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ZUR MATHEMATIK

Heft 564

On the structure of dense graphs with fixed
clique number

Heiner Oberkampf, Augsburg

Mathias Schacht, Hamburg

Version September 2015



ON THE STRUCTURE OF DENSE GRAPHS WITH FIXED CLIQUE
NUMBER

HEINER OBERKAMPF AND MATHIAS SCHACHT

Abstract. We study structural properties of graphs with fixed clique number and high

minimum degree. In particular, we show that there exists a function L “ Lpr, εq, such that

every Kr-free graph G on n vertices with minimum degree at least p 2r´5
2r´3`εqn is homomorphic

to a Kr-free graph on at most L vertices. It is known that the required minimum degree

condition is approximately best possible for this result.

For r “ 3 this result was obtained by  Luczak [On the structure of triangle-free graphs of

large minimum degree, Combinatorica 26 (2006), no. 4, 489–493] and, more recently, Goddard

and Lyle [Dense graphs with small clique number, J. Graph Theory 66 (2011), no. 4, 319-331]

deduced the general case from  Luczak’s result.  Luczak’s proof was based on an application

of Szemerédi’s regularity lemma and, as a consequence, it only gave rise to a tower-type

bound on Lp3, εq. The proof presented here replaces the application of the regularity lemma

by a probabilistic argument, which yields a bound for Lpr, εq that is doubly exponential in

polypεq.

§1. Introduction

1.1. Notation. We follow the notation from [4] and briefly review some of it below. The

graphs we consider here are undirected, simple, and have no loops and for a graph G “ pV,Eq

we denote by V “ V pGq its vertex set and by E “ EpGq Ď
`

V
2

˘

its edge set. The number of

vertices is finite and often denoted by n “ |V |. By Cr and Kr we denote the cycle and the

complete graph/clique on ` vertices. For two adjacent vertices x, y we simply denote its edge

by xy. If x P X Ď V pGq and y P Y Ď V pGq then xy is an X ´ Y -edge. For disjoint sets X

and Y the set of all X ´ Y -edges is a subset of E and is denoted by EGpX, Y q. Moreover,

the number of X ´ Y edges in G is denoted by eGpX, Y q “ |EGpX, Y q|. and for nonempty X

and Y the density is defined by dGpX, Y q “
eGpX,Y q
|X||Y |

. The set of neighbours of a vertex v is

denoted by NGpvq and its size dGpvq “ |NGpvq| is the degree of a vertex v, where we sometimes
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2 HEINER OBERKAMPF AND MATHIAS SCHACHT

suppress the subscript G if there is no danger of confusion. We denote the minimum degree

of G by δpGq. For a subset U Ď V we define the common (or joint) neighbourhood of U as

NpUq “
č

uPU

Npuq

and we emphasise that this differs from the notation in [4]. For later reference we note

that the size of NpUq can be easily bounded from below in terms of the minimum degree of

G “ pV,Eq by

|NpUq| ě |U | ¨ δpGq ´ p|U | ´ 1q ¨ |V | . (1)

Moreover, for a subset U Ď V we denote by GrU s the induced subgraph on U and we write

G´ U for GrV zU s.

A (vertex) colouring of a graph G “ pV,Eq is a map c : V Ñ C such that cpvq ‰ cpwq,

whenever v and w are adjacent. The elements of the set C are called the available colours.

A graph G “ pV,Eq is k-colourable if there exists colouring c : V Ñ rks “ t1, . . . , ku. The

chromatic number χpGq is the smallest integer k such that G has is k-colourable.

A homomorphism from a graph G into a graph H is a mapping ϕ : V pGq Ñ V pHq which

preserves adjacencies, i.e. for all pairs uv P EpGq we have ϕpuqϕpvq P EpHq. We write

G
hom
ÝÝÑ H to indicate that some homomorphism ϕ exists. We say G is a blow-up of H, if G

is obtained from H by replacing every vertex x of H by an independent sets Ix and edges of

H correspond to complete bipartite graphs, i.e., Ix, Iy spans a complete bipartite graph in G

if xy P EpHq and otherwise eGpIx, Iyq “ 0. Clearly, if G is a blow-up of H then G
hom
ÝÝÑ H

and Kr Ď G if and only if Kr Ď H.

