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Expli
it Thin-Lens Solutionfor an Arbitrary Four by Four Un
oupled Beam Transfer MatrixV.Balandin�Deuts
hes Elektronen-Syn
hrotron DESY, Notkestrasse 85, 22607 Hamburg, GermanyS.OrlovFa
ulty of Computational Mathemati
s and Cyberneti
s,M.V.Lomonosov Mos
ow State University, 119991 Mos
ow, Russia(Dated: May 8, 2013)In the design of beam transport lines, one often meets the problem of 
onstru
ting a quadrupolelens system that will produ
e desired transfer matri
es in both the horizontal and verti
al planes.Nowadays this problem is typi
ally approa
hed with the help of 
omputer routines, but sear
hingfor the numeri
al solution one has to remember that it is not proven yet that an arbitrary fourby four un
oupled beam transfer matrix 
an be represented by using a �nite number of drifts andquadrupoles (representation problem) and the answer to this question is not known not only for moreor less realisti
 quadrupole �eld models but also for the both most 
ommonly used approximationsof quadrupole fo
using, namely thi
k and thin quadrupole lenses. In this paper we make a stepforward in resolving the representation problem and, by giving an expli
it solution, we prove thatan arbitrary four by four un
oupled beam transfer matrix a
tually 
an be obtained as a produ
t ofa �nite number of thin-lenses and drifts.I. INTRODUCTIONIn the design of beam transfer lines, one often en
oun-ters the problem of �nding a 
ombination of quadrupolelenses and �eld free spa
es (drifts) that will produ
eparti
ular transfer matri
es in both the horizontal andthe verti
al planes. Nowadays this problem is typi
allyapproa
hed with the help of 
omputer routines whi
hminimize the deviations from the desired matri
es asfun
tion of the quadrupole strengths, lengths and dis-tan
es between them. Although very sophisti
ated soft-ware be
ame available for these purposes during the pastde
ades, there is an important theoreti
al question whi
hhas not been answered yet and whose answer 
ould a�e
tthe strategy and eÆ
ien
y of numeri
al 
omputations.Sear
hing for a numeri
al solution, one has to rememberthat it is not proven yet that an arbitrary four by fourun
oupled beam transfer matrix 
an be represented byusing a �nite number of drifts and quadrupoles (repre-sentation problem) and the answer to this question is notknown not only for more or less realisti
 quadrupole �eldmodels but also for the both most 
ommonly used ap-proximations of quadrupole fo
using, namely thi
k andthin quadrupole lenses.In this paper we make a step forward in resolving therepresentation problem and prove that an arbitrary fourby four un
oupled beam transfer matrix a
tually 
an beobtained as a produ
t of a �nite number of thin-lensesand drifts. Even though our proof uses more thin lensesthan probably needed, we believe that the solution pro-vided is not only of theoreti
al interest, but 
ould also�nd some pra
ti
al appli
ations be
ause it uses expli
it�Ele
troni
 address: vladimir.balandin�desy.de

analyti
al formulas 
onne
ting thin-lens parameters withthe elements of the input beam transfer matrix.Though the thin-lens ki
k is the simplest model ofthe quadrupole fo
using, its role in a

elerator physi
s
an hardly be overestimated. The thin-lens quadrupoleapproximation reveals the analogy between light opti
sand 
harged parti
le opti
s and, if one takes into a

ountdiÆ
ulties of analyti
al manipulations with the next by
omplexity thi
k-lens quadrupole model [1, 2℄, is an in-dispensable tool for understanding prin
iples and limi-tations of the already available opti
s modules and fordevelopment of the new opti
s solutions (see, as goodexamples, papers [3{7℄).The paper by itself is organized as follows. In Se
.II we introdu
e all needed notations and give the lowerbound on the number of drifts and lenses whi
h are re-quired for a solution of the representation problem byproviding an example of a matrix whi
h 
annot be ob-tained using �ve thin lenses and �ve independently vari-able drift spa
es. This result is somewhat unexpe
tedand up to some extent 
ontradi
ts a rather widespreadopinion that the typi
al problem 
an be solved by tak-ing a number of parameters equal to the number of 
on-straints available. We see that although the four by fourun
oupled beam transfer matrix has only 6 degrees offreedom, there are matri
es whi
h 
annot be representednot only by three thin lenses and three drifts (six pa-rameters), but also by �ve thin lenses and �ve drifts (tenparameters). This example, the example provided bythe matrix (15), other of our attempts (though omittedin this paper) to �nd thin-lens de
ompositions for par-ti
ular beam transfer matri
es and the properties of theexpli
it solution given below in this paper, lead us to the
onje
ture that in order to represent an arbitrary four byfour un
oupled beam transfer matrix one needs at leastsix thin lenses if the distan
es between them 
an be var-

http://arxiv.org/abs/1110.6025v2
mailto:vladimir.balandin@desy.de


2ied (independently or not) or at least seven thin lenses ifthis variation is not allowed.In Se
. III we prove that an arbitrary four by four un-
oupled beam transfer matrix 
an be obtained as a prod-u
t of a �nite number of thin-lenses and drifts by givingan expli
it solution of the thin-lens representation prob-lem whi
h uses equally spa
ed thin lenses. The 
ore ideaof our approa
h is the representation of the matrix of thethin-lens multiplet as a produ
t of elementary P matri-
es (the de�nition and the properties of the matrix P 
anbe found in Appendix A) with subsequent redu
tion ofthe initial 2D problem to two independent 1D problems.We use in this se
tion the equally spa
ed thin-lens sys-tem be
ause it allows one to make su
h a redu
tion witha minimum of te
hni
al details. The solution obtainedutilizes 13 lenses if the spa
ing between them is �xed be-forehand and 12 lenses if this distan
e 
an be used as anadditional parameter. Thus, it uses six more lenses thanthe minimal number stated in our 
onje
ture, but thesetting of these six lenses depends only on the distan
ebetween lenses and therefore does not depend (at leastdire
tly) on the parti
ular input beam transfer matrix.In Se
. IV we 
onsider the 
ase of arbitrarily spa
edthin lenses. First, we show that the solution of the rep-resentation problem presented in the previous se
tion isstill valid after some minor modi�
ations. Next we studyin greater detail the ways to transform the matrix of thedrift-lens system to the produ
t of the elementary P ma-tri
es (see formulas (56)-(61) and (70)-(75) below). Therepresentation of the matrix of the thin-lens multiplet asa produ
t of elementary P matri
es (together with themultipli
ation formula (A4)) is a useful new tool for theanalyti
al study of the properties of thin-lens systems. Italso gives some 
lari�
ation of the question why the roleof the variable drift spa
es and the role of the variablelens strengths are di�erent when they are used as �ttingparameters.This paper is mostly a theoreti
al paper and its mainpurpose is to turn the 
ommon believe that an arbitraryfour by four un
oupled beam transfer matrix 
an be ob-tained as a produ
t of a �nite number of thin lenses anddrifts into proven s
ienti�
 fa
t. Still, both, the devel-oped new te
hnique for the analyti
al study of the prop-erties of thin-lens multiplets and the expli
it thin-lenssolution presented in this paper, are of independent in-terest. To illustrate that, in Appendix B we apply ourP matrix approa
h to the study of four-lens beam mag-ni�
ation teles
opes and �nd new, previously unknownanalyti
al solutions for this important opti
s module. InAppendix C, we apply the expli
it solution developedin this paper to the design of a beam line whi
h allowsan independent s
an of horizontal and verti
al phase ad-van
es while preserving the entran
e and exit mat
hing
onditions for the Twiss parameters.Besides that thin-lens blo
ks with de
oupled transversea
tions introdu
ed in this paper are another point ofgeneral interest. Although the idea of de
oupled tun-ing knobs by itself is not new in the �eld of a

