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Expliit Thin-Lens Solutionfor an Arbitrary Four by Four Unoupled Beam Transfer MatrixV.Balandin�Deutshes Elektronen-Synhrotron DESY, Notkestrasse 85, 22607 Hamburg, GermanyS.OrlovFaulty of Computational Mathematis and Cybernetis,M.V.Lomonosov Mosow State University, 119991 Mosow, Russia(Dated: May 8, 2013)In the design of beam transport lines, one often meets the problem of onstruting a quadrupolelens system that will produe desired transfer matries in both the horizontal and vertial planes.Nowadays this problem is typially approahed with the help of omputer routines, but searhingfor the numerial solution one has to remember that it is not proven yet that an arbitrary fourby four unoupled beam transfer matrix an be represented by using a �nite number of drifts andquadrupoles (representation problem) and the answer to this question is not known not only for moreor less realisti quadrupole �eld models but also for the both most ommonly used approximationsof quadrupole fousing, namely thik and thin quadrupole lenses. In this paper we make a stepforward in resolving the representation problem and, by giving an expliit solution, we prove thatan arbitrary four by four unoupled beam transfer matrix atually an be obtained as a produt ofa �nite number of thin-lenses and drifts.I. INTRODUCTIONIn the design of beam transfer lines, one often enoun-ters the problem of �nding a ombination of quadrupolelenses and �eld free spaes (drifts) that will produepartiular transfer matries in both the horizontal andthe vertial planes. Nowadays this problem is typiallyapproahed with the help of omputer routines whihminimize the deviations from the desired matries asfuntion of the quadrupole strengths, lengths and dis-tanes between them. Although very sophistiated soft-ware beame available for these purposes during the pastdeades, there is an important theoretial question whihhas not been answered yet and whose answer ould a�etthe strategy and eÆieny of numerial omputations.Searhing for a numerial solution, one has to rememberthat it is not proven yet that an arbitrary four by fourunoupled beam transfer matrix an be represented byusing a �nite number of drifts and quadrupoles (repre-sentation problem) and the answer to this question is notknown not only for more or less realisti quadrupole �eldmodels but also for the both most ommonly used ap-proximations of quadrupole fousing, namely thik andthin quadrupole lenses.In this paper we make a step forward in resolving therepresentation problem and prove that an arbitrary fourby four unoupled beam transfer matrix atually an beobtained as a produt of a �nite number of thin-lensesand drifts. Even though our proof uses more thin lensesthan probably needed, we believe that the solution pro-vided is not only of theoretial interest, but ould also�nd some pratial appliations beause it uses expliit�Eletroni address: vladimir.balandin�desy.de

analytial formulas onneting thin-lens parameters withthe elements of the input beam transfer matrix.Though the thin-lens kik is the simplest model ofthe quadrupole fousing, its role in aelerator physisan hardly be overestimated. The thin-lens quadrupoleapproximation reveals the analogy between light optisand harged partile optis and, if one takes into aountdiÆulties of analytial manipulations with the next byomplexity thik-lens quadrupole model [1, 2℄, is an in-dispensable tool for understanding priniples and limi-tations of the already available optis modules and fordevelopment of the new optis solutions (see, as goodexamples, papers [3{7℄).The paper by itself is organized as follows. In Se.II we introdue all needed notations and give the lowerbound on the number of drifts and lenses whih are re-quired for a solution of the representation problem byproviding an example of a matrix whih annot be ob-tained using �ve thin lenses and �ve independently vari-able drift spaes. This result is somewhat unexpetedand up to some extent ontradits a rather widespreadopinion that the typial problem an be solved by tak-ing a number of parameters equal to the number of on-straints available. We see that although the four by fourunoupled beam transfer matrix has only 6 degrees offreedom, there are matries whih annot be representednot only by three thin lenses and three drifts (six pa-rameters), but also by �ve thin lenses and �ve drifts (tenparameters). This example, the example provided bythe matrix (15), other of our attempts (though omittedin this paper) to �nd thin-lens deompositions for par-tiular beam transfer matries and the properties of theexpliit solution given below in this paper, lead us to theonjeture that in order to represent an arbitrary four byfour unoupled beam transfer matrix one needs at leastsix thin lenses if the distanes between them an be var-
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2ied (independently or not) or at least seven thin lenses ifthis variation is not allowed.In Se. III we prove that an arbitrary four by four un-oupled beam transfer matrix an be obtained as a prod-ut of a �nite number of thin-lenses and drifts by givingan expliit solution of the thin-lens representation prob-lem whih uses equally spaed thin lenses. The ore ideaof our approah is the representation of the matrix of thethin-lens multiplet as a produt of elementary P matri-es (the de�nition and the properties of the matrix P anbe found in Appendix A) with subsequent redution ofthe initial 2D problem to two independent 1D problems.We use in this setion the equally spaed thin-lens sys-tem beause it allows one to make suh a redution witha minimum of tehnial details. The solution obtainedutilizes 13 lenses if the spaing between them is �xed be-forehand and 12 lenses if this distane an be used as anadditional parameter. Thus, it uses six more lenses thanthe minimal number stated in our onjeture, but thesetting of these six lenses depends only on the distanebetween lenses and therefore does not depend (at leastdiretly) on the partiular input beam transfer matrix.In Se. IV we onsider the ase of arbitrarily spaedthin lenses. First, we show that the solution of the rep-resentation problem presented in the previous setion isstill valid after some minor modi�ations. Next we studyin greater detail the ways to transform the matrix of thedrift-lens system to the produt of the elementary P ma-tries (see formulas (56)-(61) and (70)-(75) below). Therepresentation of the matrix of the thin-lens multiplet asa produt of elementary P matries (together with themultipliation formula (A4)) is a useful new tool for theanalytial study of the properties of thin-lens systems. Italso gives some lari�ation of the question why the roleof the variable drift spaes and the role of the variablelens strengths are di�erent when they are used as �ttingparameters.This paper is mostly a theoretial paper and its mainpurpose is to turn the ommon believe that an arbitraryfour by four unoupled beam transfer matrix an be ob-tained as a produt of a �nite number of thin lenses anddrifts into proven sienti� fat. Still, both, the devel-oped new tehnique for the analytial study of the prop-erties of thin-lens multiplets and the expliit thin-lenssolution presented in this paper, are of independent in-terest. To illustrate that, in Appendix B we apply ourP matrix approah to the study of four-lens beam mag-ni�ation telesopes and �nd new, previously unknownanalytial solutions for this important optis module. InAppendix C, we apply the expliit solution developedin this paper to the design of a beam line whih allowsan independent san of horizontal and vertial phase ad-vanes while preserving the entrane and exit mathingonditions for the Twiss parameters.Besides that thin-lens bloks with deoupled transverseations introdued in this paper are another point ofgeneral interest. Although the idea of deoupled tun-ing knobs by itself is not new in the �eld of aelerator

