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Low-dimensional topology, low-dimensional field

theory and representation theory

Jürgen Fuchs and Christoph Schweigert ∗

Abstract. Structures in low-dimensional topology and low-dimensional geometry – often
combined with ideas from (quantum) field theory – can explain and inspire concepts in
algebra and in representation theory and their categorified versions. We present a per-
sonal view on some of these instances which have appeared within the Research Priority
Programme SPP 1388 “Representation theory”.
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1. Introduction

Structures and relations in algebra and representation theory are sometimes “ex-
plained” by geometric or topological facts, frequently by facts concerning a cate-
gory of low-dimensional geometric or topological objects.

As a first illustration, consider the following well-known example of an algebraic
relation. Let A be a set. A mapm : A×A→A is called associative if for any integer
n≥ 3 and any given n-tuple (a1, a2 . . . , an)∈An, every way of putting brackets in
the expression a1 a2 · · · an gives, upon applying m repeatedly according to the
chosen bracketing, one and the same element of A. This is not the typical the
textbook definition of associativity; the latter is rather based on the

Proposition 1.1. A map m : A×A→A is associative if and only if the equality

m(m(a1, a2), a3) = m(a1,m(a2, a3))

holds for all triples a1, a2, a3 ∈A.

It should be appreciated that this is really an assertion about binary trees with
a finite number of leaves. Indeed, any bracketing of n elements corresponds to a
binary tree with n leaves. The statement then follows from the observation that
any two binary trees can be transformed into each other by applying repeatedly
a move that amounts to the associativity relation. In this sense, a combinatorial
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property of the collection of all binary trees “explains” the textbook definition of
associativity.

To give an example of a structure “explained” or, rather, justified, by facts from
geometry and related to quantum field theory, consider the symmetric monoidal
category Cob(2, 1) of smooth oriented cobordisms. The objects of Cob(2, 1) are
finite disjoint unions of oriented circles S1, and its morphisms are diffeomorphism
classes of smooth oriented surfaces with boundary. One way to learn more about
the category Cob(2, 1) is to represent it on a symmetric monoidal category S, i.e.
to study symmetric monoidal functors tft : Cob(2, 1)→S. (An important example
is S =vect, the category of vector spaces over a field K.) Such a representation tft
of the category Cob(2, 1) is called a (2,1)-dimensional topological field theory.

For the rest of this section we restrict our attention to K-linear representations,
with K a field, i.e to the case of S =vect. Representations can be constructed using
generators and relations for the object to be represented. The category Cob(2, 1)
admits such a description in terms of generators and relations, given by the pair-
of-pants decomposition of Riemann surfaces with boundary. As a consequence, it
suffices to know the vector space

tft(S1) =: C (1)

associated to the circle together with the linear maps m : C ⊗C→C and ∆: C→
C ⊗C that are obtained from the three-punctured sphere regarded as a cobor-
dism S1 ⊔ S1 → S1 and as S1 → S1 ⊔ S1, respectively, as well as the maps η : K→C

and ε : C→K obtained from the disk, seen as a cobordism ∅→S1 and as S1 →∅,
respectively.

It is well known (see e.g. the textbook [20]) that the relations in the pair-of-
pants decompositions imply that (C,m,∆, η, ǫ) is a commutative Frobenius algebra
over K. In this sense, the structure of Cob(2, 1) together with the idea, inspired
from quantum field theory, to study representations of Cob(2, 1), enforce on us
the algebraic notion of a commutative Frobenius algebra (which was, of course,
a known structure long before the advent of topological field theory). The result
amounts to a classification of topological field theories, which are objects in the
functor category Fun⊗,sym(Cob(2, 1), vect):

Proposition 1.2. The evaluation on the circle provides an equivalence

Fun⊗,sym(Cob(2, 1), vect) ≃ Frob (2)

of categories, where Frob is the groupoid of commutative Frobenius algebras over

the field K.

Non-commutative Frobenius algebras and their representation categories can
be obtained in a similar spirit when one allows for a larger geometric category
Cob(2, 1)∂ that has as objects disjoint unions of circles as well as intervals. One
then obtains a so-called open/closed topological field theory. For details, we refer
to [21].

In the sequel we will present a small, and strongly biased by personal taste,
digest of instances in which the interplay of geometric and algebraic structures has
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lead to a mathematical insight. All those instances are, in some way, related to
the Priority Programme “Representation Theory”.

