and physially intuitive piture, whosebasi ingredient is the probability to �nd several partons inside a proton. On the otherhand, a systemati desription of multiparton interations in QCD has not been ahievedso far. In the present work, we present a number of steps in this diretion. A brief aountof our main results has been given in [47℄. We require all parton-level satters to have ahard sale, so that the onepts of hard-sattering fatorization and of parton distributionsan be applied. Sine transverse momenta of �nal-state partiles play a ruial role in theharaterization of multiple interations, we fully keep trak of this degree of freedom andbase our disussion on transverse-momentum dependent multiparton distributions.In setion 2 we give a lowest-order analysis of multiple hard sattering. We �nd thatthe intuitive piture just mentioned emerges for a subset of all relevant ontributions tothe ross setion, but that there are other ontributions whih may be of omparable sizeand hene all for further investigation. In setion 3 we take �rst steps to extend exist-ing fatorization theorems for single-hard sattering proesses with measured transversemomentum [48{51℄ to the ase of multiple hard sattering. While many ingredients for afull proof of fatorization are still missing (and the possibility that fatorization is brokenannot be ruled out), we obtain a number of enouraging results that allow us in parti-ular to analyze the struture of Sudakov logarithms. Setion 4 gives more details aboutthe distribution of two quarks or antiquarks in the proton, in partiular about the e�etsof spin orrelations and the possibility to learn more about multiparton distributions byalulating their moments in lattie QCD or by linking them to generalized parton dis-tributions. The preditive power of perturbation theory is inreased in kinematis whereall observed transverse momenta (as well as their vetors sums) are large on a pertur-bative sale. Compliations and simpli�ations that arise in this regime are disussed insetion 5, where we will also enounter the oneptual problem of separating single frommultiple hard-sattering ontributions in a systemati and onsistent fashion. Setion 6ontains our onlusions.2 Lowest order analysis2.1 Momentum and position spae strutureIn this setion we investigate the struture of multiparton interations in momentum andposition spae, restriting ourselves to graphs with the lowest order in the strong oupling.To avoid a lutter of indies we onsider salar partons desribed by a hermitian �eld �,{ 2 {



deferring the inlusion of spin and olor degrees of freedom to setions 2.2 and 2.3. Ourderivation of the ross setion formula for multiparton interations uses standard methods.For ross setions integrated over transverse momenta in the �nal state, similar derivationsan be found in the literature [52, 53℄. The extension to ross setions di�erential intransverse momenta is new. For ease of language we refer to the olliding hadrons asprotons throughout this work, bearing in mind that our results apply without hange top�p ollisions or to any other hadron-hadron ollision.2.1.1 De�nition of multiparton distributionsWe begin by de�ning the multiparton distributions that appear in the ross setion formulawe will derive shortly. The following de�nitions need to be ompleted by a presriptionto renormalize ultraviolet divergenes and by Wilson lines that take into aount ollinearand soft gluons as required to ahieve fatorization for the ross setion. These issues willbe disussed in setion 3.The building blok from whih multiparton distributions an be de�ned is the n partonorrelation funtion�(li; l0i) = � n�1Yi=1 Z d4�i(2�)4 d4�0i(2�)4 ei�ili�i�0i l0i �� Z d4�n(2�)4 ei�nln 
p�� �T��(0) n�1Yi=1 �(�0i)�T� nYi=1�(�i)���p� ; (2.1)where T denotes time-ordering and �T anti-time-ordering of the �elds. This funtion de-sribes the emission of n partons in a sattering amplitude and in its omplex onjugate.Throughout this work we assume an unpolarized target: if the target arries spin then anaverage over its polarization is impliit in (2.1) and all subsequent expressions. The partonfour-momenta in the orrelation funtion are subjet to the onstraintnXi=1 li = nXi=1 l0i : (2.2)In (2.1) we have hosen the position of the �rst �eld in the matrix element to be �0n = 0.Taking this position as arbitrary and integrating over it with a fator exp(�i�0n l0n) yieldsa delta funtion for the onstraint (2.2). The struture of the ross setion will be moretransparent if we use symmetri variablesli = ki � 12ri ; l0i = ki + 12ri : (2.3)The onstraint (2.2) then turns into nXi=1 ri = 0 (2.4)
{ 3 {
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p�� �T����12�n� n�1Yi=1 ���0i � 12�n��T���12�n� n�1Yi=1 ���i � 12�n����p� ; (2.5)where we have replaed rn using (2.4). In addition we have used translation invarianeto shift position arguments in the matrix element by �n=2. Substituting position variablesaording toyi + 12zi = �i � 12�n; yi � 12zi = �0i � 12�n for i = 1 : : : n� 1 (2.6)and zn = �n, we obtain�(ki; ri) = � nYi=1 Z d4zi(2�)4 eiziki�� n�1Yi=1 Z d4yi(2�)4 e�iyiri�� 
p�� �T����12zn� n�1Yi=1 ��yi � 12zi��T���12zn� n�1Yi=1 ��yi + 12zi����p� : (2.7)The assignment of momentum and position arguments is shown in �gure 1.We now introdue light-one oordinates v� = (v0 � v3)=p2 and v = (v1; v2) for anyfour-vetor v. In a frame where p = 0 we de�ne multiparton distributionsF (xi;ki; ri) = � nYi=1 k+i Z dk�i �� n�1Yi=1 (2�)3 2p+Z dr�i ��(ki; ri) ����k+i =xip+; r+i =0 : (2.8)This an be written asF (xi;ki; ri) = � nYi=1 Z dz�i2� eixiz�i p+ Z d2zi(2�)2 e�iziki� � n�1Yi=1 2p+Z dy�i d2yi eiyiri�� 
p��O(0; zn) n�1Yi=1 O(yi; zi)��p� ; (2.9)
{ 4 {



where we have used the abbreviationO(yi; zi) = ��yi � 12zi� i�$+��yi + 12zi����z+i =y+i =0 (2.10)for the bilinear parton operators and traded the fators k+i for derivatives �$+ = 12(�!�� )+ating on the �elds. When going from (2.8) to (2.9) we have replaed the time- or anti-time-ordered produts appearing in (2.7) by usual produts, whih are understood to benormal ordered. To justify this it is ruial that the arguments of all �elds in the operators(2.10) have a vanishing plus-omponent. For a generi on�guration with all yi and zidi�erent from zero and from eah other, all �elds in (2.10) have a spaelike separation, sothat they ommute beause of ausality and an be written in any order. The ase where�elds have a lightlike separation requires speial treatment, and di�erent methods for thisase have been used in the literature for related matrix elements, see [54, 55℄ and [56℄. Aswe shall see in setion 5, lightlike �eld separations in (2.9) also lead to divergenes thatneed to be regulated.We also introdue distributions that depend partially or entirely on transverse positions(yi and zi) instead of transverse momenta (ki and ri):F (xi;ki;yi) = � n�1Yi=1 Z d2ri(2�)2 e�iyiri�F (xi;ki; ri)= � nYi=1 Z dz�i2� eixiz�i p+ Z d2zi(2�)2 e�iziki� � n�1Yi=1 2p+Z dy�i �� 
p��O(0; zn) n�1Yi=1 O(yi; zi)��p� (2.11)andF (xi;zi;yi) = � nYi=1 Z d2ki eiziki�F (xi;ki;yi)= � nYi=1 Z dz�i2� eixiz�i p+� � n�1Yi=1 2p+Z dy�i � 
p��O(0; zn) n�1Yi=1 O(yi; zi)��p� (2.12)In the arguments of (2.11) and (2.12) it is understood that the average transverse positionof the �rst two �eld operators is yn = 0. The three forms (2.9), (2.11) and (2.12) an beused interhangeably, and eah of them has advantages in di�erent situations. As we shallsee, the momentum representation (2.9) naturally appears in Feynman graph alulations,the mixed representation (2.11) has a rather simple physial interpretation, and the positionspae representation (2.12) is most onvenient for the disussion of Sudakov logarithms.The fators of 2�, k+i , and 2p+ in (2.8) to (2.12) have been hosen suh that theollinear (i.e. transverse-momentum integrated) distributionF (xi;yi) = � nYi=1 Z d2ki�F (xi;ki;yi) = F (xi;zi = 0;yi) (2.13)
{ 5 {



as well as the distribution � n�1Yi=1 Z d2yi�F (xi;ki;yi) = F (xi;ki; ri = 0) (2.14)admit a probability interpretation. F (xi;yi) is the probability to �nd n partons withplus-momentum frations xi and transverse distanes yi from parton number n, andF (xi;ki; ri = 0) is the probability to �nd n partons with plus-momentum frations xiand transverse momenta ki.By ontrast, F (xi;ki;yi) is not a probability (due to the unertainty relation oneannot simultaneously �x transverse momentum and transverse position) but rather hasthe struture of a Wigner distribution [57℄ in the transverse variables. Its integral over allki gives the probability to �nd partons at transverse positions yi, and its integral over all yigives the probability to �nd partons with transverse momenta ki. A related interpretationfor generalized parton distributions an be found in [58℄. In �gure 1 we an identify kias the \average" transverse momenta of the partons and yi as their \average" transverseposition, where the \average" is taken between the partons to the left and to the rightof the �nal-state ut in the �gure. In a physial proess, this orresponds to an averagebetween partons in the sattering amplitude and its omplex onjugate.The interpretation of multiparton distributions beomes more expliit if one representsthem in terms of the light-one wave funtions of the target, see [59℄. Most onvenientlyderived in the framework of light-one quantization, this representation is analogous tothe wave funtion representation for single-parton densities [60℄ and generalized partondistributions [61, 62℄. The distributions in (2.13) and (2.14) an be written in terms ofsquared wave funtions in impat parameter or transverse-momentum spae, whih makestheir probability interpretation manifest. The wave funtion representation also o�ers away to model multiparton distributions in the region of large momentum frations, whereone an expet a small number of partoni Fok states to be dominant. We shall not pursuethis avenue in the present work.In later hapters we will also need ollinear distributions that depend on the momentumtransfer variables ri,F (xi; ri) = � nYi=1 Z d2ki�F (xi;ki; ri) = � n�1Yi=1 Z d2yi eiyiri�F (xi;yi) : (2.15)We will see in the following setion that F (xi;yi) or equivalently F (xi; ri) appear inmultiple-sattering ross setions. This is not the ase for the distributionsF (xi) = F (xi; ri = 0) = � nYi=1 Z d2ki� � n�1Yi=1 Z d2yi�F (xi;ki;yi) ; (2.16)whih give the probability to �nd n partons with momentum frations xi and unspei-�ed transverse positions or transverse momenta. We note that the integrals over ki in(2.13), (2.15) and (2.16) are logarithmially divergent and require appropriate regulariza-tion, whih will be disussed in setions 5.1.2 and 5.3.2.{ 6 {
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Figure 2. Graph for the ross setion of a ollision with n hard satters at parton level. Thedashed line denotes the �nal-state ut. Here and in the following, the lower blob is assoiated withthe right-moving proton and the upper blob with the left-moving proton in the ollision.The de�nitions in this setion are given for right-moving partons, with xi being plus-momentum frations. Analogous de�nitions for left-moving partons are obtained by ex-hanging the plus- and minus-omponents of all position and momentum vetors.2.1.2 Cross setion for n hard sattersWe now evaluate the ross setion for a proess with n satters at parton level, as skethedin �gure 2. We work in a referene frame with p = �p = 0 and onsider kinematis wherethe squared .m. energy q2i of eah satter is large and where eah transverse momentumjqij is muh smaller than q+i and q�i . De�ningxi = q+i =p+ ; �xi = q�i =�p� ; (2.17)we an then approximate q2i � 2q+i q�i � xi�xis ; (2.18)where s = (p+ �p)2 is the squared overall .m. energy. We neglet the target mass through-out, so that s � 2p�p � 2p+�p� and the ux fator in the ross setion is 1=(4p�p). One antrade the momentum frations xi and �xi for q2i and the rapiditiesYi = 12 log q+iq�i (2.19)with dxi d�xi = 1s d(q2i ) dYi ; (2.20)where we have again used (2.18). We note that for the very high s ahieved at the LHC,both xi and �xi are rather small, exept if jYij or q2i is very large.
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The ross setion for n hard satters is given byd� = 1C 14p�p � nYi=1 d4qi(2�)4 �XX; �X � mYj=1Z d3pX;j(2�)32p0X;j �� �mYj=1Z d3p �X;j(2�)32p0�X;j �� � n�1Yi=1 Z d4li(2�)4 d4�li(2�)4 (2�)4Æ(4)(qi � li � �li)Z d4l0i(2�)4 d4�l0i(2�)4 (2�)4Æ(4)(qi � l0i � �l0i)�� (2�)4Æ(4)� nXi=1 qi + mXj=1 pX;j + �mXj=1 p �X;j � p� �p�� nYi=1Hi(qi; li; �li; l0i; �l0i)�� 
p�� �T��(0) n�1Yi=1 d4�0i e�i�0i l0i �(�0i)���X� 
X��T��(0) n�1Yi=1 d4�i ei�ili �(�i)���p�� 
�p�� �T��(0) n�1Yi=1 d4 ��0i e�i��0i�l0i �(��0i)��� �X� 
 �X��T��(0) n�1Yi=1 d4 ��i ei��i�li �(��i)����p� ; (2.21)where the ombinatorial fator C ontains a fator k! for eah set of k idential hard-sattering �nal states.1 The remnant of proton p (�p) onsists of m ( �m) spetators withmomenta pX;j (p �X;j). Hi denotes the squared matrix element for the ith hard satter,with trunated propagators of the inoming parton lines. Hi inludes integration over theinternal phase spae of the �nal state produed by the hard satter, with only the four-momentum qi kept �xed. If suh a �nal state is the deay produt of a single partile withmass M and width � (e.g. a W or a Higgs boson) then Hi inludes a fator1q2i �M2 + i�M 1q2i �M2 � i�M ��M� ��M Æ(q2i �M2) ; (2.22)whih in the limit of narrow width onstrains qi to be on the mass shell. If the �nal stateis a stable single partile with mass M , then Hi inludes a delta funtion2�Æ(q2i �M2) (2.23)so that together with the integration element d4qi=(2�)4 in (2.21) one obtains the orretone-partile integration measure d3qiÆ�2q0i (2�)3 �. We now rewrite the ross setion interms of the orrelation funtions (2.1). To this end we useXX � mYj=1Z d3pX;j(2�)32p0X;j �(2�)4Æ(4)� nXi=1 li + mXj=1 pX;j � p�� 
p�� �T��(0) n�1Yi=1 Z d4�0i e�i�0i l0i �(�0i)���X� 
X��T��(0) n�1Yi=1 Z d4�i ei�ili �(�i)���p�=XX � mYj=1Z d3pX;j(2�)32p0X;j � Z d4�n e�i�n(p�Pni=1 li�Pmj=1 pX;j) ei�n(p�Pmj=1 pX;j)1An often used notation for two hard satters is to write m=2 in the plae of 1=C, with m = 1 if thehard-sattering �nal states are idential and m = 2 if they are distint.
{ 8 {



� 
p�� �T��(0) n�1Yi=1 Z d4�0i e�i�0i l0i �(�0i)���X� 
X��T��(�n) n�1Yi=1 Z d4�i ei�ili�(�i + �n)���p�=XX � mYj=1Z d3pX;j(2�)32p0X;j �� 
p�� �T��(0) n�1Yi=1 Z d4�0i e�i�0i l0i �(�0i)���X� 
X��T� nYi=1 Z d4�i ei�ili �(�i)���p�= � n�1Yi=1 Z d4�0i e�i�0i l0i�� nYi=1 Z d4�i ei�ili�
p�� �T��(0) n�1Yi=1 �(�0i)�T� nYi=1�(�i)���p�= (2�)4(2n�1) �(li; l0i) : (2.24)Using the analogous relation for the matrix element between �X and �p and rewriting themomentum onservation onstraint in (2.21) as(2�)4Æ(4)� nXi=1 qi + mXj=1 pX;j + �mXj=1 p �X;j � p� �p�= Z d4ln(2�)4 d4�ln(2�)4 (2�)4Æ(4)� nXi=1 qi � nXi=1 li � nXi=1 �li�� (2�)4Æ(4)� nXi=1 li + mXj=1 pX;j � p� (2�)4Æ(4)� nXi=1 �li + �mXj=1 p �X;j � �p� ; (2.25)we an express the ross setion asd� = 1C 14p�p � nYi=1 d4qi(2�)4 �� nYi=1 Z d4li d4�li (2�)4Æ(4)(qi � li � �li)�� � n�1Yi=1 Z d4l0i d4�l0i (2�)4Æ(4)(qi � l0i � �l0i)�� � nYi=1Hi(qi; li; �li; l0i; �l0i)��(li; l0i) ��(�li; �l0i)= 1C 14p�p � nYi=1 d4qi(2�)4 �� nYi=1 Z d4ki d4�ki (2�)4Æ(4)(qi � ki � �ki)�� � n�1Yi=1 Z d4ri d4�ri (2�)4Æ(4)(ri + �ri)�� � nYi=1Hi(qi; ki; �ki; ri; �ri)��(ki; ri) ��(�ki; �ri) ; (2.26)where in the last step we have swithed to the set of symmetri variables (2.3). Theyhave the important property that the kinemati onstraints on ri and �ri do not involve the�nal-state momenta qi, whih will lead to a great simpli�ation below.{ 9 {



Hard-sattering approximation. The parton-level sattering proesses involve a hardsale, whih we olletively denote by Q2 � q2i without assuming a partiular hierarhyamong the individual squared momenta q2i . The ase where one of them is muh largerthan the others is of partiular relevane for the desription of the underlying event, but weshall not investigate the onsequenes of suh a hierarhy in the present work. In the graphof �gure 2 it is understood that partons emerging from the shaded blobs have virtualitiesmuh smaller than Q2. The omponents of the various four-momenta thus sale likek+i � r+i � p+ � q+i � Q ; �k�i � �r�i � �p� � q�i � Q ;k�i � r�i � p� � �2=Q ; �k+i � �r+i � �p+ � �2=Q (2.27)and jkij � jrij � j�kij � j�rij � jqij � � ; (2.28)where � denotes the size of the transverse momenta jqij or the sale of non-perturbativeinterations, whihever is larger. The momentum onservation onstraint Æ(4)(ri + �ri)enfores that the omponents r+i � �r�i � �2=Q (2.29)are small, although by general saling arguments they ould be of order Q. The onstraintÆ(4)(qi � ki � �ki) leads tok+i � q+i �k�i � q�i (2.30)up to relative orretions of order �2=Q2. We make these approximations in the orrelationfuntions � and �� and see that the longitudinal momenta of the partons entering the hardsattering are �xed by the �nal-state kinematis. In the squared hard-sattering matrixelement Hi(qi; ki; �ki; ri; �ri) we an neglet all transverse momenta and all omponents oforder �2=Q. With (2.30) this only leaves a dependene on the independent variables q+iand q�i . Sine Hi is invariant under a boost along the z axis, it an then only depend on2q+i q�i � q2i . Altogether we then have� nYi=1 Z dk+i d�k+i Æ(q+i � k+i � �k+i ) Z dk�i d�k�i Æ(q�i � k�i � �k�i )�� � n�1Yi=1 Z dr+i d�r+i Æ(r+i + �r+i ) Z dr�i d�r�i Æ(r�i + �r�i )�� � nYi=1Hi(qi; ki; �ki; ri; �ri)��(ki; ri) ��(�ki; �ri)= � nYi=1 Z dk+i dk�i �� n�1Yi=1 Z dr+i dr�i �� � nYi=1Hi(qi; ki; �ki; ri; �ri)��(ki; ri) ��(�ki; �ri) ����k+i =q+i ��k+i ; r+i =��r�i�k�i =q�i �k�i ; �r�i =�r+i{ 10 {



� � nYi=1Hi(q2i )� � nYi=1 Z dk�i �� n�1Yi=1 Z dr�i ��(ki; ri) ����k+i =q+i ;r+i =0� � nYi=1 Z d�k+i �� n�1Yi=1 Z d�r+i ���(�ki; �ri) �����k�i =q�i ;�r�i =0 : (2.31)Inserting this into the ross setion (2.26) and using the de�nition (2.8) of the multipartondistributions givesd� = 1C 14p�p 1(4p+�p�)n�1� nYi=1 d4qi 1q+i q�i Hi(q2i )� � nYi=1 Z d2ki d2�ki Æ(2)(qi � ki � �ki)�� � n�1Yi=1 Z d2ri(2�)2 �F (xi;ki; ri)F (�xi; �ki;�ri) : (2.32)Rewriting d4qi = p+�p�dxi d�xi d2qi, we obtain our �nal result for the ross setion in mo-mentum representation,d�Qni=1 dxi d�xi d2qi = 1C � nYi=1 �̂i(xi�xis)� � nYi=1 Z d2ki d2�ki Æ(2)(qi � ki � �ki)�� � n�1Yi=1 Z d2ri(2�)2 �F (xi;ki; ri)F (�xi; �ki;�ri) ; (2.33)where we have introdued the ross setion�̂i(q2i ) = 12q2i Hi(q2i ) (2.34)for the ith parton-level subproess and used the approximation (2.18). We have arried outthe integrations over �ri using the onstraints Æ(2)(ri+ �ri), so that the distributions for thetwo protons are evaluated at opposite values of their last arguments. Fourier transformingthese to position spae, we haved�Qni=1 dxi d�xi d2qi = 1C � nYi=1 �̂i(xi�xis)� � nYi=1 Z d2ki d2�ki Æ(2)(qi � ki � �ki)�� � n�1Yi=1 Z d2yi�F (xi;ki;yi)F (�xi; �ki;yi) (2.35)and the distributions are evaluated at equal values of yi. Transforming also the argumentski and �ki, we have d�Qni=1 dxi d�xi d2qi = 1C � nYi=1 �̂i(xi�xis)� � nYi=1 Z d2zi(2�)2 e�iziqi�� � n�1Yi=1 Z d2yi�F (xi;zi;yi)F (�xi;zi;yi) ; (2.36)
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where all position arguments in the two distributions oinide.The interpretation of the distributions F (xi;ki;yi) disussed in setion 2.1.1 extendsto the ross setion formula (2.35). In eah individual hard subproess, two partons withaverage transverse momenta ki and �ki produe a �nal state with transverse momentum qi.The ith satter ours at an average transverse distane yi from the nth satter. The hardsatters are approximated to be loal in transverse spae, so that their average distane isequal to the average distane between the olliding partons in eah proton. We thus �nd arather intuitive interpretation of the variables in our ross setion formula, provided that we\average" the transverse momenta and positions between the amplitude and its onjugate.Let us however emphasize that we have obtained (2.35) from alulating Feynman graphsusing standard hard-sattering approximations, without any appeal to lassial or semi-lassial arguments.Integrating the ross setion over all transverse momenta qi we obtain a simple resultd�Qni=1 dxi d�xi = 1C � nYi=1 �̂i(xi�xis)�� n�1Yi=1 Z d2yi�F (xi;yi)F (�xi;yi) (2.37)in terms of ollinear multiparton distributions. This formula has long been known andprovides the basis of most phenomenologial analyses of multiple interations in the liter-ature. It was derived in [52℄ for salar partons in a way very similar to the one we haveemployed here.2.1.3 Single vs. multiple hard satteringThe approximations we have made in the previous setion give the leading term of anexpansion in powers of �=Q. Let us investigate how the resulting ross setion (2.35)sales with Q. As an readily be seen from its de�nition (2.11), the mass dimension ofF (xi;ki;yi) is �2 and one has F (xi;ki;yi) � ��2. To obtain this power behavior, it isessential that the distribution is invariant under a boost along the z axis. For instane,a hadroni matrix element that transforms like the plus-omponent of a vetor wouldbe proportional to p+ or another large plus omponent and thus sale like Q times theappropriate power of �. Note that the dependene of F (xi;ki;yi) on the large sale Qvia renormalization group or Sudakov logarithms (see setion 3) is negleted at the levelof power ounting. The hard-sattering ross setions have a power behavior �̂i � Q�2,and the integrations over transverse momenta ount as d2ki d2�ki Æ(2)(qi � ki � �ki) � �2.Finally, the distanes yi in (2.35) are generially of size 1=� so that d2yi � ��2. Puttingall ingredients together, one �nds d�Qni=1 dxi d�xi d2qi ����multiple � 1�2Q2n (2.38)for the ross setion of n hard satters. One obtains of ourse the same result if the powerounting is done for the representations (2.33) in momentum spae or (2.36) in positionspae, using d2ri � �2 or d2zi � 1=�2.
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Let us ompare this with the ross setion for produing the �nal states with momentaqi in a single hard sattering. Withq = nXi=1 qi ; x = nXi=1 xi = q+p+ ; �x = nXi=1 �xi = q��p� (2.39)the fatorization formula for this ase readsd�dxd�xdq ����single = �̂(x�xs)Z d2k d2�k Æ(2)(q � k � �k) f(x;k) f(�x; �k) ; (2.40)where �̂ is the appropriate hard-sattering ross setion and f(x;k) and f(�x; �k) are trans-verse-momentum dependent single-parton densities. The de�nition of f(x;k) an be ob-tained from (2.11) by setting n = 1, whih gives a power behavior f(x;k) � ��2. We nowmake (2.40) di�erential in the internal momentum variables of the �nal state, whih wehoose as ui = xi=x = q+i =q+ ; �ui = �xi=x = q�i =q� (2.41)and qi with i = 1; : : : ; n� 1. We then haved�Qni=1 dxi d�xi d2qi ����single = d�̂Qn�1i=1 dui d�ui d2qi Z d2k d2�k Æ(2)(q � k � �k) f(x;k)xn�1 f(�x; �k)�xn�1 :(2.42)The di�erential hard-sattering ross setion on the r.h.s. behaves as Q�2n, so that we haved�Qni=1 dxi d�xi d2qi ����single � 1�2Q2n : (2.43)We obtain the important result that if one leaves the ross setion di�erential in the trans-verse momenta qi, the ontributions from single and from multiple hard sattering havethe same power behavior in the large sale Q, so that multiple hard sattering is not powersuppressed. It is easy to see that the power behavior in (2.38) and (2.43) holds for anyombination of single and multiple hard satters, e.g. when produing the �nal states withmomenta q1 and q2 in a single hard satter and eah �nal state with momentum q3, q4,et. in a hard satter of its own.Let us now see what happens if we integrate over the qi. In the multiple-satteringmehanism, eah transverse momentum qi is the sum ki + �ki of two parton momenta andthus limited to be of size �, so that the phase spae volume is Qni=1 d2qi � �2n. With asingle hard sattering, however, the individual momenta qi an be as large as the hard saleQ, and only their sum q is limited to be of order � by the onstraint q = k + �k in (2.42).The phase spae volume in this ase is therefore Qni=1 d2qi = d2q Qn�1i=1 d2qi � �2Q2n�2,and we have d�Qni=1 dxi d�xi ����multiple � �2n�2Q2n ; d�Qni=1 dxi d�xi ����single � 1Q2 (2.44)
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for the ross setions integrated over all transverse momenta. Multiple-sattering ontribu-tions are now suppressed by at least one power of �2=Q2 and are hene power orretionsto the ontribution from a single hard sattering, as has been known for a long time [63℄.This is indeed neessary for the validity of the familiar ollinear fatorization theorems,whih only take into aount single hard satters.Power ounting in the hard saleQ provides an essential riterion for determining whihontributions to the ross setion are important. There are, however, other importantfators to keep in mind. We already mentioned Sudakov logarithms in q2i =Q2, whihappear in the ross setion di�erential in qi and are di�erent for single and multiple hardsattering. They will be disussed in setion 3.4. Another aspet in whih single andmultiple sattering ontributions di�er is the dependene on the momentum frations xiand �xi, whih an be rather small as we remarked after (2.20). We will return to this pointin setion 2.4.2.1.4 Impat parameter representationThe ross setion in (2.36) involves distributions F (xi;zi;yi) that depend on the transversepositions of the sattering partons but still refer to proton states with de�nite (zero) trans-verse momenta. In this setion we give a formulation ompletely in transverse positionspae, losely following the onstrution of impat-parameter dependent parton distribu-tions in [62, 64, 65℄.To begin with, we de�ne a non-forward orrelation funtion �(li; l0i; p; p0) exatly asin (2.1) but with a state hp0j having a di�erent momentum than the state jpi. Using thesame arguments as in setion 2.1.1 we an derive a representation of the form (2.7) for�(li; l0i; p; p0), with hp j replaed by hp0j. The onstraints on the parton momenta readp� nXi=1 li = p0 � nXi=1 l0i ; nXi=1 ri = p0 � p : (2.45)in this ase. In the same manner we de�ne multiparton distributions F (xi;ki; ri;p;p0),F (xi;ki;yi;p;p0) and F (xi;zi;yi;p;p0) as in (2.8) to (2.12), but taken between stateshp+;p0j and jp+;pi. Note that we take the same plus-momentum in the bra and ket state,even if their transverse momenta are di�erent.We now onsider a transverse boost, i.e. a Lorentz transformation that hanges thetransverse omponents of a four-vetor v asv ! v � v+ p+ p02p+ (2.46)and leaves plus-omponents unhanged. Invariane under this transformation impliesF (xi;ki; ri;p;p0) = F �xi;ki � xiP ; ri;�12�; 12�� (2.47)with P = 12(p+ p0) ; � = p0 � p : (2.48)
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In impat parameter spae we then haveF (xi;zi;yi;p;p0) = � nYi=1 Z d2ki eiziki� � n�1Yi=1 Z d2ri(2�)2 e�iyiri�F (xi;ki; ri;p;p0)= � nYi=1 eizixiP �� nYi=1 Z d2ki eizi(ki�xiP )� � n�1Yi=1 Z d2ri(2�)2 e�iriyi�� F �xi;ki � xiP ; ri;�12�; 12��= eiP Pni=1 xizi F �xi;z;yi;�12�; 12�� : (2.49)We now introdue proton states with de�nite impat parameter:jp+; bi = Z d2p(2�)2 e�ibp jp+;pi : (2.50)One readily obtains their normalizationhp0+; b0jp+; bi = 4�p+Æ(p0+ � p+) Æ(2)(b0 � b) (2.51)from the usual relativisti normalization hp0+;p0jp+;pi = (2�)3 2p+ Æ(p0+� p+) Æ(2)(p0�p)of momentum eigenstates (reall that at �xed p one has dp0=p0 = dp+=p+ in the invariantintegration element). For later use we also give the projetor on one-partile states,11 = Z dp+d2b4�p+ jp+; bihp+; bj ; (2.52)whih is readily heked by taking the matrix element between the one-partile states in(2.50) and using (2.51). We �nally de�ne the enter of momentum of m partiles withplus-momenta p+i and transverse positions bi asb = mXi=1 p+i bi � mXi=1 p+i : (2.53)By virtue of Lorentz invariane, this is a onserved quantity. Note the analogy between(2.46) and non-relativisti boosts if v is a momentum and if one replaes plus-momentaby masses. The enter of momentum is thus the analog of the enter of mass in thenon-relativisti ase, whih is of ourse onserved.Let us onsider the matrix element of the same operator as in (2.12), but taken betweenimpat parameter instead of transverse-momentum eigenstates. We have� nYi=1 Z dz�i2� eixiz�i p+� � n�1Yi=1 2p+Z dy�i �
p+;�b� 12d ��O(0; zn) n�1Yi=1 O(yi; zi)��p+;�b+ 12d �= Z d2p0(2�)2 d2p(2�)2 e�i(p0�p) b�i(p0+p)d=2 F (xi;zi;yi;p;p0)= Z d2�(2�)2 d2P(2�)2 e�ib��iP d+iP Pni=1 xizi F �xi;zi;yi;�12�; 12��= Æ(2)�d� nXi=1 xizi� Z d2�(2�)2 e�ib�F �xi;zi;yi;�12�; 12�� : (2.54)
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The delta funtion in the last line reets the onservation of the enter of momentum,whih equals �b� 12d = n�1Xi=1 xi�yi � 12zi�� 12xnzn + xszs ;�b+ 12d = n�1Xi=1 xi�yi + 12zi�+ 12xnzn + xszs (2.55)for the bra and ket states in the matrix element, respetively. Here xs = 1 �Pni=1 xiand zs is the enter of momentum of the spetator partons. We de�ne impat-parameterdependent multiparton distributions byF (xi;zi;yi; b) = Z d2�(2�)2 e�ib�F �xi;zi;yi;�12�; 12�� : (2.56)If we set zi = 0 then the matrix element in (2.54) is taken at d = 0 and hene beomesdiagonal. We an interpret F (xi;zi = 0;yi; b) as the probability to �nd n partons withplus-momentum frations xi in a target that is loalized in impat parameter spae, withparton number n at a transverse distane b from the enter of the target and partons 1 ton� 1 at relative transverse distanes yi from parton n.Inverting (2.56) and setting � = 0 we getF �xi;zi;yi) = Z d2bF (xi;zi;yi; b) (2.57)and an therefore represent the multiple-sattering ross setion (2.36) asd�Qni=1 dxi d�xi d2qi = 1C � nYi=1 �̂i(xi�xis)� � nYi=1 Z d2zi(2�)2 e�iziqi�� � n�1Yi=1 Z d2yi� Z d2b d2�b F (xi;zi;yi; b)F (�xi;zi;yi; �b) : (2.58)Integration over qi leads to zi = 0 as in (2.37). The resulting ross setion formula wasalready derived in [66℄, and it has a very intuitive geometri interpretation shown in �gure 3.As already noted after (2.36), the approximations we have made for the hard-satteringsubproesses imply that eah pair of olliding partons in the hadrons p and �p must be at thesame position in impat parameter spae. The relative distanes yi between the partonsare hene the same in both hadrons, but the distane of the partons from the enter oftheir parent hadron is in general di�erent in p and �p. The relative transverse distane b��bbetween the hadrons is integrated over in the ross setion.Our result (2.58) shows that the representation of the ross setion in terms of impat-parameter dependent distributions remains simple even if the transverse momenta qi arekept �xed. In the geometri interpretation just desribed, we then have to replae \dis-tanes" by \average distanes", with the average taken between the amplitude and itsonjugate. What is lost in this ase is a probability interpretation of the multiparton dis-tributions. The two �elds assoiated with a parton in the target are now taken at a relativetransverse distane zi, whose typial size is jzij � 1=jqij.{ 16 {
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x̄2Figure 3. Visualization of the ross setion formula (2.58) for n = 2 when q1 and q2 are integratedover. Eah hard satter produes a heavy gauge boson in this example.2.1.5 Redution to single-parton distributionsIn order to build a phenomenology of multiple interations, one needs a simple ansatz formultiparton distributions as a starting point. It is natural to approximate those distribu-tions that have a probability interpretation by the produt of single-parton densities. Inthis setion we show how one an formally implement this approximation and generalize itto the distributions F (xi;zi;yi) or F (xi;ki;yi), whih do not represent probabilities.To this end we insert omplete sets of intermediate hadron states in the operatorprodut appearing in the multiparton distributions:O(0; zn) n�1Yi=1 O(yi; zi) = O(0; zn)� n�1Yi=1 XXi ��Xi�
Xi��O(yi; zi)�= XXn�1;:::;X1O(0; zn)��Xn�1�� n�1Yi=2 
Xi��O(yi; zi)��Xi�1��
X1��O(y1; z1) : (2.59)Note that the two parton �elds in eah operator O(yi; zi) are assoiated with the sameplus-momentum fration xi in the multiparton distributions.The approximation that gives a produt of single-parton distributions is to assumethat among all intermediate states jXii the dominant ones are single-proton states. Thisredues the omplete sets of intermediate states to the projetion operators (2.52), and oneobtainsÆ(2)�d� nXi=1 xizi� F (xi;zi;yi; b) � � nYi=1 Z dz�i2� eixiz�i p+� � n�1Yi=1 2p+Z dy�i �� � n�1Yi=1 Z dp+i d2bi4�p+i �
p+;�b� 12d ��O(0; zn)��p+n�1; bn�1�� � n�1Yi=2 
p+i ; bi ��O(yi; zi)��p+i�1; bi�1��
p+1 ; b1 ��O(y1; z1)��p+;�b+ 12d � : (2.60)Translation invariane and the de�nition (2.50) of impat-parameter states imply
p+i ; bi ��O(yi; zi)��p+i�1; bi�1� = eiy�i (p+i �p+i�1) 
p+i ; bi�yi ��O(0; zi)��p+i�1; bi�1�yi�1� (2.61)
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and heneÆ(2)�d� nXi=1 xizi� F (xi;zi;yi; b)� � n�1Yi=1 Z d2bi� Z dz�n2� eixnz�n p+ 
p+;�b� 12d ��O(0; zn)��p+; bn�1�� � n�1Yi=2 Z dz�i2� eixiz�i p+ 
p+; bi � yi ��O(0; zi)��p+; bi�1 � yi�1��� Z dz�12� eix1z�1 p+ 
p+; b1 � y1 ��O(0; z1)��p+;�b� y1 + 12d � : (2.62)Using (2.54) for n = 1, we haveZ dz�2� eixz�p+ 
p+;�b� 12d ��O(0; z)��p+;�b+ 12d � = Æ(2)�d� xz� f(x;z; b) ; (2.63)where f(x;z; b) an be written asf(x;z; b) = Z d2�(2�)2 e�ib�f(x;z;�) (2.64)with f(x;z;�) = Z dz�2� eixz�p+ 
p+; 12���O(0; z)��p+;�12�� : (2.65)A reader familiar with generalized parton distributions will reognize thatf(x;k;�) = Z d2z(2�)2 e�izk f(x;z;�) (2.66)is a transverse-momentum dependent generalized parton distribution at zero skewness. Wewill shortly need the ollinear distributionsf(x; b) = f(x;z = 0; b) ; f(x;�) = f(x;z = 0;�) (2.67)as well. Introdued long ago in [64, 65℄, the impat parameter density f(x; b) gives theprobability to �nd a parton with momentum fration x at a transverse distane b from theenter of the proton.The delta funtion on the r.h.s. of (2.63) implies thatbn�1 = �b� 12 n�1Xi=1 xizi + 12xnzn bi�1 = bi + xizi for 1 < i < n� 1 (2.68)in (2.62), so that we obtain the desired approximationF (xi;zi;yi; b) � f�xn;zn; b+ 12 (x1z1 + : : :+ xn�1zn�1)�� � n�1Yi=2 f�xi;zi; b+ yi + 12 (x1z1 + : : :+ xi�1zi�1)� 12(xi+1zi+1 � : : : xnzn)��� f�x1;z1; b+ y1 � 12(x2z2 + : : : xnzn)� (2.69)
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Figure 4. Illustration of the approximate relation (2.70) for n = 2.of a multiparton distribution. Setting zi = 0 and integrating over b, we obtain in partiularthe ollinear multiparton distribution F (xi;yi) in terms of impat-parameter dependentsingle-parton densities,F (xi;yi) � Z d2b f(xn; b) n�1Yi=1 f(xi; b+ yi) : (2.70)This relation is illustrated in �gure 4, whih uses the representation of parton distributionsas squared light-one wave funtions we mentioned briey before (2.15).Let us now insert (2.69) into the ross setion (2.58). For measured transverse momentaqi, the di�erent single-parton distributions are entangled by their zi dependene. Byontrast, the qi integrated ross setion simpli�es tod�Qni=1 dxi d�xi � 1C � nYi=1 �̂i(xi�xis)� Z d2b d2�b f(xn; b) f(�xn; �b)� � n�1Yi=1 Z d2yi f(xi; b+ yi) f(�xi; �b+ yi)�= 1C Z d2� � nYi=1 �̂i(xi�xis)Z d2yi f(xi;yi � �) f(�xi;yi) � ; (2.71)where the only integration variable linking the di�erent fators is the relative distane� = b� �b, and where we have renamed the integration variable �b to yn in the seond step.In di�erent forms, this relation (or more preisely its analog for quarks and gluons insteadof salar partons) has long been used as a starting point of phenomenologial studies, seee.g. [67{71℄ and [8, 72℄.2As observed in [59℄ for the ase of ollinear distributions, the redution of multipartonto single-parton distributions also takes a simple form in the transverse-momentum repre-sentation. This remains true if one keeps the transverse parton momenta unintegrated. Tosee this, we integrate (2.69) over b and Fourier transform w.r.t. yi and zi as spei�ed by(2.11) and (2.12). Changing integration variables from b and yi to the impat parameter2We note that in [8, 72℄ the impat parameter arguments of f are ��yi and yi instead of yi�� and yi(if we translate to our notation). This is equivalent in the spin independent setor, where the single-partondistributions are independent of the diretion of the impat parameter.
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arguments of the distributions on the r.h.s. of (2.69), we obtainF (xi;ki; ri) � f�xn;kn � 12 xn�r1 + : : :+ rn�1); rn�� � n�1Yi=2 f�xi;ki � 12 xi (r1 + : : :+ ri�1) + 12 xi (ri+1 + : : : rn); ri��� f�x1;k1 + 12 x1(r2 + : : :+ rn); r1� ; (2.72)where we reall that rn = � n�1Pi=1 ri. Integrated over the momenta ki this simply readsF (xi; ri) � nYi=1 f(xi; ri) ; (2.73)so that the ross setion (2.71) beomesd�Qni=1 dxi d�xi � 1C � n�1Yi=1 Z d2ri(2�)2 � � nYi=1 �̂i(xi�xis) f(xi; ri) f(�xi;�ri)� : (2.74)The arguments ri in (2.73) an easily be antiipated from �gure 1.We emphasize that the relations (2.69) to (2.73) have been obtained by restritinga sum over all intermediate states to a single proton. We do not have a motivation forthis restrition other than observing that it results in negleting orrelations between dif-ferent partons in the proton. It seems plausible to assume that this is a reasonable �rstapproximation, at least in a ertain region of variables, but one should not expet it tobe very preise. Possible deviations from this approximation and their phenomenologialonsequenes have reently been disussed in [8, 73{77℄.2.2 Parton spinLet us now see how the sattering formulae (2.33) to (2.37) are modi�ed in QCD, wherepartons have nonzero spin. In (2.21) to (2.31) the squared amplitude Hi of the ith hardsattering and the hadroni matrix elements of parton �eld operators aquire spinor indiesin the ase of quarks and Lorentz indies in the ase of gluons. These indies an be treatedas in the ase of a single hard sattering. For the time being we still omit olor degrees offreedom, whih will be disussed in setion 2.3.2.2.1 QuarksThe orrelation funtion for n quarks entering the hard sattering is��1�1:::�n�n(ki; ri) = � nYi=1 Z d4zi(2�)4 eiziki�� n�1Yi=1 Z d4yi(2�)4 e�iyiri�� 
p�� �T h �q�1�y1 � 12z1� � � � �q�n��12zn�iT h q�n�12zn� � � � q�1�y1 + 12z1�i��p� : (2.75)
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When this is integrated over the parton minus-momenta, the anti-time and time orderingan be omitted and one an reorder the �elds as� n�1Yi=1 �q�i�yi � 12zi� q�i�yi + 12zi� ��q�n��12zn� q�n�12zn� (2.76)by an even permutation. For antiquarks entering the sattering, one has an operatorprodut q�i(yi � 12zi) �q�i(yi + 12zi) instead of �q�i(yi � 12zi) q�i(yi + 12zi).Consider the ase of a quark entering the hard sattering. We wish to rearrange thespinor indies in the produt ���Hi;��, where for brevity we write �; � instead of �i; �iand leave out all other indies on whih Hi and � depend. The rearrangement is ahievedby the Fierz transformHi;�� = 12 Æ�� tr�12Hi�+ 12 (5)�� tr�125Hi�+ 12(�)�� tr�12�Hi�+ 12(�5)�� tr�125�Hi�+ 12 i(���5)�� tr�14 i���5Hi� : (2.77)The Dira matries with open indies on the r.h.s. multiply �elds �q�(yi � 12zi) q�(yi + 12zi)in the orrelation funtion ��� for the right-moving proton. The dominant terms in theross setion are those where that matrix is � = 12+; 12+5 or 12 i�+j5 with j = 1; 2,beause ������ is then proportional to the large momentum omponent p+ � Q by virtueof Lorentz invariane. The traes over the hard sattering matrix Hi on the r.h.s. of (2.77)have both large plus and minus omponents sine Hi depends on the boson momentum qi.One thus has���Hi;�� = tr�12+�� tr�12�Hi�+ tr�12+5�� tr�125�Hi�+ tr�12 i�j+5�� tr�12 i�j�5Hi�+ fpower suppressed termsg ; (2.78)where a sum over the transverse index j = 1; 2 is understood.When de�ning distributions for salar partons in (2.8), we inluded a fator k+i foreah parton i = 1; : : : ; n. For quarks we do not do this, but instead inlude this fator k+iin the de�nition of the parton-level ross setion �i from the squared matrix element Hi.Writing ki; for the ollinear approximation of ki (i.e. k+i; = k+i , k�i; = 0 and ki; = 0) wereognize in k+i tr�12�Hi� = 12 tr�=ki;Hi� = 12Xs �us(ki;)Hi us(ki;) (2.79)the spin averaged squared amplitude for an inoming on-shell quark. The orrespondingterms with �5 and i��j5 = 5j� are respetively assoiated with sattering on alongitudinally and transversely polarized quark.Integrating (2.75) over the minus omponents of the parton momenta, one obtainsmulti-parton distributions as in (2.9) with the salar �eld operators (2.10) replaed byquark bilinears Oa(yi; zi) = �q(yi � 12zi) �a q(yi + 12zi)���z+i =y+i =0 ; (2.80)
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Figure 5. The numbering of �elds in two-parton distributions spei�ed in (2.85). The olor indiesj; j0; k and k0 will be disussed in setion 2.3.1.where a = q;�q; Æq labels the polarization and�q = 12+ ; ��q = 12+5 ; �jÆq = 12 i�j+5 : (2.81)We reognize the operators that appear in the de�nition of single-parton densities for un-polarized, longitudinally polarized and transversely polarized quarks, see e.g. [78, 79℄. Forantiquarks entering the hard sattering one proeeds in an analogous way. The orrespond-ing operators are O�a(yi; zi) = ��q(yi + 12zi) ��aq(yi � 12zi)���z+i =y+i =0 (2.82)with ��q = �q ; ���q = ���q ; �jÆ�q = �jÆq : (2.83)The overall minus sign in (2.82) reets a hange in the order of �eld operators fromq�(yi� 12zi) �q�(yi+ 12zi) to �q�(yi+ 12zi) q�(yi� 12zi), f. our remark after (2.76). In the aseof O��q a further minus sign is inluded in ���q, so that the operator orresponds to thedi�erene of antiquarks with positive and negative heliity.From now on we onentrate on two-parton distributions. The formalism an be ex-tended without oneptual diÆulties to higher multiple interations, but the resultingexpressions beome rather unwieldy. As one enounters nontrivial features already fordouble hard sattering, it is natural to elaborate this ase �rst. To simplify the disussion,we introdue a ompat notation

