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Vojtěch Rödl, Atlanta

Mathias Schacht, Hamburg

Version August 2015



PACKING MINOR-CLOSED FAMILIES OF GRAPHS
INTO COMPLETE GRAPHS

SILVIA MESSUTI, VOJTĚCH RÖDL, AND MATHIAS SCHACHT

Abstract. Motivated by a conjecture of Gyárfás, recently Böttcher, Hladký, Piguet, and
Taraz showed that every collection T1, . . . , Tn of trees on n vertices with

∑n
i=1 e(Ti) ≤

(
n
2

)
and with bounded maximum degree, can be packed into the complete graph on (1 + o(1))n
vertices. We generalise this result where we relax the restriction of packing families of trees
to families of graphs of any given non-trivial minor-closed class of graphs.

1. Introduction

Given graphs H and F , an F -packing of H is a collection of edge-disjoint subgraphs of H

that are isomorphic to F . This definition naturally extends to sequences of graphs. In

particular, we say that F = (F1, . . . , F`) packs into H if there exist edge-disjoint subgraphs

H1, . . . , H` ⊆ H with Hi isomorphic to Fi for every i ∈ [`].

Gyárfás’ tree packing conjecture [7] initiated a lot of research and asserts the following for

the case where H is a complete graph and F is a sequence of trees.

Conjecture 1. Any sequence T = (T1, . . . , Tn) of trees of order v(Ti) = i for i ∈ [n] packs

into Kn.

The difficulty of this conjecture lies in the fact that it asks for a perfect packing, i.e., a

packing where all the edges of Kn are used, since each tree has e(Ti) = i−1 edges and hence∑
i∈[n] e(Ti) =

(
n
2

)
. Although some special cases were proven (see, e.g., the surveys [8] and

[6], and the references in [4]), this conjecture is still widely open.

Recently Böttcher, Hladký, Piguet, and Taraz [4] showed that a restricted approximate

version holds. More precisely, they considered a host graph with slightly more than n vertices

and trees with bounded maximum degree, while relaxing the assumption on the number of

vertices of each tree.

Theorem 2 (Böttcher, Hladký, Piguet, and Taraz). For any ε > 0 and any ∆ ∈ N there

exists n0 ∈ N such that for any n ≥ n0 the following holds. If T = (T1, . . . , Tn) is a sequence

of trees satisfying

(1) ∆(Ti) ≤ ∆ and v(Ti) ≤ n for every i ∈ [n], and
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(2)
∑n

i=1 e(Ti) ≤
(
n
2

)
,

then T packs into K(1+ε)n.

In case (1 + ε)n is not an integer, we should talk about Kb(1+ε)nc. However, since we

provide asymptotical results, we will omit floors and ceilings here.

The proof of Theorem 2 is based on a randomized embedding strategy, which draws some

similarities to the semirandom nibble method (see e.g. [2]). Inspired by the result in [4], we

obtained a somewhat simpler proof of Theorem 2, which extends from sequences of trees to

sequences of graphs contained in any non-trivial minor-closed class.

Theorem 3. For any ε > 0, ∆ ∈ N, and any non-trivial minor-closed family G there exists

n0 ∈ N such that for every n ≥ n0 the following holds. If F = (F1, . . . , Fn) is a sequence of

graphs from G satisfying

(1) ∆(Fi) ≤ ∆ and v(Fi) ≤ n for every i ∈ [n], and

(2)
∑n

i=1 e(Fi) ≤
(
n
2

)
,

then F packs into K(1+ε)n.

In the following we will consider graphs that do not contain isolated vertices. In fact,

such vertices can easily be embedded after larger components just by picking any vertex of

K(1+ε)n that has not been used before for the same graph. In the proof we split the graphs Fi

into smaller pieces by removing a small separator, i.e., a small subset of the vertex set. We

discuss these concepts and a generalisation of Theorem 3 in the next section.

2. Main technical result

We shall establish a generalisation of Theorem 3 for graphs with small separators (see

Theorem 7 below). In fact, the Separator Theorem of Alon, Seymour, and Thomas [1] will

provide the connection between Theorem 3 and slightly more general Theorem 7.

Theorem 4 (Alon, Seymour, and Thomas). For every non-trivial minor-closed family of

graphs G there exists cG > 0 such that for every graph G ∈ G there exists U ⊆ V (G) with

|U | ≤ cG
√
n such that every component of G− U has order at most n/2.

The graphs we consider in our main result satisfy the following property.

