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A NOTE ON INDUCED RAMSEY NUMBERS

DAVID CONLON, DOMINGOS DELLAMONICA JR., STEVEN LA FLEUR, VOJTĚCH RÖDL,
AND MATHIAS SCHACHT

Abstract. The induced Ramsey number rindpF q of a k-uniform hypergraph F is the smallest
natural number n for which there exists a k-uniform hypergraph G on n vertices such that every
two-coloring of the edges of G contains an induced monochromatic copy of F . We study this
function, showing that rindpF q is bounded above by a reasonable power of rpF q. In particular,

our result implies that rindpF q ď 22
ct

for any 3-uniform hypergraph F with t vertices, mirroring
the best known bound for the usual Ramsey number. The proof relies on an application of the
hypergraph container method.

1. Introduction

The Ramsey number rpF ; qq of a k-uniform hypergraph F is the smallest natural number n

such that every q-coloring of the edges of K
pkq
n , the complete k-uniform hypergraph on n vertices,

contains a monochromatic copy of F . In the particular case when q “ 2, we simply write rpF q. The
existence of rpF ; qq was established by Ramsey in his foundational paper [16] and there is now a
large body of work studying the Ramsey numbers of graphs and hypergraphs. For a recent survey,
we refer the interested reader to [4].

In this paper, we will be concerned with a well-known refinement of Ramsey’s theorem, the
induced Ramsey theorem. We say that a k-uniform hypergraph F is an induced subgraph of another
k-uniform hypergraph G if V pF q Ă V pGq and any k vertices in F form an edge if and only if they
also form an edge in G. The induced Ramsey number rindpF ; qq of a k-uniform hypergraph F is
then the smallest natural number n for which there exists a k-uniform hypergraph G on n vertices
such that that every q-coloring of the edges of G contains an induced monochromatic copy of F .
Again, in the particular case when q “ 2, we simply write rindpF q.

For graphs, the existence of induced Ramsey numbers was established independently by Deu-
ber [5], Erdős, Hajnal, and Pósa [7], and Rödl [17], while for k-uniform hypergraphs with k ě 3
their existence was shown independently by Nešetřil and Rödl [15] and Abramson and Harring-
ton [1]. The bounds that these original proofs gave on rindpF ; qq were enormous. However, at that
time it was noted by Rödl (unpublished) that for bipartite graphs F the induced Ramsey numbers
are exponential. Moreover, it was conjectured by Erdős [6] that there exists a constant c such that
every graph F with t vertices satisfies rindpF q ď 2ct. If true, the complete graph would show that
this is best possible up to the constant c. A result of Conlon, Fox, and Sudakov [3], building on
earlier work by Kohayakawa, Prömel, and Rödl [12], comes close to establishing this conjecture,
showing that

rindpF q ď 2ct log t.

However, the method used to prove this estimate only works in the 2-color case. For q ě 3, the

best known bound, due to Fox and Sudakov [10], is rindpF ; qq ď 2ct
3

, where c depends only on q.
In this note, we study the analogous question for hypergraphs, showing that the induced Ramsey

number is never significantly larger than the usual Ramsey number. Our main result is the following.
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Theorem 1. Let F be a k-uniform hypergraph with t vertices and ℓ edges. Then there are positive

constants c1, c2, and c3 such that

rindpF ; qq ď 2c1kℓ
3 logpqtℓqRc2kℓ

2`c3tℓ,

where R “ rpF ; qq is the classical q-color Ramsey number of F .

Define the tower function tkpxq by t1pxq “ x and, for i ě 1, ti`1pxq “ 2tipxq. A seminal result of
Erdős and Rado [8] says that

rpK
pkq
t ; qq ď tkpctq,

where c depends only on k and q. This yields the following immediate corollary of Theorem 1.

Corollary 1. For any natural numbers k ě 3 and q ě 2, there exists a constant c such that if F

is a k-uniform hypergraph with t vertices, then

rindpF ; qq ď tkpctq.

A result of Erdős and Hajnal (see, for example, Chapter 4.7 in [11]) says that

rpK
pkq
t ; 4q ě tkpc1tq,

where c1 depends only on k. Therefore, the Erdős–Rado bound is sharp up to the constant c for

q ě 4. By taking F “ K
pkq
t , this also implies that Corollary 1 is tight up to the constant c for

q ě 4. Whether it is also sharp for q “ 2 and 3 depends on whether rpK
pkq
t q ě tkpc1tq, though

determining if this is the case is a famous, and seemingly difficult, open problem.
The proof of Theorem 1 relies on an application of the hypergraph containers method of Saxton

and Thomason [19] and Balogh, Morris, and Samotij [2]. In Ramsey theory, the use of this method
was pioneered by Nenadov and Steger [13] and developed further by Rödl, Ruciński, and Schacht [18]
in order to give an exponential-type upper bound for Folkman numbers. Our modest results are
simply another manifestation of the power of this beautiful method.

