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SHARP THRESHOLDS FOR RAMSEY PROPERTIES OF STRICTLY
BALANCED NEARLY BIPARTITE GRAPHS

MATHIAS SCHACHT AND FABIAN SCHULENBURG

ABSTRACT. For a given graph F we consider the family of (finite) graphs G with the Ramsey property
for F', that is the set of such graphs G with the property that every two-colouring of the edges of G
yields a monochromatic copy of F'. For F being a triangle Friedgut, R6dl, Ruciniski, and Tetali (2004)
established the sharp threshold for the Ramsey property in random graphs. We obtained a simpler
proof of this result which extends to a more general class of graphs F' including all cycles.

The proof is based on Friedgut’s criteria (1999) for sharp thresholds, and on the recently developed
container method for independent sets in hypergraphs by Saxton and Thomason, and Balogh, Morris
and Samotij. The proof builds on some recent work of Friedgut et al. who established a similar result
for van der Waerden’s theorem.

1. INTRODUCTION

A common theme in extremal and probabilistic combinatorics in recent years concerns the transfer
of classical results to sparse random structures. Prime examples include Ramsey’s theorem, Turan’s
theorem, and Szemerédi’s theorem (see, e.g., [2, 11,19,21]). Here we often want to replace the
complete graph K, or the set of integers [n] = {1,...,n} (implicitly appearing in the classical
results mentioned above) by a random graph G(n,p) or a random subset of [n].

For example, in the context of Ramsey’s theorem for a given number of colours k and a graph F,
one may consider the class A consisting of all graphs G with the property that every k-colouring of its
edges yields a monochromatic copy of F'. Then one may consider the following question: When does
the binomial random graph G(n,p) satisty A asymptotically almost surely (a.a.s.)? More precisely,
for which p = p(n) we have lim,_,o P(G(n,p) € A) = 17 It turns out that for many natural graph
properties there exists a threshold function p = p(n) such that

0, ifp=o(p),
1, if p = w(p).
After establishing the threshold for a given property A, one may study more closely how quickly

lim P(G(n,p) € A) =

n—o0

(1)

the transition from a.a.s. not having A to a.a.s. having A occurs. If for all € > 0 it is possible to
replace p = o(p) in (1) by p < (1 —¢&)p and p = w(p) by p = (1 + €)p, then the threshold is called
sharp and otherwise we refer to it as a coarse threshold.

In that direction only a few results are known. In [6] Friedgut presents a characterization of
coarse thresholds in a general setting. In case of random graphs it roughly says, that a threshold is
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coarse if and only if it is correlated to a local property. For example the graph property “G(n,p)
contains a triangle” depends on local events and has a coarse threshold while the graph property
“G(n,p) is connected” is a global property and has in fact a sharp threshold.

Friedgut’s work (refined by Bourgain) yields a tool to verify sharp thresholds by contradiction.
Supposing to the contrary that the threshold in question would be coarse, one may use the charac-
terization of Friedgut to deduce additional structural properties (see e.g. Theorem 4) which might
be used to derive a contradiction.

There are some results in this area based on this approach. For example, it was shown in [J]
that the Ramsey-type property “in every vertex colouring of G(n,p) with two colours there is a
monochromatic triangle” has a sharp threshold (see also [9] for some extensions).

Regarding Ramsey-type properties concerning edge colourings the applicability of Friedgut’s cri-
terion seems more involved. In that direction it was shown by Friedgut, R6dl, Rucinski, and Tetali
in [10] that the Ramsey property for the triangle and two colours has a sharp threshold. More re-
cently, Friedgut, Han, Person and Schacht [3] studied van der Waerden’s property in random subsets
of Z/nZ and established a sharp threshold for this property. Essentially the same proof can be used
to deduce the sharpness of the threshold for the Ramsey properties for strictly balanced (see (2)
below) k-partite k-uniform hypergraphs and, hence, in particular for even cycles in graphs and two
colours.

We extend this research to non-bipartite graphs. In particular, we obtain a shorter proof of the
triangle result from [10]. We will use the arrow notation from Ramsey theory. For two graphs G
and F' we write G — (F)¢ if for all edge colourings of G with r colours there exists a monochromatic
copy of F. If, on the other hand, there is an r-colouring of E(G) with no monochromatic copy of
F, then we write G - (F)$. Our first result establishes the sharp threshold when F' is a cycle.

Theorem 1. For a cycle Cy, of length k = 3 there exist positive constants co and c¢; and a func-
tion c(n) with ¢y < ¢(n) < c1 such that for all e > 0 we have

0, if p < (1 — 5)c(n)n_(k_2)/(k—1)’

lim P(G(n,p) — (Cr)$) =
(Gln,p) = (Cr)2) {1, if p= (1+¢)e(n)n~(kF=2)/(k=1),

n—o0

In fact, we shall show the sharpness of the threshold for a more general class of graphs than
cycles. For a graph F' = (V, E) we write v(F) = |V(F)| and e(F) = |E(F)|. For graphs F with at
least one edge let the 2-density mo(F) be defined by

mo(F) = max{dy(F’): F' € F and e(F’) > 1}

(P — {zéif%; if o(F") > 2, o)
1, if I/ = K.

If dy(F) = ma(F), then we call F' balanced. Moreover, F' is strictly balanced if in addition do(F”) <

ma(F) for all proper subgraphs F/ < F with at least one edge. We say a graph F is nearly

bipartite if e(F') = 2 and there is a bipartite graph F’ and some edge e such that FF = F' + e =

(V(F"), E(F') U {e}). Note that this definition includes all bipartite graphs with at least two edges.

Since for every k = 3 the cycle C}, of length k is strictly balanced and nearly bipartite, the following

where

result includes Theorem 1 as a special case.
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Theorem 2. For all strictly balanced and nearly bipartite graphs F' there exist positive constants cg
and ¢1 and a function c(n) with ¢y < c(n) < c1 such that for all e > 0 we have

0, if p<(1—e)e(n)n=t/m2F)
=

lim P(G(n,p) — (F)3) = {1’ ifp>(1+ g)c(n)nfl/mz(F).

n—o0

We remark that here we defined da2(K2) = 1 in (2). As a consequence it follows that
ma(F) > 1 (3)

for every strictly balanced and nearly bipartite graph F', since every nearly bipartite graph is required
to have at least two edges by definition. In fact, this is the reason why we restrict ourselves in the
definition of nearly bipartite to graphs with at least two edges.

The proof of Theorem 2 refines ideas from the work in [%] and also uses Friedgut’s criterion for
coarse thresholds [6] and the recent hypergraph container results of Balogh, Morris, and Samotij [!]
and Saxton and Thomason [20]. In Section 2 we will introduce these tools and in addition we will
state the two main technical lemmas, Lemmas 7 and 8, which we will need in the proof of the main
result. Section 3 is devoted to the proof of Theorem 2 based on these tools. In Section 4 and
Section 5 we then prove Lemmas 7 and 8, respectively. We close with a few remarks concerning
possible generalisations of Theorem 2 and related open questions.

2. MAIN TOOLS AND OUTLINE OF THE PROOF

In this section we introduce the necessary tools for the proof of the main result. We use the
following notation: For a graph B and n > v(B) we define U, as the set of all embeddings of B
into the complete graph K,,. So ¥ , corresponds to the unlabelled copies of B in K, and, clearly,
|\I’B,n| = @(n”(B))

The starting point of the proof is the Rodl-Ruciniski theorem (stated below) which establishes
that n~Y"2(F) is the threshold for the property G(n,p) — (F)§ for most graphs F. In view of
Theorem 2 we restrict our discussion below to two colours and to strictly balanced and nearly
bipartite graphs F. In particular, owing to (3) we have ma(F') > 1 and exclude all forests (some
forests exhibit a slightly different behaviour in this context see [15, Theorem 8.1] for details).

Theorem 3 (Rodl & Ruciniski (special case)). For all strictly balanced and nearly bipartite graphs F,
the function p = p(n) = n=Y"m2F) s the threshold for the property G(n,p) — (F)S. In fact, there
exist constants C1 = Cy > 0 such that

0, if p<Con Ym2(F)
=

n—o0 Clnfl/mQ(F).

limy P(G(n.p) — (F)3) = { o

0

We will strengthen Theorem 3 and show that these thresholds are sharp. For that we will
appeal to Bourgain’s refinement [, Appendix] of Friedgut’s criterion for coarse thresholds which
will be introduced in Section 2.1. Then we present a recent structural result on independent sets
in hypergraphs which plays a crucial réle in our proof. In Section 2.3 we introduce two somewhat
technical probabilistic lemmas needed for the proof of Theorem 2. Section 2.4 establishes the
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connection between independent sets in hypergraphs and colourings of the edges of the random
graph without monochromatic copies of the given graph F' considered in our setting.

2.1. Bourgain’s criterion. In the appendix of Friedgut’s original work [6] Bourgain established
a closely related criterion for coarse thresholds, which is better suited for our application. The
following version of Bourgain’s criterion appeared in [7, Theorem 2.4].

Theorem 4 (Bourgain’s criterion). Let A be a monotone graph property with a coarse threshold.
Then there exist p = p(n), constants % >a>0,e>0,7>0, and a graph B satisfying

(i) a <P(G(n,p) e A) <1—3a and

(i) P(B< G(n,p)) >
such that for every graph property G with a.a.s. G(n,p) € G there exist infinitely many n € N and
for each such n a graph Z € G on n vertices such that the following holds.

(1) P(Z U h(B)e A) >1—«, where he Vg, is chosen uniformly at random,
(2) P(Z v G(n,ep) e A) < 1—2a,

where the random graph G(n,ep) and Z have the same vertex set. O

Note that the P(-) in (7) (and (7)), in (1), and in (2) concern different probability spaces. While
in (7) and (7) it concerns the random graph G(n, p) we consider h chosen uniformly at random in (1)
and the random graph G(n,ep) in (2). Below we reformulate Theorem 4 suited for our application.

Corollary 5. Let F' be a strictly balanced and mearly bipartite graph. Assume that the property
G — (F)$ does not have a sharp threshold. Then there exists a function p(n) = c(n)n=""2F) with
Co < ¢(n) < Cy for some Cy,Cy > 0, there are constants % >a > 0 and € > 0, and there is a
graph B with B - (F)§ such that for infinitely many n € N and for every family of graphs G on n

vertices with a.a.s. G(n,p) € G there exists a Z € G such that the following hold

(1) P(Z U h(B) — (F)5) > 1 — a, with h € Yp,, chosen uniformly at random,
(2) P(Z U G(n,ep) — (F)5) < 1—2a.

Corollary 5 is just a reformulation of Theorem 4 in our context. We give the details below.

Proof of Corollary 5. Note that conclusions (1) and (2) of Corollary 5 are identical to (1) and (2)
of Theorem 4 for the monotone graph property A = {G: G — (F)$}. Owing to Theorem 3 we
infer that because of (i) in Theorem 4 the probability p(n) must satisfy p(n) = ¢(n)n="/™2(F) where
Co < ¢(n) < C for constants Cp, C; given by Theorem 3. It is only left to show that B — (F)$ is
a consequence of (77) of Theorem 4.