2. Radford’s S
4-theorem and the orthogonal group SO(3)

Next we present a more recent example for how topological field theory can “ex-
plain” a classical fact from algebra. The following statements about a finite-di-
mensional Hopf algebra H over a field K can be found in any textbook on Hopf
algebras. The Hopf algebra H has a one-dimensional subspace

Il := {t∈H |h · t= ε(h) t}

of left integrals, with ε : H→K the counit of H . By associativity, for t∈ Il and
any h∈H , the element t ·h∈H is again a left integral of H . Since the space of
integrals is one-dimensional, this in turn implies the existence of a linear form
α∈H∗ satisfying t ·h=α(h) t for any t∈ Il(H). This linear form is a morphism of
algebras and thus a group-like element of H∗. By applying the same reasoning to
the dual Hopf algebra H∗ one finds analogously a distinguished group-like element
a∈H . A classical result by Radford is

Theorem 2.1 (Radford [30]). Let H be a finite-dimensional Hopf algebra over a

field K, and let a∈H and α∈H∗ be the distinguished group-like elements. Then

the fourth power of the antipode S of H satisfies

S4(h) = a (α−1⇀h↼α) a−1 = α−1 ⇀ (aha−1)↼α

for all h∈H.

Here the symbol⇀ denotes the left action ofH∗ onH which, using the Sweedler no-
tation ∆(h)= h(1) ⊗h(2) for the coproduct of H , is given by α⇀h=h(1) 〈α, h(2)〉,
and analogously ↼ is the right H∗-action on H . There is a purely algebraic proof
for the purely algebraic statement in Theorem 2.1.

The statement admits a categorical reformulation. Consider a finite tensor
category C, i.e. an abelian rigid tensor category over a field K in which the monoidal
unit is simple and which obeys several finiteness conditions (finite-dimensional
morphism spaces, finite Jordan-Hölder length for any object, and finitely many
isomorphism classes of simple objects each of which has a projective cover). As
an example, take the rigid monoidal category C=H-mod of finite-dimensional
modules over a finite-dimensional Hopf algebra H . The group-like element α∈H∗

is a morphism of algebras and thus defines an invertible object D in C=H-mod.
Such an invertible object can be introduced for any finite tensor category [12,
Lemma 2.9]. Taking into account that the left dual of a module M =(M,ρ)∈H-
mod is given by ∨M =(M∗, ρ ◦S−1) and the right dual of M by M∨=(M∗, ρ ◦S),
Radford’s theorem amounts to a relation between the double duals ∨∨M and M∨∨

in C=H-mod. Indeed, the assertion in Theorem 2.1 generalizes [9] to the following
purely categorical statement:
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Theorem 2.2. Let C be a finite tensor category. Then there is a natural isomor-

phism
∨∨? −→ D−1 ⊗ ?∨∨⊗D

of monoidal functors.

A proof of this statement can be given entirely in a category theoretic setting,
see [9] and [32, Sect. 5.2].

We now outline how the theorem can be “understood” in the framework of
topological field theories. The definition of a topological field theory as a symmetric
monoidal functor can be extended to other cobordism categories, and to higher-
categorical versions of cobordism categories. In a rather general framework one
can consider an (∞, n)-category Cobfr∞,n of n-dimensional framed cobordisms, with
objects being n-framed points, 1-morphisms n-framed 1-manifolds with boundary,
2-morphisms n-framed 2-manifolds with corners, etc. For k >n, all k-morphisms
are invertible.

A topological field theory with values in S is then a symmetric monoidal functor
tft : Cobfr∞,n →S, with S a symmetric monoidal (∞, n)-category. The same reason-
ing that shows that the vector space (1) carries additional structure can be used to
see that tft(∗), the object assigned to a point, has special properties. The cobor-
dism theorem [23] states that tft(∗) is a fully dualizable object in S and that any
such object determines a framed topological field theory. There is an equivalence

Fun(Cobfr∞,n,S) ≃ k[Sf.d.] (3)

of ∞-groupoids generalizing (2), where on the right hand side the symbol k in-
dicates that one discards all non-invertible morphisms in the full subcategory of
fully dualizable objects of S.