'4 '3 '2 '1 �� = � 2Yi=1 Z dz�i d2zi(2�)3 eixiz�i p+�iziki�� 2p+Z dy�
p��'(y � 12z1)'(�12z2)'(12z2)'(y + 12z1)��p����z+1 =z+2 =y+=0 (2.84)
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for the Fourier transformed matrix element of a produt of �eld operators '. Their indiesare assigned aording to1 $ y + 12z1 $ momentum fration x1 in amplitude2 $ 12z2 $ momentum fration x2 in amplitude3 $ � 12z2 $ momentum fration x2 in onjugate amplitude4 $ y � 12z1 $ momentum fration x1 in onjugate amplitude (2.85)as shown in �gure 5. Throughout this paper we onsider unpolarized inident hadrons, sothat an average over the proton spin is understood in (2.84). A two-quark distribution isthen given by Fa1;a2(xi;ki;y) = 

(�q3�a2 q2) (�q4�a1 q1)�� ; (2.86)and if the parton with momentum fration x2 is an antiquark one has insteadFa1;�a2(xi;ki;y) = 

(�q2��a2 q3) (�q4�a1 q1)�� : (2.87)In straightforward extension of the ase of single-parton distributions [79℄, the matrixelements de�ning distributions for quarks and antiquarks are thus onneted asFa1;�a2(x1; x2;k1;k2;y) = �a2Fa1;a2(x1;�x2;k1;�k2;y) (2.88)with sign fators �q = �Æq = +1 and ��q = �1. De�nitions and relations analogous to(2.86), (2.87) and (2.88) hold for the ase where the parton with momentum fration x1 isan antiquark.The previous arguments an be repeated for the partons in the left-moving proton,with the roles of plus and minus omponents interhanged. We de�ne the hard-satteringross setion for a right-moving quark and a left-moving antiquark as�̂i;a�a = 12q2i �Pa(ki)��� �P�a(�ki)����� Hi;�� ���� (2.89)with spin projetorsPq(k) = P�q(k) = 12=k ; P�q(k) = �P��q(k) = 125 =k ;P jÆq(k) = P jÆ�q(k) = 125 =kj (2.90)onstruted from the ollinear momenta ki; introdued before (2.79), i.e. k+i; = k+i forright-moving partons and k�i; = k�i for left-moving ones, with all other omponents equalto zero. The spin projetors math the Fierz deomposition (2.78) and the operators in(2.80) and (2.82), and they an be expressed in terms of quark or antiquark spinors as in(2.79). It is understood that for eah label Æq or Æ�q the ross setion (2.89) depends on atransverse Lorentz index, whih has not been expliitly displayed. In most reations thepartoni subproess involves only hirality onserving interations. Sine inoming quarksand antiquarks are approximated as massless in the hard sattering, only the ombinations{ 23 {
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Fā1,a2

H2

a b

α1 α2 β2 β1
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Figure 6. Graphs for double hard sattering initiated by di�erent ombinations of quarks andantiquarks in the amplitude and the onjugate amplitude.�̂q;�q, �̂�q;��q, �̂q;��q, �̂�q;�q and �̂Æq;Æ�q are then nonzero. For parity onserving proessessuh as the prodution of a virtual photon, one is left with only �̂q;�q, �̂�q;��q and �̂Æq;Æ�q.Hard-sattering ross setions �̂i;�aa for right-moving antiquarks and left-moving quarks arede�ned as in (2.89) with an appropriate hange of spinor indies.We now have everything at hand to write down the expression for the double-satteringgraphs of �gure 6a and b. For a single quark avor, one hasd�Q2i=1 dxi d�xi d2qi ������g. 6a,b = 1C Xa1;a2=q;�q;Æq�a1;�a2=�q;��q;Æ�q � 2Yi=1 Z d2ki d2�ki Æ(2)(qi � ki � �ki)�� Z d2y ��̂1;a1�a1(x1�x1s) �̂2;a2�a2(x2 �x2s)Fa1 ;a2(xi;ki;y)F�a1 ;�a2(�xi; �ki;y)+ �̂1;a1�a1(x1�x1s) �̂2;�a2a2(x2 �x2s)Fa1;�a2(xi;ki;y)F�a1;a2(�xi; �ki;y)� ; (2.91)where S = 2 if the �nal states of the two hard satters are idential and S = 1 otherwise. Itis straightforward to Fourier transform the previous expressions either from the interpartondistane y to the relative transverse momentum r, or from average transverse momentaki; �ki to transverse positions zi, as we did in (2.9), (2.12) and (2.33), (2.36) for salarpartons.
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Notie that (2.91) involves a polarization dependene in the multiparton distributionsand hard-sattering ross setion. This is beause, even for unpolarized hadron beams,the polarization of the two partons with momentum frations x1 and x2 an be orrelatedamong themselves. We will disuss this in more detail in setion 4.1.1.The two-quark and quark-antiquark distributions onsidered so far have the form

O1O2��, where the Oi are bilinear operators from (2.80) or (2.82). As we disussedafter (2.14), these distributions an be interpreted as probabilities or pseudo-probabilitiesin the sense of Wigner distributions for two partons in the proton that arry momentumfrations x1 and x2, respetively.There are further double-sattering graphs that ontribute to the ross setion and in-volve distributions whih represent interferene terms rather than probabilities. In �gure 6we show the ase where the parton with momentum fration x1 is a quark in the satteringamplitude and an antiquark in the onjugate sattering amplitude. Suh interferene termsin fermion number have no equivalent in single hard-sattering proesses, where they areforbidden by fermion number onservation. For their desription we introdue interferenedistributions Ia1;�a2(xi;ki;y) = 

(�q2��a2 q4) (�q3�a1 q1)�� ;I�a1;a2(xi;ki;y) = 

(�q4�a2 q2) (�q1��a1 q3)�� : (2.92)In the absene of a probability interpretation, the hoie of quark vs. antiquark labels inthe Dira matries is pure onvention. We assign labels suh that a indiates a quark and�a an antiquark in the amplitude, i.e. for the parton indies 1 and 2 in �gure 5. The graphin �gure 6 ontributes to the ross setion asd�Q2i=1 dxi d�xi d2qi ������g. 6 = 1C Xa1;a2=q;�q;Æq�a1;�a2=�q;��q;Æ�q H1; �1�1 ��1 ��1(k1; �k1) �Pa1(k1)��1�2 �P�a2(k2)��1�2�H2; �2�2 ��2 ��2(k2; �k2) �P�a1(�k1)���2 ��1 �Pa2(�k2)���2 ��1� � 2Yi=1 Z d2ki d2�ki Æ(2)(qi � ki � �ki)� Z d2y Ia1;�a2(xi;ki;y) I�a1;a2(�xi; �ki;y) : (2.93)We see that the ontration of Dira indies ties together the two hard-sattering kernelsand the spin projetors P , so that one annot de�ne separate partoni ross setions �̂1and �̂2. The power behavior of this ontribution is the same as in (2.91).Taking di�erent quark avors into aount, we obtain further interferene terms. Theontributions in �gure 7a and b involve the interferene of di�erent quark avors, and thosein �gure 7 and d the ombined interferene in fermion number and avor. The relevantmatrix elements are easily written down, reading e.g. 

(�u3�a2 d2) ( �d4�a1 u1)�� for the lowerpart of �gure 7a.Whih interferene distributions are of appreiable size is interesting from the point ofview of nuleon struture and important for phenomenology. One may for instane imaginethat diquark-like orrelations in the nuleon wave funtion play an important role in this{ 25 {
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ū

d

d̄

d̄ ū
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dFigure 7. Graphs for double hard sattering with interferene in quark avor. For simpliity, theblobs indiating the hadroni matrix elements are not shown.ontext. In setion 2.5 we will argue that for small values of xi both fermion number andquark avor interferene distributions should beome relatively small.2.2.2 GluonsIf gluons enter a hard-sattering subproess, speial attention needs to be paid to theirpolarization. In ovariant gauges suh as Feynman gauge, an unlimited number of right-moving gluons with polarization in the plus diretion an be attahed to a hard satteringgraph without any power suppression. The e�et of these gluons is resummed into Wilsonlines, whih we will disuss in detail in setion 3.2.1. Alternatively, one may work in light-one gauge A+ = 0, where the orresponding gluon polarization is absent. One then hasto be areful about subtle e�ets from Wilson lines at in�nity, see our remark at the endof setion 3.2.1.One the right-moving gluons with plus polarization (and the left-moving gluons withminus polarization) are taken into aount, the leading ontribution to the ross setionomes from gluons with transverse polarization, orresponding to �eld operators Aj withj = 1; 2. It is for these gluons that one introdues parton distributions similar to those ofquarks. To deompose the produt of two gluon potentials with transverse polarization,we use the relations �jj0�kk0 = ÆjkÆj0k0 � Æjk0Æj0k ;� jj0;kk0 = 12�ÆjkÆj0k0 + Æjk0Æj0k � Æjj0Ækk0� ; (2.94)
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where the indies j; j0; k; k0 = 1; 2 are restrited to be transverse and where �jj0 is thetwo-dimensional antisymmetri tensor with �12 = 1. The tensor � jj0;kk0 is symmetri andtraeless in eah of the index pairs (jj0) and (kk0). As an analog of the deomposition(2.77) for fermions, we an thus writeHjj0i = �12Æjj0Ækk0 + 12�jj0�kk0 + � jj0;kk0�Hkk0i= Æjj0�12Ækk0Hkk0i �� i�jj0�12 i�kk0Hkk0i �+ � jj0;l l0�� l l0;kk0Hkk0i � (2.95)for the squared hard-sattering matrix element, where in the last step we have used therelation � jj0;l l0� l l0;kk0 = � jj0;k0k.The tensors depending on j; j0 in (2.95) are to be ontrated with a produt Aj0Aj ofgluon potentials in the multigluon orrelation funtion�j1j01:::jnj0n(ki; ri) = � nYi=1 Z d4zi(2�)4 eiziki�� n�1Yi=1 Z d4yi(2�)4 e�iyiri�� 
p�� �T�Aj0n��12zn� n�1Yi=1 Aj0i�yi � 12zi��T�Ajn�12zn� n�1Yi=1 Aji�yi + 12zi����p� : (2.96)In analogy to the de�nition (2.8) for salar partons (and in ontrast to the one for quarks)we inlude a fator k+i for eah gluon i when de�ning multi-gluon distributions F from �.One then obtainsFa1;:::;an(xi;ki;yi) = � nYi=1 1xip+ Z dz�i2� eixiz�i p+ Z d2zi(2�)2 e�iziki� � n�1Yi=1 2p+Z dy�i �� 
p��Oan(0; zn) n�1Yi=1 Oai(yi; zi)��p� ; (2.97)where Oa(yi; zi) = �jj0a G+j0(yi � 12zi)G+j(yi + 12zi) (2.98)with polarization labels a = g;�g; Æg and�jj0g = Æjj0 ; �jj0�g = i�jj0 ; ��l l0Æg �jj0 = � jj0;l l0 : (2.99)The operators Og and O�g appear in the usual densities for unpolarized and longitudinallypolarized gluons. By ontrast, O l l0Æg desribes the interferene of two gluons whose heliitiesdi�er by two units, or equivalently the di�erene between linear gluon polarization intwo orthogonal diretions. Suh distributions have previously been disussed in di�erentontexts, see [80, 81℄ and [82{87℄.In going from (2.96) to (2.97) we have traded gluon potentials for �eld strengthsusing the relation G+j = �+Aj valid in the light-one gauge A+ = 0. Under the Fouriertransform this turns k+i Aj0Aj into (k+i )�1G+j0G+j and explains the fator 1=(xip+) foreah parton in (2.97). It is plausible that gluon �eld strengths rather than potentials should
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appear in the de�nition of gluon distributions, sine G�� has a simple behavior under gaugetransformations and an be used to onstrut gauge invariant operators. How a de�nitionwith G+j emerges in Feynman gauge is rather involved and has been shown expliitly forthe ase of a single hard sattering in [88℄.Parton-level ross setions for gluons are de�ned as in (2.89) with spin projetorsP kk0g = 12Ækk0 ; P kk0�g = �12 i�kk0 ; �P l l0Æg �kk0 = � l l0;kk0 (2.100)following from (2.95). In Pg one readily reognizes the average over the two transversegluon polarization. The expressions (2.98) to (2.100) are for right-moving gluons. Forleft-moving gluons, one has to hange + into � oordinates in (2.98) and reverse the signof the � tensor in ��g and P�g. This is beause in a ovariant deomposition of the matrixelements the two-dimensional � tensor arises from the four-dimensional one as �jj0 = �+�jj0and thus hanges sign when + and � oordinates are interhanged.Using our shorthand notation (2.84) we an write two-gluon distributions asFa1;a2(xi;ki;y) = (x1p+)�1(x2p+)�1 

(�kk0a2 G+k03 G+k2 ) (�jj0a1 G+j04 G+j1 )�� : (2.101)Of ourse, there are also multiparton distributions involving both quarks and gluons. Whendisussing the mixing of two-quark and two-gluon distributions in setion 5.1.3 we shallneed quark-gluon distributions of the typeFa1;a2(xi;ki;y) = (x1p+)�1 

(�q3�a2 q2) (�jj0a1 G+j04 G+j1 )�� (2.102)with a1 = g;�g and a2 = q;�q.2.3 ColorIn ontrast to single-parton densities, where two parton �elds are always oupled to a olorsinglet, multiparton distributions have a nontrivial olor struture. We limit ourselvesto two-parton distributions here, i.e. to orrelation funtions with four parton �elds. Inthis setion we give general deompositions of their olor struture. Dynamial aspetswhere olor plays an essential role will be enountered throughout setion 3, as well as insetions 5.1.3 and 5.2.2.2.3.1 QuarksFor two-quark distributions we writeFjj0;kk0 = 

(�q3;k0�a2 q2;k) (�q4;j0�a1 q1;j)�� = 1N2 �1F Æjj0Ækk0 + 2NpN2 � 1 8F tajj0takk0� ;(2.103)where j; j0 and k; k0 are olor indies and N is the number of olors. The indies 1 and 2 onthe quark �elds are shorthand for the position spae arguments assoiated with momentum
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frations x1 and x2, as given in (2.86). For ease of writing we do not display the polarizationlabels a1; a2 of F when not neessary. The funtions 1F and 8F an be projeted out as1F = Æj0j Æk0k Fjj0;kk0 = 

(�q3�a2 q2) (�q4�a1 q1)�� ;8F = 2NpN2 � 1 taj0j tak0k Fjj0;kk0 = 2NpN2 � 1 

(�q3�a2 taq2) (�q4�a1taq1)�� : (2.104)We see that for N = 3 the quark lines arrying the same longitudinal momentum areoupled to olor singlets and olor otets in 1F and 8F , respetively.3 Obviously, only 1Fadmits an interpretation as the joint density of quarks with momentum frations x1 andx2, summed over their respetive olors. The prefator of 8F in (2.103) has been hosensuh that it also appears in the projetion (2.104). For this hoie the olor singlet andolor otet distributions enter with equal weight�1F 1F + 8F 8F �ÆN2 (2.105)in the ross setion of proesses where hard satters produe olor-singlet systems. In thissense, the size of 8F relative to 1F diretly indiates its relevane to phenomenology.For parameterizing the olor struture of Fjj0;kk0 one an alternatively use 1F and thematrix elementÆj0k Æk0j Fjj0;kk0 = 

(�q3;j�a2 q2;k) (�q4;k�a1 q1;j)�� = pN2 � 1N 8F + 1N 1F ; (2.106)in whih quark lines arrying di�erent longitudinal momentum ouple to olor singlets. Wenote that this ombination beomes equal to 8F in the limit of large N . It an be rewrittenin terms of matrix elements 1~F = 

(�q4�a2 q2) (�q3�a1 q1)�� (2.107)that involve bilinear quark operators with no unontrated olor or spinor indies. This isahieved by a Fierz transform of �a2 �a1 w.r.t. the spinor indies of �q3;j and q1;j, followedby a Fierz transform w.r.t. the other two indies. WritingOa1;a2 = (�q3;j�a2 q2;k) (�q4;k�a1 q1;j) ; ~Oa1;a2 = (�q4;k�a2 q2;k) (�q3;j�a1 q1;j) (2.108)one has0BBBBBB� ~Oq;q + ~O�q;�q~Oq;q � ~O�q;�q~Oq;�q + ~O�q;q~Oq;�q � ~O�q;q~Ojj0Æq;Æq
1CCCCCCA = �0BBBBBB�1 0 0 0 00 0 0 0 Ækk00 0 1 0 00 0 0 0 i�kk00 12Æjj0 0 �12 i�jj0 � jj0;kk0

1CCCCCCA0BBBBBB�Oq;q +O�q;�qOq;q �O�q;�qOq;�q +O�q;qOq;�q �O�q;qOkk0Æq;Æq
1CCCCCCA (2.109)3For onveniene we use the notation 8F for general N .
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and 0BBBB� ~Ojq;Æq + ~OjÆq;q~Ojq;Æq � ~OjÆq;q~Oj�q;Æq + ~OjÆq;�q~Oj�q;Æq � ~OjÆq;�q
1CCCCA = �0BBBB��Æjk 0 0 00 0 0 i�jk0 0 �Æjk 00 i�jk 0 0

1CCCCA0BBBB� Okq;Æq +OkÆq;qOkq;Æq �OkÆq;qOk�q;Æq +OkÆq;�qOk�q;Æq �OkÆq;�q
1CCCCA ; (2.110)where � is de�ned in (2.94) and the transverse indies k; k0 of the tensor operators on ther.h.s. are summed over as appropriate. The global minus sign in both equations omes fromthe reordering of fermion �elds between O and ~O. The inverse transformation goes withthe same matries. Of ourse, the distributions 1~F do not have a probability interpretationsine the quark �elds oupled to olor singlets arry di�erent momentum frations.To illustrate that the olor otet ombination 8F need not be small let us onsider athree-quark system, as is done in onstituent quark models. Irrespetive of the details inthe model, the olor part of the three-quark wave funtion is �jkl. The olor struture of atwo-quark distribution is thus given byFjj0;kk0 / �jkl �j0k0l = Æjj0 Ækk0 � Æjk0 Ækj0 ; (2.111)where l is the olor index of the spetator quark and therefore summed over. With (2.104)one readily �nds 8F = �p2 (1F ). The ombination in (2.106), where the quark lines f13gand f24g are oupled to olor singlets is then 13�p8 8F + 1F � = �(1F ) and thus as large as1F itself.The preeding expressions an easily be adapted for the quark-antiquark distributionsFa1;�a2 de�ned in (2.87). With olor indies labeled as in �gure 5, the orresponding matrixelement reads 

(�q2;k��a2 q3;k0) (�q4;j0�a1 q1;j)�� and is deomposed as on the r.h.s. of (2.103)with interhanged indies k and k0. An extra minus sign appears in the transformationlaws (2.109) and (2.110) whenever a label �q is hanged to ��q, beause ���q = ���q.An analogous olor deomposition an �nally be made for the interferene distributionsIa1;�a2 de�ned in (2.92),Ijj0;kk0 = 

(�q2;k��a2 q4;j0) (�q3;k0�a1 q1;j)�� = 1N2 h1I Æjk0Æj0k + 2NpN2 � 1 8I tajk0taj0ki (2.112)with 1I = Æk0j Ækj0 Ijj0;kk0 = 

(�q2��a2 q4) (�q3�a1 q1)�� ;8I = 2NpN2 � 1 tak0j takj0 Ijj0;kk0 = 2NpN2 � 1 

(�q2��a2 taq4) (�q3�a1taq1)�� : (2.113)In analogy to (2.106) one an alternatively use 1I together withÆk0j0 Ækj Ijj0;kk0 = 

(�q2;j��a2 q4;j0) (�q3;j0�a1 q1;j)�� = pN2 � 1N 8I + 1N 1I : (2.114)By the same transformation as in (2.109) and (2.110), with appropriate sign hanges forthe antiquark matries ��a2 , one an rewrite this as a linear ombination of matrix elements1~I = 

(�q3��a2 q4) (�q2�a1 q1)�� ; (2.115)
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where the quark bilinears have no unontrated spin or olor indies. Using the relationtajk0taj0k = 12Æjk Æk0j0 � 12N Æjk0 Æj0k one an also rewrite (2.112) asIjj0;kk0 = 1N2"s N2(N � 1) �3I�Æjk0 Æj0k � Æjk Æj0k0�+s N2(N + 1) 6I�Æjk0 Æj0k + Æjk Æj0k0�#(2.116)with �3I =rN � 12N 1I �rN + 12N 8I ; 6I =rN + 12N 1I +rN � 12N 8I : (2.117)The transformation between 1I; 8I and �3I; 6I is orthogonal. For N = 3 we an rewriteÆjk0 Æj0k � Æjk Æj0k0 = �jj0l �k0kl and reognize that �3I desribes the ase where the quarkswith momentum fration x1 are oupled to a olor antitriplet, whereas 6I desribes thease where they form a sextet.2.3.2 GluonsThe olor struture for multi-gluon distributions requires the oupling of several olor otetsand is hene more involved than for quarks. For a two-gluon distribution we proeed by�rst oupling eah of the gluon pairs f14g and f23g to irreduible representations and thenoupling these pairs to an overall olor singlet. For the olor strutures that an mix withquarks we writeF aa0 ;bb0 = (x1p+)�1(x2p+)�1 

(Gb03 �a2Gb2) (Ga04 �a1Ga1)��= 1(N2 � 1)2 �1F Æaa0Æbb0 � pN2 � 1N AF faa0f bb0 + NpN2 � 1N2 � 4 SF daa0dbb0 + � � � �(2.118)with a shorthand notation Ga0�aiGa = �jj0ai Ga0;+j0Ga;+j for the ontrations of gluonpolarization indies. As is readily seen from(x1p+)(x2p+) 1F = 

(Gb3�a2Gb2) (Ga4�a1Ga1)�� ;(x1p+)(x2p+)AF = � pN2 � 1N 

(f bb0Gb03 �a2Gb2) (f aa0Ga04 �a1Ga1)�� ;(x1p+)(x2p+) SF = NpN2 � 1N2 � 4 

(dbb0Gb03 �a2Gb2) (daa0Ga04 �a1Ga1)�� ; (2.119)eah of the pairs f14g and f23g in 1F , AF and SF is respetively oupled to a singlet,an antisymmetri and a symmetri otet. For hard-sattering proesses produing olorsinglet states, these distributions enter the ross setion as� 1F 1F + AF AF + SF SF + � � � �Æ(N2 � 1)2 : (2.120)
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The ellipsis in (2.118) and (2.120) stands for terms where the gluon pairs are in higherolor representations. For SU(3) these are 10, 10, 27, and the full deomposition readsF aa0;bb0 =N=3 164 h1F Æaa0Æbb0 � p83 AF faa0f bb0 + 3p85 SF daa0dbb0+ 2p10 10F taa0;bb010 + 2p10 10F �taa0;bb010 �� + 4p27 27F taa0;bb027 i (2.121)with tensors [89℄taa0;bb010 = ÆabÆa0b0 � Æab0Æa0b � 23 faa0f bb0 � i(dabfa0b0 + fabda0b0) ;taa0;bb027 = ÆabÆa0b0 + Æab0Æa0b � 14 Æaa0Æbb0 � 65 daa0dbb0 : (2.122)In 10F the indies (aa0) are oupled to 10 and (bb0) to 10, whereas in 10F the opposite isthe ase. The normalization fators in (2.121) are suh that the prodution of olor singletpartiles involves the ombination �1F 1F+AF AF+SF SF+10F 10F+10F 10F+27F 27F �Æ64.Useful relations between the f and d tensors an be found in [90℄.We onlude this setion with the olor deomposition of the quark-gluon distributionsintrodued in (2.102). The quark lines an only ouple to a olor singlet or otet, whihhas to be mathed by the gluon lines in order to obtain an overall singlet. A ompletedeomposition is thus given byF aa0jj0 = (x1p+)�1 

(�q3;j0�a2 q2;j) (Ga04 �a1Ga1)��= 1N(N2 � 1) h1F Æaa0 Æjj0 � AF p2 if aa0 tjj0 +r 2N2N2 � 4 SF daa0 tjj0i (2.123)with (x1p+) 1F = 

