HAMBURGER BEITRÄGE ZUR MATHEMATIK

Heft 564

On the structure of dense graphs with fixed clique number

Heiner Oberkampf, Augsburg Mathias Schacht, Hamburg

Version September 2015

ON THE STRUCTURE OF DENSE GRAPHS WITH FIXED CLIQUE NUMBER

HEINER OBERKAMPF AND MATHIAS SCHACHT

ABSTRACT. We study structural properties of graphs with fixed clique number and high minimum degree. In particular, we show that there exists a function $L = L(r, \varepsilon)$, such that every K_r -free graph G on n vertices with minimum degree at least $(\frac{2r-5}{2r-3}+\varepsilon)n$ is homomorphic to a K_r -free graph on at most L vertices. It is known that the required minimum degree condition is approximately best possible for this result.

For r = 3 this result was obtained by Luczak [On the structure of triangle-free graphs of large minimum degree, Combinatorica **26** (2006), no. 4, 489–493] and, more recently, Goddard and Lyle [Dense graphs with small clique number, J. Graph Theory **66** (2011), no. 4, 319-331] deduced the general case from Luczak's result. Luczak's proof was based on an application of Szemerédi's regularity lemma and, as a consequence, it only gave rise to a tower-type bound on $L(3, \varepsilon)$. The proof presented here replaces the application of the regularity lemma by a probabilistic argument, which yields a bound for $L(r, \varepsilon)$ that is doubly exponential in poly(ε).

§1. INTRODUCTION

1.1. Notation. We follow the notation from [4] and briefly review some of it below. The graphs we consider here are undirected, simple, and have no loops and for a graph G = (V, E) we denote by V = V(G) its vertex set and by $E = E(G) \subseteq \binom{V}{2}$ its edge set. The number of vertices is finite and often denoted by n = |V|. By C_r and K_r we denote the cycle and the complete graph/clique on ℓ vertices. For two adjacent vertices x, y we simply denote its edge by xy. If $x \in X \subseteq V(G)$ and $y \in Y \subseteq V(G)$ then xy is an X - Y-edge. For disjoint sets X and Y the set of all X - Y-edges is a subset of E and is denoted by $E_G(X, Y)$. Moreover, the number of X - Y edges in G is denoted by $e_G(X, Y) = |E_G(X, Y)|$. and for nonempty X and Y the density is defined by $d_G(X, Y) = \frac{e_G(X,Y)}{|X||Y|}$. The set of neighbours of a vertex v is denoted by $N_G(v)$ and its size $d_G(v) = |N_G(v)|$ is the degree of a vertex v, where we sometimes

²⁰¹⁰ Mathematics Subject Classification. 05C35 (primary), 005C75 (secondary).

Key words and phrases. extremal graph theory, chromatic thresholds.

The second author was supported through the Heisenberg-Programme of the DFG.

suppress the subscript G if there is no danger of confusion. We denote the minimum degree of G by $\delta(G)$. For a subset $U \subseteq V$ we define the common (or joint) neighbourhood of U as

$$N(U) = \bigcap_{u \in U} N(u)$$

and we emphasise that this differs from the notation in [4]. For later reference we note that the size of N(U) can be easily bounded from below in terms of the minimum degree of G = (V, E) by

$$|N(U)| \ge |U| \cdot \delta(G) - (|U| - 1) \cdot |V|.$$

$$\tag{1}$$

Moreover, for a subset $U \subseteq V$ we denote by G[U] the *induced subgraph on* U and we write G - U for $G[V \setminus U]$.

A (vertex) colouring of a graph G = (V, E) is a map $c: V \to C$ such that $c(v) \neq c(w)$, whenever v and w are adjacent. The elements of the set C are called the available colours. A graph G = (V, E) is k-colourable if there exists colouring $c: V \to [k] = \{1, \ldots, k\}$. The chromatic number $\chi(G)$ is the smallest integer k such that G has is k-colourable.