elerator

physi
s (see, for example, [8, 9℄), our approa
h is newand is not based on an iterative usage of small steps in thelens strengths obtained at ea
h iteration by linearization.II. STATEMENT OF THE PROBLEM ANDPRELIMINARY CONSIDERATIONSLet M be an arbitrary four by four un
oupled beamtransfer matrix and let the two by two symple
ti
 ma-tri
es Mx and My be its horizontal and verti
al fo
usingblo
ks, respe
tively. Let us denote by Q(g) the transfermatrix of the one-dimensional thin lens of strength g andby D(l) the transfer matrix of the one-dimensional driftspa
e of length l:Q(g) = � 1 0g 1 � ; D(l) = � 1 l0 1 � : (1)The problem of representation of the matrixM by a thin-lens system 
an then be written asD(ln)Q(�gn) � : : : �D(l1)Q(�g1) = Mx;y; (2)where (here and later on) one has to take the upper signin the 
ombinations � and � together with the index xand the lower sign together with the index y.Note that the drift-lens system presented on the left-hand side of Eq. (2) 
onsists of equal numbers of driftsand lenses and the �rst element whi
h the beam seesduring its passage is a thin-lens. Alternatively, one 
an
onsider equationQ(�gn)D(ln) � : : : �Q(�g1)D(l1) = Mx;y; (3)where the �rst element is a drift spa
e, or one 
an use thedrift-lens system with a nonequal number of drifts andlenses whi
h starts and ends with a drift (or a lens), butfor the moment this is not important.There are many unanswered questions related to Eq.(2), the most interesting for us in this paper is the fol-lowing: given a matrix M , does there exist a number nsu
h that these equations have a solution? If the answerto this question is positive, 
ould the number n be 
hosenindependently from the input matrix M and, if it is alsopossible, what is the minimal n required?From a mathemati
al point of view, Eq. (2) is a systemof eight polynomial equations in 2n unknowns and forany polynomial system 
onsidered over an algebrai
ally
losed �eld of 
omplex numbers there is an algorithmi
way to answer the question if this system has in�nitelymany solutions or has a �nite number of solutions, or hasno solutions at all. This 
an be done by transforming theoriginal system to a spe
ial form 
alled a Gr�obner basisand, very loosely speaking, is an analogue of the Gaussianelimination pro
ess in linear algebra [10℄. The Gr�obnerbasis 
an be 
omputed in �nitely many steps and, more-over, nowadays its 
al
ulation 
an be done with the helpof symboli
 manipulation programs like MATHEMAT-ICA and MAPLE.



3Unfortunately, we are interested in the real solutions ofEq. (2) 
onstrained additionally by the requirements forthe drift lengths to be nonnegative and therefore we 
an-not use all bene�ts provided by the Gr�obner basis theory.Nevertheless, the use of the Gr�obner basis approa
h, al-though it did not help us to solve the problem in general,it was very useful in providing examples of parti
ular ma-tri
es whi
h 
annot be obtained using a 
ertain numberof thin lenses and drift spa
es. For example, using theGr�obner basis te
hnique, it is possible to prove that thematrix M withMx = My = � 1 0�1 1 � (4)
annot be represented by �ve thin lenses and �ve variabledrift spa
es starting either from a lens like in Eq. (2) orfrom a drift like in Eq. (3).This example, the example provided by the matrix(15), many other of our attempts to study the repre-sentation problem for parti
ular beam transfer matri
es,and the properties of the expli
it solution given belowin this paper lead us to the 
onje
ture that in order tobe able to represent an arbitrary four by four un
oupledbeam transfer matrix one needs at least six thin lensesif the distan
es between them 
an be varied (indepen-dently or not) or at least seven thin lenses with nonzerodrift spa
es between them if this variation is not allowed.To �nish this se
tion, let us note that in the above dis-
ussions we made no use of the fa
t that we are interestednot in the general system of polynomial equations, butonly in the polynomial system produ
ed by a produ
t ofmatri
es with simple inversion properties:Q�1(g) = Q(�g); D�1(l) = D(�l): (5)Choosing some k = 1; : : : ; n � 1 and using (5), one 
anrewrite the system (2) in the equivalent form:D(lk)Q(�gk) � : : : �D(l1)Q(�g1) =Q(�gk+1)D(�lk+1) � : : : �Q(�gn)D(�ln)Mx;y: (6)This tri
k 
an be used for the elimination of a part ofthe unknowns from the original system by solving Eq.(6) with respe
t to the variables g1; : : : ; gk; l1; : : : ; lk orone may even think to 
onstru
t an iterative solutionmethod whi
h 
ould be 
onsidered as matrix version ofthe method of su

essive elimination of unknowns [6, 11℄.This method was developed espe
ially to deal with thethin-lens multiplets and was used in [11℄ in an attempt to
hara
terize all un
oupled beam transfer matri
es whi
h
an be obtained by using three thin lenses and three driftspa
es. Unfortunately, however this approa
h did notgive us any additional noti
eable simpli�
ations in thesolution of the general representation problem.

III. SOLUTION OF 2D PROBLEM USINGEQUALLY SPACED THIN LENSESIn this se
tion we will give an expli
it solution ofthe thin-lens representation problem whi
h uses equallyspa
ed thin-lenses. Instead of Eq. (2) or Eq. (3), we will
onsider the systemB(mn; �gn; pn) � : : : � B(m1; �g1; p1) = Mx;y; (7)where as an elementary building blo
k we take a thin lenssandwi
hed between two drift spa
esB(m; �g; p) = D(p)Q(�g)D(m): (8)If the blo
k length l = m+ p > 0, then one 
an repre-sent the blo
k transfer matrix in the formB(m; �g; p) = S�1(m; p)P (2� lg)S(m; p); (9)where S(m; p) = 1pl � 1 m�1 p � (10)and P (a) = � a 1�1 0 � : (11)Note that the properties of the matrix P (and other el-ementary matri
es used in this paper) 
an be found inAppendix A.Let us assume that in the system (7) all mk and all pkare equal to ea
h other, i.e., thatm1 = : : : = mn = m; p1 = : : : = pn = p; (12)and let l = m+ p > 0. The prin
iple simpli�
ation thato

urs in this 
ase is that after the substitution of therepresentation (9) into Eq. (7) the matri
es S(m; p) andS�1(m; p) 
an
el ea
h other and we obtainP (2� lgn) � : : : � P (2� l g1) = M̂x;y; (13)where M̂x;y = S(m; p)Mx;y S�1(m; p): (14)Equations (13) give the dimensionless form of Eq. (7)and, additionally, one sees that while the original system(7) is formed by the produ
t of 2n+ 1 interleaved thin-lens and drift matri
es (with neighboring drifts lumpedtogether), the system (13) in
ludes only n + 2 matri
esdepending on unknowns (there are n + 2 unknowns: nlens strengths plus two variables 
hara
terizing the blo
klength and the position of the lens inside the blo
k) andn of them are P matri
es.Nevertheless, the system (13) is still too 
ompli
atedto �nd easily its solutions (or even to prove their ex-isten
e) for an arbitrary matrix M and with the num-ber of lenses n equal to six or seven as required by our
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onje
ture. Instead we will provide an expli
it solutionwhi
h utilizes 13 lenses if the parameters m and p are�xed and are independent from the input matrixM , and12 lenses if m and p 
an be varied. The main idea ofour solution is the redu
tion of the 2D problem (13) totwo independent or, more exa
tly, almost independent1D problems by 
onstru
ting thin-lens blo
ks whi
h 
ana
t in the horizontal and the verti
al planes similar to asingle P matrix, but whose a
tions for both planes 
anbe 
hosen independently. At �rst we will 
onsider a so-lution of the 1D problem in terms of P matri
es. Asthe next step we will introdu
e a four-lens blo
k with de-
oupled transverse a
tions and then will give an expli
itsolution of the 
omplete 2D problem. Besides that wewill dis
uss the re
ipe for 
onstru
ting lens blo
ks withde
oupled transverse a
tions with more than four lenses.Before giving the te
hni
al details let us 
onsider onemore example obtained with the help of the Gr�obner ba-sis te
hnique. Let us assume that m and p are �xed andlet the matrix M be su
h that the matrix M̂ in (13) isequal to the symple
ti
 unit matrix:M̂x = M̂y = � 0 1�1 0 � : (15)Then this matrix M 
an not be represented by less thanseven thin lenses and with seven lenses there are many so-lutions whi
h geometri
ally 
an be viewed as six distin
tparallel straight lines in the seven-dimensional spa
e oflens strengths.A. 1D problem in terms of P matri
esA

