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Abstract

We calculate the eigenvalues of the next-to-leading kernel for the BFKL equation in the
adjoint representation of the gauge group SU(Nc) in the N=4 supersymmetric Yang-Mills
model. These eigenvalues are used to obtain the high energy behavior of the remainder
function for the 6-point scattering amplitude with the maximal helicity violation in the
kinematical regions containing the Mandelstam cut contribution. The leading and next-to-
leading singularities of the corresponding collinear anomalous dimension are calculated in
all orders of perturbation theory. We compare our result with the known collinear limit
and with the recently suggested ansatz for the remainder function in three loops and obtain
the full agreement providing that the numerical parameters in this anzatz are chosen in an
appropriate way.
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1 Introduction

In the Regge pole model scattering amplitudes at large energies
√
s and fixed momentum

transfers
√
−t have the form [1]

Ap
Regge(s, t) = ξp(t) s

1+ωp(t) γ2(t) , ξp(t) = e−iπωp(t) − p , (1)

where p = ±1 is the signature of the reggeon with the trajectory ωp(t) and γ
2(t) represents

the product of reggeon vertices. The Pomeron is the Regge pole of the t-channel partial wave
fω(t) with vacuum quantum numbers and the positive signature describing an approximately
constant behaviour of total cross-sections for the hadron-hadron scattering. S. Mandelstam
demonstrated, that the Regge poles generate cut singularities in the ω-plane [2].

In the leading logarithmic approximation (LLA) the scattering amplitude at high energies
in QCD has the Regge form [3]

MA′B′

AB (s, t) =MA′B′

AB (s, t)|Born s
ω(t) , (2)

where MBorn is the Born amplitude and the gluon Regge trajectory is given below

ω(−|q|2) = −αsNc

4π2

∫
d2k

|q|2
|k|2|q − k|2 ≈ −αsNc

2π
ln

|q2|
λ2

. (3)

Here λ is the infrared cut-off. In the multi-Regge kinematics, where the pair energies
√
sk of

the produced gluons are large in comparison with momentum transfers |qi|, the production

amplitudes in LLA are constructed from products of the Regge factors s
ω(tk)
k and effective

reggeon-reggeon-gluon vertices Cµ(qr, qr+1) [3]. The amplitudes satisfy the Steinmann rela-
tions and the s-channel unitarity incorporated in bootstrap equations [4].

The knowledge of M2→2+n allows one to construct the BFKL equation for the Pomeron
wave function using analyticity, unitarity, renormalizability and crossing symmetry [3]. The
integral kernel of this equation has the property of the holomorphic separability [5] and is
invariant under the Möbius transformations [6]. The generalization of this equation to a
composite state of several gluons [7] in the multi-color QCD leads to an integrable XXX
model [8] having a duality symmetry [9].

The next-to-leading correction to the color singlet kernel in QCD is also calculated [10].
Its eigenvalue contains non-analytic terms proportional to δn,0 and δn,2, where n is the
conformal spin of the Möbius group. But in the case of the N = 4 extended supersymmetric
gauge model these Kronecker symbols are canceled leading to an expression having the
properties of the hermitian separability [11] and maximal transcendentality [12]. The last
property allowed to calculate the anomalous dimensions of twist-two operators up to three
loops [13, 14]. It turns out, that evolution equations for the so-called quasi-partonic operators
are integrable in N = 4 SUSY at the multi-color limit [15]. The N = 4 four-dimensional
conformal field theory according to the Maldacena guess is equivalent to the superstring
model living on the anti-de-Sitter 10-dimensional space [16, 17, 18]. Therefore the Pomeron
in N=4 SUSY is equivalent to the reggeized graviton in this space. The equivalence gives a
possibility to calculate the intercept of the BFKL Pomeron at large coupling constants [14,
19]. The Möbius invariance of the BFKL kernel was demonstrated also in two loops [20]. For
next-to-leading calculations one can use the effective field theory for reggeized gluons [21].
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The generalized bootstrap equation gives a possibility to prove the multi-Regge form of
production amplitudes in the next-to-leading approximation [22].

Another application of the BFKL approach is a verification of the BDS ansatz [23] for the
inelastic amplitudes in N = 4 SUSY. It was demonstrated [24, 25], that the BDS amplitude
MBDS

2→4 should be multiplied by the factor containing the contribution of the Mandelstam
cuts [2] in LLA. In the two-loop approximation this factor can be found also from properties
of analyticity and factorization [26] or directly from recently obtained exact result [27] for
M2→4 (see [28]). In a general case the wave function in LLA for the composite n-gluon
state in the adjoint representation satisfies the Schrödinger equation for an open integrable
Heisenberg spin chain [29].