(�q3�a2 q2) (Ga4�a1Ga1)�� ;(x1p+)AF = p2 

(�q3�a2 tq2) (if aa0Ga04 �a1Ga1)�� ;(x1p+) SF =r 2N2N2 � 4 

(�q3�a2 tq2) (daa0Ga04 �a1Ga1)�� : (2.124)The fator i in (2.123) has been hosen so that AF is real valued (sine if aa0 is Hermitianw.r.t. the indies a and a0). The normalization fators multiplying AF and SF are thegeometri means of their ounterparts in (2.103) and (2.118).2.4 Power ounting and dominant graphsIn setion 2.1.3 we have already ompared the power behavior in �=Q of single and multiplehard sattering ross setions. We now take a loser look at this issue and extend ouranalysis to the interferene of single and multiple sattering.As building bloks for establishing the power behavior of the ross setion we take or-relation funtions �n involving n parton �elds and amplitudes Tk!m for hard-sattering
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proesses with k inoming partons and m �nal-state partiles. The relevant parton orre-lation funtions are obtained by replaing the salar parton �elds in (2.1) by quark �elds�q and q, or by the transverse omponents Aj of the gluon potential as in (2.96). To treatquarks and gluons on a ommon footing, it is onvenient to use modi�ed orrelation fun-tions �0n that are divided by pl+ for eah quark or antiquark line with momentum l, andmodi�ed hard-sattering amplitudes T 0k!m that are multiplied with the orresponding fa-tor pl+. Furthermore, pairs �q� and q� of quark �elds in �0n are ontrated with one ofthe Dira matries �a in (2.81) that give the dominant ontributions to the ross setion.4The produts T 0k!m T 0�k0!m of modi�ed hard-sattering amplitudes with their omplex on-jugates are to be ontrated with the orresponding Dira matries spei�ed in (2.78).Sine 1pl+l0+ �q+q ; 1pl+l0+ �q+5q ; 1pl+l0+ �qi�+j5q ; AjAk (2.125)have the same mass dimension and are invariant under boosts along the z axis, the powerbehavior of the modi�ed orrelation funtions is�0n � �2�3n (2.126)regardless of the parton speies. The power on the r.h.s. is just the mass dimension of �0n.By de�nition, all internal lines of the hard-sattering subgraphs are o� shell by order Q2,so that the power behavior of the amplitudes T 0k!m (where the propagators of externalpartiles are trunated) is also determined by their mass dimension. For the proessesonsidered in the following, one hasT 0k!m � Q4�k�m ; (2.127)as an readily be heked for the example graphs in �gure 8.For de�niteness we onsider the prodution of two partiles with large masses andrespetive four-momenta q1; q2. Examples are the weak gauge bosons W , Z or a Higgsboson. The power behavior of the ross setion is the same if we replae one or both of theheavy partiles by a set of light partiles suh as a lepton pair or a pair of jets, providedthat we integrate over the internal phase spae of the �nal-state partiles while keeping qi�xed. Replaing for instane a partile with momentum qi and mass Mi by two masslesspartiles with momenta p1 and p2, we have to hanged4qi 2�Æ(q2i �M2i )T 0k!1 T 0�k0!1 = dxi d�xi d2qi �Æ�xi�xi � M2i + q2is � T 0k!1 T 0�k0!1 (2.128)intod4qi(2�)2 Z d3p12p01 d3p22p02 Æ(4)(qi � p1 � p2)T 0k!2 T 0�k0!2 = dxi d�xi d2qi sZ d
1(8�)2 T 0k!2 T 0�k0!2 ;(2.129)4For the purpose of power ounting, it is not important whih of the matries �a is taken and whihpairs of quark �elds are ontrated together if there are more than two of them. We will not speify thesedetails in the present setion and use �0n in a generi sense. Likewise, olor indies are not relevant forpower ounting and will be omitted. { 33 {
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Figure 8. Example graphs and power behavior for di�erent ombinations of single and double hardsattering ontributions to gauge boson pair prodution. It is understood that internal lines of thehard-sattering subgraphs are o� shell by order Q2, whereas partons emerging from the protonmatrix elements are o� shell by order �2.where d
1 is the solid angle of p1 in the rest frame of qi. We reall that xi = q+i =p+and �xi = q�i =�p� are de�ned in terms of �nal-state momenta and thus diretly observable.Aording to (2.127) the saling behavior of the squared hard-sattering amplitudes hangesby 1=Q2 when going from (2.128) to (2.129), whih is ompensated by the phase spaevolume sd
1 � Q2. One may put restritions on the phase spae integration, suh as aminimum transverse momentum of p1, as long as d
1 remains of order 1. For eah further�nal-state partile, the squared amplitude aquires an extra 1=Q2, whih is ompensatedby an extra phase spae integration with volume of order Q2.After these preliminaries we an establish the power behavior of the onventionalmehanism with a single hard sattering, shown in �gure 8a. The ross setion formulaan be obtained in exatly the same way as in setion 2.1.2. Omitting all fators that are
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not relevant for power ounting (inluding the Æ funtions onstraining xi �xi in (2.128)) wehave sd�Q2i=1 dxi d�xi d2qi �����g. 8a � Z d4l d4�l Æ(4)(q1 + q2 � l � �l) ��T 02!2��2 �02 ��02� ��T 02!2��2 Z d2l d2�l Æ(2)(q1 + q2 � l� �l)� Z dl��02 ���l+=(x1+x2) p+ Z d�l+ ��02 ����l�=(�x1+�x2) �p� ; (2.130)where for simpliity we have not displayed the momentum arguments of T 0, �0 and ��0(whih an readily be inferred from �gure 8a). It is understood that in the seond step wehave made the ollinear approximation and negleted l and �l in the hard sattering, as wellas l� ompared with �l�, and �l+ ompared with l+. The power behavior of the integrationregions is d2l � �2 and dl� � d�l+ � �2=Q, so that together with (2.126) and (2.127) weobtain sd�Q2i=1 dxi d�xi d2qi �����g. 8a � Q0 � �2 � ��2Q � ��4�2 = 1�2Q2 : (2.131)For the double hard-sattering ontribution in �gure 8b one hassd�Q2i=1 dxi d�xi d2qi �����g. 8b � � 2Yi=1 Z d4li d4�li Æ(4)(qi � li � �li) �� Z d4l01 d4�l01 Æ(4)(q1 � l01 � �l01)T 02!1 T 0�2!1 T 02!1 T 0�2!1 �04 ��04� ��T 01!2��2 ��T 01!2��2 � 2Yi=1 Z d2li d2�li Æ(2)(qi � li � �li) � Z d2l01 d2�l01 Æ(2)(q1 � l01 � �l01)� Z dl�1 dl�2 dl0�1 �04 ���l+i = l0+i =xi p+ Z d�l+1 d�l+2 d�l0+1 ��04 ����l�i =�l0�i = �xi �p� : (2.132)Note that we have used the onstraint Æ(q+1 � l0+1 � �l0+1 ) to �x the large omponent l0+1at its value q+1 in the ollinear approximation, thus leaving the integral over the smallomponent �l0+1 . If instead one uses the onstraint to �x �l0+1 = q+1 � l0+1 one would have toount the integration element d�l0+1 as order �2=Q sine �l0+1 an only vary by that amount.An analogous remark applies to the onstraint Æ(q�1 � l0�1 � �l0�1 ). The power behavior of(2.132) is sd�Q2i=1 dxi d�xi d2qi �����g. 8b � Q4 � �6 � � �6Q3 � ��10�2 = 1�2Q2 (2.133)and hene the same as for single hard sattering, in agreement with the result we obtainedfor salar partons in setion 2.1.3.Let us now see how the power behavior hanges if on one side of the �nal-state ut thetwo quark-antiquark annihilation graphs are onneted by a hard gluon. We then have an
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interferene between double hard sattering and a single hard-sattering proess as shownin �gure 8, sd�Q2i=1 dxi d�xi d2qi �����g. 8� � 2Yi=1 Z d4li d4�li Æ(4)(qi � li � �li) � Z d4l01 d4�l01 T 02!1 T 02!1 T 0�4!2 �04 ��04� T 02!1 T 02!1 Z dl0+1 d�l0�1 T 0�4!2 � 2Yi=1 Z d2li d2�li Æ(2)(qi � li � �li) �� Z dl�1 dl�2 dl0�1 d2l01 �04 ���l+i =xi p+ Z d�l+1 d�l+2 d�l0+1 d2�l01 ��04 ����l�i = �xi �p�� Q2 � �4 � � �6Q3 � �2 � ��10�2 = 1Q4 : (2.134)This is power suppressed ompared with the ontributions in �gures 8a and b and maytherefore be negleted. It is instrutive to see why the power ounting hanges between(2.132) and (2.134). Compared with T 0�2!1 T 0�2!1, the hard-sattering amplitude T 0�4!2 isdown by a fator of 1=Q4, whih in the example of �gure 8 is due to two additional quarkpropagators and one additional gluon propagator relative to �gure 8b. The additionalloop integrations over the large omponents l0+1 and �l0�1 in (2.134) eah sale like Q, butfor the transverse momentum integrations one now has d2l01 d2�l01 � �4 ompared withd2l01 d2�l01 Æ(2)(q1 � l01 � �l01) � �2 before. Altogether one has thus lost a fator of �2=Q2.By an analogous argument one �nds that the di�erential ross setion for the puresingle hard-sattering mehanism in �gure 8d is power suppressed by a fator of �2=Q2ompared with the one in �gure 8.The graphs in �gure 8 and d involve single hard satters with four inoming partons.There is, however, also an interferene between double hard sattering and single hardsattering with two inoming partons. This involves orrelation funtions for three partons,of whih at least one must be a gluon due to fermion number onservation. An example isshown in �gure 9a, whih givessd�Q2i=1 dxi d�xi d2qi �����g. 9a � � 2Yi=1 Z d4li d4�li Æ(4)(qi � li � �li) �T 02!1 T 02!1 T 0�2!2 �03 ��03� T 02!1 T 02!1 T 0�2!2 � 2Yi=1 Z d2li d2�li Æ(2)(qi � li � �li) �� Z dl�1 dl�2 �03 ���l+i =xi p+ Z d�l+1 d�l+2 ��03 ����l�i = �xi �p�� Q2 � �4 � � �4Q2 � ��7�2 = 1�2Q2 : (2.135)This is the same power behavior as the squared single and double hard sattering ontribu-tions in �gures 8a and b, so that interferene terms of this type are not power suppressed.The example graph at hand has a suppression by �s sine two-gluon fusion into gauge{ 36 {
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Figure 9. As �gure 8, but with parton orrelation funtions that involve gluons.bosons only starts at one-loop level, but for other �nal states like jets there is no suh sup-pression. We will enounter these interferene terms again in setion 5.2.1 (see �gure 38).Adding a hard gluon between the two single satters on the left of �gure 9a leads tothe interferene between di�erent single hard-sattering proesses in �gure 9b. In the sameway as above one �nds that it is power suppressed by �2=Q2 ompared with the leadingontributions to the ross setion.The ontributions disussed so far have hard-sattering subproesses with the samenumber of inoming partons from one and the other proton. One an, however, also havea parton in one proton satter on two partons in the other proton. Examples for thisare shown in �gures 9 and d, and one �nds that their power behavior is the same as for�gure 9b.The pattern emerging from the preeding examples is lear: leading-power ontri-butions are obtained as long as all hard-sattering proesses involve only two inomingpartons. This inludes ontributions from single sattering, double sattering and their
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interferene. For eah hard sattering initiated by four partons one has a suppressionby �2=Q2, and eah hard sattering initiated by three partons omes with a suppressionfator �=Q.2.4.1 Cross setion integrated over transverse momentaSo far we have onsidered the ross setion di�erential in q1 and q2. We now disuss howthe power ounting is hanged when the ross setion is integrated over these transversemomenta. As we already observed in setion 2.1.3, the integration measure d2q1 d2q2ounts di�erently depending on whether q1 and q2 are both restrited to be of order �,or whether they an individually be of order Q and only their sum q1 + q2 is restrited tosize �. The latter requires a single hard-sattering proess in both the amplitude and itsonjugate. For our examples we thus �nd an integration volume d2q1 d2q2 of order �2Q2for graphs 8a, d and 9b, , d, whereas in the other ases the integration volume is of order�4. The resulting power behavior of the ross setion is given in the �gures.We see that the pattern of power suppression is di�erent from the one we found forthe ross setion di�erential in q1 and q2. In partiular, the leading-power ontributionnow omes only from the standard single hard-sattering in graph 8a.The power behavior of the other ontributions an be made more transparent by takinga loser look at the orrelation funtions they involve. As is evident from (2.130), the single-hard-sattering ontribution of graph 8a goes with the transverse-momentum integratedorrelation funtion R dl� d2l�02 and its ounterpart for ��02, whih are proportional to theusual ollinear quark or antiquark densities. By ontrast, integration of (2.134) over q1and q2 gives a four-parton orrelation funtionZ dl�1 dl�2 dl0�1 d2l1 d2l2 d2l01 �04 / Z d��1 d��2 d�0�1 ei��1 l+1 +i��2 l+2 �i�0�1 l0+1� 
p�� �q(0)�a2 q(�2) �q(�01)�a1 q(�1)��p�����+1 =�+2 =�0+1 =0; �1=�2=�01=0 (2.136)and its ounterpart for ��04. In these orrelation funtions all independent transverse partonmomenta are integrated over, and orrespondingly all �eld operators have the same trans-verse position. In physial terms, the single hard sattering in the onjugate amplitudehas fored all hard satters in �gure 8 to take plae at the same transverse position.5 Byontrast, the double hard sattering ontribution in �gure 8b has two pairs of �elds with arelative transverse distane y as we have seen in setion 2.1.2, orresponding to two hardsatters taking plae at positions that an be separated by a typial hadron size. This dif-ferene has reently been pointed out in [66℄. One obtains the same twist-four orrelators(2.136) when integrating the ontribution of graphs 8d and 9d over q1 and q2.5As is well known, integrals over transverse parton momenta in the orrelation funtions are logarith-mially divergent. If these divergenes are avoided by a transverse-momentum uto� of order Q (whih isthe largest sale in the proess) then the relative transverse positions of the partons are of order 1=Q.
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Similarly, one �nds that the transverse-momentum integrated ross setions fromgraphs 9a, b and  involve orrelation funtionsZ dl�1 dl�2 d2l1 d2l2 ��03/ Z d��1 d��2 ei��1 l+1 +i��2 l+2 
p��Aj(0) �q(�2)�aq(�1)��p�����+1 =�+2 =0; �1=�2=0 ; (2.137)whih are proportional to ollinear twist-three distributions. Again, a single hard satteringin the amplitude or its onjugate is enough to put all �elds at the same transverse position.The power behavior like �4=Q4 of the integrated ross setions for graphs 8 and d isnow readily understood, as it involves a ollinear twist-four distribution for both ollidingprotons, eah of whih is responsible for a power suppression by �2=Q2. Likewise, graphs 9a,b and  involve the produt of two ollinear twist-three distributions, and graph 9d theprodut of a twist-two with a twist-four distribution. In both ases the integrated rosssetion is therefore suppressed by �2=Q2 (whih happens to be the same suppression fatoras for the double-hard-sattering ontribution of graph 8b).In the transverse-momentum integrated ross setion, graphs 8 and 9a with a doublehard sattering in the amplitude play no partiular role ompared with their respetiveounterparts, graphs 8d and 9b, whih involve the same orrelation funtions and have thesame power behavior. Indeed, one may regard graphs 8 and 9a simply as higher-twistontributions with disonneted hard-sattering graphs on one side of the �nal-state ut,rather than assoiating them with multiple hard sattering. This was reently advoatedin [66℄.We emphasize that suh a view is appropriate only if the ross setion is integrated overtransverse momenta. For observed transverse momenta q1 and q2 we have a di�erent powerbehavior for graphs 8 and d, as well as for graphs 9a and b. In partiular, the interfereneontribution from graph 9a then has the same leading-power behavior as graphs 8a and b.Let us also note that for graph 9a the quark and antiquark in eah proton are not at thesame transverse position for �xed q1 and q2. If we express the orrelation funtions �03 and��03 through matrix elements hpjAj(0) �q(�2)�aq(�1) jpi and hpjAk(0) �q(��1)��aq(��2) jpi thenthe transverse-momentum integrations in (2.135) an be arried out and giveZ d2li d2�li Æ(2)(qi � li � �li) e�i�ili�i��i�li = (2�)2Æ(2)(�i � ��i) e�i�iqi (2.138)for i = 1; 2. With jqij � � we thus have a typial quark-antiquark distane j�1��2j � 1=�.2.5 E�ets at small xTypial values of xi and �xi at the LHC an be quite small, as we already noted after(2.20). At ps = 7TeV and q2i = m2Z one has for instane pxi �xi = 1:3 � 10�2. Althoughphenomena at small x are not the main fous of this work, we wish to make a few ommentson them in the present setion.We begin by realling that the usual densities for quarks, antiquarks and gluons risewith small x. This rise an be approximately desribed by power laws q(x) � �q(x) �
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x�1��q and g(x) � x�1��g , with exponents �q and �g between 0 and 1 that dependon the fatorization sale �. The abundane of small-x partons an be understood as aonsequene of repeated radiation, whih is essentially desribed by ladder graphs. Suhgraphs are in partiular resummed by the DGLAP evolution equations, whih make therise at small x steeper when � is inreased.In the simple approximation where orrelations between partons are negleted, multi-parton distributions are the produt of single-parton densities as disussed in setion 2.1.5.The distribution of n quarks or antiquarks then approximately behaves like F (xi;ki;yi) �(x1x2 � � � xn)�1��q if all momentum frations are suÆiently small. If all momentum fra-tions are of similar size, xi � �xi � x, this gives a fator x�2n(1+�q) in the ross setion(2.35). If the same �nal state is produed by a single quark-antiquark annihilation, theorresponding fator is only x�2(n+�q) aording to (2.42).6 The multiple sattering meh-anism is thus enhaned for small momentum frations, both for observed and integratedtransverse momenta qi. In terms of graphs, this enhanement an be traed bak to mul-tiple ladders, one for eah pair of partons with the same momentum fration xi in �gure 2.We expet that suh an enhanement exists, although the above estimate based on om-pletely unorrelated partons is likely too simplisti.Note that a strong rise at small x is only observed for parton densities that mix withgluons under evolution, but not for ombinations like q(x) � �q(x) or u(x) � d(x), whihrise more slowly than x�1. A orresponding pattern is expeted for multi-parton distribu-tions. Sine they annot mix with multigluon distributions, the interferene distributionsin fermion number or quark avor disussed at the end of setion 2.2.1 are not enhanedat small x. We hene expet them to play a minor role in small-x kinematis.The preeding arguments apply to both quark and gluon distributions in the frameworkof hard-sattering fatorization, and based on the experiene with single-parton densitiesone expets them to be relevant for momentum frations xi � �xi of order 10�2 or smaller.At very small x the gluon is by far the dominant parton speies in the proton, and onemay use high-energy fatorization and the BFKL approah to desribe the dynamis ofgluon ladders. The primary expansion variable of this approah is log 1x , rather than theratio Q=� used in the power ounting arguments on whih hard-sattering fatorizationis based. Basi quantities in high-energy fatorization are Green funtions depending ontransverse gluon momenta, whih bear lose resemblane with the transverse-momentumdependent gluon distributions disussed in this work and naturally allow one to keep trakof transverse momenta qi in the �nal state.Investigations of multiparton sattering in the BFKL approah an be found in [91{95℄.In agreement with the arguments given above, one �nds that the two-gluon distributionreeives a ontribution from two independent BFKL ladders, with a small-x exponent twieas large as for a single BFKL ladder [92℄. More ompliated graphs with four gluons inthe t hannel have been analyzed in [92, 94, 95℄. As to the high-energy behavior of three t6For this omparison it is important that the hard-sattering ross setion on the r.h.s. of (2.42) dependsonly on the momenta qi and not on p or �p. It is hene proportional to Q�2n (without any further fatorsof xi or �xi) and thus of the same order as the produt �̂1�̂2 � � � �̂n in (2.35).
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hannel gluons, all solutions found so far for the orresponding evolution equations have aweaker small-x growth than a single BFKL pomeron [96, 97℄.Let us see how small-x dynamis a�ets the di�erent graphs investigated in setion 2.4.In line with our above disussion, we assume that orrelation funtions for four partons givea faster growth of the ross setion with energy than orrelation funtions for two partons.We have no de�nite expetation for the orresponding behavior of three-parton orrelationfuntions; if the results just mentioned for gluons in the small-x limit are a guide, thenontributions with three t hannel partons are not favored for small momentum frations.For the ross setion di�erential in qi we then �nd that the multiple-sattering mehanismof �gure 8b is atually favored over the single-sattering graph 8a, whih has the samepower behavior in �=Q but a weaker rise at small x. With the aveat just mentioned, theinterferene ontribution in �gure 9a is expeted to be less important.The ross setion integrated over qi is dominated by the onventional single-satteringmehanism in �gure 8a by power ounting in �=Q. Among the ontributions that aresuppressed by �2=Q2 the double-sattering graph 8b is enhaned at small x. To a lesserextent the same is true for graph 9d, whih involves four t hannel partons in only one ofthe two protons. There may be situations where the small-x enhanement overompensatesthe power suppression by �2=Q2, for instane in the high-energy prodution of minijets,where the hard sale Q is not too large. In suh ases the BFKL approah may be moreadequate than the one using hard-sattering fatorization.2.6 The \e�etive ross setion"The ross setion for double hard sattering is often written as �ds = �1 �2=(C�e�), where�1 and �2 are single hard sattering ross setions, C is the ombinatorial fator introduedbelow (2.21) and �e� is an \e�etive ross setion" haraterizing the strength of multipleinterations. Let us see to whih extent suh a formula holds true in the light of the resultswe have derived so far.Under the assumption that there are no orrelations between di�erent partons in thetarget hadron we derived the fatorized form (2.70) for multiparton distributions in a modeltheory with salar partons. This derivation arries over to the olor singlet distributionsof two unpolarized quarks, antiquarks or gluons, i.e. to 1Fq1;q2 , 1Fq1;�q2, 1F�q1;q2 , 1F�q1;�q2 and1Fg;g, where the two quark avors q1 and q2 may be di�erent. If one further assumes thatthe impat-parameter dependent distributions of a single quark, antiquark and gluon havethe form f(x; b) � F (b) f(x) with a ommon impat parameter pro�le F (b) for all partonspeies , then the ross setion (2.71) for double hard sattering takes the formd�dsQ2i=1 dxi d�xi � 1C�e� d�1dx1 d�x1 d�2dx2 d�x2 (2.139)with d�idxi d�xi = X=q;�q;g Xd=q;�q;g �̂i;d(xi�xis)f(xi)fd(�xi) (2.140)
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and 1�e� = Z d2� � Z d2y F (y � �)F (y) �2 = Z d2r(2�)2 �F (r)�4 : (2.141)The seond form of (2.141) has reently been given in [98℄ and uses that the Fouriertransform F (r) of F (b) depends only on r2 beause of rotation invariane.It is natural to ask whether (2.139) extends to the ross setion di�erential in qi. Ifone has f(x;z; b) � F (b) f(x;z) for all parton types  then the fatorized approximationin (2.69) gives F1;2(xi;zi;y; b) � F (b + 12x1z1)F (b + y � 12x2z2) f2(x2;z2) f1(x1;z1).Inserting this into the ross setion formula (2.36) does not lead to a fatorized form,beause xizi appears in the arguments of the impat parameter pro�le F . A simpli�ationours however if the measured transverse momenta qi are large ompared to a hadronisale � (while being muh smaller than Q).7 The typial values of zi in the ross setionare then small ompared with 1=�, whereas typial values of b and b + y are of hadronisize. We an thus approximate F (b+ 12x1y1)F (b+y� 12x2z2) � F (b)F (b+y) and obtaind�dsQ2i=1 dxi d�xi d2qi � 1C�e� d�1dx1 d�x1 d2q1 d�2dx2 d�x2 d2q2 for jqij � � (2.142)with d�idxi d�xi d2qi = Z d2zi(2�)2 e�iziqi X=q;�q;g Xd=q;�q;g �̂i;d(xi�xis)f(xi;zi)fd(�xi;zi) (2.143)and �e� as in (2.141). Both (2.139) and (2.142) an be made di�erential in further variablesdesribing the sets of partiles produed by the two hard satters. If one integrates theserelations over kinemati variables in the presene of uts, they only retain their validity ifeah ut refers to partiles in one of the two sets but not in both.The assumptions that allow one to relate the ross setions for double and single hardsattering by a single proess independent onstant �e� are quite strong, and a number ofe�ets an invalidate (2.139) and (2.142):� an impat parameter pro�le F (b) that is not the same for di�erent parton distribu-tions. The e�et of this was estimated for a spei� model in [75℄.� a orrelation between the x and b dependene in the single-parton distributionsf(x; b) or f(x;z; b). Evidene that suh a orrelation is appreiable for x above 0:1omes from the alulation of the Mellin moments R dxxn�1�fq(x; b)+(�1)nf�q(x; b)�with n = 1; 2; 3 in lattie QCD, see [99, setion 4.4.5℄ and referenes therein. Theinterpretation of HERA measurements [100, 101℄ for p ! J=	 p in terms of gener-alized parton distributions shows that the average squared impat parameter hb2i ofsmall-x gluons in the proton has a weak logarithmi dependene on x [72, 102, 103℄.An estimate of how a orrelation between x and b in f(x; b) a�ets multipartoninterations has been made in [104℄.7This kinemati region is examined in detail in setion 5. Notie the hange of notation ompared withthe previous setions, where � denotes a hadroni sale or the size of jqij, whihever is larger.{ 42 {



� orrelations between di�erent partons in the proton, whih invalidate the relations(2.69) and (2.70) between two-parton and single-parton distributions. In [105℄ it wasargued that suh orrelations are signi�ant.� an appreiable size of multiparton distributions that desribe spin orrelations be-tween two partons (setion 2.2), of distributions where partons with the same mo-mentum fration xi are not oupled to olor singlets (setion 2.3), or of interferenedistributions in fermion number or quark avor (setion 2.2.1).Finally, the assumption that the observed ross setion is given by ontributions fromeither single or double hard sattering is invalid if their interferene (see �gure 9a) isimportant. All in all, we feel that (2.139) or (2.142) may be useful for order-of-magnitudeestimates but should be used with great aution. Of ourse, one may de�ne �e� as the ratio(d�1=d�1) (d�2=d�2)Æ(Sd�ds=d�1 d�2) of di�erential ross setions for single and doublesattering. Sine this ratio an depend on the proess and on all kinemati variables, �e�is then not a universal onstant.3 Beyond lowest order: fatorization and Sudakov logarithmsSo far we have analyzed the lowest-order graphs that ontribute to multiple satteringproesses. For a systemati treatment in QCD we need to go beyond this approximationand in partiular take into aount graphs where additional gluons are exhanged. Aomplete analysis should eventually establish whether an all-order fatorization formulaan be written down for a given observable. We will not attempt to do this here, butprovide some building bloks for suh an analysis. We use the framework of hard-satteringfatorization, whih essentially organizes the dynamis aording to virtualities (as opposedto high-energy or small-x fatorization, where the organizing priniple is based on rapidity).We fous on the ross setion di�erential in small transverse momenta and in partiularinvestigate the struture of Sudakov logarithms. In setion 3.5 we will make some remarkson transverse-momentum integrated ross setions, desribed by ollinear fatorization.For reasons given in setion 3.2 we will onentrate on the double Drell-Yan proess, i.e.on the prodution of two eletroweak gauge bosons, whih for de�niteness we take to bevirtual photons. Likewise, we will use the single Drell-Yan proess as an example when wereall the ingredients for fatorization with a single hard sattering.3.1 Dominant graphsOne of the �rst tasks when establishing fatorization for a given proess is to identify thedominant graphs in the kinemati limit one is interested in. The appropriate tool for hard-sattering fatorization is the method of Libby and Sterman [106, 107℄, whih we brieyreapitulate. The �rst step is to trade the limit of large kinemati invariants (whih weolletively denoted by Q earlier) for the limit of vanishing masses of all partons. In doingso, one uses that up to an overall normalization the quantities of interest depend on theratio of Q and the masses. If we keep small transverse momenta in the di�erential ross
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setion, those must be sent to zero as well.8 One is thus led to examine whih graphs andwhih phase spae regions give rise to mass divergenes. Suh divergenes ome from thepoles of Feynman propagators, but only if for a suitable loop integration variable there arepoles on both sides of the real axis, whih \pinh" the ontour of the loop integration. Ifthere is no pinh, the poles an be avoided by deforming the integration ontour. One �ndsthat lines that give pinh singularities are either soft (i.e. all their momentum omponentsare lose to zero) or ollinear to one of the inoming or outgoing partiles of the proess.All other lines are far o�-shell (possibly after omplex ontour deformation). The leadingontribution in the large Q limit of a given graph omes from regions of phase spae inthe viinity of the pinh singular on�gurations just desribed. To obtain a fatorizationformula, one has to express subgraphs with ollinear or soft lines in terms of matrix elementsthat make sense beyond perturbation theory. Parton densities and related quantities areonstruted from these matrix elements. O�-shell lines are organized into hard subgraphs,whih an be alulated perturbatively.A physially intuitive interpretation of the previous onstrution is provided by theColeman-Norton theorem [108℄. The pinh singular on�gurations of a graph orrespondto a sattering proess where the lines with ollinear momenta orrespond to lassialtrajetories in spae-time. The trajetory assoiated with eah line is proportional toits four-momentum, so that it shrinks to a point for soft lines. In the \redued graph"that represents the orresponding lassial proess, o�-shell lines in the original graph arelikewise ontrated to points.The preeding analysis is based on the denominators of Feynman propagators andgives only a neessary ondition for the ourrene of mass singularities. A power ountinganalysis taking into aount the numerators of Feynman graphs (similar to the one we gavein setion 2.4) provides further restritions on the ontributions that atually dominate agiven observable. At this level, the polarization of gluon lines is found to play a ruialrole.For single Drell-Yan prodution at �xed small transverse photon momentum, one �ndsthat the dominant graphs have the struture shown in �gure 10a. For eah of the ollidingprotons there is a ollinear subgraph. On either side of the �nal-state ut there is onehard subgraph produing the �nal state boson, onneted with eah ollinear subgraphby exatly one fermion line and an arbitrary number of gluon lines, whih must havepolarization in the plus diretion for right-moving and in the minus diretion for left-moving ollinear gluons. Finally, there is a soft subgraph with soft gluons attahing toeither of the ollinear subgraphs. There are no soft gluons oupling to the hard subgraphs.The dominant graphs for double Drell-Yan prodution are easily identi�ed and justhave an additional hard subgraph for the seond produed gauge boson on either sideof the �nal-state ut. As we have already seen in setion 2.4, hard subgraphs that areonneted to eah ollinear graph by a single parton line have leading power behavior. Thepower ounting for the soft graph is not a�eted by having one or two hard subproesses.8This was not stated in the original work by Libby and Sterman, who onsidered transverse-momentumintegrated quantities.
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a bFigure 10. Leading graphs for the single (a) and double (b) Drell-Yan proess at measured qT � Q.The upper and lower blobs denote ollinear subgraphs, the blob rossing the �nal-state ut (dashedline) denotes a soft subgraph, and the blobs with a �nal-state gauge boson denote hard subgraphs.
t

z a bFigure 11. Spae-time representation of the leading graphs for the single (a) and double (b) Drell-Yan proess at measured qT � Q. The parton lines move along light-like paths and have beendrawn with a slight urvature only for larity. Likewise, the two bosons in �gure (b) are meant tobe produed at the same point in t and z.Finally, the absene of soft gluons oupling to a hard subgraph has the same reason asin the single Drell-Yan ase, namely that suh soft gluons inrease the number of hardpropagator denominators in the hard subgraph, without providing a ompensating largenumerator fator or phase spae volume.The spae-time representation in the sense of the Coleman-Norton theorem is shown in�gure 11 for the graphs in �gure 10. Parton lines from one and the other proton meet at onepoint in the t-z plane and annihilate into a gauge boson. For double Drell-Yan prodution,the two bosons are produed at the same point in t and z. The transverse momenta ofpartons and the produed bosons are negleted in this interpretation (see above), so thatthe lassial sattering proess takes plae at �xed transverse oordinates (x and y).3.1.1 \Resattering" ontributionsBefore disussing in detail the leading graphs in �gure 10, we wish to omment on graphsof the type shown in �gure 12a. They have been assoiated with \resattering" in the
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bFigure 12. (a) A graph assoiated with \resattering" in the literature. (b) Spae-time represen-tation for the prodution of two high-pT partons in a single hard 2 ! 2 sattering proess. Thedashed lines have momentum omponents in the transverse x-y plane; all other lines move on thelight-one z = �t.literature [109, 110℄ and were alulated in terms of two hard 2! 2 QCD proesses, wherethe parton with momentum k in the �gure is treated as an outgoing parton in the �rstsattering and as an inoming parton in the seond one. It is understood that the transversemomenta p1, p2 and �p are all large (we denote their order by pT below).We argue here that this is not a orret way to alulate the graph, at least notwithin the usual hard-sattering fatorization framework used in [109, 110℄. Aordingto our disussion in the previous setion, the lines that enter or exit a hard-satteringsubgraph must orrespond to pinhed singularities and thus admit a lassial spae-timeinterpretation in the sense of the Coleman-Norton theorem. This is not possible for the linewith momentum k in �gure 12a. As illustrated in �gure 12b, the two partons emerging froma hard 2 ! 2 proess have large transverse momenta and, being on shell, thus have �niterapidities. In other words, their veloity in the z diretion is smaller than the speed of light.As soon as suh a parton has propagated over a �nite distane, it an no longer satter onanother parton from one of the two initial protons, sine those partons do move with thespeed of light along z. The proper treatment of the parton with momentum k is thus toregard it as an internal line in a single hard-sattering proess with three inoming partons(l1; l2; �l) and three outgoing ones (p1; p2; �p). As we saw in setion 2.4 suh a ontributionis power suppressed (if p1 + p2 + �p is integrated over, it involves a parton distribution ofhigher twist) and an hene be negleted.Put di�erently, the parton with momentum k is generially far o�-shell in the leadingregion of the graph in �gure 12a. A kinematial analysis readily shows that the �nal-statemomenta p1; p2; �p �x the sum l+1 + l+2 to a large value of order pT , up to small orretionsof order 1=pT . The value of l+1 is however integrated over a large interval of order pT . Fora partiular value of l+1 in this interval, the propagator of k does have a pole, but this poleis not a pinh singularity (the gluons adjaent to k are far o�-shell when k2 = 0 and theirpropagator poles are a distane of order pT away in the omplex l+1 plane). One an thus
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deform the integration ontour of l+1 suh that k2 is always of order p2T and thus large.93.2 Collinear and soft gluonsWe now return to the graphs in �gure 10. They ontain an arbitrary number of ollinearand soft gluons, and further simpli�ations are required to obtain a useful fatorizationformula that involves a limited number of nonperturbative quantities.In existing fatorization theorems, the e�ets of ollinear and of soft gluons are de-sribed by Wilson line operators, to all orders in the strong oupling. The possibility toobtain suh a simple struture is ruial for establishing fatorization. Detailed analyses ofthis issue an be found in [48{51℄ for single Drell-Yan prodution or for its rossed-hannelanalogs, the prodution of bak-to-bak hadrons in e+e� annihilation or semi-inlusive deepinelasti sattering (SIDIS). By ontrast, for hadron-hadron ollisions produing bak-to-bak jets or hadrons with measured transverse momenta, serious obstales to establishingfatorization have been identi�ed in [111℄ and in previous work ited therein. A systematitreatment of transverse-momentum dependent fatorization for jet or hadron produtionin multiple hard sattering will probably need to wait until a suitable formulation for singlehard sattering has been found.We therefore limit our onsiderations in this setion to the double Drell-Yan proess.Extending our arguments to the prodution of other olorless partiles is trivial if the hardsattering is initiated by quarks or antiquarks and should be possible if it is initiated bygluons. We shall not attempt to give a full proof of fatorization even for double Drell-Yanprodution. Instead, we will analyze the lowest-order graphs with an additional exhangedollinear or soft gluon. To a large part this will be a reapitulation of the orrespondinganalysis for the single Drell-Yan proess. We nevertheless give the neessary steps in somedetail, in order to see how the arguments generalize to double hard sattering. We will paypartiular attention to the olor indies for quarks and antiquarks, sine the olor strutureof two-parton distributions is nontrivial ompared with the single-parton ase. Finally, wewill point out whih further issues need to be settled to obtain a full proof of fatorization.3.2.1 From ollinear gluons to Wilson lines in parton distributionsFigure 13 shows an example where several gluons ollinear to the right-moving protonp ouple to a left-moving quark or antiquark. The quark or antiquark is thus taken faro� shell, so that its propagator and its oupling to the gluon belong to one of the hard-sattering subproesses.We now reapitulate the analysis of one suh oupling, whih is well-known from singleDrell-Yan prodution, taking partiular are of olor indies and of the distintion betweenquarks and antiquarks. The relevant part of the graph in �gure 14a an be written asTa = h: : : �qj A�;a : : :i i (`+ �l) (�ig) tajj0� u(�l) h: : : qj0 : : :i ; (3.1)9When atually alulating the hard sattering, one an nevertheless integrate l+1 along the real axis;the pole of 1=(k2 + i�) then provides an absorptive part to the hard-sattering amplitude. The possibilityto deform the integration ontour of l+1 justi�es the perturbative treatment of the propagator for k.
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Figure 13. Example graph for the double Drell-Yan proess with ollinear gluons oupling toleft-moving quarks or antiquarks before those undergo a hard sattering.
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aFigure 14. Collinear gluons in the Drell-Yan proess. Top row: subgraphs with a right-movinggluon oupling to a left-moving quark or antiquark before it annihilates. Bottom row: orrespondinggraphs after the o�-shell propagators have been replaed by eikonal lines.where in a shorthand notation we write h: : : �qj A�;a : : :i and h: : : qj0 : : :i for the hadronimatrix elements of the right and left moving proton, respetively. The subsript  on �lindiates the ollinear approximation spei�ed after (2.90), i.e. �l� = �l�, �l+ = 0 and �l = 0.Instead of the spinor u(�l) for the inoming quark we ould also use the projetion operatorP (�l), see the disussion after (2.79) and (2.90). The vertex with the produed photon andthe spinor for the inoming right-moving quark are not needed for our argument and havebeen omitted. Our sign onvention for the strong oupling g is suh that the ovariantderivative reads D� = �� + igA�.The expression in (3.1) has the struture R�H�, where R is the matrix element of
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the right-moving proton and H a hard-sattering amplitude. One therefore has jR+j �jR�j; jRj, whereas all omponents of H� are generially of the same size. To leading-powerauray we therefore have R�H� � R+H�. We now introdue an auxiliary spaelikevetor v with v� > 0 ; v+ < 0 ; v = 0 (3.2)and either jv+j � v� or jv+j � v�. We an then writeRH � R+H� = R+v� 1`+v� + i� `+H� � Rv 1`v + i� `H ; (3.3)where in the last step we have used the onditions on the omponents of R�, H� and v�just stated, as well as j`+j � j`�j; j`j for the momentum ` of the right-moving gluon. Forreasons given in the next setion, we have provided an i� presription to the fator 1=`v in(3.3) suh that the pole in `+ is on the same side of the real axis as in the propagator ofthe o�-shell quark that ouples to the photon in �gure 14a:`v + i� = `+v� � `�jv+j+ i� ; (`+ �l)2 + i� = 2`+�l� + i� ; (3.4)where it is important that �l� > 0. With (3.3) we an rewrite (3.1) asTa = h: : : �qj A�;a : : :i(�igtajj0 v�) i`v + i�� 1(`+ �l) (`)u(�l)�h: : : qj0 : : :i : (3.5)With ` =  (`+ �l)� �l and (�l)u(�l) = 0 we �nally obtainTa = h: : : �qj A�;a : : :i(�igtajj0 v�) i`v + i� u(�l) h: : : qj0 : : :i : (3.6)In the hard-sattering amplitude we have thus traded the oupling �igta� of the gluon tothe quark and the adjaent quark propagator iÆ(` + �l) for the oupling �igtav� of thegluon to a so-alled eikonal line and the eikonal propagator i=(`v + i�).Repeating the same steps for the graph in �gure 14b givesTb = h: : : �qj : : :i �v(�l) � �i (`+ �l) (�ig) tajj0 h: : : A�;a qj0 : : :i= h: : : �qj : : :i �v(�l) �i`v + i� (�igtajj0 v�) h: : : A�;a qj0 : : :i : (3.7)The hange from an inoming quark to an inoming antiquark in the hard sattering hashanged the overall sign of the propagator iÆ(`+ �l), whih is reeted in an overall signhange of the eikonal propagator i=(`v + i�). On the other hand, the momentum ow inthe graph and the resulting i� presriptions have remained the same.It is instrutive in this ontext to ompare Drell-Yan prodution with SIDIS, whereone has an outgoing quark or antiquark in the hard sattering. The orresponding graphs
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aj ′Figure 15. As �gure 14, but for semi-inlusive deep inelasti sattering.are shown in �gure 15a and b. Taking the same vetor v as before, we haveT 0a = h: : : �qj A�;a : : :i i (`� �l) (�ig) tajj0� v(�l) h: : : qj0 : : :i ;= h: : : �qj A�;a : : :i(�igtajj0v�) i`v � i� v(�l) h: : : qj0 : : :i :T 0b = h: : : �qj : : :i �u(�l) � �i (`� �l) (�ig) tajj0 h: : : A�;a qj0 : : :i= h: : : �qj : : :i �u(�l) �i`v � i� (�igtajj0v�) h: : : A�;a qj0 : : :i : (3.8)Compared with graphs 14a and b, the relative ow of the momenta ` and �l in the o�-shellquark or antiquark has hanged. Hene the orresponding propagator has a denominator(`� �l)2 + i� = �2`+�l� + i� (3.9)instead of the one in the seond equation of (3.4). As a result, the sign of i� in the eikonalpropagator is now reversed.A graphial notation for eikonal lines needs to speify the ow of the momentum `relative to1. the olor ow (and hene the fermion number ow in the quark line whih is repre-sented by the eikonal line). This determines the overall sign of the eikonal propagator.We denote the olor ow by an arrow on the eikonal line, whih points in the samediretion as the arrow on the original fermion line.2. the ow of the large momentum �l in the original fermion line, whih is either aninoming or an outgoing line in the hard-sattering subproess. This determines thesign of i� in the eikonal propagator. We indiate this graphially by a full or an emptyirle at the end of the eikonal line, suh that the large momentum ows from the{ 50 {
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Figure 16. Feynman rules for eikonal lines representing quarks or antiquarks. The rules for linesto the left of the �nal-state ut (denoted by the dashed line) diretly follow from (3.6) to (3.8), andthose for lines to the right of the �nal-state ut are obtained as usual by omplex onjugation.full to the empty irle. Sine inoming and outgoing partons in the hard satteringan be assoiated with a lassial path in spae-time aording to setion 3.1, the fullirle represents the past and the empty irle the future time diretion.The orresponding Feynman rules are given in �gure 16, and the graphs orrespondingto the eikonal representation in (3.6), (3.7) and (3.8) are shown in the bottom rows of�gures 14 and 15.10We now briey review how eikonal lines are generated by Wilson line operators inthe hadroni matrix elements that appear in a fatorization formula. The relevant part ofthe expression (3.6), together with the relevant integrations over momentum and positionvariables readsXj0 = Z d4` ei�(l�`) �qj(�)Z d4�(2�)4 ei�` vAa(�) (�igtajj0) i`v + i� : (3.10)Using the representation i`v + i� = Z 10 d� ei�(`v+i�) (3.11)we an rewrite this asXj0 = ei�l �qj(�)Z d4` Z d4�(2�)4 Z 10 d� ei(�v+���)` vAa(�) (�igtajj0)= ei�l �qj(�)��ig Z 10 d� vAa(� � �v) tajj0� : (3.12)10Our graphial notation di�ers from that in the literature. In [48℄ for instane, an arrow on the eikonalline was assoiated with the ow of the large momentum, and the overall sign due to the olor ow wasindiated by expliit olor indies and taken into aount in the vertex between a gluon and an eikonal line,rather than in the eikonal propagator.
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Introduing the Wilson lineW (�; v) = P exp�ig Z 10 d� vAa(� � �v) ta� ; (3.13)where P denotes path ordering, we reognize the term in square brakets in (3.12) as theterm of order g in the expansion of W y(�; v). In a full fatorization proof, one has to showthat the oupling of two or more ollinear gluons to the inoming quark line in �gure 14aexponentiates, so that their ombined e�et is the replaement�qj0(�)! �qj(�) �W y(�; v)�jj0 (3.14)in the operator de�ning the parton distribution. Likewise, the expression in (3.7) orre-sponds to the one-gluon term in the replaementqj(�)! �W (�; v)�jj0 qj0(�) : (3.15)The onditions we imposed on v after (3.2) hold in a frame where p moves fast to theright. One readily �nds that in the rest frame of p one has v0 > 0, so that the Wilson line(3.13) relevant for Drell-Yan prodution has a path pointing into the past. By ontrast,the reversed sign of i� in the eikonal propagators for SIDIS orresponds to�qj0(�) !SIDIS �qj(�) �W 0y(�; v)�jj0 ; qj(�) !SIDIS �W 0(�; v)�jj0 qj0(�) (3.16)with a future-pointing Wilson lineW 0(�; v) = P exp��ig Z 10 d� vAa(� + �v) ta� : (3.17)The preeding disussion was for right-moving ollinear gluons and generalizes trivially toleft-moving ollinear gluons in the proton with momentum �p. The orresponding Wilsonlines are to be de�ned with an auxiliary vetor w that satis�esw+ > 0 ; w� < 0 ; w = 0 (3.18)and either jw�j � w+ or jw�j � w+ in a frame where �p moves fast to the left. In the restframe of �p one then has w0 > 0.The manipulations in the preeding arguments are all onerned with a single hard-sattering subproess at a time, so that they readily apply to double Drell-Yan graphs suhas in �gure 13, where they give the order g part of a Wilson line for eah quark or antiquarkoperator in the multiparton distributions. The full operator for a two-quark distributionthen reads for instane� �q(�12z2)W y(�12z2; v)�k0 �a2 �W (12z2; v) q(12z2)�k� � �q(y � 12z1)W y(y � 12z1; v)�j0 �a1 �W (y + 12z1; v) q(y + 12z1)�j ���z+2 =z+1 =y+=0 : (3.19)The open olor indies j; j0; k; k0, whih were arried by quark �elds in the lowest-order for-mula, are now arried by the \ends" of the four past-pointing Wilson lines. The projetionon olor singlet and olor otet distributions is done as in (2.103).Let us now mention how the previous arguments need to be generalized to obtain aomplete fatorization proof for double Drell-Yan prodution.{ 52 {