2. Proof of Theorem 1

In order to state the result we first need some definitions. Recall that the degree dpσq of a set of
vertices σ in a hypergraph H is the number of edges of H containing σ, while the average degree
is the average of dpvq :“ dptvuq over all vertices v.

Definition 2. Let H be an ℓ-uniform hypergraph of order N with average degree d. Let τ ą 0.
Given v P V pHq and 2 ď j ď ℓ, let

dpjqpvq “ max
 
dpσq : v P σ Ă V pHq, |σ| “ j

(
. (1)

If d ą 0, define δj by the equation

δjτ
j´1Nd “

ÿ

v

dpjqpvq. (2)

The codegree function δpH, τq is then defined by

δpH, τq “ 2pℓ
2
q´1

ℓÿ

j“2

2´pj´1

2
qδj . (3)

If d “ 0, define δpH, τq “ 0.

The precise lemma we will need is a slight variant of Corollary 3.6 from Saxton and Thomason’s
paper [19]. A similar version was already used in the work of Rödl, Ruciński, and Schacht [18] and
we refer the interested reader to that paper for a thorough discussion.
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Lemma 3. Let H be an ℓ-uniform hypergraph on N vertices with average degree d. Let 0 ă ε ă 1{2.
Suppose that τ satisfies δpH, τq ď ε{12ℓ! and τ ď 1{144ℓ!2ℓ. Then there exists a collection C of

subsets of V pHq such that

(1) for every set I Ă V pHq such that epHrIsq ď ετ ℓepHq, there is C P C with I Ă C,

(2) epHrCsq ď εepHq for all C P C,

(3) log |C| ď 1000ℓ!3ℓ logp1{εqNτ logp1{τq.

Before we give the proof of Theorem 1, we first describe the ℓ-uniform hypergraph H to which
we will apply Lemma 3.

Construction 4. Given a k-uniform hypergraph F with ℓ edges, we construct an auxiliary hyper-
graph H by taking

‚ V pHq “

ˆ
rns

k

˙

‚ EpHq “

"
E P

ˆ
V pHq

ℓ

˙
: E – F

*

In other words, the vertices of H are the k-tuples of rns and the edges of H are copies of F in
`rns

k

˘
.

Proof of Theorem 1. Recall that R “ rpF ; qq, the q-color Ramsey number of F and suppose that
F has t vertices and ℓ edges. Let us fix the following numbers:

τ “ n´ 1

2ℓ , p “ 1000Rkqα, α “ n
´ 1

2ℓ
` 1

4ℓpℓ`1q

ε “ 1{p2qRtq, n “ ℓ40ℓ
2pℓ`1qp1000qq8ℓpℓ`1qR4kℓpℓ`1q`4tℓ

ˆ
t

k

˙4ℓ

.
(4)

Remark 5. Note that n is bounded above by an expression of the form

2c1kℓ
3 logpqtℓqRc2kℓ

2`c3tℓ,

as required. Obviously, R ě t and one can check that p and n satisfy the following conditions,
which we will make use of during the course of the proof:

p ď 1 (5)

n ě p24 ¨ 2pℓ
2
qttqℓ!Rtq2 (6)

n ą p144ℓ!2ℓq2ℓ (7)

n ą ℓ40ℓ
2pℓ`1q (8)

n ą p1000qq8ℓpℓ`1qR4kℓpℓ`1q`4tℓ

ˆ
t

k

˙4ℓ

(9)

We will show that, with positive probability, a random hypergraph G P G
pkqpn, pq has the

property that every q-coloring of its edges contains an induced monochromatic copy of F . The
proof proceeds in two stages. First, we use Lemma 3 to show that, with probability 1 ´ op1q, G
has the property that any q-coloring of its edges yields many monochromatic copies of F . Then we
show that some of these monochromatic copies must be induced.

More formally, let X be the event that there is a q-coloring of the edges of G which contains at
most

M :“ ετ ℓpnqt{AutpF q

monochromatic copies of F in each color, and let Y be the event that G contains at least M

noninduced copies of F . Note that if X X Y happens, then, in any q-coloring, there are more
monochromatic copies of F in one of the q colors than there are noninduced copies of F in G.
Hence, that color class must contain an induced copy of F .
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We now proceed to show that the probability PpXq tends to zero as n tends to infinity. In order
to apply Lemma 3, we need to check that τ and ε satisfy the requisite assumptions with respect to
the ℓ-uniform hypergraph H defined in Construction 4. Let σ Ă V pHq be arbitrary and define

Vσ “
ď

vPσ

v Ă rns.

For a set W Ă rnszVσ with |W | “ t ´ |Vσ|, let EmbF pσq denote the set of all copies rF of F with

V p rF q “ W Y Vσ and σ Ă Ep rF q. Since there are clearly
`
n´|Vσ|
t´|Vσ |

˘
choices for the set W , we arrive at

the following claim.

