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THE CHROMATIC NUMBER OF FINITE TYPE-GRAPHS

CHRISTIAN AVART, BILL KAY, CHRISTIAN REIHER, AND VOJTĚCH RÖDL

Abstract. By a finite type-graph we mean a graph whose set of vertices is the set of all

k-subsets of rns “ t1, 2, . . . , nu for some integers n • k • 1, and in which two such sets

are adjacent if and only if they realize a certain order type specified in advance. Examples

of such graphs have been investigated in a great variety of contexts in the literature with

particular attention being paid to their chromatic number. In recent joint work with Tomasz

 Luczak, two of the authors embarked on a systematic study of the chromatic numbers of such

type-graphs, formulated a general conjecture determining this number up to a multiplicative

factor, and proved various results of this kind. In this article we fully prove this conjecture.

§1. Motivation

Our goal in this article is to analyze the asymptotic behaviour of the chromatic number

of certain finite graphs, that are called type-graphs in the sequel. In general the vertex set

of such a graphs is, for some positive integers n • k, the collection of all k-element subsets

of the set rns “ t1, 2, . . . , nu. Whether two such subsets are to be connected by an edge or

not is decided solely in terms of the mutual position of their elements or, equivalently, it only

depends on the order type that this pair of sets realizes. Before defining these type-graphs

accurately, we would like to fix some notation concerning order types of pairs of ordered sets.

In particular we shall encode such order types as finite sequences consisting of ones, twos,

and threes. At first sight, allowing rational numbers in the definition that follows might look

unnecessarily general, but it will turn out to be useful at a later occasion.

Definition 1.1. Let X and Y be two finite sets of rational numbers with |X Y Y | “ ` and

XYY “ tz1, z2, . . . , z`u, these elements being listed in increasing order. We say that the order

type of the pair pX, Y q is the sequence ⌧ “ p⌧1, . . . , ⌧`q and set ⌧pX, Y q “ ⌧ if for every i P r`s
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we have

⌧
i

“

$

’

’

’

&

’

’

’

%

1 if z
i

P XzY ,

2 if z
i

P Y zX ,

3 if z
i

P X X Y .

For example, given X “ t1, 2, 3, 5u and Y “ t3, 4, 5u we get ⌧pX, Y q “ 11323. Clearly for

any finite sequence ⌧ consisting of ones, twos, and threes there are two finite subsets X and Y

of with ⌧ “ ⌧pX, Y q and in fact one may even find such sets with X, Y Ñ .

The case most relevant for the definition of type-graphs below is |X| “ |Y |.

Definition 1.2. Consider two nonnegative integers k and `. By a type of width k and length `

we mean the order type of a pair pX, Y q with X, Y Ñ , |X| “ |Y | “ k, and |X Y Y | “ `.

So ⌧ “ 123312 is a type of width 4 and length 6 that is realized, e.g., by X “ t1, 3, 4, 7u
and Y “ t2, 3, 4, 9u. It is not hard to observe that in any type of width k and length ` there

appear ` ´ k ones, ` ´ k twos, and 2k ´ ` threes. As a degenerate case we regard the empty

sequence ? as an empty type of width and length 0. A type is said to be trivial if it consists

of threes only, or in other words if its width equals its length.

Now we are prepared to define the main objects under consideration in this article.

Definition 1.3. For a nontrivial type ⌧ of width k and an integer n • k, the type-graph

Gpn, ⌧q is the graph with vertex set
`rns

k

˘

in which two vertices X and Y are declared to be

adjacent if and only if we have ⌧pX, Y q “ ⌧ or ⌧pY,Xq “ ⌧ .

Such graphs and their chromatic numbers have been studied in numerous articles. For

example, it is known that the shift graph Gpn, 132q has chromatic number rlogpnqs, where the
base of the logarithm is 2. It is straightforward to check that these shift graphs are triangle-

free, and thus they provide explicit examples of triangle-free graphs with arbitrarily large

chromatic number. More generally, Erdős and Hajnal [3] considered the type-graph Gpn, �
k

q
with

�
k

“ 1 3 . . . 3
loomoon

k´1

2 , (1.1)

and the infinite analogues of this graph that naturally arise when one replaces the finite

number n by an arbitrary cardinal number. Concerning the chromatic number of the finite

graphs Gpn, �
k

q they obtained the following result that we will apply later.
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Theorem 1.4 (Erdős and Hajnal). For any integer k • 2 we have

�
`

Gpn, �
k

q
˘

“
`

1 ` op1q
˘

¨ logpk´1qpnq

as n tends to infinity.

Here for any t P and any su�ciently large n P , we denote the t-fold iterated base

2 logarithm of n by logptqpnq. Strictly speaking Erdős and Hajnal did mainly focus on the

case where n is infinite, see [3, Lemma 2], but their method of proof applies to finite values

of n as well. The thus adapted proof may be found with more details in [2] or [7]. In

the latter reference, the alternative language of ordered Ramsey theory is used. We note

that the infinite case of Theorem 1.4 has applications to the computation of infinite Ramsey

numbers [3, Theorem 1] and refer the reader interested in further applications of infinite

type-graphs to [9], [4], [6], and [5].

Another interesting consequence of Theorem 1.4 is that it provides us with explicit examples

of graphs having large chromatic number and large odd girth. In fact, any odd cycle contained

in Gpn, �
k

q has at least the length 2k ` 1. This line of thought was substantially continued

by Nešetřil and Rödl, who used unions of general type-graphs in some of their early work on

structural Ramsey theory, see e.g. [8].