physis (see, for example, [8, 9℄), our approah is newand is not based on an iterative usage of small steps in thelens strengths obtained at eah iteration by linearization.II. STATEMENT OF THE PROBLEM ANDPRELIMINARY CONSIDERATIONSLet M be an arbitrary four by four unoupled beamtransfer matrix and let the two by two sympleti ma-tries Mx and My be its horizontal and vertial fousingbloks, respetively. Let us denote by Q(g) the transfermatrix of the one-dimensional thin lens of strength g andby D(l) the transfer matrix of the one-dimensional driftspae of length l:Q(g) = � 1 0g 1 � ; D(l) = � 1 l0 1 � : (1)The problem of representation of the matrixM by a thin-lens system an then be written asD(ln)Q(�gn) � : : : �D(l1)Q(�g1) = Mx;y; (2)where (here and later on) one has to take the upper signin the ombinations � and � together with the index xand the lower sign together with the index y.Note that the drift-lens system presented on the left-hand side of Eq. (2) onsists of equal numbers of driftsand lenses and the �rst element whih the beam seesduring its passage is a thin-lens. Alternatively, one anonsider equationQ(�gn)D(ln) � : : : �Q(�g1)D(l1) = Mx;y; (3)where the �rst element is a drift spae, or one an use thedrift-lens system with a nonequal number of drifts andlenses whih starts and ends with a drift (or a lens), butfor the moment this is not important.There are many unanswered questions related to Eq.(2), the most interesting for us in this paper is the fol-lowing: given a matrix M , does there exist a number nsuh that these equations have a solution? If the answerto this question is positive, ould the number n be hosenindependently from the input matrix M and, if it is alsopossible, what is the minimal n required?From a mathematial point of view, Eq. (2) is a systemof eight polynomial equations in 2n unknowns and forany polynomial system onsidered over an algebraiallylosed �eld of omplex numbers there is an algorithmiway to answer the question if this system has in�nitelymany solutions or has a �nite number of solutions, or hasno solutions at all. This an be done by transforming theoriginal system to a speial form alled a Gr�obner basisand, very loosely speaking, is an analogue of the Gaussianelimination proess in linear algebra [10℄. The Gr�obnerbasis an be omputed in �nitely many steps and, more-over, nowadays its alulation an be done with the helpof symboli manipulation programs like MATHEMAT-ICA and MAPLE.



3Unfortunately, we are interested in the real solutions ofEq. (2) onstrained additionally by the requirements forthe drift lengths to be nonnegative and therefore we an-not use all bene�ts provided by the Gr�obner basis theory.Nevertheless, the use of the Gr�obner basis approah, al-though it did not help us to solve the problem in general,it was very useful in providing examples of partiular ma-tries whih annot be obtained using a ertain numberof thin lenses and drift spaes. For example, using theGr�obner basis tehnique, it is possible to prove that thematrix M withMx = My = � 1 0�1 1 � (4)annot be represented by �ve thin lenses and �ve variabledrift spaes starting either from a lens like in Eq. (2) orfrom a drift like in Eq. (3).This example, the example provided by the matrix(15), many other of our attempts to study the repre-sentation problem for partiular beam transfer matries,and the properties of the expliit solution given belowin this paper lead us to the onjeture that in order tobe able to represent an arbitrary four by four unoupledbeam transfer matrix one needs at least six thin lensesif the distanes between them an be varied (indepen-dently or not) or at least seven thin lenses with nonzerodrift spaes between them if this variation is not allowed.To �nish this setion, let us note that in the above dis-ussions we made no use of the fat that we are interestednot in the general system of polynomial equations, butonly in the polynomial system produed by a produt ofmatries with simple inversion properties:Q�1(g) = Q(�g); D�1(l) = D(�l): (5)Choosing some k = 1; : : : ; n � 1 and using (5), one anrewrite the system (2) in the equivalent form:D(lk)Q(�gk) � : : : �D(l1)Q(�g1) =Q(�gk+1)D(�lk+1) � : : : �Q(�gn)D(�ln)Mx;y: (6)This trik an be used for the elimination of a part ofthe unknowns from the original system by solving Eq.(6) with respet to the variables g1; : : : ; gk; l1; : : : ; lk orone may even think to onstrut an iterative solutionmethod whih ould be onsidered as matrix version ofthe method of suessive elimination of unknowns [6, 11℄.This method was developed espeially to deal with thethin-lens multiplets and was used in [11℄ in an attempt toharaterize all unoupled beam transfer matries whihan be obtained by using three thin lenses and three driftspaes. Unfortunately, however this approah did notgive us any additional notieable simpli�ations in thesolution of the general representation problem.

III. SOLUTION OF 2D PROBLEM USINGEQUALLY SPACED THIN LENSESIn this setion we will give an expliit solution ofthe thin-lens representation problem whih uses equallyspaed thin-lenses. Instead of Eq. (2) or Eq. (3), we willonsider the systemB(mn; �gn; pn) � : : : � B(m1; �g1; p1) = Mx;y; (7)where as an elementary building blok we take a thin lenssandwihed between two drift spaesB(m; �g; p) = D(p)Q(�g)D(m): (8)If the blok length l = m+ p > 0, then one an repre-sent the blok transfer matrix in the formB(m; �g; p) = S�1(m; p)P (2� lg)S(m; p); (9)where S(m; p) = 1pl � 1 m�1 p � (10)and P (a) = � a 1�1 0 � : (11)Note that the properties of the matrix P (and other el-ementary matries used in this paper) an be found inAppendix A.Let us assume that in the system (7) all mk and all pkare equal to eah other, i.e., thatm1 = : : : = mn = m; p1 = : : : = pn = p; (12)and let l = m+ p > 0. The priniple simpli�ation thatours in this ase is that after the substitution of therepresentation (9) into Eq. (7) the matries S(m; p) andS�1(m; p) anel eah other and we obtainP (2� lgn) � : : : � P (2� l g1) = M̂x;y; (13)where M̂x;y = S(m; p)Mx;y S�1(m; p): (14)Equations (13) give the dimensionless form of Eq. (7)and, additionally, one sees that while the original system(7) is formed by the produt of 2n+ 1 interleaved thin-lens and drift matries (with neighboring drifts lumpedtogether), the system (13) inludes only n + 2 matriesdepending on unknowns (there are n + 2 unknowns: nlens strengths plus two variables haraterizing the bloklength and the position of the lens inside the blok) andn of them are P matries.Nevertheless, the system (13) is still too ompliatedto �nd easily its solutions (or even to prove their ex-istene) for an arbitrary matrix M and with the num-ber of lenses n equal to six or seven as required by our



4onjeture. Instead we will provide an expliit solutionwhih utilizes 13 lenses if the parameters m and p are�xed and are independent from the input matrixM , and12 lenses if m and p an be varied. The main idea ofour solution is the redution of the 2D problem (13) totwo independent or, more exatly, almost independent1D problems by onstruting thin-lens bloks whih anat in the horizontal and the vertial planes similar to asingle P matrix, but whose ations for both planes anbe hosen independently. At �rst we will onsider a so-lution of the 1D problem in terms of P matries. Asthe next step we will introdue a four-lens blok with de-oupled transverse ations and then will give an expliitsolution of the omplete 2D problem. Besides that wewill disuss the reipe for onstruting lens bloks withdeoupled transverse ations with more than four lenses.Before giving the tehnial details let us onsider onemore example obtained with the help of the Gr�obner ba-sis tehnique. Let us assume that m and p are �xed andlet the matrix M be suh that the matrix M̂ in (13) isequal to the sympleti unit matrix:M̂x = M̂y = � 0 1�1 0 � : (15)Then this matrix M an not be represented by less thanseven thin lenses and with seven lenses there are many so-lutions whih geometrially an be viewed as six distintparallel straight lines in the seven-dimensional spae oflens strengths.A. 1D problem in terms of P matriesAording to our plan we will prove in this subsetionthat every real sympleti 2 � 2 matrix M = (mij) anbe represented as a produt of at most four P matries.First, we will onsider the ase of three P matries andwill �nd that three P matries are insuÆient for therepresentation of an arbitrary 2 � 2 sympleti matrix.Next we will swith to the ase of four P matries andwill show that with four P matries a solution an alwaysbe found, but it is always nonunique.Let us start with the ase of three P matries, i.e.,from the equationP (z3)P (z2)P (z1) = M: (16)This matrix equation is, in fat, the system of the fourequations for the four matrix elements8><>: z3 � (z1 z2 � 1)� z1 = m11z2 = �m22z2 z3 � 1 = m12z1 z2 � 1 = �m21 (17)and, as it is well known, due to sympletiity of the ma-tries on both sides of (16) these four equations shouldbe equivalent to some system onsisting of three equa-tions only. In order to obtain suh a system let us �rst

