HAMBURGER BEITRÄGE ZUR MATHEMATIK

Heft 562
Ramsey properties of random graphs and Folkman numbers

Vojtěch Rödl, Atlanta
Andrzej Ruciński, Poznań
Mathias Schacht, Hamburg

Ramsey properties of random graphs and Folkman numbers

Vojtěch Rödl*
Emory University
Atlanta, USA
rodl@mathcs.emory.edu

Andrzej Ruciński ${ }^{\dagger}$
A. Mickiewicz University
Poznań, Poland
rucinski@amu.edu.pl

Mathias Schacht ${ }^{\ddagger}$
Universität Hamburg
Hamburg, Germany
schacht@math.uni-hamburg.de

September 10, 2015

Abstract

For two graphs, G and F, and an integer $r \geq 2$ we write $G \rightarrow(F)_{r}$ if every r-coloring of the edges of G results in a monochromatic copy of F. In 1995, the first two authors established a threshold edge probability for the Ramsey property $G(n, p) \rightarrow(F)_{r}$, where $G(n, p)$ is a random graph obtained by including each edge of the complete graph on n vertices, independently, with probability p. The original proof was based on the regularity lemma of Szemerédi and this led to tower-type dependencies between the involved parameters. Here, for $r=2$, we provide a self-contained proof of a quantitative version of the Ramsey threshold theorem with only double exponential dependencies between the constants. As a corollary we obtain a double exponential upper bound on the 2 -color Folkman numbers. By a different proof technique, a similar result was obtained independently by Conlon and Gowers.

1 Introduction

For two graphs, G and F, and an integer $r \geq 2$ we write $G \rightarrow(F)_{r}$ if every r-coloring of the edges of G results in a monochromatic copy of F. By a copy we mean here a subgraph

[^0]of G isomorphic to F. Let $G(n, p)$ be the binomial random graph, where each of $\binom{n}{2}$ possible edges is present, independently, with probability p. In [4] the first two authors established a threshold edge probability for the Ramsey property $G(n, p) \rightarrow(F)_{r}$.

For a graph F, let v_{F} and e_{F} stand for, respectively, the number of vertices and edges of F. Assuming $e_{F} \geq 1$, define

$$
d_{F}=\left\{\begin{array}{lll}
\frac{e_{F}-1}{v_{F}-2} & \text { if } & e_{F}>1 \tag{1}\\
\frac{1}{2} & \text { if } & e_{F}=1
\end{array},\right.
$$

and

$$
\begin{equation*}
m_{F}=\max \left\{d_{H}: H \subseteq F \text { and } e_{H} \geq 1\right\} \tag{2}
\end{equation*}
$$

Let $\Delta(F)$ be the maximum vertex degree in F. Observe that $m_{F}=\frac{1}{2}$ for every F with $\Delta(F)=1$, while for every F with $\Delta(F) \geq 2$ we have $m_{F} \geq 1$. Moreover, for every k-vertex graph F,

$$
m_{F} \leq m_{K_{k}}=\frac{k+1}{2}
$$

We now state the main result of [4] in a slightly abridged form.
Theorem 1 ([4]). For every integer $r \geq 2$ and a graph F with $\Delta(F) \geq 2$ there exists a constant $C_{F, r}$ such that if $p=p(n) \geq C_{F, r} n^{-1 / m_{F}}$ then

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(G(n, p) \rightarrow(F)_{r}\right)=1
$$

The original proof of Theorem 1 was based on the regularity lemma of Szemerédi [8] and this led to tower-type dependencies of the involved parameters. In [5] it was noticed that for two colors the usage of the regularity lemma could be replaced by a simple Ramsey-type argument. Here we follow that thread and for $r=2$ prove a quantitative version of Theorem 1 with only double exponential dependencies between the constants.

In order to state the result, we first define inductively four parameters indexed by the number of edges of a k-vertex graph F. For fixed $k \geq 3$ we set

$$
\begin{equation*}
a_{1}=\frac{1}{2}, \quad b_{1}=\frac{1}{8}, \quad C_{1}=1, \quad \text { and } \quad n_{1}=1 \tag{3}
\end{equation*}
$$

and for each $i=1, \ldots,\binom{k}{2}-1$, define

$$
\begin{equation*}
a_{i+1}=\frac{a_{i}^{19 k^{4}}}{2^{55 k^{6}}}, \quad b_{i+1}=\frac{a_{i}^{37 k^{2}}}{2^{118 k^{4}}} b_{i}^{4}, \quad C_{i+1}=\frac{2^{122 k^{4}}}{b_{i}^{4} a_{i}^{37 k^{2}}} C_{i}, \quad \text { and } \quad n_{i+1}=\frac{2^{14 k^{3}}}{a_{i}^{4 k}} n_{i} \tag{4}
\end{equation*}
$$

Note that a_{i} and b_{i} decrease with i, while C_{i} and n_{i} increase. Finally, for a graph F on k vertices, denote by

$$
\mu_{F}=\binom{n}{k} \frac{k!}{\operatorname{aut}(F)} p^{e_{F}}
$$

the expected number of copies of F in $G(n, p)$ and note that

$$
\begin{equation*}
\binom{n}{k} p^{e_{F}} \leq \mu_{F} \leq n^{k} p^{e_{F}}=n^{v_{F}} p^{e_{F}} . \tag{5}
\end{equation*}
$$

For a real number $\lambda>0$ we write $G \xrightarrow{\lambda} F$ if every 2-coloring of the edges of G produces at least λ monochromatic copies of F. We call a graph $F k$-admissible if $v_{F}=k$ and either $e_{F}=1$ or $\Delta(F) \geq 2$. Now, we are ready to state a quantitative version of Theorem 1.

Theorem 2. For every $k \geq 3$, every k-admissible graph F, and for all $n \geq n_{e_{F}}$ and $p \geq C_{e_{F}} n^{-1 / m_{F}}$,

$$
\mathbb{P}\left(G(n, p) \xrightarrow{a_{e_{F}} \mu_{F}} F\right) \geq 1-\exp \left(-b_{e_{F}} p\binom{n}{2}\right) .
$$

Note that, for $r=2$, Theorem 1 is an immediate corollary of Theorem 2.
Another consequence of Theorem 2 concerns Folkman numbers. Given an integer $k \geq 3$, the Folkman number $f(k)$ is the smallest integer n for which there exists an n vertex graph G such that $G \rightarrow\left(K_{k}\right)_{2}$ but $G \not \supset K_{k+1}$. In the special case of $F=K_{k}$ and $r=2$, Theorem 2, with $p=C_{\binom{k}{2}} n^{-\frac{2}{k+1}}$, provides a lower bound on $\mathbb{P}\left(G(n, p) \rightarrow\left(K_{k}\right)_{2}\right)$. In Section 4, by a standard application of the FKG inequality, we also estimate from below $\mathbb{P}\left(G(n, p) \not \supset K_{k+1}\right)$, so that the sum of the two probabililities is strictly greater than 1. This, after a careful analysis of the involved constants, provides a self-contained derivation of a double exponential bound for $f(k)$.

Corollary 3. There exists an absolute constant $c>0$ such that for every $k \geq 3$

$$
f(k) \leq 2^{k^{c k^{2}}}
$$

Independently, a similar double exponential bound (with arbitrarily many colors) was obtained by Conlon and Gowers [1]. The method used in [1] is quite different from ours and allows for a further generalization to hypergraphs. After Theorem 2 as well as the result in [1] had been proved, we learned that Nenadov and Steger [7] have found a new proof of Theorem 1 by means of the celebrated containers' method. In [6], we used the ideas from [7] to obtain the bound $f(k) \leq 2^{O\left(k^{4} \log k\right)}$ which, at least for large k, supersedes Colorary 3. However, the advantage of our approach here is that the proofs of both Theorem 2 and Corollary 3, as opposed to those in [6], are self-contained and, in case of Theorem 2, incorporate the original ideas from [4].

The paper is organized as follows. In Section 3 we prove our main result, Theorem 2. This is preceded by Section 2 collecting preliminary results needed in the main body of the proof. Section 4 is devoted to a proof of Corollary 3

2 Preliminary results

Before we start with the proof of Theorem 2, we need to recall abridged versions of two useful facts from [3, Lemmas 2.52 and 2.51] (see also [4, 5]), which we formulate as Propositions 4 and 5 below.

Given a set Γ and a real number $p, 0 \leq p \leq 1$, let Γ_{p} be the random binomial subset of Γ, that is, a subset obtained by independently including each element of Γ
with probability p. Further, given an increasing family \mathcal{Q} of subsets of a set Γ and an integer h, we denote by \mathcal{Q}_{h} the subfamily of \mathcal{Q} consisting of the sets $A \in \mathcal{Q}$ having the property that all subsets of A with at least $|A|-h$ elements still belong to \mathcal{Q}.