In this paper we shall calculate the eigenvalues ω(t) of the kernel K for the BFKL
equation in the adjoint representation of the gauge group at N = 4 SUSY in the next-to-
leading approximation. The Green function of this equation allows one to find the asymptotic
behavior of the inelastic amplitude in the Regge kinematics. There is a hypothesis [30, 31],
that the inelastic amplitude with the maximal helicity violation in a planar approximation
is factorized in the product of the BDS amplitude MBDS , containing in crossing channels
the Regge factors with corresponding infrared divergencies, and the remainder function R
depending on the anharmonic ratios

M = RMBDS . (4)

In an accordance with this hypothesis the q2-dependence of the eigenvalues of the octet
BFKL equation is given by the expression (cf. [25] in LLA)

ω(−q2) = ωg(−q2) + ω0 , (5)

where ωg(t) is the gluon Regge trajectory, which can be expressed in all orders of the per-
turbation theory of N = 4 SUSY in terms of two functions entering in the expression for
the BDS amplitude [24]. The ”intercept” ω0 does not depend on q2 due to the conformal
invariance of N = 4 SUSY and can be written in terms of the ”energy” E = −ω0 being the
eigenvalue of the BFKL kernel discussed in the next section.

2 Integral kernel in the adjoint representation

The homogeneous BFKL equation can be written in the form

ω0φ = K̂φ , (6)

where K̂ is the integral operator from which the gluon Regge trajectory is subtracted. In
the momentum representation it has the form

K̂φ(~q1, ~q2) =
∫

d2q ′
1

|q ′
1 |2|q ′

2 |2
K(~q1, ~q

′
1 ; ~q)φ(~q

′
1 , ~q

′
2 ) , ~q = ~q1 + ~q2 = ~q ′

1 + ~q ′
2 . (7)

The integral kernel for N = 4 SUSY can be presented as follows (cf. [3, 22] for the QCD
case)

K(~q1, ~q
′
1 ; ~q) = δ2(~q1 − ~q ′

1)~q
2
1 ~q

2
2

(
ωg(−~q 2

1 ) + ωg(−~q 2
2 )− ωg(−~q 2)

)
+Kr(~q1, ~q

′
1 ; ~q) , (8)
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where the first term corresponds to virtual corrections with the gluon regge trajectory sub-
traction (see (5)) and the second term appears from the real intermediate states in the
s-channel. The total contribution does not contain infrared divergencies. Using results of
Refs. [32] it can be written in the form

K(~q1, ~q
′
1 ; ~q) =

1

2
δ2(~q1 − ~q ′

1 )~q
2
1 ~q

2
2

(
ωg(−~q 2

1 ) + ωg(−~q 2
2 )− 2ωg(−~q 2)

)
+Kns(~q1, ~q

′
1 ; ~q), (9)

where

ωg(−~q 2
1 ) + ωg(−~q 2

2 )− 2ωg(−~q 2) = −αNc

2π

(
1− ζ(2)

αNc

2π

)
ln

(
~q 2
1 ~q

2
2

~q 4

)
(10)

and

Kns(~q1, ~q
′
1 ; ~q) = −δ2(~q1 − ~q ′

1)~q
2
1 ~q

2
2

αNc

8π2

((
1− ζ(2)

αNc

2π

)∫
d2k


 2

~k 2
+ 2

~k(~q1 − ~k)

~k 2(~q1 − ~k)2




−3αNcζ(3)

)
+
αNc

8π2

{(
1− ζ(2)

αNc

2π

)(
~q 2
1 ~q

′ 2
2 + ~q ′ 2

1 ~q 2
2

~k 2
− ~q 2

)
+

αNc

4π

[
~q 2

2

(
ln

(
~q 2
1

~q 2

)
ln

(
~q 2
2

~q 2

)
+ ln

(
~q ′ 2
1

~q 2

)
ln

(
~q ′2
2

~q 2

)
+ ln2

(
~q 2
1

~q ′ 2
1

))
− ~q 2

1 ~q
′ 2
2 + ~q 2

2 ~q
′ 2
1

~k 2
ln2

(
~q 2
1

~q ′ 2
1

)

−1

2

~q 2
1 ~q

′ 2
2 − ~q 2

2 ~q
′ 2
1

~k 2
ln

(
~q 2
1

~q ′ 2
1

)
ln

(
~q 2
1 ~q

′ 2
1

~k 4

)
+
[
~q 2(~k 2 − ~q 2

1 − ~q ′ 2
1 )

+2~q 2
1 ~q

′ 2
1 − ~q 2

1 ~q
′ 2
2 − ~q 2

2 ~q
′ 2
1 +

~q 2
1 ~q

′ 2
2 − ~q 2

2 ~q
′ 2
1

~k 2
(~q 2

1 − ~q ′ 2
1 )