For that we recall that it was shown in [18, Theorem 6] that if B — (F)§ then m(B) = ig) >
mg(F). Thus a standard application of Markov’s inequality yields P(H < G(n,p)) = o(1) for
every H with H — (F)§ and p = ©(n~/m2()) Consequently the graph B provided by Theorem 4
must satisfy B - (F)§, due to (ii) of Theorem 4. O

~

2.2. Hypergraph containers. We shall also use a recent result concerning independent sets in
hypergraphs, which was obtained independently by Saxton and Thomason [20] and Balogh, Morris,
and Samotij [1]. Here we will use the version from [20].
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Let H be an f-uniform hypergraph on m = |V (H)| vertices. For a subset 0 < V(H) we define its
degree by
d(o) =|{ee E(H): o S e}|.
For a vertex v € V and an integer j with 2 < j < ¢ we consider the maximum degree over all
j-element sets o containing v

dY) (v) = max{d(c): veoc V(H) and |o| = j}.

We denote by d = ¢|E(H)|/m > 0 the average degree of H and, following the notation of [20], for
7>0and j=2,...,¢ we set

and

I )
5(H, ) =271 3 2=(0g;
j=2

We write P(X) for the power set of X and denote by P*(X) = P(X) x --- x P(X) the s-fold cross
product of P(X).

Theorem 6 (Saxton & Thomason). Let H be an (-uniform hypergraph on the vertex set [m] and
let)<e< % Suppose that for T > 0 we have 6(H,7) < /120! and T < 1/1446!26. Then there exist
a constant ¢ = c¢() and a collection J < P([m]) such that the following holds
(a) for every independent set I in H there exists T = (11,...,Ts) € P*(I) with |T;| < ctm,
s < clog(1/¢) and there exists a J = J(T') € J only depending on T such that I < J(T) € J,
(b) e(H[J]) <ee(H) for all J € T and
(¢) log|J| < erlog(1/7)log(1/c)m. O

We will apply Theorem 6 to an auxiliary hypergraph described in the following section.

2.3. Main probabilistic lemmas. The hypergraph H to which we will apply Theorem 6 depends
on the graph Z € G which will be provided by Bourgain’s criterion (Corollary 5) applied for the
strictly balanced, nearly bipartite graph F'. For the verification of the assumptions of Theorem 6
we will restrict the family G containing Z. Recall that G can be chosen to be any graph property
which is satisfied a.a.s. by G(n,p) for any p with p = @(n="/™2(F)), In what follows we discuss the
restrictions for the family G (see Lemmas 7 and 8 below) and for that we introduce the required
notation.

Let Z and B be two subgraphs of the complete graph K,,. We say z € E(Z) focuses on b € E(B)
if there exists a copy of F' in Z U B which contains z and b. We set

M(Z,B) = {z€ E(Z): there is b e E(B) such that z focuses on b} .

The pair (Z, B) is called interactive if E(Z) n E(B) = &, Z » (F)$, and B —» (F)§, but Zu B —
(F')$. For a collection = < Up, of embeddings of B into K, the pair (Z,E) is called interactive
if (Z, h(B)) is interactive for all h € Z. Furthermore, a pair (Z,Z) is regular if for all h € = every
z € E(Z) focuses on at most one b € E(h(B)). We call h € ¥p,, reqular w.r.t. Z if (Z,{h}) is
regular. The hypergraphs H considered here are defined in terms of regular pairs (Z, ).
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For a pair (Z,Z) with Z < K,, and E < Up,, we define the hypergraph H = H(Z, Z) with vertex
set

and edge set
EH)={M(Z,h(B)): heZE}.

For our presentation it will be useful to consider orderings of the edges of the involved graphs
and “order consistent” embeddings. For that we fix an arbitrary ordering of F(K,) and an ordering
of E(B). For an interactive and regular pair (Z,EZ) and h € = we say that z € M(Z,h(B)) =
{e1,...,es} with e; < ey < --- < ey has index i if z = e;. Furthermore, we call (Z,Z) and H(Z, E)
index consistent if for all z € E(Z) and all h,h' € Z with z € M(Z,h(B)) n M(Z,h'(B)) the indices
of z in M(Z,h(B)) and in M(Z,h'(B)) are the same. Let by < --- < be(p) be the ordering of the
edges of B, then the profile of M(Z,h(B)) is the function 7: [|[M(Z,h(B))|] — [e(B)] defined by
7(i) = j if and only if e; focuses on h(b;). Since the pair (Z,Z) is regular, for each edge of H each e;
focuses on maximal one h(b;) and, hence, the profile is well defined. We say (Z,Z) has profile 7 if
all edges M (Z, h(B)) for h € Z have profile 7. Note that in this case all sets M (Z, h(B)) have the
same cardinality and |M(Z, h(B))| is called the length of the profile 7.

Having established this notation we now state the following technical lemma which gives one part
of the graph property G for application of Corollary 5. Moreover, we shall also apply Theorem 6
which results in useful properties of the hypergraph H(Z,=Z) for Z € G and some appropriately
chosen Z < ¥p,.

Lemma 7. For all constants C7 > Cy > 0, % > « > 0 and graphs F' and B, where F' is strictly
balanced and nearly bipartite, there exist o/, 3,y > 0 and L € N such that for every p = c(n)nil/mﬂF)
with Cy < ¢(n) < Cy a.a.s. Z € G(n,p) satisfies the following. If

P(Z Uh(B) > (F)}) >1—a

then there exists Zp,, < Vg, with |Zp,| = a'n? and Z U h(B) — (F)§ for all h e EBn such that
the hypergraph H = H(Z,Ep ) is index consistent for some profile m of length £ < L and there is a
family C of subsets of V(H) satisfying
(1) log|C| < e(2)' 7,
(2) |C| = pe(Z) for all C € C and
(8) every hitting set A of H contains a C € C, i.e., for every A < V(H) with e n A # & for all
e € E(H) there exists C € C with C < A.

We need another restriction on the family G which is satisfied a.a.s. by G(n,p). For a nearly
bipartite graph F' = F’ + ¢ we consider those pairs of vertices in K, which complete a copy of
the bipartite subgraph F’ in a given subgraph of G(n,p) to a full copy of F' in K,,. Hence, for a
graph G € K,, we define the basegraph Basep(G) < K,, with edge set

{{z,y}: IF' = G’ such that F' + {x,y} forms a copy of F}.

We require that for every relatively dense subgraph G’ of G(n,p) the basegraph spans many copies
of F itself. More precisely, for a graph G on n vertices and a nearly bipartite graph F = F’ + ¢ and
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A, > 0 we say G has the property T'(\,n, F) if for every subgraph G’ ¢ G with e(G’) > \e(G) we
have that the basegraph Basep(G’) contains at least nn¥"") copies of F.

Lemma 8 gives the second restriction for the family G for our application of Corollary 5. Assuming
that there is no copy of F' in the bigger colour class of Z, Lemma 8 will be helpful to find a copy
of F' in the intersection of Z n G(n,ep) with the other colour class.

Lemma 8. For all A > 0, Cy > Cy > 0 and every strictly balanced and nearly bipartite graph F
there exists n > 0 such that for Con=/"m2(F) < p < Cin=Y"2F) the random graph G(n,p) a.a.s.
satisfies T(\,n, F).

2.4. Colourings and hitting sets. In this section we establish the connection between hitting
sets of the hypergraph H(Z,Z) and F-free colourings of Z.

Recall that the definition of an interactive pair (Z, Z) says that for every embedding he =2 < ¥,
the graphs Z and h(B) are edge disjoint and Z - (F)§ and B —» (F)§ but Z u h(B) — (F)5. Let
bi,...,bx be an enumeration of F(B) and fix an F-free colouring o: E(B) — {red,blue}. We copy
this colouring for every h € = by setting op: E(h(B)) — {red,blue} with o, (h(b;)) = o(b;) for
alli=1,..., K. Furthermore, let ¢ be an arbitrary F-free colouring of Z.

Since Z U h(B) — (F)$, the joint colouring of Z U h(B) given by ¢ and oy, yields a monochromatic
copy of F' and this copy must contain edges of both graphs, of Z and of h(B). Thus each edge
M(Z,h(B)) of the hypergraph H(Z, =) contains an e € E(Z) which focuses on some h(b) with b €
E(B), where we have ¢(e) = o,(h(b)) = o(b). We say such an edge e € E(Z) (resp. vertex e € V(H))
is activated by ¢, o, and h. We define the set of activated vertices by

AL = AZ(Z,E) = U {ee E(Z): eis activated by o, ¢ and h} € V(H). (4)
he=
Note that by definition for an interactive pair (Z,Z) every edge M (Z, h(B)) of H(Z,Z) contains an
activated vertex and, hence, the set of activated vertices A7 is a hitting set of H(Z,Z). In what
follows we will use different colourings ¢ of Z but we will always restrict to the same colouring o
of B.

Suppose now in addition that we have a fixed ordering of E(Z) and as above let E(B) =
{b1,...,bg}. Further suppose that the interactive pair (Z,E) is also index consistent with pro-
file m of length ¢. In particular, the hypergraph H(Z, ) is ¢-uniform.

It also follows from the definitions that for z € A7 n A7, for two colourings ¢ and ¢ we have
¢(2) = ¢'(2). In fact, for z € AZ there exist an h € = such that z is activated by o, ¢ and h.
Let i be the index of 2z in M(Z,h(B)), then z focuses on h(b,(;)) and, therefore, ©(z) = o (br(;))-
Consequently, repeating the same argument for ¢', we have ¢'(2) = o(br(;)) = ¢(2). We summarise
these observations in the following fact.

Fact 9. Let (Z,Z) be a an interactive, reqular and index consistent pair with profile w and let o be
an F-free colouring of E(B) and ¢ be an F-free colouring of E(Z). Then

(A1) AZ(Z,E) is a hitting set of H(Z,Z) and

(A2) for all F-free colourings ¢ of E(Z) and for all z € A, n A7, we have p(2) = ¢'(2).

Now we are prepared to give the proof of the main theorem based on the lemmas and theorems
of this section.
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3. PROOF OF THE MAIN THEOREM

3.1. Outline of the proof. The starting point of the proof is Bourgain’s criterion (see Corollary 5)
applied to the contradictory assumption, that the Ramsey property G — (F)§ for a given strictly
balanced and nearly bipartite graph F' has a coarse threshold. For that we define a family of
graphs G having “useful” properties and Lemma 7 and Lemma 8 show that a.a.s. G(n,p) displays
these properties. Then Bourgain’s criterion asserts for infinitely many n € N the existence of an
n-vertex graph Z € G, a graph B (called booster), constants % > a > 0, ¢ > 0 and a family of
embeddings Uy, © ¥, with Z U h(B) — (F)5 for all h e ¥ and [V | > (1 — a)[¥p 4|, but
P(Z U G(n,ep) — (F)5) < 1 — 2. The goal is to find a contradiction to the last fact by showing
P(Z u G(n,ep) — (F)5) =1 —o0(1).

Let @ be the set of all F-free colourings of Z. We have to show that for any ¢ € ® the probability
to extend ¢ to an F-free colouring of Z u G(n,ep) is very small. We are able to show that this
probability is of order exp(—Q(pn?)). Now we would like to use a union bound for all ¢ € ®.
However, we have only little control over |®| and the trivial upper bound 20(rn?) s too high to
combine it with the bound from above exp(—Q(pn?)) to obtain for P(Z U G(n,ep) » (F)$) a bound
of order o(1) by the union bound.

Instead we shall find a partition of ® into 20(Pn?) classes such that two colourings from the same
partition class always agree on a large subset of Z. These subsets are called cores. Then we will
show that the colouring of ¢ restricted to the associated core implies that ¢ is only with probability
at most exp(—Q(pn?)) extendible to an F-free colouring of Z U G(n,ep). This allows us to use a
union bound over all partition classes to get the desired upper bound on P(Z u G(n,ep) - (F)§) of
order o(1).