substitute z1 z2� 1 = �m21 into the �rst equation of thesystem (17) and then plug z2 = �m22 in the equationsthree and four. Beause in the resulting system8><>: z1 = �m11 �m21 � z3z2 = �m22m22 � z3 = �1�m12m22 � z1 = �1 +m21 (18)the fourth equation is equal to the �rst equation multi-plied bym22 minus the third equation multiplied bym21,it an be omitted. Thus we obtain that the system of thefour third order polynomial equations (17) is equivalentto the system 8<: z1 = �m11 �m21 � z3z2 = �m22m22 � z3 = �1�m12 (19)whih is linear in the unknowns z1, z2, and z3. More-over, this system already has a triangular form and itssolvability depends only on the solvability of the thirdequation with respet to the variable z3.Elementary analysis shows that there are three possi-bilities for the solutions of the system (19). If m22 6= 0,then there exists a unique solutionz1 = m21 � 1m22 ; z2 = �m22; z3 = �m12 + 1m22 : (20)If m22 = 0 and m21 = 1 (i.e if M = �P (�m11)), thenthere exists a one-parameter family of solutions:z1 + z3 = �m11; z2 = 0: (21)Finally, ifm22 = 0 and m21 6= 1, then there is no solutionat all.Very loosely speaking, the ondition m22 = 0 de�nesthe two-dimensional surfae of singularities in the three-dimensional spae of 2�2 real sympleti matries. Thissurfae, in the next turn, ontains the one-dimensionalurve seleted by the additional relation m21 = 1. Ifthe matrix M (represented as a point in our three-dimensional spae) lies outside of the surfae of singu-larities, then a solution for suh a matrix exists and isunique. If the point representing the matrix M belongsto the surfae of singularities, then we either have manysolutions or none depending on whether this point lies onthe above de�ned one-dimensional urve or not.Let us now turn our attention to the equationP (z4)P (z3)P (z2)P (z1) = M; (22)whih inludes four P matries. The equivalent to thisequation system is given below:8<: z1 = m21 � (m11 +m21 � z4) � z3z2 = �m12 �m22 � z4(m12 +m22 � z4) � z3 = m22 � 1 (23)



5and the easiest way to obtain it is to substitute into thesystem (19) the elements of the matrix P�1(z4) �M in-stead of the mij .The system (23) is not linear anymore, but still has atriangular form and its solvability depends again only onthe solvability of the third equation with respet to thevariables z3 and z4. Beause the matrix M is nondegen-erated its elements m12 and m22 annot be equal to zerosimultaneously and therefore the expressionm12+m22 �z4onsidered as a funtion of z4 annot be equal to zero inmore than one point. It means that the last equationin (23) always has solutions and a good way to under-stand their omplete struture is to onsider this equa-tion as the equation of a urve on the plane (z3; z4). Ifm22 �(m22�1) 6= 0 this urve is a hyperbola with two sep-arate branhes, if m22 = 1 it is a degenerate hyperbolaonsisting of two interseting lines z3 = 0 and z4 = �m12,and, �nally, if m22 = 0 we have a single straight linez3 = �m�112 . So we see that with the help of the four Pmatries a solution of our problem an always be foundand is always nonunique.B. Four-lens blok with deoupled transverseationsLet us denote by W x;y the following ombination offour P matries:W x;y = P (2� lg4)P (2� lg3)P (2� lg2)P (2� lg1); (24)whih in the original variables (7) inludes four thin-lenses (four-lens blok).If one hooses Æ = �1 and if one takesg2 = Æp3l ; g3 = �Æp3l ; (25)then the blok matrix an be written asW x;y = ���1 �pux;y� P (wx;y) ��pux;y� ; (26)where �(a) = diag(a; 1=a) is a diagonal saling matrix,ux;y = 2 � Æp3; ux � uy = 1 (27)and wx = 7 + uy � lg1 + ux � lg4; (28)wy = 7 � ux � lg1 � uy � lg4: (29)Sine for any given value of wx and wy Eqs. (28) and(29) an be solved with respet to the variables g1 andg4, g1 = �Æp3l � 28 � uy � wx � ux � wy24 ; (30)

g4 = Æp3l � 28 � ux � wx � uy � wy24 ; (31)the formula (26) gives the result whih we were lookingfor. Both matriesW x and W y are similar to a single Pmatrix (with an inessential minus sign) and both param-eters wx and wy an be hosen independently, and thenthe setting of the �rst and the last lenses in the blok isdetermined aording to the formulas (30) and (31).C. Redution of 2D problem to two independent oralmost independent 1D problemsSine with four P matries we always an solve the1D problem, let us �rst onsider a ombination of fourbloks of the type (26). Using (A17), one an show thatthe total matrix of this 16 lens system an be written asfollows: W x;y4 W x;y3 W x;y2 W x;y1 = �(ax;y) �P (ŵx;y4 )P (ŵx;y3 )P (ŵx;y2 )P (ŵx;y1 ) � (ax;y) ; (32)where ax;y = sux;y1 ux;y3ux;y2 ux;y4 (33)and̂wx;y1 = ux;y2 ux;y4ux;y3 � wx;y1 ; ŵx;y2 = ux;y3ux;y1 ux;y4 � wx;y2 ; (34)ŵx;y3 = ux;y1 ux;y4ux;y2 � wx;y3 ; ŵx;y4 = ux;y2ux;y1 ux;y3 � wx;y4 : (35)Plugging this representation into Eq. (13) we obtainP (ŵx;y4 )P (ŵx;y3 )P (ŵx;y2 )P (ŵx;y1 ) =��1 (ax;y) M̂x;y��1 (ax;y) : (36)Let us hoose arbitrary nonnegative m and p with l =m + p > 0 and selet for eah four-lens blok its ownÆ = �1. This, in aordane with formula (25), givesus the setting of the eight lenses in our system and thisompletely determines the matrix on the right-hand sideof Eq. (36). As the last step we take ŵxk and ŵyk assome solutions of two independent 1D problems of thetype (22) and de�ne the strengths of the remaining eightlenses using the formulas (34), (35), (30), and (31).One sees that using four bloks with deoupled trans-verse ations the omplete 2D problem an always beredued to two easily solvable independent 1D problems.But do we really need four bloks for making suh a re-dution? The answer is no and the reason for this is asfollows. We know that for most of the 2 � 2 sympleti



6matries the 1D problem an be solved with three P ma-tries, whih means that for most of the 4� 4 unoupledbeam transfer matries the 2D problem an also be solvedwith three bloks. The problem is what to do with therest? Happily it turns out that by appropriate hoie ofthe parameters m and p one an always move the inputmatrix M away from the region of unsolvability and, ifthe variation of m and p is not allowed, this an be doneby using only one additional thin lens. Thus, we arriveat the solution announed in the Introdution, namely 13lenses if the spaing between them is �xed and 12 lenses ifthis distane an be used as an additional parameter. Be-low we will onsider in detail the ase of 12 lenses (threebloks) with variable spaing and the hek that the useof an additional lens for the �xed spaing also works weleave as an exerise for the interested reader.In analogy with (32) the ombination of three bloksan be written asW x;y3 W x;y2 W x;y1 =� ��1 (ax;y)P (ŵx;y3 )P (ŵx;y2 )P (ŵx;y1 ) � (ax;y) (37)where ax;y = sux;y1 ux;y3ux;y2 (38)and ŵx;y1 = ux;y2ux;y3 � wx;y1 ; (39)ŵx;y2 = ux;y3ux;y1 � wx;y2 ; (40)ŵx;y3 = ux;y1ux;y2 � wx;y3 : (41)Plugging again this representation into system (13) weobtain the equationP (ŵx;y3 )P (ŵx;y2 )P (ŵx;y1 ) =� � (ax;y) M̂x;y��1 (ax;y) : (42)We know that the suÆient ondition for this equation tobe solvable with respet to the unknowns ŵx;yk is that thehorizontal and vertial parts of the matrix on the right-hand side both have nonvanishing r22 elements. The di-ret alulation gives usrx;y22 = mx;y12 �mmx;y11 � pmx;y22 +mpmx;y21m+ p ; (43)where mx;yij are the elements of the input matrix M .Looking for a solution one an proeed further in thesame manner as in the four blok ase with only onedi�erene. At the �rst step one has to take not arbitrarynonnegative m and p, but suh m and p that both rx22and ry22 are nonzero, whih due to sympletiity of thematries Mx and My is always possible.