Definition 5. Given δ > 0 and s ∈ N, a (δ, s)-separation of a graph G = (V,E) with

minimum degree δ(G) ≥ 1 is a pair (U, C) satisfying

i. U ⊆ V , |U | ≤ δv(G) and

ii. C = G[V \ U ], i.e., the subgraph of G induced on V \ U , has the property that each

component of C has order at least two and at most s.
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We refer to U as the separator, and to C as the component graph of G.

Note that, for technical reasons that will become clear later (see equation (11)), in ii. we

only allow components of size at least 2. Although the removal of a separator could induce

components of size one, such a separator U0 of G may yield at most ∆|U0| components of

size one, because in our setting we only deal with graphs G of bounded degree ∆(G) ≤ ∆.

This allows us to add these “few” vertices to U0 without enlarging it too much, and ensure

that the resulting set U complies with the definition above.

Definition 6. A family G of graphs with minimum degree at least one is (δ, s)-separable if

every G ∈ G admits a (δ, s)-separation.

We will deduce Theorem 3 from the following result, in which the condition of G being

minor-closed is replaced by the more general property of being (δ, s)-separable.

Theorem 7. For any ε > 0 and ∆ ∈ N there exists δ > 0 such that for every s ∈ N and any

(δ, s)-separable family G there exists n0 ∈ N such that for every n ≥ n0 the following holds.

If F = (F1, . . . , Fn) is a sequence of graphs from G satisfying

(1) ∆(Fi) ≤ ∆ and v(Fi) ≤ n for every i ∈ [n], and

(2)
∑n

i=1 e(Fi) ≤
(
n
2

)
,

then F packs into K(1+ε)n.

As mentioned above, Theorem 3 easily follows from Theorem 7. First we show that for any

non-trivial minor-closed family G and any δ > 0 there is some s such that G is (δ, s)-separable.

Then we use this fact to deduce Theorem 3.

Given a graph G ∈ G of order n with minimum degree δ(G) ≥ 1 and maximum degree

∆(G) ≤ ∆, we apply Theorem 4 to all components of G that have some size r0 with
n
2
≤ r0 ≤ n. Since there are at most two such components, at most two applications of

Theorem 4 lead to a separator of size at most 2cGn
1/2 and a set of components all of which

have order less than n/2. We then apply Theorem 4 to all components of G that have some

size r1 with n
4
≤ r1 <

n
2

and obtain another separator of size at most 4cG
(
n
2

)1/2
. At this point

all components have order less than n/4. Again, we apply Theorem 4 to all components of

some size r2 with n
8
≤ r2 <

n
4
, add at most 8cG

(
n
4

)1/2
more vertices to the separator, and so

on. After i > 0 such iterations we obtain a separator U0 ⊆ V (G) such that

|U0| ≤ 2cGn
1/2 + 4cG

(n
2

)1/2

+ · · ·+ 2icG

( n

2i−1

)1/2

< 2cGn
1/2 ·
√

2
i − 1√

2− 1
< 6cGn

1/2 2i/2

and each component of G − U0 has order at most n/2i. For given δ > 0 we can apply this

with

i =

⌊
2 log2

(
δn1/2

6cG(∆ + 1)

)⌋
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and obtain a separator U0 of order at most δn/(∆ + 1), and a set of components all of

which have order at most 72c2
G(∆ + 1)2/δ2. Note that some of the components in G − U0

may have size one. However, owing to the maximum degree of G there are at most ∆|U0|
such components. By defining U as the separator of size at most δn obtained from U0 by

adding all these degenerate components of order one, we have shown that the non-trivial

minor-closed family G is (δ, s)-separable with s =
72c2G(∆+1)2

δ2
. Applying Theorem 7 with this

s yields Theorem 3.

The rest of this paper is devoted to the proof of Theorem 7. In Section 3 we introduce

some definitions and state two technical lemmas that are used in the proof of the theorem,

which is given at the end of the section. Resolvable and almost resolvable decompositions,

which we will use to construct our packing, are introduced in Section 4. Finally, the two

technical lemmas, Lemma 10 and Lemma 11, are proved in Sections 5 and 6, respectively.

3. Proof of the main result

The following notation will be convenient.

Definition 8. Let G be a family of graphs. An n-tuple of graphs F = (F1, . . . , Fn) with

Fi ∈ G and i ∈ [n] is called a (G, n,∆)-sequence if

(1) ∆(Fi) ≤ ∆ and v(Fi) ≤ n for every i ∈ [n], and

(2)
∑n

i=1 e(Fi) ≤
(
n
2

)
.