For the definition of the cores we will appeal to the hypergraph H = H(Z,Z) which was defined
in Section 2.3. Recall that V(H) = e(Z) and hyperedges of H correspond to embeddings of B in
K,,, which are given by a carefully chosen subset = < \I/’Bm. In fact, we shall select = < \11357” in
such a way, that we can apply the structural result on independent sets of hypergraphs by Saxton
and Thomason [20] to H (see Lemma 7). In fact, the cores then correspond to the complements
of the almost independent sets from J given by the Saxton-Thomason theorem (Theorem 6). This
yields a small family C of subsets of V(#), that means of size 20(Pm*) guch that the elements C € C
are not too small and every hitting set of H contains at least one element from C.

We then associate every F-free colouring ¢ of Z with a hitting set A7 of H (for some F-free
colouring o of B, see part (Al) of Fact 9) and thus we can associate to each such colouring ¢ a
core C € C contained in AZ. This allows us to define the desired partition of the set of colourings ¢
using the “small” family of cores C. Finally, we use the union bound to estimate the probability
that there is an F-free colouring of Z that can be extended to an F-free colouring of Z U G(n,ep)
by o(1), which contradicts P(Z U G(n,ep) — (F)5) < 1 —2a. Below we give the details of this proof.

3.2. Details of the proof.

Proof of Theorem 2. Let F = F' + {a1,a2} be a strictly balanced, nearly bipartite graph with F”

being bipartite and assume for a contradiction that the property G — (F')§ does not have a sharp
threshold.
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We apply Corollary 5 and obtain a function p(n) = c(n)n~"/™2(F) such that Cy < ¢(n) < C; for
some C; > Cy > 0, constants 1+ > a >0, € > 0 and a graph B with B - (F)5.

For these parameters we apply Lemma 7 and obtain constants o/, 3,7 > 0 and L € N. Set A = 3/2
and apply Lemma 8, which yields 7 > 0. Then let G,, be the family of graphs G on n vertices that
satisfy the conclusions of Lemma 7 and Lemma 8 for the chosen parameters and ian < e(G) < pn?.
Since these properties hold a.a.s. in G(n,p), it follows from Corollary 5, that there are infinitely
many n € N for which there is some Z € G,, satisfying

(R1) P(Z U h(B) — (F)3) > 1 — «, with h € ¥, chosen uniformly at random,
(R2) P(Z U G(n,ep) — (F)5) < 1 -2«

as well as by Lemma 8
(T) Z has the property T'(\,n, F')
and

(Z) 1pn* < e(Z) < pn®.

Owing to Z € G,, and (R1) we can use Lemma 7 to find some Ep, € Vg, of size at least a'n?

with Z U h(B) — (F)$ for all h € g, such that the hypergraph H = H(Z,Ep,) is index consistent
with a profile 7 of length ¢ < L and such that there is a family C of subsets of V(#) with

(C1) loglC| < e(2)'77,
(C2) |C] = Be(Z) for all C € C and
(C3) every hitting set A of H contains a set C € C.

Our proof is by contradiction and we shall establish such a contradiction to the assertion (R2).

Let @ be the set of all F-free edge colourings of E(Z) and pick an arbitrary F-free colouring o
of B. We want to split ® into “few” classes. For this we use the correspondence between any
colouring ¢ € ® and the hitting set A7 = A%(Z,=p ) of H given by part (A1) of Fact 9. Moreover,
for C € C we define

@C:{goecb: CQA;}.

Then ® = (Jgee o (not necessarily disjoint) since by (C3) for every ¢ € @ the hitting set A
contains some C € C and hence ¢ € ®¢.

Part (A2) of Fact 9 asserts that ¢(2) = ¢'(2) for all z € A7 N A7, and any colourings ¢, ¢’ € . In
other words, all colourings in ®¢ agree on C' and, hence, there exists a monochromatic subset Rc < C
(w.l.o.g. coloured red) of size at least |C|/2 = fe(Z)/2 = Xe(Z) (see (C2) and the choice of \).

For the desired contradiction we add G(n,ep) to Z. We have to show that

P(Z v G(n,ep) - (F)5) =o(1).

For this purpose we find for all F-free colourings ¢ of Z an upper bound for the probability that ¢
is extendible to an F-free colouring of Z U G(n,ep). For ¢ we use only the colouring on the
associated core C' A7, instead of the colouring on all edges of Z. In this way we can deal with all
embeddings ¢ € ®¢ at once since they coincide on C.

Since the red colour class Ro contains at least Ae(Z) edges it follows from property (T), that
there are at least nn”(F) copies of F' in the basegraph Baser(R¢) of Ro w.r.t. F. In an F-free
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colouring of Z U G(n,ep) all edges in
Uc = G(n,ep) n Basep(R¢)

have to be coloured blue since every edge in Baser(R¢) completes a red copy of F' in R¢ to a copy
of F. Consequently, ¢ cannot be extended to an F-free colouring of Z U G(n,ep) if Uc spans a copy
of F. However, since Baser(R¢) contains Q(n*(F)) copies of F and p = Q(n~"/™2(F)) it follows from
Janson’s inequality [13] (see also [11]) that it is very unlikely that Uc is F-free. In fact, a standard
application of Janson’s inequality asserts that there exists some 7/ = +/(g,n, Co, C1, F) such that

1
P(F & G(n,ep) nBasep(Rc)) = P(F ¢ Uc) < exp (—fy’nQ_mﬂF)) ) (5)
We then deduce the desired contradiction to (R2) by
P(Z U G(n,ep) » (F)5) < |C|-P(3pe Pc: ¢ is extendible to Uc)

(c1)
< exp(e(2)'77) P(F ¢ Ue)

(2)

< exp((pn?)'77) - P(F & Uo)

5) o o
(< exp ((Cln2 m21(F))1*7) - exp (—fy’n2 m21(F))
< «a,

for sufficiently large n, since v > 0 and C1, 7, and 7/ are constants independent of n. This concludes
the proof of Theorem 2. O

4. PROOF OF LEMMA 7

The key tool to prove Lemma 7 is the container theorem of Saxton and Thomason (see Theorem 6).
We shall apply Theorem 6 to the hypergraph H(Z,=Zp ). In order to satisfy the assumptions of The-
orem 6 we may enforce some properties on the typical graph Z and the family of embeddings =g ,,.
Firstly in Section 4.1 we will formulate some properties on Z that hold a.a.s. for G(n,p) and which
will turn out to be useful for locating a suitable family of embeddings =g ,, € ¥, (see Section 4.2).
In Section 4.3 we finally check that for those choices the assumptions of Theorem 6 are satisfied by
the hypergraph H(Z,Zp ).

4.1. Some typical properties of G(n,p). Theorem 5 yields a family of embeddings of B into K.
We restrict ourselves to “regular” embeddings with foresight to the later parts of the proof. Actually
we want that for every edge e € E(Z) and every embedding h there is only one b € E(B) such that
e focuses on h(b). In addition there should be exactly one copy of F' that contains e and h(b) if e
focuses on h(b). There are three ways such that this fails.

Definition 10. Let F', B, Z be graphs with Z < K,,. An embedding h € Up, is bad (with respect
to F and Z) if one of the following holds

(B1) either there is a copy Fy of F in Z U h(B) that contains at least one edge of E(Z)\E(h(B))
and at least two edges of E(h(B)),

(B2) or there are distinct copies Fy and Fy of F in Z v h(B) and edges e, fi # fo with e €
E(Z)\E(h(B)) and e € E(F1)nE(Fy), f1, fo € E(h(B)) such that f; € E(F}) and fy € E(F)
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(B3) or there are distinct copies Fy and Fy of F in Z Uh(B) and edges e, f with e € E(Z)\E(h(B))
and e € E(F1) n B(Fy), f e E(MB)) and f € E(Fy) n E(F).

Note that (B3) would be a special case of (B2) if we would not require f; # fo there. However,
for the later discussion it is better to distinguish these cases.

Fact 11. For F, B and Z let E,, < ¥p, be a family of embeddings such that for all h € Zp,,
properties (B1) and (B2) are not satisfied. Then clearly the pair (Z,Zp ) is reqular.

We shall show that for the random graph Z = G(n,p) only a few embeddings h € Up,, are
bad (see (Z5) in Definition 12 and Lemma 13 below), which enables us to focus on regular pairs
(Z,ZB,n). Moreover, we shall restrict to typical graphs Z, which render a few more somewhat
technical properties such as containing roughly the expected number of some special subgraphs. We
discuss those below.

Let F_ be the family of subgraphs of F' obtained by removing some edge and for a graph G
we denote by F_(G) the copies of a member of F_ in G. Furthermore, for an edge e € E(G) let
F_(G,e) be those copies in F_(G) that contain e. For two edges e1,es € E(G) let F_(G,e1,e2) <
F_(G,e1) x F_(G,ez2) be the set of pairs of copies (Fi, Fs) such that F; and F» intersect in at
least two vertices {xi1,xa,...,xs}, F; together with e = {x1,x2} is isomorphic to F for i = 1,2
and e(F1nFy) = 0. For s > 2let F_ 5(G, e1,e2) € F_(G, e1, e2) be the set of pairs as in F_(G, ey, €2)
such that F; and F3 intersect in exactly s vertices.

These concepts lead to the following definition of “good” graphs Z, where we impose that the
sizes of the introduced families defined above are close to the respective expectation in G(n,p).
Then Lemma 13 states that a.a.s. G(n,p) is indeed good for the right choice of parameters.

Definition 12. For graphs F' and B and constants D >0, ¢ >0, § > 0 and p € (0,1) we consider
the set of graphs Gp rmp(D,(,0) on n vertices that is given by Z € G pnp(D,(,0) if and only if
(Z1) jpn® < e(Z) < pn?,
(Z2) |F_(Z)| < Dn?,
(Z3) |F-(Z,e)| < % forallee E(Z),
(Z4)
(25)

74) |F-(Z,e1,e2)| < 1% for all but at most DS?Q pairs of distinct edges e1,es € E(Z) and

75) [{h€ Upp: his bad wrt. F and Z}| < 22,

The following Lemma shows that a.a.s. G(n,p) € G Fnp(D,(,0) for D sufficiently large and ¢
and § sufficiently small (in fact, our choice of § will imply pn® — 0).

Lemma 13. For every strictly balanced and nearly bipartite graph F', for every graph B, and for all
constants C1 = Cy > 0 there are constants D > 0, ( > 0, and d with 0 < § < min{m21(F) iy [p— )}

mao(F
such that for Con= V™) < p < Cyn=Vm2F) g a.5. G(n,p) € GB.Fnp(D,(,0).

We will split the proof into two parts: First we consider (Z1)-(Z4) which deals with subgraphs
of Z (Lemma 14), and then we deal with the bad embeddings considered in (7Z5) (Lemma 16).

Lemma 14. Let C; > Cy > 0, F be a strictly balanced and nearly bipartite graph and Con=Y™2(F) <
p < Cin~Y™2(E) . Then there exist constants D > 0 and § with 0 < § < min {m21(F), 1— mgl(F)} such
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that a.a.s. G(n,p) satisfies the properties (Z1), (72), (Z3), and (Z4) with the parameters p, D, and
0 and for the graph F.

For the proof of Lemma 14 we note that property (Z1) follows directly from the concentration
of the binomial distribution and (Z2) follows (with slightly adjusted D) from (Z1) and (Z3). The
proof of (Z3) will make use of Spencer’s extension lemma (Theorem 15 stated below). Finally, (7Z4)
follows from a standard second moment argument. Below we introduce the necessary notation for
the statement of Theorem 15.