ording to our plan we will prove in this subse
tionthat every real symple
ti
 2 � 2 matrix M = (mij) 
anbe represented as a produ
t of at most four P matri
es.First, we will 
onsider the 
ase of three P matri
es andwill �nd that three P matri
es are insuÆ
ient for therepresentation of an arbitrary 2 � 2 symple
ti
 matrix.Next we will swit
h to the 
ase of four P matri
es andwill show that with four P matri
es a solution 
an alwaysbe found, but it is always nonunique.Let us start with the 
ase of three P matri
es, i.e.,from the equationP (z3)P (z2)P (z1) = M: (16)This matrix equation is, in fa
t, the system of the fourequations for the four matrix elements8><>: z3 � (z1 z2 � 1)� z1 = m11z2 = �m22z2 z3 � 1 = m12z1 z2 � 1 = �m21 (17)and, as it is well known, due to symple
ti
ity of the ma-tri
es on both sides of (16) these four equations shouldbe equivalent to some system 
onsisting of three equa-tions only. In order to obtain su
h a system let us �rst

substitute z1 z2� 1 = �m21 into the �rst equation of thesystem (17) and then plug z2 = �m22 in the equationsthree and four. Be
ause in the resulting system8><>: z1 = �m11 �m21 � z3z2 = �m22m22 � z3 = �1�m12m22 � z1 = �1 +m21 (18)the fourth equation is equal to the �rst equation multi-plied bym22 minus the third equation multiplied bym21,it 
an be omitted. Thus we obtain that the system of thefour third order polynomial equations (17) is equivalentto the system 8<: z1 = �m11 �m21 � z3z2 = �m22m22 � z3 = �1�m12 (19)whi
h is linear in the unknowns z1, z2, and z3. More-over, this system already has a triangular form and itssolvability depends only on the solvability of the thirdequation with respe
t to the variable z3.Elementary analysis shows that there are three possi-bilities for the solutions of the system (19). If m22 6= 0,then there exists a unique solutionz1 = m21 � 1m22 ; z2 = �m22; z3 = �m12 + 1m22 : (20)If m22 = 0 and m21 = 1 (i.e if M = �P (�m11)), thenthere exists a one-parameter family of solutions:z1 + z3 = �m11; z2 = 0: (21)Finally, ifm22 = 0 and m21 6= 1, then there is no solutionat all.Very loosely speaking, the 
ondition m22 = 0 de�nesthe two-dimensional surfa
e of singularities in the three-dimensional spa
e of 2�2 real symple
ti
 matri
es. Thissurfa
e, in the next turn, 
ontains the one-dimensional
urve sele
ted by the additional relation m21 = 1. Ifthe matrix M (represented as a point in our three-dimensional spa
e) lies outside of the surfa
e of singu-larities, then a solution for su
h a matrix exists and isunique. If the point representing the matrix M belongsto the surfa
e of singularities, then we either have manysolutions or none depending on whether this point lies onthe above de�ned one-dimensional 
urve or not.Let us now turn our attention to the equationP (z4)P (z3)P (z2)P (z1) = M; (22)whi
h in
ludes four P matri
es. The equivalent to thisequation system is given below:8<: z1 = m21 � (m11 +m21 � z4) � z3z2 = �m12 �m22 � z4(m12 +m22 � z4) � z3 = m22 � 1 (23)



5and the easiest way to obtain it is to substitute into thesystem (19) the elements of the matrix P�1(z4) �M in-stead of the mij .The system (23) is not linear anymore, but still has atriangular form and its solvability depends again only onthe solvability of the third equation with respe
t to thevariables z3 and z4. Be
ause the matrix M is nondegen-erated its elements m12 and m22 
annot be equal to zerosimultaneously and therefore the expressionm12+m22 �z4
onsidered as a fun
tion of z4 
annot be equal to zero inmore than one point. It means that the last equationin (23) always has solutions and a good way to under-stand their 
omplete stru
ture is to 
onsider this equa-tion as the equation of a 
urve on the plane (z3; z4). Ifm22 �(m22�1) 6= 0 this 
urve is a hyperbola with two sep-arate bran
hes, if m22 = 1 it is a degenerate hyperbola
onsisting of two interse
ting lines z3 = 0 and z4 = �m12,and, �nally, if m22 = 0 we have a single straight linez3 = �m�112 . So we see that with the help of the four Pmatri
es a solution of our problem 
an always be foundand is always nonunique.B. Four-lens blo
k with de
oupled transversea
tionsLet us denote by W x;y the following 
ombination offour P matri
es:W x;y = P (2� lg4)P (2� lg3)P (2� lg2)P (2� lg1); (24)whi
h in the original variables (7) in
ludes four thin-lenses (four-lens blo
k).If one 
hooses Æ = �1 and if one takesg2 = Æp3l ; g3 = �Æp3l ; (25)then the blo
k matrix 
an be written asW x;y = ���1 �pux;y� P (wx;y) ��pux;y� ; (26)where �(a) = diag(a; 1=a) is a diagonal s
aling matrix,ux;y = 2 � Æp3; ux � uy = 1 (27)and wx = 7 + uy � lg1 + ux � lg4; (28)wy = 7 � ux � lg1 � uy � lg4: (29)Sin
e for any given value of wx and wy Eqs. (28) and(29) 
an be solved with respe
t to the variables g1 andg4, g1 = �Æp3l � 28 � uy � wx � ux � wy24 ; (30)

g4 = Æp3l � 28 � ux � wx � uy � wy24 ; (31)the formula (26) gives the result whi
h we were lookingfor. Both matri
esW x and W y are similar to a single Pmatrix (with an inessential minus sign) and both param-eters wx and wy 
an be 
hosen independently, and thenthe setting of the �rst and the last lenses in the blo
k isdetermined a

ording to the formulas (30) and (31).C. Redu
tion of 2D problem to two independent oralmost independent 1D problemsSin
e with four P matri
es we always 
an solve the1D problem, let us �rst 
onsider a 
ombination of fourblo
ks of the type (26). Using (A17), one 
an show thatthe total matrix of this 16 lens system 
an be written asfollows: W x;y4 W x;y3 W x;y2 W x;y1 = �(ax;y) �P (ŵx;y4 )P (ŵx;y3 )P (ŵx;y2 )P (ŵx;y1 ) � (ax;y) ; (32)where ax;y = sux;y1 ux;y3ux;y2 ux;y4 (33)and̂wx;y1 = ux;y2 ux;y4ux;y3 � wx;y1 ; ŵx;y2 = ux;y3ux;y1 ux;y4 � wx;y2 ; (34)ŵx;y3 = ux;y1 ux;y4ux;y2 � wx;y3 ; ŵx;y4 = ux;y2ux;y1 ux;y3 � wx;y4 : (35)Plugging this representation into Eq. (13) we obtainP (ŵx;y4 )P (ŵx;y3 )P (ŵx;y2 )P (ŵx;y1 ) =��1 (ax;y) M̂x;y��1 (ax;y) : (36)Let us 
hoose arbitrary nonnegative m and p with l =m + p > 0 and sele
t for ea
h four-lens blo
k its ownÆ = �1. This, in a

ordan
e with formula (25), givesus the setting of the eight lenses in our system and this
ompletely determines the matrix on the right-hand sideof Eq. (36). As the last step we take ŵxk and ŵyk assome solutions of two independent 1D problems of thetype (22) and de�ne the strengths of the remaining eightlenses using the formulas (34), (35), (30), and (31).One sees that using four blo
ks with de
oupled trans-verse a
tions the 
omplete 2D problem 
an always beredu
ed to two easily solvable independent 1D problems.But do we really need four blo
ks for making su
h a re-du
tion? The answer is no and the reason for this is asfollows. We know that for most of the 2 � 2 symple
ti