D. Reipe of onstrution of lens bloks withdeoupled transverse ationsIn this subsetion we give the reipe for the onstru-tion of lens bloks with deoupled transverse ations. Aswe will see, this reipe works not only for the four-lensombination onsidered above, but is also appliable tobloks with a larger number of lenses.Let us onsider q�lens blok with q � 4:W x;y = P (2� lgq) � : : : � P (2� lg1); (44)and let us assume that the produt of the (q � 2) innermatries in our blok takes the formP (2� lgq�1) � : : : � P (2� lg2) = � 0 ux;y�1=ux;y �x;y � :(45)Then, as one an show by diret multipliation, bothmatries W x and W y beome similar to a single P ma-trix (with an inessential minus sign possibly presented),namely W x;y = �sign(ux;y)���1 �pjux;yj�P (wx;y)��pjux;yj� ; (46)wherewx;y = 2� lg1jux;yj + jux;yj (2� lgq) + sign(ux;y) �x;y: (47)If for arbitrary given values of wx and wy Eq. (47) anbe solved with respet to the variables g1 and gq, thenit will be exatly what we need, and the neessary andsuÆient ondition for suh solvability isjuxj 6= juyj : (48)So, in order to onstrut the q-lens blok with the deou-pled transverse ations, one has to solve two equationsmaking the r11 elements of the x and y parts of the prod-ut of the (q � 2) inner matries equal to zero and onehas to satisfy one additional inequality onstraint (48).The solution for the four-lens blok was already givenabove and is unique up to a sign hange (Æ = �1). Let usnow onsider the more ompliated (but still analytiallysolvable) ase of �ve lenses. In this situation all possiblesolutions whih bring the produt of the three inner Pmatries P (2� lg4)P (2� lg3)P (2� lg2); (49)to the form (45) an be expressed as a funtion of pa-rameters l and g3 as follows:g2 = 1l � lg3 + Æp((lg3)2 � 2) � ((2lg3)2 � 9)(lg3)2 � 3 ; (50)



7g4 = 1l � lg3 � Æp((lg3)2 � 2) � ((2lg3)2 � 9)(lg3)2 � 3 ; (51)Æ = �1, and l > 0 and g3 are suh thatlg3 2 ��1; �p3� [ ��p3; �1:5i[h�p2; p2i [ h1:5; p3� [ �p3; +1� : (52)To omplete the blok onstrution we have to selet fromall these solutions a subset on whih the funtionsux;y = 1 � (lg2 � 2) � (lg3 + lg4) (53)satisfy the inequality (48). As one an hek, this anbe ahieved simply by removing from the set (52) theendpoints of the given set intervals, i.e., by removing thepoints �1:5 and �p2. So we see that there are manysolutions whih allow us to onstrut from �ve lenses theblok with deoupled transverse ations and for seletingone of them some additional optimization riteria ouldbe involved.Note that in the bloks onstruted aording to ourreipe the setting of the internal lenses does not dependon the setting of the �rst and the last lenses and dependsonly on the geometrial blok parameters (distanes be-tween the lenses), whih will be seen more learly in thefollowing setion where we will onsider the ase of arbi-trarily spaed thin lenses.Note also that the horizontal and the vertial matriesbetween the �rst and the last lenses in the blok, whenalulated using not the P matrix notation, but the orig-inal variables in whih Eq. (7) is writtenD(m)B(m;�gq�1; p) � : : : � B(m;�g2; p)D(p) =D(m)S�1(m; p)P (2� lgq�1) � : : : � P (2� lg2)�S(m; p)D(p) =�� ux;y 01=ux;y + (ux;y + �x;y) =l 1=ux;y � ; (54)both have r12 elements equal to zero (i.e. the phase ad-vanes between the �rst and the last lenses in the blokare always multiples of 180Æ), but this alone without theinequality (48) satis�ed does not give us the blok withthe deoupled transverse ations.IV. GENERALIZATION TO THE CASE OFARBITRARILY SPACED THIN LENSESWhen the distanes between the lenses are not equalto eah other, we immediately lose the advantage of theanellation of S matries between the P matries after

substitution of the representation (9) into Eq. (7). Nev-ertheless, as we will show below, this ase an also betreated with the tools developed in the previous setion.Let us denote by dk1;k2 the distane between the lenseswith the indies k1 and k2 (k1 � k2). We start from theobservation that for k = 2; : : : ; n the following identityholds: S(mk; pk)S�1(mk�1; pk�1) =L� lkdk�1;k � 1�� dk�1;kplk�1 lk!U �1� lk�1dk�1;k� ; (55)whih an be shown by diret multipliation and whihrequires that all lk and dk�1;k are positive. Note that inthis identity L and U are the lower and upper triangularmatries with unit diagonal elements (see Appendix Afor more details).Let us now substitute the representation (9) into Eq.(7) and then plug in the orresponding plaes the right-hand side of the identity (55). After that the property(A19) allows us to eliminate from the result all L and Umatries while shifting their arguments to the argumentsof the neighboring P matries, and leaving us with aprodut onsisting of alternating P and � matries. Al-though the � matries annot be eliminated ompletely,they an be moved either on the left or on the right-handside of all P matries with the help of the property (A17).As the last step we transfer all matries from the left andright sides of the obtained solid blok of the P matriesto the right-hand side of our equation, hide them in thematrix ~Mx;y and end up with the equationP (~vx;yn ) � : : : � P (~vx;y1 ) = ~Mx;y; (56)whih already has the desired form. The detailed stru-ture of the arguments ~vx;yk and of the matrix ~Mx;y de-pends on the partiular ways how the individual � ma-tries were moved (to the left or to the right sides) andis given below for the ase when during transformationsall � matries were moved to the left-hand side of the Pmatrix blok. Nevertheless, the expressions given beloware general in the sense that they ontain an arbitrarypositive parameter 1, and with the proper hoie of thisparameter one an aount for all possible ways of move-ment of the individual � matries:~Mx;y = �(n)S(mn; pn)Mx;yS�1(m1; p1)�(1); (57)~vx;yk = 2klk � dk�1;k+1dk�1;k dk;k+1 � gk� ; k = 1; : : : ; n; (58)k = dk�1;kplk�1 lk � 1k�1 ; k = 2; : : : ; n; (59)1 is an arbitrary positive parameter and, beause wedo not have lenses with indies 0 and n + 1, we use theonventions that