The problem of determining the chromatic number of general finite type-graphs was re-

cently approached in joint work of  Luzcak and two of the current authors [1]. The last

section of that article contains a conjecture, restated as Theorem 1.8 below, that predicts

this number asymptotically up to a constant multiplicative factor. In particular this con-

jecture implies that for each nontrivial type ⌧ there exists a nonnegative integer � with

�
`

Gpn, ⌧q
˘

“ ⇥
`

logp�qpnq
˘

as n tends to infinity. When intending to calculate � from ⌧ the

first thing one has to do is to express ⌧ as a product of as many other types as possible. The

next two definitions help us to talk about this process:

Definition 1.5. Given two finite sequences ⌧ “ p⌧1, . . . , ⌧`q and ⌧ 1 “ p⌧ 1
1, . . . , ⌧

1
`

1q we write ⌧⌧ 1

for their concatenation p⌧1, . . . , ⌧`, ⌧ 1
1, . . . , ⌧

1
`

1q.

Definition 1.6. A nonempty type is said to be irreducible if it cannot be written as the

concatenation of two nonempty types.

It should be clear that each nonempty type ⌧ can be written in a unique manner as the

concatenation of several irreducible types. In fact, one finds this unique factorization of ⌧ by

keeping track of the numbers of ones and twos already encountered while reading ⌧ from left
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to right, and starting a new factor at every moment where these two numbers are equal. As

it will turn out, most of our work concerning �
`

Gpn, ⌧q
˘

addresses the irreducible case. Once

it is solved, the reducible case reduces to that case.

In the next section, we describe an algorithm which partitions any given irreducible type ⌧

into so-called blocks. Notice that if ⌧ is trivial, i.e., a string of threes, we must have ⌧ “ 3

and in this case the number of blocks is going to be 1. On the other hand, any nontrivial

irreducible type is going to be partitioned into at least 2 blocks.

Our main result on irreducible types states:

Theorem 1.7. If ⌧ is a nontrivial irreducible type of width k with b blocks, then

p1 ` op1qq logpb´2q
`

n

k

˘

§ �
`

Gpn, ⌧q
˘

§
`

2pb´2q2 ` op1q
˘

logpb´2qpnq

and hence

�
`

Gpn, ⌧q
˘

“ ⇥
`

logpb´2qpnq
˘

.

More generally we shall obtain the following:

Theorem 1.8. Let ⌧ “ %1%2 ¨ . . . ¨%
t

be the factorization of an arbitrary nontrivial type ⌧ into

irreducible types. Suppose that %
i

has b
i

blocks for i P rts, and set b˚ “ maxpb1, . . . , btq. Then
we have

�
`

Gpn, ⌧q
˘

“ ⇥
`

logpb˚´2qpnq
˘

.

The rest of this article is structured as follows: In Section 2 we describe the block algorithm

and thus clarify the meaning of our main results. Then the next two sections are dedicated

to the proofs of the lower and upper bounds appearing in Theorem 1.7. Finally, in Section 5

we will deduce Theorem 1.8 by means of a product argument.

§2. The block algorithm

In this section we describe an algorithm partitioning the terms of any irreducible type ⌧

into blocks of consecutive terms. We will call this algorithm the block algorithm and the

partition it produces will be referred to as the block decomposition of ⌧ .

As said above, if ⌧ is trivial we have ⌧ “ 3 by irreducibility. In this special case we regard ⌧

as consisting of one block only, namely ⌧ itself. If ⌧ ‰ 3, then the first digit of ⌧ is either a

one or a two, because otherwise we could write ⌧ “ 3% for some type % ‰ ?, contrary to the

irreducibility of ⌧ . We call ⌧ primary if it starts with a one and secondary if it starts with a

two.
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Given a subsequence B of a type ⌧ that consists of consecutive terms, we write 1pBq for

the total number of ones and threes occurring in B, and 2pBq for the total number of twos

and threes in B.

Now we are ready to explain how the block algorithm is applied to any primary irreducible

type ⌧ . Processing ⌧ from left to right we are to perform the following steps:

(i ) The first block B1 consists of all the initial ones appearing in ⌧ .

(ii ) In general, if the block B
i

has just been constructed, the next block B
i`1 consists of

the next consecutive digits of ⌧ such that 2pB
i`1q “ 1pB

i

q and such that subject to

this condition the block B
i`1 is as long as possible.

(iii ) The algorithm stops when all the terms of ⌧ have been placed in a block.

E.g., for the type ⌧ “ 1121112121212222 we get B1 “ 11, B2 “ 211121, B3 “ 212122,

and finally B4 “ 22. One may use appropriate spacing to make the outcome of the block

algorithm notationally visible and write, for instance,

⌧ “ 11 211121 212122 22 .

Similarly the type 131122311222 decomposes into

1 311 22311 222

and for the type �4 “ 13332 that we have already encountered in (1.1) the algorithm produces

�4 “ 1 3 3 3 2 .

Fact 2.1. When applied to a primary irreducible type ⌧ the block algorithm does indeed provide

a factorization ⌧ “ B1B2 ¨ . . . ¨ B
b

of ⌧ into some nonempty blocks B1, . . . , Bb

, where b • 2.

Moreover, we have 1pB
b

q “ 0.

Proof. Since ⌧ starts with a one, rule (i ) gives us a first block B1 ‰ ?. Now let i be the

largest integer for which the block algorithm produces in its first i steps some nonempty

blocks B1, . . . , Bi

. This happens by an initial application of (i ) followed by i´ 1 applications

of (ii ). Let C denote the finite sequence satisfying

⌧ “ B1 ¨ . . . ¨ B
i

C . (2.1)

We intend to show that either C “ ? so that the algorithm stops, or 0 † 1pB
i

q § 2pCq,
meaning that the algorithm produces a further nonempty block B

i`1. The latter alternative,

however, would contradict the maximality of i.
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Recall that by construction we have 2pB1q “ 0 and 1pB
j

q “ 2pB
j`1q for all j P ri ´ 1s.

This yields

1pB1 ¨ . . . ¨ B
i´1q “ 2pB1 ¨ . . . ¨ B

i

q (2.2)

and in combination with (2.1) and 1p⌧q “ 2p⌧q it follows that we have 1pB
i

q § 1pB
i

Cq “
2pCq. So if 1pB

i

q ° 0 we could use (ii ) once more to obtain the next nonempty block B
i`1,

contrary to the maximality of i.