� The step from (3.5) to (3.6), whih eliminates an internal fermion propagator in thehard-sattering graph, is elementary when applied to the lowest-order hard sattering.For more ompliated graphs (with loop orretions or further external gluons) oneneeds a Ward identity to ahieve this simpli�ation. In a model theory with Abeliangluons, this is quite simple to establish, see e.g. [50, hapter 10.8℄. The formulationfor QCD is more ompliated and involves external ghost lines in addition to externalgluons in the hard sattering (see [50, hapters 11.3 and 11.9℄).� We have onsidered only one gluon oupling to eah hard-sattering subgraph. Oneneeds to show that the oupling of an arbitrary number of gluons exponentiates andgives a full Wilson line W (y; v) or its omplex onjugate. Again, this is simple toshow for Abelian gluons (see [50, hapter 10.8℄). To the best of our knowledge, anexpliit proof for transverse-momentum dependent distributions in QCD has not yetbeen given.We note that the present and the previous point only onern one hard-satteringsubproess at a time. It should therefore be straightforward to extend argumentsvalid for the single Drell-Yan proess to the ase of double Drell-Yan prodution.� The two Wilson lines W (12z2; v) and W (y + 12z1; v) in (3.19) orrespond to gluonsin the sattering amplitude, where all gluons �elds should be time ordered. Withv2 < 0 the gluon operators in one Wilson line have a spaelike separation, so thatthey ommute and an readily be brought into the order required by path ordering.Two gluon operators in di�erent Wilson lines do not neessarily have this property,and the possibility to reorder the �elds needs to be investigated. A similar statementholds for the two Wilson lines W y(�12z2; v) and W y(y � 12z1; v) that orrespond togluons in the onjugate sattering amplitude.� The operator in (3.19) is not expliitly gauge invariant, beause the Wilson linesend at di�erent positions at in�nity, namely at ai �1v with �nite spaelike ai fori = 1; 2; 3; 4. The same issue already arises for single-parton distributions and hasbeen disussed in [113, 114℄ for lightlike Wilson lines, i.e. for v2 = 0. In a gaugewhere the gluon potential (and any produt of gluon potentials) has zero expetationvalue at a � 1v, one an trivially omplement the operator (3.19) with Wilsonlines that go in the transverse diretion and onnet the lightlike Wilson lines to aommon referene point, e.g. to �1v. After projeting the open olor indies at thisreferene point onto olor-singlet or olor-otet ombinations, the resulting operatoris expliitly invariant under loal gauge transformations. The extra Wilson lines inthe transverse diretion are essential in the gauge vA = 0, where the Wilson lines in(3.19) redue to unity, see the disussion in [113℄.As we will see in setion 3.2.3, the hoie v2 = 0 is not suitable for transverse-momentum dependent fatorization. To obtain a gauge invariant de�nition of therelevant parton distributions, one needs to extend the proedure just desribed tothe ase where v2 < 0. This holds both for single and multiple hard sattering.
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Figure 17. Coupling of a soft gluon to a ollinear parton that (a) enters the hard sattering or (b)is a spetator.3.2.2 Soft gluons and the soft fatorWe now turn to the exhange of soft gluons between right- and left-moving partons, i.e. tothe soft subgraph in �gure 10, and show how it an be desribed in terms of a soft fatorthat is de�ned as the vauum expetation value of Wilson lines.For de�niteness we onsider one soft gluon with momentum `, exhanged between thesoft subgraph S� and the ollinear subgraph R� of the right-moving partons. Here � is thepolarization index of the gluon onsidered, and the indies for any other external gluonsare omitted for simpliity. We assume that the omponents of ` are of omparable size,j`+j � j`�j � j`j, as well as the momentum omponents of all other soft gluons attahedto S. The omponents of S� are then also omparable to eah other. Sine jR+j � jR�j; jRjwe then have `R � `�R+ ; SR � S�R+ : (3.20)Introduing an auxiliary spaelike vetor w as in (3.18) with jw�j � w+, we furthermorehave Sw � S�w+, so that we an writeS�R� � S� w+`�w+ + i� `�R+ � S� w�`w + i� `R (3.21)with a fator w�=(`w+ i�) that will eventually turn into a Wilson line. The i� presriptionfor the pole at `w = 0 is adequate for ` owing from S into R in the sattering amplitude,i.e. on the left of the �nal-state ut in �gure 10. We note that this presription orrespondsto the one for ollinear gluons in the previous setion, f. �gures 14 and 17a.The approximations in (3.20) and (3.21) break down in the so-alled Glauber region,i.e. for soft momenta dominated by their transverse omponents, j`j � j`+j; j`�j. A majorpart of a fatorization proof for hadron-hadron ollisions is to establish that this momentumregion does not ontribute to the �nal fatorization formula. With the i� presription wehave hosen, the pole of 1=(`w+i�) is on the same side of the real `� axis as the propagatorpole of the quark with momentum l + ` in �gure 17a, whih is readily seen by adapting(3.4). In the graph of �gure 17a one an avoid the Glauber region by a ontour deformationto omplex `�. With the same ontour deformation one an however not avoid propagatorpoles in graphs where the gluon ouples to a spetator parton (rather than to the parton
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Figure 18. Graphial illustration of the Ward identity (3.22). Shown is only the part of thequark-antiquark distribution to the left of the �nal-state ut. The Feynman rules for eikonal linesare given in �gure 16.entering the hard subproess). An example is shown in �gure 17b, where the pole in `� ofthe propagator for the line p� l � ` is on the opposite side of the real axis than the poleof the propagator for the line l + ` in �gure 17a. To apply the Ward identities disussedbelow, one has to make the same ontour deformation for `� in both graphs of �gure 17 andwill thus pik up a residue ontribution from the propagator of the spetator parton. Forsingle Drell-Yan prodution one an show that the sum over all suh residue ontributionsanels due to unitarity, see the disussion in [50, hapters 14.3 and 14.4℄ and in the originalliterature ited therein. We do not know whether and how suh arguments an be extendedto the ase of double hard sattering and leave this issue as an important task for furtherinvestigation. We will proeed under the assumption that suh an extension an be made.Following the proedure for single Drell-Yan prodution, the next step in our argumentis to use a Ward identity to relate the ollinear subgraph with a gluon attahment to thesame subgraph without a gluon. For the orrelation funtion desribing quark-antiquarkemission and an additional gluon in the amplitude, this identity readsSw`w + i� `���;ajj0;kk0(`; l1; l2; l01; l02) = Sw (�igtajm) i`w + i� �mj0;kk0(l1 � `; l2; l01; l02)+ Sw (�igtamk) �i`w + i� �jj0;mk0(l1; l2 � `; l01; l02) (3.22)and is depited in �gure 18. Analogous identities an be written down for the emission oftwo quarks or two antiquarks, with a fator i=(`w+ i�) for eah quark line and �i=(`w+ i�)for eah antiquark line in the amplitude. We leave it to future work to give a general proofof these identities, but verify them here for two simple examples.Our �rst example is a quark-antiquark pair with a pointlike oupling to a target. Theorresponding two-parton distribution is then proportional to Æjk i( l1)�1 
 (�i)( l2)�1,where l1 and l2 are the respetive momenta of the quark and antiquark, and j and k aretheir respetive olor indies. The tensor produt 
 refers to the spinor indies, whoseoupling at the vertex with the target we need not speify for our argument. Attahing asoft gluon in the amplitude, we have to add the graphs in �gure 19a and b. Contratingthe gluon polarization index � with `� and using the same trik as in the step from (3.5)
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Figure 20. Graphs for a gluon oupling to a three-quark system that originates from a olorlessfermion via a pointlike vertex. j, k, l and a are olor indies.to (3.6), we obtain(�ig) tajk i l1 (`) i (l1 � `) 
 �i l2 + (�ig) tajk i l1 
 �i (l2 � `) (`) �i l2= gtajk� i (l1 � `) � i l1�
 �i l2 � gtajk i l1 
� �i (l2 � `) � �i l2�= +i (�igtajm) Æmk i (l1 � `) 
 �i l2 � i (�igtamk) Æjm i l1 
 �i (l2 � `) : (3.23)Multipliation with Sw=(`w + i�) gives (3.22) for this partiular ase.As a seond example we take a olorless fermion target oupled to three quarks by apointlike vertex. The two-quark distribution is then proportional to�jkl i l1 
 i l2 
 �u(l3) ; (3.24)where l3 is the momentum of the spetator quark. Coupling a gluon to this system, we getthe three graphs shown in �gure 20, whih after ontration with `� give(�ig) tajm�mkl i l1 (`) i (l1 � `) 
 i l2 
 �u(l3)+ (�ig) takm�jml i l1 
 i l2 (`) i (l2 � `) 
 �u(l3)+ (�ig) talm�jkm i l1 
 i l2 
 �u(l3) (`) i (l3 � `){ 56 {
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Figure 21. Diagram with one soft gluon exhanged between the left- and right-moving partons tothe left of the �nal-state ut.= gtajm�mkl� i (l1 � `) � i l1�
 i l2 
 �u(l3)+ gtakm�jml i l1 
� i (l2 � `) � i l2�
 �u(l3)� gtalm�jkm i l1 
 i l2 
 �u(l3)= +i (�ig) tajm �mkl i (l1 � `) 
 i l2 
 �u(l3) + i (�ig) takm �jml i l1 
 i (l2 � `) 
 �u(l3)� gV aijk i l1 
 i l2 
 �u(l3) (3.25)with the tensor V aijk = tajm�mkl + takm�jml + talm�jkm. This tensor is zero, beause it isompletely antisymmetri and hene proportional to V aijk �ijk = 2(tajj + takk + tall) = 0.Multipliation with Sw=(`w + i�) �nally gives the equivalent of (3.22) for a two-quarkdistribution.The preeding arguments an readily be adapted for a soft gluon attahed to left-moving ollinear partons by exhanging + and � omponents of the relevant vetors. Theauxiliary vetor w is then replaed by v as in (3.2), with jv+j � v�. Likewise, one anrepeat all arguments for soft gluons in the onjugate amplitude, i.e. to the right of the�nal-state ut in �gure 10. In the orresponding Ward identities one then has to use theFeynman rules on the r.h.s. of �gure 16.Consider now the diagram in �gure 21, where in the amplitude one gluon is exhangedbetween the left- and right-moving partons. Its ontribution to the ross setion is propor-tional toZ d4`(2�)4 d4 �̀(2�)4 (2�)4Æ(4)(`+ �̀)Sab��(`; �̀)� � 2Yi=1 Z d4li d4�li (2�)4Æ(4)(qi � li � �li) � Z d4l01 d4�l01 (2�)4Æ(4)(qi � l01 � �l01)� ��a1;�a2��;ajj0;kk0(`; l1; l2; l01; l02) ���a1;a2��;bjj0;kk0(�̀; �l1; �l2; �l01; �l02)� Z d4`(2�)4 d4 �̀(2�)4 (2�)4Æ(4)(`+ �̀) iw�`w + i� Sab��(`; �̀) iv��̀v + i�{ 57 {



� � 2Yi=1 Z d4li d4�li (2�)4Æ(4)(qi � li � �li) � Z d4l01 d4�l01 (2�)4Æ(4)(q1 � l01 � �l01)� �(�igtajm)��a1;�a2�mj0;kk0(l1 � `; l2; l01; l02)� (�igtamk)��a1;�a2�jj0;mk0(l1; l2 � `; l01; l02)�� �(�igtbkn)���a1;a2�jj0;nk0(�l1; �l2 � �̀; �l01; �l02)� (�igtbnj)���a1;a2�nj0;kk0(�l1 � �̀; �l2; �l01; �l02)�= Z d4`(2�)4 d4 �̀(2�)4 (2�)4Æ(4)(`+ �̀) (�igtajm) iw�`w + i� Sab��(`; �̀) (�igtbkn) iv��̀v + i�� Z d4l1 d4�l1 (2�)4Æ(4)(q1 � l1 � �l1 � `) Z d4l2 d4�l2 (2�)4Æ(4)(q2 � l2 � �l2 � �̀)� Z d4l01 d4�l01 (2�)4Æ(4)(q1 � l01 � �l01)� ��a1;�a2�mj0;kk0(l1; l2; l01; l02) ���a1;a2�jj0;nk0(�l1; �l2; �l01; �l02) + fthree more termsg ; (3.26)where in the last step we have shifted the integration variables l1 and �l2. For simpliitywe have omitted a global fator, as well as the expressions for q�q ! �, whih in the hard-sattering approximation only depend on the external momenta q1 and q2 and thus do notappear under the loop integrals (see setion 2.1.2).To provide a representation beyond perturbation theory, we represent the soft subgraph(whih for two external gluons is just the gluon propagator) as a matrix element,(2�)4Æ(4)(`+ �̀)Sab��(`; �̀) = Z d4� d4 �� ei�`+i�� �̀h0jAa�(�)Ab�(��)j0i : (3.27)Here we have omitted the time ordering between the �elds, whih requires justi�ationwhen � and �� do not have a spaelike separation. We gloss over this point here (see alsoour disussion at the end of setion 3.2.1) but return to it briey at the end of setion 3.3.1.Using (3.27) and (3.11) we then have for the �rst term in (3.26)Z d4 �̀d4 ��(2�)4 Z d4` d4�(2�)4 ei�`+i�� �̀ Z 10 d�Z 10 d�� ei�`w+i���̀v (�igtajm) (�igtbkn)h0jwAa(�) vAb(��)j0i� Z d4l1 d4�l1 (2�)2 Æ(q+1 � l+1 ) Æ(q�1 � �l�1 )Z d2�1 e�i�1(q1�l1��l1�`)� Z d4l2 d4�l2 (2�)2 Æ(q+2 � l+2 ) Æ(q�2 � �l�2 )Z d2�2 e�i�2(q2�l2��l2��̀)� Z d4l01 d4�l01 (2�)2 Æ(q+1 � l0+1 ) Æ(q�1 � �l 0�1 )Z d2�01 e�i�01(q1�l01��l 01)� ��a1;�a2�mj0;kk0(l1; l2; l01; l02) ���a1;a2�jj0;nk0(�l1; �l2; �l01; �l02)= Z d2�1 d2�1 d2�01 e�i�1q1�i�2q2�i�01q1� Z d4l1 d4l2 d4l01 ei�1l1+i�2l2+i�01l 01 (2�)3 Æ(q+1 � l+1 ) Æ(q+2 � l+2 ) Æ(q+1 � l0+1 )� ��a1;�a2�mj0;kk0(l1; l2; l01; l02)
{ 58 {



� Z d4�l1 d4�l2 d4�l01 ei�1�l1+i�2�l2+i�01�l 01 (2�)3 Æ(q�1 � �l�1 ) Æ(q�2 � �l�2 ) Æ(q�1 � �l 0�1 )� ���a1;a2�jj0;nk0(�l1; �l2; �l01; �l02)� 
0����ig Z 10 d�wAa(�1T � �w) tajm���ig Z 10 d�� vAb(�2T � ��v) tbkn���0� ; (3.28)where �iT denotes the four-vetor with �+iT = ��iT = 0 and transverse omponents �i.The orresponding expression for the diagram without soft gluon exhange is obtainedby replaing the last line in (3.28) by ÆjmÆkn. Using (3.13), we reognize the fators insquare brakets in that line as the order g terms in onjugate Wilson lines W y(�1T ;w) andW y(�2T ; v). In the transverse plane, the paths of these Wilson lines are at the positions thatare Fourier onjugate to the transverse quark momenta l1 and �l2 in (3.28). The three otherterms in (3.26) give analogous ontributions, with Wilson lines W (�2T ;w) and W (�1T ; v)at the positions that are Fourier onjugate to the transverse antiquark momenta l2 and �l1,respetively.After a hange to symmetri momentum and position variables as spei�ed between(2.1) and (2.7), and after restoration of global kinemati fators, the seond to �fth lineson the r.h.s. of (3.28) turn into the produt Fa1;�a2(xi;zi;y)F�a1;a2(�xi;zi;y) of two-partondistributions in transverse position spae, and the Wilson lines are to be evaluated at theappropriate transverse positions of the quark or antiquark �elds in the de�nition of thesedistributions.It is straightforward to repeat the preeding derivation for a soft gluon exhanged tothe right of the �nal-state ut, as well as for the ase where the gluon rosses this ut. Foran model theory with Abelian gluons, it is not diÆult to see how soft subgraphs with anarbitrary number of external gluons add up to full Wilson lines, in lose analogy to thease of single Drell-Yan prodution. We do not attempt here to give a orresponding prooffor the nonabelian theory, given that even for the single Drell-Yan proess this is quiteinvolved. The struture suggested by our analysis of one-gluon exhange is however lear:the e�et of all soft subgraphs is to multiply the Born-level ross setion (2.36) in positionspae representation by a soft fator. This fator is the vauum expetation value of aprodut of Wilson lines, with one Wilson line for eah external quark or antiquark in themultiparton distributions. We thus haved�Q2i=1 dxi d�xi d2qi = 1C � 2Yi=1 �̂i(xi�xis)� � 2Yi=1 Z d2zi(2�)2 e�iziqi� Z d2y� �F�a1;a2�mm0;nn0(�xi;zi;y) �Sq�q�mm0;nn0;jj0;kk0(zi;y)�Fa1;�a2�jj0;kk0(xi;zi;y)+ ffurther termsg ; (3.29)where the \further terms" desribe the remaining ombinations of quarks or antiquarks inthe two-parton distributions, as disussed in setion 2.2.1. The soft fator reads�Sq�q�mm0;nn0;jj0;kk0(zi;y)
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= 
0 ���W (yT + 12z1T ; v)W y(yT + 12z1T ;w)�mj �W (yT � 12z1T ;w)W y(yT � 12z1T ; v)�j0m0� �W (12z2T ;w)W y(12z2T ; v)�kn �W (�12z2T ; v)W y(�12z2T ;w)�n0k0�� 0� : (3.30)We notie that Wilson linesW (�; v)W y(�;w) andW (�;w)W y(�; v) are ontrated pairwisein their olor indies. From our derivation we see that this olor ontration follows fromthe fat that the hard satters produe olor-singlet partiles, so that the olor indies ofannihilating quarks and antiquarks are diretly ontrated with eah other. The \furtherterms" in (3.29) have a soft fator Sqq multiplying F�a1;�a2Fa1;a2 and a soft fator SI mul-tiplying the produt of interferene distributions I�a1;a2 Ia1;�a2 . These fators are de�ned inanalogy to (3.30) with an appropriate interhange of arguments and indies forW andW y.In analogy to two-parton distributions, we an represent Sq�q in a singlet-otet basisfor index pairs jj0, kk0, et.�Sq�q�mm0;nn0;jj0;kk0 = 1N2 �11Sq�q Æmm0 Æn0nÆj0j Ækk0 + 2NpN2 � 1 18Sq�q Æmm0 Æn0n taj0j takk0+ 2NpN2 � 1 81Sq�q tbmm0 tbn0nÆj0j Ækk0 + 4N2N2 � 1 88Sq�q tbmm0 tbn0n taj0j takk0� : (3.31)De�ning the matrix Sq�q =  11Sq�q 18Sq�q81Sq�q 88Sq�q! (3.32)we then haved�Q2i=1 dxi d�xi d2qi = 1C � 2Yi=1 �̂i(xi�xis)� � 2Yi=1 Z d2zi(2�)2 e�iziqi� Z d2y� 1F �a1;a2(�xi;zi;y)8F�a1;a2(�xi;zi;y)!T Sq�q(zi;y) 1Fa1;�a2(xi;zi;y)8Fa1;�a2(xi;zi;y)!+ ffurther termsg : (3.33)One an of ourse rewrite the ross setion in terms of distributionsF (xi;ki;y) or F (xi;ki; r)depending on transverse momenta. The result involves a Fourier transformed soft fatorand is a onvolution in transverse-momentum variables.The soft fator (3.30) for double Drell-Yan prodution generalizes the orrespondingfator appearing in the single Drell-Yan proess, whih readsSq(z) = 1N 
0 ���W (12zT ; v)W y(12zT ;w)�mj �W (�12zT ;w)W y(�12zT ; v)�jm �� 0� (3.34)for the annihilation of a right-moving quark with a left-moving antiquark. The olor indiesare now ontrated to an overall singlet, as they are in 11Sq�q. The analog of (3.33) isd�dx d�x d2q = �̂i(x�xs) Z d2z(2�)2 e�izq f�q(�x; z)Sq(z) fq(x;z) + ffurther termg ; (3.35)where the \further term" orresponds to a right-moving antiquark and a left-moving quark.For the disussion in subsequent setions we note that at z = 0 the produt of Wilson lines{ 60 {



in (3.34) redues to the trae of the unit matrix, so that Sq(0) = 1. Similarly, one �ndsfrom (3.30) and (3.31) that Sq�q(zi = 0;y = 0) =  1 00 1! : (3.36)To lose this setion let us ollet the issues in the soft-gluon setor that need to beworked out for a full fatorization proof. Some of them we have already mentioned.� One needs to show that the exhange of gluons in the Glauber region anels inthe ross setion. Suh a anellation requires a spei� hoie of i� presription inthe eikonal propagators. For the presription in (3.21), whih orresponds to past-pointing Wilson lines, one an show that Glauber gluons do anel in single Drell-Yanprodution. It is natural to expet that the same presription is appropriate for thedouble Drell-Yan proess, if there is any hoie for whih Glauber gluons deouplein that ase.� The Ward identity (3.22) for attahing one gluon to a ollinear subgraph needs to beproven, and it needs to be extended to the ase where additional gluons are attahedto the subgraph. One then needs to show that the attahment of an arbitrary numberof gluons exponentiates to the Wilson lines in the soft fator (3.30).In a model theory with Abelian gluons, a orresponding proof should be a rather sim-ple extension of the orresponding arguments for single-parton distributions, whihan be found in [50, hapter 10.8℄. An expliit proof for transverse-momentum de-pendent fatorization in QCD is still laking even for single hard sattering, as far aswe know.� It must be shown that expliit time ordering of the gluon operators in the soft fator(3.30) an be omitted. It must also be established that one an omplement theWilson lines along v and w in the soft fator in suh a way that one has an expliitlygauge invariant de�nition. We expet that for both issues it should be possible toextend a proof for single Drell-Yan prodution to the double Drell-Yan proess, butwe are not aware of an expliit proof for the single Drell-Yan ase.The seond and third bullet items are losely onneted with the orresponding points forollinear gluons, whih we disussed at the end of the previous setion.3.2.3 Towards a fatorization formulaIn setion 3.2.1 we have seen how ollinear gluons give rise to the Wilson line operators(3.19) in the matrix elements de�ning multiparton distributions. However, these Wilsonline operators ontain not only ollinear but also soft gluons, whih are already taken intoaount in the soft fator (3.30). At the level of graphs, this is reeted in the fat thatthe gluon momentum ` in �gures 14 and 17a an be either ollinear or soft. To preventdouble ounting of soft gluon ontributions, the fatorization formula for the ross setionrequires appropriate subtrations. { 61 {



Let us briey reapitulate how this problem an be solved for single Drell-Yan pro-dution. The neessary subtrations an be performed by dividing out vauum matrixelements of the form (3.34). There is a ertain freedom of whether to absorb these matrixelements into the soft fator or into the parton distributions that appear in the �nal fa-torization formula . The former hoie was made in the original work [48℄ of Collins andSoper,11 whereas both [49℄ and [51℄ have made the latter hoie. Finally, in reent workby Collins [50℄ (see [115℄ for a brief summary) all matrix elements of the form (3.34) havebeen absorbed into the parton distributions, whih gives a fatorization formula without anexpliit soft fator. Whihever hoie is made, a onsistent formulation requires one to takemathing i� presriptions in eikonal lines when treating ollinear or soft gluon attahments,as we did in (3.3) and (3.21).Another detail that admits several hoies is the diretion of the path in Wilson lines.In setion 3.2.1 we have seen that the approximations needed for right-moving ollineargluons require a vetor v that orresponds either to large negative or to entral rapidity,where we de�ne the rapidity of a spaelike vetor asyv = 12 log ����v+v� ���� : (3.37)One annot take the limit yv ! �1, i.e. one annot take v lightlike in the parton density,sine this would give divergenes from the region where gluons oupling to eikonal lines havesmall `+ but large `�, i.e. from the region of large negative gluon rapidities [48, 50, 116℄.The approximations for soft gluons in setion 3.2.2 require a vetor v with large negativerapidity and a vetor w with large positive rapidity. Again one annot take the limit whereyv ! �1 and yw ! +1, as we shall see expliitly in setion 3.3.1. However, this limitan be taken for appropriate ombinations of matrix elements, whih leads to importantsimpli�ations, see [49℄ and [50℄.A further tehnial point is that the matrix elements disussed so far inlude ontribu-tions from self energy graphs of Wilson lines and from graphs where gluons are exhangedbetween di�erent Wilson lines pointing in the same diretion (see e.g. �gure 24 below). Forspaelike vetors v and w suh graphs give in�nite results already at tree level, as shownin appendix A of [117℄. Suh graphs do not appear in the derivation of the fatorizationformula: as we have seen in the two previous setions, Wilson lines appear when treatinggluon exhange between partons that have a large rapidity di�erene. The o�ending graphsanel in the ombination of matrix elements that appears in the �nal fatorization for-mula, but in the individual fators they must be expliitly exluded. (Only in the shemeof [50℄ do these graphs already anel in the parton distributions.)Finally, the hard-sattering subgraphs have radiative orretions themselves. Sinewe require the produed bosons to have small transverse momenta, there are only virtualorretions: radiation into the �nal state an only be ollinear or soft and is inluded inthe ollinear or soft fators. For Drell-Yan prodution at one-loop auray, one thus onlyhas the vertex orretion to the quark-antiquark-photon three-point funtion. The regionsof soft and ollinear gluon momenta in the virtual graphs have to be expliitly subtrated11This may not be quite obvious in [48℄ but has been learly pointed out in setion X.A of [49℄.{ 62 {



in the de�nition of the hard-sattering ross setion, in order to ensure that this fator isdominated by large virtualities. This removes in partiular the well-known soft divergenesof the virtual graphs (whih in the more familiar ase of inlusive observables anel whenreal emission graphs are added).We expet that the above proedure an be generalized to the ase of double Drell-Yanprodution. The division by vauum expetation values of the form (3.34) will be replaedby multipliation with the inverse of the matrix (3.30) in olor spae. We leave it to futurework to show that this an atually be done. In the remainder of this setion, we will takea loser look at the elementary building bloks of fatorization, namely at the soft fatorin (3.30) and at the dependene of the proton matrix elements of the operator (3.19) onthe diretion v of the Wilson lines.To onlude this setion we note that a fatorization theorem for the double Drell-Yan proess also needs to provide a proper separation between the prodution of the twogauge bosons by one or two hard-sattering proesses. We will disuss this problem insetion 5.2.3.3.3 The soft fator at small transverse distanesIf all three transverse distanes y;z1;z2 are small ompared with a hadroni sale ��1,the soft fator in (3.30) is dominated by perturbative dynamis and an be evaluated inperturbation theory. In this setion we ompute the short-distane form of this fator toleading order in the strong oupling.From (3.11) and (3.12) one obtains the representationig Z 10 d� vAa(� � �v) ta = �igtav� Z d4`(2�)4 e�i�` �i`v + i� Z d4� ei�`Aa�(�) (3.38)for the exponent of the Wilson line W (�; v). Together with the Feynman rules for eikonallines and their oupling to gluons in �gure 16 this gives a Feynman rule for the order gterm of the Wilson line to the left of the �nal-state ut, as shown in �gure 22.3.3.1 The basi graphsThe expansion at O(�s) of the soft fator (3.30) involves the three types of graphs shown in�gure 23, whih we now alulate. Graphs a and b already appear in the soft fator (3.34)for the single Drell-Yan proess, whereas graph  is spei� for multiparton interations.As disussed in the previous setion, we disard graphs as in �gure 24, where gluons areexhanged between Wilson lines pointing both along v or both along w.To regulate ultraviolet divergenes, we work in 4�2� dimensions, and to exhibit infrareddivergenes in individual graphs we use a small gluon mass �. For the time being we omitthe olor matries ta in the Feynman rules. One �nds that eah pair of graphs in �gure 23gives the same result, so that in the following we only list the expressions of the left-handgraphs and multiply by two.
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Figure 22. Feynman rules for the term of order g in the expansion of the Wilson lines de�ned in(3.13). The rules for lines to the left of the �nal-state ut (indiated by the dashed line) follow from(3.38), and those for lines to the right of the �nal-state ut are obtained by omplex onjugation.
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Figure 23. Basi graphs ontributing to the soft fator at order �s.Before renormalization, the vertex orretion graphs in �gure 23a giveUa = 2�2�Z d4�2�`(2�)4�2� ei�T `�i�T ` i�`w + i� (�igw�) �ig��`2 � �2 + i� (�igv�) �i`v + i�= �4i�s vwv+w+ �2�Z d2�2�`(2�)2�2� Z 1�1 d`+ Z 1�1 d`�2� 12`+`� � `2 � �2 + i�� 1`� + w�w+ `+ � i� 1`� + v�v+ `+ � i� ; (3.39)
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Figure 24. Graphs with gluon exhange between eikonal lines having the same rapidity. Thesegraphs are exluded in the evaluation of soft fators, as disussed in the text.where we reall that the vetors v and w have zero transverse momenta and satisfy v� > 0,v+ < 0, w+ > 0, w� < 0. For `+ < 0 all poles in `� are on the same side of the real axis,so that this region gives a zero ontribution to the integral over `�. For `+ > 0 we losethe integration ontour in `� around the pole of the gluon propagator and obtainUa = ��s vwv�w� �2�Z d2�2�`(2�)2�2� Z 10 d(`+)2� 1(`+)2 + 12 w+w� (`2 + �2) + i� 1(`+)2 + 12 v+v� (`2 + �2) + i� : (3.40)As both poles in (`+)2 are on the same side of the real axis, one an deform the integrationontour to �1 < (`+)2 < 0 and obtainsUa = �2�s vwv�w+ � v+v� log�v�w+v+w���2�Z d2�2�`(2�)2�2� 1`2 + �2= ��s2� v�w+ + v+v�v�w+ � v+v� log�v�w+v+w���(�)�4��2�2 �� : (3.41)We see that both vetors v and w must be hosen away from the light one, sine takingeven one of them lightlike gives an in�nite result for Ua. With the de�nition (3.37) for therapidity of a spaelike vetor, we havelog�v�w+v+w�� = 2(yw � yv) ; v�w+ + v+v�v�w+ � v+v� = tanh(yw � yv) : (3.42)We require a large rapidity di�erene, jyw � yvj � 1, i.e. v�w+ � v+w�. This is satis�edby the hoie yv � 1 and yw � 1 made in setion 3.2.2, but it also allows one of v or w tohave entral rapidity, as long as the rapidity of the other one is large (positive or negative).We an then approximate tanh(yw�yv) � 1. The expression (3.41) is ultraviolet divergent,and using MS subtration we obtain the renormalized resultSa(�) = �Ua(�)�ren = ��s� (yw � yv) log �2�2 : (3.43)
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For the graphs in �gure 23b, whih desribe gluon emission into the �nal state, we haveUb = 2�2�Z d4�2�`(2�)3�2� �(`+) Æ(`2 � �2) ei�T `�i�0T ` i�`w + i� (�igw�) (�g��) (igv�) i�`v � i�= 4�s vwv+w+ �2�Z d2�2�`(2�)2�2� ei(���0)` Z 10 d`+ Z 1�1 d`� Æ(2`+`� � `2 � �2)� 1`� + w�w+ `+ � i� 1`� + v�v+ `+ � i�= �s vwv�w� �2�Z d2�2�`(2�)2�2� ei(���0)` Z 10 d(`+)2� 1(`+)2 + 12 w+w� (`2 + �2) + i� 1(`+)2 + 12 v+v� (`2 + �2) + i� : (3.44)Comparing with (3.40) we observe that Ua+Ub = 0 at � = �0. For � 6= �0 the integral over` in (3.44) is ultraviolet �nite and no subtration is needed before we set � = 0. We thusobtainSb(z) =z 6=0 �Ub(z)��=0 = 4�s (yw � yv) Z d2`(2�)2 eiz` 1`2 + �2 = �s� (yw � yv) 2K0�� jzj�=�!0 ��s� (yw � yv) log �2z2b20 ; (3.45)where b0 = 2e� and  is the Euler number.The graphs in �gure 23a and b give the full O(�s) ontribution for the vauum matrixelement Sq de�ned in (3.34), whih appears in single Drell-Yan prodution. Let us evaluatethis ontribution as a side result. The olor fator for all graphs is N�1 tr(tata) = CF inthis ase, so that we have Sq(z; �) = 1 + S(z; �) +O(�2s) withS(z; �) = CF �Sa(�) + Sb(z)� = ��s� CF (yw � yv) log �2z2b20 (3.46)for z 6= 0. Notie that the infrared divergenes regulated by a gluon mass � have anelledin the sum over all graphs, as is required for a perturbative evaluation of Sq. For z = 0the relation Ua + Ub = 0 ensures that the ondition Sq(0) = 1 does not reeive radiativeorretions, in agreement with the general result disussed below (3.34). This ompleteanellation between real and virtual orretions plays a ruial role for ollinear fator-ization, see setion 3.5. The fat that the limit z ! 0 of (3.46) is in�nite rather than zerois due to our use of modi�ed minimal subtration. For z = 0 the ultraviolet divergenesin Ua and Ub anel eah other (as do the �nite parts of the graphs), so that there is noultraviolet subtration for their sum. At z 6= 0, however, Ua + Ub does require ultravioletsubtration sine the �rst term is ultraviolet divergent whereas the seond term is not.
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Finally, the graphs in �gure 23 giveU = 2�2�Z d4�2�`(2�)4�2� ei�T `�i�0T ` i�`w + i� (�igw�) �ig��`2 � �2 + i� (�igv�) i`v + i�= 4�s vwv+w+ �2�Z d2�2�`(2�)2�2� ei(���0)` Z 1�1 d`+ Z 1�1 d`�2� i2`+`� � `2 � �2 + i�� 1`� + w�w+ `+ � i� 1`� + v�v+ `+ � i� : (3.47)For `+ < 0 all poles in `� are on the same side of the real axis and give a zero net result,whereas for `+ > 0 the integral over `� an be obtained from the residue of the gluonpropagator. This gives the same expression as in the seond step of (3.44). The graphs in�gure 23 hene give the same result as those in �gure 23b:S(z) = Sb(z) : (3.48)Note that the graphs in �gure 23b and  only di�er by the position of the �nal-stateut. The result (3.48) shows that this does not matter and provides a onsisteny hekfor the omission of expliit time ordering in (3.27). Namely, time ordering of the two�elds A(�) and A(��) assoiated with the gluon propagator is required when the gluon doesnot ross the �nal-state ut. When it does ross the ut, no time ordering presriptionarises, however, sine the two �elds then have a omplete set of �nal states between them:PX A(�)jXi hXjA(��) = A(�)A(��).The identity (3.48) also holds before setting � = 0 and an then be used also at z = 0.This provides a simple explanation of the relation Ub(0) = �Ua disussed above. Indeed,the equality U(0) = �Ua is already evident from the starting expressions (3.39) and(3.47), whih only di�er by the sign of the eikonal propagator �i=(`v+ i�). This is a diretonsequene of the Feynman rules in �gures 16, sine the upper eikonal lines to whih thegluon ouples in �gures 23a and  only di�er by the ow of olor harge.For later use we note that the graphs in �gures 23b and  hange sign when the owof olor harge in one of their eikonal lines is reversed, whereas those in �gure 23a remainthe same.3.3.2 Soft fator assoiated with two-quark distributionsWith these building bloks at hand we an onstrut the soft fator assoiated with two-parton distributions in the ross setion formula (3.33). We �rst disuss the fator Sqq insome detail and give the results for Sq�q and SI in the end.The graphs ontributing to Sqq are those in �gure 25. In the graphs of �gure 25a andb1 there is either no gluon oupling to the pair f14g or no gluon oupling to the pair f23gof eikonal lines, so that the lines have the same olor oupling at the bottom and the top ofthe graph. The olor fator for the vertex orretion graphs 25a is CF , independent of theolor ow along the eikonal lines and of the way in whih their olor indies are oupled.
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For �gure 25b1 we have olor fators1N2 tr(ta ta) tr 11 = CF for 11Sqq ;4N2 � 1 tr(ta t tb t) tr(ta tb) = � 12N for 88Sqq ; (3.49)where the prefators 1=N2 and 4=(N2�1) ome from the analog of the olor deomposition(3.31) for Sqq. We note that these olor fators are the same as for the ladder graphs weshall disuss in setion 5.1.3.By ontrast, the graphs in �gure 25b2 and  an hange the olor oupling of the eikonallines. As an illustration, onsider the �rst graph in �gure 25b2 with the olor indies atthe bottom multiplied by otet matries tbjj0 tbkk0 . The olor struture is then�tatb�mm0 �tbta�nn0 = 12� 1N ÆabÆmm0 + dab tmm0 + ifab tmm0��tbta�nn0= 12�CFN Æmm0 Ænn0 + N2 � 42N tamm0 tann0 + N2 tamm0 tann0�= N2 � 14N2 Æmm0 Ænn0 +�CF � 12N� tamm0 tann0 (3.50)and we see that this graph ontributes to both 81S and 88S. If the indies jj0 and kk0 areoupled to singlets, then the graph is proportional to tamm0 tann0 and thus ontributes to 18S.For the �rst graph in �gure 25 the olor fators are analogous, with the di�erene thatone has �tatb�mm0 �tatb�nn0 = 12�CFN Æmm0 Ænn0 + N2 � 42N tamm0 tann0 � N2 tamm0 tann0�= N2 � 14N2 Æmm0 Ænn0 � 1N tamm0 tann0 (3.51)instead of (3.50). Putting everything together and using the results of the previous setion,we have 11Sqq = 1 +CF �2Sa(�) + Sb(z1) + Sb(z2)� ;88Sqq = 1 + 2CFSa(�)� 12N �Sb(z1) + Sb(z2)�+�CF � 12N ��Sb�y + z1 + z22 �+ Sb�y � z1 + z22 ��+ 1N �S�y + z1 � z22 �+ S�y � z1 � z22 �� ;18Sqq = 81Sqq =rCF2N �Sb�y + z1 + z22 �+ Sb�y � z1 + z22 �� S�y + z1 � z22 �� S�y � z1 � z22 �� : (3.52)
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Figure 25. Graphs for the soft fator assoiated with two-quark distributions. The \mirror graphs"not shown are as in �gure 23. The numbers, position arguments and olor labels on the eikonallines orrespond to those of the quark lines in the distribution Fa1;a2 , see �gure 5.The terms S ome with an overall minus sign, beause in graph 25 one of the eikonal linesoupled to a gluon has its olor ow reversed ompared with graph 23, whih reverses thesign in the eikonal propagator aording to the Feynman rules in �gure 16.The matrix elements in (3.52) are suh that we an replae Sa and Sb = S by their
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Figure 26. A higher-order graph for the soft fator, whih onnets more than two eikonal lines.sum, whih is infrared �nite aording to (3.46). Using S = CF (Sa + Sb) we haveSqq(zi;y; �) = �1 + S(z1; �) + S(z2; �)� 1 00 1!+ 0 SdSd �(1 + 2)Sy � 22Sd! ; (3.53)with a olor fator  = 1p2NCF = 1pN2 � 1 (3.54)and linear ombinationsSd(zi;y) = S�y + z1 + z22 ; ��+ S�y � z1 + z22 ; ��� S�y + z1 � z22 ; ��� S�y � z1 � z22 ; �� ;Sy(zi;y) = S(z1; �) + S(z2; �)� S�y + z1 + z22 ; ��� S�y � z1 + z22 ; �� : (3.55)Note that the � dependene of S has aneled in Sd and Sy.At one-loop level the soft fator for two-quark distributions an thus be expressed interms of its analog S for single-parton distributions. This simpli�ation will most likely nolonger hold at higher orders in �s, sine one then has graphs like in �gure 26, where morethan two eikonal lines are onneted.It is easy to see that the soft fator Sq�q(zi;y) for quark-antiquark distributions isobtained from Sqq(zi;y) by replaing z2 ! �z2. This orresponds to the interhange ofthe labels 2 and 3 in the de�nitions of Fa1;a2 and Fa1;�a2 (see (2.85) to (2.87)) and uses theresult that the kernels Sb and S for gluons that ross or do not ross the �nal-state utare idential.The soft fator multiplying the interferene distributions is obtained from the samegraphs as those in �gure 25, apart from hanges in the olor labels and in the olor owof the eikonal lines. Making the appropriate replaements of position arguments in Sqq we
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get 11SI = 1 + CF�2Sa(�) + Sb�y + z1 + z22 �+ Sb�y � z1 + z22 �� ;88SI = 1 + 2CFSa(�)� 12N �Sb�y + z1 + z22 �+ Sb�y � z1 + z22 ��+�CF � 12N��S�y + z1 � z22 �+ S�y � z1 � z22 ��+ 1N �Sb(z1) + Sb(z2)� ;18SI = 81SI =rCF2N �S�y + z1 � z22 �+ S�y � z1 � z22 �� Sb(z1)� Sb(z2)� ; (3.56)whih an be rewritten asSI(z1;z2;y) = �1 + S(z1; �) + S(z2; �)� 1 00 1!� Sy (Sy + Sd)(Sy + Sd) (1� 22)(Sy + Sd) + 2Sd! : (3.57)3.4 Collins-Soper equationAs is well-known, ross setions with measured transverse momenta jqij � qT muh smallerthan the hardest sale Q in the proess ontain large logarithms in qT =Q, whih need tobe summed to all orders in �s in order to have a perturbatively stable result. A powerfulmethod to resum these Sudakov logarithms is due to Collins, Soper and Sterman (CSS)[118℄. This method uses transverse-momentum-dependent fatorization and is therefore,up to now, limited to the prodution of olor singlet partiles, suh as a Drell-Yan leptonpair or a Higgs boson. In this setion we show how this formalism extends to double Drell-Yan prodution, and we alulate the orresponding Sudakov fator to next-to-leadinglogarithmi auray.We begin by a brief aount of the CSS method for proesses with a single hardsattering initiated by quark-antiquark annihilation. As we mentioned in setion 3.2.3,the Wilson lines in the de�nition of transverse-momentum dependent parton distributionsmust be taken along a diretion v with a �nite rapidity. Their dependene on this rapidityis governed by the Collins-Soper (CS) equation [48℄, whose solution resums Sudakov log-arithms to all orders. By Lorentz invariane, the distributions depend on v via the salarparameter12 �2 = (2pv)2jv2j : (3.58)12To avoid the appearane of square roots, our de�nition (3.58) follows the onvention of Ji et al. [51℄and di�ers from the one of Collins and Soper [48℄, with �2jhere = �[48℄.
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Figure 27. Graphs desribing the dependene of a single parton distribution on the Wilson linerapidity yv at order �s. The omplex onjugate graphs are not shown. Note that graph b inludesthe ase where the gluon ouples to the left quark line, i.e. graph a is inluded in b.As disussed earlier, we require v to be spaelike (although the manipulations in the fol-lowing would also work for timelike v, whih is the hoie adopted in [51℄). In terms of therapidities yv of v and yp of the proton, we have� = 2M sinh(yp � yv) �Meyp�yv ; �� log � = � tanh(yp � yv) ��yv � � ��yv (3.59)for a right-moving proton, where M is the proton mass. The approximations are valid foryv � yp, whih we have seen to be neessary in setion 3.2.1. This implies � �M .Following the original paper [48℄ we work here with \unsubtrated parton distribu-tions" in the parlane of [51, 119℄ and [50℄, i.e. with matrix elements of operators on-struted from quark �elds and Wilson lines along v as in (3.19). Subtrations for the softmomentum region are not made in the parton distributions but in the soft fator thatappears in the ross setion (see [49℄). The �elds in the operator are renormalized, sothat the distributions depend on an ultraviolet renormalization sale �. Fourier transform-ing from transverse momentum to position spae, we then have single-quark distributionsf(x;z; �; �). The � dependene is given by a homogeneous renormalization group equa-tion [48℄ dd log �f(x;z; �; �) = 2q��s(�)� f(x;z; �; �) ; (3.60)where q = 3CF�s=(4�) + O(�2s) an be identi�ed with the anomalous dimension of thequark �eld in the axial gauge vA = 0 (where the Wilson lines redue to unity). In aovariant gauge it orresponds to renormalization of the omposite operator W (�)q(�) or�q(�)W y(�), see (3.19).In terms of graphs, the dependene of f on v arises from the propagators of eikonallines and from their oupling to gluons, as is obvious from the Feynman rules in �gure 16.A power ounting analysis shows that dominant ontributions to �f=�� ome from regionswhere the momentum ` owing through eikonal lines is either hard or soft; ontributionswith ` ollinear to the proton are power suppressed. The only important graphs where ` is ahard momentum have the form of a vertex orretion shown in �gure 27a (at higher ordersthis vertex graph beomes dressed with further gluon and quark lines). If the momentum `
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ows through spetator partons (see �gure 27b and ), the hard region is power suppressedand only the region of soft ` is important.The ontribution from the region of hard momenta ` reads�� log � f(x;z; �; �)���hard = G(x�=�) f(x;z; �; �) : (3.61)Sine ` is hard, the kernel G an be alulated perturbatively. G is extrated from sub-graphs whose external lines are the quark on the left of the �nal-state ut and the adjaenteikonal line, or the orresponding two lines on the right of the ut. As a result, G is inde-pendent of the transverse distane z between the two quark �eld operators. Furthermore,it depends only on the longitudinal quark momentum xp rather than on the proton mo-mentum p, so that the dependene on � is via the ombination x� = 2(xp)v=pjv2j. Fordimensional reasons this parameter must be divided by �, sine G is dominated by hardmomenta and hene independent of nonperturbative sales. At leading order in �s, oneobtains G from the graph of �gure 27a and the omplex onjugate graph, with subtrationsmade for the region of soft `. Using MS subtration for the ultraviolet divergenes, one�nds [48, 119℄ G(x�=�) = ��s� CF �log�x2�2�2 �� 1�+O(�2s) : (3.62)If the momentum arried by the eikonal lines and hene by the gluons they oupleto is soft, we have graphs with soft gluons oupling to parton lines that move fast to theright. We an then use the same proedure as in setion 3.2.2, i.e. approximate the gluonoupling to the right-moving partiles and then use a Ward identity. The gluons thenouple to eikonal lines with large positive rapidity, assoiated with a vetor w, with oneeikonal line for eah parton line attahed to the ollinear subgraph. This gives�� log � f(x;z; �; �)���soft = ��Sv;wq (z; �)�yv 1Sv;wq (z; �) f(x;z; �; �) ; (3.63)where we used �=(� log �) = ��=(�yv) and where we have expliitly displayed the depen-dene of Sq de�ned in (3.34) on the two vetors v and w. As shown in [50℄, one an takethe limit of lightlike w in (3.63) and thus has�� log � f(x;z; �; �) = �G(x�=�) +K(z; �)�f(x;z; �; �) (3.64)with K(z; �) = � limyw!1 �Sv;wq (z; �)�yv 1Sv;wq (z; �) : (3.65)Having taken the limit of in�nite yw the dependene of K on yv has disappeared as well,sine by Lorentz invariane K ould only depend on yw � yv. For large z the kernel Kis dominated by nonperturbative dynamis, just as Sq. For suÆiently small z we an
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however use the perturbative expression of Sq derived in the previous setion. From (3.46)we readily obtain K(z; �) = ��s� CF log �2z2b20 ; (3.66)verifying that at lowest order K is independent of v and w.An analysis of the ultraviolet divergenes in G and K shows that they satisfy renor-malization group equations [48℄dd log � G�x�=�; �s(�)� = � dd log � K(z; �) = K��s(�)� ; (3.67)so that the sum G +K is independent of �. At lowest order in �s this is readily veri�edfrom (3.62) and (3.66), whih also give the leading termK(�s) = 2�s� CF +O(�2s) (3.68)of the anomalous dimension. The O(�2s) term is also known [118℄.We are now ready to generalize the CS equation to (unsubtrated) two-quark distri-butions. The ontribution from hard eikonal momenta ` is again given by vertex graphsas in �gure 27a, with one graph for eah of the four quark legs. This gives just the sum ofkernels G(x1�=�) +G(x2�=�). As for the soft momentum region, the argument leading to(3.63) an be repeated. In setion 3.2.2 we have seen that the Ward identity for soft gluonsoupling to ollinear lines in a two-parton distribution has a nontrivial olor struture. Wetherefore now have a matrix equation in olor spae,�� log �  1Fa1;a2(xi;zi;y; �; �)8Fa1;a2(xi;zi;y; �; �)!�����soft = Kqq(zi;y;�)  1Fa1;a2(xi;zi;y; �; �)8Fa1;a2(xi;zi;y; �; �)! (3.69)with a kernel Kqq(zi;y;�) = � limyw!1 �Sv;wqq (zi;y;�)�yv �Sv;wqq (zi;y;�)��1 : (3.70)Analogous equations hold for quark-antiquark and for interferene distributions, with ker-nels K onstruted from the appropriate soft fators S. Note that the kernels are sensitiveto the olor harge of partons (i.e. to the di�erene between quarks and antiquarks) butnot to their polarization. For K this follows from the analogous property of S, whereasfor G it follows from parity invariane applied to the relevant subgraph with one externalquark and one eikonal line. Putting everything together, we an write the CS equation fora two-quark distribution into the formdd log �  1F8F! = �G(x1�; �) +G(x2�; �) +K(z1; �) +K(z2; �)� 1F8F!+M(z1;z2;y) 1F8F! (3.71)
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with M(z1;z2;y) = K(z1;z2;y;�)� �K(z1; �) +K(z2; �)� 1 00 1! : (3.72)Aording to (3.67) the � dependene anels between the kernels G and K in (3.71). Thematrix M is independent of � as well. This an be traed bak to the fat that the onlyultraviolet divergent graphs for S (and hene for K) have the form of a vertex orretion asin �gure 25a. As disussed in the previous setion, these graphs only ontribute to the olordiagonal elements 11S and 88S and are the same in both ases, sine they are insensitive tothe olor of the di�erent eikonal lines.Finally, the dependene of Fa1;a2 , Fa1;�a2 et. on the renormalization sale is given bydd log �F (xi;zi;y; �; �) = 4q��s(�)�F (xi;zi;y; �; �) (3.73)for both 1F and 8F . This is beause ultraviolet renormalization in F is performed forindividual operators W (�)q(�) and �q(�)W y(�).3.4.1 General solutionBefore solving (3.71) let us �rst onsider the simpler equationdd log � F (xi;zi;y; �; �) = hG�x1�=�; �s(�)�+G�x2�=�; �s(�)�+ 2K12(z1;z2; �)iF (xi;zi;y; �; �) ; (3.74)where we have abbreviatedK12(z1;z2; �) = 12 hK(z1; �) +K(z2; �)i : (3.75)We have inluded the argument of the running oupling in G sine this will be neededshortly. For the moment we do not assume that K is given by a perturbative expansion.The solution of (3.74) an be obtained by adapting the well-known solution of the CSequation for single-parton distributions [48, 118, 120℄. We haveF (xi;zi;y; �; �) = exp��S(x1�;z1;z2; �0)� S(x2 �;z1;z2; �0)�F �0(xi;zi;y;�) ; (3.76)where F �0 spei�es the initial ondition of evolution in �. The sale �0 should be hosensuh that F �0 does not depend on widely disparate sales. If this is not possible beausezi and y widely di�er in size, further steps may be required in order to resum all largelogarithms. We note that sine S is � independent (see below), the � dependene of F �0is given by the same renormalization group equation as in (3.73). The Sudakov exponentin (3.76) readsS(x�; z1;z2; �0) = �Z x��0 d� 0� 0 �G�x� 0=�; �s(�)�+K12(z1;z2; �)� (3.77)
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with x equal to x1 or x2. It is well-known from the solutionf(x;z; �; �) = exp��S(x�; z;z;�0)� f�0(x;z;�) (3.78)of the CS equation (3.64) for single-quark distributions. We note that a more general setof solutions an be obtained by multiplying x� with a onstant C2 in the upper integrationlimit of (3.77); the initial ondition F �0 in (3.76) then depends on that onstant. One aneasily restore the C2 dependene of the expressions to follow, but for simpliity we limitourselves to the hoie C2 = 1 here.The integrand of (3.77) ontains funtions that depend on the ratio of two large sales.To make this dependene expliit, one uses the renormalization group equation (3.67) forG and K. Obviously, K12 has the same � dependene as K, so that the � dependeneanels between G and K12 in (3.74) and (3.77). Using (3.67) one an rewriteG�x� 0=�; �s(�)�+K12(z1;z2; �)= G�1; �s(x� 0)�+K12(z1;z2; �0)� Z x�0�0 d�0�0 K��s(�0)� : (3.79)Inserting this into (3.77) one an perform the integration over � 0 for the terms ontainingK or K12 and obtainsS(x�; z1;z2; �0) = Z x��0 d�� �K��s(�)� log x�� �G�1; �s(�)���K12(z1;z2; �0) log x��0 : (3.80)The term with K in (3.80) gives rise to the leading double logarithm in x�=�0, whereasthe other terms give only single logarithms. Using (3.62) and (3.68) and negleting therunning of �s one hasS(x�; z1;z2; �0) = �s� CF log2 x��0 � ��s� CF +K12(z1;z2; �0)� log x��0 +O(�2s) (3.81)at leading order in �s. A more preise expression is obtained by rewriting R d�=� =12 R d�s=�(�s), where � = d�s(�)=d log �2. After expanding 1=�(�s) in �s, the integralin (3.80) is straightforward to evaluate for the one-loop expression (3.62) of G and thetwo-loop expression of K (given e.g. in [118℄).The form (3.80) is valid even if K12(z1;z2; �) annot be evaluated perturbativelybeause one or both of z1 and z2 are large. If both distanes are small, K(zi; �) and thusK12(z1;z2; �) is given by a power series in �s(�). An alternative form of the Sudakovexponent [118℄ is then obtained by rewriting (3.79) asG�x� 0=�; �s(�)�+K12�z1;z2; �; �(�)�= G�1; �s(x� 0)�+K12�z1;z2; �0; �s(x� 0)�� Z x�0�0 d�0�0 A�z1;z2; �0; �s(�0)� (3.82)
{ 76 {