By F Ď G we mean that G contains a copy of F , that is there exists an injective homo-

morphism from F into G. If G contains no such copy of F (i.e., F * G), then we say G is

F -free. For a graph F

ForbpF q “ tG : F * Gu

denotes the class of F -free graphs, i.e. the collection of those graphs G which do not contain

a copy of F . Moreover, we set

ForbnpF q “ tG : F * G and |V pGq| “ nu .

An F -free graph G “ pV,Eq is maximal F -free if the addition of any edge to G leads to a

copy of F in G, i.e., for every xy P
`

V
2

˘

zE we have F Ď pV,E Y txyuq. Finally, we define the

join G_H of two graphs G and H as the graph with vertex set V pG_Hq “ V pGq Y V pHq
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and edge set

EpG_ F q “ EpGq Y EpF q Y tvw : v P V pGq and w P V pF qu .

1.2. Chromatic thresholds of graphs. We are interested in structural properties of graphs

G P ForbpF q, which are forced by an additional minimum degree assumption on G. For ex-

ample, if F is a clique and δpGq is sufficiently high, then Turán’s theorem [16] assert that G

is pr´ 1q-partite and, in particular, the chromatic number of G is bounded by a constant in-

dependent of |V pGq|. More generally, Andrásfai [2] raised the following question: For a given

graph F and an integer k, what is smallest condition imposed on the minimum degree δpGq

such any graph G P ForbpF q satisfying this minimum degree condition has chromatic number

at most k? Here we are interested in the case when the minimum degree condition yields

an upper bound on χpGq independent from the graph G itself. This leads to the so called

chromatic threshold for a given graph F

δχpF q “ inf
 

α P r0, 1s : Dk P N s.t. χpGq ď k @G P ForbpF q with δpGq ě α|V pGq|
(

.

If F 1 Ď F , then ForbpF 1q Ď ForbpF q, so obviously δχpF
1q ď δχpF q. Moreover, it follows from

the Erdős–Stone theorem [6] that δχpF q ď
χpF q´2
χpF q´1

for every graph F with at least one edge.

For F “ K3 it was shown in [5] that δχpK3q ě 1{3. In the other direction, Thomassen [14]

obtained a matching upper bound and, therefore, δχpK3q “ 1{3. In fact, Erdős and Si-

monovits [5] asked whether all triangle-free graphs G with δpGq ě p1{3` op1qq|V pGq| are 3-

colorable. This was answered negatively by Häggkvist [8], but recently Brandt and Thomassé [3]

showed that the chromatic number of such graphs is bounded by 4.

Nikiforov [12] and Goddard and Lyle [7] extended those results from triangles to r-cliques

and showed for every r ě 3 that

δχpKrq “
2r ´ 5

2r ´ 3
(2)

and, in fact, χpGq ď r ` 1 for every Kr-free graph G with δpGq ą 2r´5
2r´3

|V pGq|.

In the case when F is an odd cycle of length at least five it was shown by Thomassen [15]

that the chromatic threshold is zero and  Luczak and Thomassé [11] proved that δχpF q R

p0, 1{3q for all graphs F and that δχpF q “ 0 if F is nearly bipartite (a graph is nearly

bipartite if it is triangle-free and it admits a vertex partition into two parts such that one

part is independent and the other part induces a graph with maximum degree one). Recently,

Allen et al. [1] extended of the work of  Luczak and Thomassé and determined the chromatic

threshold for every graph F .
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1.3. Homomorphism thresholds of graphs. Viewing χpGq ď k as the property that

G
hom
ÝÝÑ Kk, one may ask for a graph G P ForbpF q, whether Kk can be replaced by a graph H

of bounded size (independent of G), that is F -free itself. More precisely, in [14] Thomassen

posed the following question: Given a fixed constant c, does there exist a finite family of

triangle-free graphs such that every triangle-free graph on n vertices and minimum degree

greater than cn is homomorphic to some graph of this family? To formalise this question we

define the homomorphism threshold of a graph F

δhompF q “ inf
 

α P r0, 1s : D k P N s.t. @G P ForbpF q with δpGq ě α|V pGq|

DH P ForbkpF q with G
hom
ÝÝÑ H

(

.