Thus we must have 1pB
i

q “ 0 and (2.2) entails that B1 ¨ . . . ¨ B
i

is a type. By (2.1) and

the irreducibility of ⌧ it follows that C “ ?, meaning that the algorithm stops with a final

application of rule (iii ). Now b “ i, the moreover-part was obtained at the beginning of this

paragraph, and b • 2 is clear. ⇤

So far we have only talked about primary types. For dealing with secondary types we use

the following symmetry: If ⌧ denotes any finite sequence of ones, twos, and threes, we write ⌧ 1

for the sequence obtained from ⌧ by replacing all ones by twos and vice versa. Evidently if ⌧

is a secondary irreducible type, then ⌧ 1 is a primary irreducible type and thus we already

know how to find its block decomposition ⌧ 1 “ B1B2 ¨ . . . ¨B
b

. Now we have ⌧ “ B1
1B

1
2 ¨ . . . ¨B1

b

and we define this to be the block decomposition of ⌧ . In particular, ⌧ and ⌧ 1 have the same

numbers of blocks.

Notice that if ⌧pX, Y q “ % holds for some finite sets X, Y Ñ , then ⌧pY,Xq “ %1 follows.

In particular, for any type ⌧ the two type-graphs Gpn, ⌧q and Gpn, ⌧ 1q are the same and thus

it su�ces to prove Theorem 1.7 for primary ⌧ .

We conclude this section with two statements concerning irreducible types and the block

algorithm that will be employed in Section 4.

Lemma 2.2. Suppose that ⌧ is a primary irreducible type of width k and that X, Y Ñ are

two finite sets with ⌧ “ ⌧pX, Y q. Let X “ tx1, . . . , xk

u and Y “ ty1, . . . , yku, the elements

being listed in increasing order. Then we have

(a ) x
i

† y
i

for all i P rks
(b ) and x

i`1 § y
i

for all i P rk ´ 1s.

Proof. Let ⌧ “ p⌧1, . . . , ⌧`q, where ` denotes the length of ⌧ . We contend that

if i P rk ´ 1s and x
i

§ y
i

, then x
i`1 § y

i

. (2.3)

To show this, let y
i

be the m-th element in the increasing enumeration of X Y Y . In view of

1 § i † k we have 1 § m † ` and thus p⌧1, . . . , ⌧mq cannot be a type due to the irreducibility
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of ⌧ . This in turn yields |X X p´8, y
i

s| ‰ |Y X p´8, y
i

s| “ i. But assuming x
i

§ y
i

the

number |X X p´8, y
i

s| is at least i, so that altogether it must be at least i ` 1, which means

that x
i`1 § y

i

. This proves (2.3).

Next we show (a ) by induction on i. The base case x1 † y1 follows from ⌧ being primary.

For the induction step we suppose that x
i

† y
i

holds for some i † k. Then (2.3) entails

x
i`1 § y

i

† y
i`1, which concludes the argument.

Finally (b ) is an immediate consequence of (2.3) and (a ). ⇤

We now come to the only place in the proof of Theorem 1.7 where the demand from the

second rule of the block algorithms that the blocks should end with as many ones as possible

is utilized. The purpose of the following lemma is that, roughly speaking, it tells us how

the “blocks” of two finite sets X and Y realizing an irreducible type ⌧ overlap each other.

This will be useful in Subsection 4.1 for embedding Gpn, ⌧q into an auxiliary graph whose

chromatic number is easier to bound from above.

Lemma 2.3. Let ⌧ “ B1B2 ¨ . . . ¨ B
b

be the block decomposition of some primary irreducible

type whose width is k and set spiq “ 2pB1 ¨ . . . ¨ B
i

q for all i P rbs. Then for any two sets X

and Y satisfying ⌧ “ ⌧pX, Y q, say X “ tx1, . . . , xk

u and Y “ ty1, . . . , yku with the elements

listed in increasing order, we have x
spi`1q † y

spiq`1 § x
spi`1q`1 for all i P rb ´ 2s.

Proof. Let X Y Y “ tz1, . . . , z`u, the elements again being listed in increasing order. Fix

any i P rb ´ 2s and set � “ ∞

i

j“1 |B
j

|. By rule (ii ) of the block algorithm the block B
i`1

cannot start with a one and thus we have z
�`1 P Y . In combination with

spiq “ 2pB1 ¨ . . . ¨ B
i

q “ |Y X p´8, z
�

s|

this yields

y
spiq`1 “ z

�`1 . (2.4)

Similarly we have

spi ` 1q “ 2pB1 ¨ . . . ¨ B
i`1q “ 1pB1 ¨ . . . ¨ B

i

q “ |X X p´8, z
�

s|

and thus x
spi`1q § z

�

as well as z
�`1 § x

spi`1q`1. The desired conclusion follows from these

two estimates and (2.4). ⇤
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§3. The lower bound – uncolourability

In this section we shall prove the lower bound from Theorem 1.7. So we intend to show

that a certain graph Gpn, ⌧q cannot be coloured with a certain “small” number of colours.

Recall that for any graph H and any natural number r, the statement �pHq ° r means the

same as saying that there is no graph homomorphism from H to the r-clique K
r

. Thus one

strategy to prove such an uncolourability statement is to exhibit a homomorphism from some

auxiliary graph G to H, with �pGq ° r already being known. So in the light of Theorem 1.4

our task reduces to:

Proposition 3.1. For every nontrivial irreducible type ⌧ of width k with b blocks and every

integer n • b there is a graph homomorphism

' : Gpn, �
b´1q ›Ñ Gpkn, ⌧q .