A homomorphism from a graph G into a graph H is a mapping $\varphi \colon V(G) \to V(H)$ which preserves adjacencies, i.e. for all pairs $uv \in E(G)$ we have $\varphi(u)\varphi(v) \in E(H)$. We write $G \xrightarrow{\text{hom}} H$ to indicate that some homomorphism φ exists. We say G is a blow-up of H, if Gis obtained from H by replacing every vertex x of H by an independent sets I_x and edges of H correspond to complete bipartite graphs, i.e., I_x , I_y spans a complete bipartite graph in Gif $xy \in E(H)$ and otherwise $e_G(I_x, I_y) = 0$. Clearly, if G is a blow-up of H then $G \xrightarrow{\text{hom}} H$ and $K_r \subseteq G$ if and only if $K_r \subseteq H$.

By $F \subseteq G$ we mean that G contains a copy of F, that is there exists an injective homomorphism from F into G. If G contains no such copy of F (i.e., $F \nsubseteq G$), then we say G is F-free. For a graph F

$$Forb(F) = \{G \colon F \nsubseteq G\}$$

denotes the class of F-free graphs, i.e. the collection of those graphs G which do not contain a copy of F. Moreover, we set

$$\operatorname{Forb}_n(F) = \{G \colon F \nsubseteq G \text{ and } |V(G)| = n\}.$$

An *F*-free graph G = (V, E) is maximal *F*-free if the addition of any edge to *G* leads to a copy of *F* in *G*, i.e., for every $xy \in \binom{V}{2} \setminus E$ we have $F \subseteq (V, E \cup \{xy\})$. Finally, we define the join $G \lor H$ of two graphs *G* and *H* as the graph with vertex set $V(G \lor H) = V(G) \cup V(H)$

and edge set

$$E(G \lor F) = E(G) \cup E(F) \cup \{vw \colon v \in V(G) \text{ and } w \in V(F)\}.$$

1.2. Chromatic thresholds of graphs. We are interested in structural properties of graphs $G \in \operatorname{Forb}(F)$, which are forced by an additional minimum degree assumption on G. For example, if F is a clique and $\delta(G)$ is sufficiently high, then Turán's theorem [16] assert that G is (r-1)-partite and, in particular, the chromatic number of G is bounded by a constant independent of |V(G)|. More generally, Andrásfai [2] raised the following question: For a given graph F and an integer k, what is smallest condition imposed on the minimum degree $\delta(G)$ such any graph $G \in \operatorname{Forb}(F)$ satisfying this minimum degree condition has chromatic number at most k? Here we are interested in the case when the minimum degree condition yields an upper bound on $\chi(G)$ independent from the graph G itself. This leads to the so called chromatic threshold for a given graph F

$$\delta_{\chi}(F) = \inf \left\{ \alpha \in [0,1] \colon \exists k \in \mathbb{N} \text{ s.t. } \chi(G) \leqslant k \quad \forall G \in \operatorname{Forb}(F) \text{ with } \delta(G) \ge \alpha |V(G)| \right\}.$$

If $F' \subseteq F$, then $\operatorname{Forb}(F') \subseteq \operatorname{Forb}(F)$, so obviously $\delta_{\chi}(F') \leq \delta_{\chi}(F)$. Moreover, it follows from the Erdős–Stone theorem [6] that $\delta_{\chi}(F) \leq \frac{\chi(F)-2}{\chi(F)-1}$ for every graph F with at least one edge.

For $F = K_3$ it was shown in [5] that $\delta_{\chi}(K_3) \ge 1/3$. In the other direction, Thomassen [14] obtained a matching upper bound and, therefore, $\delta_{\chi}(K_3) = 1/3$. In fact, Erdős and Simonovits [5] asked whether all triangle-free graphs G with $\delta(G) \ge (1/3 + o(1))|V(G)|$ are 3-colorable. This was answered negatively by Häggkvist [8], but recently Brandt and Thomassé [3] showed that the chromatic number of such graphs is bounded by 4.

Nikiforov [12] and Goddard and Lyle [7] extended those results from triangles to r-cliques and showed for every $r \ge 3$ that

$$\delta_{\chi}(K_r) = \frac{2r-5}{2r-3} \tag{2}$$

and, in fact, $\chi(G) \leq r+1$ for every K_r -free graph G with $\delta(G) > \frac{2r-5}{2r-3}|V(G)|$.