In this paper we will consider (G, n,∆)-sequences with the following additional properties:

• G will be a (δ, s)-separable family, and

• each graph Fi will be associated with a fixed (δ, s)-separation (Ui, Ci).

For a simpler notation we will often suppress the dependence on Ui when we refer to a

(G, n,∆)-sequence (F1, . . . , Fn), since the separator Ui will be always clear from the context.

In a component C from Ci we distinguish the set of vertices that are connected to the

separator Ui and refer to this set as the boundary ∂C of C

∂C = V (C) ∩N(Ui),

where as usual N(Ui) denotes the union of the neighbours in Fi of the vertices in Ui. More-

over, for a component graph Ci we consider the union of the boundary sets of its components

and set

∂Ci =
⋃
{∂C : C component in Ci}.

Note that

|∂Ci| ≤
∑
u∈Ui

d(u) ≤ |Ui|∆ ≤ δn∆ (1)
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For the proof of Theorem 7 we shall pack a given (G, n,∆)-sequence into K(1+ε)n. The

vertices of the host graph K(1+ε)n will be split into a large part X of order (1 + ξ)n for

some carefully chosen ξ = ξ(ε,∆) > 0, and a small part Y = V \ X. We will pack the

graphs {Ci}i∈[n] into the clique spanned on X and the sets {Ui}i∈[n] into Y . For this, we shall

ensure that the vertices representing the boundary ∂Ci will be appropriately connected to

the vertices representing the separator Ui. Having this in mind we will make sure that each

vertex of X will only host a few boundary vertices. In fact, since every edge of the complete

bipartite graph induced by X and Y can be used only once in the packing, each vertex x ∈ X
can be used at most |Y | times as boundary vertex for the packing of the sequence {Ci}i∈[n].

This leads to the following definition.

Definition 9. For i ∈ [n], let Fi = (Vi, Ei) be graphs with separators Ui,⊆ Vi and component

graphs Ci = Fi[Vi \Ui]. For a family of injective maps f = {fi}i∈[n] with fi : V (Ci)→ X and

for x ∈ X we define the boundary degree of x with respect to f by

d∂f (x) = |{i ∈ [n] : f−1
i (x) ∈ ∂Ci}| .

We call such a family of maps b-balanced for some b ∈ R if d∂f (x) ≤ b for every x ∈ X.

The proof of Theorem 7 will follow from Lemma 10 and Lemma 11 below. Lemma 10

yields a balanced packing of the component graphs {Ci}i∈[n] into the clique spanned by X

with |X| ≤ (1 + ξ)n.

Lemma 10. For any ξ > 0 and ∆ ∈ N there exists δ > 0 such that for every s ∈ N and

any (δ, s)-separable family G there exists n0 ∈ N such that if F is a (G, n,∆)-sequence with

n ≥ n0, then there exists a (ξn)-balanced packing of the component graphs {Ci}i∈[n] of all

members of F into K(1+ξ)n.

Once we have a balanced packing of {Ci}i∈[n] into K(1+ξ)n, the next lemma allows us to

extend it to a packing of F = (F1, . . . , Fn) into a slightly larger clique of size (1 + ε)n.

Lemma 11. For any ε > 0 and ∆ ∈ N, there exist ξ > 0 and δ > 0 such that for every s

and any (δ, s)-separable family G there exists n0 such that for any n ≥ n0 the following holds.

Suppose there exists a (ξn)-balanced packing of the component graphs {Ci}i∈[n] associated with

a (G, n,∆)-sequence F into K(1+ξ)n. Then there exists a packing of F into K(1+ε)n.

We postpone the proofs of Lemma 10 and Lemma 11 to Section 5 and Section 6, respec-

tively. Here we describe the proof of our main Theorem based on these two lemmas.

3.1. Proof of Theorem 7. We will first fix all involved constants. Note that Theorem 7

and Lemma 11 have a similar quantification. Hence, for the proof of Theorem 7, we may

apply Lemma 11 with ε and ∆ from Theorem 7 and obtain ξ and δ′. Then Lemma 10 applied
5



with ξ and ∆ yields a constant δ′′. For Theorem 7 we set δ = min{δ′, δ′′}. After displaying

δ for Theorem 7 we are given some s ∈ N and a (δ, s)-separable family G.