with A(z1;z2; �0; �s) = K��s�+ 2�(�s) ���sK12�z1;z2; �0; �s� ; (3.83)where we now distinguish between the expliit � dependene of K12 and the impliit de-pendene via the running oupling. One then obtainsS(x�; z1;z2; �0) = Z x��0 d�� �A�z1;z2; �0; �s(�)� log x�� �G�1; �s(�)��K12�z1;z2; �0; �s(�)�� ; (3.84)where all perturbative funtions are evaluated with �s at the same sale. With the one-loopexpression of K in (3.66) we haveK12(z1;z2; �; �s) = ��s� CF log �2 jz1j jz2jb20 +O(�2s) : (3.85)A natural hoie for the starting sale of evolution in � is thus�20 = C1jz1j jz2j (3.86)with a onstant C1 of order 1. If one takes C1 = b20 then K12 vanishes.It is now easy to write down the solution of the full CS equation (3.71) for a two-partondistribution. It is given by 1F (xi;zi;y; �; �)8F (xi;zi;y; �; �)! = exp��S(x1�;z1;z2; �0)� S(x2�;z1;z2; �0)�� exp�M(z1;z2;y) log px1x2 ��0 �  1F �0(xi;zi;y;�)8F �0(xi;zi;y;�)! (3.87)with S given by (3.80) for arbitrary values of zi and by (3.84) if both z1 and z2 aresmall. The logarithm in the seond line has been hosen suh that it oinides with theone that multiplies 2K12 when one evaluates �S(x1�)�S(x2�) from (3.80). Other hoiesare possible and lead to di�erent initial onditions 1F �0 and 8F �0 .Unless all distanes z1, z2 and y are small, the matrixM annot be alulated pertur-batively and we annot further simplify the exponentiated matrix in (3.87). Nevertheless,(3.87) ontains some important information, sine it gives the expliit form of the de-pendene on the large sales x1� and x2�. In partiular, we see that to leading doublelogarithmi auray, where only squared logarithms of x1�=�0 and x2�=�0 are retained,the Sudakov fator for two-quark distributions is the same for 1F and for 8F and given bythe produt of the orresponding Sudakov fators for single-quark densities with momen-tum frations x1 and x2. At next-to-leading logarithmi auray, 1F and 8F mix underevolution in �, with the amount of mixing depending on the transverse distanes z1, z2and y. { 77 {



It should be possible to generalize the CS equation (3.71) and its general solution (3.87)to the ase of multiparton distributions for more than two partons. The same holds formulti-gluon distributions, where the general struture will remain the same but the kernelsG and K will be di�erent.3.4.2 Small transverse distanesLet us now onsider the situation when z1, z2 and y are all small enough to alulate Min perturbation theory. The kernels K(zi; �) in (3.71) are then given by (3.66) at leadingorder in �s, and the Sudakov exponent S in the solution (3.87) of the CS equation anbe evaluated from (3.84). It remains to investigate the matrix eLM in (3.87), where weabbreviate L = log px1x2 ��0 : (3.88)We treat the kernelMqq for two-quark distributions Fa1;a2 in detail and disuss its analogsfor quark-antiquark distributions Fa1;�a2 and interferene distributions Ia1;a2 later.Using the de�nitions (3.70), (3.72) and our perturbative result (3.53) for Sqq, we readily�nd Mqq(z1;z2;y) =  0 KdKd �(1 + 2)Ky � 22Kd! (3.89)with  given in (3.54) andKd(zi;y) = K�y + z1 + z22 ; ��+K�y � z1 + z22 ; ���K�y + z1 � z22 ; ���K�y � z1 � z22 ; ��Ky(zi;y) = K(z1; �) +K(z2; �)�K�y + z1 + z22 ; ���K�y � z1 + z22 ; �� (3.90)in analogy to (3.55). Using the expliit form (3.66) or the renormalization group equation(3.67) for K, we see thatM is � independent, as we antiipated earlier. We must of oursehoose a sale in �s when using the one-loop result (3.66) for evaluating Kd and Ky, whihgives rise to a residual sale dependene of order �2s. The situation is the same as for aphysial (and hene formally � independent) quantity evaluated in �xed-order perturbationtheory. An appropriate sale of �s in Kd and Ky will be onstruted from zi and y.Let Dqq be the diagonal matrix with the eigenvalues ofMqq and let Eqq be the matrixwhose olumns are the orresponding eigenvetors, i.e.MqqEqq = EqqDqq with Dqq =  d+ 00 d�! : (3.91)One then has eLMqq = Eqq eLDqq E�1qq : (3.92)
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The matrix (3.89) has eigenvaluesd� = 12 ��(1 + 2)Ky � 22Kd �q�(1 + 2)Ky + 22Kd�2 + �2Kd�2 � (3.93)and a matrix of eigenvetors Eqq = 0B��d� � d+KdKd 1 1CA ; (3.94)so that eLMqq = 1d+ � d�  d+eLd� � d�eLd+ Kd�eLd+ � eLd��Kd �eLd+ � eLd�� d+eLd+ � d�eLd� ! : (3.95)Let us see how this matrix behaves forjKd j � jKyj : (3.96)One an then Taylor expand the square root in (3.93) and obtainsd+ = 21 + 2 K2dKy +O�4 K3dK2y � ; d� = �(1 + 2)Ky +O(2Kd) (3.97)if Ky > 0, whereas the role of d+ and d� in (3.97) is interhanged if Ky < 0. In both asesone getseLMqq � exp�L 1N2 K2dKy �0BB� 1 1Nb KdKy �1� e�Lb2Ky�1Nb KdKy �1� e�Lb2Ky� e�Lb2Ky + � 1Nb KdKy �21CCA ; (3.98)where we have traded the olor fator  = 1=pN2 � 1 forb = NpN2 � 1 : (3.99)Sine  � 1=N , the ondition (3.96) holds in the large-N limit. Inserting (3.98) into(3.87), we see that 1F (�) is then ontrolled by the initial ondition 1F �0 beause the ad-mixture from 8F �0 is suppressed, although only by 1=N . Whether 8F (�) is dominated by1F �0 or 8F �0 depends on whether the 1=N suppressed fator in the lower row of (3.98)or the exponential e�Lb2Ky is smaller. In either ase 8F (�) is parametrially smaller than1F (�). To whih extent the large-N limit gives a valid desription of the physis for N = 3depends on the relative size of Ky and Kd, as well as the relative size of 1F �0 and 8F �0 .This an only be deided by a more detailed analysis, whih we will not attempt here.There is, however, a region of phase spae where (3.96) holds beyond the large-N limit.From its de�nition (3.90) we see that Kd vanishes if z1 = z2 = 0. In the double-sattering
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proess one has jz1j � jz2j � 1=qT , so that the limit jz1j; jz2j � jyj is relevant in theregion where jyj is muh larger than 1=qT . Taylor expansion then givesKd = �s� 2CF � 2(yz1)(yz2)(y2)2 � z1z2y2 �+O� jzij4jyj4 � ;Ky = �s� 2CF log y2jz1j jz2j +O� jzij2y2 � : (3.100)This implies ����KdKy ���� � jz1j jz2jy2 � log y2jz1j jz2j��1 +O� jzij4jyj4 � (3.101)for the fator in the o�-diagonal elements of the matrix (3.98), whereas for the exponentialfator we �nde�Lb2Ky � � jz1j jz2jy2 �Np with p = �s� L = �s2� log jz1j jz2jx1x2 �2C1 ; (3.102)where we have hosen �0 as in (3.86). We thus �nd that the otet admixture in the �evolution of 1F (�) is power suppressed by jz1j jz2jÆy2, and that 8F (�) is power suppressedompared with 1F (�) by8Fa1;a2(xi;zi;y; �; �)1Fa1;a2(xi;zi;y; �; �) � 8F �0a1;a2(xi;zi;y;�)1F �0a1;a2(xi;zi;y;�) � jz1j jz2jy2 �min(1;Np) : (3.103)In straightforward generalization of single Drell-Yan prodution [48, 50℄, an adequate hoieof � in the ross setion for double hard sattering is x1x2�2 � Q2. Together with jz1j jz2j �1=q2T this gives p � (�s=�) log(Q=qT ). Again, a more quantitative piture an only beobtained by a detailed analysis.The preeding results all rely on the validity of perturbation theory for the soft CSkernel and thus require not only z1 and z2 but also y to be perturbatively small. Weannot draw any strit onlusions about the ase where z1 and z2 are small, whereas y isin the nonperturbative region. However, we observe that the power suppression parameterjz1j jz2jÆy2 beomes smaller rather than larger in this ase. One may thus speulate thatthe general features of our analysis, namely the autonomous � evolution of 1F and thesuppression of 8F will ontinue in the nonperturbative regime.We onlude this setion by noting that the CS equation and its solution for quark-antiquark distributions Fa1;�a2 is readily obtained from the previous results by replaingz2 ! �z2 and that orresponding replaements are to be made for F�a1;a2 and F�a1;�a2 .This follows from the orresponding property of the soft fator Sq�q disussed at the end ofsetion 3.3.2.Interferene distributions. The Collins-Soper equation for interferene distributions1Ia1;�a2 and 8I�a1;�a2 has the same form as (3.71) with F replaed by I. The appropriate kernelMI in the perturbative regime follows from SI in (3.57) and readsMI(z1;z2;y) = � Ky (Ky +Kd)(Ky +Kd) (1� 22)(Ky +Kd) + 2Kd! (3.104)
{ 80 {



with Kd and Ky given in (3.90). This matrix has eigenvaluesd 0� = 12 ��(1� 2)(2Ky +Kd)�p1 + 2q2 (2Ky +Kd)2 +K2d � (3.105)and exponentiates toeLMI = 1d 0+ � d 0�  d 0+eLd0� � d 0�eLd0+ �Kd�eLd0+ � eLd0���Kd �eLd0+ � eLd0�� d 0+eLd0+ � d 0�eLd0� !
� Ky (eLd0+ � eLd0�)d 0+ � d 0�  1  �1! (3.106)For jKdj � Ky, i.e. if jz1j; jz2j � jyj, we an Taylor expand the eigenvalues asd 0+ = �N � 2N � 1 Ky +O(Kd) ; d 0� = �N + 2N + 1 Ky +O(Kd) : (3.107)The result simpli�es if we use the orthogonal matrixU = 1p2N  pN � 1 �pN + 1pN + 1 pN � 1! (3.108)that implements the basis transformation from 1I; 8I to the ombinations �3I; 6I introduedin (2.117). We then haveU eLMI UT � exp��L N � 2N � 1 Ky� 0BB� 1 Kd4Ky �1� e�LKy=CF �Kd4Ky �1� e�LKy=CF � e�LKy=CF 1CCA :(3.109)Repeating the argument that led to (3.103) we obtain6I(xi;zi;y; �; �)�3I(xi;zi;y; �; �) � 6I�0(xi;zi;y;�)�3I�0(xi;zi;y;�) � jz1j jz2jy2 �min(1;2p) (3.110)with p given in (3.102). Likewise, omparing (3.109) with (3.98) we �nd�3I(xi;zi;y; �; �)1F (xi;zi;y; �; �) � �3I�0(xi;zi;y;�)1F �0(xi;zi;y;�) � jz1j jz2jy2 � (N+1)(N�2)N p : (3.111)For jz1j; jz2j � jyj the sextet ombination of I is hene suppressed ompared with theantitriplet one, whih in its turn is small ompared with the singlet ombination 1F .We �nally note that, in ontrast to the ase of F , the limit jKdj � Ky just disusseddoes not give the same result as the large-N limit. In the latter one �ndseLMI � e�LKy 0B� 1 � 1N �1 + KyKd� �1� e�LKy=CF �� 1N �1 + KyKd� �1� e�LKy=CF � e�LKy=CF 1CA(3.112)with relative orretions of order Ky=(NKd). This expansion is obviously not useful if onehas jKdj � Ky. More generally, the large-N limit for the � evolution of I will only beuseful in kinematial regions where Ky=(NKd) is small enough for N = 3.{ 81 {



3.5 Collinear fatorizationThe analysis in the previous setions was onerned with transverse-momentum dependent(TMD) fatorization, i.e. with ross setions di�erential in transverse momenta that aresmall ompared with the large sale. We now turn to ollinear fatorization, adequatefor ross setions with integrated transverse momenta. We point out the main hangesompared with TMD fatorization but do not work out the formalism in detail.As in previous setions, we �rst reapitulate the situation for single Drell-Yan produ-tion. The main hanges ompared with TMD fatorization are as follows.� We reall from setion 3.2.2 that, after a omplex ontour deformation that avoidsthe Glauber region, the e�et of soft gluon exhange is desribed by a soft fatorSq(z). Integration of the ross setion (3.35) over q sets z equal to zero in thisfator. Beause the anellation between real and virtual graphs gives Sq(0) = 1 asdisussed in setion 3.3.1, there is no net e�et of soft gluons in the qT integratedross setion.With the elementary soft fator Sq redued to unity, subtrations of soft-gluon on-tributions as disussed in setion 3.2.3 are not required, neither for the parton dis-tributions nor for the hard-sattering subproess.� Setting z = 0 in the quark and antiquark distributions f(x;z), whih is equivalentto integrating f(x;k) over k, gives rise to short distane singularities in addition tothose that are removed by de�ning the distributions with renormalized quarks �eldsand Wilson lines. The dependene on the ultraviolet subtration sale � is desribedby the well-known DGLAP evolution equations.The rapidity divergenes (from gluons with small `+ and large `�) that prevent usfrom taking lightlike Wilson lines in the de�nition of f(x;z) anel between real andvirtual orretions when z = 0 [116℄. Indeed, the relevant one-loop graphs are thosein �gure 27b and  (without the derivative ��=�yv), and the approximation disussedin setion 3.4 , whih onnets these graphs to the soft fator Sq(z), is valid for any`� as long as `+ is small.Collinear parton distributions an hene be de�ned with lightlike Wilson lines anddo not depend on a parameter �. Correspondingly, the qT integrated ross setionis free of Sudakov logarithms. In the operator de�nition of f(x; �), the Wilson linesin �q(�12z)W y(�12z; v) and W (12z; v)q(12z) merge to a single Wilson line W [�12z; 12z℄,given by W [�0; �℄ = P exp�ig Z 10 d�A+a�� � �(� � �0)� ta� : (3.113)The setions of the paths that go to in�nity in W y(�12z; v) and W (12z; v) have an-elled, and a path of �nite length between �12z and 12z remains.� The hard-sattering subproess now reeives radiative orretions not only from vir-tual graphs but also from real ones, sine emission of partons with large transverse{ 82 {



momenta in the �nal state is permitted one we do not �x the transverse momentumqT of the Drell-Yan photon. As already mentioned, a subtration for the soft-gluonregion is not required in this ase, in ontrast to the situation for TMD fatorizationdisussed in setion 3.2.3. Subtrations are however needed for the regions wheremomenta are ollinear to one of the partons entering the hard subproess. Thesesubtrations must be performed in a way that mathes the ultraviolet subtrationsin the parton densities. In partiular, the � dependene due to ollinear subtra-tions in the hard subproess has to anel against the � dependene of the partondistributions in the ross setion.Let us now investigate the situation for double Drell-Yan prodution, limiting our-selves to a one-loop analysis as we have done throughout the preeding setions. A keyto understanding the role of soft gluons is to set zi = 0 in Sqq(zi;y), whih results fromintegrating the ross setion (3.33) over qi. Our disussion in setion 3.3.1 implies thatSb(0; �) = �Ub(0; �)�ren = ��Ua(�)�ren = �Sa(�) for the graphs in �gure 23. Togetherwith the relation S(z) = Sb(z), this turns our general one-loop result (3.52) into11Sqq � 1 = 18Sqq = 81Sqq = 0 ; 88Sqq � 1 = 2(1 + 2)S(y; �) (3.114)at z1 = z2 = 0. The one-loop ontributions to 11Sqq anel between the vertex orretions25a and the real graphs 25b1, in full analogy with the ase of Sq disussed above. In 18Sqqand 81Sqq we have a anellation between the real graphs 25b2 and the virtual graphs 25.We see from (3.114) that in the qT integrated ross setion for double Drell-Yan produ-tion the ontributions from olor singlet and olor otet distributions deouple from eahother, and that they have a di�erent behavior onerning soft gluon exhange. In the termwith olor singlet distributions 1F we have a anellation of soft gluon e�ets, in full anal-ogy to single Drell-Yan prodution. Also, the graphs for the hard-sattering subproess areexatly as in the single Drell-Yan proess, with a anellation of the soft-gluon region butwith neessary subtrations for the regions of ollinear parton momenta. From our abovedisussion it follows that ollinear two-parton distributions 1F an be de�ned with the sameoperators as their single-parton analogs, with lightlike Wilson linesW [y� 12z1; y+ 12z1℄ andW [�12z2; 12z2℄ between quark and antiquark �elds, and that their ontribution to the qT in-tegrated ross setion is free of Sudakov logarithms. Like their single-parton ounterparts,the distributions have ultraviolet divergenes; the sale dependene that follows from theirsubtration will be disussed in setion 5.3.2.The ontribution of ollinear olor-otet distributions 8F is quite di�erent. Beausereal and virtual graphs have di�erent olor fators, soft gluon e�ets do not anel betweenthem, and their net e�et is desribed by 88Sqq(y). As a onsequene, the di�erent fators inthe ross setion formula require soft subtrations, as they do in the ase of measured trans-verse momenta. Sine the olor indies of [�q(�12z2)W y(�12z2; v)℄k0 and [W (12z2; v)q(12z2)℄kare not ontrated, the two Wilson lines do not merge into a single one of �nite length, andthe same holds for their analogs with arguments y � 12z1 and y + 12z1. The vetor v in theWilson lines annot be taken lightlike, so that ollinear otet distributions will depend on aparameter �. The resulting Collins-Soper equation gives rise to Sudakov logarithms, whih{ 83 {



suppress the olor otet ontribution to the qT integrated ross setion. This importantresult was already obtained in [121℄, based on the observation that in the hard-satteringsubproesses there is no anellation of the soft-gluon region. An adequate sale �0 forthe initial ondition of the CS equation will in this ase be a hadroni sale, inverse to thetypial distane jyj between the two sattering partons.Let us �nally take a look at the interferene distributions Ia1;�a2 . From (3.56) we �nda soft fator SI =  1 00 1!+ 2S(y; �) 1  1� 22! (3.115)at z1 = z2 = 0. There is hene no anellation of soft-gluon e�ets, so that a formulation ofollinear fatorization will in this ase be similar to the one for the olor otet distributions8F just disussed, with the additional ompliation of mixing between the olor singlet andotet hannels.4 Some properties of two-quark and quark-antiquark distributions4.1 Spin strutureMultiparton distributions have a nontrivial spin struture beause the polarizations ofdi�erent partons an be orrelated among themselves, even in an unpolarized proton. Inthe following two setions we �rst investigate some general properties of spin orrelationsbetween two quarks and then show that they have observable onsequenes in multiplesattering ross setions. We will enounter several examples for parton spin orrelationsin setion 5.2.2.4.1.1 Spin deompositionLet us �rst take a loser look at the spin dependene of the two-quark distributions Fa1;a2introdued in (2.86), making use of rotation and parity invariane. We always assume thatthe hadron is unpolarized, i.e. that the matrix element (2.86) is averaged over the hadronspin. The simplest ases are the distributionsFq;q(xi;ki;y) = fq;q(x1; x2;k21;k22;k1k2;k1y;k2y;y2) ;F�q;�q(xi;ki;y) = f�q;�q(x1; x2;k21;k22;k1k2;k1y;k2y;y2) ; (4.1)whih are parity even, i.e. salar funtions. By ontrast, the distributions Fq;�q and F�q;qare parity odd, i.e. pseudosalar funtions. Their general form isFq;�q(xi;ki;y) = �jj0kj1yj0 f 1q;�q + �jj0kj2yj0 f 2q;�q + �jj0kj1kj02 f 3q;�q ;F�q;q(xi;ki;y) = �jj0kj1yj0 f 1�q;q + �jj0kj2yj0 f 2�q;q + �jj0kj1kj02 f 3�q;q ; (4.2)where f1, f2 and f3 are salar funtions with the same arguments as in (4.1). The salarfuntions are in general neither even nor odd in ki or y sine their dependene on k1y, k2yand k1k2 is not onstrained by symmetry. Note that the three two-dimensional vetors{ 84 {



y, k1 and k2 are linearly dependent, so that the three ross produts in (4.2) are linearlydependent as well. Expressing e.g. y as a linear ombination of k1 and k2 one obtains�jj0kj1yj0 = � k21 (k2y)� (k1k2)(k1y)k21k22 � (k1k2)2 �jj0kj1kj02 ;�jj0kj2yj0 = k22 (k1y)� (k1k2)(k2y)k21k22 � (k1k2)2 �jj0kj1kj02 (4.3)and an thus write Fq;�q as �jj0kj1kj02 times a single salar funtion. However, that salarfuntion is singular when k1 and k2 beome ollinear, as is evident from the denominatorsin (4.3). To avoid suh arti�ial singularities, one an use (4.2) if it is neessary to makethe appearane of �jj0 expliit.Using that 12(1� 5) projets on quarks with de�nite heliity, one an readily identifythe ombinations of quark polarizations that are desribed by the above funtions. In ashemati notation one has Fq;q $ q+1 q+2 + q�1 q�2 + q+1 q�2 + q�1 q+2 ;F�q;�q $ q+1 q+2 + q�1 q�2 � q+1 q�2 � q�1 q+2 ;Fq;�q $ q+1 q+2 � q�1 q�2 � q+1 q�2 + q�1 q+2 ;F�q;q $ q+1 q+2 � q�1 q�2 + q+1 q�2 � q�1 q+2 ; (4.4)where the supersript in q� denotes the quark heliity. The distribution F�q;�q thusdesribes the degree to whih the two quark heliities are aligned rather than antialigned,whereas Fq;�q and F�q;q desribe the orrelation between the heliity of one of the quarksand one of the ross produts in (4.2).To illustrate that spin orrelations between two partons need not be small, let usonsider the simple ase of a SU(6) symmetri three-quark wave funtion of the proton.Its spin-avor part reads1p6 �ju+u�d+i+ ju�u+d+i � 2ju+u+d�i� ; (4.5)where + and � respetively indiate that the quark spin is aligned and antialigned withthe proton spin. As is well known, this wave funtion gives �u=u = 2=3 and �d=d = �1=3for the longitudinal polarization of u and d quarks, whih reprodues at least the trend ofwhat is empirially found for the lowest x moments of the polarized quark densities. Fortwo-quark distributions one �ndsF�u;�u=Fu;u = 1=3 ; F�u;�d=Fu;d = �2=3 (4.6)and thus an appreiable orrelation between the longitudinal polarizations of the quarks.Of ourse, the study of a three-quark wave funtion tells us little about partons withx � 10�2 or smaller, whih are of partiular relevane for LHC phenomenology. To theextent that they are known, polarized single-parton densities in this x range are smallompared with their unpolarized ounterparts, whih means that there is only a weakspin orrelation between a small-x quark and the proton as a whole. This is not too{ 85 {



surprising, given that a small-x quark and the proton are far apart in phase spae. Itdoes however not imply small spin orrelations between two quarks that have small butomparable momentum frations x1 � x2 and are thus loser in phase spae. How largesuh orrelations are is an important open question.The distributions de�ned with one or two tensor operators OjÆq are assoiated withtransverse quark polarization, sine 12(++ sji�j+5) projets on quarks with a transversespin vetor sj. We now disuss their parametrization in terms of salar or pseudosalarfuntions. Let us begin with F j�q;Æq and F jÆq;�q, whih transform like two-dimensionalvetors. They an hene be written as a sum of three salar funtions that are respetivelymultiplied by yj , kj1 and kj2. Only two of these funtions are independent beause of thelinear dependene of the three vetors. A minimal parametrization is obtained by takingyj and ~yj = �jj0yj0 (4.7)as basis vetors. This givesF j�q;Æq(xi;ki;y) = yjMf�q;Æq + ~yjMg�q;Æq ;F jÆq;�q(xi;ki;y) = yjMfÆq;�q + ~yjMgÆq;�q ; (4.8)where we have inserted the proton mass M on the r.h.s. so that f and g have the samemass dimension as F . Here and in the following we denote salar funtions by f andpseudosalar ones by g. The latter an be represented in the same way as Fq;�q. If onewants to avoid pseudosalar funtions, one an replae the basis vetor ~yj bykjy = (k1 + k2)j � (k1 + k2)yy2 yj : (4.9)Sine both ~y and ky are orthogonal to y, they must be proportional to eah other, andexpliitly one �nds ~yj = y2 �ll0(k1 + k2)ly l0y2 (k1 + k2)2 � [(k1 + k2)y ℄2 kjy : (4.10)If one inserts this into (4.8) then kjy is multiplied by salar funtions, whih are howeversingular when k1 + k2 and y beome ollinear. One ould replae k1 + k2 in (4.9) byanother linear ombination of k1 and k2, but this would only move the singularities to adi�erent part of phase spae.The distributions F jq;Æq and F jÆq;q transform like axial vetors, so that one hasF jq;Æq(xi;ki;y) = ~yjMfq;Æq + yjMgq;Æq ;F jÆq;q(xi;ki;y) = ~yjMfÆq;q + yjMgÆq;q : (4.11)A deomposition in terms of salar funtions an be obtained by replaing yj with �jj0kjy.The tensor distribution F jj0Æq;Æq an �nally be written asF jj0Æq;Æq(xi;ki;y) = Æjj0fÆq;Æq + �2yjyj0 � Æjj0y2�M2f tÆq;Æq+ �yj~yj0 + ~yjyj0�M2gsÆq;Æq + �yj~yj0 � ~yjyj0�M2gaÆq;Æq : (4.12)
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Notie that the four basis tensors tjj0p in this deomposition are orthogonal to eah other,i.e. tjj0p tjj0q / Æpq with p; q = 1; 2; 3; 4. Contrating (4.12) with the transverse polarizationvetors sj1sj02 of the quarks, we see in partiular that fÆq;Æq goes with s1s2 and thus desribesthe orrelation between the two transverse quark spins.In summary, we an represent the spin struture of Fa1;a2(xi;ki;y) by eight salarand eight pseudosalar funtions for eah ombination of quark avors. The pseudosalarfuntions an be traded for salar ones, whih have however arti�ial singularities forpartiular values of the vetors y, k1 and k2.If one integrates over transverse momenta to obtain ollinear distributions, one �ndsF�q;q(xi;y) = Fq;�q(xi;y) = 0 (4.13)beause one annot onstrut a pseudosalar funtion with only one vetor y. Likewise,the funtions g in (4.8), (4.11) and (4.12) integrate to zero, so that we are left withFq;q(xi;y) = fq;q ; F�q;�q(xi;y) = f�q;�q ;F jq;Æq(xi;y) = ~yjMfq;Æq ; F j�q;Æq(xi;y) = yjMf�q;Æq ;F jÆq;q(xi;y) = ~yjMfÆq;q ; F jÆq;�q(xi;y) = yjMfÆq;�q ;F jj0Æq;Æq(xi;y) = Æjj0fÆq;Æq + �2yjyj0 � Æjj0y2�M2f tÆq;Æq : (4.14)The eight funtions f on the right-hand side now depend on x1, x2 and y2 and are obtainedfrom their ounterparts in (4.1), (4.8), (4.11) and (4.12) by integration over k1 and k2.The above deompositions are given for distributions in a right-moving proton. For aleft-moving proton one has to hange the sign of �jj0 and hene of ~y and of all pseudosalarfuntions, see our remark below (2.100). Analogous deompositions an be written downfor distributions Fa1;�a2 , F�a1 ;a2 , F�a1;�a2 that involve antiquarks, as well as for interferenedistributions Ia1; �a2 and I�a1;a2 .Symmetry properties The terms appearing in the deompositions (4.1) to (4.14) areonsistent with rotation and parity invariane. Let us now disuss their symmetry proper-ties. Using that the operators in (2.80) satisfy O�a(yi; zi) = Oa(yi;�zi) one �nds that thedistributions Fa1;a2(xi;ki;y) are real valued,F �a1;a2(xi;ki;y) = Fa1;a2(xi;ki;y) : (4.15)For distributions that are purely de�ned in momentum or position spae, see (2.9) and(2.12), this implies F �a1 ;a2(xi;ki; ri) = Fa1;a2(xi;ki;�ri) ;F �a1;a2(xi;zi;y) = Fa1;a2(xi;�zi;y) : (4.16)These funtions are in general not real-valued, nor are the salar or pseudosalar funtionsone an introdue to parameterize them in analogy to (4.1) to (4.12).For the symmetry properties of parton distributions with respet to time reversal, theWilson lines appearing in their de�nition are essential. As we argued in setion 3.2.1,{ 87 {



multiparton distributions involve the past pointing Wilson lines W given in (3.13). Upontime reversal these turn into the future pointing Wilson linesW 0 in (3.17). A distribution isalled T even (odd) if it is even (odd) under time reversal without taking into aount thishange of Wilson lines. The time reversal invariane of strong interations thus implies thatT odd distributions are only nonzero thanks to Wilson line e�ets; a prominent examplefrom spin physis is the Sivers distribution funtion [122℄. However, time reversal doesfore distributions to vanish if they are T odd and have Wilson lines that are invariantunder time reversal. This is the ase for the Wilson lines along a �nite lightlike path thatappear in ollinear single-parton densities and in the ollinear two-parton distributions 1Fin the olor singlet setor, as we disussed in setion 3.5. By ontrast, ollinear olor otetdistributions 8F , as well as interferene distributions 1I and 8I, have Wilson lines that dohange under time reversal.After these preliminaries we an now investigate the time reversal properties of two-quark distributions. We �ndFWa1;a2(xi;ki;y) = �a1�a2 FW 0a1;a2(xi;ki;�y) (4.17)with sign fators �q = +1 and ��q = �Æq = �1, where the supersripts indiate the type ofWilson line in the matrix element de�ning the distributions. The relations (4.15) to (4.17)also hold for the distributions Fa1 ;�a2 , F�a1;a2 , F�a1;�a2 with antiquarks and for the interferenedistributions Ia1; �a2 , I�a1;a2 .Sine the salar funtions parameterizing FWa1;a2(xi;ki;y) are in general neither evennor odd in y, they are not T even or odd either. The salar funtions that parameterizethe ollinear distributions in (4.14) are however even in y. As a onsequene, F j�q;Æq(xi;y)and F jÆq;�q(xi;y) are T odd and all other distributions in (4.14) are T even. For the olorsinglet setor this implies 1F j�q;Æq(xi;y) = 1F jÆq;�q(xi;y) = 0 ; (4.18)whereas the orresponding olor-otet distributions 8F j�q;Æq(xi;y) and 8F jÆq;�q(xi;y) anbe nonzero due to the Wilson lines appearing in their de�nitions. Analogous statementshold for the orresponding distributions with one or two antiquarks. Collinear interferenedistributions 1I and 8I are not restrited by time reversal invariane.4.1.2 Spin e�ets in gauge boson pair produtionIn this setion we show that the quark spin orrelations disussed in the previous setionhave observable onsequenes in multiparton interations. As we did earlier in this paper,we onsider the prodution of a pair of gauge bosons , Z or W . We inlude the deayof eah boson into a lepton pair, whih arries information on the spin state of the gaugeboson. While these proesses have a rather small ross setion, they may be suited forexperimental studies due to their lean �nal-state signature. We do not present a fullanalysis here, but highlight the e�ets of seleted parton spin orrelations.For simpliity we limit our attention to those distributions that do not involve expliitvetors y or ~y on the r.h.s. of the deompositions in the previous setion, i.e. to Fq;q, F�q;�q{ 88 {