6matri
es the 1D problem 
an be solved with three P ma-tri
es, whi
h means that for most of the 4� 4 un
oupledbeam transfer matri
es the 2D problem 
an also be solvedwith three blo
ks. The problem is what to do with therest? Happily it turns out that by appropriate 
hoi
e ofthe parameters m and p one 
an always move the inputmatrix M away from the region of unsolvability and, ifthe variation of m and p is not allowed, this 
an be doneby using only one additional thin lens. Thus, we arriveat the solution announ
ed in the Introdu
tion, namely 13lenses if the spa
ing between them is �xed and 12 lenses ifthis distan
e 
an be used as an additional parameter. Be-low we will 
onsider in detail the 
ase of 12 lenses (threeblo
ks) with variable spa
ing and the 
he
k that the useof an additional lens for the �xed spa
ing also works weleave as an exer
ise for the interested reader.In analogy with (32) the 
ombination of three blo
ks
an be written asW x;y3 W x;y2 W x;y1 =� ��1 (ax;y)P (ŵx;y3 )P (ŵx;y2 )P (ŵx;y1 ) � (ax;y) (37)where ax;y = sux;y1 ux;y3ux;y2 (38)and ŵx;y1 = ux;y2ux;y3 � wx;y1 ; (39)ŵx;y2 = ux;y3ux;y1 � wx;y2 ; (40)ŵx;y3 = ux;y1ux;y2 � wx;y3 : (41)Plugging again this representation into system (13) weobtain the equationP (ŵx;y3 )P (ŵx;y2 )P (ŵx;y1 ) =� � (ax;y) M̂x;y��1 (ax;y) : (42)We know that the suÆ
ient 
ondition for this equation tobe solvable with respe
t to the unknowns ŵx;yk is that thehorizontal and verti
al parts of the matrix on the right-hand side both have nonvanishing r22 elements. The di-re
t 
al
ulation gives usrx;y22 = mx;y12 �mmx;y11 � pmx;y22 +mpmx;y21m+ p ; (43)where mx;yij are the elements of the input matrix M .Looking for a solution one 
an pro
eed further in thesame manner as in the four blo
k 
ase with only onedi�eren
e. At the �rst step one has to take not arbitrarynonnegative m and p, but su
h m and p that both rx22and ry22 are nonzero, whi
h due to symple
ti
ity of thematri
es Mx and My is always possible.

D. Re
ipe of 
onstru
tion of lens blo
ks withde
oupled transverse a
tionsIn this subse
tion we give the re
ipe for the 
onstru
-tion of lens blo
ks with de
oupled transverse a
tions. Aswe will see, this re
ipe works not only for the four-lens
ombination 
onsidered above, but is also appli
able toblo
ks with a larger number of lenses.Let us 
onsider q�lens blo
k with q � 4:W x;y = P (2� lgq) � : : : � P (2� lg1); (44)and let us assume that the produ
t of the (q � 2) innermatri
es in our blo
k takes the formP (2� lgq�1) � : : : � P (2� lg2) = � 0 ux;y�1=ux;y �x;y � :(45)Then, as one 
an show by dire
t multipli
ation, bothmatri
es W x and W y be
ome similar to a single P ma-trix (with an inessential minus sign possibly presented),namely W x;y = �sign(ux;y)���1 �pjux;yj�P (wx;y)��pjux;yj� ; (46)wherewx;y = 2� lg1jux;yj + jux;yj (2� lgq) + sign(ux;y) �x;y: (47)If for arbitrary given values of wx and wy Eq. (47) 
anbe solved with respe
t to the variables g1 and gq, thenit will be exa
tly what we need, and the ne
essary andsuÆ
ient 
ondition for su
h solvability isjuxj 6= juyj : (48)So, in order to 
onstru
t the q-lens blo
k with the de
ou-pled transverse a
tions, one has to solve two equationsmaking the r11 elements of the x and y parts of the prod-u
t of the (q � 2) inner matri
es equal to zero and onehas to satisfy one additional inequality 
onstraint (48).The solution for the four-lens blo
k was already givenabove and is unique up to a sign 
hange (Æ = �1). Let usnow 
onsider the more 
ompli
ated (but still analyti
allysolvable) 
ase of �ve lenses. In this situation all possiblesolutions whi
h bring the produ
t of the three inner Pmatri
es P (2� lg4)P (2� lg3)P (2� lg2); (49)to the form (45) 
an be expressed as a fun
tion of pa-rameters l and g3 as follows:g2 = 1l � lg3 + Æp((lg3)2 � 2) � ((2lg3)2 � 9)(lg3)2 � 3 ; (50)



7g4 = 1l � lg3 � Æp((lg3)2 � 2) � ((2lg3)2 � 9)(lg3)2 � 3 ; (51)Æ = �1, and l > 0 and g3 are su
h thatlg3 2 ��1; �p3� [ ��p3; �1:5i[h�p2; p2i [ h1:5; p3� [ �p3; +1� : (52)To 
omplete the blo
k 
onstru
tion we have to sele
t fromall these solutions a subset on whi
h the fun
tionsux;y = 1 � (lg2 � 2) � (lg3 + lg4) (53)satisfy the inequality (48). As one 
an 
he
k, this 
anbe a
hieved simply by removing from the set (52) theendpoints of the given set intervals, i.e., by removing thepoints �1:5 and �p2. So we see that there are manysolutions whi
h allow us to 
onstru
t from �ve lenses theblo
k with de
oupled transverse a
tions and for sele
tingone of them some additional optimization 
riteria 
ouldbe involved.Note that in the blo
ks 
onstru
ted a

ording to ourre
ipe the setting of the internal lenses does not dependon the setting of the �rst and the last lenses and dependsonly on the geometri
al blo
k parameters (distan
es be-tween the lenses), whi
h will be seen more 
learly in thefollowing se
tion where we will 
onsider the 
ase of arbi-trarily spa
ed thin lenses.Note also that the horizontal and the verti
al matri
esbetween the �rst and the last lenses in the blo
k, when
al
ulated using not the P matrix notation, but the orig-inal variables in whi
h Eq. (7) is writtenD(m)B(m;�gq�1; p) � : : : � B(m;�g2; p)D(p) =D(m)S�1(m; p)P (2� lgq�1) � : : : � P (2� lg2)�S(m; p)D(p) =�� ux;y 01=ux;y + (ux;y + �x;y) =l 1=ux;y � ; (54)both have r12 elements equal to zero (i.e. the phase ad-van
es between the �rst and the last lenses in the blo
kare always multiples of 180Æ), but this alone without theinequality (48) satis�ed does not give us the blo
k withthe de
oupled transverse a
tions.IV. GENERALIZATION TO THE CASE OFARBITRARILY SPACED THIN LENSESWhen the distan
es between the lenses are not equalto ea
h other, we immediately lose the advantage of the
an
ellation of S matri
es between the P matri
es after

substitution of the representation (9) into Eq. (7). Nev-ertheless, as we will show below, this 
ase 
an also betreated with the tools developed in the previous se
tion.Let us denote by dk1;k2 the distan
e between the lenseswith the indi
es k1 and k2 (k1 � k2). We start from theobservation that for k = 2; : : : ; n the following identityholds: S(mk; pk)S�1(mk�1; pk�1) =L� lkdk�1;k � 1�� dk�1;kplk�1 lk!U �1� lk�1dk�1;k� ; (55)whi
h 
an be shown by dire
t multipli
ation and whi
hrequires that all lk and dk�1;k are positive. Note that inthis identity L and U are the lower and upper triangularmatri
es with unit diagonal elements (see Appendix Afor more details).Let us now substitute the representation (9) into Eq.(7) and then plug in the 
orresponding pla
es the right-hand side of the identity (55). After that the property(A19) allows us to eliminate from the result all L and Umatri
es while shifting their arguments to the argumentsof the neighboring P matri
es, and leaving us with aprodu
t 
onsisting of alternating P and � matri
es. Al-though the � matri
es 
annot be eliminated 
ompletely,they 
an be moved either on the left or on the right-handside of all P matri
es with the help of the property (A17).As the last step we transfer all matri
es from the left andright sides of the obtained solid blo
k of the P matri
esto the right-hand side of our equation, hide them in thematrix ~Mx;y and end up with the equationP (~vx;yn ) � : : : � P (~vx;y1 ) = ~Mx;y; (56)whi
h already has the desired form. The detailed stru
-ture of the arguments ~vx;yk and of the matrix ~Mx;y de-pends on the parti
ular ways how the individual � ma-tri
es were moved (to the left or to the right sides) andis given below for the 
ase when during transformationsall � matri
es were moved to the left-hand side of the Pmatrix blo
k. Nevertheless, the expressions given beloware general in the sense that they 
ontain an arbitrarypositive parameter 
1, and with the proper 
hoi
e of thisparameter one 
an a

ount for all possible ways of move-ment of the individual � matri
es:~Mx;y = �(
n)S(mn; pn)Mx;yS�1(m1; p1)�(
1); (57)~vx;yk = 
2klk � dk�1;k+1dk�1;k dk;k+1 � gk� ; k = 1; : : : ; n; (58)
k = dk�1;kplk�1 lk � 1
k�1 ; k = 2; : : : ; n; (59)
1 is an arbitrary positive parameter and, be
ause wedo not have lenses with indi
es 0 and n + 1, we use the
onventions that