For a graph H and an ordered subset R = (z1,...,2,) of V(H) the pair (R, H) is called rooted
graph with roots R. For an induced subgraph H' = H[S] of H with {z1,...,2,} & S € V(H) we
say (R, H') is a rooted subgraph of (R, H). We define the density of a rooted graph (R, H) by

e(H) — e(H[R])
v(H) - [R|
Let V(H)\{z1,...,2z.} = {y1,...,y,} for some v > 1. For a graph G with distinct vertices

/

(«),...,x}) an ordered tuple (y},...,y,,) is called an (R, H)-extension of (z},,...,z.) if

dens(R, H) =

/.

e the y; are distinct from each other and from the 7,

o {z},y;} € E(G) whenever {z;,y;} € E(H) and
o {y},y;} € E(G) whenever {y;,y;} € E(H).
The number of (R, H)-extensions (y},...,v,) is denoted by N(af,...,z.). Finally, we define

mad(R, H) as the maximal average degree of a rooted graph (R, H) by
mad(R, H) = max{dens(R, H'): (R, H') is rooted subgraph of (R, H)} .

Theorem 15 ([23, Theorem 3]). Let (R, H) be an arbitrary rooted graph and let € > 0. Then there
exist t such that if p = n~ Y ™2dH) (log )Vt then a.a.s. in G(n,p)

(1—-e)E[N(z')] < N(z') < (1 + ¢)E[N(z')]

/

for all ' = (2,...,z.) chosen from [n]. O

Proof of Lemma 14. (Z1) This follows from an application of Chernoff’s inequality.

(Z2) As already mentioned this property follows (with slightly adjusted D) from (Z1) and (Z3).
However, here is a standard direct proof based on the subgraph containment threshold in random
graphs.

For F_ e F_and e€ ([g]) let X, be the random variable that counts the number of copies of F_
that build a copy of F' by adding e and let X be the random variable that counts the number of
copies of F_ contained in G(n,p). Since p = O(n~Ym2(")) and since F is strictly balanced, the
expectation of X satisfies

E[X] = @( 3 E[Xe]> —0 ((Z) nv(F)—Qpe(F)—1> —0(n?).
e('3)
Since F is strictly balanced we can also use [15, Remark 3.7] and obtain that X converges to E[X]

in probability and, in particular, P(X > 2E[X]) — 0 for n — c0. Summing over all F_ € F_ yields
the claim.
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(Z3) Consider a graph F_ € F_ and remove some edge {x1,x2} from F_ and call the resulting
graph F_o. For e € ([g]) let X. be the random variable that counts the number of copies of F_o
that build a copy of F_ by adding e and let X be the random variable that counts the number of
copies of F_g contained in G(n,p).

Now we can use Spencer’s extension lemma (Theorem 15). We consider the rooted graph
((x1,x2), F_). Let F be an induced subgraph of F_ such that ((x1,x2), F) is a rooted subgraph of
((x1,22), F_) which maximizes the density dens((z1,x2), F'). Since F 2 F_ 2 F is strictly balanced
we have

A

ma(F) > d(F) = zg;:; _ dens((x1, ), ) — mad((z1,32), F).

Consequently, Theorem 15 applied with € = 1 implies a.a.s.
N(at,ah) < 2B(X,) = O(p ) 2p(F)2)

for every 2| # x € [n]. Owing to p = ©(n~Y"2(F)) and the (strict) balancedness of F' we have that
p¢Epe(F) — ©(pn?) and, consequently, for sufficiently large D the claim follows by summing over
all choices of F_ € F_ and {x1,z2} € E(F_).

(Z4) We show that this property holds a.a.s. for

I . 1 1
5:6mm{m2(F)’1_m2(F)} (6)

and some D > ( independent of n. In the proof below we distinguish several cases. In the first

case we only look at configurations from F_ o(G(n,p), €1, e2). Afterwards we consider configurations
from F_ 4(G(n,p),e1,ez) for s > 2.

Case 1: s = 2. For two pairs e; # ey € ([g]) let X¢, e, be the random variable given by
|F_2(G(n,p),e1,e2)| and denote by vy and u; the vertices of e; and by vy and wug the vertices
of eo. We want to use Chebyshev’s Inequality to obtain the claimed bound for most pairs. There-
fore we have to estimate the expectation and variance of X, .,. We distinguish between the cases
e1ney = and |e; Nneg| = 1.
First let e n ey = ¢J. Since Confl/mQ(F) <p< Cin~Ym2(F) and F is strictly balanced we have
n?EpeltF) = ©(pn?) and
nv(F)f2pe(F)fl < Cle(F)_l ) (7)

For Fy € F with v(Fp) = 2 it follows from F being strictly balanced that there is some d > 0 only

depending on F and Cj such that

nv(FO)pe(FO) > dpn2 . (8)

The expectation of X, ¢, is

E[XGLBQ] < 6(F)4n2”(F)—6p2e(F)_4
< e(F)'e 22 9)

and E[X,, ¢,] — 0 for n tending to infinity since p = O(n~/™2(F)) and my(F) > 1.
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Now we estimate the variance of X, .,. We will show

c 1

Var(Xe, e,) < P (1 + an)

for some constant ¢ > 0 depending only on F, Cy and Cy. For this purpose let (Fy, Fp) and

(Fe, Fy) be two different pairs of graphs that contribute to the number |F_ 2(G(n,p), e1, e2)| with

Fon Fy = {x1,29}, F. 0 Fy = {y1,y2}, Fa n F. 2 €1 and Fy, n Fy 2 ea. We denote by -7:31,@2 the

family of isomorphism types of possible pairs ((Fy, Fp), (F., F;)) such that the conditions above are
satisfied.

For P = ((Fu, Fy), (Fe, Fy)) € F2, ., let Sp be the set of subsets of [n] of size v(F, U Fy u F. U Fy)

that contain the vertices of the edges e; and ey. For S € Sp let 1g be the indicator random variable

for the event “there exists a copy of P in G(n,p) on the vertex set S”. Then

Var(Xehez) < E[Xehez] + Z Z P(ls=1) (10)
PG.FZ SESP

For the estimation of Y, pc 72 > e 5, P(1s = 1) we use the following notation. For «, 8 € {a, b, ¢, d}
and o € {U, N} we set

Vaog = 'U(Fa u] FB) and €qoB = e(Fa = FB)»

where F,, n Fjg and F,, U I3 denotes the normal union and intersection of two graphs. Moreover, we

can extend this to longer expressions of unions and intersections, like v(npg) and we will make

Y
use of this short hand notation in the calculations below. We also set

Va\g = Vo — Vanp and €a\8 = €a — €ang (11)

and note that e, g denotes the number of edges in F;, with at least one vertex outside V (F,) "V (Fp).

We estimate Y p.z2 Dges, P(1s = 1) by counting the number of choices for the vertices of the
desired configuration and determine the number of needed edges. Recalling that every P € ]-'621762
corresponds to ((Fy, Fp), (F¢, F)) we count those by first choosing (F,, Fp), then F, and then Fjy
and deal with the vertices and edges that are counted several times by looking at the intersections

between the different copies of F'.

DD P =1)

PeF2 SeSp

< Z (4v(F)! - nQU(F)—6p2€(F)—4 - pUe\(aub) ple\(aub) . pld\(avbuc) ped\(avbuc) (12)
PeF?

11
(<) (4'[}(F))' Z n4U(F)_6p4e(F)_8 . n_UCﬁ(aub)p_ecn(aub) . n_vdm(aubuc)p_edm(aubuc)

PeF?
— (4U(F))' Z n2p74(nv(F)72pe(F)71)4n7vcm(aub)p7€cm(aub) nfvdm(aubuc)pfedm(aubuc)
PeF?
) 2, —4 —v —e —v —e
< C Z n-p n cm(aub)p cn(avd) . p dm(aubuc)p dn(aubuc) , (13)



SHARP THRESHOLDS FOR RAMSEY PROPERTIES OF SOME NEARLY BIPARTITE GRAPHS 15

where C' > 0 is a constant depending only on F' and C4. For the estimation of
fP(n’p) = nzp_4 . n_vcm(aub)p_ecm(aub) . n_v(aubuc)mdp_e(aubuc)md (14)

we distinguish several cases depending on the structure of P.
First we look at summands in (13) with {z1,z2} € V(F¢). Clearly, then we have {z1,z2,v1,u1} S
V(F, n F.) and since F, n F,. € F, ¢ F we know Fy := (F, n F,) + {x1,z2} + e1 € F. Therefore,

1 p? ®) p? P

nvamcpeamc o nU(FO)pe(FO) = dpn2 N W '

Similarly, (Fy n F.) + {z1,22} € F and ((F, v F, U F.) n Fy) + {y1,y2} + e2  F. The same

argument yields
1 1 1 P
—_— < — and < —.
nvbﬁcpebmc = an nv(aubuc)mdpe(aubuc)md = an

Applying these bounds and the facts that v~pne < 2 and egqpne = 0 to (14) yields

fP(n p) n2p*4 . nfvamcp*ear\c . nf’ubch*ebmc . nvambr‘wc . nfv(aubuc)mdpfe(aubuc)md
)

2 —4 P 1 2 P
n [ n , —_—
P dn? dn? dn?
B 1
- d3p2n2 :

A

(15)

By symmetry we obtain the same estimate in the case that {z1,z2} € V(Fy) and in the remaining
case we may assume

(I) |V(F.) n{z1,22}| <1 and |V(Fy) n {1,202} < 1.
Next we consider those summands in (13) with (I) and v~ = 2. From (I) it follows that

Vanbne < 1. We proceed in a similar way as above. This time we use that (F, n F.) + e; € F and
similarly that ((F, v Fy U F.) n Fy) + e2 + {y1,y2} S F and, therefore,

1 ®1 . 1 © p
n'Uaﬁcpear\c = dn2 an nv(aubuc)mdpe(aubuc)ﬁd = dn2 :

Moreover, since we assume vp~. = 2 we can apply (8) with Fy = Fj, n F,

1 1
< .
nvbmcpebmc dpn2

Combining these bounds with (14) and vgapne < 1 and egnpne = 0 yields

4, n—'l)amcp_eaﬁc . n_Ubr\cP_ebr\c .n- n_v(aubuc)r\dp_(aubuc)ﬁd

fp(n,p) < n’p~

1 1 P
Pz dpn? dn?