and the term Æjj0fÆq;Æq in F jj0Æq;Æq. For de�niteness we analyze the graph of �gure 6a, withtwo quarks emitted from the right-moving proton and two antiquarks from the left-movingone. We approximate the transverse momenta qi of the bosons by zero when alulatingtheir prodution and deay, as deviations from this limit are suppressed by powers of qT =Q.The partoni ross setion for the prodution of a lepton pair an be written as the produtof a prodution tensor of the boson and a tensor for its deay,�̂a;�a = (�̂a;�a)��0 D��0 ; (4.19)where � is assoiated with the boson in the amplitude and �0 with the one in the omplexonjugate amplitude. For unpolarized or longitudinally polarized quarks one easily �nds(�̂q;�q)��0 = �(�̂�q;��q)��0 = �Ag��0? �Bi���0? ;(�̂�q;�q)��0 = �(�̂q;��q)��0 = �Bg��0? �Ai���0? ; (4.20)with oeÆients A and B depending on kinemati variables and the vetor and axial-vetor ouplings of the gauge boson to the quark q. In the ase of a photon one hasB = 0. The transverse tensors g��0? and ���0? have as nonzero omponents g11? = g22? = �1and �12? = ��21? = 1. From (4.20) it follows that the overall ross setion depends on theombinationsFq;q F�q;�q + F�q;�q F��q;��q and Fq;q F��q;��q + F�q;�q F�q;�q (4.21)of multiparton distributions. The ontration of g��0? and ���0? with the vetor boson deaymatries results in di�erent angular distributions of the leptons. If one integrates over theirangles then only the ontribution from g��0? remains. We thus �nd that nonzero values ofF�q;�q and F��q;��q modify both the total rate and the lepton angular distribution omparedwith the ontribution from the unpolarized term Fq;q F�q;�q.We now turn to transverse quark polarization. In this ase the prodution tensorfrom eah hard sattering depends also on the transverse indies assoiated with the quarkpolarization. We reall that the quark �eld bilinears �qi�+j5q are hiral odd, so that inthe heliity basis they orrespond to quarks or antiquarks with opposite heliities in thesattering amplitude and its onjugate. As a result transverse quark polarization doesnot ontribute to the prodution of a W boson. Keeping only the term Æjj0fÆq;Æq in thedeomposition (4.12) of F jj0Æq;Æq and the orresponding term in the deomposition of F kk0Æ�q;Æ�q,one �nds for the neutral bosons  or ZÆjj0Ækk0 (�̂jk1;Æq;Æ�q���0 (�̂j0k02;Æq;Æ�q���0 / g��? g�0�0? + g��0? g�0�? � g��0? g��0? ; (4.22)where the polarization indies �; �0 belong to the boson with momentum q1 and the indies�; � 0 to the boson with momentum q2. We observe that the polarization indies of the twobosons are entangled in (4.22). Contrating with the well-known boson deay matries,one obtains an azimuthal dependene like os(2'), where ' is the relative azimuthal anglebetween the two leptons (as opposed to the antileptons).13 We thus obtain the important13Sine we are working in the approximation q1 = q2 = 0, the azimuthal angles for the leptons of bothboson deays are naturally de�ned w.r.t. the z axis in the pp enter-of-mass.{ 89 {
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Figure 28. Parton-level graphs for q�q annihilation into four leptons. Further graphs are obtainedby interhanging the leptons `1 and `2 together with the orresponding antileptons in a and , andby reversing the harge ow of the entral fermion line in . Graph b requires at least one of theprodued bosons to be a W .result that a orrelation between transverse quark and antiquark spins, as expressed bythe distribution fÆq;Æq in (4.12), leads to a orrelation between the deay planes of the twoprodued bosons.It is instrutive to rewrite the prodution tensors in terms of boson polarization vetors�+ = �(0; 1; i; 0)=p2 and �� = (0; 1;�i; 0)=p2, whih respetively orrespond to angularmomentum +1 or �1 along the z axis. One �nds�g��0? = ��+ ���0+ + ��� ���0� ; �i���0? = ��+ ���0+ � ��� ���0� (4.23)and 12�g��? g�0�0? + g��0? g�0�? � g��0? g��0? � = ��+ ���0� ��� ���0+ + ��� ���0+ ��+ ���0� : (4.24)We an easily understand why eah boson is transversely polarized. Reall that a masslessquark and antiquark an only annihilate into a vetor boson if their heliities are oupledto �1. Sine we neglet the transverse momentum of the bosons, their angular momentumalong z must also be �1. The tensors g��0? and i���0? in (4.23) orrespond to the sameboson polarization in amplitude and onjugate amplitude and thus do not give rise to anazimuthal dependene in the leptoni deays, but they do give di�erent distributions in thepolar angles of the leptons, or equivalently in their rapidities. By ontrast, (4.24) involvesthe interferene between Jz = 1 and �1 for eah of the bosons, whih readily translatesinto the os(2') dependene already mentioned.It is natural to expet that spin orrelations between partons also lead to angularorrelations in the �nal state for other double-sattering proesses, suh as the produtionof two dijets. In this ase two-parton distributions involving linear gluon polarization anontribute as well. We note that in the analysis of [9℄ unorrelated dijet planes were takenas a harateristi feature of the double-sattering mehanism. This is only adequate ifparton spin orrelations in the proton are negligible.Returning to four-lepton prodution, let us ompare our results for double hard sat-tering with the ontribution from a single q�q annihilation, remaining in kinematis whereq1 and q2 an be negleted ompared with Q. The orresponding Feynman graphs involveeither quark exhange in the t or u hannel, or an intermediate boson in the s hannelin ase one or both �nal-state bosons are harged, see �gure 28a and b. In addition, the{ 90 {



four-lepton �nal state an be produed by graphs as in �gure 28, where only one leptonpair omes from the deay of a vetor boson. Suh graphs were reently disussed andtermed \single-resonane graphs" in [13℄. They should be taken into aount unless eahlepton pair has an invariant mass inside the Z or W mass peaks.The dependene of the single-sattering ross setion on the azimuthal angle ' betweenthe leptons an be dedued from symmetry arguments sine we set q1 and q2 to zero in theparton-level proess. Let us assume that the initial q�q pair has total angular momentumJz = 1 along the z axis. This must then hold for both the sattering amplitude and itsonjugate, sine a single quark or antiquark in an unpolarized proton is unpolarized. Oneof the lepton pairs originates from the deay of a gauge boson and is thus in a partialwave with J = 1. The possible ombinations of (Jz1 ; Jz2 ) for the two lepton pairs are thus(2;�1), (1; 0), (0; 1) and (�1; 2), where the �rst and last possibilities are only possiblefor single-resonane graphs. In the ross setion this gives a ' independent term and amodulation with os' from all graphs, as well as modulations with os(2') and os(3')from single-resonane graphs. The same angular terms are obtained when the initial q�qpair has Jz = �1, whereas the on�guration where the pair has Jz = 0 deouples inthe hard-sattering graphs of �gure 28. In summary, the os(2') modulation we found inthe double-sattering mehanism ompetes with single-sattering ontributions involvingsingle-resonane graphs.14 One may hope that the two soures of os(2') dependenean be separated by a more detailed analysis | making for instane use of the fat thatthe single-resonane graphs also give a os(3') term | but this issue must be left to adediated study.4.2 Mellin moments and lattie alulationsIf one takes Mellin moments in x1 and x2 of the olor singlet distributions 1F , then thelight-one operators Oa in their de�nition turn into loal operators. The orrespondingmoments of single-parton densities an be alulated in lattie QCD, and we will nowinvestigate to whih extent the same an be done for two-parton distributions. From ourdisussion in setion 3.5 it follows that the Mellin moments of olor otet distributions 8Fdo not involve loal operators beause of their Wilson line struture. We therefore limitourselves to the olor singlet setor.Using the relation (2.88) and its analogs for Fa1;�a2 and F�a1;�a2 , one obtains doubleMellin momentsMn1;n2a1;a2 (y2) = Z 10 dx1 xn1�11 Z 10 dx2 xn2�12 h1Fa1;a2(x1; x2;y) + (�1)n1 �a11F�a1;a2(x1; x2;y)+ (�1)n2 �a21Fa1;�a2(x1; x2;y) + (�1)n1+n2 �a1�a21F�a1;�a2(x1; x2;y)i= 2(p+)1�n1�n2 Z dy�
p��O+���+a1 (0)O+���+a2 (y)��p�y+=0 (4.25)with �q = �Æq = +1 and ��q = �1. For eah label Æq the moments Mn1;n2a1;a2 and the orre-sponding operator on the r.h.s. arry an additional transverse Lorentz index not displayed14This was not realized in [47℄, where single-resonane graphs were not taken into aount.
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in (4.25). On the r.h.s. we have the twist-two quark operators familiar from the operatorprodut expansion,O�1����nq (y) = T(�1����n) S(�1����n) �q(y)�1 iD$�2(y) � � � iD$�n(y) q(y) ;O�1����n�q (y) = T(�1����n) S(�1����n) �q(y)�15 iD$�2(y) � � � iD$�n(y) q(y) ;O��1����nÆq (y) = T(��1����n) A(��1) S(�1����n) �q(y)i���15 iD$�2(y) � � � iD$�n(y) q(y) ; (4.26)where D$�(y) = 12(�!� � � �) + igA�(y) is the antisymmetrized ovariant derivative. S, Aand T respetively denotes symmetrization, antisymmetrization and subtration of traesin the indiated indies. It is understood that the omposite operators Oa1(y) and Oa2(0)in (4.25) are eah renormalized in a standard manner, e.g. in the MS sheme. As long asthey are taken at a �nite spaelike distane y, no further ultraviolet divergenes appear.The operators Oq and O�q mix of ourse with their gluon ounterparts Og and O�gunder renormalization. We shall return to the renormalization of ollinear multipartondistributions in setion 5.3.2.Let us rewrite the r.h.s. of (4.25) in a manifestly ovariant form. We �rst introduethe ovariant deomposition
p��O�1����n2q (0)O�1 ����n1q (y)��p� = 2p�1 � � � p�n2 p�1 � � � p�n1 hOn2q On1q i(py; y2) + � � � ; (4.27)where the ellipsis represents terms with unontrated vetors y� and terms involving themetri tensor g�� . The redued matrix element hOn2q On1q i an only depend on the invariantspy and y2. We then hoose a frame where p = 0 and y+ = 0, so that py = p+y� andy2 = �y2. This allows us to write (4.25) in the desired formMn1;n2q;q (�y2) = Z d(py) hOn2q On1q i(py; y2) : (4.28)A orresponding representation is readily obtained forMn1;n2�q;�q. For one or two polarizationlabels Æq the analogs of (4.27) involve the tensor strutures in the deomposition (4.14) ofthe two-quark distributions.The matrix element in (4.27) and its ounterparts with polarized quarks an be eval-uated on a lattie in Eulidean spaetime if one hooses y0 = 0. This is rather similarto lattie studies of transverse-momentum dependent single-quark distributions [123, 124℄,with the main di�erene that the operators taken at di�erent spaetime points are singlequark �elds in that ase, whereas they are gauge invariant bilinear operators here. Therestrition y0 = 0 entails (py)2�y2 = (~p~y)2~y2 � ~p2 ; (4.29)where ~p and ~y denote the spaelike three-vetors. Thus, the integral over all py at �xedy2 on the r.h.s. of (4.28) an unfortunately not be evaluated from results on a disreteEulidean lattie, where the maximal momentum is �xed by the lattie spaing. This is{ 92 {



ompletely analogous to the single-quark ase, as disussed in [124℄. Despite this limita-tion of priniple, we hope that lattie data in a ertain range of py and y2 will in thefuture provide genuinely nonperturbative information about the behavior of multi-partondistributions.We note that a lattie alulation has been reported in [125℄ for the orrelation funtionof two vetor urrents at equal time in a proton at rest. This orresponds to settingn1 = n2 = 1 and py = 0 in (4.27). The redued matrix element hOn2a2 On1a1 i at py = 0 isdiretly related to an integral of the two-quark orrelation funtion �(k1; k2; r) de�ned in(2.75). The relative plus-momentum r+ is integrated over in that ase, rather than being setto zero as required for the distributions F (xi;ki; r) that appear in double hard-satteringross setions.4.3 Relation with generalized parton distributionsIn setion 2.1.5 we derived an approximate relation between multi- and single-parton distri-butions in a model theory with salar partons. We now extend this relation to distributionsfor two quarks or antiquarks, taking into aount the di�erent ombinations of fermionnumber and olor. For the time being we neglet aspets related to the proton spin, whihwill be disussed in setion 4.3.1. The distributions we will deal with are1Fa1;a2 = 

(�q3�a2 q2) (�q4�a1 q1)�� ; 1~Fa1;a2 = 

(�q4�a2 q2) (�q3�a1 q1)�� ;1Fa1;�a2 = 

(�q2��a2 q3) (�q4�a1 q1)�� ; 1~Fa1;�a2 = 

(�q4��a2 q3) (�q2�a1 q1)�� ;1Ia1;�a2 = 

(�q2��a2 q4) (�q3�a1 q1)�� ; 1~Ia1;�a2 = 

(�q3��a2 q4) (�q2�a1 q1)�� : (4.30)The general result (2.69) for n salar partons readily arries over to the two-quarkdistributions 1F :1Fa1;a2(xi;zi;y) � Z d2b fa2�x2;z2; b+ 12x1z1� fa1�x1;z1; b+ y � 12x2z2� ; (4.31)where the impat parameter dependent single-quark distributions fa(x;z; b) are de�ned inanalogy to the salar ase in (2.64) and (2.65). Setting z1 = z2 = 0 in (4.31), one obtainsollinear distributions on both sides and has the probability interpretation represented in�gure 4. As a ounterpart to (2.72) one an transform the relation (4.31) into transverse-momentum spae, where it reads1Fa1;a2(xi;ki; r) � fa2�x2;k2 � 12x2r;�r� fa1�x1;k1 � 12x1r; r� (4.32)with distributions fa(x;k;�) de�ned in analogy to (2.66). Integrating over ki we obtainthe relation reently given in [59℄. Relations analogous to (4.31) and (4.32) are obtainedfor 1Fa1;�a2 by replaing the label a2 with �a2 on both sides.To redue 1~F to single-partile distributions we ould repeat our earlier derivation thatstarted with (2.59). We �nd it more onvenient to work in the transverse-momentum ratherthan impat parameter representation. We insert a omplete set jXi of intermediate states
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between the olor singlet operators (�q4�a2 q2) and (�q3�a1 q1) and assume that single-protonintermediate states dominate. We then have1~Fa1;a2(xi;ki; r) =XX 2p+Z dy�d2y eiyr � 2Yi=1 Z dz�i d2zi(2�)3 eixiz�i p+�iziki�� 
p+;p ��Oa2(y; z2) ��X� 
X ��Oa1(y; z1) �� p+;p� ���p=0� Z dp0+ d2p02p0+ (2�)3 2p+Z dy�d2y eiyr � 2Yi=1 Z dz�i d2zi(2�)3 eixiz�i p+�iziki�� 
p+;p ��Oa2(y; z2) �� p0+;p0� 
p0+;p0 ��Oa1(y; z1) �� p+;p� ���p=0 : (4.33)After an appropriate shift of the position arguments in the bilinear �eld operators and ahange of integration variables from y; z1; z2 to u0 = 12 (z1 � z2), u1 = 12 (z1 + z2) + y andu2 = 12(z1 + z2)� y this gives1~Fa1;a2(xi;ki; r) � p+p0+ Z dp0+ d2p0 � 2Yi=0 Z du�i d2ui(2�)3 � eiu�0 (p0�[1�x1+x2℄ p)+�iu0 (p0�k1+k2)� ei(u�1 +u�2 )(x1+x2)p+=2�iu1(k1+k2�r)=2�iu2(k1+k2+r)=2� 
p+;p ��Oa2(0; u2) �� p0+;p0� 
p0+;p0 ��Oa1(0; u1) �� p+;p� ���p=0 : (4.34)The integrations over u�0 and u0 �x the momentum p0 of the intermediate state. In parti-ular, its plus-momentum is p0+ = (1�x1+x2)p+, whih reets that the operator �q3�a1 q1desribes the emission of a quark with plus-momentum x1p+ and the reabsorption of aquark with plus-momentum x2p+. The matrix elements in the approximation (4.34) arethus given by generalized parton distributions (GPDs), whih play a prominent role in thedesription of hard exlusive proesses, see [126{128℄ and the reviews [129{131℄. To evalu-ate the unapproximated form in (4.33) one would need the orresponding matrix elementsfor all transitions p! X. This is obviously impratial, although for seleted transitions tosingle baryons, e.g. for p! �(1232), some information an be obtained [129, 131℄. GPDsare de�ned byfa(x; �;k;p;p0) = Z dz�2� eixz�P+ Z d2z(2�)2 e�ikP 
p0+;p0 ��Oa(0; z) �� p+;p� ; (4.35)where P = 12(p+ p0) and �a is one of the matries in (2.81). The parameter� = p+ � p0+p+ + p0+ (4.36)is often alled skewness. One �nds that k is the average transverse momentum of the twoquark legs and x their average plus-momentum divided by the average plus-momentum P+of the proton states. For ease of notation we do not indiate the polarization states of theprotons, whih are in general di�erent. A parameterization of the matrix elements (4.35){ 94 {



for spin 1=2 hadrons in terms of salar funtions an be found in [132℄. Invariane underthe transverse boost spei�ed by v ! v� (v+=P+)P gives the relation fa(x; �;k;p;p0) =fa(x; �;k � xP ;�12�; 12�) with � = (1 + �)p0 � (1� �)p. Abbreviatingfa(x; �;k;�) = fa(x; �;k;�12�; 12�) (4.37)we an thus rewrite the relation (4.34) as1~Fa1;a2(xi;ki;y) � 1 + �1� � fa2�x;��; 12(k+ + r + xk�); (1 + �)k��� fa1�x; �; 12(k+ � r + xk�);�(1 + �)k�� ; (4.38)where k� = k1 � k2 andx = x1 + x22� x1 + x2 ; � = x1 � x22� x1 + x2 : (4.39)In omplete analogy one derives1Ia1;�a2(xi;ki; r) � 1 + �1� � f�a2�x;��; 12(k+ + r + xk�); (1 + �)k��� fa1�x; �; 12(k+ � r + xk�);�(1 + �)k�� ; (4.40)where the generalized parton distributions f�a for antiquarks are de�ned by replaingOa(0; z) with O�a(0; z) in (4.35). One �ndsf�a(x; �;k;�) = �a fa(�x; �;�k;�) (4.41)with the same sign fators �q = �Æq = +1 and ��q = �1 that appeared in (2.88). We alsonote that generalized parton distributions with positive and negative skewness parameterare easily related to eah other by taking the omplex onjugate of (4.35).For the distributions 1~Fa1;�a2 and 1~Ia1;�a2 we obtain1~Fa1;�a2(xi;ki; r) � 1 + �1� � f�a2��x;��;�12(k� + r + xk+); (1 + �)k+�� fa1�x; �; 12(k� � r + xk+);�(1 + �)k+�1~Ia1;�a2(xi;ki; r) � 1 + �1� � f�a2�x;��; 12(k� + r + xk+); (1 + �)k+�� fa1�x; �; 12(k� � r + xk+);�(1 + �)k+� ; (4.42)where we have again k� = k1 � k2 but nowx = x1 � x22� x1 � x2 ; � = x1 + x22� x1 � x2 : (4.43)In this ase we have jxj � �, whih desribes the emission of a quark-antiquark pair. Again,this ould be antiipated from �gure 5 sine now the parton lines ombined to olor singlets{ 95 {



are f12g and f34g, with eah pair being on the same side of the �nal-state ut in the doubleparton distribution.An important di�erene between the approximations for 1~F , 1I, 1~I and the one for 1Fgiven in (4.31) is that the generalized distributions on the r.h.s. of (4.38), (4.40) and (4.42)do not redue to ollinear funtions if we integrate over k1 and k2, beause these momentaappear in their fourth arguments.The preeding derivations an easily be extended to distributions desribing inter-ferene between di�erent quark avors. The distributions orresponding to �gure 7 arede�ned with bilinear operators �d�u or �u�d. For a proton target, the ground state inthe sum over intermediate states inserted between the two operators is then a neutron.Isospin symmetry relates the resulting matrix elements to matrix elements in the proton:hnj �d�ujpi = hpj�u�djni = hpj�u�ujpi � hpj �d�djpi. Under the assumption of SU(3) a-vor symmetry one an derive similar relations for distributions involving strange quarks[129, 131℄.Although the relation between multiparton distributions and GPDs is an approxima-tion whose auray is not easy to estimate (and although our urrent knowledge of GPDsis far less advaned than that of ordinary parton densities) this relation provides opportu-nities to obtain information about multiple interations that is hard to get by other means.One example are the di�erent interferene distributions disussed above, whih are so farentirely unknown. Perhaps even more important is that GPDs give rather diret informa-tion about the distribution of single partons in the impat parameter b, whih is Fourieronjugate to a transverse momentum transfer � that an be measured in physial pro-esses. This is in stark ontrast to the interparton distane y in two-parton distributions,whih appears as an integration variable in ross setion formulae like (2.91) and is notdiretly related to observable kinemati quantities. We already mentioned in setion 2.6that studies of GPDs give evidene for a orrelation between the longitudinal momentumand the impat parameter of partons in the proton. For values of the momentum frationwhere suh a orrelation is strong, it is hardly plausible that there should be no orrelationbetween x1; x2 and y in two-parton distributions, even if there were important orretionsto approximations like (4.31).4.3.1 Spin orrelationsWe now take a loser look at the role of the proton spin in the approximate relationbetween double and single parton distributions, whih we have glossed over up to now. Forour purpose, a suitable hoie to desribe the spin state of a proton is the light-one heliity� = �12 , whih is equal to the usual heliity in a frame where the proton plus-momentump+ tends to in�nity (see e.g. [133℄ or [130, setion 3.5.1℄). We denote the orrespondingmomentum eigenstates by jp+;p; �i.When inserting intermediate proton states between the two olor singlet operators ina two-parton distribution for an unpolarized proton, we shematially have12 X� 
p+;p; � ��Oa2 Oa1 �� p+;p; ��
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� 12 X�;�0 Z dp0+ d2p02p0+ (2�)3 
p+;p; � ��Oa2 �� p0+;p0; �0� 
p0+;p0; �0 �� Oa1 �� p+;p; �� (4.44)or an analogous relation with states jp+; b; �i of de�nite transverse position. The sum overstates on the r.h.s. thus inludes single-parton matrix elements where the proton heliitydi�ers in the bra and the ket state. Corresponding sums over polarization states shouldhene be inserted in the relations (4.31), (4.38), (4.40) and (4.42).To disuss the impliations of this observation, let us fous on the ollinear distribution1F (xi; r). At the level of matrix elements we have a relation1Fa1;a2(xi; r) � 12 X�;�0 f�;�0a2 (x2;�r) f�0;�a1 (x1; r) ; (4.45)where the supersripts � and �0 of fa denote the proton heliities as in (4.44) and anaverage over proton heliities is understood in 1F . A standard deomposition of the spindependene of generalized parton distributions involves two distributions H and E forunpolarized quarks and two distributions ~H and ~E for longitudinally polarized quarks.The distribution ~E does not ontribute in the ase of zero skewness � = 0 we are dealingwith here. Using the onventions and the matrix elements for de�nite proton light-oneheliity in eq. (54) of [130℄, we havef++q (x; r) = Hq(x; 0;�r2) ; f��q (x; r) = Hq(x; 0;�r2) ;f�+q (x; r) = r1 + ir22M Eq(x; 0;�r2) ; f+�q (x; r) = �r1 � ir22M Eq(x; 0;�r2) (4.46)andf++�q (x; r) = ~Hq(x; 0;�r2) ; f���q (x; r) = � ~Hq(x; 0;�r2) ;f�+�q (x; r) = 0 ; f+��q (x; r) = 0 ; (4.47)where M is the proton mass and Hq(x; �; t), Eq(x; �; t) and ~Hq(x; �; t) are the usual GPDsde�ned in [130℄. Hq and ~Hq are the respetive generalizations of the unpolarized andlongitudinally polarized quark densities q and �q. Changing the basis of the proton spinstates, one an see that Eq is related to unpolarized quarks in a transversely polarizedproton [65℄. Inserting (4.46) into (4.45), we get1Fq;q(xi; r) � Hq(x2; 0;�r2)Hq(x1; 0;�r2) + r24M2 Eq(x2; 0;�r2)Eq(x1; 0;�r2) : (4.48)The term with H orresponds to the simplest approximation of the two-parton distributionas a produt of single-parton distributions, whereas the one with E appears in addition.E desribes a orrelation between the position of a single quark and the proton spin,and (4.48) shows how suh a orrelation may lead to a orrelation between two quarksin an unpolarized proton. It is diÆult to say whether this orretion term alone alreadyprovides an improved approximation of 1Fq;q(xi; r), but one may take it as an indiator
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for the possible departure from a simple fatorized ansatz that neglets all orrelations.In ases where the orretion from E is large, it is plausible to expet that the fatorizedansatz involving only H will fail.Applying the same method to the distribution 1F�q;�q, we obtain from (4.47)1F�q;�q(xi; r) � ~H(x2; 0;�r2) ~H(x1; 0;�r2) : (4.49)Again one should be autious regarding the validity of this approximation. For the regionof small but similar x1 and x2 we already argued in setion 4.1.1 that one may well havesizeable orrelations between the longitudinal polarization of two quarks, even if there islittle orrelation between the longitudinal polarizations of one quark and the proton as awhole. Conversely, in kinematis where the produt of quark-proton spin orrelations in(4.49) is sizeable it seems natural to assume that quark-quark spin orrelations are sizeableas well.5 Perturbatively large transverse momentumSo far we have treated multiple interations as a two-sale problem, in whih the virtualitiesq21 ; q22 � Q2 de�ne a large sale whereas the transverse momenta jq1j, jq2j and the sale �of nonperturbative interations are treated as small. We now make a distintion betweenthe di�erent sales previously treated as small, requiring jq1j � jq2j � qT to be largeompared with the hadroni sale �. We thus have a three-sale problem haraterized bythe hierarhy �� qT � Q : (5.1)Large qi implies that at least some of the transverse parton momenta ki and �ki mustbe large. The ourrene of partons with large transverse momentum kT an be thoughtof as resulting from the perturbative splitting of partons with low kT , whih leads to afatorization formula for transverse-momentum dependent parton distributions in termsof a hard-sattering kernel and ollinear distributions. This signi�antly adds preditivepower sine ollinear distributions depend on fewer variables than kT dependent ones.Example graphs for the ase of a single-quark distribution are shown in �gure 29.The desription based on suh graphs was extensively used for spin e�ets and azimuthalorrelations in Drell-Yan prodution [134{136℄ and semi-inlusive DIS in [117, 136, 137℄,building on the seminal work in [48, 118℄.This desription arries over to the ase of two-parton distributions and is disussedin setion 5.1. In the subsequent setions we investigate a ompeting mehanism for thegeneration of high transverse momentum, in whih the two partons with momentum fra-tions x1 and x2 originate from the perturbative splitting of a single parton. We will seethat this mehanism has profound onsequenes for the theoretial desription of multipleinterations.
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a baFigure 29. Graphs for a single-parton distribution f(x;k) at perturbatively large k. Here andin the following it is understood that lines emerging from the lower blob have virtualities of order� � jkj. The eikonal line in graph b results from the Wilson lines in the de�nition of f(x;k), seesetion 3.2.1.5.1 Ladder graphs at large yThe single and double ladder graphs in �gure 30 are natural generalizations of the laddergraph for a single parton density in �gure 29a. In the following we onentrate on theseladder graphs, bearing in mind that in a ovariant gauge there are further graphs witheikonal lines as in �gure 29b. Those do not hange the onlusions we obtain for the laddergraphs. Indeed, they are absent in the axial gauge vA = 0, where the Wilson lines in thede�nition of parton distributions redue to unity (apart from piees at in�nity, as disussedat the end of setion 3.2.1).When interpreting the graphs in �gures 29 and 30 it is important to bear in mind thatthey represent a separation of dynamis at di�erent sales, with lines attahed to the lowerblob having virtualities of order �, whereas propagators in the upper part of the graphs arefor virtualities of the order of the large transverse momentum qT . An important feature of�gure 30 is that no hard gluons are exhanged between the parton lines that have di�erentmomentum frations x1 and x2 at the top of the graphs. The requirement that both l� 12rand l+ 12r have small virtualities fores jrj to be of order �, whih translates into interpartondistanes jyj of hadroni size in the Fourier transformed distributions F (xi;ki;y).
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Figure 30. Ladder graphs for the region of small r with large k1 (a) or large k1 and k2 (b). Thepower behavior refers to F (xi;ki; r) and is disussed in the text. Here and in the following we omitthe dashed line that indiates the �nal-state ut as in �gure 29.
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5.1.1 Power behaviorLet us �rst investigate the general power behavior assoiated with ladder graphs. In thefollowing we refer to qT as the hard sale (ompared with �), keeping in mind that qT isstill muh smaller than Q.We proeed in a similar way as in setion 2.4. In partiular, we use the modi�edparton orrelation funtions �0n, whih ontain a fator 1=pl+ for eah quark or antiquarkof momentum l and in whih pairs of quark �elds are ontrated with a Dira matrix �afrom (2.81). For the transition from k to m partons in the t hannel, we orrespondinglyuse hard-sattering oeÆients V 0k!m that inlude a fator pl+ for eah inoming quark orantiquark and a fator 1=pl+ for eah outgoing one. Spinor indies in V 0 are ontratedwith an appropriate matrix 12+, 12+5, 12 i�+j5 for outgoing lines and with 12�, 125�,12 i��j5 for inoming ones. V 0 is invariant under a boost along z and thus an only dependon the sale qT but not on Q (f. the orresponding argument for �0 in setion 2.4). Onethus obtains V 0k!m � q4�k�3mT ; (5.2)as one an easily hek for the example graphs below. Note that ompared with thehard-sattering amplitudes in (2.127) we now have 3m instead of m beause V 0 inludesthe propagators of the outgoing partons, as is appropriate for the alulation of partondistributions.The power behavior for the single-ladder graph in �gure 30a an be obtained fromF (xi;ki; r)���g. 30a = p+k+1 k+2 Z dr� dk�1 dk�2 d4l1 V 02!2 �04� p+k+1 k+2 Z dk�1 dl+1 V 02!2 Z dr� dk�2 dl�1 d2l1 �04 : (5.3)The fator p+ and the integrations over minus-momenta ome from the de�nition of F ,whereas k+1 k+2 ompensates the orresponding fators in V 0 and �0. It is understood thatV 0 inludes a Æ funtion for eah parton line going aross the �nal-state ut. This doesnot a�et the power ounting, sine one ould �rst onsider the hard-sattering amplitudewithout ut and then take the appropriate disontinuity in the s hannel. The momentak2� 12r and l1� 12r attah to the parton distribution at the bottom of the graph and henehave virtualities of order �, whereas k1 � 12r emerges from the hard sattering and henehas virtuality of order qT . As a result, the momentum omponents k�2 ; l�1 ; r� � �2=p+and jl1j � � are small and an be negleted in the hard-sattering kernel V 0. We usedthis when rearranging the order of integrations in the seond step. By ontrast, the largeomponents k�1 � q2T =p+ and k+1 ; k+2 ; l+1 � p+ are to be kept in V 0. For the power behaviorwe obtain F (xi;ki; r)���g. 30a � �s � q2T � q�4T � (�2)4 � ��10 = �s � 1�2q2T (5.4)with (2.126) and (5.2). We reognize the 1=q2T behavior that is harateristi of the splittingof one parton (the inoming quark) into two partons (the outgoing quark and the gluon).{ 100 {



The power behavior for the double-ladder graph in �gure 30b is obtained by the same typeof analysis:F (xi;ki; r)���g. 30b � p+k+1 k+2 Z dk�1 dl+1 V 02!2 Z dk�2 dl+2 V 02!2 Z dr� dl�1 dl�2 d2l1 d2l2�04� �2s � (q2T � q�4T )2 � (�2)5 � ��10 = �2s � 1q4T : (5.5)If all transverse momenta are small, the distribution F (xi;ki; r) sales of ourse like ��4.Let us now see how the power behavior of the two-parton distributions translates intothe power behavior of the ross setions2d�Q2i=1 dxi d�xi d2qi �����gs. 31a,b / � 2Yi=1 s�̂i(xi�xis)� � 2Yi=1 Z d2ki d2�ki Æ(2)(qi � ki � �ki)�� Z d2r F (xi;ki; r)F (�xi; �ki;�r) ; (5.6)where we have omitted numerial fators as well as labels for parton speies, spin andolor. We have multiplied the ross setion with s2 for onveniene, sine this gives fatorss�̂(xi�xis) of order 1 on the r.h.s.To have both large q1 and q2 requires at lowest order in �s either a single-laddergraph in the distribution for eah olliding proton, or a double-ladder graph in one of thedistributions with no hard gluons in the other, as shown in �gure 31. In both ases one hasF (xi;ki; r)F (�xi; �ki;�r) � �2s=(�4 q4T ) for the produt of distributions, and the integrationvolume d2k1 d2�k1 Æ(2)(q1� k1 � �k1) is of order �2 sine �k1 and thus k1� q1 are restritedto be of size �. Similarly, one �nds d2k2 d2�k2 Æ(2)(q2 � k2 � �k2) � �2 in both ases, sothat the overall power behavior iss2d�Q2i=1 dxi d�xi d2qi �����gs. 31a,b � �2s � (�2)3 � � 1�2q2T �2 = �2s � �2q4T : (5.7)By similar arguments one �nds that the power behavior remains the same at higher orderin �s, when one an have more than two ladders in the graphs for the ross setion. Anyderease by a fator �2=q2T in the produt F (xi;ki; r)F (�xi; �ki;�r) is ompensated by aninrease from �2 to q2T in the integration volume over the transverse parton momenta kior �ki.5.1.2 Fatorization formulaeLet us now investigate the struture of the fatorization formulae for ladder graphs. Stillomitting spin and olor indies for the moment, we write our result (5.3) asF (xi;ki; r)���g. 30a = Z (p�k2)+k+1 dl+1l+1 �k+1 Z dk�1 V 02!2�� �p+l+1 k+2 Z dr� dl�1 dk�2 d2l1 �04(l1; k2; r)�r+=0 : (5.8)
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a bFigure 31. Ladder graphs ontributing to the ross setion for boson pair prodution at large qT .The lower limit on the l+1 integration reets that the gluon with momentum l1 � k1rosses the �nal-state ut and hene annot have negative plus-momentum. Up to a nu-merial fator, the seond expression in square brakets is just the transverse-momentumdependent double-parton distribution F (u1; x2; l1;k2; r) with u1 = l+1 =p+. The �rst fatorin square brakets is invariant under boosts along z and an thus only depend on k1 andl+1 =k+1 = u1=x1. We an write it as a numerial fator times k�21 P �u1=x1;k1�, where Pis dimensionless. If P is a salar it depends on k1 only via k21 and only beause there areother dimensionful variables � and �, whih we have not displayed for ease of writing. Forertain parton polarizations, P is a tensor with transverse indies and an hene dependon the omponents of k1, as disussed below.We an �nally Fourier transform (5.8) from r to y and then haveF (x1; x2;k1;k2;y)���g. 30a = 1�k21 Z 1�x2x1 du1u1 P�x1u1 ;k1� Z d2l1 F (u; x2; l1;k2;y) ; (5.9)where the fator 1=� has been hosen for onveniene. Inserting this and its analog forF (�x1; �x2; �k1; �k2;y) in the ross setion formula (2.35), we haved�Q2i=1 dxi d�xi d2qi �����g. 31a = 1C �̂1(x1�x1s) �̂2(x2�x2s) Z d2�k1 d2k2 1� (q1 � �k1)2 1� (q2 � k2)2� Z 1�x2x1 du1u1 P�x1u1 ; q1 � �k1� Z 1��x1�x2 d�u2�u2 P� �x2�u2 ; q2 � k2�� Z d2y Z d2l1 F (u1; x2; l1;k2;y)Z d2�l2 F (�x1; �u2; �k1;�l2;y) ; (5.10)where we have used the Æ funtion onstraints in (2.35) to eliminate k1 and �k2. We annow approximate q1 � �k1 � q1 and q2 � k2 � q2, after whih the integrations over �k1and k2 only onern the double-parton distributions, whih are then integrated over bothtransverse-momentum arguments. The result isd�Q2i=1 dxi d�xi d2qi �����g. 31a = 1C �̂1(x1�x1s) �̂2(x2�x2s) 1�q21 1�q22 Z 1�x2x1 du1u1 P�x1u1 ; q1�� Z 1��x1�x2 d�u2�u2 P� �x2�u2 ; q2�Z d2y F (u1; x2;y)F (�x1; �u2;y) : (5.11)
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Only ollinear two-parton distributions appear on the r.h.s., so that the relation (5.9) isonly needed in the formZ d2k2 F (x1; x2;k1;k2;y)���g. 30a = 1�k21 Z 1�x2x1 du1u1 P�x1u1 ;k1�F (u; x2;y) : (5.12)Repeating the preeding arguments for the double-ladder graph, one obtainsF (x1; x2;k1;k2;y)���g. 30b = 1�k21 1�k22 Z 1�x2x1 du1u1 P�x1u1 ;k1�� Z 1�u1x2 du2u2 P�x1u2 ;k2�F (u1; u2;y) (5.13)from the result (5.5) andd�Q2i=1 dxi d�xi d2qi �����g. 31b = 1C �̂1(x1�x1s) �̂2(x2�x2s) 1�q21 1�q22 Z 1�x2x1 du1u1 P�x1u1 ; q1�� Z 1�u1x2 du2u2 P�x2u2 ; q2�Z d2y F (u1; u2;y)F (�x1; �x2;y) (5.14)for the ontribution of �gure 31b to the ross setion, where again only ollinear two-partondistributions appear.The analog of (5.12) for single-parton distribution readsf(x;k)���g. 29 = 1�k2 Z 1x duu P�xu;k� f(u) : (5.15)At order �s the kernel P (x=u) is just the usual DGLAP splitting funtion, up to termsproportional to Æ(1� x=u) whih will be disussed shortly. To see this, let us onsider thekT integrated parton density de�ned with a naive uto�,f(x;�) naive= Z d2k �(�2 � k2) f(x;k2) : (5.16)Using that the transverse-momentum dependent density depends only on the square of kwe then have �2 dd�2 f(x;�) naive= ��2 f(x;k2 = �2) ; (5.17)and omparing with the DGLAP equation for the l.h.s. we an identify the kernel in (5.15)as the familiar splitting funtion.The preeding argument is oversimpli�ed in two respets. Firstly, the alulation off(x;k) for large k only involves real graphs like those in �gure 29 at leading order in �s,beause to obtain a parton with large k one needs a reoiling parton in the �nal state.(Higher-order graphs an inlude virtual loops, so that our argument annot be appliedany more.) By ontrast, the evolution equation for the ollinear parton density f(x), whihis integrated over all k, involves both real and virtual graphs at order �s. The latter giveontributions proportional to Æ(1�x=u) to the DGLAP splitting kernels, whih are absent{ 103 {