Claim 1. For any σ Ă V pHq,

dpσq “

ˆ
n ´ |Vσ|

t ´ |Vσ|

˙
|EmbF pσq|. �

Let us denote by tj the minimum number of vertices of F which span j edges. From Claim 1, it
follows that for any σ Ă V pHq with |σ| “ j, we have

dpσq “

ˆ
n ´ |Vσ|

t ´ |Vσ|

˙
|EmbF pσq| ď

ˆ
n ´ tj

t ´ tj

˙
|EmbF pσq|.

On the other hand, for a singleton σ1 Ă V pHq, we have |Vσ1
| “ k and therefore d “ dpσ1q is such

that

dpσq

d
ď

`
n´tj
t´tj

˘
`
n´k
t´k

˘ |EmbF pσq|

|EmbF pσ1q|
ď

`
n´tj
t´tj

˘
`
n´k
t´k

˘ ă
´n
t

¯k´tj
.

It then follows from Definition 2 and (4) that

δj ă
pn{tqk´tj

τ j´1
ă ttnk´tj`pj´1q{p2ℓq. (10)

Since tj is increasing with respect to j, t2 ě k ` 1, and j ď ℓ, it follows that k ´ tj ` j´1
2ℓ

ď ´1{2.
Thus, in view of (10), we have

δj ă ttnk´tj`pj´1q{p2ℓq ď ttn´1{2 (11)

for all 2 ď j ď ℓ.
Using Definition 2 and inequality (11), we can now bound the codegree function δpH, τq by

δpH, τq “ 2pℓ
2
q´1

ℓÿ

j“2

2´pj´1

2
qδj ď 2pℓ

2
q´1ttn´1{2

ℓÿ

j“2

2´pj´1

2
q ď 2pℓ

2
qttn´1{2. (12)

Since n satisfies (6), inequality (12) implies that

δpH, τq ď 2pℓ
2
qttn´1{2 ď

ε

12ℓ!
.

That is, δpH, τq satisfies the condition in Lemma 3.
Finally, (7) implies that τ satisfies the condition

τ “ n´1{p2ℓq ă
1

144ℓ!2ℓ
.

Therefore, the assumptions of Lemma 3 are met and we can let C be the collection of subsets from
V pHq obtained from applying Lemma 3. Denote the elements of C by C1, C2, . . . , C|C|.

For every choice of 1 ď a1, . . . , aq ď |C| (not necessarily distinct) let Ea1,...,aq be the event that
G Ď Ca1 Y ¨ ¨ ¨ Y Caq . Next we will show the following claim.
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Claim 2.

PpXq ď P

ˆ ł

a1,...,aq

Ea1,...,aq

˙
ď

ÿ

a1,...,aq

PpEa1,...,aqq. (13)

Proof. Suppose that G P X. By definition, there exists a q-coloring of the edges of G, say with
colors 1, 2, . . . , q, which contains at most M copies of F in each color. For any color class j, let Ij
denote the set of vertices of H which correspond to edges of color j in G. Since each edge in HrIjs
corresponds to a copy of F in color j, we have epHrIjsq ď M . Note that

M “ ετ ℓepHq,

which means that each Ij satisfies the condition (1) of Lemma 3. Therefore, for each color class j,
there must be a set Caj P C such that Caj Ą Ij. Since G “

Ť
j Ij, this implies that G P Ea1,...,aq .

Since G P X was arbitrary, the bound (13) follows and the claim is proved. �

Owing to Claim 2, we now bound PpEa1,...,aqq. Recalling the definition of the event Ea1,...,aq we
note that

PpEa1,...,aqq “ p1 ´ pq|V pHqzpCa1
Y¨¨¨YCaq q|. (14)

Hence, we shall estimate |V pHqzpCa1 Y ¨ ¨ ¨ Y Caqq| to derive a bound for PpXq by (13).

Claim 3. For all choices 1 ď a1, . . . , aq ď |C| we have

|V pHqzpCa1 Y ¨ ¨ ¨ Y Caqq| ě
1

2

´ n

R

¯k

.

Proof. Let a1, . . . , aq be fixed. Recall that R “ rpF ; qq and consider an R-element subset A Ă rns.
We denote by ϕpAq the set of copies of F in the complete k-uniform hypergraph with vertex set A
that are contained in one of the classes Ca1 , . . . , Caq , i.e.,

ϕpAq :“

ˆ`A
k

˘

ℓ

˙
X
`
EpHrCa1 sq Y ¨ ¨ ¨ Y EpHrCaq sq

˘
.