We now focus on three-dimensional topological field theories. An important
target S is then the symmetric monoidal 3-category Bimod which has finite ten-
sor categories as objects, bimodule categories over finite tensor categories as 1-
morphisms, and bimodule functors and bimodule natural transformations as 2- and
3-morphisms, respectively. A fusion category, i.e. a semisimple finite tensor cate-
gory, is a fully dualizable object in Bimod and thus determines a framed three-di-
mensional topological field theory. Now by change of framing, the orthogonal group
O(3) acts on Cobfr∞,3 and thus on the functor category Fun(Cobfr∞,3,Bimod). This
translates into a homotopy action of O(3) on the fully dualizable objects, i.e. on
fusion categories: points in O(3) give self-equivalences k[Bimodf.d.]→ k[Bimodf.d.],
paths in O(3) give natural transformations between self-equivalences, etc. The ho-
motopy groups of the Lie group O(3) are well-known: The group of connected
components is π0(O(3))=Z2; the non-trivial component acts on monoidal cate-
gories as (C,⊗) 7→ (C,⊗opp). The fundamental group is π1(O(3))=Z2; its non-tri-
vial element acts on fusion categories as an autoequivalence, which turns out [8]
to be given by the bidual ?∨∨. Thus from the group-theoretical fact that the non-
trivial element of π1(O(3))=Z2 has order 2 one concludes that the quadruple dual
?∨∨∨∨ is trivial, which in turn can be seen to imply Radford’s theorem for fusion
categories. (Further, there are weakenings on the side of topological field theories
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which allow one to make statements about the quadruple dual of finite tensor cat-
egories, see [8].) In this way, topological field theory provides a highly surprising
connection between homotopy groups of Lie groups and Radford’s S4-theorem for
finite-dimensional Hopf algebras.

3. Modularization via equivariant Dijkgraaf-Witten theories

In the previous section we used topological field theories in three dimensions that
are fully extended, i.e. down to the point. In the sequel we study a different variant
of three-dimensional topological field theories, which is only extended down to one-
dimensional manifolds. It is of independent interest for representation theory.

Consider the symmetric monoidal bicategory Cob(3, 2, 1) whose objects are closed
oriented smooth one-dimensional manifolds, 1-morphisms are oriented surfaces
with boundary and 2-morphisms are oriented three-manifolds with corners. To
represent this bicategory, consider a symmetric monoidal 2-functor tft : Cob(3, 2, 1)
→S with values in a symmetric monoidal bicategory S: this is a called a 3-2-1-ex-
tended topological field theory. One possible, and particularly important, choice
for S is the symmetric monoidal bicategory 2-vect of so-called 2-vector spaces,
which has finite semisimple K-linear abelian categories as objects, K-linear func-
tors as 1-morphisms and natural transformations as 2-morphisms.

In analogy to the situation with Cob(2, 1), the category tft(S1) is endowed with
additional algebraic structure, and that structure should determine the three-di-
mensional topological field theory. Analyzing this structure on tft(S1) with the help
of a presentation of Cob(3, 2, 1) in terms of generators and relations [3], the category
tft(S1) turns out to be a modular tensor category, i.e. a braided monoidal semisim-
ple category, together with dualities and a ribbon twist, with non-degenerate braid-
ing. The non-degeneracy condition on the braiding can be formulated in several
equivalent ways. A converse statement, that a modular tensor category deter-
mines a 3-2-1-extended topological field theory, has already been established long
ago [31].

Topological field theory thus suggests to regard modular tensor categories as a
categorified notion of (semisimple) commutative Frobenius algebras. This is indeed
a fruitful point of view.

There are several representation-theoretic sources of modular tensor categories:

• Left modules over a connected factorizable ribbon weak Hopf algebra with
Haar integral over an algebraically closed field [27].

• Local sectors of a net of von Neumann algebras on R that has finite µ-index
and is strongly additive and split [19].

• Representations of a selfdual C2-cofinite vertex algebra with an additional
finiteness condition on the homogeneous components and with semisimple
representation category [18].