8d0;1 = l1; d0;2 = d0;1 + d1;2; (60)dn;n+1 = ln; dn�1;n+1 = dn�1;n + dn;n+1: (61)Note that, if the parameter 
1 is taken to be a positivenumber or a dimensionless fun
tion of the thin-lens mul-tiplet parameters (drift lengths and lens strengths), thenEq. (56) and the variables (58) are also dimensionless.One of the possible 
hoi
es is to take 
1 for even n as so-lution of the equation 
n = 
1 and for odd n as solutionof the equation 
n = 
�11 . If the 
ondition (12) holds,then the solution of these equations for both 
ases (evenand odd n) is 
1 = 1 and the representation (56) turnsinto the representation (13) as one 
an expe
t.Now in order to 
ontinue we need a lens blo
k withthe de
oupled transverse a
tions and, as it is not diÆ-
ult to 
he
k, the re
ipe given in the previous se
tion isappli
able without any 
hanges. For the 
onstru
tion ofthe q-lens blo
k we still need to bring the produ
t of the(q � 2) inner matri
es to the form (45) while also sat-isfying the inequality 
onstraint (48). For the four-lens
ase W x;y = P (~vx;y4 )P (~vx;y3 )P (~vx;y2 )P (~vx;y1 ) (62)the two equations making the r11 elements of the x andy parts of the produ
t of the two inner matri
es equal tozero are ~vx;y2 � ~vx;y3 = 1; (63)and have a solutiong2 = Æd1;2 �sd1;4d2;3 � d1;3d2;4 ; (64)g3 = � Æd3;4 �sd1;4d2;3 � d2;4d1;3 ; (65)whi
h again is unique up to a sign 
hange (Æ = �1). Thevalues ux;y for this solution areux;y = ~vx;y3 = 
23 l3d3;4 � d2;4d2;3 � Æ �sd1;4d2;3 � d2;4d1;3! : (66)Both of them are positive and 
learly satisfy the inequal-ity (48). With this 
hoi
e for g2 and g3 the total blo
kmatrix takes the formW x;y = ���1 �pux;y� P (wx;y) ��pux;y� (67)wherewx;y = (ux;y)�1 � ~vx;y1 + ux;y � ~vx;y4 � 1: (68)Equation (68) is the analogy of the formulas (30) and(31) and for any given values wx and wy allow one todetermine the 
orresponding lens strengths g1 and g4.

Thus, all results of the previous se
tion 
on
erning theredu
tion of the 2D problem to two 1D problems be-
ome appli
able with some minor 
hanges 
onne
ted withthe di�eren
e in the matri
es M̂x;y and ~Mx;y de�ned bythe relations (14) and (57), respe
tively. Note that if,when pla
ed in the beam line, the a
tual de
oupling blo
kstarts from the lens with the index k, one has simply toadd k�1 to the indi
es 1; 2; 3 and 4 in all above formulas.A. Removing of super
uous parametersEquation (7) 
ontains 2n parameters whi
h spe
ify thedrift lengths (m1; p1; : : : ;mn; pn) while only n+1 parame-ters, namelym1; d1;2; : : : ; dn�1;n; pn have a 
lear physi
almeaning and are independent. Let us have a 
loser lookat formulas (56)-(61) and 
ount how many super
uousparameters are still left in them and then show ways toremove them.The super
uous parameters p1 and mn are 
learlypresent, either dire
tly as the arguments of S matri
esor through the lengths of the �rst and the last buildingblo
ks l1 and ln. And a
tually that is all. The presen
eof the other super
uous parameters through the valuesl2; : : : ; ln�1 is 
ompletely imaginary. To show this let usnote that these values 
an enter the main formulas (56)-(58) only through the values 
1 and 
n and through the
ombinations 
21l1; : : : ; 
2nln. So if we 
hoose 
1 to be in-dependent from l2; : : : ; ln�1, then these parameters 
anenter in none of the 
ombinations 
2klk due to the re
ur-sion relation
2k lk = d2k�1;k � 1
2k�1 lk�1 k = 2; : : : ; n; (69)whi
h follows from the re
ursion relation (59), and like-wise they 
annot enter the value 
n be
ause one 
an writethat 
n =p
2nln=ln.Thus, there are only two super
uous parameters, p1and mn, present in our formulas, either dire
tly orthrough the values l1 and ln. Do we need to removethem? In general not, be
ause it is 
lear that none ofthe physi
ally meaningful answers will depend on themand, in this sense, their absen
e in the �nal results (likein formulas (64) and (65)) 
ould work as some indire
tindi
ator of the 
orre
tness of the 
al
ulations. But fromanother point of view, it seems better not to have any su-per
uous parameters from whi
h one 
an expe
t nothingex
ept some possible additional 
ompli
ations.The simplest way to remove the parameters p1 and mnfrom the formulas (56)-(58) is to make them fun
tions ofthe physi
ally meaningful parameters. For example, one
an take p1 = 0:5 � d1;2 and mn = 0:5 � dn�1;n. How-ever, the way whi
h we prefer is the modi�
ation of theformulas (56)-(58) in su
h a way that the super
uous pa-rameters will disappear automati
ally. In doing so let us�rst present the �nal result and then make some remarkson how it 
an be obtained:



9P (vx;yn ) � : : : � P (vx;y1 ) = �Mx;y; (70)�Mx;y = J��1(bn)U(�pn)Mx;y U(�m1)�(b1); (71)vx;y1 = b21� 1d1;2 � g1� ; (72)vx;yk = b2k � dk�1;k+1dk�1;k dk;k+1 � gk� ; k = 2; : : : ; n� 1; (73)vx;yn = b2n� 1dn�1;n � gn� ; (74)b1 > 0; bk = dk�1;k � 1bk�1 ; k = 2; : : : ; n; (75)and J is the 2� 2 symple
ti
 unit matrix.In order to obtain formulas (70)-(75) from formulas(56)-(61) let us �rst introdu
e the parameters bk = 
kplkand then assume that 
1 is 
hosen in su
h a way thatb1 does not depend on any super
uous parameter (forexample, one simply 
an take 
1 = 1=pl1). After thisone sees that the parameters l1 and ln enter the left-handside of Eq. (56) only through the matri
es P (~vx;y1 ) andP (~vx;yn ). Be
ause of the property (A19) these matri
es
an be de
omposed into the following produ
ts:P (~vx;y1 ) = P (vx;y1 )L(
21) = P (vx;y1 )L(b21 = l1); (76)P (~vx;yn ) = U(�
2n)P (vx;yn ) = U(�b2n = ln)P (vx;yn ): (77)As the last step, one has to substitute these de
omposi-tions ba
k into Eq. (56), transfer U and L to the right-hand side and, after some straightforward manipulations,arrive at the �nal result des
ribed in the above formulas(70)-(75).Note that the whole story about the presen
e of thesuper
uous parameters is the result of our desire to havethe expressions for the problem des
ription (expressions(56)-(61)) whi
h redu
es to the highly symmetri
 expres-sions (13) and (14) in the limit of equal distan
es betweenthin lenses. If one does not require that, then, as we willoutline below, it is possible to arrive at the representation(70)-(75) without using the identity (9).A

ording to (A20) and (A21) the matrix of the build-ing blo
k 
an be written asB(m; �g; p) = P (�p)P (�g)P (�m) J: (78)Substituting this representation in the original Eq. (7)and using that due to (A8)P (�mk) J P (�pk�1) = �P (�dk�1;k) (79)we obtain