8d0;1 = l1; d0;2 = d0;1 + d1;2; (60)dn;n+1 = ln; dn�1;n+1 = dn�1;n + dn;n+1: (61)Note that, if the parameter 1 is taken to be a positivenumber or a dimensionless funtion of the thin-lens mul-tiplet parameters (drift lengths and lens strengths), thenEq. (56) and the variables (58) are also dimensionless.One of the possible hoies is to take 1 for even n as so-lution of the equation n = 1 and for odd n as solutionof the equation n = �11 . If the ondition (12) holds,then the solution of these equations for both ases (evenand odd n) is 1 = 1 and the representation (56) turnsinto the representation (13) as one an expet.Now in order to ontinue we need a lens blok withthe deoupled transverse ations and, as it is not diÆ-ult to hek, the reipe given in the previous setion isappliable without any hanges. For the onstrution ofthe q-lens blok we still need to bring the produt of the(q � 2) inner matries to the form (45) while also sat-isfying the inequality onstraint (48). For the four-lensase W x;y = P (~vx;y4 )P (~vx;y3 )P (~vx;y2 )P (~vx;y1 ) (62)the two equations making the r11 elements of the x andy parts of the produt of the two inner matries equal tozero are ~vx;y2 � ~vx;y3 = 1; (63)and have a solutiong2 = Æd1;2 �sd1;4d2;3 � d1;3d2;4 ; (64)g3 = � Æd3;4 �sd1;4d2;3 � d2;4d1;3 ; (65)whih again is unique up to a sign hange (Æ = �1). Thevalues ux;y for this solution areux;y = ~vx;y3 = 23 l3d3;4 � d2;4d2;3 � Æ �sd1;4d2;3 � d2;4d1;3! : (66)Both of them are positive and learly satisfy the inequal-ity (48). With this hoie for g2 and g3 the total blokmatrix takes the formW x;y = ���1 �pux;y� P (wx;y) ��pux;y� (67)wherewx;y = (ux;y)�1 � ~vx;y1 + ux;y � ~vx;y4 � 1: (68)Equation (68) is the analogy of the formulas (30) and(31) and for any given values wx and wy allow one todetermine the orresponding lens strengths g1 and g4.

Thus, all results of the previous setion onerning theredution of the 2D problem to two 1D problems be-ome appliable with some minor hanges onneted withthe di�erene in the matries M̂x;y and ~Mx;y de�ned bythe relations (14) and (57), respetively. Note that if,when plaed in the beam line, the atual deoupling blokstarts from the lens with the index k, one has simply toadd k�1 to the indies 1; 2; 3 and 4 in all above formulas.A. Removing of superuous parametersEquation (7) ontains 2n parameters whih speify thedrift lengths (m1; p1; : : : ;mn; pn) while only n+1 parame-ters, namelym1; d1;2; : : : ; dn�1;n; pn have a lear physialmeaning and are independent. Let us have a loser lookat formulas (56)-(61) and ount how many superuousparameters are still left in them and then show ways toremove them.The superuous parameters p1 and mn are learlypresent, either diretly as the arguments of S matriesor through the lengths of the �rst and the last buildingbloks l1 and ln. And atually that is all. The preseneof the other superuous parameters through the valuesl2; : : : ; ln�1 is ompletely imaginary. To show this let usnote that these values an enter the main formulas (56)-(58) only through the values 1 and n and through theombinations 21l1; : : : ; 2nln. So if we hoose 1 to be in-dependent from l2; : : : ; ln�1, then these parameters anenter in none of the ombinations 2klk due to the reur-sion relation2k lk = d2k�1;k � 12k�1 lk�1 k = 2; : : : ; n; (69)whih follows from the reursion relation (59), and like-wise they annot enter the value n beause one an writethat n =p2nln=ln.Thus, there are only two superuous parameters, p1and mn, present in our formulas, either diretly orthrough the values l1 and ln. Do we need to removethem? In general not, beause it is lear that none ofthe physially meaningful answers will depend on themand, in this sense, their absene in the �nal results (likein formulas (64) and (65)) ould work as some indiretindiator of the orretness of the alulations. But fromanother point of view, it seems better not to have any su-peruous parameters from whih one an expet nothingexept some possible additional ompliations.The simplest way to remove the parameters p1 and mnfrom the formulas (56)-(58) is to make them funtions ofthe physially meaningful parameters. For example, onean take p1 = 0:5 � d1;2 and mn = 0:5 � dn�1;n. How-ever, the way whih we prefer is the modi�ation of theformulas (56)-(58) in suh a way that the superuous pa-rameters will disappear automatially. In doing so let us�rst present the �nal result and then make some remarkson how it an be obtained:



9P (vx;yn ) � : : : � P (vx;y1 ) = �Mx;y; (70)�Mx;y = J��1(bn)U(�pn)Mx;y U(�m1)�(b1); (71)vx;y1 = b21� 1d1;2 � g1� ; (72)vx;yk = b2k � dk�1;k+1dk�1;k dk;k+1 � gk� ; k = 2; : : : ; n� 1; (73)vx;yn = b2n� 1dn�1;n � gn� ; (74)b1 > 0; bk = dk�1;k � 1bk�1 ; k = 2; : : : ; n; (75)and J is the 2� 2 sympleti unit matrix.In order to obtain formulas (70)-(75) from formulas(56)-(61) let us �rst introdue the parameters bk = kplkand then assume that 1 is hosen in suh a way thatb1 does not depend on any superuous parameter (forexample, one simply an take 1 = 1=pl1). After thisone sees that the parameters l1 and ln enter the left-handside of Eq. (56) only through the matries P (~vx;y1 ) andP (~vx;yn ). Beause of the property (A19) these matriesan be deomposed into the following produts:P (~vx;y1 ) = P (vx;y1 )L(21) = P (vx;y1 )L(b21 = l1); (76)P (~vx;yn ) = U(�2n)P (vx;yn ) = U(�b2n = ln)P (vx;yn ): (77)As the last step, one has to substitute these deomposi-tions bak into Eq. (56), transfer U and L to the right-hand side and, after some straightforward manipulations,arrive at the �nal result desribed in the above formulas(70)-(75).Note that the whole story about the presene of thesuperuous parameters is the result of our desire to havethe expressions for the problem desription (expressions(56)-(61)) whih redues to the highly symmetri expres-sions (13) and (14) in the limit of equal distanes betweenthin lenses. If one does not require that, then, as we willoutline below, it is possible to arrive at the representation(70)-(75) without using the identity (9).Aording to (A20) and (A21) the matrix of the build-ing blok an be written asB(m; �g; p) = P (�p)P (�g)P (�m) J: (78)Substituting this representation in the original Eq. (7)and using that due to (A8)P (�mk) J P (�pk�1) = �P (�dk�1;k) (79)we obtain

P (�gn)P (�dn�1;n) � : : : � P (�d1;2)P (�g1)�(b1) =(�1)n�1J U(�pn)Mx;y U(�m1) �(b1); (80)where we have already introdued an arbitrary positiveparameter b1. Now, assuming that all distanes betweenlenses are positive and using (A16), we an replae foreah k = 2; : : : ; n the matrix P (�dk�1;k) by the matrix��(dk�1;k) with simultaneous adding to the argumentsof the two neighboring P matries the value d�1k�1;k. Afterthese manipulations we arrive at the expressionP (d�1n�1;n � gn) �(dn�1;n)�P (d�1n�1;n + d�1n�2;n�1 � gn�1) �(dn�2;n�1) � : : :: : : � P (d�12;3 + d�11;2 � g2)�(d1;2)P (d�11;2 � g1)�(b1) =J U(�pn)Mx;y U(�m1) �(b1); (81)and the last step, whih is still neessary in order to ob-tain formulas (70)-(75), is to move all � matries to theleft in the left-hand side of Eq. (81) using the identity(A17) with a subsequent transfer of the matrix �(b�1n )from the left to the right-hand side of the obtained equal-ity. AknowledgmentsThe authors are thankful to Winfried Deking, NinaGolubeva and Helmut Mais for support and their inter-est in this work. The areful reading of the manusriptby Helmut Mais and his useful advies are gratefully a-knowledged.Appendix A: Elementary matries and theirpropertiesThe elementary sympleti P matrix whih is de�nedas follows, P (a) = � a 1�1 0 � (A1)and whih we use extensively throughout this paper wasfound empirially by the usual trial and error methodduring attempts to redue the problem of analytialstudy of thin-lens multiplets to some \more manageable"form. As we will see below, this matrix possesses manyinteresting properties not only by itself, but also in om-bination with the other elementary matries. Althoughnot widely known in the sienti� ommunity, it was nosurprise, as we found later, that it was suessfully usedin some speial area of abstrat algebra [12℄.