For the construction of such a homomorphism, we will make use of the following

Fact 3.2. If B denotes a finite sequence of ones, twos, and threes, and Y Ñ has size 2pBq,
then there is a set X Ñ with ⌧pX, Y q “ B.

This can easily be shown by induction on the number of ones appearing in B and we leave

the details to the reader.

Proof of Proposition 3.1. As said above we may assume that ⌧ is primary. Let

⌧ “ B1B2 ¨ . . . ¨ B
b

be the block decomposition of ⌧ . We commence by defining recursively an auxiliary sequence

R0, R1, . . . , Rb

of finite subsets of with

|R
i´1| “ 2pB

i

q for all i P rbs . (3.1)

Since B1 consists exclusively of ones, such a sequence needs to start with R0 “ ?. Once R
i´1

has been defined for some i P rbs, we use Fact 3.2 to obtain a set R
i

Ñ satisfying

⌧pR
i

, R
i´1q “ B

i

. Notice that for i † b this yields |R
i

| “ 1pB
i

q “ 2pB
i`1q, so that the

construction may be continued. We also get |R
b

| “ 1pB
b

q “ 0 and hence R
b

“ ? from

Fact 2.1.

In view of (3.1) we have

b´1
ÿ

i“0

|R
i

| “
b

ÿ

i“1

2pB
i

q “ 2p⌧q “ k (3.2)
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and thus there exist k rational numbers ↵1 † . . . † ↵
k

with

§

0§i†b

R
i

Ñ t↵1, . . . ,↵k

u .

Pulling this situation back to rks we define R˚
i

“ tj P rks |↵
j

P R
i

u for all i P rb ´ 1s as well
as R˚

0 “ R˚
b

“ ?. The main properties of these sets are

R˚
i

Ñ rks and ⌧pR˚
i

, R˚
i´1q “ B

i

for all i P rbs . (3.3)

Now we are ready to define the requested map

' :

ˆ rns
b ´ 1

˙

›Ñ
ˆrkns

k

˙

.

Given any integers h
i

for i P rb ´ 1s with 1 § h1 † . . . † h
b´1 § n we set

'
`

th1, . . . , hb´1u
˘

“
§

iPrb´1s

 

ph
i

´ 1qk ` j | j P R˚
i

(

.

Due to R˚
i

Ñ rks the right-hand side of this formula is indeed a subset of rkns and by (3.2)

its size is k. It remains to check that ' maps edges of Gpn, �
b´1q to edges of Gpkn, ⌧q. To

this end let any integers h
i

for i P rbs with 1 § h1 † . . . † h
b

§ n be given. Then by (3.3) we

have

⌧
`

'
`

th1, . . . , hb´1u
˘

,'
`

th2, . . . , hb

u
˘˘

“ ⌧pR˚
1 , R

˚
0q ¨ ⌧pR˚

2 , R
˚
1q ¨ . . . ¨ ⌧pR˚

b

, R˚
b´1q

“ B1B2 ¨ . . . ¨ B
b

“ ⌧ ,

as desired. ⇤

§4. The upper bound – constructing colourings

This entire section is dedicated to the proof of the upper bound from Theorem 1.7. The

strategy we use is to embed the type-graph Gpn, ⌧q into some other graph G
b´1pnq that

depends solely on b and n but not on ⌧ itself. Thereby the task we are to perform gets

reduced to the problem of colouring these auxiliary graphs with “few” colours and it seems

that this new problem is more susceptible to an inductive treatment than the old one.

4.1. Embedding type-graphs. We begin by defining the auxiliary graphs G
b

pnq mentioned

above.
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Definition 4.1. For any positive integers b and n we set

W
b

pnq “ tpx1, . . . , x2b´1q | 1 § x1 § x2 § . . . § x2b´1 § nu

and

V
b

pnq “ tpx1, . . . , x2b´1q P W
b

pnq |x1 † x3 † . . . † x2b´1u .
By G

b

pnq we mean the graph with vertex set V
b

pnq in which an unordered pair e Ñ V
b

pnq is

declared to be an edge if we can write e “ tá
x,

á
yu, á

x “ px1, . . . , x2b´1q, and á
y “ py1, . . . , y2b´1q

such that

(i ) x1 † y1 § x3 † y3 § . . . § x2b´1 † y2b´1

(ii ) and x
j`1 § y

j

for j P r2b ´ 2s.

It should perhaps be observed that the conditions (i ) and (ii ) from this definition do

not determine uniquely how the elements of the multiset tx1, . . . , x2b´1u Y ty1, . . . , y2b´1u are

ordered. This makes it more plausible, of course, that many type-graphs embed homomor-

phically into G
b

pnq and in fact we have

Theorem 4.2. For any nontrivial irreducible type ⌧ with b • 2 blocks and every positive

integer n there is a graph homomorphism ' : Gpn, ⌧q ›Ñ G
b´1pnq.

Proof. As usual we may assume that ⌧ is a primary type of width k, say. Let ⌧ “ B1B2 ¨. . .¨B
b

be its block decomposition and define spiq “ 2pB1 ¨ . . . ¨ B
i

q for any i P rbs. Since

0 “ sp1q † sp2q † . . . † spbq “ k ,

there is a map

' :

ˆrns
k

˙

›Ñ V
b´1pnq

given by

'
`

tx1, . . . , xk

u
˘

“
`

x
sp1q`1, xsp2q, xsp2q`1, . . . , xspb´1q, xspb´1q`1

˘

,

whenever 1 § x1 † . . . † x
k

§ n. So roughly speaking ' remembers where the “blocks” of

such a set tx1, . . . , xk

u start and end and forgets everything else.