Proposition 4. Let $0<c<1, \delta=c^{2} / 9, N p \geq 72 / \delta^{2}=2^{3} 3^{6} / c^{4}$, and $h=\delta N p / 2$. Then for every increasing family \mathcal{Q} of subsets of an N-element set Γ the following holds. If

$$
\mathbb{P}\left(\Gamma_{(1-\delta) p} \notin \mathcal{Q}\right) \leq \exp (-c N p)
$$

then

$$
\mathbb{P}\left(\Gamma_{p} \notin \mathcal{Q}_{h}\right) \leq \exp \left(-\delta^{2} N p / 9\right)
$$

Proof. We want to apply [3, Lemma 2.52], which is very similar to Proposition 4. Lemma 2.52 from [3] states that if c and $\delta>0$ satify

$$
\begin{equation*}
\delta(3+\log (1 / \delta)) \leq c \tag{6}
\end{equation*}
$$

and

$$
\mathbb{P}\left(\Gamma_{(1-\delta) p} \notin \mathcal{Q}\right) \leq \exp (-c N p)
$$

then

$$
\begin{equation*}
\mathbb{P}\left(\Gamma_{p} \notin \mathcal{Q}_{h}\right) \leq 3 \sqrt{N p} \exp (-c N p / 2)+\exp \left(-\delta^{2} N p / 8\right) . \tag{7}
\end{equation*}
$$

To this end we first note that by assumption of Proposition 4 we have $\delta<1 / 9$. Since $\sqrt{x}\left(\log (1 / x)\right.$ is increasing for $x \in\left(0,1 / \mathrm{e}^{2}\right]$ it follows for every $\delta \leq 1 / 9$ that

$$
\sqrt{\delta} \log (1 / \delta) \leq \frac{\log (9)}{3} \leq 2
$$

Consequently, $\sqrt{\delta}(3+\log (1 / \delta)) \leq 3$ and owing to the assumption $\delta=c^{2} / 9$ this is equivalent to (6). Moreover, since $N p \geq 2^{3} 3^{6} / c^{4}>(12 / c)^{2}$ we have

$$
3 \sqrt{N p} \leq \exp (3 \sqrt{N p}) \leq \exp (c N p / 4)
$$

Hence, (7) yields

$$
\begin{aligned}
\mathbb{P}\left(\Gamma_{p} \notin \mathcal{Q}_{h}\right) & \leq \exp (-c N p / 4)+\exp \left(-\delta^{2} N p / 8\right) \leq 2 \exp \left(-\delta^{2} N p / 8\right) \\
& \leq \exp \left(-\delta^{2} N p / 8+1\right) \leq \exp \left(-\delta^{2} N p / 9\right),
\end{aligned}
$$

where the last inequality follows by our assumption $N p \geq 72 / \delta^{2}$.
The following result has appeared in [3] as Lemma 2.51. We state it here for $t=2$ only.
Proposition 5 ([3]). Let $\mathcal{S} \subseteq\binom{\Gamma}{s}, 0 \leq p \leq 1$, and $\lambda=|\mathcal{S}| p^{s}$. Then for every nonnegative integer h, with probability at least $1-\exp \left(-\frac{h}{2 s}\right)$, there exists a subset $E_{0} \subseteq \Gamma_{p}$ of size h such that $\Gamma_{p} \backslash E_{0}$ contains at most 2λ sets from \mathcal{S}.

In the proof of Theorem 2 we will also use an elementary fact about ($\varrho, d)$-dense graphs. For constants ϱ and d with $0<d, \varrho \leq 1$ we call an n-vertex graph $\Gamma(\varrho, d)$-dense if every induced subgraph on $m \geq \varrho n$ vertices contains at least $d\left(m^{2} / 2\right)$ edges. It follows by an easy averaging argument that it suffices to check the above inequality only for $m=\lceil\varrho n\rceil$. Note also that every induced subgraph of a (ϱ, d)-dense n-vertex graph on at least $c n$ vertices is $\left(\frac{\underline{\varrho}}{c}, d\right)$-dense.

It turns out that for a suitable choice of the parameters, (ϱ, d)-dense graphs enjoy a Ramsey-like property. For a two-coloring of (the edges of) Γ we call a sequence of vertices $\left(v_{1}, \ldots, v_{\ell}\right)$ canonical if for each $i=1, \ldots, \ell-1$ all the edges $\left\{v_{i}, v_{j}\right\}$, for $j>i$ are of the same color.
Proposition 6. For every $\ell \geq 2$ and $d \in(0,1)$, if $n \geq 2(4 / d)^{\ell-2}$ and $0<\varrho \leq$ $(d / 4)^{\ell-2} / 2$, then every two-colored n-vertex (ϱ, d)-dense graph Γ contains at least

$$
f_{n}(\ell):=\left(\frac{1}{4}\right)^{\binom{\ell+1}{2}} d^{\binom{\ell}{2}} n^{\ell}
$$

canonical sequences of length ℓ.
Proof. First, note that as long as $\varrho \leq 1 / 2$ every (ϱ, d)-dense graph contains at least $n / 2$ vertices with degrees at least $d n / 2$. Indeed, otherwise a set of $m=\lceil(n+1) / 2\rceil$ vertices of degrees smaller than $d n / 2$ would induce less than $m d n / 4 \leq d\left(m^{2} / 2\right)$ edges, a contradiction.

We prove Proposition 6 by induction on ℓ. For $\ell=2$, every ordered pair of adjacent vertices is a canonical sequence and there are at least $2 d\binom{n}{2}>f_{n}(2)$ such pairs if $n \geq 2$. Assume that the proposition is true for some $\ell \geq 2$ and consider an n-vertex (ϱ, d) dense graph Γ, where $\varrho \leq(d / 4)^{\ell-1} / 2$ and $n \geq 2(4 / d)^{\ell-1}$. As observed above, there is a set U of at least $n / 2$ vertices with degrees at least $d n / 2$. Fix one vertex $u \in U$ and let M_{u} be a set of at least $d n / 4$ neighbors of u connected to u by edges of the same color. Let $\Gamma_{u}=\Gamma\left[M_{u}\right]$ be the subgraph of Γ induced by the set M_{u}. Note that Γ_{u} has $n_{u} \geq d n / 4 \geq 2(4 / d)^{\ell-2}$ vertices and is $\left(\varrho_{u}, d\right)$-dense with $\varrho_{u} \leq(d / 4)^{\ell-2} / 2$. Hence, by the induction assumption, there are at least

$$
f_{n_{u}}(\ell) \geq\left(\frac{1}{4}\right)^{\binom{\ell+1}{2}} d^{\binom{\ell}{2}}\left(\frac{d n}{4}\right)^{\ell}=\left(\frac{1}{4}\right)^{\binom{\ell}{2}+\ell} d^{\binom{\ell+1}{2}} n^{\ell}
$$

canonical sequences of length ℓ in Γ_{u}. Each of these sequences preceded by the vertex u makes a canonical sequence of length $\ell+1$ in Γ. As there are at least $n / 2$ vertices in U, there are at least

$$
\frac{n}{2} f_{n_{u}}(\ell) \geq\left(\frac{1}{4}\right)^{\binom{\ell+2}{2}} d\binom{\ell+1}{2} n^{\ell+1}
$$

canonical sequences of length $\ell+1$ in Γ. This completes the inductive proof of Proposition 6.

Corollary 7. For every $k \geq 2$, every graph F on k vertices, and every $d \in(0,1)$, if $n \geq(4 / d)^{2 k}$ and $0<\varrho \leq(d / 4)^{2 k}$, then every two-colored n-vertex, (ϱ, d)-dense graph Γ contains at least γn^{k} monochromatic copies of F, where $\gamma=d^{2 k^{2}} 2^{-5 k^{2}}$.

Proof. Every canonical sequence $\left(v_{1}, \ldots, v_{2 k-2}\right)$ contains a monochromatic copy of K_{k}. Indeed, among the vertices $v_{1}, \ldots, v_{2 k-3}$, some $k-1$ have the same color on all the "forward" edges. Therefore, these vertices together with vertex $v_{2 k-2}$ form a monochromatic copy of K_{k}. On the other hand, every such copy is contained in no more than $k!\binom{2 k-2}{k} n^{k-2}=(2 k-2)_{k} n^{k-2}$ canonical sequences of length $2 k-2$. Finally, every copy of K_{k} contains at least one copy of F, and different copies of K_{k} contain different copies of F. Consequently, by Proposition 6 , every two-colored n-vertex, ($\varrho, d)$-dense graph Γ contains at least

$$
\left.\frac{f_{n}(2 k-2)}{(2 k-2)_{k} n^{k-2}}=\frac{1}{(2 k-2)_{k}}\left(\frac{1}{4}\right)^{\binom{2 k-1}{2}} d d_{2}^{(2 k-2}\right)^{k}>\frac{d^{2 k^{2}}}{2^{5 k^{2}}} n^{k}
$$

monochromatic copies of F.

3 Proof of Theorem 2

3.1 Preparations and outline

For given $n \in \mathbb{N}, p \in(0,1)$, and a k-vertex graph F we denote by X_{F} the random variable counting the number of copies of F in $G(n, p)$. We also recall that $\mu_{F}=\mathbb{E} X_{F}$.

For fixed $k \geq 3$ we prove Theorem 2 by induction on e_{F}. We may assume $n \geq k$, as for $n<k$ we have $\mu_{F}=0$ and there is nothing to prove.

Base case. Let F_{1} be a graph consisting of one edge and $k-2$ isolated vertices. Note that $m_{F_{1}}=1 / 2$ (see (2)) and for every two-coloring of the edges of $G(n, p)$ every copy of F_{1} in $G(n, p)$ is monochromatic. Clearly,

$$
X_{F_{1}}=\binom{n-2}{k-2} X_{K_{2}} \quad \text { and } \quad \mu_{F_{1}}=\binom{n-2}{k-2} \mu_{K_{2}}=\binom{n-2}{k-2}\binom{n}{2} p .
$$

Thus, by Chernoff's bound (see, e.g., [3, ineq. (2.6)]) we have

$$
\mathbb{P}\left(X_{F_{1}} \leq \frac{1}{2} \mu_{F_{1}}\right)=\mathbb{P}\left(X_{K_{2}} \leq \frac{1}{2} \mu_{K_{2}}\right) \leq \exp \left(-\frac{1}{8}\binom{n}{2} p\right)
$$

which holds for any values of p and n. Hence, Theorem 2 follows for $F=F_{1}$ and with the constants $a_{1}=1 / 2, b_{1}=1 / 8$, and $C_{1}=n_{1}=1$ as given in (3).