10In order to give an expression for the produt of nelementary P matries, let us �rst de�ne a sequene ofpolynomials �n in the variables z1; : : : ; zn reursively bythe following equations:��1 = 0; �0 = 1; (A2)�n(z1; : : : ; zn) = zn � �n�1(z1; : : : ; zn�1)��n�2(z1; : : : ; zn�2); n � 1: (A3)With these notations we assert thatP (an) � : : : � P (a1) =� �n(a1; : : : ; an) �n�1(a2; : : : ; an)��n�1(a1; : : : ; an�1) ��n�2(a2; : : : ; an�1) � ; (A4)whih is lear for n = 1 and in the general ase anbe proven by indution. Beause suh indution an bemade in two di�erent ways, either by adding one more Pmatrix from the left or from the right side, it is easy tosee that the polynomials �n an also be de�ned by (A2)and by the reursion relation�n(z1; : : : ; zn) = z1 � �n�1(z2; : : : ; zn)��n�2(z3; : : : ; zn); n � 1: (A5)Comparison of (A3) and (A5) implies that�n(z1; z2; : : : ; zn�1; zn) � �n(zn; zn�1; : : : ; z2; z1): (A6)Aording to (A4) we an write down the matrix of theprodut of any number of elementary P matries withoutmaking any matrix multipliations. In this onnetion letus note that the problem of deriving some reursion rela-tions whih allow one to obtain the transfer matrix of anarbitrary multiplet without atual matrix multipliationswas also addressed in [1℄.It is lear that the matrix P (0) oinides with the 2�2sympleti unit matrix J , i.e., thatP (0) = � 0 1�1 0 � = J; (A7)and the following relations between the P matries anbe easily veri�ed by diret multipliation:P (a) J P (b) = �P (a+ b); (A8)P 3(�1) = �I; (A9)P�1(a) = J P (�a) J = a � I � P (a); (A10)P (a)P�1(b) = �P (a� b) J; (A11)

P (a)P�1(b)P () = P (a� b+ ); (A12)where I is the 2� 2 identity matrix.Let us now introdue three more elementary matries.The diagonal (saling) matrix�(a) = � a 00 a�1 � (A13)and the lower and upper triangular matries with unitdiagonal elementsL(a) = � 1 0a 1 � ; U(a) = � 1 a0 1 � : (A14)Note that although the matries L and U formally oin-ide with the matries of the thin lens and the drift spae,respetively, we have introdued them in order to distin-guish the situations where matrix of lens or drift hasphysial meaning and where the usage of low or uppertriangular matrix is simply the reetion of the mathe-matial tehnique used.We have the following relations between the matriesP , �, L and U :P (a)P (a�1)P (a) = �(�a); (A15)P (a)P (b�1)P () = P (a� b) �(b�1)P (� b); (A16)�(a)P (b) �(a) = P (a2b); (A17)P (a�1) = L(�a) �(a�1)U(a); (A18)U(a)P (b)L() = P (b+ � a); (A19)L(a) = �J P (a); (A20)U(a) = �P (�a) J: (A21)Although these relations are elementary, they are basifor all results of this paper.Appendix B: Three Expliit Solutions for Four-LensTelesopesA telesope is a beam transport system whih has di-agonal transfer matries in both transverse planes,Mx;y = � �x;y 00 ��1x;y � ; (B1)where the numbers �x and �y are alled magni�ations(or de-magni�ations, if onvenient; negativity of hor-izontal/vertial magni�ation means that the horizon-tal/vertial image is inverted with respet to the origi-nal). It is an optis module whih is important for many



11aelerator designs and its study has reeived onsider-able attention in the past (see, for example, papers [3{6, 13℄). The minimum number of thin lenses requiredfor a telesope to exist is believed to be four (though, toour knowledge, still no rigorous proof is available) andthe orresponding four-lens telesope system of matrixequations in our notations an be written as follows:D(p4)Q(�g4)D(d3;4)Q(�g3)D(d2;3)�Q(�g2)D(d1;2)Q(�g1)D(m1) = Mx;y: (B2)There are two expliit analytial solutions known forthe system (B2). The �rst solution is obtained when theastronomial telesope, onsisting of two fousing lensesseparated by the distane equal to the sum of their foallengths, is generalized to the usage of magneti doubletsinstead of optial lenses. This solution has the propertythat �x = �y < 0; (B3)i.e. it always provides telesopes with equal negativemagni�ations in both transverse planes (see, for exam-ple [4℄). The seond known analytial solution in thefour-lens ase is the solution for an inversor [13℄, whihis the name of the telesope with the horizontal and ver-tial magni�ations being inverse of one another:�x ��y = 1; �x;y < 0: (B4)Besides these two expliit solutions, all other studies ofthe four-lens telesopes (as well as telesopes onstrutedfrom larger number of lenses) are either purely numeri-al or semianalytial as in [5, 6, 13℄, where in the �rststep the part of variables is eliminated from the system(B2) analytially and, in the seond step, the remainingequations are solved numerially. Sine these remainingequations are not linear in the variables, they annot besolved easily even numerially and, therefore, any newexpliit solution of the system (B2) is of interest. In thisAppendix we provide new analytial solutions using toolsand tehniques developed in this paper.Let us �rst transform the system (B2) to the P matrixrepresentation (70)-(75). If we take b1 in (75) as follows,b1 = sd1;2 d3;4d2;3 ; (B5)then, after some straightforward manipulations, we ob-tain the equationsP (vx;y4 )P (vx;y3 )P (vx;y2 )P (vx;y1 ) = �Mx;y; (B6)where �Mx;y = � 0 ��1x;y��x;y �x;y � ; (B7)

�x;y = d2;3d1;2 d3;4 (m1 �x;y + p4��1x;y); (B8)and the P matrix arguments vx;yk are given by the for-mulas (72)-(74).The equivalent to the eight equations (B6) system ofthe six independent equations was already obtained inthe ourse of this paper. To get it, one simply has tosubstitute vx;yk instead of zk and elements of the matrix�Mx;y instead of mkl into the system (23). The resultingsystem an be further simpli�ed taking into aount thespeial form of the matrix �Mx;y. If �x;y 6= 0, then Eq.(B6) is equivalent to the system8><>: vx;y2 + �x;y vx;y4 = ���1x;yvx;y3 + �x;y vx;y1 = ��x;yvx;y2 vx;y3 = 1 � �x;y (B9)and if �x;y = 0 (�x and �y an be zero or nonzero onlysimultaneously), then the equivalent system takes on theform 8>><>>: vx;y2 = ���1x;yvx;y3 = ��x;y��1x;y vx;y1 + �x;y vx;y4 = �1 (B10)It is intuitively lear that the two known analytialsolutions for the four-lens telesopes are somehow on-neted with the symmetry relations (B3) and (B4), but itis not obvious, when looking diretly at the telesope ma-trix (B1), how to �nd other symmetry onditions, whihould allow us to �nd new expliit solutions. One of theadvantages of the P matrix representation of Eq. (B2)is that the form of the matrix �Mx;y in (B6) gives us auseful hint that as suh a symmetry ondition one maytry the ondition �x = �y: (B11)This ondition, in the next turn, an be onsidered as aombination of the following three ases:m1 = p4 = 0; (B12)�x = �y; (B13)p4 = �x�ym1: (B14)The ondition (B11) is satis�ed if and only if at least onefrom the onditions (B12)-(B14) is true.As we will see below, all three ases (B12)-(B14) areatually analytially solvable and, moreover, inlude astheir parts both previously known solutions. But, beforegiving the details, let us make one more useful prepara-tory step.