With constants chosen as above, we can apply Lemma 10 for a (G, n,∆)-sequence F
which then asserts that the assumptions of Lemma 11 are fulfilled. Finally, the conclusion

of Lemma 11 yields Theorem 7. �

4. Resolvable and almost resolvable decompositions

The idea of the proof is to split the given graphs (F1, . . . , Fn) into small components,

group such components by isomorphism types, and pack components from the same group

into complete subgraphs of K(1+ε)n. For that we will use Theorem 12 and Theorem 14.

A Km-factor of Kn is a collection of n
m

vertex disjoint cliques of order m, and a resolvable

Km-decomposition of Kn is a collection of(
n
2

)(
m
2

)m
n

=
n− 1

m− 1

edge disjointKm-factors. Theorem 12 states that the obvious necessary divisibility conditions

for the existence of a Km-decomposition of Kn are actually sufficient.

Theorem 12 (Ray-Chaudhury and Wilson). For every m ≥ 2 there exists n0 such that

if n ≥ n0 and n ≡ m (mod m(m− 1)), then Kn admits a resolvable Km-decomposition.

For general F , resolvable decompositions do not necessarily exists (for example it is easy

to see that there is no n for which resolvable K1,3-decompositions of Kn exist). Therefore,

instead of F -factors, we consider F -matchings, i.e., sets of vertex disjoint copies of F .

Definition 13. An (F, η)-factorization of K` is a collection of F -matchings of K` such that

i. each matching has size at least (1− η) `
v(F )

, and

ii. these matchings together cover all but at most η
(
`
2

)
edges of K`.

From these two properties we deduce that the number t of F -matchings in an (F, η)-

factorization satisfies

(1− η)
(`− 1)v(F )

2e(F )
≤ t ≤ (`− 1)v(F )

2e(F )
.

Also note that any (F, 0)-factorization of K` is a resolvable F -decomposition of K`. We will

then use the following approximate result, which can be deduced from [5] and [10] (see also

[3]).

Theorem 14. For every F and η > 0 there exists `0 such that for every ` ≥ `0 there exists

an (F, η)-factorization of K`.
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5. Packing the components

The crucial part in the proof of Theorem 7 is Lemma 10, which we are going to prove in

this section. In Lemma 10 we are given a (G, n,∆)-sequence (F1, . . . , Fn) of graphs from a

(δ, s)-separable family G with fixed separations (Ui, Ci) associated with each Fi. Our goal

will be to construct a (ξn)-balanced packing of the component graphs {Ci}i∈[n] into KN , with

N = (1 + ξ)n.

The packing of {Ci}i∈[n] will make use of a resolvable Km-decomposition of KN (actually we

will use a somewhat more complicated auxiliary structure which we will describe in Section

5.1) and will be realized in two steps: the assignment phase and the balancing phase.

• In the assignment phase we consider a Km-decomposition of KN and then describe

which components of each Ci are assigned to which copies of Km.

• In the balancing phase we make sure that the mapping from components of each Ci
into copies ofKm fromKN will form a (ξn)-balanced packing as promised in Lemma 10.

Below we outline the main ideas of these two steps. We start with the assignment phase

first. The balancing phase will be discussed in Section 5.3.

5.1. Outline of the assignment phase. The purpose of the assignment phase is to pro-

duce a “preliminary packing” of each Ci, i = 1, . . . , n into some Km-factor. We recall that

each component graph Ci consists of several components each with at most s vertices and

maximum degree at most ∆. Moreover, in each component C we distinguish the set ∂C of

vertices that are connected to the separator Ui.

We define an isomorphism type S as a pair (R,B) where R is a graph on at most s

labeled vertices and maximum degree at most ∆, and B is a subset of the vertices of R. Let

S = (S1, . . . , Sσ) be the enumeration of all isomorphism types Sj = (Rj, Bj), such that

e(R1)

v(R1)
≥ · · · ≥ e(Rσ)

v(Rσ)
. (2)

The definition of S yields

σ ≤ 2(s
2) · 2s ≤ 2s

2

. (3)

Note for every component C of Ci there exists an isomorphism type Sj = (Rj, Bj) ∈ S
such that there exists a graph isomorphism φ : V (C)→ V (Rj) with the additional property

that φ(∂C) = Bj. Therefore, we can describe the structure of a component graph Ci as a

disjoint union

Ci =
⋃
S∈S

νi(S) · S

where νi(S) denotes the number of components isomorphic to S contained in Ci. In the rest

of the paper we will simplify the notation and refer to S as a graph.
7



The assignment procedure makes use of further decomposition layers. In fact, for each

copy of Km appearing in the resolvable decomposition of KN we consider a resolvable K`-

decomposition of such a copy of Km. Each resolution class consisting of m
`

disjoint copies of

K` will be reserved for some isomorphism class S and the copies of S coming from various

Ci will be then packed into each such K`. Since we consider Km-decomposition of KN ,

K`-decomposition of Km, and S-decomposition of K` for each S ∈ S, we will refer to such

structure as three layer decomposition and motivate its use below.