Inductive step. Given a graph G, an edge f of G and a nonedge e, that is an edge of the complement of G, we denote by $G-f$ a graph obtained from G by removing f, and by $G+f$ a graph ontained by adding e to G. Let F_{i+1} be a graph with $i+1 \geq 2$ edges and maximum degree $\Delta\left(F_{i+1}\right) \geq 2$. If $i+1 \geq 3$, then we can remove one edge from F_{i+1} in such a way that the resulting graph F_{i} still contains at least one vertex of degree at least two, i.e., $\Delta\left(F_{i}\right) \geq 2$. If $i+1=2$, the graph $F_{i+1}=F_{2}$ consists of a path of length two and $k-3$ isolated vertices and removing any of the two edges results in the graph $F_{i}=F_{1}$. In either case, we may fix an edge $f \in E\left(F_{i+1}\right)$ such that the graph $F_{i}=F_{i+1}-f$ is k-admissible. Hence, we can assume that Theorem 2 holds for F_{i} and for the constants a_{i}, b_{i}, C_{i}, and n_{i} inductively defined by (3) and (4).

We have to show that Theorem 2 holds for F_{i+1} and constants $a_{i+1}, b_{i+1}, C_{i+1}$, and n_{i+1} given in (4). To this end, let $n \geq n_{i+1}$ and $p \geq C_{i+1} n^{-1 / m_{F_{i+1}}}$. We will expose the random graph $G(n, p)$ in two independent rounds $G\left(n, p_{\mathrm{I}}\right)$ and $G\left(n, p_{\mathrm{II}}\right)$ and have $G(n, p)=G\left(n, p_{\mathrm{I}}\right) \cup G\left(n, p_{\mathrm{II}}\right)$. For that, we will fix p_{I} and p_{II} as follows. First we fix auxiliary constants ${ }^{1}$

$$
\begin{equation*}
d=\frac{a_{i}^{2}}{64^{k^{2}}}, \quad \varrho=\left(\frac{d}{4}\right)^{2 k}, \quad \gamma=\frac{d^{2 k^{2}}}{2^{5 k^{2}}}, \quad \delta_{\mathrm{II}}=\frac{\gamma^{4}}{9 \cdot 16^{k^{2}}}, \quad \text { and } \quad \alpha=\frac{\delta_{\mathrm{II}}^{2} \gamma}{36} . \tag{8}
\end{equation*}
$$

Then p_{I} and $p_{\mathrm{II}} \in(0,1)$ are defined by the equations

$$
\begin{equation*}
p=p_{\mathrm{I}}+p_{\mathrm{II}}-p_{\mathrm{I}} p_{\mathrm{II}} \quad \text { and } \quad p_{\mathrm{I}}=\alpha p_{\mathrm{II}} \tag{9}
\end{equation*}
$$

Clearly, we have

$$
\begin{equation*}
p \geq p_{\mathrm{II}} \geq \frac{p}{2} \geq \alpha p \geq \alpha p_{\mathrm{II}}=p_{\mathrm{I}} \geq \alpha \frac{p}{2} \tag{10}
\end{equation*}
$$

We continue with a short outline of the main ideas of the forthcoming proof.
Outline. First we consider a two-coloring χ, with colors red and blue, of the edges of $G\left(n, p_{\mathrm{I}}\right)$ (first round). Owing to the induction assumption (Theorem 2 for F_{i}) we note that with high probability the coloring χ yields many monochromatic copies of F_{i}. We will say that an unordered pair of vertices $e=\{u, v\}$ is χ-rich if $G\left(n, p_{\mathrm{I}}\right)+e$ possesses "many" (to be defined later) copies of F_{i+1}, in which e plays the role of the edge f and the rest is a monochromatic copy of F_{i}. Let Γ_{χ} be an auxiliary graph of all χ-rich pairs. We will show that with 'high' probability (to be specified later), Γ_{χ} is, in fact, (ϱ, d)-dense for d and ϱ as in (8) (Claim 8).

To this end, note that if the monochromatic copies of F_{i} were clustered at relatively few pairs, then we might fall short of proving Claim 8. However, we will show that in the random graph $G\left(n, p_{\mathrm{I}}\right)$ it is unlikely that many copies of F_{i} share the same pair of vertices. For that, we will consider the distribution of the graphs T consisting of two copies of F_{i} which share the vertices of a missing edge f (and possibly other vertices). We will show that the number of those copies is of the same order of magnitude as its

[^1]expectation (Fact 9), and will also require that this holds with high probability. Such a sharp concentration result is known to be false, but Proposition 5 asserts that it can be obtained on the cost of removing a few edges of $G\left(n, p_{\mathrm{I}}\right)$.

The auxiliary graph Γ_{χ} is naturally two-colored (by azure and pink), since every χ-rich pair closes either many blue or many red copies of F_{i} (or both and then we pick the color for that edge, azure or blue, arbitrarily). Consequently, Corollary 7 yields many monochromatic copies of F_{i+1} in Γ_{χ} and at least half of them are colored, say, pink. That is, there are many copies of F_{i+1} in Γ_{χ} such that each of their edges closes many red copies of F_{i} in $G\left(n, p_{\mathrm{I}}\right)$ under the coloring χ. By Janson's inequality combined with Proposition 4, with high probability, many pink copies will be still present in $\Gamma_{\chi} \cap G\left(n, p_{\text {II }}\right)$ (second round) even after a fraction of edges is deleted. Thus, we are facing a 'win-win' scenario. Namely, if an extension of χ colors only few pink edges of $\Gamma_{\chi} \cap G\left(n, p_{\text {II }}\right)$ red then, by the above, many copies of F_{i+1} in $\Gamma_{\chi} \cap G\left(n, p_{\text {II }}\right)$ have to be colored completely blue. Otherwise, many pink edges of $\Gamma_{\chi} \cap G\left(n, p_{\text {II }}\right)$ are red, which, by the definition of a pink edge, results in many red copies of F_{i+1} in $G(n, p)$.

Useful estimates. For the verification of several inequalities in the proof, it will be useful to appeal to the following lower bounds for γ, α, and ϱ in terms of powers of a_{i} and 2 . From the definitions in (8), for sufficiently large k, one obtains the following bounds.

$$
\begin{align*}
\gamma & =\frac{a_{i}^{4 k^{2}}}{2^{12 k^{4}+5 k^{2}} \geq \frac{a_{i}^{4 k^{2}}}{2^{13 k^{4}}},} \\
\alpha & =\frac{a_{i}^{36 k^{2}}}{3^{6} \cdot 2^{108 k^{4}+53 k^{2}+2}} \geq \frac{a_{i}^{36 k^{2}}}{2^{109 k^{4}}}, \tag{11}\\
\varrho & =\frac{a_{i}^{4 k}}{2^{12 k^{3}+4 k}} \geq \frac{a_{i}^{4 k}}{2^{13 k^{3}}} .
\end{align*}
$$

We will also make use of the inequalities

$$
\begin{equation*}
n p \geq C_{i+1} \tag{12}
\end{equation*}
$$

valid because $m_{F_{i+1}} \geq 1$, and, for every subgraph H of F_{i+1} with $v_{H} \geq 3$,

$$
\begin{equation*}
n^{v_{H}-2} p^{e_{H}-1} \geq C_{i+1}^{e_{H}-1}, \tag{13}
\end{equation*}
$$

valid because

$$
m_{F_{i+1}} \geq d_{H}=\frac{e_{H}-1}{v_{H}-2}
$$

Of course, (12) follows from (13), by taking H with $d_{H}=m_{F_{i+1}}$.

3.2 Details.

First round. As outlined above, in the first round we want to show that with high probability the random graph $G\left(n, p_{\mathrm{I}}\right)$ has the property that for every two-coloring χ
the auxiliary graph Γ_{χ} (defined below) is (ϱ, d)-dense. For that we set

$$
\begin{equation*}
\delta_{\mathrm{I}}=\frac{b_{i}^{2}}{36} \tag{14}
\end{equation*}
$$

and for a two-coloring χ call a pair $\{u, v\}$ of vertices χ-rich if it closes at least

$$
\begin{equation*}
\ell=\frac{a_{i}}{4^{k^{2}}}(\varrho n)^{k-2} p_{\mathrm{I}}^{i} \tag{15}
\end{equation*}
$$

monochromatic copies of F_{i} in $G\left(n, p_{\mathrm{I}}\right)$ to a copy of F_{i+1}. Then Γ_{χ} is an auxiliary n-vertex graph with the edge set being the set of χ-rich pairs.

Let \mathcal{E} be the event (defined on $G\left(n, p_{\mathrm{I}}\right)$) that for every two-coloring χ of $G\left(n, p_{\mathrm{I}}\right)$ the graph Γ_{χ} is (ϱ, d)-dense.