1
T Bpind

Next we consider the subcase of (I) when

Vpne =1 and V(F.) n{z1, 22} = .
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Then we have ey~ = 0 and vg~pne = 0. Since (Fy N F.) +e1 € F and ((Fy u Fp U F) N Fy) + e2 +
{y1,y2} < F we get

1 ® . 1 ® p
nvamcpeanc = dn2 an nv(aubuc)(\dpe(aubuc)r\d = dn2 :

Consequently, in this case we have
fP(n7 p) — n2p_4 . n_vaﬁc_vbmc+vambmc_v(aubuc)ndp_eaﬁc_ebmc+eaﬁbmc_e(aubuc)md
-1

< n2p74 . nfvancpfeamc -n . nfv(aubuc)mdpf(aubuc)md

1 P
<nZp ™t — .l 2
np dn? " dn?
1
- (17)

For the last remaining cases we consider summands in (13) with (I) and either
(A) vpne = 1 and V(F,) N {z1, 22} # & (and, hence, V(Fy) NV (Fe) & {x1,22}) or
(B) Vbne = 0.
In both cases together with (I) we get
Ubn(auc)nd = ’{xlv‘r?} N V<Fd>| <1. (18)

Based on (18) we can treat both subcases in same way. This time we consider ((F, U F,)nF,.)+e; S
F, (FynFy)+ex < Fand ((F, U F) n Fy) + {y1,y2} € F and get

1 ® 1 1 ® 1 1 ® 1
nV(aub)ne plaub)ne S W’ nUTpebmd < W and n(ave)ndplave)nd S W’
which leads to
fp(n,p) — n2p_4 . " V(aub)neTVbnd " V(auc)nd TVbA(auc)d

. p_e(aub)r\c_ebﬁd_e(auc)ﬁd+ebﬁ(auc)r\d

(18)

< n2p—4 . n_/U(an)hcp_e(an)nC . n_vbmdp_ebnd . n_v(auc)ndp_(auc)ﬁd n

2, —4 1°
< np (an) “n

1
T Bpind
Using the bounds from (15), (16), (17) and (19) and pn — o for n — 00 we summarize that there
are constants ¢’, ¢ > 0 only depending on F,Cj and C; such that for sufficiently large n

fP(n,p)<c/< L 1 )

p2n2 | pin3

(19)

Since the sum in (13) has finitely many summands, together with (10) and (13) it follows that

c 1
Var(qu) < NC) (1 + an> . (20)

Recall that we want to show that there are at most Dpn®n =% pairs of edges e1, ez in G(n,p) so
that Xe, ¢, > Dp~'n~° for some constant D > 0 independent of n and § > 0 chosen in (6). For this
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purpose we use Markov’s Inequality and Chebyshev’s Inequality. Let ¢ = p~'n =9, then Chebyshev’s

Inequality tells us
Var(Xe, ¢, )

t2
Let X be the number of pairs (e, es) € (E(ZZ)) which satisfy Xe, ¢, > 2p In% and e; ney = .
Since E[X, ¢,] < t we have

2,26
1
\ﬂ.an 14—
2 p3n? np?

]P)(Xel,GQ = ]E[XGhEQ] + t) <

3

) s > E[Xerea] +1) (21)

[\)

L 5 9426 1
= —cp°n 1+ — 22
5P s (22)
We distinguish the cases n 'p™2 > 1 and n 'p=2 < 1. For n~!p~2 > 1 we have for sufficiently
large n
22428
E[X] < % < et < pn?%,
np
where the last inequality follows from our choice of § < 1(1 — ﬁ(F))

2 < 1 we have for sufficiently large n

E[X] < Cp2n2+26 gpn2—2(5

For the case n~tp~

where the last inequality follows by the choice of § < Wl(F)'
Consequently E[X] < pn?~2% and by Markov’s Inequality

E[X] —5
5 <n

P(X -0y <
(X >pn™?) R

thus a.a.s. X < pn?°.
For sufficiently large n this finishes the case e; n e = ¢J. It remains the case when |e; N eg| = 1.
Now let eq,e5 € ([Z]) with |e; neg| = 1. We repeat essentially the same calculations of the first
case e; N es = & with the following differences.

e For the expectation of X, ¢, in (9) we get

1
E[Xel,eg] = O <an> .

e For the variance we will show

c 1
Var(XeL@) < — <1 + 2> .

np np
In the calculation of the variance there is essentially one difference compared to the case
e1ney = . In (12) we get

vaub — {21, 22} U {vr,ua} L {v, up| < 20(F) =5
instead of 2v(F') — 6 which leads to an additional n factor. This n factor carries over to

fP(n,p) = n3p_4 . n_vcm(aub)p_ecn(aub) . n_v(aubuc)ndp_e(aubuc)md (23)
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in (14).
For the following case distinction we repeat in the case {z1,22} € V(F.) the calculation,
but keep the additional n factor. Consequently we get in (15)

1
) =0—1.
fp(n-p) <p2n>
Similarly we get with the additional n factor in (16)
0 1
fe(n,p) = W .

The case vy~ = 1 and V(F.) n {x1,22} = & disappears since F, and F, intersect at
least in ey M eg € {x1,x2}. For the same reason the case vp~. = 0 disappears. For the last
remaining case in (19) we get again the same bound with an additional factor of n

1
fp(n,p) =0 pin? )
Consequently
c 1
Va.r(XeheQ) < Tp2 <1 + T)p2> .
e The expectation still satisfies E[X¢, ,] < t for the same choice of ¢t = p~'n=%. This follows

since E[Xe, e,] = O(%pz), t= 1# and § < 1— #(F)
e Let X' be the number of pairs (e, ez) € (E(QZ)) with |e; nea| = 1 and X, e, = 2p 1070,
We know by the condition |e; nes| = 1 that X’ < 2p?n3, thus we get with X’ instead of X
in (21) a factor of 2p?n? instead of (pTQLQ) which results in a factor of n=! compared to the
first case. Consequently the n~! factor cancels with the n factor above which leads to the

same order of magnitude in (22). Then the rest of the proof is the same as in the first case.
Setting D’ > 2 sufficiently large such that 2p~'n=? < %}"2 then yields
D
pn®

|]:*72(Zv 61,62)| < (24)

for all but at most 2 Z’"Q

5— pairs of edges e, es € E(Z).
Case 2: s > 2. In this case we consider configurations from F_ 4(G(n,p),e1,e2) with s > 2. For
two pairs e; # e € ([72‘]) let Y., ¢, be the random variable given by |F_ ((G(n,p),e1,e2)|. Here
it is sufficient to use Markov’s inequality instead of Chebyshev’s inequality which will allow us to
avoid the calculation of the variance, but we still have to distinguish the cases e; N ey = ¢ and
|61 N €2| = 1.

For the first case let e; N ex = J. The expectation of Y, ¢, is

E[Yvel,ez] < e(F)4n2U(F)_4_SU(F)Sp28(F)_4

(7 e(F)—
< e(F)4U(F)8012 (F) 21’L_Sp_2

< C'n3p2
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. ’ 4 s~v2e(F)—2 ) s .
with C" = e(F)*v(F)%Cy . We use Markov’s inequality and get
1 .
]P) <1/61762 2 6) < Cln_3p_2 pn6 — C/p—ln—3+6 .
n
Let Y be the number of pairs ej, ez € E(Z) with e; nex = F and Y, ¢, > p~'n=% Then
2 oy 146
E[v] < (P )omsropt < P
2 2
and a second use of Markov’s inequality yields

C/pn1+6

2—4
P(Y = pn ) < W

= o(1)

where the last inequality follows from our choice § < 1/2 and for sufficiently large n.
We repeat the same proof for the case |e; N es| = 1 with the following differences.

E[Ye, e] < C"n~2p~2 for some C” > 0.
P <Yel,e2 > I#) < C'pipT2Ho,
E[Y] < 2p*n3C"p~'n=2+0 < 20" pn'+o.
P(Y > pn®~%) < 2285 — o(1).

Consequently for all s > 3 we have |F_ s(G(n,p), e1,e2)| < p~'n~? for all but at most pn?~? pairs

of edges ey, eg € E(Z). Together with (24) this concludes the proof of (Z4) and finishes the proof of
Lemma 14. U

The next lemma deals with property (Z5), which concerns the number of bad embeddings as
defined in Definition 10.

Lemma 16. For all graphs B and all strictly balanced and nearly bipartite graphs F', for all constants
Cy = Cy > 0 and for Con=V/m2(F) < p < Cyn=Ym2(F) there exists ¢ > 0 such that a.a.s. G(n,p)
satisfies (75).

Proof of Lemma 16. We shall show that there exist a £ > 0 such that for any given h € ¥p,, we
have for sufficiently large n

P(h is bad w.r.t. F and G(n,p)) <n"¢.

Then the lemma follows from Markov’s inequality with ¢ = £/2.
Let h € ¥, be fixed. We first consider the case that h is bad w.r.t. F' and G(n,p) because
of (B1). Since F is strictly balanced, for all proper subgraphs Fy & F with e(Fp) > 2 we have

pe(Fo)n’U(Fo) _ an . pe(Fo)—lnv(Fo)—Q

> pn? . CEF) Ly ~ iy (o)~ D+u(Fo) =2

(2 FE)=2_ 1
2. CS(FO)_ln(e(FO) 1)(6<F0)*1 m2<F>)
1

2 CS(FO)*ln(G(Fo)—l) (m—m)

> pn® - n¢ (25)
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for some ¢ > 0. We bound the probability for h being bad because of case (B1) by estimating
the number of configurations leading to this event. In this case Fy stands for the part of F' that is
contained in h(B) and hence consists of at least two edges. Using again nv(F)=2pe(F) -1 < Cy (7)-1

yields

P(h is bad because of case (B1))

N

Z U(B)U(FQ)nv(F)fv(Fo)pe(F)fe(Fg)

FoGFe(Fy)>2

< U(B)U(Fo)cf(F)_ln—fl

for some & > 0 and sufficiently large n.

When we address the case (B2) we can assume that h is not bad because of case (B1). Hence, it
suffices to consider copies F; and Fy of F' intersecting h(B) in precisely one edge and Fy := F} n Fy
having no edge in h(B). Again we will use n?()=2pe(F)—1 < C’f(F)_l and that n?(Fo)pe(Fo) > dpn?
for Fy < F with e(Fp) > 1 for some d > 0 only depending on F' and Cj (cf. (8)). Note that two
fixed edges of h(B) determine at least three vertices of Fy U Fb.

P(h is bad because of case (B2) and not of case (B1))
< Z o(B)4n20(F)—v(F0) =3 2e(F)—e(Fb) -2

FySF, F0)>1
4 ~2e(F)—2 n
< Z B )
QF,E(F() >1
2 1
< 4 ~2e(F) 27
S e
FySFe(Fp)=1
< 2 (B)4CI26(F)73n_(1_m21(F))
FoSFe Fo) 1
< n—fz

for some &3 > 0 since ma(F') > 1.

For case (B3) we assume that h is not bad because of case (B1) or case (B2). Again we bound
the probability by the expected number of options to obtain a configuration as in (B3). In this case
Fy stands for the intersection of two different copies of F' and includes at least two edges, e and f
from (B3), where f is also contained in h(B).
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P(h is bad because of case (B3) and not of case (B1) or (B2))

< S u(B)P2 )2 2e(F) —elFo)—1

FogF,e(F0)>2
2 ~2e(F)—2 2 1
S Z v(B)°Cy P .p (Fo)pv(Fo)
FoGFe(Fo)=2
25
(g)) s

for some &3 > 0 and, hence, P(h is bad) = n~¢ for any 0 < ¢ < min{&, &, €3} and sufficiently large
n. O

4.2. Restricting embeddings of B. In this section we focus on restricting the family ¥p , of
all embeddings B in K, to a suitable subset Zp, so that we can apply Theorem 6 for the proof
of Lemma 7. In particular, our choice of =g, will ensure conditions on the maximum degree and
maximum pair degree of H = H(Z,Zp,,). For the control of the pair degree of H the following
definition will be useful.

Definition 17. For a pair of edges e1, ez € E(Z) and an embedding h € Ep , < Vg, we write e; ~y,
es if ey and ey both focus on h(B). Moreover, if e; and es focus jointly on only one edge of h(B),
then we write eq ~p, ea. We denote by cEB,n(el, e2) the number of h € =g, such that e; ~y, es.

In the next definition and lemma we define the properties of the desired family of embeddings.