]
I(~q 2

1 , ~q
′ 2
1 , ~k 2)

]}

+ (~q1 ↔ ~q2, ~q ′
1 ↔ ~q ′

2 ) , (11)

where ~k = ~q1 − ~q ′
1 and the function I is given below

I(~q 2
1 , ~q

′ 2
1 , ~k 2) =

∫ 1

0

dx

~q 2
1 (1− x) + ~q ′ 2

1 x− ~k 2x(1− x)
ln

(
~q 2
1 (1− x) + ~q ′ 2

1 x

~k 2x(1− x)

)
. (12)

Note that I(a, b, c) is a totally symmetric function of the variables a, b and c.
One could expect, that the BFKL kernel in N = 4 SUSY is Möbius invariant in the mo-

mentum representation, which would lead to the following simple form of its eigenfunctions
(cf. [25])

φνn(~q1, ~q2) =

∣∣∣∣∣
q1
q2

∣∣∣∣∣

2iν

ei nφ , (13)

where φ is the azimuthal angle of the complex number constructed from transverse compo-
nents of the vectors ~q1 and ~q2

q1
q2

=

∣∣∣∣∣
q1
q2

∣∣∣∣∣ e
iφ . (14)

However, in the existing form the kernel is not Möbius invariant and in future one should
construct the similarity transformation to the invariant form (cf. [20]). Such transformation
exists because the remainder function R, corresponding to the correction factor for the BDS
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expression, should be invariant under four-dimensional dual conformal transformations and
the Green function obtained from the BFKL equation in the adjoint representation allows
to find the asymptotic behavior of the remainder function in the Mandelstam kinematical
regions [25].

3 Eigenvalues of the kernel

It is important, that the eigenvalues of the BFKL kernel do not depend on its representation
and can be found from our expression (8). To calculate these eigenvalues we consider the
BFKL equation in the limit (cf. [25])

|q1| ∼ |q′1| ≪ |q| ≈ |q2| ≈ |q′2| . (15)

Denoting the two dimensional vectors ~q1 and ~q
′
1 by ~p and ~p ′, respectively, we write the BFKL

equation in the form ∫ d2p ′

|p ′|2 K(~p, ~p ′) Φ(~p ′) = ω0Φ(~p) . (16)

Its kernel is given below

K(~p, ~p ′) = −δ2(~p−~p ′) |p|2 αNc

4π2

((
1− αNc

2π
ζ(2)

) ∫
d2p ′

(
2

|p ′|2 +
2(p ′, p− p ′)

|p ′|2|p− p ′|2
)
− 3α ζ(3)

)

+
αNc

4π2

(
1− αNc

2π
ζ(2)

) ( |p|2 + |p ′|2
|p− p ′|2 − 1

)
+
α2N2

c

32 π3
R(~p, ~p ′) . (17)

Here ~p and ~p ′ are momenta of the same reggeized gluon before and after its scattering in the
t2-channel (momenta of another gluon tend to infinity together with q). The reduced kernel
R(~p, ~p ′) is given below

R(~p, ~p ′) =

(
1

2
− |p|2 + |p ′|2

|p− p ′|2
)
ln2 |p|2

|p ′|2 − |p|2 − |p ′|2
2|p− p ′|2 ln

|p|2
|p ′|2 ln

|p|2|p ′|2
|p− p ′|4 (18)

+

(
−|p + p ′|2 + (|p|2 − |p ′|2)2

|p− p ′|2
) ∫ 1

0
dx

1

|(1− x)p+ xp ′|2 ln
|(1− x)p+ xp ′|2
x(1− x)|p− p ′|2 . (19)

From the rotational and dilatational invariance of the kernel we obtain its eigenfunctions in
the simple form

Φνn(~p) = |p|2iνeiφn , (20)

where φ is the angle of the transverse vector −→p with respect to the axis x. Note, that ν is
real and n is integer.