Claim 8.

$$
\mathbb{P}(\mathcal{E}) \geq 1-\exp \left(-\frac{\delta_{\mathrm{I}}^{2}}{16^{k^{2}}}\binom{\varrho n}{2} p_{\mathrm{I}}+n+2 k^{2}\right)
$$

Before giving the proof of Claim 8 we need one more fact. Let $\left\{T_{1}, T_{2}, \ldots, T_{t}\right\}$ be the family of all pairwise non-isomorphic graphs which are unions of two copies of F_{i}, say $F_{i}^{\prime} \cup F_{i}^{\prime \prime}$, with the property that adding a single edge completes both, F_{i}^{\prime} and $F_{i}^{\prime \prime}$ to a copy of F_{i+1}. We will refer to these graphs as double creatures (of F_{i}). Clearly, with some foresight of future applications,

$$
\begin{equation*}
t \leq 2^{\binom{2 k-2}{2}} \leq 2^{2 k^{2}-4 k} \leq \frac{2^{2 k^{2}-1}}{4\binom{k}{2}} \tag{16}
\end{equation*}
$$

Let X_{j} be the number of copies of T_{j} in $G\left(U, p_{\mathrm{I}}\right), j=1, \ldots, t$.
Fact 9. For every $j=1, \ldots, t$

$$
\mathbb{E} X_{j} \leq(\varrho n)^{2 k-2} p_{\mathrm{I}}^{2 i}
$$

Proof. Let $T:=T_{j}=F_{i}^{\prime} \cup F_{i}^{\prime \prime}$ be a double creature and set $S=F_{i}^{\prime} \cap F_{i}^{\prime \prime}$. Then the expected number of copies of T is bounded from above by

$$
\mathbb{E} X_{T} \stackrel{(5)}{\leq}(\varrho n)^{v_{T}} p_{\mathrm{I}}^{e_{T}}=\frac{(\varrho n)^{2 k} p_{\mathrm{I}}^{2 i}}{(\varrho n)^{v_{S}} p_{\mathrm{I}}^{e_{S}}}
$$

and it remains to show that

$$
(\varrho n)^{v_{S}} p_{\mathrm{I}}^{e_{S}} \geq(\varrho n)^{2}
$$

There is nothing to prove when $v_{S}=2$ (and thus $e_{S}=0$). Otherwise, pick a pair of vertices f in T such that both, $F_{i}^{\prime}+f$ and $F_{i}^{\prime \prime}+f$, are isomorphic to F_{i+1}. Then $J:=S+f \subseteq F_{i+1}$. Note that $e_{J}=e_{S}+1$ and $3 \leq v_{J}=v_{S} \leq k$. Since $C_{i+1} \geq 2 / \alpha$,

$$
\begin{align*}
& (\varrho n)^{v_{S}} p_{\mathrm{I}}^{e_{S}} \stackrel{(10)}{\geq}(\varrho n)^{v_{J}}\left(\frac{\alpha}{2}\right)^{e_{S}} p^{e_{J}-1} \stackrel{(13)}{\geq} \varrho^{v_{S}-2}\left(\frac{\alpha}{2}\right)^{e_{S}} C_{i+1}^{e_{S}}(\varrho n)^{2} \\
& \quad \geq \varrho^{k} \frac{\alpha}{2} C_{i+1}(\varrho n)^{2} \stackrel{(11)}{\geq} \frac{1}{2} \frac{a_{i}^{4 k^{2}}}{2^{13 k^{4}}} \frac{a_{i}^{36 k^{2}}}{2^{109 k^{4}}} C_{i+1}(\varrho n)^{2} \stackrel{(4)}{\geq} \frac{2^{13 k^{4}-1}}{b_{i}^{4}} C_{i}(\varrho n)^{2} \geq(\varrho n)^{2} \tag{17}
\end{align*}
$$

Proof of Claim 8: Let χ be a two-coloring of $G\left(n, p_{\mathrm{I}}\right)$. Fix a set $U \subseteq[n]$ with $|U|=\varrho n$ (throughout we assume that ϱn is an integer) and consider the random graph $G\left(n, p_{\mathrm{I}}\right)$ induced on U

$$
G\left(U, p_{\mathrm{I}}\right):=G\left(n, p_{\mathrm{I}}\right)[U] .
$$

By the induction assumption, if $\varrho n \geq n_{i}$ and $p_{i} \geq C_{i}(\varrho n)^{-1 / m_{F_{i}}}$ then, with high probability, there are many monochromatic copies of F_{i} in $G\left(U, p_{\mathrm{I}}\right)$. For technical reasons that will become clear only later, we want to strengthen the above Ramsey property so that it is resilient to deletion of a small fraction of edges. For that we apply the induction assumption to the random graph $G\left(U,\left(1-\delta_{\mathrm{I}}\right) p_{\mathrm{I}}\right)$, followed by an application of Propositions 4. We begin by verifying the assumptions of Theorem 2 with respect to F_{i} and $G\left(U,\left(1-\delta_{\mathrm{I}}\right) p_{\mathrm{I}}\right)$. First, note that

$$
\begin{equation*}
|U|=\varrho n \geq \varrho n_{i+1} \stackrel{(11)}{\geq} \frac{a_{i}^{4 k}}{2^{13 k^{3}}} n_{i+1} \stackrel{(4)}{=} \frac{a_{i}^{4 k}}{2^{13 k^{3}}} \cdot \frac{2^{14 k^{3}}}{a_{i}^{4 k}} n_{i}=2^{k^{3}} n_{i} \geq n_{i} . \tag{18}
\end{equation*}
$$

It remains to check that

$$
\begin{equation*}
\left(1-\delta_{\mathrm{I}}\right) p_{\mathrm{I}} \geq C_{i}(\varrho n)^{-1 / m_{F_{i}}} . \tag{19}
\end{equation*}
$$

To this end, we simply note that using $\delta_{\mathrm{I}} \leq 1 / 2, \varrho \leq 1$, and $m_{F_{i+1}} \geq \max \left(1, m_{F_{i}}\right)$ we have

$$
\left(1-\delta_{\mathrm{I}}\right) p_{\mathrm{I}} \stackrel{(10)}{\geq} \frac{\alpha p}{4} \geq \frac{\alpha}{4} C_{i+1} \varrho^{1 / m_{F_{i+1}}}(\varrho n)^{-1 / m_{F_{i+1}}} \geq \frac{\alpha}{4} C_{i+1} \varrho(\varrho n) n^{-1 / m_{F_{i}}}
$$

Furthermore, we have

$$
\begin{equation*}
\frac{\alpha \varrho}{4} C_{i+1} \stackrel{(11)}{\geq} \frac{a_{i}^{36 k^{2}+4 k}}{2^{109 k^{4}+13 k^{3}+2}} \cdot C_{i+1} \stackrel{(4)}{=} \frac{a_{i}^{37 k^{2}}}{2^{110 k^{4}}} \cdot \frac{2^{122 k^{4}} C_{i}}{b_{i}^{4} a_{i}^{37 k^{2}}}=\frac{2^{12 k^{2}} C_{i}}{b_{i}^{4}} \geq C_{i} \tag{20}
\end{equation*}
$$

and (19) follows. Thus, we are in position to apply the induction assumption to $G\left(U,\left(1-\delta_{\mathrm{I}}\right) p_{\mathrm{I}}\right)$ and F_{i}. Let

$$
\begin{equation*}
\mu:=\mu_{F_{i}}^{\varrho, \delta_{\mathrm{I}}}:=\binom{\varrho n}{k} \frac{k!}{\operatorname{aut}\left(F_{i}\right)}\left(\left(1-\delta_{\mathrm{I}}\right) p_{\mathrm{I}}\right)^{i} \geq \frac{1}{4^{k^{2}}}(\varrho n)^{k} p_{\mathrm{I}}^{i} \tag{21}
\end{equation*}
$$

denote the expected number of copies of F_{i} in $G\left(U,\left(1-\delta_{\mathrm{I}}\right) p_{\mathrm{I}}\right)$. By Theorem 2 we infer that

$$
\begin{align*}
\mathbb{P}\left(G\left(U,\left(1-\delta_{\mathrm{I}}\right) p_{\mathrm{I}}\right) \xrightarrow{a_{i} \mu} F_{i}\right) & \geq 1-\exp \left(-b_{i}\left(1-\delta_{\mathrm{I}}\right) p_{\mathrm{I}}\binom{\varrho n}{2}\right) \\
& \geq 1-\exp \left(-\frac{b_{i}}{2} p_{\mathrm{I}}\binom{\varrho n}{2}\right) . \tag{22}
\end{align*}
$$

Next we head for an application of Proposition 4 with $c=b_{i} / 2, \delta=\delta_{\mathrm{I}}, N=\binom{\varrho n}{2}$, and p_{I}. Note that, indeed, $\delta_{\mathrm{I}}=b_{i}^{2} / 36=c^{2} / 9$ (see (14)). Moreover, using $\varrho n \geq 3$ (see (18)) and (12) we see that

$$
p_{\mathrm{I}}\binom{\varrho n}{2} \stackrel{(10)}{\geq} \frac{\alpha p}{2} \cdot \varrho n \geq \frac{\alpha \varrho}{2} \cdot C_{i+1} \stackrel{(20)}{\geq} \frac{2^{12 k^{3}+1}}{b_{i}^{4}} \geq \frac{72}{\delta_{\mathrm{I}}^{2}}
$$

and the assumptions of Proposition 4 are verified. From (22) we infer by Proposition 4 that with probability at least

$$
\begin{equation*}
1-\exp \left(-\frac{\delta_{\mathrm{I}}^{2}}{9}\binom{\varrho n}{2} p_{\mathrm{I}}\right) \tag{23}
\end{equation*}
$$

$G\left(U, p_{\mathrm{I}}\right)$ has the property that for every subgraph $G^{\prime} \subseteq G\left(U, p_{\mathrm{I}}\right)$ with

$$
\left|E\left(G\left(U, p_{\mathrm{I}}\right)\right) \backslash E\left(G^{\prime}\right)\right| \leq \frac{\delta_{\mathrm{I}}}{2}\binom{\varrho n}{2} p_{\mathrm{I}}
$$

we have

$$
\begin{equation*}
G^{\prime} \xrightarrow{a_{i} \mu} F_{i} . \tag{24}
\end{equation*}
$$

Our goal is to show that, with high probability, any two-coloring χ of $G\left(U, p_{\mathrm{I}}\right)$ yields at least $d\left(|U|^{2} / 2\right) \chi$-rich edges, and ultimately, by repeating this argument for every set $U \subseteq[n]$ with ϱn vertices, that Γ_{χ} is (ϱ, d)-dense. The above 'robust' Ramsey property (24) means that after applying Proposition 5 to $G\left(U, p_{\mathrm{I}}\right)$ the resulting subgraph of $G\left(U, p_{\mathrm{I}}\right)$ will still have the Ramsey property with high probability.