from P (x=u) in (5.15). Seondly, the distribution f(x;k) must be de�ned with non-lightlikeWilson lines as disussed in setion 3, whih leads to a dependene on the parameter �de�ned in (3.58). Sine the ollinear distribution f(x) has no suh dependene, it is thekernel in (5.15) that must depend on �. The expliit alulation in [117℄ shows that the �dependene of P (x=u) omes with a fator Æ(1� x=u), whih in the light of our disussionin setion 3.2.3 is plausible if one observes that the point x = u in (5.15) orresponds toin�nite negative gluon rapidity in �gure 29.Let us mention that there is an analog of (5.15) for the distribution f(x;z) at smalltransverse distane z. The orresponding hard-sattering kernel di�ers again from P (x=u)by terms proportional to Æ(1 � x=u). This is beause f(x;z) is given by an integralR d2k eizk f(x;k) over all k, so that already at order �s virtual graphs appear in addi-tion to real ones.We now turn our attention to the role of olor in two-parton distributions at hightransverse momentum, whih we have glossed over so far. Sine the graphs we are disussingdo not onnet parton lines with di�erent momentum frations x1 and x2, the olor ouplingof the distributions on the left and on the right of the fatorization formulae (5.12) and(5.13) are the same. For distributions 1F (xi;ki;y) in the olor singlet hannel, the kernelsP in (5.12) and (5.13) oinide with the one in (5.15) at least at leading order in �s,sine the relevant hard-sattering graphs to be alulated are idential. The leading-orderkernels for the olor otet distributions 8F (xi;ki;y) di�er by an overall olor fator fromthose for 1F (xi;ki;y), whih is the subjet of the next setion. Note that, unlike their olorsinglet analogs, the ollinear olor otet distributions appearing on the r.h.s. of (5.12) and(5.13) depend on � as disussed in setion 3.5. Given our disussion of the anellation ornon-anellation of soft ontributions between real and virtual graphs in setion 3.5, weexpet that the kernels for the position spae distributions 1F (xi;zi;y) and 8F (xi;zi;y)at small zi will di�er by more than an overall olor fator already at leading order. Asystemati investigation of this is left to future work.The power ounting in setion 5.1.1 and the disussion in the present setion do notdepend on whether the parton lines in the ladder graphs are quarks or gluons. As iswell-known for single parton distributions, a quark with high transverse momentum anoriginate from a gluon with low transverse momentum and vie versa. The orrespondingelementary ladder graphs are shown in �gure 32 below.We now disuss the spin struture of the ladder graphs. As we have seen in se-tions 2.2.1 and 2.2.2, there are three polarization ombinations for eah quark or gluon ina two-parton distribution, whih we an hoose as unpolarized (q; g), longitudinally po-larized (�q;�g) and transversely (Æq) or linearly (Æg) polarized. The possible transitionsbetween these ombinations in the fatorization formulae (5.12) and (5.13) are restritedby symmetries. Transverse quark polarization Æq is desribed by a hiral-odd operator�q i�+j5 q and the hirality of light quarks is onserved in hard-sattering subproesses, sothat the only transitions for transversely polarized quarks are of the form Æq ! Æq. Inthe longitudinally polarized setor one has all possible transitions between �q and �g onthe left and on the right of (5.12) and (5.13), with transitions to other polarizations beingforbidden by parity invariane. Likewise, one has all possible transitions between unpo-{ 104 {



larized quarks and gluons. In addition, ladder graphs allow the transitions g ! Æg andq ! Æg from unpolarized ollinear distributions to linearly polarized gluons at high k, ashas been observed in the study of single Higgs prodution in [83, 84℄. Sine Æg orrespondsto a heliity di�erene of two units between the gluon on the left and the gluon the rightof the �nal-state ut, there is no ollinear distribution for a single linearly polarized gluonin a proton, so that transitions Æg ! g and Æg ! q played no role in [83, 84℄. However,one �nds that the orresponding hard-sattering kernels are nonzero and hene allow thesetransitions for two-parton distributions. One thus has all possible transitions between q; gand Æg.For distributions that involve polarizations Æq or Æg the kernels P in (5.12) and (5.13)are tensors with transverse Lorentz indies, onstruted from Æjl and from the large trans-verse momentum k1 or k2 in the ladder. Expliit alulation at order �s shows that thekernel P jlÆqÆq for the transition from F lÆq;a to F jÆq;a (with arbitrary a) is proportional to Æjl.As a result, ladder graphs do not generate the distributions gsÆq;Æq and gaÆq;Æq in the deom-position (4.12) of F jj0Æq;Æq(xi;ki;y), given that they ome with tensors that are absent in theollinear distributions F l l0Æq;Æq(xi;y) aording to (4.14). This adds to the preditive power ofthe perturbative mehanism at large transverse momenta. For transitions involving lineargluon polarization we �nd kernelsP jj0;l l0ÆgÆg / � jj0;l l0 ; P ll0Ægg / P ll0Ægq / P l l0gÆg / P l l0qÆg / 2klikl0i � Æl l0k2i ; (5.18)where the transition from F l l0Æg;a to F jj0Æg;a is desribed by P jj0;l l0ÆgÆg , the transition from Fg;a toF l l0Æg;a by P l l0Ægg et., and where ki is k1 or k2. The seond tensor in (5.18) is symmetri andtraeless and desribes two units of orbital angular momentum, whih ompensates themismath of heliities in the transitions g ! Æg, q ! Æg, Æg ! g and Æg ! q. For later usewe note that terms involving this tensor vanish by rotation invariane when (5.9) or (5.13)is integrated over k1 and k2.The representation of the ross setion derived in this setion is based on a two-stepproedure. In the �rst step we have used fatorization to separate the annihilation proessesq�q ! V into vetor bosons V with mass or virtuality of order Q from transverse-momentumdependent two-parton distributions, in whih the largest sale is qT . In a seond step, wehave used fatorization to ompute these distributions in terms of hard-sattering proessesat sale qT and distributions that reet physis at a hadroni sale �, where it turned outthat in the ross setion we only need the latter distributions integrated over k1 and k2.An alternative proedure is to �rst use fatorization to represent the graphs in �gure 31as the produt of ollinear two-parton distributions and inlusive hard-sattering proessesq�q ! V + X, where at lowest order in �s the unobserved system X onsists of just onegluon. In a seond step one an then simplify the orresponding hard-sattering kernels bytaking the limit qT � Q we are interested in. The relation between these two proedureshas been studied in detail for single Drell-Yan prodution or for semi-inlusive deep inelastisattering in [117℄ and [134{137℄. An important property of the proedure using transverse-momentum dependent distributions in a �rst step is that it permits the resummation ofSudakov logarithms with the method of Collins, Soper and Sterman [118℄.
{ 105 {



j j ′

k k′

a a′

b b′

j j ′

a a′

a a′

j j ′Figure 32. Elementary ladder graphs for transitions between quarks and gluons.5.1.3 Color fators and quark-gluon transitionsLet us now ompute the olor fators for the transitions from ollinear to transverse-momentum dependent two-parton distributions, restriting ourselves to the leading orderin �s. For this it is suÆient to onsider ladder graphs for the hard sattering, beausegraphs with eikonal lines as in �gure 29b an be eliminated by hoosing the gauge vA = 0.Multiplying the olor struture of the ladder graphs in �gure 32 with the appropriate olormatrix for the inoming partons, one obtains the following olor transitions:1q ! 1q : tajk tak0j0 Ækk0 = CF Æjj0 ;8q ! 8q : tajk tak0j0 tkk0 = � 12N tjj0 ;1g ! 1g : fabd fa0b0d Æbb0 = N Æaa0 ;Ag ! Ag : fabd fa0b0d f bb0 = N2 f aa0 ;Sg ! Sg : fabd fa0b0d dbb0 = N2 daa0 ;1g ! 1q : tajk ta0kj0 Æaa0 = N2 � 12N Æjj0 ;Ag ! 8q : tajk ta0kj0 (�if aa0) = N2 tjj0 ;Sg ! 8q : tajk ta0kj0 daa0 = N2 � 42N tjj0 ;1q ! 1g : ta0j0k takj Æjj0 = 12 Æaa0 ;8q ! Ag; Sg : ta0j0k takj tjj0 = �14 if aa0 + 14 daa0 : (5.19)Reversing the fermion lines in the ladder graphs hanges the order of multipliation for thet matries on the l.h.s. of the above relations. This leads to a hange of sign on the r.h.s.for the transitions Ag ! 8q and 8q ! Ag, whereas transitions between 8q and Sg or betweensinglets are unhanged. This implies that the di�erene of distributions for q and �q doesnot mix with gluons in the singlet or the symmetri otet hannel but does mix with gluonsoupled to an antisymmetri otet.In the ases where there is mixing, the relation (5.12) for a double-parton distribution
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at large k1 beomes a matrix equation, whih an be written asZ d2k2 F J(x1; x2;k1;k2;y) = 1�k21 XJ 0 Z 1�x2x1 du1u1 P JJ 0�x1u1�F J 0(u1; x2;y) ; (5.20)where the arguments of F and P are as in (5.12). For polarizations Æq and Æg the distribu-tions and kernels arry tensor indies, whih were disussed in the previous setion and willbe omitted here. The matrix struture in (5.20) an be generalized to the relation (5.13)for double-ladder graphs, but the resulting expressions are rather luttered with indiesand will not be given here.In the olor singlet setor one has1F J = 0BB�Pq [1Fq;a + 1F�q;a℄1Fg;a1FÆg;a 1CCA ; 1P JJ 0 = 0BB�CFPqq nFPqg nFPqÆgCFPgq NPgg NPgÆgCFPÆgq NPÆgg NPÆgÆg1CCA ; (5.21)where nF is the number of quark avors and where the seond parton a may be an un-polarized or polarized quark, antiquark or gluon.15 To obtain the olor fators for theo�-diagonal elements one must take into aount the prefators in the de�nitions (2.103),(2.118) and (2.123). In the upper left 2� 2 submatrix of 1P we reognize the struture ofthe mixing matrix in the usual DGLAP equations. Mixing in the symmetri otet setorinvolves the vetorsSF J = 0BB�Pq [8Fq;a + 8F�q;a℄SFg;aSFÆg;a 1CCA ; AF J = 0BB�Pq [8Fq;a � 8F�q;a℄AFg;aAFÆg;a 1CCA : (5.22)If a indiates a gluon, one should replae 8Fq;a + 8F�q;a by SFq;a + SF�q;a and 8Fq;a � 8F�q;a byAFq;a � AF�q;a. The splitting matries now readSP JJ 0 = 0BBBB� � 12N Pqq q N2�42(N2�1) nFPqg q N2�42(N2�1) nFPqÆgqN2�18 qN2�4N2 Pgq N2 Pgg N2 PgÆgqN2�18 qN2�4N2 PÆgq N2 PÆgg N2 PÆgÆg
1CCCCA (5.23)and AP JJ 0 = 0BBBB� � 12N Pqq q N22(N2�1) nFPqg q N22(N2�1) nFPqÆgqN2�18 Pgq N2 Pgg N2 PgÆgqN2�18 PÆgq N2 PÆgg N2 PÆgÆg

1CCCCA : (5.24)15We note that in [47℄ the possibility of transitions between q; g and Æg was overlooked, and only themixing between q and g was onsidered.
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There is no mixing for the ombinations Pq [1Fq;a � 1F�q;q℄, nor for the di�erene of distri-butions for two quark avors, nor for matrix elements where the quark avors di�er onthe two sides of the �nal-state ut as in �gure 7. In these ases the behavior at large k1is desribed by (5.12) with P replaed by CFPqq for olor singlet and by � 12N Pqq for olorotet ombinations.Experiene with the usual parton densities tells us that gluons quikly dominate oversea quarks as one goes to momentum frations below 0:1 (exept possibly if one onsidersvery low fatorization sales). One therefore expets that for typial values of x1 and x2at LHC, two-parton distributions at high transverse momentum are dominated by thoseombinations that an originate from gluons in (5.20).Comparing (5.21) with (5.23) and (5.24) we �nd that the olor fators are alwayssmaller in the otet hannels than in the singlet hannel, with the biggest suppressionourring for Pqq. In the large-N limit the singlet matrix 1P has one eigenvalue N2 Pqq andtwo eigenvalues with olor fators N for the submatrix in the g; Æg setor. Both SP andAP have the same two eigenvalues, but with olor fators N2 instead of N , and anothereigenvalue of order 1. One an hene expet a dominane of olor singlet distributions forsuÆiently large transverse momentum, whih would signi�antly simplify the theoretialdesription and the phenomenology of multiple interations. How strong the suppressionof olor otet hannels is in given kinematis should, however, be studied quantitativelybefore drawing strong onlusions.We have also alulated the olor fators for higher olor representations of gluondistributions, restriting ourselves to N = 3 as we did in (2.121). Mixing with quarkdistributions is of ourse not possible in this ase. We �nd that the olor fators fordeuplet and antideuplet distributions are zero, so that ladder graphs do not admit theseolor ombinations, at least not at leading order in �s. For the 27 representation we obtain27F J =  27Fg;a27FÆg;a! ; 27P JJ 0 =N=3 � Pgg PgÆgPÆgg PÆgÆg! ; (5.25)where a = g or Æg. The olor fator is equal to �1 and thus smaller in magnitude than thefators N or 12N we have in the singlet and otet setors, respetively.The olor fators we have obtained agree with those given in [138℄, provided that onerestores a missing fator p2=N in the expression of P8f in eq. (54b) of that paper.16 Ourolor fators for transitions in the gluon setor are also in agreement with eq. (A.6) in [140℄.The splitting matries for longitudinally polarized quarks and gluons in (5.20) areobtained from the upper left submatries for unpolarized quarks and gluons in (5.21) to(5.24) by hanging the kernels but keeping the olor fators. Likewise, the splitting kernelPÆqÆq for transverse quark polarization omes with the same olor fators as Pqq. In bothases, it is again the olor singlet setor that has the largest olor fators and will thereforebe enhaned at high transverse parton momentum.Let us �nally onsider ladder graphs for the quark-antiquark interferene distributionsI represented in �gure 5. The olor independent part of the splitting kernel is di�erent16The projetor P0 in [138℄ appears only for SU(N) with N > 3 [139℄.
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Figure 33. Graphs for a quark-antiquark distribution that involve the perturbative splitting ofone into two partons on both sides of the �nal-state ut. The power behavior refers to F (xi;ki; r)and is disussed in the text.for distributions I and F beause of their di�erent spin struture (in one ase a gluon isexhanged between a quark and an antiquark line and in the other ase between two quarklines), but we shall not pursue this issue further here. We an, however, easily determinethe olor struture of the graphs. For de�niteness, onsider the exhange of a gluon betweenthe two lines with momentum fration x1 and olor indies j, j0. The olor deompositionthat remains invariant under this exhange is the one in (2.116), sinetajl taj0l0 �Ælk0 Æl0k + Ælk Æl0k0� = tajk0 taj0k + tajk taj0k0 = N � 12N �Æjk0 Æj0k + Æjk Æj0k0�tajl taj0l0 �Ælk0 Æl0k � Ælk Æl0k0� = tajk0 taj0k � tajk taj0k0 = �N + 12N �Æjk0 Æj0k � Æjk Æj0k0� (5.26)For N = 3 we thus �nd a olor fator 13 if the quarks are oupled to a sextet and �23 if theyare oupled to an antitriplet. Both fators are smaller than CF = 43 in the olor singlethannel.5.2 Parton splitting at high transverse parton momentaWe now turn to another mehanism that generates large transverse momenta in multipartondistributions: the perturbative splitting of one parton into two partons, both of whihsubsequently take part in hard-sattering proesses. This mehanism turns out to beenhaned by powers of qT =� in the ross setion. In addition, it leads to oneptual issuesonerning the very notion of multiparton interations. In the following setions we deriveseveral results about the splitting mehanism, but we will be left with a number of openquestions for future researh.5.2.1 Power behaviorThere are a multitude of graphs involving the splitting of one parton into two partons, andin order to assess their importane we use power ounting as our �rst guiding priniple.Simple examples for parton splitting are shown in �gure 33. They allow all transversemomenta k1, k2 and r to be large. This leads to large virtualities for k1, k2 and r, so thattheir minus omponents are large as well,k1 � k2 � r � qT ; k�1 � k�2 � r� � q2T=p+ : (5.27)
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At lowest order in �s one has disonneted graphs as in �gure 33a, whih leads to thekinemati onstraintk1 + k2 � � ; k�1 + k�2 � �2=p+ : (5.28)We will see shortly that this onstraint plays a speial role when two-parton distribu-tions are ombined to alulate a ross setion. The power behavior of graph 33a an bedetermined using the same method as in setion 5.1.1, and we haveF (xi;ki; r)���g. 33a = p+k+1 k+2 Z dr�dk�1 ��V 01!2��2k�2 =�k�1 ;k2=�k1 Z dk�2 �02(k1 + k2)� �s � q4T � (q�3T )2 � �2 � ��4 = �s � 1�2 q2T ; (5.29)where the power ounting of integration volumes is dr� � dk�1 � q2T =p+ and dk�2 � �2=p+in order to ful�ll the onstraint (5.28). Notie that in V 0 one should set k�2 = �k�1 beausethe di�erene of k�2 and �k�1 is negligible ompared with k�1 . Likewise, one should setk2 equal to �k1 in V 0. The fator R dk�2 �02(k1 + k2) in (5.29) is proportional to thetransverse-momentum dependent distribution of a gluon in the proton.Starting at order �2s one has onneted graphs as in �gure 33b. The restritions (5.28)are then lifted, and we obtain a power behaviorF (xi;ki; r)���g. 33b = p+k+1 k+2 Z dl+ dr� dk�1 dk�2 V 02!4 Z dl� d2l�02� �2s � q6T � q�10T � �4 � ��4 = �2s � 1q4T : (5.30)The graphs just disussed desribe the transition from two to four partons in the thannel. Let us ompare them with transitions starting from three or four partons. Theorresponding graphs admit a variety of topologies, and we shall not give a omprehensivetreatment here. Important examples are shown in �gures 34 and 35. They are subjet todi�erent kinemati restritions:� graphs 34a and 35a require jk1 + k2j � � and are thus analogous to 33a,� in analogy to 33b, graphs 34b and 35b produe partons with unonstrained transversemomenta,� in graphs 34d and 35d one must have jk1+ 12rj � � sine the rightmost quark line isdisonneted,� graphs 34 and 35 are subjet to both onstraints jk1 + k2j � � and jk1 + 12rj � �.The power behavior of the resulting two-parton distributions an be obtained by the samemethods as previously and is given in the �gures. We see that within a given kinematigroup, the graph with the smallest number of partons initiating the hard sattering isdominant by power ounting, i.e. two partons in ases a and b, and three partons in ases and d. The graph with the leading power behavior also has the lowest power of �s.{ 110 {
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Figure 34. Example graphs for the transition of three to four partons in the t hannel and theorresponding power behavior of F (xi;ki; r). They involve the splitting of one into two partonsonly on one side of the �nal-state ut.
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Figure 35. As �gure 34, but for the transition of four to four partons in the t hannel.We note that for graphs starting with four partons there are topologies leading to di�erentkinemati onstraints, suh as those in �gure 36. We shall not disuss these in the following.So far we have assumed that the transverse momenta k1, k2, r are all large. How-ever, the graphs we have disussed remain under perturbative ontrol in more restritedkinematis as well. In graph 33a for instane, we need large transverse momenta for thefour upper parton lines, i.e. large k1 � 12r (reall that k2 � �k1 for this graph). Thisallows either r or k1 to be small, as long as the other is large. Both on�gurations will beimportant in our further disussion. The power behavior we have derived above remainsunhanged in those kinemati regions, as we shall see expliitly in setion 5.2.2.Cross setion. Let us now see how the di�erent ontributions to multiparton distribu-tions enter the ross setion for large q1 and q2. Taking the lowest-order parton splitting{ 111 {
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Figure 36. Ladder graphs with the kinemati onstraint jk1 � k2j � � and the resulting powerbehavior of F (xi;ki; r).ontribution of �gure 33a for both protons, we arrive at the graph in �gure 37a. Bothk1 + k2 and �k1 + �k2 are restrited to be of order � in this ase, whih impliesq1 + q2 = k1 + �k1 + k2 + �k2 � � : (5.31)In other words, the produed bosons must be almost bak to bak in transverse momen-tum. To determine the power behavior of the ross setion, we note that the integrationelement d2k1 d2�k1 Æ(2)(q1�k1� �k1) sales like q2T sine k1 an be freely hosen of size qT .One this hoie is made, k2 an only di�er from �k1 by an amount of order �, so thatd2k2 d2�k2 Æ(2)(q2�k2� �k2) sales like �2. The orresponding onstraint on �k1+�k2 is thenautomatially ful�lled by virtue of (5.31). With d2r � q2T and the saling behavior (5.29)the ross setion formula (5.6) then givess2d�Q2i=1 dxi d�xi d2qi ����jq1+q2j���g. 37a � �2s � (q2T )2 � �2 � � 1�2q2T �2 = �2s � 1�2 : (5.32)Going one order higher in �s, one has graphs as in �gure 37b with a onneted two-to-fourparton transition on one side. The onstraint (5.31) is then lifted, and q1 and q2 an behosen independently. The integration elements in the ross setion formula sale as in theprevious ase, but due to the stronger fallo� in qT in (5.30), one now hass2d�Q2i=1 dxi d�xi d2qi �����g. 37b � �3s � (q2T )2 � �2 � 1q2T � 1�2 q2T = �3s � 1q2T : (5.33)At yet higher order in �s one obtains the same power behavior if both two-parton distri-butions ontain a onneted two-to-four parton transition: the extra fator �2=q2T fromthe two-parton distribution is ompensated by an inrease from �2 to q2T in the loop phasespae, sine both k1 and k2 an then be hosen independently of order qT .We note that both (5.32) and (5.33) ontribute at the same power of �2=q2T if oneintegrates the ross setion over q1 and q2 in a region of size qT . This is beause the on-tribution (5.32) has a restrited phase spae of order d2q1 d2q2 � �2q2T . In the di�erentialross setion, however, the ontribution (5.32) gives a peak in the distribution of q1 + q2,whih is enhaned not only by a power of �s but also by q2T=�2.There are more ontributions to the ross setion with the same power behavior asthe one we have just enountered. We reall from our disussion in setion 2.4 that inthe di�erential ross setion, double parton sattering has the same power behavior as{ 112 {
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a bFigure 37. Graphs for the ross setion with two-to-four parton transitions in the t hannel forboth olliding protons. Graph a only ontributes when jq1 + q2j � �.
a bFigure 38. Graphs for the ross setion with two-to-three parton transitions in the t hannel forboth protons.

a bFigure 39. Graphs for the ross setion with a single hard sattering.the interferene of two hard satters in the amplitude with a single hard satter in theonjugate amplitude (see graph 9a). If the two partons initiating the two hard satters inthe amplitude ome from the splitting of a single parton, we have graphs like in �gure 38.17For graph 38a one �nds the same saling behavior (5.32) as for graph 37a, and for graph17The single hard sattering to the right of the �nal-state ut proeeds through a loop in our example,beause gluons have no diret oupling with eletroweak gauge bosons. Other proesses, like the produtionof two dijets, an proeed already at tree level. The powers of �s in our example are thus not representativeof the generi ase, whereas powers of �=qT are.
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38b one �nds the same saling behavior (5.33) as for graph 37b.The same power behavior is again found for the ase where the two gauge bosonsare produed in a single hard satter, both in the amplitude and its onjugate. Theorresponding ross setion formula an be found in (2.42). For inoming gluons the hardsattering proeeds through a loop as on the r.h.s. of graphs 38 a and b, whereas forinoming quarks or antiquarks one has graphs as those in �gure 39. If jq1 + q2j � �then one needs no parton exhange of virtuality qT in any of the parton densities, and oneimmediately �nds the same power behavior as in (5.32). If jq1 + q2j � qT then at lowestorder in �s one parton distribution has large transverse momentum generated by a laddergraph as shown in �g. 39b. Aording to (5.15) one has f(x;k) � �s=q2T for jkj � qT , andfor the ross setion one obtains the same power behavior as in (5.33).Adapting our disussion at the end of setion 5.1.2 we see that the graph in �gure 39ban be alulated either in terms of transverse-momentum dependent parton densities, oneof whih involves a ladder graph, or in terms of ollinear parton distributions and theparton-level proess q�q ! V1V2 + g, where V1 and V2 denote the produed vetor bosons.The result is the same in both ases.In a similar way, �gures 37 and 38 an be interpreted as graphs for two-boson produ-tion by a single hard sattering proess at one-loop level, namely by gg ! V1V2 for graphs aand gg ! V1V2+g for graphs b. The quark lines in eah loop are then typially o�-shell byorder Q, whih is the hard sale set by the �nal state. Note that this di�ers from the asewhen one interprets the same graphs as representing double hard sattering (�gure 37) orthe interferene of double and single hard sattering (�gure 38). In that ase the quarklines in the loops (exept for those on the r.h.s. of graphs 38a and b) are understood tohave typial virtualities of order qT , whih allows one to treat them as inoming on-shellpartons in the tree-level subproesses q�q ! V , whose large sale is Q. Detailed inspetionof the quark loops in �gure 37 shows that they reeive ontributions with the same salingbehavior in qT =Q from the two regions where all quark virtualities are either of order qTor of order Q.18 One thus obtains the same power behavior for the graphs in eah of thetwo interpretations just disussed. The interpretation in terms of a single hard-satteringproess produing two gauge bosons for graphs 37a, 38a and 39a and two gauge bosonsplus a gluon for graphs 37b, 38b and 39b makes it lear that eah group of graphs has thesame saling behavior, respetively given by (5.32) and (5.33).In setion 5.1.1 we found that ladder graphs as in �gure 31 ontribute to the saledross setion with a power �2=q4T , with no distintion between the ases where q1 + q2 isof order � or qT . This means that the ontributions of �gures 37, 38 and 39 are enhanedover the ladder graphs by q2T =�2 for jq1 + q2j � qT and by q4T =�4 for jq1 + q2j � �. Aswe already disussed in setion 2.5, one an however expet that at small x1 and x2 thisenhanement is ounterated by the stronger rise of the ladder graphs with dereasing par-ton momentum frations, sine the ladder ontributions involve two-parton distributions,whereas the graphs in �gures 37, 38 and 39 depend on single-parton distributions. Whether18By ontrast, there is no kinemati region where all quark lines in the loops on the r.h.s. of graphs 38aor b are o� shell by order qT . This is easily seen by analyzing the ow of large plus and minus momenta.
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a b cFigure 40. Contribution of the perturbative transition from two to four quarks in one proton, forthe region of small r.
a b cFigure 41. As �gure 40 but for the region of perturbatively large r.this small-x enhanement is more important than powers of q2T=�2 annot be determinedon generi grounds, so that one will want to keep both types of ontribution in a exibletheoretial desription.With this in mind, we now turn our attention to the graphs in �gures 40 and 41, whihinvolve parton splitting and thus single-parton distributions for one proton but a two-parton distribution for the other. In the graphs of �gure 40 the two-parton distributionsin one proton fore r to be of order �, whereas in �gure 41 an additional gluon exhangedbetween partons with momentum fration x1 and x2 allows r to be of order qT .The orresponding power behavior is readily obtained from our results for the relevantparton distributions (given in �gures 30, 33 and 35) and the available loop phase spae ineah graph. We �nd s2d�Q2i=1 dxi d�xi d2qi ����jq1+q2j ���g. 40a � �s � 1q2T ;s2d�Q2i=1 dxi d�xi d2qi �����gs. 40b, � �2s � �2q4T (5.34)and the analogous saling behavior with an extra power of �s for the graphs in �gure 41.For jq1 + q2j � qT , we thus �nd the same behavior as for the ladder graphs in �gure 31,whih involve however two two-parton distribution in the ross setion and therefore havea stronger small-x enhanement. In the region jq1 + q2j � � we have an extra power ofq2T =�2, as in the other parton splitting ontributions disussed so far.{ 115 {



a bFigure 42. Graphs with three partons in the t hannel for one proton (a) or for both (b).In �gure 34 we have graphs initiated by proton matrix elements with three partons inthe t hannel. Examples for their ontribution to the ross setions are given in �gure 42.They behave as s2d�Q2i=1 dxi d�xi d2qi ����jq1+q2j ���g. 42a � �3=2s � 1�qT ;s2d�Q2i=1 dxi d�xi d2qi ����jq1+q2j ���g. 42b � �s � 1q2T : (5.35)The ontribution from graph 42a is thus suppressed ompared with the one from graph 37a,although only by a power of �=qT , whih orresponds to the loss of one power �=qT betweenthe splitting graphs initiated by two or three partons in the t hannel (f. �gures 33a and34). Likewise, graph 42b is suppressed by �2=q2T ompared with graph 37a, thus havingthe same power behavior as graph 40a, but laking the small-x enhanement of the latter.An analogous situation is found for graphs that are like in �gure 42 but have an extra gluonaross the �nal-state ut (onstruted e.g. from graphs 33b or 34d) and thus ontributeto the region jq1 + q2j � qT . To the extent that one power of �=qT is a small enoughsuppression parameter and that the small-x enhanement of four-parton matrix elementsis important, one an hene neglet ontributions involving three-parton matrix elements.Our results for the power behavior of the di�erent ontributions are olleted in table 1.The ontributions in the �rst three rows of the table were reently investigated in[98℄. It was pointed out in that work that the 2� 4 ontribution in our table has a furtherenhanement ompared with the 4�4 term, whih is due to the fat that the latter involvesthe produt F (xi; r)F (�xi;�r) of two distributions that derease with r, whereas the formerinvolves only one fator F (xi; r) multiplied by the perturbative splitting ontribution thatis approximately r independent for jrj � �.To ompare our results with those in [98℄ we note that jq1 + q2j � Æ0 was required tobe in the perturbative domain in that work, whereas we treat it as omparable to a softsale. Our power ounting results apply to this ase as well as far as the qT behavior isonerned, if one understands � as either jq1 + q2j or a generially soft sale, without theability to distinguish between them. What is important for our results is the hierarhy�� qT � Q, whih in the notation of [98℄ reads Æ0 � Æ � Q. The fat that in [98℄ four-jetprodution rather than the double Drell-Yan proess was studied does not prevent us from a{ 116 {



partons example graphs power behavior(t hannel) jq1 + q2j � � jq1 + q2j � qT4� 4 31 �2=q4T �2=q4T4� 2 40, 41 1=q2T �2=q4T2� 2 37, 38, 39 1=�2 1=q2T2� 3 42a 1=(�qT ) �=q3T3� 3 42b 1=q2T �2=q4TTable 1. Power behavior to the saled ross setion s2d�=(dx1 dx2d�x1d�x2d2q1d2q2) from variousontributions. An entry m � n in the �rst olumn means that the ross setion involves matrixelements with m and n partons in the t hannel for the �rst and the seond proton, respetively.omparison sine, as we pointed out earlier, our power ounting results hold independentlyof the partiular hard-sattering proesses. We agree with [98℄ that the 2 � 4 and the4 � 4 ontributions to the ross setion respetively behave like 1=q2T and 1=q4T , and thatthe 2 � 2 ontribution does not have a 1=q2T behavior but depends logarithmially on qT .However, the authors of [98℄ write that the 2� 2 term is omparable to the 2� 4 and 4� 4terms. We emphasize that the 2� 2 ontribution goes like 1=�2 in the saled ross setionand is therefore power enhaned ompared with the other two ontributions for qT � �.This omes out of our power ounting analysis and is on�rmed by expliit alulation, see(5.74) below. What an potentially make the 2�4 and 4�4 terms more important is theirsmall-x behavior, as we noted above.5.2.2 Splitting in two-parton distributionsAfter the general analysis in setion 5.2.1 we now investigate splitting ontributions totwo-parton distributions in more detail. We begin with the graph in �gure 33a, whihdesribes the splitting proess g ! q�q.From the olor struture of the graph we readily �nd that it gives rise to olor otetdistributions that are suppressed ompared with the olor singlet ones by a fator8Fa1;�a21Fa1;�a2 ����g!q�q = � 1pN2 � 1 : (5.36)The olor singlet distributions are given by1Fa1;�a2(xi;ki; r) ���g!q�q = 4��s(2�)5 12 2p+Z dr�dk�1 dk�2 �g��(k1 + k2)� tr��a1 (k1 � 12r)(k1 � 12r)2 + i� � (k2 + 12r)(k2 + 12r)2 + i�� ��a2 (k2 � 12r)(k2 � 12r)2 � i� � (k1 + 12r)(k1 + 12r)2 � i� �k�2 =�k�1 ;k2 =�k1 ; (5.37)
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where � and � are polarization indies of the gluon potentials in the orrelation funtion �g,whose de�nition follows from (2.96). �g is already summed over the gluon olor indies,and the orresponding trae over olor matries has given a fator 12 . As disussed insetion 2.2.2, � and � are restrited to be transverse at leading-power auray. Theseond and third line of (5.37) represent the hard part of the proess, where we an negletthe di�erene between the transverse and minus-omponents of k1 and k2, see (5.29). Weintrodue k = 12(k1 � k2) ; � = k1 + k2 (5.38)and hange integration variables from k�1 and k�2 to k� and ��. The integration over ��only onerns the gluon orrelation funtion �g, whih an be deomposed as [82℄xp+Z d���g;jj0(�)�����+=xp+ = 12 Æjj0fg1 (x;�) + 2�j�j0 � Æjj0�24M2 h?g1 (x;�) ; (5.39)where M denotes the proton mass. In terms of the operators introdued in (2.98) we havefg1 (x;�) = 1xp+ Z dz�d2z(2�)3 eixz�p+�iz� 
p��Og(0; z)��p� ;2�j�j0 � Æjj0�24M2 h?g1 (x;�) = 1xp+ Z dz�d2z(2�)3 eixz�p+�iz� 
p��Ojj0Æg (0; z)��p� : (5.40)fg1 is the usual transverse-momentum dependent density of gluons, whereas the gluonBoer-Mulders funtion h?g1 desribes linearly polarized gluons and is essentially unknownat present (see [85{87℄ for proesses where this distribution ould be studied). Writing theprodut of propagator denominators in (5.37) as12x1p+�k � 12r�� � �k � 12r�2 + i� 12x2p+�k � 12r�� + �k � 12r�2 � i�� 12x2p+�k + 12r�� + �k + 12r�2 + i� 12x1p+�k + 12r�� � �k + 12r�2 � i� (5.41)we see that the integrations over r� and k� an onveniently be performed using thetheorem of residues, after a hange of variables to (k � 12r)� and (k + 12r)�. Performingthe fermion trae, we �nally obtain1Fa1 ;�a2(xi;ki; r) ���g!q�q = �s4�2 " fg1 (x1 + x2;�)x1 + x2 T l l0a1;�a2� x1x1 + x2�+ 2�m�m0 � Æmm0�22M2� h?g1 (x1 + x2;�)x1 + x2 U l l0mm0a1;�a2 � x1x1 + x2�# �k+ 12r�l�k � 12r�l0�k + 12r�2�k � 12r�2 : (5.42)With the abbreviation �u = 1� u the kernels readT l l0q;�q(u) = �T l l0�q;��q(u) = Æl l0 (u2 + �u2) ;T l l0�q;�q(u) = �T l l0q;��q(u) = i�l l0 (u� �u) ;�T l l0Æq;Æ�q(u)�jj0 = �2Æl l0 Æjj0u�u (5.43)
{ 118 {



and U l l0mm0q;�q (u) = �U l l0mm0�q;��q (u) = �2� l l0;mm0 u�u ;�U l l0mm0Æq;Æ�q (u)�jj0 = 2� l l0;j0m0 Æjmu+ 2� l l0;jm0 Æj0m �u� 2� l l0;mm0 Æjj0u�u ; (5.44)where j and j0 are the indies of the Dira matries i�+j5 in the de�nition of the distribu-tions. The kernels T and U not listed in (5.43) or (5.44) are zero. Note that k� 12r is halfthe di�erene between the transverse parton momenta k1 � 12r and k2 + 12r on the left of�gure 33a, whereas k+ 12r is half the orresponding momentum di�erene on the right. Toensure that the quark lines with momenta k1� 12r and k2� 12r in �gure 33a are far o�-shellit is suÆient that one of the transverse momenta r and k is large, as already mentionedearlier. This implies that (5.42) desribes the large r behavior of Fa1 ;�a2(xi;ki; r) for smallk1 and k2, as well as its behavior for large k at small r.We see that the short-distane splitting proess gives rise to a rih spin struture, withall hiral even two-parton distributions being nonzero. The relations Fq;�q = �F�q;��q andF�q;�q = �Fq;��q reet that the perturbative gluon splitting leads to a 100% orrelationbetween the heliities of the quark and antiquark: if the quark has positive heliity theantiquark has negative one, and vie versa. For values of u around 12 , the transverse spinorrelation enoded in FÆq;Æ�q is as large as the unpolarized distribution Fq;q.The splitting ontributions to other two-parton distributions are obtained in loseanalogy to the ase we have just disussed, and in the following we only give the relevantstarting expressions and results. A reader not interested in the details may skip forwardto the paragraph after equation (5.60).The graph in �gure 33a also ontributes to the interferene distributions Ia1;�a2 , withthe same ratio 8Ia1;�a2Æ 1Ia1;�a2 = �1ÆpN2 � 1 of otet and singlet distributions as in (5.36).The expression for 1Ia1;�a2 an be obtained from the one in (5.37) by interhanging (k2� 12r)and (k1 + 12r) in the fermion trae. The result has the same struture as in (5.42), withthe kernels Ta1;�a2 replaed byV l l0q;�q(u) = �V l l0�q;��q(u) = �2Æl l0 u�u ;�V l l0Æq;Æ�q(u)�jj0 = Æl l0Æjj0 (u2 + �u2) + (ÆjlÆj0l0 � Æjl0Æj0l)(u� �u) (5.45)and the kernels Ua1;�a2 replaed byW l l0mm0q;�q (u) = �W l l0mm0�q;��q (u) = � l l0;mm0 (u2 + �u2) ;W l l0mm0�q;�q (u) = �W l l0mm0q;��q (u) = � l l0;mn i�m0n (u� �u) ;�W l l0mm0Æq;Æ�q (u)�jj0 = ��Æjl0Æj0mÆlm0 + Æj0lÆjmÆl0m0�u� �ÆjlÆj0mÆl0m0 + Æj0l0ÆjmÆlm0��u+ � jj0;mm0Æl l0 + � ll0;mm0Æjj0 (u2 + �u2) : (5.46)All other kernels are zero. We see that the splitting ontribution to the interferene distri-butions Ia1;�a2 is generially of the same size as for the distributions Fa1;�a2 .We now turn to the analog of �gure 33a for the splitting proess q ! gq. This graph(not shown here for brevity) involves propagators for the outgoing gluons and requires a{ 119 {