Thomassen then asked to determine δhompK3q. Since G
hom
ÝÝÑ H, implies χpGq ď |V pHq|, we

clearly have

δhompF q ě δχpF q.

In [10]  Luczak proved δhompK3q “ 1{3 and, hence, for the triangle K3 the homomorphic and

the chromatic threshold are equal. Recently, Goddard and Lyle [7] extended  Luczak’s result

showing, that Kr-free graphs with minimum degree bigger than 2r´5
2r´3

are homomorphic to the

join Kr´3 _ H, where H is a triangle-free graph with δpHq ą |V pHq|{3. Consequently, we

have for every r ě 3

δhompKrq “ δχpKrq “
2r ´ 5

2r ´ 3
. (3)

 Luczak’s proof in [10] was based on Szemerédi’s regularity lemma [13]. We give a different

proof of (3), which avoids the regularity lemma and uses a simple probabilistic argument.

Theorem 1.1. For every integer r ě 3 we have

δhompKrq “
2r ´ 5

2r ´ 3
.

It seems an interesting open question to determine the homomorphism threshold for other

graphs than cliques. In particular, the case of odd cycles of length at least five seems to be

a first interesting open case and we put forward the following question.

Question 1. What is δhompC2``1q for ` ě 2?

A somewhat related question concerns the homomorphism threshold for forbidden families

of graphs. Note that the definitions of ForbpF q and δhompF q straight forwardly extend from

one forbidden graph F to forbidden families F of graphs. In view of Question 1 it is natural
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to consider the family C2``1 “ tC3, . . . , C2``1u of odd cycles of length at most 2`` 1 and we

close this introduction with the following open question.

Question 2. What is δhompC2``1q for ` ě 2?

§2. Simple observations

For an integer r ě 3 and ε ą 0 the following subclass of ForbpKrq will play a prominent

rôle

Fpr, εq “
 

G “ pV,Eq P ForbpKrq : δpGq ě
`

2r´5
2r´3

` ε
˘

|V |
(

,

since Theorem 1.1 asserts that there exists some function L “ Lpr, εq and H P ForbpL,Krq

such that for every G P Fpr, εq we have G
hom
ÝÝÑ H. Note that Fpr, εq contains only graphs on

at least r´2 vertices. We begin with a few observations concerning common neighbourhoods

in maximal Kr-free graphs of given minimum degree δpGq.

Proposition 2.1. For r ě 3 let G “ pV,Eq be a maximal Kr-free graph. If two distinct

vertices u, v P V are non-adjacent, then |Npuq XNpvq| ě rδpGq ´ pr ´ 2q|V |.

Proof. Since G “ pV,Eq is maximal Kr-free and uv R E, the joint neighbourhood NpuqXNpvq

induces a Kr´2. Applying (1) to the r ´ 2 vertices w1, . . . , wr´2 that span Kr´2 in the joint

neighbourhood of u and v yields Nptw1, . . . , wr´2uq ě pr ´ 2qδpGq ´ pr ´ 3q|V |. Moreover,

since Nptw1, . . . , wr´2uq must be disjoint from Npuq YNpvq, we obtain

|V | ě pr ´ 2qδpGq ´ pr ´ 3q|V | ` |Npuq YNpvq|

“ pr ´ 2qδpGq ´ pr ´ 3q|V | ` |Npuq| ` |Npvq| ´ |Npuq XNpvq|

and the proposition follows. �

In the proof of the last proposition we used the observation, that the neighbourhood of any

two non-adjacent vertices in a maximal Kr-free graph induces a Kr´2. Next we note that for

maximal Kr-free graphs in Fpr, εq, we can strengthen this observation and ensure that the

clique Kr´2 is disjoint from an arbitrary given small set of vertices.

Proposition 2.2. For r ě 3 and ε ą 0, let G “ pV,Eq be a maximal Kr-free graph

from Fpr, εq. If two distinct vertices u, v P V are non-adjacent in G and U Ď V satis-

fies |U | ă ε|V |, then Kr´2 Ď GrpNpuq XNpvqqzU s.
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Proof. Given u, v and U as stated, we first consider any set of r´ 3 vertices w1, . . . , wr´3 P V

and owing to (1) we have

Nptw1, . . . , wr´3uq ě pr ´ 3qδpGq ´ pr ´ 4q|V | .