Let Y be the random variable counting the number of double creatures in $G\left(U, p_{\mathrm{I}}\right)$. It follows from Fact 9 that

$$
\begin{equation*}
\mathbb{E} Y \leq t(\varrho n)^{2 k-2} p_{\mathrm{I}}^{2 i} \tag{25}
\end{equation*}
$$

Hence, by Proposition 5, applied for every $j=1, \ldots, t$ to the families \mathcal{S}_{j} of all copies of T_{j} in $G\left(U, p_{\mathrm{I}}\right)$ with

$$
\begin{equation*}
h_{\mathrm{I}}=\frac{\delta_{\mathrm{I}}}{2 t}\binom{\varrho n}{2} p_{\mathrm{I}} \tag{26}
\end{equation*}
$$

we conclude that with probability at least

$$
\begin{equation*}
1-\sum_{j=1}^{t} \exp \left(-\frac{h_{\mathrm{I}}}{2 e\left(T_{j}\right)}\right) \geq 1-t \exp \left(-\frac{h_{\mathrm{I}}}{2 k^{2}}\right) \tag{27}
\end{equation*}
$$

there exists a subgraph $G_{0} \subseteq G\left(U, p_{\mathrm{I}}\right)$ with $\mid E\left(G\left(U, p_{\mathrm{I}}\right) \backslash E\left(G_{0}\right) \mid \leq t h_{\mathrm{I}}\right.$ such that G_{0} contains at most $2 \mathbb{E} Y$ double creatures. Since

$$
t h_{\mathrm{I}} \stackrel{(26)}{=} \frac{\delta_{\mathrm{I}}}{2}\binom{\varrho n}{2} p_{\mathrm{I}}
$$

the robust Ramsey property (24) holds with $G^{\prime}=G_{0}$.
Recall that a two-coloring χ of $G\left(n, p_{\mathrm{I}}\right)$ is fixed. For $\{u, v\} \subset U$, let $x_{u v}$ be the number of monochromatic copies of F_{i} in G_{0} which together with the pair $\{u, v\}$ form a copy of F_{i+1}. Owing to (24), we have

$$
\begin{equation*}
\sum_{\{u, v\} \in\binom{U}{2}} x_{u v} \geq a_{i} \mu \tag{28}
\end{equation*}
$$

By the above application of Proposition 5 we infer that

$$
\begin{equation*}
\sum_{\{u, v\} \in\binom{U}{2}} x_{u v}^{2} \leq 2 \cdot\binom{k}{2} \cdot\left|D C\left(G_{0}\right)\right| \leq 4\binom{k}{2} \mathbb{E} Y \stackrel{(25),(16)}{\leq} 2^{2 k^{2}-1}(\varrho n)^{2 k-2} p_{\mathrm{I}}^{2 i} \tag{29}
\end{equation*}
$$

where $D C\left(G_{0}\right)$ is the set of all double creatures in G_{0}. Recall that $\{u, v\} \in E\left(\Gamma_{\chi}\right)$ if it is χ-rich, which is implied by $x_{u v} \geq \ell$, where ℓ is defined in (15). We want to show that $e\left(\Gamma_{\chi}[U]\right) \geq d(\varrho n)^{2} / 2$. Since $\ell \leq a_{i} \mu /(\varrho n)^{2}$ (compare (15) and (21)), it follows from (28) that

$$
\sum_{\substack{\{u, v\} \in\left(\begin{array}{l}
U \\
x_{u} \\
x_{u v} \geq \ell
\end{array}\right.}} x_{u v} \geq \frac{a_{i} \mu}{2} \stackrel{(21)}{\geq} \frac{1}{2} \cdot \frac{a_{i}}{4^{k^{2}}}(\varrho n)^{k} p_{\mathrm{I}}^{i}
$$

Squaring the last inequality and applying the Cauchy-Schwarz inequality yields

$$
\begin{aligned}
\left(\frac{1}{2} \cdot \frac{a_{i}}{4^{k^{2}}}(\varrho n)^{k} p_{\mathrm{I}}^{i}\right)^{2} \leq\left(\sum_{\substack{\{u, v\} \in\left(\begin{array}{c}
U \\
2
\end{array}\right) \\
x_{u v} \geq \ell}} x_{u v}\right)^{2} & \leq e\left(\Gamma_{\chi}[U]\right) \sum_{\substack{\{u, v\} \in\left(\begin{array}{c}
U \\
2
\end{array}\right) \\
x_{u v} \geq \ell}} x_{u v}^{2} \\
& \stackrel{(29)}{ } e\left(\Gamma_{\chi}[U]\right) \cdot 2^{2 k^{2}-1}(\varrho n)^{2 k-2} p_{\mathrm{I}}^{2 i}
\end{aligned}
$$

Consequently,

$$
e\left(\Gamma_{\chi}[U]\right) \geq \frac{a_{i}^{2}}{64^{k^{2}}}(\varrho n)^{2} / 2 \geq \frac{a_{i}^{2}}{64^{k^{2}}}(\varrho n)^{2} / 2 \stackrel{(8)}{=} d(\varrho n)^{2} / 2 .
$$

Summarizing the above, we have shown that if $G\left(U, p_{\mathrm{I}}\right)$ has the robust Ramsey property for $F_{i}(24)$ and if the conclusion of Proposition 5 holds for all $j=1, \ldots, t$, then $e\left(\Gamma_{\chi}[U]\right) \geq d(\varrho n)^{2} / 2$. The probability that at least one of these events fails is at most (see (23) and (27))

$$
\exp \left(-\frac{\delta_{\mathrm{I}}^{2}}{9}\binom{\varrho n}{2} p_{\mathrm{I}}\right)+t \exp \left(-\frac{h_{\mathrm{I}}}{2 k^{2}}\right)
$$

Recalling that $t \leq 4^{k^{2}}$ (see (16)) and the definition of h_{I} in (26), Claim 8 now follows by summing up these probabilities over all choices of $U \subseteq[n]$ with $|U|=\varrho n$. More precisely, using the union bound and the estimate $\binom{n}{\varrho} \leq 2^{n}$, we conclude that the probability that there is a coloring χ for which the graph Γ_{χ} is not (ϱ, d)-dense is

$$
\begin{aligned}
\mathbb{P}(\neg \mathcal{E}) \leq 2^{n} \exp \left(-\frac{1}{9} \delta_{\mathrm{I}}^{2}\binom{\varrho n}{2} p_{\mathrm{I}}\right)+2^{n} 4^{k^{2}} \exp (- & \left.\frac{1}{k^{2} 4^{k^{2}}} \delta_{\mathrm{I}}\binom{\varrho n}{2} p_{\mathrm{I}}\right) \\
& \leq \exp \left(-\frac{\delta_{\mathrm{I}}^{2}}{16^{k^{2}}}\binom{\varrho n}{2} p_{\mathrm{I}}+n+2 k^{2}\right)
\end{aligned}
$$

This ends the analysis of the first round.

Second round. Let \mathcal{B} be the conjunction of \mathcal{E} and the event that $\left|G\left(n, p_{\mathrm{I}}\right)\right| \leq n^{2} p_{\mathrm{I}}$. In the second round we will condition on the event \mathcal{B} and sum over all two-colorings χ of $G\left(n, p_{\mathrm{I}}\right)$. Formally, let \mathcal{A} be the (bad) event that there is a two-coloring of the edges of $G(n, p)$ with fewer than $a_{i+1} \mu_{F_{i+1}}$ monochromatic copies of F_{i+1}. (That is, $\neg \mathcal{A}$ is the Ramsey property $G(n, p) \xrightarrow{a_{i+1} \mu_{F_{i+1}}} F_{i+1}$.) Further, given a two-coloring χ of $G\left(n, p_{\mathrm{I}}\right)$, let \mathcal{A}_{χ} be the event that there exists an extension of χ to a coloring $\bar{\chi}$ of $G(n, p)$ yielding altogether fewer than $a_{i+1} \mu_{F_{i+1}}$ monochromatic copies of F_{i+1}.

The following pair of inequalities exhibit the skeleton of our proof of Theorem 2:

$$
\begin{equation*}
\mathbb{P}(\mathcal{A}) \leq \mathbb{P}(\neg \mathcal{B})+\sum_{G \in \mathcal{B}} \mathbb{P}\left(\mathcal{A} \mid G\left(n, p_{\mathrm{I}}\right)=G\right) \mathbb{P}\left(G\left(n, p_{\mathrm{I}}\right)=G\right) \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{P}\left(\mathcal{A} \mid G\left(n, p_{\mathrm{I}}\right)=G\right)=\mathbb{P}\left(\bigcup_{\chi} \mathcal{A}_{\chi} \mid G\left(n, p_{\mathrm{I}}\right)=G\right) \leq 2^{n^{2} p_{1}} \max _{\chi} \mathbb{P}\left(\mathcal{A}_{\chi} \mid G\left(n, p_{\mathrm{I}}\right)=G\right) \tag{31}
\end{equation*}
$$

By Claim 8 and Chernoff's inequality (see, e.g., [3, ineq. (2.5)])

$$
\begin{align*}
& \mathbb{P}(\neg \mathcal{B}) \leq \mathbb{P}(\neg \mathcal{E})+\mathbb{P}\left(\left|G\left(n, p_{\mathrm{I}}\right)\right|>\right.\left.n^{2} p_{\mathrm{I}}\right) \\
& \leq \exp \left(-\frac{\delta_{\mathrm{I}}^{2}}{16^{k^{2}}}\binom{\varrho n}{2} p_{\mathrm{I}}+n+2 k^{2}\right)+\exp \left(-\frac{1}{3}\binom{n}{2} p_{\mathrm{I}}\right) \\
& \leq \exp \left(-\frac{\delta_{\mathrm{I}}^{2}}{16^{k^{2}}}\binom{\varrho n}{2} p_{\mathrm{I}}+n+2 k^{2}+1\right)=: q_{\mathrm{I}} \tag{32}
\end{align*}
$$