hoie of gauge. If we work in the light-one gauge An = A+ = 0 with n = (1; 0; 0;�1)=p2,then the gluon propagator has a numeratorD��(`) = �g�� + n�`� + `�n�`+ (5.47)and the q ! gq splitting ontribution to quark-gluon distributions reads1Fa1;a2(xi;ki; r) ���q!gq = 4��s(2�)5 CF (x1p+) 2p+Z dr�dk�1 dk�2� D�j(k1 � 12r)(k1 � 12r)2 + i� �jj0a1 Dj0�(k1 + 12r)(k1 + 12r)2 � i�� tr�� (k2 � 12r)(k2 � 12r)2 � i� ��a2 (k2 + 12r)(k2 + 12r)2 + i� � �q(k1 + k2) �k�2 =�k�1 ;k2 =�k1 : (5.48)Sine j is a transverse index, the numerator fator of the �rst gluon propagator simpli�esto �g�j +n�(k1� 12r)j=(k1� 12r)+. If we work in ovariant gauge instead, these two termsorrespond to the �rst two terms of the gluon �eld strength G+j = �+Aj��jA++O(g) inthe operator de�nition of the quark-gluon distribution. An analogous statement holds forthe seond gluon propagator. The expression (5.48) involves the quark orrelation funtion�q for an unpolarized proton, for whih one hasZ d�� �q(�)�����+=xp+ = 12 �f q1 (x;�) + 12 i�j�5 �jj0�j0M h?q1 (x;�) (5.49)to leading-twist auray, or equivalentlyf q1 (x;�) = Z dz�d2z(2�)3 eixz�p+�iz� 
p��Oq(0; z)��p� ;�jj0�j0M h?q1 (x;�) = Z dz�d2z(2�)3 eixz�p+�iz� 
p��OjÆq(0; z)��p� : (5.50)The q ! gq splitting proess gives rise to all possible olor ouplings in the quark-gluondistribution in (2.123), with olor fatorsSFa1;a21Fa1;a2 ����q!gq =rN2 � 42 ; AFa1;a21Fa1;a2 ����q!gq = � Np2 : (5.51)Contrary to the ase of g ! q�q analyzed above, the splitting mehanism now favors olorotet distributions over olor singlet ones. Evaluating (5.48) we obtain1Fa1;a2(xi;ki; r) ���q!gq = �s2�2 CF " f q1 (x1 + x2;�)x1 + x2 T l l0a1;a2� x1x1 + x2�+ �mm0�m0M h?q1 (x1 + x2;�)x1 + x2 U l l0ma1;a2� x1x1 + x2�# �k+ 12r�l�k � 12r�l0�k + 12r�2�k � 12r�2 (5.52)
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with T l l0g;q(u) = Æl l0 (1 + �u2)=u ; T l l0�g;�q(u) = Æl l0 (1 + �u) ;T l l0�g;q(u) = �i�l l0 (1 + �u2)=u ; T l l0g;�q(u) = �i�l l0 (1 + �u) ;�T l l0Æg;q(u)�jj0 = 2� l l0;jj0�u=u (5.53)and �U l l0mg;Æq (u)�k = 2Æl l0Ækm �u=u ; �U l l0m�g;Æq(u)�k = �2i�l l0Ækm �u=u ;�U l l0mÆg;Æq(u)�jj0;k = � jj0;mlÆkl0 + � jj0;ml0Ækl � (� jj0;klÆml0 + � jj0;kl0Æml) �u� � jj0;kmÆl l0 u+ 2� jj0;l l0Ækm �u=u : (5.54)All other kernels are zero, in partiular FÆg;�q is not generated by the splitting mehanismat leading order in �s. Analogous results an be derived for the splitting �q ! g�q.The splitting of one gluon into two gives a ontribution to two-gluon distributions,whih reads1Fa1;a2(xi;ki; r) ���g!gg= 4��s(2�)5 N (x1p+) (x2p+) 2p+Z dr�dk�1 dk�2 �g��(k1 + k2) ����g. 33a� � D�j(k1 � 12r)(k1 � 12r)2 + i� �jj0a1 Dj0�0(k1 + 12r)(k1 + 12r)2 � i� D�k(k2 + 12r)(k2 + 12r)2 + i� �kk0a2 Dk0�0(k2 � 12r)(k2 � 12r)2 � i�� �g�0�0(k1 � k2 + r)� � g��0(2k1 + k2 + 12r)�0 + g��0(k1 + 2k2 � 12r)�0�� �g��(k1 � k2 � r)� � g��(2k1 + k2 � 12r)� + g��(k1 + 2k2 + 12r)���k�2 =�k�1k2=�k1 (5.55)in the gauge A+ = 0. Evaluating this expression, we obtain a result with the same strutureas for g ! q�q in (5.42),1Fa1;a2(xi;ki; r) ���g!gg = �s2�2 N " fg1 (x1 + x2;�)x1 + x2 T l l0a1;a2� x1x1 + x2�+ 2�m�m0 � Æmm0�22M2� h?g1 (x1 + x2;�)x1 + x2 U l l0mm0a1;a2 � x1x1 + x2�# �k + 12r�l�k� 12r�l0�k + 12r�2�k � 12r�2 (5.56)with T l l0g;g(u) = 2Æl l0 (u=�u+ �u=u+ u�u) ; T l l0�g;�g(u) = 2Æl l0 (2� u�u) ;T l l0g;�g(u) = �2i�l l0 (2�u+ u=�u) ; �T l l0g;Æg(u)�kk0 = 2� l l0;kk0 u=�u ;�T l l0Æg;Æg(u)�jj0;kk0 = Æl l0 � jj0;kk0u�u (5.57)
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and U l l0mm0g;g (u) = �U l l0mm0�g;�g (u) = 2� ll0;mm0u�u ;�U l l0mm0g;Æg (u)�kk0 = Æl l0�kk0;mm0 �u=u ; �U l l0mm0�g;Æg (u)�kk0 = �i�ll0�kk0;mm0 �u=u ;�U l l0mm0Æg;Æg (u)�jj0;kk0 = � l l0;kk0 �mm0;jj0 u=�u+ � l l0;jj0 �mm0;kk0 �u=u+ � l l0;mm0 � jj0;kk0 u�u+ � lm;jj0 � l0m0;kk0 + � l0m;jj0 � lm0;kk0� �� jj0;mn �nl0;kk0 Ælm0 + � jj0;mn �nl;kk0 Æl0m0�u� ��kk0;mn �nl0;jj0 Ælm0 + �kk0;mn �nl;jj0 Æl0m0� �u : (5.58)The kernels T�g;g, TÆg;g, UÆg;g and UÆg;�g are respetively obtained from Tg;�g, Tg;Æg, Ug;Ægand U�g;Æg by interhanging u$ �u and the appropriate indies. The remaining kernels arezero. For the di�erent olor ombinations we �ndSFa1;a21Fa1;a2 ����g!gg = � AFa1;a21Fa1;a2 ����g!gg = pN2 � 12 =N=3 p2 ; (5.59)where as in the ase q ! gq olor otet distributions are enhaned over olor singlet ones.The fators for the higher olor representations in the ase N = 3 are10Fa1;a2 ��g!gg = 10Fa1;a2 ��g!gg = 0 ; 27Fa1;a21Fa1;a2 ����g!gg = �p3 : (5.60)The 27 representation is hene even more strongly enhaned than the two olor otetombinations. Deuplet and antideuplet distributions are not generated by perturbativesplitting at lowest order. We reall that this was also the ase for the ladder graphsdisussed in setion 5.1.3.We see that the perturbative splitting mehanism gives rise to a multitude of two-parton distributions at high transverse momentum, whih we have olleted in table 2. Asthe omparison of (5.42), (5.52) and (5.56) shows, a ommon feature of all hannels is thedependene on the transverse momenta k and r.Position spae. The Feynman graphs for the splitting ontributions are naturally eval-uated in momentum representation. We now transform our results to position spae. Werestrit our attention to the splitting g ! q�q sine the other distributions an be treatedin lose analogy. Using the relation12� Z d2k eikz klk2 = i zlz2 (5.61)one an easily transform (5.42) to impat parameter spae,1Fa1;�a2(xi;zi;y) ���g!q�q = �s4�2 " fg1 (x1 + x2; �)x1 + x2 T l l0a1;�a2� x1x1 + x2� � 4�m�m0 � 2Æmm0�2M2�� ���2�2 h?g1 (x1 + x2; �)x1 + x2 U l l0mm0a1;�a2 � x1x1 + x2�# �y + 12z�l�y � 12z�l0�y + 12z�2�y � 12z�2 ; (5.62)
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Fq;�q F�q;��q F�q;�q Fq;��q FÆq;Æ�q FÆq;�q FÆq;��q Fq;Æ�q F�q;Æ�qfg1 � � � � �h?g1 � � �Iq;�q I�q;��q I�q;�q Iq;��q IÆq;Æ�q IÆq;�q IÆq;��q Iq;Æ�q I�q;Æ�qfg1 � � �h?g1 � � � � �Fg;q F�g;�q F�g;q Fg;�q FÆg;Æq FÆg;q FÆg;�q Fg;Æq F�g;Æqf q1 � � � � �h?q1 � � �Fg;g F�g;�g F�g;g Fg;�g FÆg;Æg FÆg;g FÆg;�g Fg;Æg F�g;Ægfg1 � � � � � � �h?g1 � � � � � � �Table 2. Overview of the two-parton distributions that reeive nonzero ontributions from pertur-bative splitting of a single quark or gluon. A ross indiates a nonzero ontribution at order �s.Not shown are entries for Fq;g and its analogs with polarization, whih are like those for Fg;q andits polarized ounterparts.where z = z1 � z2 ; � = 12(z1 + z2) : (5.63)fg1 (x; �) and h?g1 (x; �) are the Fourier transforms of the transverse-momentum dependentparton densities in (5.42). The distribution in (5.62) is singular at y� 12z1 = �12z2 and aty + 12z1 = 12z2, i.e. at the points where in the operator de�nition of F (xi;zi;y) either thetwo �elds on the left or the two �elds on the right of the �nal-state ut are taken at equaltransverse positions (see (2.85)).The form of the distributions Fa1;�a2(xi;ki;y) in the mixed representation is slightlymore involved. For onveniene we introdue the funtionD(k; r) = �k+ 12r��k � 12r��k + 12r�2�k � 12r�2 = 12 Z 1�1 dt k2 � 14r2�k2 + 14r2 + tkr�2 ; (5.64)whih appears in Fq;�q, F�q;��q and FÆq;Æ�q . Its Fourier transform an be written asD(k;y) = Z d2r(2�)2 eiryD(k; r)= 12 Z d2r(2�)2 Z 1�1 dtZ 10 d���k2 � 14r2� eiry��(k2+ 14r2+tkr) ; (5.65)where the Gaussian integral over r is straightforward to perform. Using the representation12 Z 10 d��p�1 exp���a2 � z24�� = 1a2p �za2 �pKp(az) (5.66)
{ 123 {



of the MaDonald funtions we obtainD(k;y) = 1� Z 1�1 dt e�2itky h �2itky � 1�K0�2p1� t2 jkjjyj�+ 2p1� t2 jkjjyjK1�2p1� t2 jkjjyj� i : (5.67)For the fator appearing in Fq;��q and F�q;�q one �nds in a similar fashion~D(k;y) = Z d2r(2�)2 eiry i�l l0�k+ 12r�l�k � 12r�l0�k + 12r�2�k � 12r�2= �l l0klyl0 2� Z 1�1 dt e�2itkyK0�2p1� t2 jkjjyj� : (5.68)For small k2y2 we an approximate the MaDonald funtions and perform the integralover t, whih givesD(k;y) = 1� h log(4k2y2) + 2 +O(k2y2)i ;~D(k;y) = �l l0klyl0 2� h log(4k2y2) + 2 � 2 +O(k2y2)i ; (5.69)where  is the Euler number. In the short-distane limit y2 ! 0 we thus have a logarithmidivergene in D(k;y) and hene in the distributions Fq;�q(xi;ki;y), F�q;��q(xi;ki;y) andFÆq;Æ�q(xi;ki;y).5.2.3 Contribution to the ross setionWe now investigate how the splitting ontribution to quark-antiquark distributions in �g-ure 33a enters in the ross setion for double hard sattering, as shown in �gure 37a.Conentrating on the fators that depend on transverse momenta, we have with the rosssetion formula (2.33) and the distributions from (5.42)� 2Yi=1 Z d2ki d2�ki Æ(2)(qi � ki � �ki)� Z d2r(2�)2 Fa1;�a2(xi;ki; r)F�a1;a2(�xi; �ki;�r) ����g!q�q/ Z d2�d2�� Æ(2)(�+ ��� q1 � q2) �fg1 (x1 + x2;�) fg1 (�x1 + �x2; ��) + : : : �� Z d2r d2k d2�k Æ(2)(k + �k� q) �k � 12r�l�k+ 12r�l0�k � 12r�2�k + 12r�2 ��k+ 12r�m��k � 12r�m0��k + 12r�2��k � 12r�2 (5.70)with q = 12(q1 � q2), where the ellipsis stands for terms involving the gluon Boer-Muldersfuntions h?g1 . Changing integration variables to k+ = k + 12r and k� = k � 12r, we anrewrite the last line asZ d2k+ kl+(k+ � q)mk2+(k+ � q)2 Z d2k� kl0�(k� � q)m0k2�(k� � q)2 : (5.71)
{ 124 {



Eah integral is infrared �nite but has a logarithmi divergene at large k�. This logarith-mi divergene also appears if we use the impat parameter spae representation (5.62).Aording to (2.36) the ross setion is then proportional toZ d2z1 d2z2 d2y e�iq1z1�iq2z2 Fa1;�a2(xi;zi;y)F�a1 ;a2(�xi;zi;y) ����g!q�q/ Z d2� e�i(q1+q2)� �fg1 (x1 + x2; �) fg1 (�x1 + �x2; �) + : : : �� Z d2z d2y e�iqz �y � 12z�l�y � 12z�m�y � 12z�4 �y + 12z�l0�y + 12z�m0�y + 12z�4 : (5.72)The last line diverges logarithmially for y = 12z and y = �12z. At these points onerespetively has y � 12z1 = �12z2 and y + 12z1 = 12z2, so that the singularities orrespondto on�gurations where partons are at the same transverse position, either to the right orto the left of the �nal-state ut.To understand the origin of this ultraviolet divergene, we go bak to the graph in�gure 37a. As mentioned in setion 5.2.1 this graph reeives leading ontributions fromtwo kinemati regions. In the �rst region, the virtualities and transverse momenta of thequarks are of order qT and thus muh smaller than Q, whereas in the seond region theyare of order Q. The approximations that are neessary to derive fatorization for doublehard sattering are only valid in the �rst region. However, the integrand in (5.71) doesnot derease fast enough with k� = 12(k1 � k2 � r) to suppress the seond region, sothat the fatorization formula (2.33) requires a suitable regularization in order to removeontributions from that region. A orresponding statement holds in the position spaeformulation.A simple way to regularize the ross setion formula in impat parameter spae is toimpose a lower uto� 1=�2 on (y + 12z)2 and (y � 12z)2. The integral in the last line of(5.72) then beomes�� Ælm Z 1jqj=� dww J0(w) +�Ælm � 2qlqmq2 � �jqj J1� jqj� �� (5.73)times the same expression with l ! l0 and m ! m0. The integral in (5.73) behaves likelog��=jqj� for � � jqj. The � dependene of the ross setion obtained in this way mustanel when one adds the ontribution from �gure 37a in the region of transverse loopmomenta of order Q. That region is naturally assoiated with single hard sattering asdisussed in setion 5.2.1. At this point, one must obviously be areful to avoid doubleounting between the parts of the graph that one assoiates with single or with doublehard sattering. The analogous double ounting problem in multijet prodution has beenpointed out in [141℄.To use a uto� in (5.72) is of ourse rather ad ho, and there should be better waysto onstrut a onsistent fatorization sheme in whih the formula for double-parton sat-tering has a ontrolled ultraviolet behavior and in whih the double ounting problem isproperly taken are of. One may for instane think of subtrating the perturbative splitting{ 125 {



ontribution of �gure 33 at large momenta or small transverse distanes in the de�nitionof the two-parton distributions, so that graphs like in �gure 37 are not inluded in doublehard sattering at all. To solve this issue is a nontrivial task and must be left to futurework.We already remarked that the integrals in (5.71) are �nite in the infrared. This is dueto the numerator fators and an be understood in simple physial terms, as noted in thedetailed analysis given in [142℄. The points where one of the four momenta k+, k+ � q,k� or k�� q vanishes orrespond to on�gurations where one of the four g ! q�q splittingproesses in �gure 37a proeeds in stritly ollinear kinematis. The amplitude for theollinear splitting g ! q�q is zero beause an on-shell gluon has heliity �1, whereas theheliities of q and �q add up to zero due to hirality onservation for massless quarks.Referring to the end of setion 5.2.1 we �nally determine the dependene of (5.70) onqT and on �. With jq1 + q2j � � the seond line sales like 1=�2, and with the behaviorof the third line just disussed we �nds2d�Q2i=1 dxi d�xi d2qi �����g. 37a � 1�2 log2 �2q2T ; (5.74)where � is an ultraviolet uto� muh larger than qT .5.3 Parton splitting in ollinear distributionsThe results of the previous setion are relevant not only for transverse-momentum de-pendent two-parton distributions but also for ollinear ones. As we have seen, ollineartwo-parton distributions appear in transverse-momentum integrated ross setions and inross setions at perturbatively large qT via the ladder graphs disussed in setion 5.1.Sine k1 and k2 are not �xed in ollinear distributions, the splitting ontributions we om-puted in setion 5.2.2 are relevant for F (xi; r) at large r and, after Fourier transform, forF (xi;y) at small y.5.3.1 Ultraviolet behaviorIntegrating (5.42) over k1 and k2, i.e. over k and �, one formally obtains� 2Yi=1 Z d2ki(2�)2 � 1Fa1;�a2(xi;ki; r) ���g!q�q = �s4�2 1x1 + x2 fg1 (x1 + x2) T l l0a1;�a2� x1x1 + x2�� Z d2k(2�)2 �k+ 12r�l�k � 12r�l0�k + 12r�2�k � 12r�2 ; (5.75)where the integration over � gives the ollinear gluon distribution fg1 (x1+x2), whereas theterm with h?g1 disappears due to rotation invariane. In the ase where T l l0a1;�a2 / Æl l0 , i.e.for Fq;�q, F�q;��q and FÆq;Æ�q, the integral over k is ultraviolet divergent. The orrespondingintegrals of Fq;��q and F�q;�q are proportional to �l l0 rlrl0 and hene vanish, as they mustaording to the onstraint (4.13) from parity invariane. An analogous disussion anbe given for the interferene distributions Ia1;�a2 and for the distributions resulting from
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the splitting proesses q ! gq or g ! gg. In all ases, ontributions going with theBoer-Mulders funtions h?q1 or h?g1 vanish after integration over � and one is left withontributions from the unpolarized distributions f q1 or fg1 .With the kernels T or V given in (5.43), (5.45), (5.53) and (5.57) we �nd that thesplitting mehanism generates nonzero ollinear two-parton distributionsFq;�q ; F�q;��q ; FÆq;Æ�q ; Iq;�q ; I�q;��q ; IÆq;Æ�q ; Fg;q ; F�g;�q ; FÆg;q ;Fg;g ; F�g;�g ; Fg;Æg ; FÆg;Æg ; (5.76)as well as the distributions obtained by interhanging the �rst and seond subsripts in(5.76) or by replaing quarks with antiquarks in Fg;q and its polarized ounterparts. Withthe exeption of FÆg;�q (and F�q;Æg, FÆg;��q, F��q;Æg) these are indeed all ollinear distribu-tions that are allowed by parity invariane and that are hiral even. For the distributionsdepending on polarization indies we haveF jj0Æq;Æ�q / Ijj0Æq;Æ�q / Æjj0 ; F jj0;kk0Æg;Æg / � jj0;kk0 ;F jj0Æg;q / F jj0g;Æg / 2� jj0;l l0rlrl0 = 2rj rj0 � Æjj0r2 : (5.77)To further investigate the ultraviolet divergene mentioned below (5.75) we fous onFq;�q for de�niteness. Sine D(k; r) in (5.64) falls o� as 1=k2 for �xed r and as 1=r2 for�xed k, one obtains logarithmi divergenes if one integrates over one or both of thesevariables. To regulate these divergenes one may work in 4� 2� dimensions. The result forFq;�q(xi;ki; r) is then the same as in (5.42) with a modi�ed kernelT l l0q;�q(u; �) = Æl l0 �u2 + (1� u)2 � �� : (5.78)Integrating over both transverse momenta and hanging integration variables to k+ =k + 12r and k� = k � 12r, one obtainsZ d2�2�r d2�2�kD(k; r) = Z d2�2�k+ kl+k2+ Z d2�2�k� kl�k2� ; (5.79)whih is zero due to rotation invariane. We note that integrating over k1, k2 and r putsall four �elds in the matrix element de�ning Fq;�q at the same transverse position, so thatone obtains a twist-four operator. If (5.79) were not zero but �nite after subtration ofthe logarithmially divergent piees, the graph in �gure 33a would ontribute to the saleevolution of a twist-four distribution. The vanishing of (5.79) thus reets the fat thatdistributions of twist four and of twist two (the ollinear gluon distribution in (5.75)) donot mix under evolution. The same zero result is obtained in any regularization shemethat respets rotational invariane.Integrating over k at �xed nonzero r and using the integral representation in (5.64),one obtains �2� Z d2�2�k D(k; r) = �1�� �2(1� �)�(1� 2�) �(�)�r2�2���= ��1� + log �2r2 + onst. +O(�)� : (5.80)
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This ontains an ultraviolet pole and an assoiated logarithm of the renormalization sale �2.The value of the onstant is not of relevane for our disussion. If r = 0 then the integralon the l.h.s. is saleless and therefore vanishes. To isolate the ultraviolet singularity in thatase, one an for instane give a small mass to the quarks. Up to orretions of order m2this leads to �2� Z d2�2�k 1k2 +m2 = �1�� �(�)�m2�2 ��� : (5.81)The ultraviolet pole and the assoiated logarithm are hene the same as for nonzero r.If one de�nes the ollinear distribution Fq;�q(xi; r) = R d2k1 d2k2 Fq;�q(xi;ki; r) in theMS sheme, the above 1=� pole is subtrated, together with a onstant. To leading orderin �s one �nds for the sale dependene19dd log �2 Fq;�q(xi; r) ���g!q�q = 1x1 + x2 fg1 (x1 + x2) Pq;g� x1x1 + x2� ; (5.82)where Pq;g(u) = �s2� u2 + (1� u)22 (5.83)is the familiar DGLAP splitting funtion (now inluding a olor fator TR = 1=2, unlikethe funtion Pqg we used in setion 5.1.3). We ome bak to this in the next setion. Let usnote that with the results in (5.52), (5.53) and (5.56), (5.57) we obtain relations analogousto (5.82) for Fg;q and Fg;g. On the r.h.s. of these relations we respetively �nd the DGLAPsplitting funtions Pg;q(u) and Pg;g(u), exept for terms proportional to Æ(1�u) in Pg;g(u).Quite interestingly, the situation hanges if we onsider Fq;�q(xi;y) instead of Fq;�q(xi; r).The Fourier transform of (r2)�� in 2� 2� transverse dimensions isZ d2�2�r e�iry (r2)�� = 41�2��1�� �(1� 2�)�(�) (y2)�1+2� ; (5.84)whih an be seen by writing (r2)�� = ��1(�) R10 d����1 e��r2 , performing the integralover r and then the one over �. The fator �(�) responsible for the ultraviolet divergenein (5.80) is thus aneled if one Fourier transforms from r to y, and the result is �nite for� = 0, Z d2k d2r(2�)2 e�iryD(k; r) = 1y2 : (5.85)The 1=y2 behavior an be obtained diretly in 4 dimensions by setting z = 0 in (5.62).We thus �nd that Fq;�q(xi; r) requires an ultraviolet subtration for the graph in �g-ure 33a, whereas Fq;�q(xi;y) does not. Let us see what we obtain if we de�ne a modi�ed y19We note that both �s and the gluon distribution fg in (5.75) also have a sale dependene, whihbeomes relevant at order �2s in the evolution equation.
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dependent distribution as the Fourier transform of the ultraviolet subtrated distributionFq;�q(xi; r), Fmodq;�q (xi;y) = Z d2r(2�)2 e�iry Fq;�q(xi; r) : (5.86)We have Fq;�q(xi; r) ���g!q�q = f(x1; x2)� log �2r2 + g(x1; x2) ; (5.87)Fq;�q(xi;y) ���g!q�q = f(x1; x2) 1y2 ; (5.88)where the expliit expressions of f and g are easily obtained but not relevant for ourdisussion. As shown in appendix A the Fourier transform of (5.87) givesFmodq;�q (xi;y) ���g!q�q = f(x1; x2) � 1y2�+(�) + g(x1; x2) Æ(2)(y) ; (5.89)where� 1y2 �+(�) = lim"!0 � 1y2 �(y2 � ")� Æ(2)(y)Z d2y0 1y02 �(y02 � ") �(b20 � �2y02)� (5.90)with b0 = 2e� . We thus �nd the same y dependene in (5.88) and (5.89), up to termsonentrated at the singular point y = 0. This is not surprising sine the ultravioletdivergent term in (5.80) is independent of r.In setion 5.1.1 we have shown that the ontribution of ladder graphs at large y to theross setion involves an integral Z d2y F (ui;y)F (�ui;y) (5.91)aording to (5.11) and (5.14). Sine the ollinear two-parton distributions behave like1=y2 at small y, the above integral has a linear divergene for small y2 and is hene notde�ned as it stands. A orresponding linear divergene is found if one Fourier transformsfrom y to r, Z d2r F (ui; r)F (�ui;�r) ; (5.92)where aording to (5.87) the distributions behave like log(r2=�2) for large r. The ultra-violet subtration already inluded in the de�nition of F (ui; r) is hene not suÆient torender the integral in (5.92) �nite.The reason for the unphysial divergenes in (5.91) and (5.92) is that the ross setionformulae ontaining these integrals have been derived for the region where 1=y2 or r2 ismuh smaller than q2T . We thus enounter a similar problem as in setion 5.2.3, with thedi�erene that the divergene to be regulated is now linear instead of logarithmi. Tomake the ross setion formulae (5.11) and (5.14) well-de�ned, one must either remove or{ 129 {



suppress the y integral in the region where jyj is not large ompared with 1=qT , or onemust de�ne F (xi;y) suh that in this region the ontribution from perturbative splittingas in �gure 33 is subtrated. Along with suh a proedure, one must provide a presriptionfor evaluating the splitting ontribution at small jyj in suh a way that there is no doubleounting, as disussed in setion 5.2.3.Integrating the ross setion (2.91) over q1 and q2, we readily obtain the integral in(5.91) with ui = xi and �ui = �xi. The disussion of the previous paragraph arries overto that ase, with the di�erene that the requirement for the validity of the ross setionformula is then jyj � 1=Q instead of jyj � 1=qT . For the orresponding momentumintegral (5.92) with ui = xi and �ui = �xi one must require jrj � Q instead of jrj � qT .We note that in [143℄ it was proposed to regulate this integral by imposing an upper uto�r2 < min(q21 ; q22). By itself this is learly insuÆient to obtain a reliable result, sine theontribution from r2 outside that region is large and needs to be evaluated as well.5.3.2 Sale evolutionLet us now investigate the sale evolution of ollinear two-parton distributions. We fouson the olor-singlet ombinations 1F , whih are most losely related with single-partondensities as we already saw in setion 3.5. For de�niteness we onsider the quark-antiquarkdistribution 1Fq;�q, whih we studied extensively in the previous setion. The generalizationto other parton and polarization ombinations is straightforward.The dependene on the sale � of ollinear parton distributions arises from the reg-ularization and subtration of ultraviolet divergenes in their de�nition. This involvesdivergenes from self-energy graphs (whih also our in transverse-momentum dependentdistributions and an be expressed in terms of suitable Z fators) and divergenes from re-gions of large transverse parton momenta. For a single-parton distribution the ontributionfrom the high-transverse-momentum tail was already disussed in setion 5.1.2.The sale dependene in the ollinear distributions 1F (xi;y) arises from self-energygraphs and in addition from the ladder graphs in �gure 30, whih aording to (5.12)and (5.13) give rise to ultraviolet divergent integrals R d2k1 d2k2 1F (xi;ki;y) unless oneperforms suitable subtrations. Sine the ladder and self-energy graphs have exatly thesame struture as for single-parton distributions, the orresponding evolution equationreads dd log �2 1Fq;�q(x1; x2;y) = Xb1=q;g Z 1�x2x1 du1u1 Pq;b1�x1u1� 1Fb1;�q(u1; x2;y)+ Xb2=�q;g Z 1�x1x2 du2u2 P�q;b2�x2u2� 1Fq;b2(x1; u2;y) (5.93)for a quark-antiquark distribution. The splitting funtions Pa;b now inlude the ontribu-tions from virtual orretions, unlike the orresponding kernels in setion 5.1.3. Note thatthe labels b1 and b2 do not take the value Æg here, beause the orresponding kernels Pq;Ægand P�q;Æg vanish due to rotation invariane, see our remark below (5.18).
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The evolution equation (5.93) has the struture of a usual DGLAP equation for eahparton. The orresponding operator appearing in the distribution Fq;�q(xi;y) isn �q��12z2�W [�12z2; 12z2℄ ��q q�12z2�oren;�z+2 =0;z2=0� n �q�y � 12z1�W [y � 12z1; y + 12z1℄ �q q�y + 12z1�oren;�z+1 =y+=0;z1=0 ; (5.94)where the Wilson line W [�0; �℄ is de�ned in (3.113) and where f : : : gren;� indiates thateah bilinear operator �qWq is renormalized at sale � in the same way as for single-partondistributions. As long as the transverse distane y between the two bilinear operatorsremains �nite, no further ultraviolet divergenes appear, and one has the produt of tworenormalized twist-two operators. As remarked earlier in the literature, one may hoosedi�erent renormalization sales �1 and �2 for the two operators, whih appears usefulwhen one has two hard-sattering proesses with rather di�erent hard sales. The separateevolution equations in �1 and �2 are then simply the usual ones with a single DGLAPkernel.For the ollinear distributions 1Fa1;a2(xi; r) that depend on the relative momentum rthe situation is di�erent, as we have seen in the previous setion. The splitting graph in�gure 33a and higher-order orretions as in �gure 33b give rise to additional ultravioletdivergenes. Their subtration leads to an inhomogeneous term in the evolution equation.At leading order in �s one hasdd log �2 1Fq;�q(x1; x2; r) = Xb1=q;g Z 1�x2x1 du1u1 Pq;b1�x1u1� 1Fb1;�q(u1; x2; r)+ Xb2=�q;g Z 1�x1x2 du2u2 P�q;b2�x2u2� 1Fq;b2(x1; u2; r)+ 1x1 + x2 Pq;g� x1x1 + x2� fg1 (x1 + x2) ; (5.95)where the extra term follows from (5.82). At higher orders in �s, the inhomogeneous termwill involve a onvolution integral, as an be antiipated from the graph in �gure 33b.The appearane of the extra term in the evolution equation an also be understood in theimpat parameter representation by writing Fq;�q(xi; r) as a Fourier transformFq;�q(xi; r;�) = � Z d2y e�iry Fq;�q(xi;y;�) �ren;� : (5.96)Sine Fq;�q(xi;y) has a 1=y2 singularity at small y, the integral over this variable is log-arithmially divergent and requires a subtration in addition to those already made inFq;�q(xi;y). We have indiated this extra subtration by [ : : : ℄ren;�.For the distributionFq;�q(xi;�) =def Fq;�q(xi; r = 0;�) = � Z d2y Fq;�q(xi;y;�) �ren;� (5.97)
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the evolution equation (5.95) has long been known in the literature, see [144{146℄ and thereent detailed study [147℄. We wish to omment in this ontext on an ansatz that is oftenmade in phenomenologial studies, in whih the y dependent two-parton distributions arewritten as F (xi;y;�) = f(y)F (xi;�) ; (5.98)where f(y) is a smooth funtion normalized as R d2y f(y) = 1. A typial hoie for f(y)is e.g. a Gaussian or a sum of Gaussians. This type of ansatz is obviously inonsistent ifF (xi;y;�) is de�ned from the produt (5.94) of twist-two operators, sine the � dependeneof the l.h.s. is then given by the homogeneous evolution equation whereas the � dependeneon the r.h.s. is governed by the inhomogeneous evolution equation (5.95). If one insteadde�nes the y dependent distribution as the Fourier transform of F (xi; r) as in (5.86) thenthe ansatz (5.98) is onsistent regarding evolution sine by onstrution Fmod(xi;y;�)evolves as in (5.95). We do however not think that this proedure is satisfatory. Aswe have seen in (5.89), F (xi;y)mod di�ers from F (xi;y) only by terms proportional toÆ(2)(y), and suh terms do not appear in the ansatz (5.98), whih is smooth and �nite aty = 0. In more physial terms, we reall that the inhomogeneous term in the evolutionequation (5.95) has its origin in the 1=y2 behavior of F (xi;y) at short distanes, whih isnot desribed by (5.98).We have seen in setion 5.2.3 that this short-distane behavior prevents us from usingeither F (xi;y) or Fmod(xi;y) in the double-sattering fatorization formula as it stands.An ansatz like (5.98) with a smooth funtion f(y) does not have this problem and may beregarded as modeling a y distribution where the perturbative splitting ontribution thatgives rise to the 1=y2 singularity has been removed. Sine the ansatz is ad ho, one annotsay whih evolution equation should then be used on both sides of (5.98). Our disussionsuggests that the homogeneous form (5.93) may be more appropriate, at least for valuesy of typial hadroni size, whih are of ourse most important when the ansatz is used inthe fatorization formula. With this hoie, one also retains onsisteny with respet toevolution if one makes the additional ansatz F (xi; �) = f(x1; �)f(x2; �), as is often done.To �nd a systemati solution that treats both splitting and non-splitting ontributions ina onsistent manner remains a task for future work.For the reasons disussed in setion 3.5, the evolution of olor otet distributions 8Fdi�ers from the one of 1F , and these di�erenes have not yet been worked out in detail.However, the issues disussed in the present setion a�et 8F in the same way as 1F , giventhat both the ladder graphs in �gure 30 and the splitting graph in �gure 33a di�er only byoverall fators between the singlet and otet hannels. They hene give rise to the samelogarithmi divergenes when the relevant transverse momenta are integrated over. Onemay therefore expet that, one a solution of the above problems for singlet distributionsis found, it will be possible to adapt it to the otet setor.
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6 ConlusionsWe have investigated several aspets of multiparton interations in QCD. Suh interationsan ontribute to hadron-hadron ollisions whenever one has a �nal state with severalgroups of partiles for whih the vetor sum of transverse momenta is small ompared withthe large sale Q that haraterizes the proess. As we have shown in setions 2.1.3 and 2.4,multiple interations are then not power suppressed in 1=Q ompared with the mehanismwhere these groups of partiles are produed in a single hard sattering. Examples arethe prodution of two lepton pairs originating from the deay of two vetor bosons withlow transverse momenta, or the prodution of two dijet pairs that are approximately bak-to-bak. For small parton momentum frations x, whih are typial of ollisions at theLHC, multiple hard sattering an even be enhaned beause one expets multipartondistributions to rise faster with dereasing x than single-parton densities, as we argued insetion 2.5.Given the importane of transverse momenta in the �nal state, we have given a fa-torization formula for multiple hard sattering in terms of multiparton distributions thatdepend on the transverse momenta of the partons. Suh a formula an be fully derivedfor lowest-order Feynman graphs and generalizes the more familiar desription in termsof ollinear (i.e. transverse-momentum integrated) multiparton distributions given in theliterature [52, 53, 66℄. A physially intuitive interpretation is obtained if one expresses theross setion in a mixed representation, in whih the multiparton distributions depend onthe average transverse momentum of the partons and on their average transverse distanefrom eah other, where the \average" refers to the sattering amplitude of the proess andits omplex onjugate. These distributions have the struture of Wigner funtions.The simple piture just skethed is however ompliated by the presene of orrelationand interferene e�ets, some of whih have been pointed out earlier in the literature[89℄. The spin and olor of the partons desribed by a multiparton distribution an beorrelated, and suh orrelations hange the overall rate of multiple interations. Two-quark distributions allow two olor ouplings, whih we lassi�ed as olor singlet and olorotet, whereas for gluons a number of olor ouplings appear in addition to the olor singletone, see setion 2.3. In setion 4.1.2 we have shown that spin orrelations an also a�etthe distribution of partiles in the �nal state, using four-lepton prodution as an example.Further ontributions to the ross setion an ome from interferene e�ets in fermionnumber or in quark avor (�gures 6 and 7) and from the interferene between single andmultiple hard sattering (�gure 9a). One an however expet that these interferene e�etswill not bene�t from the small-x enhanement of multiple interations mentioned above(although in the ase of interferene between single and multiple sattering the situationis not entirely settled as explained in setion 2.5). Regarding \resattering ontributions"of the type shown in �gure 12a, we have shown that their evaluation in terms of twosequential sattering proesses with on-shell external partons is inappropriate and that,when alulated properly, suh ontributions are suppressed by powers of 1=Q.How large the above orrelations and interferene e�ets are remains an importantopen question, both for the phenomenology of multiple interations and from the point of
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view of hadron struture. The possibility to study moments of multiparton distributions onthe lattie as explained in setion 4.2, as well as the approximate relations with generalizedparton distributions we derived in setions 2.1.5 and 4.3 provide two possible avenues toinvestigate these issues further.A proper fatorization formula in QCD requires muh more than an analysis of thelowest-order Feynman graphs ontributing to the proess in question. In setion 3 wehave taken �rst steps towards a fatorization proof for double hard sattering in terms oftransverse-momentum dependent distributions. Our investigation only applies to proesseswhere eah hard satter produes olor-singlet partiles, given the limitation of our urrentunderstanding for single hard-sattering proesses [111℄. For de�niteness we have restritedour analysis to the double Drell-Yan proess. We have shown how ollinear and soft gluonexhange at order �s an be arranged into Wilson lines, whih are basi building bloksin the onstrution of an all-order fatorization formula. We have also seen that at thisorder soft-gluon e�ets anel in fatorization formulae that involve ollinear two-partondistributions in the olor singlet setor, whereas they do not anel in the olor otet setor.In setion 3.2 we have listed the many issues that remain to be lari�ed and worked out fora full fatorization proof. The most ritial questions are probably whether one an showthat the e�et of soft gluons in the Glauber region anels in the ross setion and whetherthe double ounting problem mentioned below an be solved in a satisfatory way.Our alulation of soft-gluon e�ets at leading order in �s also allows us to investigatethe struture of Sudakov logarithms in the double Drell-Yan proess, extending the methodof Collins, Soper and Sterman [118℄. We �nd that the leading double logarithms are givenby the produt of the orresponding Sudakov fators for eah single sattering proess,whereas beyond this approximation soft gluon e�ets onnet the two hard satters ina nontrivial way. In the region where all transverse parton momenta are large and thetransverse distane y between the two partons is small ompared to a hadroni sale, we�nd that Sudakov e�ets favor the olor singlet oupling in two-quark distributions. If thisresult ould be generalized to large y, it would provide a valuable simpli�ation.In generi kinematis, the desription of multiple interations involves a multitude ofterms, with many unknown distributions that desribe orrelation e�ets already in thease of double hard sattering (not to speak of the ase with three or more satters).The preditive power of the theory is inreased in the region where the net transversemomentum qT for eah �nal state produed by a hard sattering is large ompared withthe sale � of nonperturbative interations (while still being small ompared with the saleQ haraterizing the hard-sattering proesses). Apart from the possible simpli�ationdue to Sudakov e�ets just mentioned, the transverse-momentum dependent multipartondistributions an then be omputed in terms of ollinear distributions and a hard satteringat sale qT . The generation of high transverse momenta an proeed by ladder graphs as in�gure 30, and we �nd that the olor fators of these graphs favor the olor singlet ouplingin two-parton distributions.A di�erent mehanism is shown in �gure 33, where one parton splits into two partonsthat subsequently take part in a hard satter. By expliit alulation at order �s we �ndthat this splitting mehanism generates a multitude of spin orrelations between the two{ 134 {



emerging partons. For q�q distributions the olor singlet oupling is preferred, whereas forqg and gg distributions the opposite is the ase. Contributions from ladder graphs andfrom parton splitting graphs ompete with eah other in the double sattering ross se-tion. An overview is given in table 1, where we see that ompared with splitting graphsthe ontribution of ladder graphs is suppressed by powers of �=qT . On the other hand, thesplitting graphs lak the small-x enhanement disussed earlier, so that one annot deideon generi grounds whih mehanism is more important in given kinematis. Finally, we�nd that splitting ontributions require a modi�ation of the formalism outlined so far,beause they inrease so strongly for dereasing interparton distane y that one obtainsdivergent integrals when inserting them into the fatorization formulae. This is loselyrelated with the problem that graphs like in �gure 37a an either be interpreted as repre-senting double hard sattering with parton splitting in eah two-parton distribution, or asrepresenting a single hard-sattering proess at two-loop level. A onsistent fatorizationsheme must ensure that there is no double ounting of this graph in di�erent kinematiregions. A satisfatory solution of these problems remains to be found, and as we arguedin setion 5.3.2 suh a solution will also have onsequenes on the evolution equation forollinear multiparton distributions.In summary, we �nd that a systemati desription of multiparton interations in QCDinvolves a onsiderable degree of omplexity, but that there are several elements that hintat possible simpli�ations. More work is required to work out these simpli�ations and toput the theory on �rmer ground.A Two-dimensional Fourier transform of the logarithmIn this appendix we prove the relationZ d2r4� eiry log �2r2 = lim"!0� 1y2 �(y2 � ")� Æ(2)(y)Z d2y0 1y02 �(y02 � ") �(b20 � �2y02)�(A.1)with b0 = 2e� , whih we used in (5.89). To this end we integrate the relation over a testfuntion, whih must be di�erentiable and derease suÆiently fast for y2 !1. We haveI = Z d2y f(y)Z d2r4� eiry log �2r2 = Z d2y f(y)Z d2r4� �1i ��yj rjr2 eiry� log �2r2= Z d2y �i ��yj f(y)� Z d2r4� eiry rjr2 log �2r2 : (A.2)The integral over r is onvergent and givesZ d2r4� eiry rjr2 log �2r2 = i2 yjjyj Z 10 dr J1�rjyj� log �2r2 = i2 yjy2 log �2y2b20 ; (A.3)
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