It remains to verify that ' sends edges of Gpn, ⌧q to edges of G
b´1pnq. For this purpose let

any two vertices X and Y of Gpn, ⌧q with ⌧pX, Y q “ ⌧ be given and write X “ tx1, . . . , xk

u
as well as Y “ ty1, . . . , yku, listing the elements in increasing order. We need to show that

t'pXq,'pY qu is an edge of G
b´1pnq, i.e., that the clauses (i ) and (ii ) from Definition 4.1 are

satisfied.
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Now by Lemma 2.2 (a ) we have in particular x
spiq`1 † y

spiq`1 for all i P rb ´ 1s and

Lemma 2.3 tells us that y
spiq`1 § x

spi`1q`1 holds for all i P rb ´ 2s. Both statements together

yield condition (i ) from Definition 4.1.

For the verification of (ii ) we consider the cases that the index j appearing there is odd or

even separately. To deal with the case where j is odd we need to check that x
spi`1q § y

spiq`1

holds for all i P rb´2s and Lemma 2.3 informs us that this is indeed true. For even j we need

that x
spi`1q`1 § y

spi`1q holds for all i P rb ´ 2s and this was obtained in Lemma 2.2 (b ). ⇤

Now it is clear that in order to complete the proof of Theorem 1.7 we just need to establish

the following result.

Theorem 4.3. For every positive integer b we have

�
`

G
b

pnq
˘

§
`

2pb´1q2 ` op1q
˘

logpb´1qpnq .

Throughout the rest of this section we deal with the proof this theorem. We will proceed by

induction on b, considering the base cases b “ 1 and b “ 2 separately. The main idea for the

induction step is to relate the graphs G
b

p2nq to G
b´1pnq to each other. Roughly speaking, we

will show that for any b • 3 the vertex set of the graph G
b

p2nq may be split into about 22b´3

pieces, each of which induces a graph that embeds homomorphically into G
b´1pnq. For the

construction of half of these homomorphisms it will be helpful to bear the following symmetry

in mind.

Fact 4.4. For any positive integers b and n the bijection ⌘ : V
b

p2nq ›Ñ V
b

p2nq given by

px1, x2, . . . , x2b´1q fi›Ñ
`

p2n ` 1q ´ x2b´1, p2n ` 1q ´ x2b´2, . . . , p2n ` 1q ´ x1

˘

is an automorphism of G
b

p2nq.

We leave the easy proof of this assertion to the reader.

4.2. Colouring the auxiliary graphs G
b

pnq. Clearly the graph G1pnq is nothing else than

a clique with n vertices. Thus we have

�
`

G1pnq
˘

“ n for every positive integer n . (4.1)

The case b “ 2 of Theorem 4.3 is technically a lot easier than the general case and thus we

would like to treat is separately.

Lemma 4.5. We have �
`

G2pnq
˘

§ 2rlogpnqs ´ 1 for all integers n • 2.
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Proof. Clearly it su�ces to show �
`

G2p2kq
˘

§ 2k ´ 1 for all positive integers k and we shall

do so by induction on k. The base case k “ 1 poses no di�culty because the graph G2p2q
just consists of two isolated vertices. To handle the induction step it is enough to show

�
`

G2p2mq
˘

§ �
`

G2pmq
˘

` 2 for all m • 2 . (4.2)

Bearing this goal in mind we partition the vertex set of G2p2mq into the four classes

A “
 

px, y, zq P V2p2mq | z § m
(

,

B “
 

px, y, zq P V2p2mq | y § m † z
(

,

C “
 

px, y, zq P V2p2mq |x § m † y
(

,

and D “
 

px, y, zq P V2p2mq |m † x
(

.

We also identify subsets of V2p2mq with the subgraphs of G2p2mq that they induce. Evi-

dently A is the same as G2pmq, the map px, y, zq fi›Ñ px ` m, y ` m, z ` mq provides an

isomorphism between A and D, and there are no edges between A and D. Therefore AYD is

a disjoint union of two copies of G2pmq and we have �pAYDq “ �
`

G2pmq
˘

. Moreover, using

condition (ii ) from Definition 4.1 it is easy to check that the sets B and C are independent.

This concludes the proof of (4.2) and, thus, the proof of Lemma 4.5. ⇤

Before we proceed to the colouring of G
b

p2nq for b • 3 we introduce some auxiliary func-

tions.

Lemma 4.6. Given any integers x and y with 1 § x † y there exist a positive integer f and

an odd positive integer q such that

pq ´ 1q ¨ 2f´1 † x § q ¨ 2f´1 † y § pq ` 1q ¨ 2f´1 .

Moreover, f and q are uniquely determined by x and y so that we may write f “ fpx, yq as

well as q “ qpx, yq.

Proof. Let us first prove the existence of f and q. To this end, we pick an integer n with

y § 2n. Then we expand x ´ 1 and y ´ 1 in the binary system using n digits and allowing

leading zeros. Say that this yields x ´ 1 “ x
n´1 . . . x1x0 and y ´ 1 “ y

n´1 . . . y1y0. Next we

compare these expansions from left to right and let x
f´1 ‰ y

f´1 be the first place where they

di↵er. Notice that x † y entails x
f´1 “ 0 and y

f´1 “ 1. Finally we let q be the number with

binary representation q “ x
n´1 . . . xf

1.
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So formally we have

x ´ 1 “
n´1
ÿ

i“0

x
i

¨ 2i , y ´ 1 “
n´1
ÿ

i“0

y
i

¨ 2i , q “ 1 `
n´f

ÿ

i“1

x
f`i´12

i

and x
j

“ y
j

for j P rf, n ´ 1s. Clearly, q is odd and

pq ´ 1q ¨ 2f´1 § x ´ 1 † q ¨ 2f´1 § y ´ 1 † pq ` 1q ¨ 2f´1 ,

wherefore f and q are as desired.