Moreover, since u and v are non-adjacent Proposition 2.1 tells us that

|Npuq XNpvq| ě rδpGq ´ pr ´ 2q|V | .

Consequently, the joint neighbourhood of u, v and w1, . . . , wr´3 satisfies

|Nptu, v, w1, . . . , wr´3q| ě Nptw1, . . . , wr´3uq ´ p|V | ´ |Npuq XNpvq|q

ě p2r ´ 3qδpGq ´ p2r ´ 5q|V |

and the minimum degree condition from G P Fpr, εq implies that

|Nptu, v, w1, . . . , wr´3q| ě p2r ´ 3qε|V | ě 3ε|V | ą |U | .

Summarising, we have shown that any collection of r´ 3 vertices together with u and v have

a joint neighbour outside of U . Selecting w1 from pNpuq X NpvqqzU and inductively wi`1

from Nptu, v, w1, . . . , wiqzU for i “ 1, . . . , r´ 3 yields the desired clique on w1, . . . , wr´2. �

The last observation asserts that any sufficiently large subset of vertices induces a Kr´2 in

a graph G from Fpr, εq.

Proposition 2.3. For r ě 3 and ε ą 0 let G “ pV,E) be a graph from Fpr, εq. If Z Ď V

satisfies |Z| ě p2r´6
2r´3

` εq|V |, then Kr´2 Ď GrZs.

Proof. Similarly as in the proof of Proposition 2.2 we consider an arbitrary set of pr ´ 3q

vertices w1, . . . , wr´3 P V and from (1) we infer

|Nptw1, . . . , wr´3uq X Z| ě pr ´ 3qδpGq ´ pr ´ 4q|V | ´ p|V | ´ |Z|q

ě

´

pr ´ 3q
2r ´ 5

2r ´ 3
`

2r ´ 6

2r ´ 3
´ pr ´ 3q

¯

|V | ` pr ´ 2qε|V |

“ pr ´ 2qε|V | ą 0 .

Consequently, any set of k ´ 3 vertices has a joint neighbour in Z. Hence, selecting w1 in Z

and inductively wi`1 from Nptw1, . . . , wiuq X Z for i “ 1, . . . , r ´ 3 yields the desired clique

on w1, . . . , wr´2. �
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§3. Proof of the main result

In the proof of Theorem 1.1 we partition the vertex set of a maximal Kr-free graph G P

Fpr, εq into a bounded number of stable sets and show that any two such independent sets

are spanning complete or empty bipartite graphs. Consequently, G is a blow-up of a Kr-free

graph of bounded size, which is equivalent to the property that G has a Kr-free homomorphic

image of bounded size.

We obtain the independent sets in two steps: Roughly speaking, in the first step we consider

a random subset X Ă V pGq of bounded size and partition the vertices of V pGq according to

their neighbourhood in X. However, since X has only bounded size, a small (but linear sized)

set of vertices may have no or only a few neighbours in X and we deal with those vertices in

the second step, by considering the neighbourhood into the independent sets from the first

step.

Proof of Theorem 1.1. Let r ě 3. Owing to (2) we have δχpKrq “
2r´5
2r´3

and since by definition

δχpKrq ď δhompKrq, we have to prove the matching upper bound on δhompKrq. Let ε ą 0 and

set

m “ r4 lnp8{εq{ε2s` 1 , T “ 2m , and L “ 2T ` T . (4)

We will show that for any n ą L and for every maximal Kr-free graph G “ pV,Eq from Fpr, εq
there exists some H P ForbLpKrq such that G

hom
ÝÝÑ H, which clearly suffices to prove the

theorem.

In the first part we consider a random subset X Ď V of size m chosen uniformly at random

from all m-element subsets of V and we consider the random set

UX “
!

v P V : |Npvq XX| ă
`

2r´5
2r´3

` ε
2

˘

m
)

of vertices with “small” degree in X. We show that with positive probability |UX | ď εn{4

and |X X UX | ď εm{4.