To complete the proof of Theorem 2 it is thus crucial to find an upper bound on $\mathbb{P}\left(\mathcal{A}_{\chi} \mid G\left(n, p_{\mathrm{I}}\right)=G\right)$ which substantially beats the factor $2^{n^{2} p_{1}}$.
Claim 10. For every $G \in \mathcal{B}$ and every two-coloring χ of G,

$$
\mathbb{P}\left(\mathcal{A}_{\chi} \mid G\left(n, p_{\mathrm{I}}\right)=G\right) \leq \exp \left(-\frac{\delta_{\mathrm{II}}^{2} \gamma}{9} n^{2} p_{\mathrm{II}}\right) .
$$

The edges of Γ_{χ} are naturally two-colored according to the majority color among the monochromatic copies of F_{i} attached to them. We color an edge of Γ_{χ} pink if it closes at least $\ell / 2$ red copies of F_{i} and we color it azure otherwise. Subsequently, we apply Corollary 7 to Γ_{χ} for F_{i+1} and d (chosen in (8)). Note that in (8) we chose ϱ to facilitate such an application. Moreover, the required lower bound on n is equivalent to $\varrho n \geq 1$ and this follows from (18). Hence, by Corollary 7 and the choice of γ in (8), we may assume without loss of generality, that there are at least $\gamma n^{k} / 2$ pink copies of F_{i+1} in Γ_{χ}. In particular, all these copies of F_{i+1} consist entirely of edges closing each at least $\ell / 2$ red copies of F_{i} (from the first round). Let us denote by \mathcal{F}_{χ} the family of these copies of F_{i+1}, and let $\Gamma_{\chi}^{\text {pink }}$ be the subgraph of Γ_{χ} containing the pink edges. Since every edge may belong to at most n^{k-2} copies of F_{i+1}, we have

$$
\begin{equation*}
e\left(\Gamma_{\chi}^{\text {pink }}\right) \geq \frac{(i+1) \cdot\left|\mathcal{F}_{\chi}\right|}{n^{k-2}} \geq \frac{(i+1) \cdot \gamma n^{k} / 2}{n^{k-2}} \geq \gamma n^{2} \tag{33}
\end{equation*}
$$

In the proof of Claim 10 we intend to use again Proposition 4, this time with $\Gamma=\Gamma_{\chi}^{\text {pink }}$ and \mathcal{Q} - the property of containing at least

$$
\begin{equation*}
\frac{\gamma}{2^{k^{2}}} n^{k} p_{\mathrm{II}}^{i+1} \tag{34}
\end{equation*}
$$

copies of F_{i+1} belonging to \mathcal{F}_{χ}. For this, however, we need the following fact.
Fact 11. With $\delta_{\text {II }}$ chosen in (8),

$$
\mathbb{P}\left(\left(\Gamma_{\chi}^{\mathrm{pink}}\right)_{\left(1-\delta_{\mathrm{II}}\right) p_{\mathrm{II}}} \notin \mathcal{Q}\right) \leq \exp \left(-\frac{\gamma^{2}}{4^{k^{2}}} e\left(\Gamma_{\chi}^{\mathrm{pink}}\right) p_{\mathrm{II}}\right)
$$

Proof. Consider a random variable Z counting the number of copies F_{i+1} belonging to \mathcal{F}_{χ} which are subgraphs of $G\left(n,\left(1-\delta_{\text {II }}\right) p_{\text {II }}\right)$. We have

$$
\begin{equation*}
\mathbb{E} Z=\left|\mathcal{F}_{\chi}\right|\left(\left(1-\delta_{\mathrm{II}}\right) p_{\mathrm{II}}\right)^{i+1} \geq \frac{1}{2} \gamma n^{k}\left(\left(1-\delta_{\mathrm{II}}\right) p_{\mathrm{II}}\right)^{i+1} \geq \frac{1}{2} \cdot \frac{1}{2^{\binom{k}{2}} \gamma n^{k} p_{\mathrm{II}}^{i+1}, ~} \tag{35}
\end{equation*}
$$

where we used the bound $\delta_{\text {II }} \leq 1 / 2$.
By Janson's inequality (see, e.g., [3, Theorem 2.14]),

$$
\mathbb{P}\left(\left(\Gamma_{\chi}^{\text {pink }}\right)_{\left(1-\delta_{\text {II }}\right) p_{\text {II }}} \notin \mathcal{Q}\right) \leq \mathbb{P}\left(Z \leq \frac{1}{2} \mathbb{E} Z\right) \leq \exp \left(-\frac{(\mathbb{E} Z)^{2}}{8 \bar{\Delta}}\right)
$$

where

$$
\bar{\Delta}=\sum_{F^{\prime} \in \mathcal{F}_{\chi}} \sum_{F^{\prime \prime} \in \mathcal{F}_{\chi}} \mathbb{P}\left(F^{\prime} \cup F^{\prime \prime} \subseteq G\left(n,\left(1-\delta_{\mathrm{II}}\right) p_{\mathrm{II}}\right)\right)
$$

with the double sum ranging over all ordered pairs $\left(F^{\prime}, F^{\prime \prime}\right) \in \mathcal{F}_{\chi} \times \mathcal{F}_{\chi}$ with $E\left(F^{\prime}\right) \cap$ $E\left(F^{\prime \prime}\right) \neq \emptyset$. The quantity $\bar{\Delta}$ can be bounded from above by

$$
\begin{equation*}
\bar{\Delta} \leq \sum_{\widetilde{F} \subseteq F_{i+1}} n^{2 k-v(\widetilde{F})} p_{\mathrm{II}}^{2(i+1)-e(\widetilde{F})} \tag{36}
\end{equation*}
$$

where the sum is taken over all subgraphs \widetilde{F} of F_{i+1} with at least one edge. If $e(\widetilde{F})=1$ then

$$
\begin{equation*}
n^{v(\widetilde{F})} p_{\mathrm{II}}^{e(\widetilde{F})}=n^{v(\widetilde{F})} p_{\mathrm{II}} \geq n^{2} p_{\mathrm{II}} . \tag{37}
\end{equation*}
$$

Otherwise,

$$
\begin{equation*}
n^{v(\widetilde{F})} p_{\mathrm{II}}^{e(\widetilde{F})} \geq \frac{n^{v(\widetilde{F})} p^{e(\widetilde{F})}}{2^{e(\widetilde{F})}} \stackrel{(13)}{\geq} \frac{n^{2} p C_{i+1}^{e(\widetilde{F})-1}}{2^{e(\widetilde{F})}} \geq n^{2} p \stackrel{(10)}{\geq} n^{2} p_{\mathrm{II}} \tag{38}
\end{equation*}
$$

where we also used the fact that $C_{i+1} \geq 4$ (see (4)). Combining (36) with the bounds (37) and (38) yields

$$
\bar{\Delta} \leq 2^{i+1} n^{2 k-2} p_{\mathrm{II}}^{2 i+1} \leq 2^{\binom{k}{2}} n^{2 k-2} p_{\mathrm{II}}^{2 i+1} .
$$

Finally, plugging this estimate for $\bar{\Delta}$ and (35) into Janson's inequality we obtain

$$
\mathbb{P}\left(\left(\Gamma_{\chi}^{\mathrm{pink}}\right)_{\left(1-\delta_{\mathrm{II}}\right) p_{\mathrm{II}}} \notin \mathcal{Q}\right) \leq \exp \left(-\frac{\gamma^{2} n^{2} p_{\mathrm{II}}}{32 \cdot 2^{2\binom{k}{2}} \cdot 2^{\binom{k}{2}}}\right) \leq \exp \left(-\frac{\gamma^{2}}{4^{k^{2}}} e\left(\Gamma_{\chi}^{\mathrm{pink}}\right) p_{\mathrm{II}}\right)
$$

Proof of Claim 10: We plan to apply Proposition 4 with $c=\gamma^{2} / 4^{k^{2}}, \delta_{\text {II }}=\gamma^{4} /\left(9 \cdot 16^{k^{2}}\right)$ (see (8)), $N=e\left(\Gamma_{\chi}^{\text {pink }}\right)$, and $p_{\text {II }}$. Therefore, first we have to verify that $e\left(\Gamma_{\chi}^{\text {pink }}\right) p_{\text {II }} \geq$ $72 / \delta_{\mathrm{II}}^{2}$. Indeed,

$$
e\left(\Gamma_{\chi}^{\mathrm{pink}}\right) \cdot p_{\mathrm{II}} \stackrel{(10,33)}{\geq} \gamma n^{2} \cdot \frac{p}{2} \stackrel{(12)}{\geq} \frac{\gamma}{2} n C_{i+1} \stackrel{(4)}{\geq} \frac{\gamma}{2} \cdot \frac{2^{122 k^{4}}}{a_{i}^{37 k^{3}}} \stackrel{(11)}{\geq} \frac{72 \cdot 81 \cdot 16^{2 k^{2}}}{\gamma^{8}}=\frac{72}{\delta_{\mathrm{II}}^{2}} .
$$

Consequently, by Proposition 4, we conclude that with probability at least

$$
\begin{equation*}
1-\exp \left(-\frac{\delta_{\text {II }}^{2}}{9} e\left(\Gamma_{\chi}^{\text {pink }}\right) p_{\mathrm{II}}\right) \stackrel{(33)}{\geq} 1-\exp \left(-\frac{\delta_{\mathrm{II}}^{2} \gamma}{9} n^{2} p_{\mathrm{II}}\right) \tag{39}
\end{equation*}
$$

the random graph $\left(\Gamma_{\chi}^{\mathrm{pink}}\right)_{p_{\text {II }}}$ has the property that for every subgraph $\Gamma^{\prime} \subseteq\left(\Gamma_{\chi}^{\mathrm{pink}}\right)_{p_{\text {II }}}$ with

$$
\begin{equation*}
\left|E\left(\left(\Gamma_{\chi}^{\mathrm{pink}}\right)_{p_{\mathrm{II}}}\right) \backslash E\left(\Gamma^{\prime}\right)\right| \leq \frac{\delta_{\mathrm{II}} \gamma}{2} n^{2} p_{\mathrm{II}}=: h_{\mathrm{II}} \tag{40}
\end{equation*}
$$

we have $\Gamma^{\prime} \in \mathcal{Q}$, that is, Γ^{\prime} contains at least $\frac{\gamma}{2^{k^{2}}} n^{k} p_{\mathrm{II}}^{i+1}$ copies of F_{i+1} belonging to \mathcal{F}_{χ} (see (34)).