The orthonormality condition for this set of functions is obvious

1

2π2

∫ d2p

|p|2 Φ
∗
µm(~p) Φνn(~p

′) = δ(µ− ν) δm,n . (21)
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The corresponding eigenvalues can be calculated with the action of the BFKL kernel on
the eigenfunctions and are given below

ω(ν, n) = −a (Eνn + a ǫνn) , a =
αNc

2π
, (22)

where Eνn is the ”energy” in the leading approximation [25]

Eνn = −1

2

|n|
ν2 + n2

4

+ ψ(1 + iν +
|n|
2
) + ψ(1− iν +

|n|
2
)− 2ψ(1) , ψ(x) = (ln Γ(x))′ (23)

and the next-to-leading correction ǫνn can be written as follows

ǫνn = −1

4


ψ′′(1 + iν +

|n|
2
) + ψ′′(1− iν +

|n|
2
) +

2iν
(
ψ′(1− iν + |n|

2
)− ψ′(1 + iν + |n|

2
)
)

ν2 + n2

4




−ζ(2)Eνn − 3ζ(3)− 1

4

|n|
(
ν2 − n2

4

)

(
ν2 + n2

4

)3 . (24)

Here the ζ-functions are expressed in terms of polylogarithms

Lin(x) =
∞∑

k=1

xk

kn
, ζ(n) = Lin(1) . (25)

Note, that ω(ν, n) has the important property

ω(0, 0) = 0 . (26)

It is in an agreement with the existence of the eigenfunction Φ = 1 with a vanishing eigen-
value, which is a consequence of the bootstrap relation [3, 22].

4 Corrections to the remainder function

One can easily construct the Green function for the conformally invariant BFKL kernel in
terms of its eigenvalues. This Green function allows us to calculate the remainder functions
Rn for an arbitrary number of external legs in the regions, where there are Mandelstam’s cuts
corresponding to the composite states of two reggeized gluons. For simplicity we consider
the remainder function R6 for the gluon transition 2 → 4 depending on three anharmonic
ratios (cf. [28])

u1 =
ss2

s012s123
, u2 =

s1t3
s012t2

, u3 =
s3t1
s123t2

. (27)

In the multi-regge kinematics one obtains

s≫ s012, s123 ≫ s1, s2, s3 ≫ t1, t2, t3 , (28)

which corresponds to the following restrictions on the variables uk

1− u1 → 0 , ũ2 =
u2

1− u1
∼ 1 , ũ3 =

u3
1− u1

∼ 1 . (29)
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It is convenient also to introduce the complex variable w [28]

w = |w|eiφ23 , |w|2 = u2
u3
, cosφ23 =

1− u1 − u2 − u3
2
√
u2u3

(30)

expressed in terms of transverse momenta of produced particles k1, k2 and momentum trans-
fers q1, q2, q3

w =
q3k1
k2q1

. (31)

In this case the remainder function R in the Mandelstam region, where

s, s2 → +∞ , s1, s3 → −∞ , (32)

can be presented in the form of a dispersion-like relation [26]

Reiπδ = cos πωab + i
a

2

∞∑

n=−∞

(−1)n
(
w

w∗

)n
2

∫ ∞

−∞

|w|2iνdν
ν2 + n2

4

ΦReg(ν, n)

(
− 1√

u2u3

)ω(ν,n)

, (33)

where

δ =
γK
8

ln(ũ2ũ3) =
γK
8

ln
|w|2

|1 + w|4 , ωab =
γK
8

ln
ũ2
ũ3

=
γK
8

ln |w|2 (34)

and the cusp anomalous dimensions

γK = 4a− 4 a2 ζ(2) + 22 ζ(4) a3 + ... (35)

is known in all orders of perturbation theory [33].
Further, instead of the traditional variable 1/(1 − u1) (see [24, 25]) we used in eq. (33)

the following energy invariant

1√
u2u3

= s2
|q2|2√

|k1|2|q1|2 |k2|2|q3|2
=

1

1− u1

|1 + w|2
|w| , (36)

because according to the Regge theory the amplitude should be factorized in the t2-channel.
As a result, by expanding this expression for R in the perturbation theory

R = 1+ i a2
(
b1 ln

1

1− u1
+ b2

)
+ a3

(
ic1 ln

2 1

1− u1
+ (d1 + ic2) ln

1

1− u1
+ d2 + ic3

)
+ ... =

1+ i a2
(
b̃1 ln

1√
u2u3

+ b̃2

)
+a3

(
ic̃1 ln

2 1√
u2u3

+ (d̃1 + ic̃2) ln
1√
u2u3

+ d̃2 + ic̃3

)
+ ... , (37)

we obtain [25, 28]

b̃1 = b1 = −π
2
ln |1 + w|2 ln |1 + w|2

|w|2 , (38)

b̃2 = b2 − b1 ln
|1 + w|2

|w| ,
1

π
b2 =

1

2
ln |w|2 ln2 |1 + w|2

−1

3
ln3 |1 + w|2 + ln |w|2 (Li2(−w) + Li2(−w∗))− 2 (Li3(−w) + L3(−w∗)) , (39)
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and (see ref. [28])

4

π
c̃1 =

4

π
c1 = ln |w|2 ln2 |1 + w|2 − 2

3
ln3 |1 + w|2 − 1

4
ln2 |w|2 ln |1 + w|2

+
1

2
ln |w|2 (Li2(−w) + Li2(−w∗))− Li3(−w)− Li3(−w∗) , (40)