Definition 18. Let F', B be graphs and let « > 0. We call a family =g, < VY, of embeddings
of B into K, a-normal if the following conditions are satisfied.

(N1) |Egn| = an? and
(N2) |V(h(B)) n V(W' (B))| <1 for all h # h' € Ep,,.

Lemma 19. Let F' and B be graphs. For all% >a>0,D>0,1>(>0, min{mzl(F), 1— m;(F)} >
0 > 0 and Cp > Cy > 0 there exists ng € N such that for all n = ng and C’gn_l/mz(F) < p <
Cin=Ym2E) the following holds. If Z € Gg rnp(D,¢,6) and

P(Z U h(B) - (F)}) > 1—a

where h € \I/B n chosen uniformly at random then there exists E%’n c Vg, such that

—

(11 [1] [I]

1) 2%, is a-normal for some & = a(B) = m >0,
Q)Zuh( ) — (F)$ forallheHB,n,
3) for all pairs {e1,e2} € ( (Z)) we have c=o n(el,eg) < %/2,
E4) h is not bad w.r.t. F and Z for all h € HBn (see Definition 10), and
25) forall he :%n we have E(h(B)) n E(Z) = &.
We say a family = _Byn is (&, Z)-normal if it satisfies all the conditions (£1), (22), (£3), (24),
and (Z5) for a given Z € Gp pnp(D,(,0).

(
(
(
(
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Proof of Lemma 19. Given F, B and the constants as above we set

-~ 1
* T BB
Let Z € G rnp(D,(,d) and suppose P(Z U h(B) — (F)5) > 1 — .

For the construction of EOBJZ we start with the family ¥ g, and remove embeddings that do not

satisfy property (=2), embeddings that do not satisfy property (=/) and embeddings that will
later lead to problems for (Z3). After that we choose at random 2an? embeddings which will
induce property ( =%) and show that after deleting the embeddings that intersect in more than one
vertex we keep Can? with C' > 1. Afterwards we remove embeddings not satisfying (Z5). Since
e(Z) = O(pn?) we keep at least (C& — o(1))n? > an? embeddings h, which finishes the proof.

Since P(Z u h(B) — (F)5) > 1 — a > 2/3 there is a family \Ile,n C ¥p, of embeddings of B of
size 2|W | such that Z U h(B) — (F)§ for all h € \IJ}BW, ie., ‘11115,,” satisfies (22).

Moreover, since Z € G ppnp(D,(,d) there are at most n_C|\IIByn\ embeddings that are bad w.r.t.
F and Z. We remove those bad embeddings from \I/}B?n. In this way for sufficiently large n we obtain
a family \IJQB’n c \I'}B,n of size at least %|\IJ B.n| that contains no bad embedding and, therefore, \IIQB’n
satisfies (=4 ).

Since Z € G pnp(D,(,0) there are at most qu?Q pairs of distinct edges e, es € E(Z) such that

|F_(Z,e1,e2)| > pgé . For those pairs of edges e1, e5 we delete all embeddings h € \I/2B7n with e; ~p, es.

Since |F_(Z,e)| < % for all e € E(Z) for Z € G pnp(D,(,0) we delete at most

Dpn* D gy D*n°®

5 ;” =T o(|¥pn|)

n

embeddings from \I/2B,n. So we get for sufficiently large n a family \Il%m c \IIQBJZ of size at least
1|Wp,p| such that for all distinct eq, ez € E(Z) we have

(F1) if e ~p eg for some h e U% |, then |F_(Z,e1,ez)| < z%'

Next we will select a subset \Iljlgﬂ c \Il%m, which allows us to bound cg4 ’n(el, eg) for every pair
of edges of Z. For this purpose for

2

-2 = —"
£ T T 130(B)(B)!

we select with repetition en? times an element of ‘I’:}B,n’ where we assume for simplicity that en? is
an integer. Then for each selection S we can define a family of embeddings Wg < \If%m by taking
all embeddings that were chosen at least once in S. We will show that the random selection S a.a.s.
satisfies that cy 4 (€1, e2) < Iﬁ for all e, ey € E(Z) and that with probability less than % there are
more than %nQ single embeddings that share at least two vertices with some other embedding in the
selection.

First we show that a.a.s. cy(e1, e2) < zﬁ forall eq,e0 € E(Z) . Fori=1,...,en?let X, ¢, be
the indicator random variable for the event “e; ~j, e2”, where h; denotes the embedding h € \II3B’”
chosen in the ith step. Since there are no bad embeddings w.r.t. F and Z in \Ing,n we know that if e
focuses on h(B) then e focuses on exactly one edge in E(h(B)) (see property (B1) in Definition 10).
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Hence, for e; &, e we may consider the following two cases. Either e; ~j es or e; and e focus on
two different edges in h(B).

For the first case we shall use (F1) and |\I’3 W=, (" )) to bound the probability that e; ~p, es.
In fact,
D v(B)w(B)—-1)-(n—2)---(n—v(B)+1
Bles p e < 2y oy HENB = 1) 0= 2) (0= u(B) 1)
o |‘IJB,n|
3D?}(F) v(B)*v(B)!

pn2+6

For the second case we shall use (Z3) of Definition 12 for the upper bound on |F_(Z,e)| <
This and the fact that two edges fix at least three vertices yield

D
b

P(e; ~p, ez and not e; ~p, e2)

< IF(Z. o) o)t LBNB) —D((B) —2) - (n=3) - (n —v(B) + 1)

@55 0l
3D?*v(F)*v(B)3v(B)!
< p2nd :
Consequently
1 Dv(F)?v(B)
~ 2 2
P(e1 ~p, e2) < 3Dv(F)“v(B)*“v(B)! (pn2+5 e . (26)
1

Since § < 1 — 1( 7y We infer n% < n'~ @ for sufficiently large n. Therefore the right hand side

of (26) is of order @( 2+5) and we can bound

Do
P(el %hi 62) < W .

where Dy = 4Dv(F)?v(B)?v(B)!. For the expected number of connections we get

EDO
Elcyg(e1,e2)] ZIF’ e1 ~p, €2) pn .

Consequently, Chernoff’s Inequality yields

3 EDO 1 €D0
P < .
<C\PS(€1’62) 9 pnd > exp< 12 pnd )

Note that ﬁ > nP for some B > 0 since § < m, hence, we can apply the union bound for all
pairs of edges e1,e3 € E(Z) and get that a.a.s.
c\ps(el,eg) < ?;;Z(; < pnlm

Finally we verify that most pairs of selected embeddings intersect in at most one vertex. In fact,
for i =1,...,en? let 1, be the indicator random variable for the event “there is j € [en?]\{i} such
that v(h;(B) n h;(B)) = 2" and set Y = > 7", 1h Then

v o(B)(u(B) —1) - (n—2) -+ (n —v(B) + 1)

Bltn] < (ent - )2 T <D
N
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for some constant Dy = D1(B) with 0 < Dy < 3v(B)"0(B)! independent of e. Hence,
E[Y] < en?Die = D1e%n?
and by Markov’s Inequality we get
P(Y > 2E[Y]) <

)

DO | =

so there is a selection S of en? embeddings such that Y < 2D1e?n? as well as cug(er,er) < zﬁ for
all pairs of edges. For this choice of S we can simply delete all those embeddings h; that intersect
with some other embedding h; in at least two vertices. We call the remaining family \I/‘}SW Using
Dy < 3v(B)*v(B)!/2 and the definition € = 2a = m yields

0%, =en® —2D1e?n® > Can’

—

for some C' > 1 and, hence, ‘I"le,n satisfies (21 )—(=4).

To achieve (Z5) we make use of e(Z) < pn? (see (Z1) of Definition 12). Since no two embeddings
from \Il‘}gm share an edge, we may remove all embeddings from \II%W which share at least one edge
with Z and this results in the desired family E%,n c \IJ%JL of size at least an?, which finishes the
proof. O

For Lemma 7 we have to show that there is a family of embeddings Zp ,, such that the hypergraph
H(Z,=B,yn) is index consistent with a profile 7. Lemma 20 will ensure this.

Lemma 20. For all constants 1 > & > 0 and D > 0, for all graphs F and B with F being strictly
balanced and nearly bipartite and with E(B) = {e1,...,ex}, there exist &' > 0 and L € N such that
every graph Z on n vertices with a fixed ordering of its edge set and the property

(7) |F-(2)| < Dn?
satisfies the following.

For every (&, Z)-normal family EOB,n there is an (!, Z)-normal family Zg ., < E%,n and there is
a profile w of length at most L such that (Z,ZEp,) is index consistent with profile .

Note that it is rather unlikely that M}, and M), of H are equal for distinct h, h’' € EOBm and, hence,
Lemma 20 follows by a simple average argument. We will use Lemma 20 for Z € Gg g pn (D, (,0)
which satisfies (Z) by (Z2) from Definition 12.

Proof of Lemma 20. Let 1 > & >0, D > 0, F' and B be given. We define

2 9 , a
Lz(e(F)—l)gv(F) D and a zm.
Given some Z satisfying (Z) and an (&, Z)-normal family £% , < ¥p, we will restrict £} , to the
promised set =g, with the desired properties.

Note that the family Zp,, < Z%,, inherits the properties (Z2)~(Z5) from the (&, Z)-normality of
E(J]B,n since they are independent of &. Consequently, to establish that =g, is indeed (¢, Z)-normal,
we only have to focus on (Z7). Since again property (N2) of Definition 18 is inherited from the
normality of E% , it suffices to show that [Ep,| > o'n.

Because of (7) we know that Z contains at most Dn? copies of some F’ < F with e(F') = e(F)—1.

Also due to E%?n being (&, Z)-normal there are no bad embeddings w.r.t. F' and Z in E%’n and thus
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by Fact 11 the pair (Z, EOB,n) is regular. In particular, for every h € EOByn we have that every

edge e € My, focuses on exactly one b € E(h(B)). Furthermore, since every h € E%,n also does not
satisfy (B3) of Definition 10, each e € M}, focuses on one b € E(h(B)) in only one way, i.e. there is
only one copy of F' in Z u h(B) containing b and e. Therefore, ¢}, = |Mj| is a multiple of e(F) — 1
and each Mj, gives rise to ¢;/(e(F) — 1) copies of some F’ in Z obtained from F' by removing some
edge. Clearly, each such (e(F) — 1)-element subset of M} might be completed to a copy of F' in at
most (”(QF)) —e(F) + 1 < v(F)? ways.

Applying the upper bound on the number of copies of F' with one edge removed from (Z) yields

Z e(Fl;h—l <o(F)%*- Dn?.

=0
he'_'B,n

So there are at most &n?/2 embeddings h € E%,n with ¢;, > L, and, consequently, at least an?/2
embeddings h € E%m with ¢, < L. Since there are at most K* different profiles of length ¢, there
must be a profile 7 of length ¢ < L and a subset E/B,n c EOBm with

1 a o

= n

=Bnl Z TKL 3
such that (Z,Z ) has profile 7.

Next we apply another averaging argument to achieve index consistency. We consider some
partition Z1U ... UZy of Z into £ classes chosen uniformly at random. Recall that we ordered the
edges of Z. For h € Ef , consider My, = (z1,. .., 2¢) with the ordering of Z inherited. We include h

=

in Epn if z € Z; for all i = 1,...,L. Clearly P(h € Zp,) = 3 and E[|Zp,,[] = —5*, that means
: e =/ s = =/ 14 1 an? 12 / -
there is an Ep, € E,, with [Ep,| = [Ep [/ = ﬁ% = a'n®. Now let h,h/ € Ep,, and let

z € My n My. Since z € Z; for some partition class Z; we know that z has index j in both M}, and
M. Therefore (Z,=Zp,,) is index consistent which finishes the proof. g

4.3. Proof of Lemma 7. Finally we prove Lemma 7. The previous lemmas will be utilised to show
that the hypergraph H(Z, Z) satisfies the conditions of Theorem 6 of Saxton and Thomason about
independent sets in hypergraphs.