P (�gn)P (�dn�1;n) � : : : � P (�d1;2)P (�g1)�(b1) =(�1)n�1J U(�pn)Mx;y U(�m1) �(b1); (80)where we have already introdu
ed an arbitrary positiveparameter b1. Now, assuming that all distan
es betweenlenses are positive and using (A16), we 
an repla
e forea
h k = 2; : : : ; n the matrix P (�dk�1;k) by the matrix��(dk�1;k) with simultaneous adding to the argumentsof the two neighboring P matri
es the value d�1k�1;k. Afterthese manipulations we arrive at the expressionP (d�1n�1;n � gn) �(dn�1;n)�P (d�1n�1;n + d�1n�2;n�1 � gn�1) �(dn�2;n�1) � : : :: : : � P (d�12;3 + d�11;2 � g2)�(d1;2)P (d�11;2 � g1)�(b1) =J U(�pn)Mx;y U(�m1) �(b1); (81)and the last step, whi
h is still ne
essary in order to ob-tain formulas (70)-(75), is to move all � matri
es to theleft in the left-hand side of Eq. (81) using the identity(A17) with a subsequent transfer of the matrix �(b�1n )from the left to the right-hand side of the obtained equal-ity. A
knowledgmentsThe authors are thankful to Winfried De
king, NinaGolubeva and Helmut Mais for support and their inter-est in this work. The 
areful reading of the manus
riptby Helmut Mais and his useful advi
es are gratefully a
-knowledged.Appendix A: Elementary matri
es and theirpropertiesThe elementary symple
ti
 P matrix whi
h is de�nedas follows, P (a) = � a 1�1 0 � (A1)and whi
h we use extensively throughout this paper wasfound empiri
ally by the usual trial and error methodduring attempts to redu
e the problem of analyti
alstudy of thin-lens multiplets to some \more manageable"form. As we will see below, this matrix possesses manyinteresting properties not only by itself, but also in 
om-bination with the other elementary matri
es. Althoughnot widely known in the s
ienti�
 
ommunity, it was nosurprise, as we found later, that it was su

essfully usedin some spe
ial area of abstra
t algebra [12℄.



10In order to give an expression for the produ
t of nelementary P matri
es, let us �rst de�ne a sequen
e ofpolynomials �n in the variables z1; : : : ; zn re
ursively bythe following equations:��1 = 0; �0 = 1; (A2)�n(z1; : : : ; zn) = zn � �n�1(z1; : : : ; zn�1)��n�2(z1; : : : ; zn�2); n � 1: (A3)With these notations we assert thatP (an) � : : : � P (a1) =� �n(a1; : : : ; an) �n�1(a2; : : : ; an)��n�1(a1; : : : ; an�1) ��n�2(a2; : : : ; an�1) � ; (A4)whi
h is 
lear for n = 1 and in the general 
ase 
anbe proven by indu
tion. Be
ause su
h indu
tion 
an bemade in two di�erent ways, either by adding one more Pmatrix from the left or from the right side, it is easy tosee that the polynomials �n 
an also be de�ned by (A2)and by the re
ursion relation�n(z1; : : : ; zn) = z1 � �n�1(z2; : : : ; zn)��n�2(z3; : : : ; zn); n � 1: (A5)Comparison of (A3) and (A5) implies that�n(z1; z2; : : : ; zn�1; zn) � �n(zn; zn�1; : : : ; z2; z1): (A6)A

ording to (A4) we 
an write down the matrix of theprodu
t of any number of elementary P matri
es withoutmaking any matrix multipli
ations. In this 
onne
tion letus note that the problem of deriving some re
ursion rela-tions whi
h allow one to obtain the transfer matrix of anarbitrary multiplet without a
tual matrix multipli
ationswas also addressed in [1℄.It is 
lear that the matrix P (0) 
oin
ides with the 2�2symple
ti
 unit matrix J , i.e., thatP (0) = � 0 1�1 0 � = J; (A7)and the following relations between the P matri
es 
anbe easily veri�ed by dire
t multipli
ation:P (a) J P (b) = �P (a+ b); (A8)P 3(�1) = �I; (A9)P�1(a) = J P (�a) J = a � I � P (a); (A10)P (a)P�1(b) = �P (a� b) J; (A11)

P (a)P�1(b)P (
) = P (a� b+ 
); (A12)where I is the 2� 2 identity matrix.Let us now introdu
e three more elementary matri
es.The diagonal (s
aling) matrix�(a) = � a 00 a�1 � (A13)and the lower and upper triangular matri
es with unitdiagonal elementsL(a) = � 1 0a 1 � ; U(a) = � 1 a0 1 � : (A14)Note that although the matri
es L and U formally 
oin-
ide with the matri
es of the thin lens and the drift spa
e,respe
tively, we have introdu
ed them in order to distin-guish the situations where matrix of lens or drift hasphysi
al meaning and where the usage of low or uppertriangular matrix is simply the re
e
tion of the mathe-mati
al te
hnique used.We have the following relations between the matri
esP , �, L and U :P (a)P (a�1)P (a) = �(�a); (A15)P (a)P (b�1)P (
) = P (a� b) �(b�1)P (
� b); (A16)�(a)P (b) �(a) = P (a2b); (A17)P (a�1) = L(�a) �(a�1)U(a); (A18)U(a)P (b)L(
) = P (b+ 
� a); (A19)L(a) = �J P (a); (A20)U(a) = �P (�a) J: (A21)Although these relations are elementary, they are basi
for all results of this paper.Appendix B: Three Expli
it Solutions for Four-LensTeles
opesA teles
ope is a beam transport system whi
h has di-agonal transfer matri
es in both transverse planes,Mx;y = � �x;y 00 ��1x;y � ; (B1)where the numbers �x and �y are 
alled magni�
ations(or de-magni�
ations, if 
onvenient; negativity of hor-izontal/verti
al magni�
ation means that the horizon-tal/verti
al image is inverted with respe
t to the origi-nal). It is an opti
s module whi
h is important for many
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elerator designs and its study has re
eived 
onsider-able attention in the past (see, for example, papers [3{6, 13℄). The minimum number of thin lenses requiredfor a teles
ope to exist is believed to be four (though, toour knowledge, still no rigorous proof is available) andthe 
orresponding four-lens teles
ope system of matrixequations in our notations 
an be written as follows:D(p4)Q(�g4)D(d3;4)Q(�g3)D(d2;3)�Q(�g2)D(d1;2)Q(�g1)D(m1) = Mx;y: (B2)There are two expli
it analyti
al solutions known forthe system (B2). The �rst solution is obtained when theastronomi
al teles
ope, 
onsisting of two fo
using lensesseparated by the distan
e equal to the sum of their fo
allengths, is generalized to the usage of magneti
 doubletsinstead of opti
al lenses. This solution has the propertythat �x = �y < 0; (B3)i.e. it always provides teles
opes with equal negativemagni�
ations in both transverse planes (see, for exam-ple [4℄). The se
ond known analyti
al solution in thefour-lens 
ase is the solution for an inversor [13℄, whi
his the name of the teles
ope with the horizontal and ver-ti
al magni�
ations being inverse of one another:�x ��y = 1; �x;y < 0: (B4)Besides these two expli
it solutions, all other studies ofthe four-lens teles
opes (as well as teles
opes 
onstru
tedfrom larger number of lenses) are either purely numeri-
al or semianalyti
al as in [5, 6, 13℄, where in the �rststep the part of variables is eliminated from the system(B2) analyti
ally and, in the se
ond step, the remainingequations are solved numeri
ally. Sin
e these remainingequations are not linear in the variables, they 
annot besolved easily even numeri
ally and, therefore, any newexpli
it solution of the system (B2) is of interest. In thisAppendix we provide new analyti
al solutions using toolsand te
hniques developed in this paper.Let us �rst transform the system (B2) to the P matrixrepresentation (70)-(75). If we take b1 in (75) as follows,b1 = sd1;2 d3;4d2;3 ; (B5)then, after some straightforward manipulations, we ob-tain the equationsP (vx;y4 )P (vx;y3 )P (vx;y2 )P (vx;y1 ) = �Mx;y; (B6)where �Mx;y = � 0 ��1x;y��x;y �x;y � ; (B7)