Consider now an extension $\bar{\chi}$ of the coloring χ from $G\left(n, p_{\mathrm{I}}\right)$ to $G(n, p)$. If in the coloring $\bar{\chi}$ fewer than $h_{\text {II }}$ edges of $\left(\Gamma_{\chi}^{\text {pink }}\right)_{p_{\mathrm{II}}}$ are colored red, then, by the above consequence of Proposition 4, the blue part of $\left(\Gamma_{\chi}^{\text {pink }}\right)_{p_{\text {II }}}$ contains at least

$$
\frac{\gamma}{2^{k^{2}}} n^{k} p_{\mathrm{II}}^{i+1} \stackrel{(10)}{\geq} \frac{\gamma}{4^{k^{2}}} n^{k} p^{i+1}
$$

copies of F_{i+1}. If, on the other hand, more than h_{II} edges of $\left(\Gamma_{\chi}^{p i n k}\right)_{p_{\mathrm{II}}}$ are colored red, then, by the definition of a pink edge, noting that $i \leq k^{2} / 2$, at least

$$
\begin{aligned}
h_{\text {II }} \times \frac{\ell}{2} \times \frac{1}{i+1} & \stackrel{(15,40)}{\geq} \frac{\delta_{\text {II }} \gamma}{2} n^{2} p_{\text {II }} \times \frac{a_{i}}{4^{k^{2} k^{2}}}(\varrho n)^{k-2} p_{\mathrm{I}}^{i} \\
& \stackrel{(10)}{\geq} \frac{\delta_{\text {II }} \gamma}{4} n^{2} p \times \frac{a_{i} \varrho^{k}}{4^{k} k^{2}}\left(\frac{\alpha}{2}\right)^{i} n^{k-2} p^{i} \\
& \geq \frac{\delta_{\text {II }} \gamma a_{i} \varrho^{k} \alpha^{k^{2} / 2}}{16^{k^{2}}} n^{k} p^{i+1}
\end{aligned}
$$

red copies of F_{i+1} arise. Owing to (8), (11), and the choice of a_{i+1} in (4) we have

$$
\frac{\gamma}{4^{k^{2}}} \stackrel{(11)}{\geq} \frac{a_{i}^{4 k^{2}}}{2^{13 k^{4}+2 k^{2}}} \stackrel{(4)}{\geq} a_{i+1}
$$

and

$$
\frac{\delta_{\text {II }} \gamma a_{i} \varrho^{k} \alpha^{k^{2} / 2}}{16^{k^{2}}} \stackrel{(8)}{=} \frac{\gamma^{5} \varrho^{k} \alpha^{k^{2} / 2}}{9 \cdot 2^{8 k^{2}}} a_{i} \stackrel{(11)}{\geq} \frac{a_{i}^{18 k^{4}+24 k^{2}}}{2^{55 k^{6}}} \stackrel{(4)}{\geq} a_{i+1} .
$$

Therefore, we have shown that with probability as in (39), indeed any extension $\bar{\chi}$ of χ yields at least

$$
\min \left(\frac{\gamma}{4^{k^{2}}}, \frac{\delta_{\mathrm{II}} \gamma a_{i} \varrho^{k} \alpha^{k^{2} / 2}}{16^{k^{2}}} n^{k} p^{i+1}\right) \geq a_{i+1} n^{k} p^{i+1} \stackrel{(5)}{\geq} a_{i+1} \mu_{F_{i+1}}
$$

monochromatic copies of F_{i+1}.

The final touch. To finish the proof of Theorem 2 it is left to verify that indeed $\mathbb{P}(\mathcal{A}) \leq \exp \left(-b_{i+1}\binom{n}{2} p\right)$. The error probability of the first round is (see (32))

$$
\mathbb{P}(\neg \mathcal{B}) \leq q_{\mathrm{I}}
$$

Turning to the second round, by Claim 10 and (31), for any $G \in \mathcal{B}$,

$$
\begin{equation*}
\mathbb{P}\left(\mathcal{A} \mid G\left(n, p_{\mathrm{I}}\right)=G\right) \leq 2^{n^{2} p_{\mathrm{I}}} \cdot \exp \left(-\frac{\delta_{\mathrm{II}}^{2} \gamma}{9} n^{2} p_{\mathrm{II}}\right) \leq \exp \left(-\frac{\delta_{\mathrm{II}}^{2} \gamma}{9} n^{2} p_{\mathrm{II}}+n^{2} p_{\mathrm{I}}\right)=: q_{\mathrm{II}} \tag{41}
\end{equation*}
$$

and, consequently, by (30),

$$
\mathbb{P}(\mathcal{A}) \leq q_{\mathrm{I}}+q_{\mathrm{II}}
$$

Below we show (see Fact 12) that $q_{\text {I }}$ and $q_{\text {II }}$ are each upper bounded by $\exp \left(-b_{i+1} n^{2} p\right)$. Consequently,

$$
\mathbb{P}(\mathcal{A}) \leq 2 \exp \left(-b_{i+1} n^{2} p\right) \leq \exp \left(1-b_{i+1} n^{2} p\right) \leq \exp \left(-\frac{b_{i+1}}{2} n^{2} p\right) \leq \exp \left(-b_{i+1}\binom{n}{2} p\right)
$$

because

$$
\frac{b_{i+1}}{2} n^{2} p \stackrel{(12)}{\geq} \frac{b_{i+1}}{2} C_{i+1} n_{i+1} \stackrel{(4)}{\geq} C_{i} n_{i+1} \geq 1
$$

Fact 12.

$$
\max \left(q_{\mathrm{I}}, q_{\text {II }}\right) \leq \exp \left(-b_{i+1} n^{2} p\right)
$$

Proof. We first bound q_{I}. Since $\varrho n \geq 3$ (see (18)),

$$
\frac{\delta_{\mathrm{I}}^{2}}{16^{k^{2}}}\binom{\varrho n}{2} p_{\mathrm{I}} \stackrel{(10)}{\geq} \frac{\delta_{\mathrm{I}}^{2} \varrho^{2} \alpha}{16^{k^{2}} \cdot 6} n^{2} p \stackrel{(11,14)}{\geq} \frac{b_{i}^{4} a_{i}^{36 k^{2}+8 k}}{6^{5} \cdot 2^{109 k^{4}+26 k^{3}+4 k^{2}}} n p^{2} \stackrel{(4)}{\geq} 2 b_{i+1} n^{2} p
$$

while, since $i+1 \geq 2$,

$$
n+2 k^{2}+1 \leq n+n_{i+1} \leq 2 n \stackrel{(4)}{\leq} b_{i+1} C_{i+1} n \stackrel{(12)}{\leq} b_{i+1} n^{2} p
$$

Consequently,

$$
q_{\mathrm{I}} \leq \exp \left(-2 b_{i+1} n^{2} p+b_{i+1} n^{2} p\right)=\exp \left(-b_{i+1} n^{2} p\right)
$$

Now we derive the same upper bound for $q_{\text {II }}$. Since

$$
p_{\mathrm{I}} \stackrel{(10)}{\leq} \alpha p \stackrel{(8)}{=} \frac{\delta_{\mathrm{II}}^{2} \gamma}{36} p
$$

(10)
while $p_{\text {II }} \stackrel{(10)}{\geq} p / 2$,

$$
q_{\mathrm{II}}=\exp \left(-\frac{\delta_{\mathrm{II}}^{2} \gamma}{9} n^{2} p_{\mathrm{II}}+n^{2} p_{\mathrm{I}}\right) \leq \exp \left(-\frac{\delta_{\mathrm{II}}^{2} \gamma}{36} n^{2} p\right) .
$$

Therefore, the required bound follows from

$$
\frac{\delta_{\mathrm{II}}^{2} \gamma}{36} \stackrel{(8)}{=} \frac{\gamma^{9}}{36 \cdot 81 \cdot 16^{2 k^{2}}} \stackrel{(11)}{\geq} \frac{a_{i}^{36 k^{2}}}{2^{118^{k^{4}}}} \stackrel{(4)}{\geq} b_{i+1}
$$

This concludes the proof of the inductive step, i.e., the proof of Theorem 2 for F_{i+1}, given it is true for $F_{i}, i=1, \ldots,\binom{k}{2}-1$. The proof of Theorem 2 is thus completed.