4

π2
d̃1 =

4

π2
d1 = − ln |w|2 ln2 |1 + w|2 + 2

3
ln3 |1 + w|2 + 1

2
ln2 |w|2 ln |1 + w|2

+ ln |w|2 (Li2(−w) + Li2(−w∗))− 2Li3(−w)− 2Li3(−w∗) . (41)

Note, that in the second order the real contribution to R is absent [26].
The product of two impact factors ΦReg(ν, n) can be obtained with the use of the Fourier

transformation of the function b̃2

ΦReg(ν, n) = 1 + Φ
(1)
Reg(ν, n) a+ Φ

(2)
Reg(ν, n) a

2 + ... , (42)

Φ
(1)
Reg(ν, n) = Φ(1)(ν, n) + ∆Φ(ν, n) = −1

2
E2

νn −
3

8

n2

(
ν2 + n2

4

)2 − ζ(2) , (43)

where ∆Φ(ν, n) is the contribution of the term −b1 ln |1+w|2

|w|
in b̃2 (39) and the contribution

Φ(1)(ν, n) appearing from the term b2 was calculated in ref. [28] 1

Φ(1)(ν, n) = E2
νn −

1

4

n2

(
ν2 + n2

4

)2 − ζ(2) . (44)

The knowledge of eigenvalues (24) in the next-to-leading approximation gives a possibility
to calculate the coefficients c̃2 and d̃2 from expression (33)

1

π
c̃2 = −1

4
ln |w|2 (S1,2(−w) + S1,2(−w∗) + ln(1 + w)Li2(−w) + ln(1 + w∗)Li2(−w∗))

+
ζ(3)

2
ln |1 + w|2 − ln

|1 + w|2
|w|

(
Li3(−w) + Li3(−w∗)− 1

2
ln |w|2(Li2(−w) + Li2(−w∗))

)

+
1

4
ln |1 + w|2(Li3(−w) + Li3(−w∗)) +

1

16
ln2 |w|2 ln |1 + w|2 ln |1 + w|2

|w|2

+
1

8
ln2 |1+w|2 ln2 |1 + w|2

|w|2 +
1

8
ln2 |w|2 ln(1+w) ln(1+w∗)+ζ(2) ln |1+w|2 ln |1 + w|2

|w|2 , (45)

d̃2 = π

(
c̃2 − ln

|1 + w|2
|w| b̃2 + 2 ζ(2) b̃1

)
. (46)

1In the reference [28] the quantity Φ(1)(ν, n) was found for the remainder function, but here we need it
for the full amplitude. According to (33) they differ by the term appearing from the expansion of exp(iπδ)
and proportional to the second order contribution to the anomalous dimension γK (35).
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In the above expression the function S1,2(−x) has the following representation

S1,2(−x) =
∫ x

0

dx′

2x′
ln2(1+x′) = Li3(

x

1 + x
)+Li3(−x)−ln(1+x)Li2(−x)−

1

6
ln3(1+x) . (47)

One can verify with the use of the known relations among polylogarithms Lin(x), that the
coefficients c̃2 and d̃2 are single-valued functions on the two-dimensional plane −→w and are
symmetric to the inversion w → 1/w. We can calculate also the coefficients c2 and d2 in (37)
using the relations

c2 = c̃2 + 2c̃1 ln
|1 + w|2

|w| , d2 = d̃2 + d̃1 ln
|1 + w|2

|w| . (48)

Note, that recently the authors of ref. [35] suggested an anzatz for the remainder function
R6 in three loops based on the theory of symbols. They calculated its high energy behavior in
our Mandelstam region in the form of the polynomial expansion in log(1−u1). It turns out,
that up to three loops their results are completely coincides with our perturbative expansion
(37). In particular, one can derive the expressions (58) and (66) from the paper [35] using

the fact, that the corresponding functions g
(2)
1 (w,w∗) and h

(3)
0 (w,w∗) are related with our

coefficients c2 and d2 in (37) as follows

g
(2)
1 (w,w∗) = − c2

2π
, h

(3)
0 (w,w∗) = − d2

(2π)2
. (49)

It gives a possibility to fix the parameters γ′ and γ′′′ appearing in ref. [35] in the form

γ′ = −9

2
, γ′′′ = 0 . (50)

In expression (63) of the paper [35] also the additional function g
(3)
0 (w,w∗) was calculated.