In the case when F is an odd cycle of length at least five it was shown by Thomassen [15] that the chromatic threshold is zero and Luczak and Thomassé [11] proved that $\delta_{\chi}(F) \notin (0, 1/3)$ for all graphs F and that $\delta_{\chi}(F) = 0$ if F is nearly bipartite (a graph is nearly bipartite if it is triangle-free and it admits a vertex partition into two parts such that one part is independent and the other part induces a graph with maximum degree one). Recently, Allen et al. [1] extended of the work of Luczak and Thomassé and determined the chromatic threshold for every graph F.

1.3. Homomorphism thresholds of graphs. Viewing $\chi(G) \leq k$ as the property that $G \xrightarrow{\text{hom}} K_k$, one may ask for a graph $G \in \text{Forb}(F)$, whether K_k can be replaced by a graph H of bounded size (independent of G), that is F-free itself. More precisely, in [14] Thomassen posed the following question: Given a fixed constant c, does there exist a finite family of triangle-free graphs such that every triangle-free graph on n vertices and minimum degree greater than cn is homomorphic to some graph of this family? To formalise this question we define the homomorphism threshold of a graph F

$$\delta_{\text{hom}}(F) = \inf \left\{ \alpha \in [0,1] \colon \exists k \in \mathbb{N} \text{ s.t. } \forall G \in \text{Forb}(F) \text{ with } \delta(G) \ge \alpha |V(G)| \\ \exists H \in \text{Forb}_k(F) \text{ with } G \xrightarrow{\text{hom}} H \right\}.$$

Thomassen then asked to determine $\delta_{\text{hom}}(K_3)$. Since $G \xrightarrow{\text{hom}} H$, implies $\chi(G) \leq |V(H)|$, we clearly have

$$\delta_{\text{hom}}(F) \ge \delta_{\chi}(F).$$

In [10] Luczak proved $\delta_{\text{hom}}(K_3) = 1/3$ and, hence, for the triangle K_3 the homomorphic and the chromatic threshold are equal. Recently, Goddard and Lyle [7] extended Łuczak's result showing, that K_r -free graphs with minimum degree bigger than $\frac{2r-5}{2r-3}$ are homomorphic to the join $K_{r-3} \vee H$, where H is a triangle-free graph with $\delta(H) > |V(H)|/3$. Consequently, we have for every $r \ge 3$

$$\delta_{\text{hom}}(K_r) = \delta_{\chi}(K_r) = \frac{2r-5}{2r-3}.$$
 (3)

Luczak's proof in [10] was based on Szemerédi's regularity lemma [13]. We give a different proof of (3), which avoids the regularity lemma and uses a simple probabilistic argument.

Theorem 1.1. For every integer $r \ge 3$ we have

$$\delta_{\text{hom}}(K_r) = \frac{2r-5}{2r-3}.$$

It seems an interesting open question to determine the homomorphism threshold for other graphs than cliques. In particular, the case of odd cycles of length at least five seems to be a first interesting open case and we put forward the following question.

Question 1. What is $\delta_{\text{hom}}(C_{2\ell+1})$ for $\ell \ge 2$?

A somewhat related question concerns the homomorphism threshold for forbidden families of graphs. Note that the definitions of Forb(F) and $\delta_{hom}(F)$ straight forwardly extend from one forbidden graph F to forbidden families \mathcal{F} of graphs. In view of Question 1 it is natural to consider the family $C_{2\ell+1} = \{C_3, \ldots, C_{2\ell+1}\}$ of odd cycles of length at most $2\ell + 1$ and we close this introduction with the following open question.

Question 2. What is $\delta_{\text{hom}}(\mathcal{C}_{2\ell+1})$ for $\ell \ge 2$?

§2. SIMPLE OBSERVATIONS

For an integer $r \ge 3$ and $\varepsilon > 0$ the following subclass of $Forb(K_r)$ will play a prominent rôle

$$\mathcal{F}(r,\varepsilon) = \left\{ G = (V,E) \in \operatorname{Forb}(K_r) \colon \delta(G) \ge \left(\frac{2r-5}{2r-3} + \varepsilon\right) |V| \right\},\$$

since Theorem 1.1 asserts that there exists some function $L = L(r, \varepsilon)$ and $H \in \operatorname{Forb}(L, K_r)$ such that for every $G \in \mathcal{F}(r, \varepsilon)$ we have $G \xrightarrow{\text{hom}} H$. Note that $\mathcal{F}(r, \varepsilon)$ contains only graphs on at least r-2 vertices. We begin with a few observations concerning common neighbourhoods in maximal K_r -free graphs of given minimum degree $\delta(G)$.