4 Proof of Corolary 3

In order to deduce Corollary 3 from Theorem 2, we first need to estimate the parameters $a_{i}, b_{i}, C_{i}, n_{i}, i=1, \ldots,\binom{k}{2}$, defined recursively in (4).
Proposition 13. There exist positive constants $c_{1}, c_{2}, c_{3}, c_{4}>0$ such that for every $k \geq 3$

$$
a_{K_{k}} \geq 2^{-k^{\left(c_{1} \cdot k^{2}\right)}} \quad b_{K_{k}} \geq 2^{-k^{\left(c_{2} \cdot k^{2}\right)}} \quad C_{K_{k}} \leq 2^{k^{\left(c_{3} \cdot k^{2}\right)}} \quad n_{K_{k}} \leq 2^{k^{\left(c_{4} \cdot k^{2}\right)}}
$$

Proof. Throughout the proof we assume that $k \geq k_{0}$ for some sufficiently large constant k_{0}. Let $x=19 k^{4}, y=55 k^{6}$, and set $\alpha_{i}=\log a_{i}, i=1, \ldots,\binom{k}{2}$. Recall that $a_{1}=\frac{1}{2}$. The recurrence relation (4) becomes now

$$
\alpha_{i}=x \alpha_{i-1}-y
$$

whose solution can be easily found as

$$
\alpha_{i}=-x^{i-1}-y \frac{x^{i-1}-1}{x-1}
$$

(note that $\alpha_{1}=-1$). Hence, for all $i=1, \ldots,\binom{k}{2}$, and some constant $c_{1}>0$,

$$
\begin{equation*}
-\alpha_{i}=x^{i-1}+y \frac{x^{i-1}-1}{x-1} \leq k^{c_{1} \cdot i} \tag{42}
\end{equation*}
$$

In particular,

$$
a_{\binom{k}{2}} \geq 2^{-k^{c_{1} \cdot\binom{k}{2}}} \geq 2^{-k^{\left(c_{1} \cdot k^{2}\right)}}
$$

The recurrence relation for the b_{i} 's is more complex. With $u=37 k^{2}$ and $v=118 k^{4}$, it reads as

$$
b_{i}=b_{i-1}^{4} a_{i-1}^{u} 2^{-v} .
$$

Thus, recalling that $b_{1}=\frac{1}{8}$,

$$
b_{i} 8^{4^{i-1}}=\prod_{j=2}^{i}\left(\frac{b_{j}}{b_{j-1}^{4}}\right)^{4^{i-j}}=\prod_{j=2}^{i}\left(a_{j}^{u} 2^{-v}\right)^{4^{i-j}}
$$

Setting, $\beta_{i}=\log b_{i}$, and taking logarithms of both sides and using (42) we obtain, for some constant $c_{2}>0$,

$$
\begin{align*}
-\beta_{i}=3 \cdot 4^{i-1}+\sum_{j=2}^{i} 4^{i-j}\left(u\left(-\alpha_{j}\right)+v\right) & \leq 4^{i}+(i-1) 4^{i-2}\left(u\left(-\alpha_{i}\right)+v\right) \tag{43}\\
& \leq 4^{i}\left[1+i\left(u k^{\left(c_{1} \cdot i\right)}+v\right)\right] \leq k^{c_{2} \cdot i}
\end{align*}
$$

where in the last step above we used estimates $4^{i} \leq k^{2 i}$ and $i \leq k^{2}$. In particular,

$$
b_{\binom{k}{2}} \geq 2^{-k^{\left(c_{2} \cdot k^{2}\right)}} .
$$

The recurrence relation for C_{i} involves not only C_{i-1} and a_{i-1} but also b_{i-1}. Nevertheless, its solution follows the steps of that for b_{i}. Indeed, we have

$$
\frac{C_{i}}{C_{i-1}}=\frac{2^{z}}{b_{i-1}^{4} a_{i-1}^{w}}
$$

where $z=122 k^{4}$ and $w=37 k^{2}$. Recalling that $C_{1}=1$,

$$
C_{i}=\prod_{j=2}^{i} \frac{C_{j}}{C_{j-1}}=\prod_{j=2}^{i} \frac{2^{z}}{b_{j-1}^{4} a_{j-1}^{w}}
$$

and, consequently, by (42) and (43), for some constant $c_{3}>0$,

$$
\begin{aligned}
\log C_{i} \leq(i-1) z+\sum_{j=2}^{i}\left(4\left(-\beta_{j}\right)+w\left(-\alpha_{j}\right)\right) & \leq(i-1)\left(z+4\left(-\beta_{i}\right)+w\left(-\alpha_{i}\right)\right) \\
& \leq k^{2}\left(z+4 k^{\left(c_{2} \cdot i\right)}+w k^{\left(c_{1} \cdot i\right)}\right) \leq k^{c_{3} \cdot i}
\end{aligned}
$$

In particular,

$$
C_{\binom{k}{2}} \leq 2^{k^{\left(c_{3} \cdot k^{2}\right)}}
$$

Similarly, for some constant $c_{4}>0$,

$$
n_{i}=\prod_{j=2}^{i} \frac{n_{j}}{n_{j-1}}=\prod_{j=2}^{i} \frac{2^{14 k^{3}}}{a_{j-1}^{4 k}} \leq 2^{k^{\left(c_{4} \cdot i\right)}}
$$

and, consequently,

$$
n_{\binom{k}{2}} \leq 2^{k^{\left(c_{4} \cdot k^{2}\right)}}
$$

We are going to prove Corollary 3 by the probabilistic method. We will show that for some $c>0$, every $n \geq 2^{k^{c \cdot k^{2}}}$, and a suitable function $p=p(n)$, with positive probability, $G(n, p)$ has simultaneously two properties: $G(n, p) \rightarrow K_{k}$ and $G(n, p) \not \supset K_{k+1}$. The following simple lower bound on $\mathbb{P}\left(G(n, p) \not \supset K_{k+1}\right)$ has been already proved in [6] (see lemma 3 therein). For the sake of completeness we reproduce that short proof here.
Lemma 14. For all $k, n \geq 3$ and $C>0$, if $p=C n^{-2 /(k+1)} \leq \frac{1}{2}$ then

$$
\mathbb{P}\left(G(n, p) \not \supset K_{k+1}\right)>\exp \left(-C_{\binom{k+1}{2}}\right)
$$

Proof. By applying the FKG inequality (see, e.g., [3, Theorem 2.12 and Corollary 2.13], we obtain the bound
$\mathbb{P}\left(G(n, p) \not \supset K_{k+1}\right) \geq\left(1-p^{\binom{k+1}{2}}\right)^{\binom{n}{k+1}} \geq \exp \left(-2 C^{\binom{k+1}{2}} n^{-k}\binom{n}{k+1}\right)>\exp \left(-C^{\binom{k+1}{2}} n\right)$, where we used the inequalities $\binom{n}{k+1}<n^{k+1} / 2$ and $1-x \geq e^{-2 x}$ for $0<x<\frac{1}{2}$.

Now, we are ready to complete the proof of Corollary 3. For convenience, set $\bar{b}=b_{\binom{k}{2}}$, $\bar{C}=C_{\binom{k}{2}}$, and $\bar{n}=n_{\binom{k}{2}}$. Let $n \geq \bar{n}$ and $p=\bar{C} n^{-2 /(k+1)}$. By Theorem 2,

$$
\mathbb{P}\left(G(n, p) \rightarrow K_{k}\right) \geq 1-\exp \left\{-\bar{b} p\binom{n}{2}\right\} .
$$

Let, in addition, $n \geq(2 \bar{C})^{(k+1) / 2}$. Then, by Lemma 14 ,

$$
\mathbb{P}\left(G(n, p) \not \supset K_{k+1}\right)>\exp \left\{-\bar{b} p\binom{n}{2}\right\}
$$

and, in turn,

$$
\mathbb{P}\left(G(n, p) \rightarrow K_{k} \text { and } G(n, p) \not \supset K_{k+1}\right)>0 .
$$

Consequently, for every

$$
n \geq n_{0}:=\max \left(\bar{n},(2 \bar{C})^{(k+1) / 2}\right)
$$

there exists a graph G with n vertices such that $G \rightarrow K_{k}$ but $G \not \supset K_{k+1}$. Finally, by Proposition 13, there exists $c>0$ such that $n_{0} \leq 2^{k^{c \cdot k^{2}}}$. This way we have proved that $f(k) \leq n_{0} \leq 2^{k^{c \cdot k^{2}}}$.

References

[1] D. Conlon and T. Gowers, An upper bound for Folkman numbers, preprint. 1
[2] E. Friedgut, V. Rödl, and M. Schacht, Ramsey properties of random discrete structures, Random Structures Algorithms 37(4) (2010) 407-436.
[3] S. Janson, T. Łuczak and A. Ruciński, Random Graphs, John Wiley and Sons, New York (2000). 2, 2, 2, 5, 3.1, 3.2, 3.2, 4
[4] V. Rödl and A. Ruciński, Threshold functions for Ramsey properties, J. Amer. Math. Soc. 84 (1995) 917-942. 1, 1, 1, 1, 2
[5] V. Rödl, A. Ruciński, and M. Schacht, Ramsey properties of random k-partite, k-uniform hypergraphs, SIAM J. of Discrete Math. 21(2) (2007) 442-460. 1, 2
[6] V. Rödl, A. Ruciński, and M. Schacht, An exponential-type upper bound for Folkman numbers, Combinatorica, to appear. 1, 4
[7] R. Nenadov and A. Steger, A short proof of the random Ramsey theorem, Comb. Prob. Comp., doi: 10.1017/S0963548314000832 . 1
[8] E. Szemerédi, Regular partitions of graphs, Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, 260, CNRS, Paris, (1978) 399-401. 1

[^0]: *Research supported by NSF grant DMS 080070.
 ${ }^{\dagger}$ Research supported by the Polish NSC grant 2014/15/B/ST1/01688. Part of research performed at Emory University, Atlanta.
 ${ }^{\ddagger}$ Research supported by the Heisenberg-Programme of the Deutsche Forschungsgemeinschaft.

[^1]: ${ }^{1}$ The proof requires several auxiliary constants which at first may appear a bit unmotivated. For example, we now define δ_{II}, while δ_{I} is to be defined only later. Both δ 's will be used in applications of Proposition 4.