2n´1 2n´2 . . . 2f 2f´1 2f´2 . . . 1

x ´ 1 x
n´1 x

n´2 . . . x
f

0 x
f´2 . . . x0

y ´ 1 x
n´1 x

n´2 . . . x
f

1 y
f´2 . . . y0

q ¨ 2f´1 x
n´1 x

n´2 . . . x
f

1 0 . . . 0

The uniqueness of f and q may likewise by shown by studying the binary expansions of x´1

and y ´ 1. An alternative argument proceeds as follows:

Given x and y, let pf, qq and pf 1, q1q be two pairs with the requested properties. Due to

symmetry we may suppose f § f 1. Now we have pq´1q¨2f´1 † x § q1 ¨2f 1´1 and consequently

q § q1 ¨ 2f 1´f . Similarly q1 ¨ 2f 1´1 † y § pq ` 1q2f´1 yields q1 ¨ 2f 1´f § q. The combination

of both estimates reveals q “ q1 ¨ 2f 1´f but, since q is odd, this if only possible if f “ f 1

and q “ q1. ⇤

We would like to point out that the uniqueness of f and q is several times going to be

essential in the arguments that follow. By redoing the above proof of this uniqueness more

carefully one can show the following monotonicity property of the function f .

Lemma 4.7. For any three positive integers x, y, and z such that x † y § z the inequality

fpx, yq § fpx, zq holds.

Proof. For brevity we set f “ fpx, yq, q “ qpx, yq, f 1 “ fpx, zq, and q1 “ qpx, zq. Arguing

indirectly we assume f 1 † f . Now pq1 ´ 1q ¨ 2f 1´1 † x § q ¨ 2f´1 entails q1 § q ¨ 2f´f

1
and

similarly q ¨ 2f´1 § y § z † pq1 ` 1q ¨ 2f 1´1 leads to q ¨ 2f´f

1 § q1. Hence we must have

q1 “ q ¨ 2f´f

1
, contrary to the fact that q1 is odd. ⇤

The following will be a standard argument later on.

Lemma 4.8. For any positive integers x † y § z and f with f “ fpx, yq “ fpx, zq we have

pq ´ 1q ¨ 2f´1 † x § q ¨ 2f´1 † y § z § pq ` 1q ¨ 2f´1 ,



14 CHRISTIAN AVART, BILL KAY, CHRISTIAN REIHER, AND VOJTĚCH RÖDL

where q “ qpx, yq “ qpx, zq.

Proof. Define q “ qpx, yq. Lemma 4.6 gives

pq ´ 1q ¨ 2f´1 † x § q ¨ 2f´1 † y § pq ` 1q ¨ 2f´1

and thus q ¨ 2f´1 is the least multiple of 2f´1 which is at least x. Due to f “ fpx, zq this

yields qpx, zq “ q and hence z § pq ` 1q ¨ 2f´1. ⇤

Next we record another property of f that shall be utilized later.

Lemma 4.9. If four positive integers t, x, y, and z satisfy t § x † y § z and fpx, yq “ fpx, zq,
then fpt, yq “ fpt, zq holds as well.

Proof. Setting f “ fpt, zq and q “ qpt, zq we get

pq ´ 1q ¨ 2f´1 † t § q ¨ 2f´1 † z § pq ` 1q ¨ 2f´1

from the definition of these quantities.

Of course the claim would easily follow from q ¨ 2f´1 † y. So from now on we may assume

y § q ¨ 2f´1 towards contradiction. This yields

pq ´ 1q ¨ 2f´1 † t § x † y § q ¨ 2f´1 † z § pq ` 1q ¨ 2f´1 ,

and in particular we obtain fpx, zq “ f but fpx, yq ‰ f , thus reaching a contradiction. ⇤

To conclude our dicussion of the auxiliary functions f and q we state how they interact

with the map ⌘ introduced in Fact 4.4.

Fact 4.10. For any integers x and y with 1 § x † y § 2n we have

fpx, yq P rns ,
fp2n ` 1 ´ y, 2n ` 1 ´ xq “ fpx, yq ,

and qp2n ` 1 ´ y, 2n ` 1 ´ xq “ 2n`1´f ´ qpx, yq .

Again we leave the straightforward verification to the reader. We may now return to the

problem of colouring the graphs G
b

p2nq.

Proposition 4.11. We have

�
`

G
b

p2nq
˘

§ p2b ´ 6q ` 22b´3 �
`

G
b´1pnq

˘

for any integers n • b • 3.
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Proof. For any vertex
á
x “ px1, x2, . . . , x2b´1q of G

b

p2nq we use the abbreviations

fpá
xq “ fpx1, x2b´1q ,

qpá
xq “ qpx1, x2b´1q ,

T´pá
xq “

`

qpá
xq ´ 1

˘

¨ 2fpá
x q´1 ,

T pá
xq “ qpá

xq ¨ 2fpá
x q´1 ,

and T`pá
xq “

`

qpá
xq ` 1

˘

¨ 2fpá
x q´1 .

Recall that by Lemma 4.6 we have

T´pá
xq † x1 § T pá

xq † x2b´1 § T`pá
xq (4.3)

for any such vertex
á
x and in the first steps of the current proof we will distinguish these

vertices according to the position of their other entries x
i

with respect to T pá
xq. To begin

with, we partition V
b

p2nq into three sets,

V
b

p2nq “ A Y B Y C , (4.4)

that are defined by

A “
 á
x “ px1, x2, . . . , x2b´1q P V

b

p2nq |x2b´3 § T pá
xq

(

,

B “
 á
x “ px1, x2, . . . , x2b´1q P V

b

p2nq |x3 § T pá
xq † x2b´3

(

,

and C “
 á
x “ px1, x2, . . . , x2b´1q P V

b

p2nq |T pá
xq † x3

(

.

Again we identify subsets of V
b

p2nq with the corresponding induced subgraphs of G
b

p2nq. We

will use di↵erent colours for these three sets and commence by colouring B. This set may be

partitioned further into

B “ B3 Y B4 Y . . . Y B2b´4 ,

where

B
i

“
 á
x “ px1, x2, . . . , x2b´1q P V

b

p2nq |x
i

§ T pá
xq † x

i`1

(

for any integer index i P r3, 2b ´ 4s. We claim that each of these 2b ´ 6 sets is independent.