Proposition 2.1. For $r \ge 3$ let G = (V, E) be a maximal K_r -free graph. If two distinct vertices $u, v \in V$ are non-adjacent, then $|N(u) \cap N(v)| \ge r\delta(G) - (r-2)|V|$.

Proof. Since G = (V, E) is maximal K_r -free and $uv \notin E$, the joint neighbourhood $N(u) \cap N(v)$ induces a K_{r-2} . Applying (1) to the r-2 vertices w_1, \ldots, w_{r-2} that span K_{r-2} in the joint neighbourhood of u and v yields $N(\{w_1, \ldots, w_{r-2}\}) \ge (r-2)\delta(G) - (r-3)|V|$. Moreover, since $N(\{w_1, \ldots, w_{r-2}\})$ must be disjoint from $N(u) \cup N(v)$, we obtain

$$|V| \ge (r-2)\delta(G) - (r-3)|V| + |N(u) \cup N(v)|$$

= $(r-2)\delta(G) - (r-3)|V| + |N(u)| + |N(v)| - |N(u) \cap N(v)|$

and the proposition follows.

In the proof of the last proposition we used the observation, that the neighbourhood of any two non-adjacent vertices in a maximal K_r -free graph induces a K_{r-2} . Next we note that for maximal K_r -free graphs in $\mathcal{F}(r,\varepsilon)$, we can strengthen this observation and ensure that the clique K_{r-2} is disjoint from an arbitrary given small set of vertices.

Proposition 2.2. For $r \ge 3$ and $\varepsilon > 0$, let G = (V, E) be a maximal K_r -free graph from $\mathcal{F}(r, \varepsilon)$. If two distinct vertices $u, v \in V$ are non-adjacent in G and $U \subseteq V$ satisfies $|U| < \varepsilon |V|$, then $K_{r-2} \subseteq G[(N(u) \cap N(v)) \setminus U]$.

Proof. Given u, v and U as stated, we first consider any set of r-3 vertices $w_1, \ldots, w_{r-3} \in V$ and owing to (1) we have

$$N(\{w_1, \dots, w_{r-3}\}) \ge (r-3)\delta(G) - (r-4)|V|.$$

Moreover, since u and v are non-adjacent Proposition 2.1 tells us that

$$|N(u) \cap N(v)| \ge r\delta(G) - (r-2)|V|.$$

Consequently, the joint neighbourhood of u, v and w_1, \ldots, w_{r-3} satisfies

$$|N(\{u, v, w_1, \dots, w_{r-3})| \ge N(\{w_1, \dots, w_{r-3}\}) - (|V| - |N(u) \cap N(v)|)$$
$$\ge (2r - 3)\delta(G) - (2r - 5)|V|$$

and the minimum degree condition from $G \in \mathcal{F}(r, \varepsilon)$ implies that

$$|N(\{u, v, w_1, \dots, w_{r-3})| \ge (2r-3)\varepsilon |V| \ge 3\varepsilon |V| > |U|.$$

Summarising, we have shown that any collection of r-3 vertices together with u and v have a joint neighbour outside of U. Selecting w_1 from $(N(u) \cap N(v)) \setminus U$ and inductively w_{i+1} from $N(\{u, v, w_1, \ldots, w_i\} \setminus U$ for $i = 1, \ldots, r-3$ yields the desired clique on w_1, \ldots, w_{r-2} . \Box

The last observation asserts that any sufficiently large subset of vertices induces a K_{r-2} in a graph G from $\mathcal{F}(r,\varepsilon)$.

Proposition 2.3. For $r \ge 3$ and $\varepsilon > 0$ let G = (V, E) be a graph from $\mathcal{F}(r, \varepsilon)$. If $Z \subseteq V$ satisfies $|Z| \ge (\frac{2r-6}{2r-3} + \varepsilon)|V|$, then $K_{r-2} \subseteq G[Z]$.