It follows from Chernoff’s inequality for the hypergeometric distribution (see, e.g., [9, The-

orem 2.10, eq. (2.6)] that for a given vertex v P V we have

Ppv P UXq ď expp´ε2m{4q . (5)

Consequently,

Er|UX |s ď expp´ε2m{4q ¨ n
(4)
ă εn{8

and by Markov’s inequality we have

Pp|UX | ď εn{4q ą 1{2 . (6)
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In other words, with probability more than 1{2 all but at most εn{4 vertices inherit approx-

imately the minimum degree condition on the randomly chosen set X.

Next we show that with probability at least 1{2 the intersection of X with UX is small. This

follows from a standard double counting argument. In fact, the same argument giving (5)

shows that for every v P V there are at most expp´ε2pm´1q{4q
`

n´1
m´1

˘

different pm´1q-element

subsets Y of V for which

|Npvq X Y | ď
`

2r´5
2r´3

` ε
2

˘

¨ pm´ 1q . (7)

Hence, there are at most n expp´ε2pm´1q{4q
`

n´1
m´1

˘

pairs pv, Y q such that (7) holds. Therefore,

there are at most

n ¨ expp´ε2pm´ 1q{4q
`

n´1
m´1

˘

εm{4

(4)

ď
1

2

ˆ

n

m

˙

m-element subsets X Ď V that contain at least εm{4 vertices v such that v and Y “ Xztvu

satisfy (7). Combining this with (6) shows that there exists an m-element set X Ď V with

the promised properties

|UX | ď
ε

4
n and |X X UX | ă

ε

4
m.

Finally, we set

Y “ XzUX and UY “
!

v P V : |Npvq X Y | ă
`

2r´5
2r´3

` ε
4

˘

|Y |
)

and we note that the induced subgraph on Y satisfies

GrY s P Fpr, ε{4q

and since UY Ď UX we also have

|UY | ď |UX | ď εn{4 .

Next we define a vertex partition of V zUY given by the neighbourhoods in Y . For that we

say two vertices v, w P V zUY are equivalent w.r.t. Y , if they have the same neighbours in Y ,

i.e., Npvq X Y “ Npwq X Y . Let V1 9Y . . . 9YVt “ V zUY be the corresponding partition given

by the equivalence classes and let Yi be the neighbourhood of the vertices from Vi in Y , i.e.,

for any vi P Vi we have

Npviq X Y “ Yi .

Clearly, t ď 2|Y | ď 2|X| “ 2m “ T .
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We observe that the vertex classes V1, . . . , Vt are independent sets in G, i.e., for every

i “ 1, . . . , t we have

EGpViq “ H . (8)

In fact, since every vertex v P V zUY has at least p2r´3
2r´5

` ε{4q|Y | neighbours in Y and since

GrY s P Fpr, ε{4q it follows from Proposition 2.3 applied to GrY s and Z “ Yi that Yi induces

a Kr´2. Consequently, the Kr-freeness of G implies that no two vertices vi, wi P Vi can be

adjacent in G and (8) follows.

Next we observe that the induced bipartite graphs given by the partition of equivalence

classes contain no or all edges, i.e., for every 1 ď i ă j ď t we have

eGpVi, Vjq “ 0 or eGpVi, Vjq “ |Vi||Vj| . (9)

Suppose for a contradiction that there are (not necessarily distinct) vertices vi, wi P Vi and

vj, wj P Vj such that vivj P EpVi, Vjq and wiwj R EpVi, Vjq. Due to the edge vivj the

intersection YiXYj must be Kr´2-free and, hence, in view of Proposition 2.3 applied to GrY s

and Z “ Yi X Yj we have

|Yi X Yj| ă
´2r ´ 6

2r ´ 3
`
ε

4

¯

|Y |

and, therefore,

|Yi Y Yj| “ |Yi| ` |Yj| ´ |Yi X Yj| ą
´

2
2r ´ 5

2r ´ 3
´

2r ´ 6

2r ´ 3
`
ε

4

¯

|Y | “
´2r ´ 4

2r ´ 3
`
ε

4

¯

|Y | . (10)

Next we use that wi P Vi and wj P Vj are non-adjacent. Owing to the maximality of G

we can apply Proposition 2.2 to G and UY and obtain a clique Kr´2 outside UY in the joint

neighbourhood of wi and wj. Let R be the vertex set of this Kr´2. Since R Ď V zUY and

since the sets Vk are independent for every k “ 1, . . . , t the set R intersects r ´ 2 classes

Vk1 , . . . , Vkr´2 different from Vi and Vj. We consider the joint neighbourhood of R in Y

NpRq X Y “ Yk1 X ¨ ¨ ¨ X Ykr´2

and note that

|NpRq X Y | ě pr ´ 2q
´2r ´ 5

2r ´ 3
`
ε

4

¯

|Y | ´ pr ´ 3q|Y | “
´ 1

2r ´ 3
`
ε

4

¯

|Y | .