(The last two items constitute different mathematical formalizations of chiral con-
formal field theories.) Despite these many sources, modular tensor categories are
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“rare” objects.1 As a potential further source of modular tensor categories, crossed
modules of finite groups have been proposed [2] some time ago. A crossed mod-
ule consists of two finite groups G1 and G2, an action of G2 on G1 by group
automorphisms, and a group homomorphism ∂ : G1 →G2 such that

∂(g.m) = g · ∂(m) · g−1 and (∂n).m = n−1 ·m · n

for all g∈G2 and m,n∈G1. These data determine a braided monoidal category
C(G1, G2, ∂) whose objects are G1-graded finite-dimensional vector spaces carrying
an action of G2 such that g(Vm)⊆Vg.m, with the braiding given by

vm ⊗ vn 7−→ ∂(m).vn ⊗ vm

for vn and vm homogeneous elements of degree n,m∈G1, respectively. The cate-
gory C(G1, G2, ∂) is a premodular tensor category, i.e. has all the properties of a
modular tensor category except that the braiding may be degenerate. It is modu-
lar if and only if ∂ is an isomorphism, in which case one obtains the representation
category of the double of a finite group, i.e. an already known type of modular
tensor category. In the general case the category can be modularized according to
a standard procedure [5, 25]. Somewhat disappointingly, also this modularization
turns out to be braided equivalent to the representation category of the Drinfeld
double of a finite group.

The modularization leads to a category with a certain weak group action, sug-
gesting that it is actually the neutral part of an equivariant modular category [33].
To find equivariant extensions of a given modular tensor category C is an interest-
ing algebraic problem with deep links to the Brauer-Picard group [11] of C. Again
topological field theory, in this case a twisted version of Dijkgraaf-Witten theories,
provides one solution to this algebraic problem.

As a simplifying assumption, let us suppose that the group homomorphism
∂ : G1 →G2 appearing in the crossed module of finite groups is an injective group
homomorphism, so that the group G1 is a normal subgroup of G2. The correspond-
ing sequence 1→G1 →G2

π
→ J → 1 of groups is not necessarily split. But still the

group J acts weakly onG1, which can be seen as follows. Choose a set-theoretic sec-
tion s : J →G2 of π. Then for any j ∈J the automorphism ρj(g1) := s(j) g1 s(j)

−1

of G1 obeys ρj1◦ ρj2 =Adcj1,j2
◦ ρj1·j2 with cij := s(i) · s(j) · s(i·j)−1∈G1. (We re-

frain from exhibiting the coherence relations satisfied by these group elements cij .)
This weak action induces a (weak) J-action on the modularization of the category
C(G1, G2, ∂) which in the case at hand is the category D(G1)-mod of modules over
the double of G1.

For any finite group G, the Dijkgraaf-Witten theory provides a 3-2-1-extended
topological field theory. The construction is based on the following facts (for a

1 This statement should not be interpreted in the sense that modular tensor categories can be
classified in a naive way. Indeed, the class of such categories contains the representation categories
of all doubles of finite groups, so that a naive classification is impossible. Still, imposing a natural
equivalence relation, which amounts to dividing out Drinfeld doubles, one arrives at a Witt group
of modular tensor categories [7] which has a strong arithmetic flavor. In applications, this Witt
group is a useful recipient of obstructions, see [14].
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recent presentation, see [24] and references therein). To any manifold X there is
associated the groupoidAG(X) of G-principal bundles. This groupoid is essentially
finite ifX is compact. (Extended) cobordisms are spans of manifolds, possibly with
corners; pull back of bundles yields spans of groupoids. Taking functor categories
into the symmetric monoidal category vect amounts to a linearization and results
in a 3-2-1-extended topological field theory. In particular one obtains

tft(S1) = Fun(AG(S
1), vect) ≃ D(G)-mod .

The main idea of the construction of a J-equivariant modular category whose
neutral component is the modularization of C(G1, G2, ∂) is geometric [28]: replace
the categories AG(X) by categories of twisted bundles.

Definition 3.1. Let J act weakly on G1, such that there is an exact sequence

1→G1 →G2
π
→ J → 1 of finite groups, and let P

J
→M be a J-cover over a smooth

manifold M .

(i) A P -twisted G1-bundle over M is a pair (Q,ϕ) consisting of a G2-bundle Q

over M and a smooth map ϕ : Q→P over M that obeys

ϕ(q ·h) = ϕ(q) · π(h)

for all q ∈Q and all h∈G2.

(ii) A morphism (Q,ϕ)→ (Q′, ϕ′) of P -twisted bundles is a morphism f : Q→Q′

of G2-bundles such that ϕ′ ◦ f =ϕ.