This function contains three unknown parameters appearing in the last line of (63). Our
coefficients c3 and c̃3 in (37) can be expressed in terms of it

c3 = 2π g
(3)
0 (w,w∗) , c̃3 = c3 − ln

|1 + w|2
|w| c2 + ln2 |1 + w|2

|w| c1 . (51)

It gives a possibility to construct the following function

ρ(w,w∗) =
c̃3
π

+ π c̃1 + ln
|1 + w|2

|w|

(
ζ(2) ln2 |1 + w|2

|w| − 11

2
ζ(4)

)
, (52)

where the term proportional to ζ(4) appears from the third order contribution to γK (35)
which was calculated firstly in ref. [13]. The important next-to-next-to-leading corrections
to the product of impact-factors ΦReg(ν, n) (42) can be expressed through ρ(w,w∗)

Φ
(2)
Reg(ν, n) = (−1)n

(
ν2 +

n2

4

) ∫
d2w

π
ρ(w,w∗) |w|−2iν−2

(
w∗

w

)n
2

. (53)

We are going to calculate Φ
(2)
Reg(ν, n) in future.

Similar results can be obtained for the remainder function describing the 3 → 3 transi-
tions in the corresponding Mandelstam regions [34].
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5 Collinear limit

It is well known, that the BFKL equation for the Pomeron wave function gives a possibility
to predict the leading singularities of the anomalous dimensions γ of the twist-2 operators
at ω → 0 in all orders of perturbation theory [3, 10]. In particular, for the case of N = 4
SUSY the predictions of Ref. [11] are in a full agreement with the direct calculations of γ
up to 5 loops [13, 36, 37]. As it follows from the previous section, the BFKL kernel for the
adjoint representation of the gauge group allows one to find the high energy corrections to
the remainder functions. On the other hand, in the collinear limit the remainder functions
obey the renormalization group-like equations [38, 39]. The analytic continuation of the
collinear expressions forR to the Mandelstam regions was performed in Ref. [40]. The leading
asymptotics corresponds to the unit conformal spin |n| = 1. The anomalous dimensions γcol
for the collinear limit in the Euclidean region were constructed [39] and the relation between
the Regge and collinear limits was investigated [40].

To calculate γcol in the Mandelstam region we present expression (33) in the following
form with the use of the Fourier transformation

Reiπδ = cos πωab + i
a

2

∞∑

n=−∞

(−1)n
(
w

w∗

)n
2

∫ ∞

−∞
dν |w|2iν Lνn

(
− 1

1 − u1

)
, (54)

where

Lνn

(
− 1

1− u1

)
=

∞∑

n′=−∞

(−1)n
′−n

∫ ∞

−∞

Φreg(ν
′, n′)dν ′

ν ′2 + n′2

4

Sνn
ν′n′

(
− 1

1− u1

)ω(ν′,n′)

(55)

and

Sνn
ν′n′ =

∫
d2w

2π2
|w|2i(ν′−ν)−2

(
w

w∗

)n′
−n
2

(
|1 + w|2

|w|

)ω(ν′n′)

. (56)

The collinear limit w → 0 or w → ∞ of the remainder function (54) should be performed
at fixed 1 − u1 [39, 40]. Generally expressions (54) and (55) correspond to the collinear
renormalization with an infinite number of the multiplicatively renormalizable operators
(cf. [40]). But in the case, when we take into account only the asymptotic terms at |w| → ∞
with the conformal spin |n| = 1, we can obtain for R the simple expression

Reiπδ ≈ cos πωab − ia cosφ23 |w|−1
∫ i∞

−i∞
dω

ΦReg(ν, 1)(
ν2 + 1

4

)
dω
dν

|w|2γcol(ω)
(
− 1

1− u1

)ω

, (57)

where the contour of integration goes to the right of the BFKL singularity ν ∼
√
ω − ω(0, 1)

present in the integrand in an accordance with the fact, that the functions γ = γcol(ω), ν =
ν(ω) satisfy the set of equations 2

γ =
1

2
+ iν +

ω

2
, ω = ω(ν, 1) . (58)

2Note, that our definition of the collinear anomalous dimension γcol differs with the factor −1/2 from
that used in ref. [39].
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For finding γcol in perturbation theory the function ω(ν, 1) (22) should be expanded near the
point ν = i/2

lim
ν→ i

2

ω(ν, 1) =
a

2
f1

(
iν +

1

2

)
− a2

8
f2

(
iν +

1

2

)
, (59)

where

f1(x) =
1

x
− 1− x− x2(1− 4ζ(3))− x3 +O(x4) , (60)

f2(x) =
1

x3
+

1

x2
+

4ζ(2)

x
− 8ζ(3)− 4ζ(2)− 2 +O(x) , (61)

Thus, we obtain the following equation for γ = γcol(ω)

ω =
a

2
f1(γ)−

a2

8
(f ′

1(γ)f1(γ) + f2(γ)) . (62)

Its perturbative solution is given below

γcol(ω) =
a

2

(
1

ω
− 1

)
− a2

4

(
1

ω2
+ 2

ζ(2)

ω

)
+

a3

4ω2
(1 + 2ζ(2) + ζ(3)) +O(a4) . (63)

The above approach is similar to that for the singlet BFKL kernel, but in that case one
obtained the main contribution to the Bjorken limit from n = 0 [10].