Proof. Similarly as in the proof of Proposition 2.2 we consider an arbitrary set of (r-3) vertices $w_1, \ldots, w_{r-3} \in V$ and from (1) we infer

$$|N(\{w_1, \dots, w_{r-3}\}) \cap Z| \ge (r-3)\delta(G) - (r-4)|V| - (|V| - |Z|)$$
$$\ge \left((r-3)\frac{2r-5}{2r-3} + \frac{2r-6}{2r-3} - (r-3)\right)|V| + (r-2)\varepsilon|V|$$
$$= (r-2)\varepsilon|V| > 0.$$

Consequently, any set of k-3 vertices has a joint neighbour in Z. Hence, selecting w_1 in Z and inductively w_{i+1} from $N(\{w_1, \ldots, w_i\}) \cap Z$ for $i = 1, \ldots, r-3$ yields the desired clique on w_1, \ldots, w_{r-2} .

$\S3.$ Proof of the main result

In the proof of Theorem 1.1 we partition the vertex set of a maximal K_r -free graph $G \in \mathcal{F}(r,\varepsilon)$ into a bounded number of stable sets and show that any two such independent sets are spanning complete or empty bipartite graphs. Consequently, G is a blow-up of a K_r -free graph of bounded size, which is equivalent to the property that G has a K_r -free homomorphic image of bounded size.

We obtain the independent sets in two steps: Roughly speaking, in the first step we consider a random subset $X \subset V(G)$ of bounded size and partition the vertices of V(G) according to their neighbourhood in X. However, since X has only bounded size, a small (but linear sized) set of vertices may have no or only a few neighbours in X and we deal with those vertices in the second step, by considering the neighbourhood into the independent sets from the first step.

Proof of Theorem 1.1. Let $r \ge 3$. Owing to (2) we have $\delta_{\chi}(K_r) = \frac{2r-5}{2r-3}$ and since by definition $\delta_{\chi}(K_r) \le \delta_{\text{hom}}(K_r)$, we have to prove the matching upper bound on $\delta_{\text{hom}}(K_r)$. Let $\varepsilon > 0$ and set

$$m = \left[4\ln(8/\varepsilon)/\varepsilon^2\right] + 1, \quad T = 2^m, \quad \text{and} \quad L = 2^T + T.$$
(4)

We will show that for any n > L and for every maximal K_r -free graph G = (V, E) from $\mathcal{F}(r, \varepsilon)$ there exists some $H \in \operatorname{Forb}_L(K_r)$ such that $G \xrightarrow{\text{hom}} H$, which clearly suffices to prove the theorem.

In the first part we consider a random subset $X \subseteq V$ of size *m* chosen uniformly at random from all *m*-element subsets of *V* and we consider the random set

$$U_X = \left\{ v \in V \colon |N(v) \cap X| < \left(\frac{2r-5}{2r-3} + \frac{\varepsilon}{2}\right)m \right\}$$

of vertices with "small" degree in X. We show that with positive probability $|U_X| \leq \varepsilon n/4$ and $|X \cap U_X| \leq \varepsilon m/4$.

It follows from Chernoff's inequality for the hypergeometric distribution (see, e.g., [9, Theorem 2.10, eq. (2.6)] that for a given vertex $v \in V$ we have

$$\mathbb{P}(v \in U_X) \leqslant \exp(-\varepsilon^2 m/4).$$
(5)

Consequently,

$$\mathbb{E}[|U_X|] \leq \exp(-\varepsilon^2 m/4) \cdot n \stackrel{(4)}{<} \varepsilon n/8$$

and by Markov's inequality we have

$$\mathbb{P}(|U_X| \le \varepsilon n/4) > 1/2.$$
(6)

In other words, with probability more than 1/2 all but at most $\varepsilon n/4$ vertices inherit approximately the minimum degree condition on the randomly chosen set X.

Next we show that with probability at least 1/2 the intersection of X with U_X is small. This follows from a standard double counting argument. In fact, the same argument giving (5) shows that for every $v \in V$ there are at most $\exp(-\varepsilon^2(m-1)/4)\binom{n-1}{m-1}$ different (m-1)-element subsets Y of V for which

$$|N(v) \cap Y| \leq \left(\frac{2r-5}{2r-3} + \frac{\varepsilon}{2}\right) \cdot (m-1).$$

$$\tag{7}$$

Hence, there are at most $n \exp(-\varepsilon^2 (m-1)/4) \binom{n-1}{m-1}$ pairs (v, Y) such that (7) holds. Therefore, there are at most

$$\frac{n \cdot \exp(-\varepsilon^2 (m-1)/4) \binom{n-1}{m-1}}{\varepsilon m/4} \stackrel{(4)}{\leqslant} \frac{1}{2} \binom{n}{m}$$

m-element subsets $X \subseteq V$ that contain at least $\varepsilon m/4$ vertices v such that v and $Y = X \setminus \{v\}$ satisfy (7). Combining this with (6) shows that there exists an *m*-element set $X \subseteq V$ with the promised properties

$$|U_X| \leq \frac{\varepsilon}{4}n$$
 and $|X \cap U_X| < \frac{\varepsilon}{4}m$.