1 > & > 0 and graphs F and B with F being

Proof of Lemma 7. Let constants C; > Cy > 0, 3

strictly balanced and nearly bipartite be given.

First we fix all constants used in the proof. For the given graphs F' and B and the given constants
C1 and Cy Lemma 13 yields constants D > 0, ¢ > 0, and ¢ with 0 < § < min {m
Similarly Lemma 20 applied to F', B, D and

1 1
Q(F)’l - mg(F)}

~ 1
O = 3B T(B)]

yields o/ and L. Fixing an auxiliary constant

ot )

— L and = i (27)
~ Dku(F)? 7= 100

allows us to set

B
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We shall show that o', 3, 7, and L defined this way have the desired property. For that let
p = p(n) = c(n)n="2F) for some ¢(n) satisfying Cy < ¢(n) < C1. We shall show that G(n,p)
a.a.s. satisfies the property of Lemma 7. Hence, in view of Lemma 13 we may assume that the
graphs Z considered in Lemma 7 are from the set G r (D, (,0). Moreover, let n be sufficiently
large, so that Lemma 19 applied with F', B, «, D, (, d, C; and Cy holds for n.

Now let Z € G pnp(D,(,d) such that for h € Up ), chosen uniformly at random we have

P(Z U h(B) — (F)§) > 1 — a.

Then Lemma 19 yields an (&, Z)-normal family of embeddings EOB’n C ¥py, ie., the family E%,n
satisfies properties (Z1)-(Z5) of Lemma 19 for the parameters chosen above.

Since Z € G rnp(D,(,0) it satisfies property (Z2) of Definition 12 and, hence, Z satisfies in
particular assumption (Z) of Lemma 20. Consequently, Lemma 20 yields an (o/, Z)-normal family
EBn © EOByn and a profile 7 of length ¢ < L such that the pair (Z,Zp ) is index consistent for =.

Next we consider the hypergraph H = H(Z,=p,,) defined by

V(H)=E(Z) and E(H)={M(Z,h(B)): he Zpn,},

where

M(Z,h(B)) = {z€ E(Z): there is be E(h(B)) such that z focuses on b} .

Clearly, ‘H is an f-uniform hypergraph on m = e(Z) vertices. Below we show that H satisfies the
assumptions of Theorem 6 for

_ )
€= % and T=mn 4D,

Since Z € G Fnp(D,(,0) it displays properties (Z1)—(Z5) of Definition 12. In particular, (Z1)
guarantees

1
anQ <e(Z)=m<pn® <n?. (28)

Now we bound e(#). Since Ep ), is @’-normal, it follows from (N1) and (N2) of Definition 18 that
a/n? < |Ep,| < n? and, consequently, we have e(H) < n?. On the other hand, for any hyperedge M),
of size ¢ there are at most (e(Fz)fl) different copies of some F' < F with e(F’) = e¢(F) — 1 in My,

and each such copy can be extended to F' by at most (U(QF )) different boosters since all boosters are

edge disjoint. Consequently, My could be the hyperedge for at most (e( Fé)—1) (U(QF )) < k different

embeddings h € Ep,, and, therefore, we have

a/n?

S e(H) < n®. (29)
Hence, for the average degree of H we obtain
e(H) a'n? 1 2%
d 14 ¢ =
() v(H) k- pn?2  kp

We denote by A1(H) = max,cy (y) [{e € E(H) : e contains v}| the maximum vertex degree and by
Ao(H) = MAX(, ye(V0) |{e € E(H) : e contains v and v'}| the maximum codegree of H and below
’ 2

we will bound A;(H) and Aq(H).
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We start with Aj(H). Suppose e € M(Z, h(B)) for some h € =p,,. Since Ep , contains no bad
embeddings w.r.t. F and Z and E(h(B)) n E(Z) = & there exists a unique copy F_ € F_(Z,e)
with e € E(F_) and f € h(B) such that F_ + f forms a copy of F. Moreover, since every two
distinct embeddings h, ' € Ep ,, intersect in at most one vertex the degree of e in H is bounded by
|F_(Z,e)| - (”(5)). Consequently, it follows from property (73) given by Z € G pnp(D,(,d) that

D (v(F)
A < —- .
1(#) p ( 2 )

For Ag(H) we have to look at pairs of edges of Z. Two edges ey, e3 € E(Z) are both contained in

M(Z,h(B)) if and only if e; ~p e2. By (Z3) we know cz, (e1,e2) < Iﬁ, Slo)

—=B,n

Note that —5 — o0 for n — o since § < ﬁ
pn2 2( )
In order to verify the assumptions of Theorem 6 we estimate §(#,7) for € and 7 defined above.

Indeed we have

5(H, ) =2 é o I 3 d9 )

-1
j=2 T md(H) veV (H)
B P e M As(H
2
h ;2 eV
<20)-1 ZZ: L As(H)
2
= SrldH)
<20)1.p. nt kp 15
Lo/ pn§
:2(2)*1.£.i§
o na
13
< -
1201

where the last inequality holds for sufficiently large n.
By Theorem 6 we get some constant ¢ = ¢(¢) and a family J < P(V(H)) satisfying (a), ()
and (c) from Theorem 6. We define

C={CcV(H): C=V(H)\J for one J e J}.

Below we show that C has the desired properties (1), (2) and (3) of Lemma 7.
(1) follows from (c¢) since |C| = |J| and
)
|| < erlog(1/7)log(1/e)m < m -n” 3@ D clog(1/7)log(1/e) < m' ™7,
where the last inequality follows for sufficiently large n from
(28) (27)

S
mY < n? = nse

since ¢ = ¢(¢) and log(1/e) are constants independent of n and log(1/7) < logn.
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(2) follows from (b). Assume for a contradiction that there is C € C with |C| < pm and
let J =V\C € J. Then we count the number of hyperedges of H.

e(H) < e(H[V\C]) +|C|- A1(H)

< e(H[J]) + Bm - l;(”?)

oy )+BD< (F)>n2

Lo (D)
(e

27
(<) e(H)
with a contradiction, so |C| = fm for all C € C.
(3) For a hitting set A of H consider the independent set I = V\A. Hence by (a) of Theorem 6
there exists J € J such that I < J and, therefore, A © V\J = C which is an element of C. O

5. PROOF OoF LEMMA 8

The proof of Lemma 8 follows the proof in [10, Lemma 2.3] and is based on an application of the
regularity method for subgraphs of sparse random graphs which we introduce first.

Let e > 0, pe (0,1] and H = (V, E) be a graph. For X, Y ¢ V non-empty and disjoint let
e(X,Y)

dH, (X’Y) =
Y pl XY

and we say (X,Y) is (e, p)-regular if
|dp(X,Y) — dup(XY')| <€
for all subsets X' € X and Y’ € Y with |[X’| > ¢|X]| and |[Y’| > ¢]Y|. We will use the sparse

regularity lemma in the following form (see, e.g., [10]).

Lemma 21. For alle > 0, tg € N there exists an integer Ty such that for every function p = p(n) >
1/n a.a.s. G € G(n,p) has the following property. Every subgraph H = (V, E) of G with |V| = n
vertices admits a partition V = V10U ... OV, satisfying
(l) to <t < To,

(ii) Vil < - < |Vil < |Vi] +1 and

(iii) all but at most et® pairs (V;, V;) with i # j are (g, p)-regular. O

For a partition P as in the last lemma we call the graph R = R(P,d,¢) with vertex set V(R) =
{Vi,...,V;} and edges

{Vi,Vj} e E(R) «— (V;,V;) is (e, p)-regular with dg,(V;,V;) = d

the reduced graph w.r.t. P, d, and €.
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The next lemma is a counting lemma for subgraphs of random graphs from [1,3,20)].

Lemma 22. For every graph F with vertex set V(F') = [£] and d > 0 there exist ¢ > 0 and £ > 0
such that for every n > 0 there exists C > 0 such that for p > Cn=Ym2(F) ¢ q.5. G € G(n,p) satisfies
the following.

Let H = (ViU...UVy, Eg) be an (-partite (not necessarily induced) subgraph of G with vertex
classes of size at least nm and with the property that for every edge {i,j} € E(F) the pair (V;,V;)
in H is (e, p)-reqular with density dp ,(V;,V;) = d. Then the number of partite copies of F in H is

at least
14
e Tl
i=1
where partite copy means that there is a graph homomorphism ¢: F — H with ¢(i) € V;. O

The next lemma bounds the number of edges between large sets of vertices of G(n,p) as well as
the number of copies of some bipartite graphs F* with two vertices from a prescribed set W.

Lemma 23. Let F* be a bipartite graph with two marked vertices ay,aa € V(F*) from the same
colour class. For all (logn)/n < p = p(n) < 1 the random graph G € G(n,p) satisfies a.a.s. the
following properties.

(A) For all disjoint subset U, W < V(G) with |U|,|W| = n/loglogn we have
plU?/3 < eq(U) <p|lUP* and p|U||W|/2 < eq(U,W) < 2p|U||W]|.

(B) For all subsets W < V(G) there exists a set of edges Ey < E(G) with |Ey] = nlogn
such that there are at most 2p¢F In?E)=2\W |2 many copies o(F*) of F* in the graph
(V(G), E(G)\Ey) with V(p(F*)) n W = {p(a1), p(az)}-

The proof of (A ) follows directly from Chernoff’s inequality and the proof of (B) is based on the
so-called deletion method in form of the following lemma.

Lemma 24. [15, Lemma 2.51] Let I be a set, S < [I']° and 0 < p < 1. Then for every k > 0 with
probability at least 1 — exp(—Q%) there exists a set Ey < I') of size k such that I')\Ey contains at
most 2pu sets from S where p is the expected number of sets from S contained in I'). O

Proof of Lemma 235. Since part (A) follows from Chernoff’s inequality, we will only focus on prop-
erty (B), which is a direct consequence of Lemma 24.

In fact, let V be a set of n vertices, W < V and a bipartite graph F™* with two marked vertices
ai,az € V(F*) from the same colour class be given. We use Lemma 24 with T = (‘2/), s = e(F™),

S = {copies o(F*) of F* in (V,T) with V(p(F*)) n W = {¢(a1), p(a2)}},
p, and k = nlogn. In particular, I', = G(n,p) in our setup here. With probability at least

1—exp ( — ;;&%f;) there exists a set Ey € E(G(n,p)) of size at most nlogn such that there are at

most

2/‘ < 2pe(F*)nv(F*)—2|W|2
many copies p(F*) with V(p(F*)) n W = {p(a1),p(a2)} in (V, E(G(n,p))\Ep). The lemma then
follows from the union bound applied for all 2™ possible choices W < V. U
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Finally, we can prove Lemma 8. Let G be a typical graph in G(n, p) and let H be a subgraph of G
with |[E(H)| = AE(G)|. First we apply the sparse regularity lemma (Lemma 21) to H. Since H
is relatively dense in G(n,p) we infer that the corresponding reduced graph R (for suitable chosen
parameters) has many, i.e. Q(|V(R)|?) edges. So we can find many large complete bipartite graphs
in R. We conclude that there is some partition class V; € V(R) contained in many complete bipartite
graphs.