If
`
A
k

˘
Ă Ca1 Y ¨ ¨ ¨ YCaq , then, by the definition of R, there is a copy of F in Caj for some j. Given

the definition of H (see Construction 4), this means that ϕpAq ‰ H, i.e.,
ˆ
A

k

˙
Ă Ca1 Y ¨ ¨ ¨ Y Caq ùñ ϕpAq ‰ H. (15)

Next we show that for most sets A we have ϕpAq “ H and use this fact to bound |Ca1 Y ¨ ¨ ¨ YCaq |.

Suppose, for the sake of contradiction, that at least 1
2

`
n
R

˘
of the R-subsets A of rns are such

that ϕpAq ‰ H. Since every edge e P EpHq corresponds to a copy of F (which has t vertices), the

number of R-sets A for which e P
`pAkq

ℓ

˘
is at most

`
n´t
R´t

˘
. In particular, our assumption implies that

epHrCa1 sq ` ¨ ¨ ¨ ` epHrCaq sq ě |EpHrCa1 sq Y ¨ ¨ ¨ Y EpHrCaq sq|

ě
1

2

`
n
R

˘
`
n´t
R´t

˘ “
1

2

pnqt
pRqt

ą
pnqt
2Rt

ě qεepHq,

by the choice of ε. However, this contradicts condition (2) of Lemma 3.
Consequently, at least 1

2

`
n
R

˘
of the R-subsets A of rns are such that ϕpAq “ H. It follows

from (15) that
`
A
k

˘
Ć Ca1 Y ¨ ¨ ¨ Y Caq . Hence, V pHqzpCa1 Y ¨ ¨ ¨ Y Caqq intersects

`
A
k

˘
. Since an

element of V pHq can appear in at most
`
n´k
R´k

˘
sets A, it follows that there are at least

1

2

ˆ
n

R

˙Nˆ
n ´ k

R ´ k

˙
ě

1

2

´ n

R

¯k

elements in V pHqzpCa1 Y ¨ ¨ ¨ Y Caqq, as required. �
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In view of Claim 3, our choice of p “ 1000Rkqα, where α “ n´1{2ℓ`1{4ℓpℓ`1q, and (14), we have,
for any Ca1 , . . . , Caq P C,

PpEa1,...,aqq ď p1 ´ pqpn{Rqk{2

ď exp
`
´pnk{2Rk

˘
ď exp

`
´p1000Rkqαqnk{2Rk

˘

“ e´500qαnk

ď e´1000qαN ,

(16)

where, in the last step, we used N “
`
n
k

˘
ď nk

2
. Therefore, (13) and (16) together with the bound

on |C| given by Lemma 3-3 imply that

PpXq ď
ÿ

Ca1
,...,CaqPC

PpEa1,...,aqq ď |C|qe´1000qαN

ď exp
`
1000qℓ!3ℓ logp1{εqNτ logp1{τq ´ 1000qαN

˘

“ exp
`
1000qNτpℓ!3ℓ logp1{εq logp1{τq ´ α{τq

˘

ď exp
`
1000qNτpℓ!3 log2 n ´ n1{p4ℓpℓ`1qqq

˘
ď 1{4,

where we used that n satisfies (8).
Now, by Markov’s inequality, with probability at most 1{2, the number of noninduced copies

of F in G will be at most twice the expected number of copies, which is fewer than

2pℓ`1 pnqt
AutF

ˆ
t

k

˙
“ 2p1000qqℓ`1Rkpℓ`1qn´1{2´1{p4ℓq pnqt

AutF

ˆ
t

k

˙

ă
1

2qRt
pn´1{p2ℓqqℓ

pnqt
AutF

“ ετ ℓ
pnqt
AutF

“ M,

where the inequality above follows from (9). In other words, PpY q ě 1{2 and, therefore, PpXXY q ě
1{4, so there exists a graph G such that X X Y holds. By our earlier observations, this completes
the proof.

3. Concluding remarks

Beginning with Fox and Sudakov [9], much of the recent work on induced Ramsey numbers for
graphs has used pseudorandom rather than random graphs for the target graph G. The results of
this paper rely very firmly on using random hypergraphs. It would be interesting to know whether
comparable bounds could be proved using pseudorandom hypergraphs.

It would also be interesting to prove comparable bounds for the following variant of the induced
Ramsey theorem, first proved by Nešetřil and Rödl [14]: for every graph F , there exists a graph G

such that every q-coloring of the triangles of G contains an induced copy of F all of whose triangles
receive the same color. By taking F “ Kt and q “ 4, we see that |G| may need to be double
exponential in |F |. We believe that a matching double-exponential upper bound should also hold.
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[15] J. Nešetřil and V. Rödl, Partitions of finite relational and set systems, J. Combin. Theory Ser. A 22 (1977),
289–312.

[16] F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. 30 (1930), 264–286.
[17] V. Rödl, The dimension of a graph and generalized Ramsey theorems, Master’s thesis, Charles University, 1973.
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