Finally, we set

$$Y = X \setminus U_X$$
 and $U_Y = \left\{ v \in V \colon |N(v) \cap Y| < \left(\frac{2r-5}{2r-3} + \frac{\varepsilon}{4}\right)|Y| \right\}$

and we note that the induced subgraph on Y satisfies

$$G[Y] \in \mathcal{F}(r, \varepsilon/4)$$

and since $U_Y \subseteq U_X$ we also have

$$|U_Y| \leq |U_X| \leq \varepsilon n/4 \,.$$

Next we define a vertex partition of $V \setminus U_Y$ given by the neighbourhoods in Y. For that we say two vertices $v, w \in V \setminus U_Y$ are equivalent w.r.t. Y, if they have the same neighbours in Y, i.e., $N(v) \cap Y = N(w) \cap Y$. Let $V_1 \cup \ldots \cup V_t = V \setminus U_Y$ be the corresponding partition given by the equivalence classes and let Y_i be the neighbourhood of the vertices from V_i in Y, i.e., for any $v_i \in V_i$ we have

$$N(v_i) \cap Y = Y_i$$
.

Clearly, $t \leq 2^{|Y|} \leq 2^{|X|} = 2^m = T$.

We observe that the vertex classes V_1, \ldots, V_t are independent sets in G, i.e., for every $i = 1, \ldots, t$ we have

$$E_G(V_i) = \emptyset . (8)$$

In fact, since every vertex $v \in V \setminus U_Y$ has at least $(\frac{2r-3}{2r-5} + \varepsilon/4)|Y|$ neighbours in Y and since $G[Y] \in \mathcal{F}(r, \varepsilon/4)$ it follows from Proposition 2.3 applied to G[Y] and $Z = Y_i$ that Y_i induces a K_{r-2} . Consequently, the K_r -freeness of G implies that no two vertices $v_i, w_i \in V_i$ can be adjacent in G and (8) follows.

Next we observe that the induced bipartite graphs given by the partition of equivalence classes contain no or all edges, i.e., for every $1 \le i < j \le t$ we have

$$e_G(V_i, V_j) = 0$$
 or $e_G(V_i, V_j) = |V_i| |V_j|$. (9)

Suppose for a contradiction that there are (not necessarily distinct) vertices $v_i, w_i \in V_i$ and $v_j, w_j \in V_j$ such that $v_i v_j \in E(V_i, V_j)$ and $w_i w_j \notin E(V_i, V_j)$. Due to the edge $v_i v_j$ the intersection $Y_i \cap Y_j$ must be K_{r-2} -free and, hence, in view of Proposition 2.3 applied to G[Y] and $Z = Y_i \cap Y_j$ we have

$$|Y_i \cap Y_j| < \left(\frac{2r-6}{2r-3} + \frac{\varepsilon}{4}\right)|Y|$$

and, therefore,

$$|Y_i \cup Y_j| = |Y_i| + |Y_j| - |Y_i \cap Y_j| > \left(2\frac{2r-5}{2r-3} - \frac{2r-6}{2r-3} + \frac{\varepsilon}{4}\right)|Y| = \left(\frac{2r-4}{2r-3} + \frac{\varepsilon}{4}\right)|Y|.$$
(10)