However, combined with (10) this implies that either Yi XNpRq ‰ H or Yj XNpRq ‰ H. In

either case this gives rise to a Kr in G, which yields the desired contradiction and (9) follows.

Note that (8) shows that GrV zUY s is homomorphic to a graph H 1 on t ď T and it follows

from (9) that GrV zUY s is a blow-up of H 1. So in particular H 1 is Kr-free.
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It remains to deal with the vertices in UY . For that we first observe that for every vertex

u P UY and i “ 1, . . . , t we have

Npuq X Vi “ H or Npuq X Vi “ Vi . (11)

In fact, suppose for a contradiction, that for some vi, wi P Vi we have uvi P E while u and wi

are not adjacent. Again the maximality of G and Proposition 2.2 shows that Npuq XNpwiq

contains a Kr´2 avoiding UY . However, since by (8) and (9) the vertices vi and wi have

the same neighbourhood in V zUY the same Kr´2 is also in the neighbourhood of vi, which

together with vi and u yields a Kr in G. This contradicts Kr * G and (11) follows.

Next we partition UY according to the neighbourhoods of its vertices in V zUY . For every

S Ď rts “ t1, . . . , tu we set

VS “

"

u P UY : NpuqzUY “
ď

sPS

Vs

*

,

which yields a partition of UY into at most 2t ď 2T classes. Similar as in (9) and (11) we

next observe that for any S, S 1 Ď rts with S ‰ S 1 we have

eGpVS, VS1q “ 0 or eGpVS, VS1q “ |VS||VS1 | . (12)

The proof is very similar to the proof of (11). Suppose for a contradiction without loss of

generalisation there exist vertices vS, wS P VS and u P VS1 such that uvS P E while u and wS

are not adjacent. Then by the maximality of G Proposition 2.2 yields a Kr´2 in NpuqXNpwSq

avoiding UY . Owing to (11) the vertices vS and wS have the same neighbourhood in V zUY

and, hence, the same Kr´2 is also in the neighbourhood of vS, which together with vS and u

yields a Kr in G. This contradicts Kr * G and (12) follows.

The last thing we have to show is that VS is independent in G, i.e., for every S Ď rts we

have

EGpVSq “ H . (13)

This is a direct consequence of (11) and Proposition 2.3. In fact, it follows from (11) that any

two vertices u, v P VS have the same neighbourhood in V zUY . Hence, their joint neighbour-

hood has size at least p2r´5
2r´3

` 3ε
4
qn and Proposition 2.3 yields a Kr´2 in the joint neighbourhood

of u and v. Therefore, u and v cannot be adjacent in G and (13) follows.

Summarising, we have shown that there exists a vertex partition

t
ď

i“1

Vi Y
ď

SĎrts

VS “ V
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of V into independent sets (see (8) and (13)) such that all naturally induced bipartite graphs

are either complete or empty (see (9), (11), and (12)). Hence, there exists a graph H on

2T ` T ď L vertices such that G is a blow-up of H and, therefore, G
hom
ÝÝÑ H and H itself

must be Kr-free. This concludes the proof of Theorem 1.1. �

We remark that the size H is doubly exponential in polyp1{εq, i.e., there exists some

universal constant c such that

|V pHq| ď L “ 22c lnpεq{ε2

holds.

We close by noting that the same approach used in the proof of Theorem 1.1 can be used

to show Thomassen’s result from [15] that the chromatic threshold of odd cycles of at least

five is 0. However, it remains open, if this approach can also be used to address Questions 1

and 2.
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[2] B. Andrásfai, Über ein Extremalproblem der Graphentheorie, Acta Math. Acad. Sci. Hungar. 13 (1962),

443–455 (German). MR0145503 (26 #3034) Ò1.2
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