�x;y = d2;3d1;2 d3;4 (m1 �x;y + p4��1x;y); (B8)and the P matrix arguments vx;yk are given by the for-mulas (72)-(74).The equivalent to the eight equations (B6) system ofthe six independent equations was already obtained inthe 
ourse of this paper. To get it, one simply has tosubstitute vx;yk instead of zk and elements of the matrix�Mx;y instead of mkl into the system (23). The resultingsystem 
an be further simpli�ed taking into a

ount thespe
ial form of the matrix �Mx;y. If �x;y 6= 0, then Eq.(B6) is equivalent to the system8><>: vx;y2 + �x;y vx;y4 = ���1x;yvx;y3 + �x;y vx;y1 = ��x;yvx;y2 vx;y3 = 1 � �x;y (B9)and if �x;y = 0 (�x and �y 
an be zero or nonzero onlysimultaneously), then the equivalent system takes on theform 8>><>>: vx;y2 = ���1x;yvx;y3 = ��x;y��1x;y vx;y1 + �x;y vx;y4 = �1 (B10)It is intuitively 
lear that the two known analyti
alsolutions for the four-lens teles
opes are somehow 
on-ne
ted with the symmetry relations (B3) and (B4), but itis not obvious, when looking dire
tly at the teles
ope ma-trix (B1), how to �nd other symmetry 
onditions, whi
h
ould allow us to �nd new expli
it solutions. One of theadvantages of the P matrix representation of Eq. (B2)is that the form of the matrix �Mx;y in (B6) gives us auseful hint that as su
h a symmetry 
ondition one maytry the 
ondition �x = �y: (B11)This 
ondition, in the next turn, 
an be 
onsidered as a
ombination of the following three 
ases:m1 = p4 = 0; (B12)�x = �y; (B13)p4 = �x�ym1: (B14)The 
ondition (B11) is satis�ed if and only if at least onefrom the 
onditions (B12)-(B14) is true.As we will see below, all three 
ases (B12)-(B14) area
tually analyti
ally solvable and, moreover, in
lude astheir parts both previously known solutions. But, beforegiving the details, let us make one more useful prepara-tory step.



12As it is well known, the teles
ope matrix (B1) is in-variant under a s
ale transformation. It means that ifthe set m1; g1; d1;2; g2; d2;3; g3; d3;4; g4; p4 (B15)is the solution of the system (B2), then so is the set�m1; g1� ; �d1;2; g2� ; �d2;3; g3� ; �d3;4; g4� ; �p4; (B16)where � is an arbitrary positive number. That allowsus in all further 
onsiderations to set the length of themiddle drift d2;3 equal to one 
hosen unit of lengthd2;3 = 1: (B17)1. Teles
opes whi
h start and end by lensIf the 
ondition (B12) is satis�ed, then �x = �y = 0and the equivalent to the equations (B6) system is thesystem (B10). The ne
essary and suÆ
ient 
onditionsfor this system to have solutions are that�x;y < 0 and �x 6= �y: (B18)If these 
onditions are satis�ed, then the solution isunique (with the pre
ision up to the s
ale transforma-tion (B16)) and is given by the following formulas:d1;2 = 2(a1 � a2)a23 ; d3;4 = a1(2� a2)a23 ; (B19)g1 = �a3 �a32 � 2 a1 (a1 � a2) � 4 a4�4 a2 (2� a2) (a1 � a2) ; (B20)g2 = a3 (2� a2)2 (a1 � a2) ; g3 = �a3 (a1 � a2)a1 (2� a2) ; (B21)g4 = a3 �a32 � 2 a1 (2� a2) � 2 a1 a4�2 a1 a2 (2� a2) (a1 � a2) ; (B22)where we have used the notations� a1 = 2�x�y; a2 = �x +�y;a3 = �x � �y; a4 = �2x +�2y: (B23)As a partial 
ase this solution in
ludes a new inversorwith zero entran
e and exit drifts:�x = ��1y = �; (B24)d1;2 = d3;4 = � 2�(1 + �)2 ; (B25)g3 = �g2 = 2 g1 = �2 g4 = 1 � �22� : (B26)

2. Teles
opes with equal magni�
ations in bothtransverse planesNow we turn our attention to the 
ondition (B13) andwill 
onsider teles
opes with equal magni�
ation in bothtransverse planes: �x = �y = �: (B27)A

ording to the result of the previous subse
tion, noneof su
h teles
opes 
an exist if m1 = p4 = 0 and there-fore the system under study is the system (B9). By el-ementary analysis one 
an show that the ne
essary andsuÆ
ient 
onditions for the teles
ope with equal magni-�
ations to exist are thatm21 + p24 > 0 and � < 0: (B28)If these 
onditions are satis�ed, then all possible solutions
an be expressed as follows:d3;4 = j�j d1;2; p4 = j�j (1 � j�jm1); (B29)g1 = Æs 1 + j�jd1;2 � 1 + j�j d1;21 + d1;2 ; (B30)g2 = �Æs 1 + j�jd1;2 � 1 + d1;21 + j�j d1;2 ; (B31)g3 = g1 = j�j; g4 = g2 = j�j; (B32)where the free parameters are Æ = �1, d1;2 > 0 and m1satisfying the inequality0 � m1 � 1 = j�j: (B33)Let us divide the 
entral interval d2;3 = 1 into twoparts of the lengths 1�j�jm1 and j�jm1 respe
tively andpres
ribe these subintervals to the �rst and to the se
onddoublet 
ells 
orrespondingly. Comparing now the ob-tained above doublet settings with the settings providedby the generalization of the astronomi
al teles
ope, one
an �nd that they 
oin
ide. But though this solution isalready known, we still made a useful step. We provedthat it is the only solution for the four-lens teles
ope withequal magni�
ations possible.3. Teles
opes with nonequal magni�
ations andspe
ial ratio of entran
e and exit driftsThe remaining 
ase to analyze is the 
ase (B14), whi
hwe will study under the additional assumptions that thelength of the entran
e drift m1 is nonzero and that thehorizontal and verti
al magni�
ations are not equal to



13ea
h other, be
ause these situations were already 
onsid-ered in the previous subse
tions, i.e., we will study tele-s
opes with nonequal magni�
ations and with the spe
ialratio of the entran
e and exit drifts given by the relation(B14). The system for analysis is the system (B9), andthe ne
essary and suÆ
ient 
onditions for su
h a tele-s
ope to exist are that �x;y < 0. If these 
onditions aresatis�ed, then all possible solutions 
an be expressed asfollows: d1;2 = 2 (a1 � a2)a23 � (1 + a2m1); (B34)d3;4 = a1 (2� a2)a23 � (1 + a2m1); (B35)p4 = �x�ym1; (B36)g2 = Æd1;2s1 + d1;21 + d3;4 � (1 + a2m1 + d1;2 + d3;4); (B37)g3 = � Æd3;4s1 + d3;41 + d1;2 � (1 + a2m1 + d1;2 + d3;4);(B38)g1 = � 1a2m1 ��a32 + d3;4d1;2 � g3� ; (B39)g4 = 1a2m1 � �a3a1 � d1;2d3;4 � g2� ; (B40)where the ak are given by the formulas (B23) and the freeparameters are Æ = �1 and m1 satisfying the inequality0 < m1 < 1 = j�x +�yj: (B41)The solution (B34)-(B40) has two 
ontinuous bran
heswhi
h are de�ned by the value of the parameter Æ. In thelimit m1 ! 0 the bran
h 
orresponding toÆ = sign(�x � �y) (B42)survives and 
onverges to the solution (B19)-(B22), andthe other bran
h diverges with g1 and g4 going to in�nity.The solution (B34)-(B40) also in
ludes inversors de-s
ribed by the following formulas:�x = ��1y = �; (B43)d1;2 = d3;4 = �2 � � + m1 + �2m1(1 + �)2 ; (B44)p4 = m1; g3 = �g2; g4 = �g1; (B45)

g1 = 1m1 (1 + �2) �1 � �22 + � g2� ; (B46)g2 = Æ j1 � �2j2p� (� + m1 + �2m1) : (B47)Note that these inversors in
lude the previously knownsolution for the inversor [13℄ as a partial 
ase. To seethat one has �rst to set Æ = sign(�2� 1) and m1 = 1 = �,where � = (1 � �)48�2 ; (B48)in the solution (B43)-(B47), and then s
ale the resultwith � a