(iii) The category of P -twisted G1-bundles is denoted by AG1

(

P→M
)

.

A J-equivariant topological field theory can now be obtained explicitly by a
direct generalization of the construction of ordinary Dijkgraaf-Witten theories. In
particular, for any group element j ∈J there is a J-cover Pj of S

1 with monodromy
j and thus a category Cj = [AG

(

Pj→S1
)

, vect]. Then the category C :=
⊕

j∈J Cj
can be shown [28] to be a J-equivariant modular category. Its orbifold category is
the category of modules over the Drinfeld double of the group G2.

The idea to extend the Dijkgraaf-Witten construction to categories of gener-
alizations of bundles turns out to be quite fruitful. As an illustration consider
topological field theories with defects. Such theories are defined on cobordism
categories consisting of manifolds with singularities, see e.g. [23, Sect. 4.3]. They
turn out to be most intimately linked to the theory of module categories over fu-
sion categories [14]. Dijkgraaf-Witten theories with defects can be realized using a
generalization of relative bundles [15]. In this way a combination of field-theoretic
and geometric arguments allows one to recover pure algebraic results [29] on mod-
ule categories over the fusion category of finite-dimensional vector spaces that are
graded by a finite group.

4. Partial dualizations in the theory of Hopf algebras

The program, initiated by Andruskiewitsch and Schneider, of classifying finite-
dimensional pointed Hopf algebras over a field has grown into one of the more
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remarkable recent developments in algebra; see [1] for a review. One of the surprises
that were encountered in the realization of this program is a close connection
between pointed Hopf algebras and Lie theory. The crucial ingredient of this
connection is the theory of Weyl groupoids (see [16], as well as [6]).

In this groupoid a construction is central that, while being purely algebraic,
turns out to have important ramifications in topological field theory. In the form
introduced originally [17], this construction makes extensive use of smash products;
a convenient formulation in the framework of braided monoidal categories proceeds
as follows.

We first summarize a few facts that are needed in the construction [4]:

• The notions of a Hopf algebra A, of a Hopf pairing ω : A⊗B→1C , and of
the category A

AYD(C) of Yetter-Drinfeld modules over A make sense in any
braided category C. (Recall that a Yetter-Drinfeld module has the struc-
ture of both a module and of a comodule, subject to a certain consistency
condition. Yetter-Drinfeld modules form a braided monoidal category.)

• Suppose that we are given two Hopf algebras A and B in C together with
a non-degenerate Hopf pairing ω : A⊗B→1C . Using ω and its inverse, we
can turn a left A-action into a left B-coaction and a left A-coaction into a
left B-action. Hereby we obtain an isomorphism

Ωω : A
AYD(C)

∼=
−→ B

BYD(C)

of braided categories.

The input of the construction performed in [4] is a partial dualization datum A
for a Hopf algebraH in a braided category C; this consists of a projection π : H →A

to a Hopf subalgebra, and a Hopf algebra B together with a non-degenerate Hopf
pairing ω : A⊗B→1C . A partial dualization datum A gives rise to a new Hopf
algebra rA(H) in C as follows.

(1) The Radford projection theorem, applied to the projection π : H→A, allows
us to write the Hopf algebra H as a Radford biproduct H ∼=K⋊A, with K

the Hopf algebra in the braided category A
AYD(C) given by the coinvariants

of H with respect to the projection π.

(2) The image L :=Ωω(K) of the Hopf algebraK in the braided category A
AYD(C)

under the braided monoidal equivalence Ωω is a Hopf algebra in the braided
category B

BYD(C).

(3) The partially dualized Hopf algebra rA(H) is defined as the Radford biprod-
uct

rA(H) := L⋊B

of L. This is a Hopf algebra in the braided category C.

In short, we simultaneously dualize a Hopf subalgebra A of H and transport the
coinvariants K ⊆H covariantly to L⊆ rA(H). Note that this combines a contra-
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and a covariant operation; thus partial dualization is not functorial in the Hopf
algebra H .