To show this suppose that tá
x,

á
yu was an edge of G

b

p2nq with á
x,

á
y P B

i

for some i P r3, 2b´ 4s.
Let the notation be as in Definition 4.1. By

á
x P B and the inequalities 4.1(i ) and (4.3) we

have

T´pá
xq † x1 † y1 § x3 § T pá

xq † x2b´3 † y2b´3 § x2b´1 § T`pá
xq ,
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whence fpy1, y2b´3q “ fpá
xq and qpy1, y2b´3q “ qpá

xq. Due to á
y P B this yields fpá

yq “ fpá
xq and

qpá
yq “ qpá

xq. For this reason
á
x,

á
y P B

i

implies y
i

§ T pá
yq “ T pá

xq † x
i`1, contrary to 4.1(ii ).

So the sets B
i

are indeed independent and we obtain

�pBq § 2b ´ 6 . (4.5)

This accounts for the summand 2b´6 on the right-hand side of our claim and we may proceed

with analyzing A and C. Using Fact 4.10 it is not hard to check that the map ⌘ from Fact 4.4

constitutes an isomorphism between A and C, wherefore

�pAq “ �pCq . (4.6)

Now by (4.4), (4.5), and (4.6) we have

�
`

G
b

p2nq
˘

§ �pAq ` �pBq ` �pCq § p2b ´ 6q ` 2�pAq

and thus to finish the current proof we just need to show

�pAq § 22b´4 �
`

G
b´1pnq

˘

. (4.7)

The main idea for proving this is to split A into at most 22b´4 further sets, each of which is

either independent or has the property of being homomorphically mapped into G
b´1pnq by a

certain function ' that is to be introduced next. Observe that by the first statement from

Fact 4.10 and by Lemma 4.7 there is a map ' : A ›Ñ W
b´1pnq defined by

'px1, x2, . . . , x2b´1q “
`

fpx1, x3q, fpx1, x4q, . . . , fpx1, x2b´1q
˘

for any px1, x2, . . . , x2b´1q P A. We call two vertices
á
x “ px1, . . . , x2b´1q and á

y “ py1, . . . , y2b´1q
from A equivalent and write

á
x „ á

y if for any integer i P r3, 2b ´ 2s we have

fpx1, xi

q “ fpx1, xi`1q ñ fpy1, yiq “ fpy1, yi`1q .

It is plain that equivalence is an equivalence relation and that the number of its equivalence

classes is at most 22b´4. Thus to conclude the proof of (4.7) we just need to verify the following

statement:

If
á
x,

á
y P A,

á
x „ á

y, and tá
x,

á
yu P E

`

G
b

p2nq
˘

, then t'pá
xq,'pá

yqu P E
`

G
b´1pnq

˘

. (4.8)

So let any two equivalent vertices
á
x and

á
y from A be given and suppose that they are

connected by an edge of G
b

p2nq, the notation for this being as in Definition 4.1. For any

i P r2b ´ 3s we set

↵
i

“ fpx1, xi`2q and �
i

“ fpx1, yi`2q . (4.9)
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Notice that there is no misprint in the last formula – it is true that �
i

“ fpy1, yi`2q holds

as well, and actually this fact is very relevant to our main concern, but it will only be shown

at a rather late moment of our argument.

Combining the assumption that tá
x,

á
yu be an edge of G

b

p2nq with Lemma 4.7 we infer

↵1 § �1 § ↵3 § �3 § . . . § ↵2b´3 § �2b´3 (4.10)

as well as

↵
j`1 § �

j

for j P r2b ´ 4s . (4.11)

Next we would like to show

↵2b´3 † �2b´3 . (4.12)

Assume contrariwise that ↵2b´3 “ �2b´3, i.e., fpá
xq “ fpx1, y2b´1q. Lemma 4.8 yields

T´pá
xq † x1 § T pá

xq † x2b´1 † y2b´1 § T`pá
xq ,

so in combination with tá
x,

á
yu being an edge and with

á
x P A we obtain

T´pá
xq † x1 † y1 § x2b´3 § T pá

xq § x2b´1 § y2b´2 § y2b´1 § T`pá
xq .

It follows that T pá
yq “ T pá

xq and fpy1, y2b´2q “ fpy1, y2b´1q “ fpá
xq. Using

á
x „ á

y we may

deduce fpx1, x2b´2q “ fpx1, x2b´1q. Now Lemma 4.8 shows that qpx1, x2b´2q “ qpx1, x2b´1q
holds as well and consequently we have T pá

xq † x2b´2 § y2b´3. Thus we get a contradiction

to
á
y P A, whereby (4.12) is proved.

Extending this result we contend that more generally we have

↵
i

† �
i

for all i P r2b ´ 3s . (4.13)

Arguing indirectly again, we let i denote the largest counterexample to this claim. Notice

that (4.12) tells us i § 2b ´ 4. Set q “ qpx1, xi`2q, T´ “ pq ´ 1q ¨ 2↵i´1, T “ q ¨ 2↵i´1, and

T` “ pq ` 1q ¨ 2↵i´1. Due to Lemma 4.8 our indirect assumption ↵
i

“ �
i

entails

T´ † x1 § T † x
i`2 § y

i`2 § T` ,

which in combination with x
i`2 § x

i`3 § y
i`2 shows fpx1, xi`2q “ fpx1, xi`3q. Now

á
x „ á

y

discloses fpy1, yi`2q “ fpy1, yi`3q and by Lemma 4.9 it follows that fpx1, yi`2q “ fpx1, yi`3q.
Using Lemma 4.8 again we obtain

T´ † x1 § T † x
i`3 § y

i`3 § T`

and thus ↵
i`1 “ �

i`1, contrary to the maximality of i. Thereby (4.13) is proved as well.
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Now we are ready to confirm the alternative definition of �
i

announced above. That is, for

any i P r2b ´ 3s we claim

�
i

“ fpx1, yi`2q “ fpy1, yi`2q . (4.14)

To see this, set q “ qpx1, yi`2q, S´ “ pq ´ 1q ¨ 2�i´1, S “ q ¨ 2�i´1, and S` “ pq ` 1q ¨ 2�i´1.