Next we use that $w_i \in V_i$ and $w_j \in V_j$ are non-adjacent. Owing to the maximality of Gwe can apply Proposition 2.2 to G and U_Y and obtain a clique K_{r-2} outside U_Y in the joint neighbourhood of w_i and w_j . Let R be the vertex set of this K_{r-2} . Since $R \subseteq V \setminus U_Y$ and since the sets V_k are independent for every $k = 1, \ldots, t$ the set R intersects r-2 classes $V_{k_1}, \ldots, V_{k_{r-2}}$ different from V_i and V_j . We consider the joint neighbourhood of R in Y

$$N(R) \cap Y = Y_{k_1} \cap \dots \cap Y_{k_{r-2}}$$

and note that

$$|N(R) \cap Y| \ge (r-2)\left(\frac{2r-5}{2r-3} + \frac{\varepsilon}{4}\right)|Y| - (r-3)|Y| = \left(\frac{1}{2r-3} + \frac{\varepsilon}{4}\right)|Y|.$$

However, combined with (10) this implies that either $Y_i \cap N(R) \neq \emptyset$ or $Y_j \cap N(R) \neq \emptyset$. In either case this gives rise to a K_r in G, which yields the desired contradiction and (9) follows.

Note that (8) shows that $G[V \setminus U_Y]$ is homomorphic to a graph H' on $t \leq T$ and it follows from (9) that $G[V \setminus U_Y]$ is a blow-up of H'. So in particular H' is K_r -free. It remains to deal with the vertices in U_Y . For that we first observe that for every vertex $u \in U_Y$ and $i = 1, \ldots, t$ we have

$$N(u) \cap V_i = \emptyset$$
 or $N(u) \cap V_i = V_i$. (11)

In fact, suppose for a contradiction, that for some $v_i, w_i \in V_i$ we have $uv_i \in E$ while u and w_i are not adjacent. Again the maximality of G and Proposition 2.2 shows that $N(u) \cap N(w_i)$ contains a K_{r-2} avoiding U_Y . However, since by (8) and (9) the vertices v_i and w_i have the same neighbourhood in $V \setminus U_Y$ the same K_{r-2} is also in the neighbourhood of v_i , which together with v_i and u yields a K_r in G. This contradicts $K_r \not\subseteq G$ and (11) follows.

Next we partition U_Y according to the neighbourhoods of its vertices in $V \setminus U_Y$. For every $S \subseteq [t] = \{1, \ldots, t\}$ we set

$$V_S = \left\{ u \in U_Y \colon N(u) \setminus U_Y = \bigcup_{s \in S} V_s \right\},\$$

which yields a partition of U_Y into at most $2^t \leq 2^T$ classes. Similar as in (9) and (11) we next observe that for any $S, S' \subseteq [t]$ with $S \neq S'$ we have

$$e_G(V_S, V_{S'}) = 0$$
 or $e_G(V_S, V_{S'}) = |V_S| |V_{S'}|$. (12)

The proof is very similar to the proof of (11). Suppose for a contradiction without loss of generalisation there exist vertices v_S , $w_S \in V_S$ and $u \in V_{S'}$ such that $uv_S \in E$ while u and w_S are not adjacent. Then by the maximality of G Proposition 2.2 yields a K_{r-2} in $N(u) \cap N(w_S)$ avoiding U_Y . Owing to (11) the vertices v_S and w_S have the same neighbourhood in $V \setminus U_Y$ and, hence, the same K_{r-2} is also in the neighbourhood of v_S , which together with v_S and u yields a K_r in G. This contradicts $K_r \nsubseteq G$ and (12) follows.

The last thing we have to show is that V_S is independent in G, i.e., for every $S \subseteq [t]$ we have

$$E_G(V_S) = \emptyset . (13)$$

This is a direct consequence of (11) and Proposition 2.3. In fact, it follows from (11) that any two vertices $u, v \in V_S$ have the same neighbourhood in $V \setminus U_Y$. Hence, their joint neighbourhood has size at least $(\frac{2r-5}{2r-3} + \frac{3\varepsilon}{4})n$ and Proposition 2.3 yields a K_{r-2} in the joint neighbourhood of u and v. Therefore, u and v cannot be adjacent in G and (13) follows.

Summarising, we have shown that there exists a vertex partition

$$\bigcup_{i=1}^{t} V_i \cup \bigcup_{S \subseteq [t]} V_S = V$$

of V into independent sets (see (8) and (13)) such that all naturally induced bipartite graphs are either complete or empty (see (9), (11), and (12)). Hence, there exists a graph H on $2^T + T \leq L$ vertices such that G is a blow-up of H and, therefore, $G \xrightarrow{\text{hom}} H$ and H itself must be K_r -free. This concludes the proof of Theorem 1.1.