12As it is well known, the telesope matrix (B1) is in-variant under a sale transformation. It means that ifthe set m1; g1; d1;2; g2; d2;3; g3; d3;4; g4; p4 (B15)is the solution of the system (B2), then so is the set�m1; g1� ; �d1;2; g2� ; �d2;3; g3� ; �d3;4; g4� ; �p4; (B16)where � is an arbitrary positive number. That allowsus in all further onsiderations to set the length of themiddle drift d2;3 equal to one hosen unit of lengthd2;3 = 1: (B17)1. Telesopes whih start and end by lensIf the ondition (B12) is satis�ed, then �x = �y = 0and the equivalent to the equations (B6) system is thesystem (B10). The neessary and suÆient onditionsfor this system to have solutions are that�x;y < 0 and �x 6= �y: (B18)If these onditions are satis�ed, then the solution isunique (with the preision up to the sale transforma-tion (B16)) and is given by the following formulas:d1;2 = 2(a1 � a2)a23 ; d3;4 = a1(2� a2)a23 ; (B19)g1 = �a3 �a32 � 2 a1 (a1 � a2) � 4 a4�4 a2 (2� a2) (a1 � a2) ; (B20)g2 = a3 (2� a2)2 (a1 � a2) ; g3 = �a3 (a1 � a2)a1 (2� a2) ; (B21)g4 = a3 �a32 � 2 a1 (2� a2) � 2 a1 a4�2 a1 a2 (2� a2) (a1 � a2) ; (B22)where we have used the notations� a1 = 2�x�y; a2 = �x +�y;a3 = �x � �y; a4 = �2x +�2y: (B23)As a partial ase this solution inludes a new inversorwith zero entrane and exit drifts:�x = ��1y = �; (B24)d1;2 = d3;4 = � 2�(1 + �)2 ; (B25)g3 = �g2 = 2 g1 = �2 g4 = 1 � �22� : (B26)

2. Telesopes with equal magni�ations in bothtransverse planesNow we turn our attention to the ondition (B13) andwill onsider telesopes with equal magni�ation in bothtransverse planes: �x = �y = �: (B27)Aording to the result of the previous subsetion, noneof suh telesopes an exist if m1 = p4 = 0 and there-fore the system under study is the system (B9). By el-ementary analysis one an show that the neessary andsuÆient onditions for the telesope with equal magni-�ations to exist are thatm21 + p24 > 0 and � < 0: (B28)If these onditions are satis�ed, then all possible solutionsan be expressed as follows:d3;4 = j�j d1;2; p4 = j�j (1 � j�jm1); (B29)g1 = Æs 1 + j�jd1;2 � 1 + j�j d1;21 + d1;2 ; (B30)g2 = �Æs 1 + j�jd1;2 � 1 + d1;21 + j�j d1;2 ; (B31)g3 = g1 = j�j; g4 = g2 = j�j; (B32)where the free parameters are Æ = �1, d1;2 > 0 and m1satisfying the inequality0 � m1 � 1 = j�j: (B33)Let us divide the entral interval d2;3 = 1 into twoparts of the lengths 1�j�jm1 and j�jm1 respetively andpresribe these subintervals to the �rst and to the seonddoublet ells orrespondingly. Comparing now the ob-tained above doublet settings with the settings providedby the generalization of the astronomial telesope, onean �nd that they oinide. But though this solution isalready known, we still made a useful step. We provedthat it is the only solution for the four-lens telesope withequal magni�ations possible.3. Telesopes with nonequal magni�ations andspeial ratio of entrane and exit driftsThe remaining ase to analyze is the ase (B14), whihwe will study under the additional assumptions that thelength of the entrane drift m1 is nonzero and that thehorizontal and vertial magni�ations are not equal to



13eah other, beause these situations were already onsid-ered in the previous subsetions, i.e., we will study tele-sopes with nonequal magni�ations and with the speialratio of the entrane and exit drifts given by the relation(B14). The system for analysis is the system (B9), andthe neessary and suÆient onditions for suh a tele-sope to exist are that �x;y < 0. If these onditions aresatis�ed, then all possible solutions an be expressed asfollows: d1;2 = 2 (a1 � a2)a23 � (1 + a2m1); (B34)d3;4 = a1 (2� a2)a23 � (1 + a2m1); (B35)p4 = �x�ym1; (B36)g2 = Æd1;2s1 + d1;21 + d3;4 � (1 + a2m1 + d1;2 + d3;4); (B37)g3 = � Æd3;4s1 + d3;41 + d1;2 � (1 + a2m1 + d1;2 + d3;4);(B38)g1 = � 1a2m1 ��a32 + d3;4d1;2 � g3� ; (B39)g4 = 1a2m1 � �a3a1 � d1;2d3;4 � g2� ; (B40)where the ak are given by the formulas (B23) and the freeparameters are Æ = �1 and m1 satisfying the inequality0 < m1 < 1 = j�x +�yj: (B41)The solution (B34)-(B40) has two ontinuous branheswhih are de�ned by the value of the parameter Æ. In thelimit m1 ! 0 the branh orresponding toÆ = sign(�x � �y) (B42)survives and onverges to the solution (B19)-(B22), andthe other branh diverges with g1 and g4 going to in�nity.The solution (B34)-(B40) also inludes inversors de-sribed by the following formulas:�x = ��1y = �; (B43)d1;2 = d3;4 = �2 � � + m1 + �2m1(1 + �)2 ; (B44)p4 = m1; g3 = �g2; g4 = �g1; (B45)

g1 = 1m1 (1 + �2) �1 � �22 + � g2� ; (B46)g2 = Æ j1 � �2j2p� (� + m1 + �2m1) : (B47)Note that these inversors inlude the previously knownsolution for the inversor [13℄ as a partial ase. To seethat one has �rst to set Æ = sign(�2� 1) and m1 = 1 = �,where � = (1 � �)48�2 ; (B48)in the solution (B43)-(B47), and then sale the resultwith � aording to the formulas (B16).Appendix C: FODO-Type Beam Line forIndependent San of Horizontal and Vertial PhaseAdvanesIn this Appendix we will apply the expliit solutiondeveloped in this paper to the design of a beam linewhih allows an independent san of the horizontal andthe vertial phase advanes while preserving the entraneand exit mathing onditions for the Twiss parameters.Even though the purely numerial approah to this prob-lem ould result in a smaller number of lenses than wewill use, it is not an easy task. Besides the requirementsto over the spei�ed range of phase advanes and topreserve the entrane and exit mathing ondition, thereare a number of additional onstraints whih one has tosatisfy. They ould inlude, for example, limitations onthe lens strengths and limitations on the hanges in thebehavior of the betatron funtions inside the beam lineduring the phase san. For eah lens, the outome ofthe numerial optimization is a two-dimensional array ofthe lens settings orresponding to the hosen grid in thespae of phase advanes. Every hange in the design spe-i�ations (whih often happens during the design stage)results in the neessity to repeat all optimization proe-dures with no warranty that the new output will be loseto the previous one even for relatively small hanges inthe input requirements.The advantage of our approah is that most of the de-sign problems an be addressed without resorting to un-guided numerial alulations and that the lens settingsrequired for obtaining the needed horizontal and vertialphase advanes an be alulated aording to expliitanalytial formulas.Note that our interest in this problem is motivatedby the desire to have in the future the possibility forminimization of emittane growth due to oherent syn-hrotron radiation (CSR) at the European XFEL Faility[14℄ by optimizing the phase advane between two bunhompressors hianes.Let us onsider a FODO ell of the length L whihbegins with a drift spae of the length L=4 and let us