The collinear anomalous dimension γcol(ω) in the Mandelstam region s, s2 > 0, s1, s3 < 0
can be found in one loop using the results of the paper [40]. We start with the perturbative
expansion of the remainder function in the collinear limit |w| → ∞ in LLA of the Operator
Product Expansion (OPE) [38]

ROPE ≈ a cosφ
e−σ

2|w|
∞∑

k=0

(−a ln |w|)k
k!

hk(σ) , σ =
1

2
ln

u1
1− u1

, (64)

where we expressed the world sheet coordinates τ and σ in terms of our variables w and
u1 (see eqs (76)-(79) from ref. [40]) and included one loop contribution contained in the
BDS amplitude. The analytic continuation of the two loop remainder function calculated
in ref. [27] to the Mandelstam region s, s2 > 0, s1, s3 < 0 gives the result (see eqs. (51),
(C.12)-(C.16) from ref. [40])

cosφ → cosφ23; hk(σ) → −hk(σ) + ∆k(σ) ,
∆0(σ)

2πi
= −2 eσ ,

∆1(σ)

2πi
= 4

(
cosh σ ln(1 + e2σ)− eσ

)
. (65)

Here the functions hk(σ) for k = 0, 1 in the right hand side of the first relation are known from
ref. [39]. They are not essential for the calculation of γcol because they are real and fall at
large σ. The contributions ∆k(σ) appear from the analytic continuation of the corresponding
discontinuities of the functions hk(σ) on the cut −1 < s̃2 < 0, where s̃2 = exp(2σ) [40]. After
the continuation we can write this discontinuity using the collinear renormalization group in
the form

∆ROPE = − a cosφ23
1

|w|
∫ i∞

−i∞

dω

ω(ω + 1)
|w|2γcol(ω)e2ωσ , (66)
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where
γcol(ω) = aω (1 + ω)

∫ ∞

0
d(2σ) e−2σω

(
e−σ cosh(σ) ln

(
1 + e2σ

)
− 1

)
=

a

2

(
1

ω(ω + 1)
− 2ω + (ω + 1)

(
ψ(ω + 1)− ψ(

ω + 2

2
)
)
+ ω ψ(ω + 2)− ω ψ(

ω + 3

2
)

)
. (67)

As one can see from expression (63), the BFKL approach reproduces correctly the first
two terms of γcol at ω → 0.

6 Conclusion

In this paper we solved the BFKL equation for the channel with color octet quantum num-
bers in the next-to-leading approximation. The eigenvalues of its integral kernel were used
to calculate in the next-to-leading logarithmic approximation the remainder function for the
production amplitude 2 → 4 in the multi-Regge kinematics at the Mandelstam channels.
The obtained result in three loops is in an agreement with the recently suggested anzatz [35]
for the remainder function. This anzatz allowed us to construct the product of correspond-
ing impact-factors in the next-to-next-to-leading approximation. The collinear anomalous
dimension in the Mandelstam region was calculated explicitly in one loop. Its leading and
next-to-leading singularities are found in all loops.

Acknowledgments. We thank J. Bartels, A. Prygarin and G. Vacca for helpful discus-
sions, the Hamburg University and DESY for the warm hospitality and support. This work
was done in the framework of the program LEXI ”Connecting Particles with the Cosmos”.

References

[1] V. N. Gribov, Sov. Phys. JETP 14 (1962) 478.

[2] S. Mandelstam, Nuovo Cim. 30 (1963) 1148.

[3] L. N. Lipatov, Sov. J. Nucl. Phys. 23 (1976) 338;
V. S. Fadin, E. A. Kuraev and L. N. Lipatov, Phys. Lett. B 60 (1975) 50;
E. A. Kuraev, L. N. Lipatov and V. S. Fadin, Sov. Phys. JETP 44 (1976) 443; 45
(1977) 199;
Ya. Ya. Balitskii and L. N. Lipatov, Sov. J. Nucl. Phys. 28 (1978) 822.

[4] Ya. Ya. Balitskii, L. N. Lipatov and V. S. Fadin, in Materials of IV Winter School of
LNPI (Leningrad, 1979) p.109.

[5] L. N. Lipatov, Phys. Lett. B 309 (1993) 394.