From the partial dualization datumA forH one can obtain a partial dualization
datum A− of the Hopf algebra rA(H). There is then a canonical isomorphism

r
A

−

(

rA(H)
)

∼= H

of Hopf algebras in C, showing that partial dualization is essentially involutive.
The partially dualized Hopf algebra rA(H) is rather different from H , in gen-

eral. As an illustration consider the Taft algebra Tζ for some primitive d th root
of unity ζ. Tζ is a Hopf algebra over the complex numbers that is generated by a
group-like element g of order d and a skew-primitive element x having coproduct
∆(x)= g⊗x+ x⊗ 1. There is a projection π from the Taft algebra Tζ to the Hopf
subalgebra A∼=C[Zd] generated by g. When taking this projection to obtain a par-
tial dualization datum, the resulting partial dualization rA(H) is in fact isomorphic
to the Taft algebra itself, with the isomorphism depending on a choice of a Hopf
pairing ω : A⊗A→C, and thereby on a choice of a primitive d th root of unity.
By considering central extensions T̂ζ,q of Tζ by group-like elements one can get

Hopf algebras with non-trivial partial dualization: the partial dualization rA(T̂ζ,q)
no longer contains any central group-like elements. Rather, the coproduct of the
skew-primitive element of Ťζ,q gets modified, in such a way its partial dualization
has additional central characters.

A priori the categories of left modules in C over the Hopf algebra H and over
its partial dualization rA(H) are thus rather different. However, there does exist a
representation-theoretic relation between them [4]: The categories of Yetter-Drin-
feld modules over a Hopf algebra H in C and of those over rA(H) are braided
equivalent: we have

H
HYD(C) ∼= K

KYD
(

A
AYD(C)

) Ωω

−→ L
LYD

(

B
BYD(C)

)

∼=
rA(H)
rA(H)YD(C) .

Here the first and third isomorphisms come from the isomorphism

K⋊A
K⋊AYD(C) ∼= K

KYD
(

A
AYD(C)

)

of braided categories for a biproduct.
The equivalence of categories of Yetter-Drinfeld modules implies a relation be-

tween the Hopf algebra H and and its partial dualization rA(H). Let us discuss
this for the case of a finite-dimensional Hopf algebra over a field. The category
of Yetter-Drinfeld modules over H is then the Drinfeld center of the category of
H-modules. Now semisimple algebras having isomorphic centers are Morita equiv-
alent. This statement allows for a categorification: the notion of an algebra is
substituted with the one of a monoidal category, while the one of a module over an
algebra gets replaced by the one of a module category. This way one arrives [10,
Thm3.1] at the statement that semisimple tensor categories with braided-equiva-
lent Drinfeld centers have equivalent bicategories of module categories, i.e. they
are related by what is called [26] a weak monoidal Morita equivalence. It is natural



10 J. Fuchs and C. Schweigert

to ask whether the bicategories of module categories over H-mod and over rA(H)-
mod are closely related, possibly even equivalent. This in turn suggests that the
categorified representation theory of a Hopf algebra H , i.e. the theory of module
and bimodule categories over the monoidal category H-mod, should be regarded
as an important aspect of the theory of Hopf algebras.

Since the Brauer-Picard group of the monoidal category H-mod is isomorphic
to the group of braided equivalences of the Drinfeld center Z(H-mod) [11], it
is invariant under partial dualization. On the other hand it is not hard to give

conditions [22] that ensure the existence of a Hopf isomorphism f : rA(H)
∼=
→H .

(There is also a generalization involving a modified partial dualization ofH .) Every
pair (rA, f) then induces an equivalence

Z(H-mod) ≃ Z(rA(H)-mod) ≃f Z(H-mod)

and thus provides an element in the group of braided autoequivalences of the
Drinfeld center Z(H-mod), and thereby an element of the Brauer-Picard group.

This result has an interesting application in three-dimensional topological field
theories of Turaev-Viro type. A Turaev-Viro theory is a fully extended oriented
three-dimensional topological field theory, which assigns a spherical fusion category
A to the point. Types of topological surface defects in this theory are given by
A-bimodule categories. Now it is a general field-theoretic pattern that topological
invertible codimension-one defects are related to symmetries. As a consequence,
the Brauer-Picard groups of the fusion categories in question can be identified [13]
as symmetry groups of three-dimensional topological field theories of Turaev-Viro
type. In the special case that the fusion category is the category of modules over
the group algebra H =C[G] of an abelian group G, the reflections just discussed
amount to what in the physics literature are known as electric-magnetic dualities.
This constitutes yet another instance of an enlightening relation between algebraic
notions and notions from field theory.
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