14assume that the �rst lens is horizontally fousing withthe absolute value of its strength equal to the valueg = 2p3L : (C1)It is a FODO ell with 120Æ phase advane and its peri-odi Twiss parameters are as follows:�x;y = 5L4p3 ; �x;y = �2: (C2)Let us now take a string of six suh FODO ells. Com-paring the value (C1) with the values (25), one sees thatif we freeze the settings of the six lenses to their originalFODO settings� g2 = g6 = g10 = gg3 = g7 = g11 = �g (C3)and allow the strengths of the remaining lenses to be vari-able parameters, then we will obtain the sequene of threefour-lens bloks with deoupled transverse ations. Weknow that with the help of three bloks we an representmost of the 4� 4 unoupled transfer matries and let ussee what range of phase advanes our beam line an overwhile preserving the periodi mathing onditions (C2)for the Twiss parameters. To keep this mathing and,in the same time, to have prede�ned frational parts ofphase advanes �x and �y, the overall transfer matrix ofour beam line must have the formMx;y = T�1x;y � R(�x;y) � Tx;y; (C4)where Tx;y =  1=p�x;y 0�x;y=p�x;y p�x;y ! ; (C5)�x;y and �x;y are the same as in (C2), and R(�x;y) is a2� 2 rotation matrixR(�x;y) = � os(�x;y) sin(�x;y)� sin(�x;y) os(�x;y) � : (C6)Following now the proedure desribed in Se. III ofthis paper, one �nds that for all �x;y 6= 240Æ the matrix(C4) an be represented by three bloks with deoupledtransverse ations and that for all �x;y 6= 60Æ the solutionfor the lens strengths is unique. As onerning pointswhere either �x or �y is equal to 60Æ, there are manysolutions, but it is possible to hoose one of them suhthat on the whole set �x;y 6= 240Æ the lens strengthswill be ontinuous funtions of the phase advanes. The�nal formulas for the lens settings an be summarized asfollows:g1 = g9 = �g � 28 � uy � wx1 � ux � wy124 ; (C7)

g4 = g12 = g � 28 � ux � wx1 � uy � wy124 ; (C8)g5 = �g � 28 � uy � wx2 � ux � wy224 ; (C9)g8 = g � 28 � ux � wx2 � uy � wy224 ; (C10)where ux;y = 2�p3 (C11)and wx;y2 = os(�x;y) � sin(�x;y) =p3; (C12)wx;y1 = wx;y3 = 1 � 2 sin(�x;y) =p3wx;y2 (C13)for �x;y 6= 60Æ; 240Æ, andwx;y2 = 0; wx;y1 = wx;y3 = 1=2 (C14)for �x;y = 60Æ.What is in partiular interesting in this solution is thefat that, though with hanging phase advanes the set-ting of six lenses varies, only four independent tuningknobs are required (wx;y1 and wx;y2 ).If �x and/or �y approah the value 240Æ, then thestrengths of some lenses in our solution go to in�nity,but if we restrit the region of our interest, for example,to the region 0Æ � �x;y � 180Æ, then the lens strengthsremain bounded and satisfy the inequality1 � jgmjg � 7p3 + 26p3 � 1:359; (C15)whih, in partiular, means that in this phase advaneregion none of the lenses hange its polarity in ompar-ison with their original FODO settings. If, in addition,the san of only �x is required with �y = 0, then theinequality (C15) is further relaxed to the inequality1 � jgmjg � 28p3 + 724p3 � 1:335; (C16)for m = 1; 5; 9, and to the inequality1 � jgmjg � 24p3 + 124p3 � 1:024; (C17)for m = 4; 8; 12.Conerning the hanges in the behavior of the beta-tron funtions inside the beam line during the phase san,then, for example, for all �40Æ � �x;y � 60Æ the beta-tron funtions �x;y(s) in eah position s along the beamline satisfy the inequalities
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FIG. 1: Betatron funtions along the phase advane sanbeam line for �x = 60Æ, �y = 0Æ.
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FIG. 2: Betatron funtions along the phase advane sanbeam line for �x = 0Æ, �y = 60Æ.
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FIG. 3: Betatron funtions along the phase advane sanbeam line for �x = �y = 60Æ.
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FIG. 4: Betatron funtions along the phase advane sanbeam line for �x = 0Æ, �y = �40Æ.
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FIG. 5: Betatron funtions along the phase advane sanbeam line for �x = �y = �40Æ.
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FIG. 6: Betatron funtions along the phase advane sanbeam line for �x = 60Æ, �y = �40Æ.



160:75�min � �x;y(s) � 1:88�max; (C18)where �min = 2�p3p3 L; �max = 2 +p3p3 L (C19)are the minimum and the maximum of the periodiFODO solution. In more details the behavior of the be-tatron funtions along the beam line an be seen in Figs.1-6, where they are drawn for the several values of �x;ytaken on the borders of the onsidered area and for theFODO ell length hosen to be one meter.The presented beam line for the san of the phase ad-vanes is simple, rather elegant and, in the same time,an over quite a range of phase advanes with not verylarge hanges in the lens strengths as ompared to theiroriginal FODO settings. It an also be adopted to the

needs of the European XFEL, where the lina betweenthe two bunh ompressors has exatly six FODO ellsand two additional quadrupole groups (mathing se-tions) are available at both lina ends.Note that it is not neessary to keep the periodimathing onditions (C2). Any two sets of Twiss pa-rameters an be �xed at the beam line ends, but one hasto remember that the hoie of them will a�et the po-sition of singularities of the solution obtained with thehelp of the three bloks with deoupled transverse a-tions. To avoid singularities ompletely and/or to haveadditional knob for the ontrol of the betatron funtionsinside the beam line, one an swith to the solution whihutilizes four bloks or to the solution with three bloksplus one additional lens. As desribed in Se. IV of thispaper, the equal spaing of lenses an also be abandoned,if required.[1℄ E.Regenstreif, Phase-spae transformation by means ofquadrupole multiplets, CERN 67-6, Marh 1967.[2℄ E.Regenstreif, Possible and impossible phase-spae trans-formations by means of alternating-gradient doublets andtriplets, CERN 67-8, Marh 1967.[3℄ K.L.Brown, R.V.Servrankx, Optis modules for irularaelerator design, NIM A258, 1987.[4℄ B.W.Montague, F.Ruggiero, Apohromati Fousing forLinear Colliders, CLIC-Note 37, May 1987.[5℄ B.Zotter, Design onsiderations for a hromatially or-reted �nal fous for TeV olliders, CLIC-Note 64, June1988.[6℄ O.Napoly, Thin lens telesopes for �nal fous systems,CERN/LEP-TH/89-69, CLIC Note 102, November 1989.[7℄ E.T.d'Amigo, G.Guignard, Analysis of generi insertionsmade of two symmetri triplets, CERN SL/98-014(AP),May 1998.[8℄ T.Roser, Deoupled Beam Line Tuning, AGS/AD/Teh.Note No. 357, January 1992.
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