ording to the formulas (B16).Appendix C: FODO-Type Beam Line forIndependent S
an of Horizontal and Verti
al PhaseAdvan
esIn this Appendix we will apply the expli
it solutiondeveloped in this paper to the design of a beam linewhi
h allows an independent s
an of the horizontal andthe verti
al phase advan
es while preserving the entran
eand exit mat
hing 
onditions for the Twiss parameters.Even though the purely numeri
al approa
h to this prob-lem 
ould result in a smaller number of lenses than wewill use, it is not an easy task. Besides the requirementsto 
over the spe
i�ed range of phase advan
es and topreserve the entran
e and exit mat
hing 
ondition, thereare a number of additional 
onstraints whi
h one has tosatisfy. They 
ould in
lude, for example, limitations onthe lens strengths and limitations on the 
hanges in thebehavior of the betatron fun
tions inside the beam lineduring the phase s
an. For ea
h lens, the out
ome ofthe numeri
al optimization is a two-dimensional array ofthe lens settings 
orresponding to the 
hosen grid in thespa
e of phase advan
es. Every 
hange in the design spe
-i�
ations (whi
h often happens during the design stage)results in the ne
essity to repeat all optimization pro
e-dures with no warranty that the new output will be 
loseto the previous one even for relatively small 
hanges inthe input requirements.The advantage of our approa
h is that most of the de-sign problems 
an be addressed without resorting to un-guided numeri
al 
al
ulations and that the lens settingsrequired for obtaining the needed horizontal and verti
alphase advan
es 
an be 
al
ulated a

ording to expli
itanalyti
al formulas.Note that our interest in this problem is motivatedby the desire to have in the future the possibility forminimization of emittan
e growth due to 
oherent syn-
hrotron radiation (CSR) at the European XFEL Fa
ility[14℄ by optimizing the phase advan
e between two bun
h
ompressors 
hi
anes.Let us 
onsider a FODO 
ell of the length L whi
hbegins with a drift spa
e of the length L=4 and let us



14assume that the �rst lens is horizontally fo
using withthe absolute value of its strength equal to the valueg = 2p3L : (C1)It is a FODO 
ell with 120Æ phase advan
e and its peri-odi
 Twiss parameters are as follows:�x;y = 5L4p3 ; �x;y = �2: (C2)Let us now take a string of six su
h FODO 
ells. Com-paring the value (C1) with the values (25), one sees thatif we freeze the settings of the six lenses to their originalFODO settings� g2 = g6 = g10 = gg3 = g7 = g11 = �g (C3)and allow the strengths of the remaining lenses to be vari-able parameters, then we will obtain the sequen
e of threefour-lens blo
ks with de
oupled transverse a
tions. Weknow that with the help of three blo
ks we 
an representmost of the 4� 4 un
oupled transfer matri
es and let ussee what range of phase advan
es our beam line 
an 
overwhile preserving the periodi
 mat
hing 
onditions (C2)for the Twiss parameters. To keep this mat
hing and,in the same time, to have prede�ned fra
tional parts ofphase advan
es �x and �y, the overall transfer matrix ofour beam line must have the formMx;y = T�1x;y � R(�x;y) � Tx;y; (C4)where Tx;y =  1=p�x;y 0�x;y=p�x;y p�x;y ! ; (C5)�x;y and �x;y are the same as in (C2), and R(�x;y) is a2� 2 rotation matrixR(�x;y) = � 
os(�x;y) sin(�x;y)� sin(�x;y) 
os(�x;y) � : (C6)Following now the pro
edure des
ribed in Se
. III ofthis paper, one �nds that for all �x;y 6= 240Æ the matrix(C4) 
an be represented by three blo
ks with de
oupledtransverse a
tions and that for all �x;y 6= 60Æ the solutionfor the lens strengths is unique. As 
on
erning pointswhere either �x or �y is equal to 60Æ, there are manysolutions, but it is possible to 
hoose one of them su
hthat on the whole set �x;y 6= 240Æ the lens strengthswill be 
ontinuous fun
tions of the phase advan
es. The�nal formulas for the lens settings 
an be summarized asfollows:g1 = g9 = �g � 28 � uy � wx1 � ux � wy124 ; (C7)

g4 = g12 = g � 28 � ux � wx1 � uy � wy124 ; (C8)g5 = �g � 28 � uy � wx2 � ux � wy224 ; (C9)g8 = g � 28 � ux � wx2 � uy � wy224 ; (C10)where ux;y = 2�p3 (C11)and wx;y2 = 
os(�x;y) � sin(�x;y) =p3; (C12)wx;y1 = wx;y3 = 1 � 2 sin(�x;y) =p3wx;y2 (C13)for �x;y 6= 60Æ; 240Æ, andwx;y2 = 0; wx;y1 = wx;y3 = 1=2 (C14)for �x;y = 60Æ.What is in parti
ular interesting in this solution is thefa
t that, though with 
hanging phase advan
es the set-ting of six lenses varies, only four independent tuningknobs are required (wx;y1 and wx;y2 ).If �x and/or �y approa
h the value 240Æ, then thestrengths of some lenses in our solution go to in�nity,but if we restri
t the region of our interest, for example,to the region 0Æ � �x;y � 180Æ, then the lens strengthsremain bounded and satisfy the inequality1 � jgmjg � 7p3 + 26p3 � 1:359; (C15)whi
h, in parti
ular, means that in this phase advan
eregion none of the lenses 
hange its polarity in 
ompar-ison with their original FODO settings. If, in addition,the s
an of only �x is required with �y = 0, then theinequality (C15) is further relaxed to the inequality1 � jgmjg � 28p3 + 724p3 � 1:335; (C16)for m = 1; 5; 9, and to the inequality1 � jgmjg � 24p3 + 124p3 � 1:024; (C17)for m = 4; 8; 12.Con
erning the 
hanges in the behavior of the beta-tron fun
tions inside the beam line during the phase s
an,then, for example, for all �40Æ � �x;y � 60Æ the beta-tron fun
tions �x;y(s) in ea
h position s along the beamline satisfy the inequalities
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FIG. 1: Betatron fun
tions along the phase advan
e s
anbeam line for �x = 60Æ, �y = 0Æ.
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FIG. 2: Betatron fun
tions along the phase advan
e s
anbeam line for �x = 0Æ, �y = 60Æ.
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FIG. 3: Betatron fun
tions along the phase advan
e s
anbeam line for �x = �y = 60Æ.
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FIG. 4: Betatron fun
tions along the phase advan
e s
anbeam line for �x = 0Æ, �y = �40Æ.
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FIG. 5: Betatron fun
tions along the phase advan
e s
anbeam line for �x = �y = �40Æ.
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FIG. 6: Betatron fun
tions along the phase advan
e s
anbeam line for �x = 60Æ, �y = �40Æ.



160:75�min � �x;y(s) � 1:88�max; (C18)where �min = 2�p3p3 L; �max = 2 +p3p3 L (C19)are the minimum and the maximum of the periodi
FODO solution. In more details the behavior of the be-tatron fun
tions along the beam line 
an be seen in Figs.1-6, where they are drawn for the several values of �x;ytaken on the borders of the 
onsidered area and for theFODO 
ell length 
hosen to be one meter.The presented beam line for the s
an of the phase ad-van
es is simple, rather elegant and, in the same time,
an 
over quite a range of phase advan
es with not verylarge 
hanges in the lens strengths as 
ompared to theiroriginal FODO settings. It 
an also be adopted to the

needs of the European XFEL, where the lina
 betweenthe two bun
h 
ompressors has exa
tly six FODO 
ellsand two additional quadrupole groups (mat
hing se
-tions) are available at both lina
 ends.Note that it is not ne
essary to keep the periodi
mat
hing 
onditions (C2). Any two sets of Twiss pa-rameters 
an be �xed at the beam line ends, but one hasto remember that the 
hoi
e of them will a�e
t the po-sition of singularities of the solution obtained with thehelp of the three blo
ks with de
oupled transverse a
-tions. To avoid singularities 
ompletely and/or to haveadditional knob for the 
ontrol of the betatron fun
tionsinside the beam line, one 
an swit
h to the solution whi
hutilizes four blo
ks or to the solution with three blo
ksplus one additional lens. As des
ribed in Se
. IV of thispaper, the equal spa
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