We analyse the graph Go = Basey(F)[V;] on the vertex set V; with edges being those pairs in
(‘g) that complete a copy of the bipartite graph F/ € I/ + e = F in H to a copy of F. We say
that Gg is (o, d)-dense if for all W < V(Gy) with |[W| = o|V;| we have eg, (W) = d("g'). It is well
known that sufficiently large (o, d)-dense graphs contain any fixed subgraph (see e.g. [19]).

Lemma 25. For all d > 0 and F there exist o, co > 0 and ng € N such that for every (o,d)-dense

graph Gy with n = v(Go) = ng we have that Gy contains at least con”(F) copies of F'. O

To show the (o, d)-denseness of Gy we consider W < V; with |[W| > p|V;|. Then by Lemma 22
we will find many copies of F’ in H where the missing edge has to be in (V;/) Together with an
upper bound for the number of graphs that are combinations of two different copies of F' ((B) of
Lemma 23) we ensure that not too many copies of F’ are completed to F' by the same pair in W.
Thus there are many edges in Basey (F)[W] and Gy is (g, d)-dense.

Proof of Lemma 8. Let A > 0,C1 > Cy > 0 and let F' be a strictly balanced nearly bipartite graph
such that F' = F’ + {a1,as}, where F’ is bipartite with partition classes A = {a1,...,a,} and
={b1,...,bp}.
The Sparse Counting Lemma (Lemma 22) applied with F’ and d¢y, = A/4 yields constants ecp, > 0
and &cp, > 0. Since we don’t know whether the given constant Cy is at least 1 or not, we find it
convenient to fix an auxiliary constant

Cy = min{1, CS(F)_l} . (30)

Furthermore, we set

d= (%) §CL Co( -0 -Gy

64(v(F) + 1)o(F) . ¢2F)=1)

Next we appeal to Lemma 25. For F' and for this choice of d this lemma yields constants o, ¢g > 0

(31)

and ng € N. Furthermore, set

A 48
£ = min { gccL } and to = —. (32)

\%

4 48 A

Lemma 21 applied with € and ¢ yields Ty € N and Lemma 22 applied with ncr, = 0/(270) yields Ccr,.
Finally, we fix the promised

n= COT(]_U(F)

and let Con= V™) < p = p(n) < Cyn="2F) For later reference we note that due to the
balancedness of F' we have

peFIprE) ¢ o) =1y,,2 (33)
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and owing to the choice of C{ in (30) we have
P 3 Clpn? 39

for every subgraph F) € F with e(F}) > 1.

Since we have to show that G(n,p) a.a.s. satisfies T'(\,n, F') we can assume that n is arbitrarily
large. Consider any G € G(n,p) that satisfies the properties of Lemma 21 and Lemma 22, as well as
property (A ) and property (B) of Lemma 23 for all bipartite graphs F™* such that F* is the union
of two different copies ¢1(F’) and @o(F’) of F' with {¢1(a1),¢1(a2)} = {v2(a1), p2(az)}. In other
words, for the rest of the proof we consider a fixed graph G to which we can apply the Lemmas 21-23
and we will show that such a G satisfies T'(\,n, F'). For that let H < G with

e(H) = Xe(G) > %)\an

where the second inequality follows from property (A ) of Lemma 23.

Lemma 21 applied to H yields a partition P of the vertices V = V43U ... UV, with at least (1—¢) (;)
many (g, p)-regular pairs for some ¢ with ty <t < Tp. We assume w.l.o.g. that ¢t divides n. We infer
that there are at least %(é) regular pairs with edge density at least %p since otherwise we could

bound the number of edges of H by

=2+ () o) (D)

which would contradict the derived lower bound e(H) > Apn?.

Let R = R(P,dcy, ) be the reduced graph w.r.t. to the partition P and relative density dcp, = %.
In particular R has exactly ¢ > tg vertices and at least %(5) edges. It follows from the theorem
of Kévari, Sés and Turan [17] (see also [4]) that there are at least vtT*~1 copies of the complete

(a—1)b
v -5(5) (3)

bipartite graph K, in R where

Hence, there is a partition class Vg, of P such that V,, is contained in at least ~yt+0—2

copies
of Kq—1 in R where V,, is always contained in partition class A of K,_;; for these copies.

Our goal is to show that the graph Gy induced by Baser(H) on V,, is (o, d)-dense, which due to
our choice of ¢y and 7 above leads to co(n/t)"F) > gn?F) copies of F in Gy (see Lemma 25). So
let W < Vg, with [W| = o|V,,| and fix some partition W = W1 OW, with |W;| = |Wa| = |W|/2 (for
simplicity, we may assume that || is even). Note that for any j for which (Vg,,V}) is (e, p)-regular
we still have that (Wi, V;) and (W, V;) are (2¢/0, p)-regular.

We will ensure many copies of F’ with a; € Wy and as € Wy which forces edges in Gy =
Basep(H)[Vq,]. However, we have to make sure that not too many copies force the same edge
in Gy. For this purpose we delete some edges by (B) of Lemma 23 to restrict the number of graphs

F* that are unions of two different copies of F’ that force the same edge in Gj.
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Let ¢1(F"), p2(F") be two copies of F' with p1({a1,a2}) = p2({a1,as}) and let F* = p1(F') U
w2(F"). We find by (B) of Lemma 23 at most nlogn edges Ep+ such that there are at most
2pe(F*)nv(F*)72|W’2 (36)

copies of F* in (V(H), E(H)\Ep+) with ¢1(a1), p1(a2) € Wi u Wy. We repeat this argument for all
possible graphs F™* that can be created this way and we denote by F* the family of those graphs.
Since there are at most 2(a + 1)~2(b + 1)® such graphs F*, in total we delete at most

2(a +1)*72(b + 1)’nlogn = o(pn?)

edges of H, i.e., for H = H — | Jpuc 7+ EF+ we have

e(H') = (1 —o0(1))e(H).
In particular, for sufficiently large n the density and the regularity of the pairs in the partition P is
not affected much and (4, p)-regular pairs in H are still (24, p)-regular in H'.

Lemma 22 yields many copies of F’ in H'. In fact, since mo(F") < mo(F) we get
1
p = Con ™ > Copn M0

For any copy of K,_1 in the reduced graph R that contains V,, among the a — 1 classes of the
bipartition of K,_1; Lemma 22 yields at least

n

EoLpF) 1 (;

partite copies of F in H' with a; € Wi and ay € Wy. Repeating this for the vt2T0=2 different copies

v(F)=2 1 n\v(F)-2
Willwel = = e(F)—1 W2
) [Wi|[Wa 4§CLP <t> W]

of K,_13 in R that contain Vg, in the described way, in total we obtain at least

o)~ ()2 YECL | ()1, u()- ot
P72 e (M) e = B et 5 B Dy (3

copies of I’ in H' with a; € W1 and as € Wh.

For a pair of vertices e € (V;/) we define
= [{(F") copy of F" in H': e = {¢(a1), p(az)}}] .
By (37) we know that
S > 7540L cEO=1y2., (38)
ee(y)

Let Wog = {e € (VQV) P Te F 0} and N = |W-¢|. Since this N corresponds to the number of edges

in Basep (F)[W] < Basey (F)[W] we shall show that N > d("g'). For this purpose we use (38)

and an upper bound for )] (") 22 that follows from (36). In fact,
2

ec

> a2 ' o P2 (39)
ee(’y)
where F' is a graph in F* that maximises the value of p?)n?(F)=2 for F* € F*. We will show

that pe(p In?(F)=2 is bounded by a constant only depending on Cjy, C and F. In fact, for F* =
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©1(F") U pa(F") € F* let Fy = p1(F') no(F') and e = {¢1(a1), ¢1(az2)}. In particular, Fy + e € F
and we have

s N () N B e e G N e R
p = 2 — pelFotopu(Fote) . pp2 S pelFoto)puFote) i

Combining (39) with the simple upper bound |F*| < (v(F) + 1)"¥) and the last inequality yields

Z z? < )+ 1)1;(F)
66(2)

Finally, we establish the (g, d)-denseness of G. In fact, from the Cauchy-Schwarz inequality we

2
( Z :Ue> = < Z xe> <N- Z :c =N- Z x
BE(VQV) eeW-o eeW-o eE( )

C2(e(F)—1

2
—|W 4

know

and, consequently,

Zee(}) ¢
(38),(40) <7€CLCO IW 2 /4)
> 2 e —
2(v(F) + 1)“<F)01 Yiw2/c
262 1)C,/ ’W‘
” 2(e(F)-1) ( )
16(v (F)+1) o(F) 7 2

(31),(35 W
(1),

Recalling that W < V,, with |[W| > p|V,,| was arbitrary, implies that Gy is (g, d)-dense which
finishes the proof. O

6. CONCLUDING REMARKS

6.1. Ramsey properties for Z/nZ. The methods used here can be adjusted to obtain the sharp-
ness for some cases of Rado’s theorem for two colours in Z/nZ. For van der Waerden’s theorem
such a result appeared in [8] and, in fact, the work presented here relied on some of those ideas.
However, the approach in [%] made use of the fact that the corresponding extremal problem (known
as Szemerédi’s theorem) has density 0, which limits the approach to so-called density reqular systems
(see, e.g., [7]). Maybe the simplest regular, but not density regular, instance of Rado’s theorem is
the well known result of Schur [22], which asserts for finite colourings of Z/nZ the existence of a
monochromatic solution for the equation z + y = z for sufficiently large n. The threshold for this
property appeared in [12] for two colours and in [2, 1] for an arbitrary number of colours. The
sharpness for two colours is based on some of the ideas used in [3] and the work here, will appear in
the PhD thesis of the second author.
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6.2. Ramsey properties of nearly partite hypergraphs. Instead of nearly bipartite graphs
one may consider nearly k-partite k-uniform hypergraphs, i.e., k-uniform hypergraphs with vertex
partition V31U ... UV, and the property that at most one hyperedge is contained in V; and the
remaining hyperedges contain exactly one vertex from each vertex class. Again one may require
additional balancedness assumptions (similar as in Theorem 2). However, for the proof of a lemma
corresponding to Lemma 8 one would need a sparse version of the so-called weak regularity lemma
for hypergraphs and a corresponding embedding/counting lemma for subhypergraphs of random
hypergraphs (see, e.g., [3, Section 5.1]). For the more relaxed version of nearly partite, which
would allow the additional hyperedge to span across more than one vertex class, one would likely
need sparse analogues of the strong hypergraph regularity method for subhypergraphs of random
hypergraphs.

6.3. Ramsey properties for more general graphs and more colours. It would be very inter-
esting to extend Theorem 2 to more general graphs F. The class of nearly bipartite graphs contains
the triangle K3 and an extension for all cliques would be desirable. The main obstacle seems to
establish a suitable analogue of Lemma 8 for this case.

Another limitation is the restriction to two colours only. The Rodl-Rucinski theorem [19] applies,
up to very few exceptions (see, e.g., [15, Section 8.1]), to arbitrary graphs and any number of
colours r > 2. However, besides for the case of trees (see [9]), all known sharpness results address
only the two-colour case and extending these results to more than two colours appears an interesting
open problem in the area.

Finally, we mention that due to Friedgut’s criterion the ¢ = ¢(n) in Theorem 2 is bounded by
constants, but it may depend on n. It seems plausible, that a strengthening of Theorem 2 for some
constant ¢ independent of n also holds. However, this would likely require a very different approach
to these problems.
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