Now

S´ † x1 § S † y
i`2 § S`

and x3 † y3 § y
i`2. Hence S † x3 would entail

S´ † x1 § S † x3 § S`

and, consequently, ↵1 “ fpx1, x3q “ �
i

• �1, which contradicts the case i “ 1 of (4.13). This

proves x1 † y1 § x3 § S, which in turn establishes (4.14).

Putting everything together, the equations (4.9) and (4.14) yield

'pá
xq “ p↵1,↵2, . . . ,↵2b´3q and 'pá

yq “ p�1, �2, . . . , �2b´3q

and by (4.13) we may strengthen (4.10) to

↵1 † �1 § ↵3 † �3 § . . . § ↵2b´3 † �2b´3 .

In particular this shows that 'pá
xq and 'pá

yq are indeed vertices of G
b´1pnq and together

with (4.11) it further shows that these two vertices are adjacent. This concludes the proof

of (4.8) and, hence, the proof of Proposition 4.11. ⇤

Let us now summarize why all the work performed in this subsection demonstrates Theo-

rem 4.3.

Proof of Theorem 4.3. We argue by induction on b. The base cases b “ 1 and b “ 2 have

been dealt with in (4.1) and Lemma 4.5 respectively. In the light of Proposition 4.11 the

induction step is easy. ⇤

Finally we would like to emphasize again that the combination of Proposition 3.1, Theo-

rem 4.2, and Theorem 4.3 implies Theorem 1.7.

§5. Reducible types

Having thus said everything we want to say about the chromatic number of irreducible

type-graphs, we devote the present section to the proof of Theorem 1.8. So we consider any

nontrivial type ⌧ and let ⌧ “ %1%2 ¨ . . . ¨ %
t

be its factorization into irreducible types. For
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each i P rts the number of blocks into which %
i

decomposes is denoted by b
i

and we set

b˚ “ maxpb1, . . . , btq. Finally, let k be the width of ⌧ and let %
i

have width k
i

for i P rts.
The notation introduced up to this moment will be used throughout this section without

being repeated in the numbered statements that will occur.

Recall that our goal is to show

�
`

Gpn, ⌧q
˘

“ ⇥
`

logpb˚´2qpnq
˘

.

Here we have b˚ • 2 because otherwise each factor %
i

of ⌧ would have to be equal to 3, meaning

that ⌧ were trivial. Again we treat the lower bound and the upper bound separately, but this

time the latter is easier, so we start with it.

Fact 5.1. For every i P rts and every integer n • k there is a graph homomorphism

'
i

: Gpn, ⌧q ›Ñ Gpn, %
i

q .

Proof. Set r “ 1p%1 ¨ . . . ¨ %
i´1q and s “ 1p%1 ¨ . . . ¨ %

i

q. Clearly %
i

has width k
i

“ s ´ r, and,

since %1, . . . , %i are types, we also have r “ 2p%1 ¨ . . . ¨ %
i´1q and s “ 2p%1 ¨ . . . ¨ %

i

q. Now it easy

to confirm that the map

'
i

:

ˆrns
k

˙

›Ñ
ˆrns
k
i

˙

given by

'
`

tx1, . . . , xk

u
˘

“ tx
r`1, . . . , xs

u
whenever 1 § x1 † x2 † . . . † x

k

§ n is as desired. ⇤

Applying this in particular to some index i˚ P rts with b
i

˚ “ b˚ we may deduce the following

by means of Theorem 1.7.

Fact 5.2. As n tends to infinity we have

�
`

Gpn, ⌧q
˘

§
`

2pb˚´2q2 ` op1q
˘

logpb˚´2qpnq . (5.1)

In the other direction, we will use Proposition 3.1 to embed the generalized shift graph

G
`

n, �
b

˚´1

˘

homomorphically into Gpkn, ⌧q.

Fact 5.3. For every integer n • b˚
there is a graph homomorphism

 : Gpn, �
b

˚´1q ›Ñ Gpkn, ⌧q

and, consequently, we have

p1 ` op1qq logpb˚´2q
`

n

k

˘

§ �
`

Gpn, ⌧q
˘

. (5.2)
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Proof. Let I “ ti P rts | %
i

‰ 3u and write c
i

“ ∞

i

j“1 kj for every integer i P r0, ts. Recall

that we know from Proposition 3.1 that for every index i P I there exists a homomorphism

 
i

: Gpn, �
bi´1q ›Ñ Gpk

i

n, %
i

q. Utilizing these, we define for each i P rts a map

p 
i

:

ˆ rns
b˚ ´ 1

˙

›Ñ
ˆrc

i´1n ` 1, c
i

ns
k
i

˙

by stipulating

p 
i

`

th1, . . . , hb

˚´1u
˘

“

$

&

%

c
i´1n `  

i

`

th1, . . . , hbi´1u
˘

if i P I,

tc
i

nu if i R I ,

whenever 1 § h1 † . . . † h
b´1 § n, where the addition of a number to a set in the upper case

is to be performed “elementwise”. We leave it to the reader to check that the map

 :

ˆ rns
b˚ ´ 1

˙

›Ñ
ˆrkns

k

˙

given by

 pXq “
§

iPrts

p 
i

pXq

for all X P
` rns
b

˚´1

˘

is indeed a homomorphism from Gpn, �
b

˚´1q to Gpkn, ⌧q.
Formula (5.2) follows from the mere existence of  and from Theorem 1.4. ⇤

Owing to (5.1) and (5.2) the proof of Theorem 1.8 is complete.
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