We remark that the size H is doubly exponential in $poly(1/\varepsilon)$, i.e., there exists some universal constant c such that

$$|V(H)| \leqslant L = 2^{2^{c \ln(\varepsilon)/\varepsilon^2}}$$

holds.

We close by noting that the same approach used in the proof of Theorem 1.1 can be used to show Thomassen's result from [15] that the chromatic threshold of odd cycles of at least five is 0. However, it remains open, if this approach can also be used to address Questions 1 and 2.

4. References

- P. Allen, J. Böttcher, S. Griffiths, Y. Kohayakawa, and R. Morris, *The chromatic thresholds of graphs*, Adv. Math. 235 (2013), 261–295, DOI 10.1016/j.aim.2012.11.016. MR3010059 ↑1.2
- [2] B. Andrásfai, Über ein Extremalproblem der Graphentheorie, Acta Math. Acad. Sci. Hungar. 13 (1962), 443–455 (German). MR0145503 (26 #3034) ↑1.2
- [3] St. Brandt and St. Thomassé, Dense triangle-free graphs are four-colorable: A solution to the Erdős-Simonovits problem. to appear. ^{1.2}
- [4] R. Diestel, Graph theory, 4th ed., Graduate Texts in Mathematics, vol. 173, Springer, Heidelberg, 2010. MR2744811 (2011m:05002) ↑1.1
- [5] P. Erdős and M. Simonovits, On a valence problem in extremal graph theory, Discrete Math. 5 (1973), 323–334. MR0342429 (49 #7175) ↑1.2
- [6] P. Erdös and A. H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52 (1946), 1087–1091.
 MR0018807 (8,333b) ↑1.2
- [7] W. Goddard and J. Lyle, Dense graphs with small clique number, J. Graph Theory 66 (2011), no. 4, 319–331, DOI 10.1002/jgt.20505. MR2791450 (2012f:05148) ↑1.2, 1.3
- [8] R. Häggkvist, Odd cycles of specified length in nonbipartite graphs, Graph theory (Cambridge, 1981), North-Holland Math. Stud., vol. 62, North-Holland, Amsterdam-New York, 1982, pp. 89–99. MR671908 (84h:05079) ↑1.2
- S. Janson, T. Łuczak, and A. Rucinski, *Random graphs*, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000. MR1782847 (2001k:05180) ³
- [10] T. Luczak, On the structure of triangle-free graphs of large minimum degree, Combinatorica 26 (2006), no. 4, 489–493, DOI 10.1007/s00493-006-0028-8. MR2260851 (2007e:05077) ↑1.3, 1.3
- [11] T. Luczak and St. Thomassé, Coloring dense graphs via VC-dimension. submitted. $\uparrow 1.2$

HEINER OBERKAMPF AND MATHIAS SCHACHT

- [12] V. Nikiforov, Chromatic number and minimum degree of K_r -free graphs. preprint. $\uparrow 1.2$
- [13] E. Szemerédi, *Regular partitions of graphs*, Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, vol. 260, CNRS, Paris, 1978, pp. 399–401 (English, with French summary). MR540024 (81i:05095) ¹.3
- [14] C. Thomassen, On the chromatic number of triangle-free graphs of large minimum degree, Combinatorica 22 (2002), no. 4, 591–596, DOI 10.1007/s00493-002-0009-5. MR1956996 (2004a:05058) ↑1.2, 1.3
- [15] _____, On the chromatic number of pentagon-free graphs of large minimum degree, Combinatorica 27 (2007), no. 2, 241–243, DOI 10.1007/s00493-007-0054-1. MR2321926 (2008a:05101) ↑1.2, 3
- [16] P. Turán, Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48 (1941), 436–452 (Hungarian, with German summary). MR0018405 (8,284j) ↑1.2

INSTITUT FÜR INFORMATIK, UNIVERSITÄT AUGSBURG, UNIVERSITÄTSSTRASSE 6A, D-86135 AUGS-BURG, GERMANY

 $E\text{-}mail\ address:\ \texttt{heiner.oberkampfQinformatik.uni-augsburg.de}$

FACHBEREICH MATHEMATIK, UNIVERSITÄT HAMBURG, BUNDESSTRASSE 55, D-20146 HAMBURG, GER-MANY

E-mail address: schacht@math.uni-hamburg.de