[6] L. N. Lipatov, Sov. Phys. JETP 63 (1986) 904.

[7] J. Bartels, Nucl. Phys. B 175 (1980) 365;
J. Kwiecinskii and M. Praszalowicz, Phys. Lett. B 94 (1980) 413.

11



[8] L. N. Lipatov, High energy asymptotics of multi-colour QCD and exactly solvable
lattice models, arXiv:9311037 [hep-th].

[9] L. N. Lipatov, Nucl. Phys. B 548 (1999) 328.

[10] V. S. Fadin and L. N. Lipatov, Phys. Lett. B 429 (1998) 127;
M. Ciafaloni and G. Camici, Phys. Lett. B 430 (1998) 349.

[11] A. V. Kotikov and L. N. Lipatov, Nucl. Phys. B 582 (2000) 19.

[12] A. V. Kotikov and L. N. Lipatov, Nucl. Phys. B 661 (2003) 19.

[13] A. V. Kotikov, L. N. Lipatov, A. I. Onishchenko and V. N. Velizhanin, Phys. Lett. B
595 (2004) 521;

[14] A. V. Kotikov, L. N. Lipatov, A. I. Onishchenko and V. N. Velizhanin, Phys. Lett. B
632 (2006) 754.

[15] L. N. Lipatov, talk at ”Perspectives in Hadronic Physics”, Proc. of Conf. ICTP, Triest,
Italy, May 1997.

[16] J. M. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231.

[17] S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Phys. Lett. B 428 (1998) 105.

[18] E. Witten, Adv. Theor. Math. Phys. 2 (1998) 253.

[19] R. C. Brower, J. Polchinski, M. J. Strassler, C. I. Tan, JHEP 0712 (2007) 005.

[20] I. Balitsky and G. A. Chirilli, Nucl. Phys. B 822 (2009) 45;
V. S. Fadin, R. Fiore and A. V. Grabovsky, Nucl. Phys. B 831 (2010) 248.

[21] L. N. Lipatov, Nucl. Phys. B 452 (1995) 369; Phys. Rept. 286 (1997) 131.

[22] V. S. Fadin, R. Fiore, M. G. Kozlov and A. V. Reznichenko, Phys. Lett.B 639 (2006)
74.

[23] Z. Bern, L. J. Dixon and V. A. Smirnov, Phys. Rev. D 72 (2005) 085001.

[24] J. Bartels, L. N. Lipatov and A. Sabio Vera, Phys. Rev. D 80 (2009) 045002.

[25] J. Bartels, L. N. Lipatov and A. Sabio Vera, Eur. Phys. J. C 65 (2009) 587.

[26] L. N. Lipatov, arXiv:1008.1015 [hep-th], Proceedings of the conference ”Quarks-2010”.

[27] A. B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, arXiv:1006.5703 [hep-th].

[28] L. N. Lipatov and A. Prygarin, Phys. Rev. D 83 (2011) 045020; D 83 (2011) 125001.

[29] L. N. Lipatov, J. Phys. A 42 (2009) 304020.

[30] L. F. Alday and J. M. Maldacena, IHEP 0706 (2007) 064.

12



[31] J. M. Drummond, J. Henn, G. P.Korchemsky and E. Sokatchev, Nucl. Phys. B 826

(2010) 337 ; B 828 (2010) 3179.

[32] V. S. Fadin, R. Fiore, A. V. Grabovsky and A. Papa, Nucl. Phys. B 784 (2007) 49;
R. E. Gerasimov and V. S. Fadin, Phys. Atom. Nucl. 73 (2010) 1214;
V.S. Fadin, R. Fiore and A. Papa, Phys. Rev. D 60 (1999) 074025.

[33] N. Beisert, B. Eden, M. Staudacher, J. Stat. Mech. 0701 (2007) P01021.

[34] J. Bartels, L. N. Lipatov and A. Prygarin, arXiv:1012.3178 [hep-th].

[35] L. J. Dixon, J. M. Drummond and J. M. Henn, arXiv:1108.4461 [hep-th].

[36] A. V. Kotikov, L. N. Lipatov, A. Rej, M. Staudacher and V. N. Velizhanin, J. Stat.
Mech. 0710 (2007) P10003;
Z. Bajnok, R. A. Janik and T. Lukovski, Nucl. Phys. B 816 (2009) 376.

[37] T. Lukovski, A. Rej and V. N. Velizhanin, Nucl. Phys. B 831 (2010) 105.

[38] L. F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, IHEP 1104 (2011) 088.

[39] D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, arXiv:1102.0062 [hep-th].

[40] J. Bartels, L. N. Lipatov and A. Prygarin, arXiv:1104.4709 [hep-th].

13