5.2. The three layer decomposition. We begin our discussion with the simpler case when

all components in all the component graphs Ci are isomorphic to a given graph S and argue

why even in this simpler case at least two layers are required. Then we look at the general

case, where the component graphs consist of more different isomorphism types, and explain

the use of three layers.

5.2.1. One layer. In the case where all components in {Ci}i∈[n] are isomorphic to a single

graph S, a straightforward way to pack {Ci}i∈[n] into KN would be the following. Suppose

there exists a resolvable S-decomposition of KN . Then, by assigning the components of a

graph Ci to copies of S from the same S-factor, we ensure that the components within each

component graph are packed vertex-disjointly.

With this approach, however, we might end up not covering many edges of KN (and

consequently not being able to find a packing of the graphs Ci). Let C1 and C2 be component

graphs with strictly more than N/2 vertices. Once we assign the components of C1 to an

S-factor of KN , we cannot use the other copies of S in the same S-factor to accomodate the

components of C2. In fact, at least one component of C2 would not fit in that S-factor and

we would have to use a copy of S from another S-factor. We would have to ensure that this

copy of S is vertex disjoint from those already used for C2 in the previous S-factor, and an

obvious way to get around this would be to embed all components of C2 in a new S-factor

all together. However, this would be very wasteful and if many (for example Ω(n)) graphs

Ci would be of size strictly larger than N/2, then we would not be able to pack all Ci into

KN in such a straightforward way. We remedy this situation by introducing an additional

layer.

5.2.2. Two layers. For an appropriately chosen integer m, suppose there exist a resolvable

Km-decomposition of KN and a resolvable S-decomposition of Km. Note that, with this

additional decomposition layer at hand, we can address the issue raised above more easily.

In fact, we fix a Km-factor of KN and use sufficiently many Km’s of this Km-factor to host

the components of C1, all of which are isomorphic to S by our assumption. The remaining

Km’s of the factor can host the first part of C2. We then “wrap around” and reuse the Km’s
8



containing copies of S from C1 by selecting a new S-factor inside these Km’s to host the

second part of C2. This way the components of C1 and C2 are packed edge disjointly and the

components of C2 (resp. C1) are in addition vertex disjoint, as required for a packing. We

can continue this process to pack C3, C4, . . . until the fixed Km-factor of KN is fully used.

Then we continue with another Km-factor and so on.

This procedure will work if all components of each Ci are isomorphic to a single S. Let

us note however that in case Ci contains components of different isomorphism types two

layers may not be sufficient. This is because we would have to select S-factors for different

graphs S within Km and there seems to be no obvious way to achieve this in a two layer

decomposition. Instead we will introduce a third layer, which will give us sufficient flexibility

to address this issue.

5.2.3. Three layers. Here we give an outline describing how a three layer structure can be

used to address the general problem. The details will follow in section 5.4.1. Consider a

resolvable Km-decomposition Dm,N of KN , a resolvable K`-decomposition D `,m of Km, and

resolvable S-decompositions DS,` of K` for every S ∈ S (in fact the last assumption will never

be used in its full strength, we will use Theorem 14 instead). We view resolvable decom-

positions as collections of factors. In particular we write, e.g., Dm,N = {Dm,N1 , . . . ,Dm,NN−1
m−1

},

where Dm,Nk is a Km-factor of KN for k = 1, . . . , N−1
m−1

.

Suppose now we are given graphs C1, . . . , Cn, Ci =
⋃
S∈S νi(S) ·S. We will proceed greedily

processing the Ci’s one by one. In each step we will work with one fixed Km-factor Dm,Nk =

Dm,Ncurrent of KN which will be used repeatedly as long as “sufficiently many” edges of such

factor are available. For example, Dm,N1 will host C1, C2, . . . , Ca for some a < n, then Dm,N2

will host Ca+1, Ca+2, . . . , Cb for some a < b < n, and so on. Once we run out of available edges

in factor Dm,Ncurrent we will move that factor in the set Dm,N
used ⊆ Dm,N of factors the edges of

which were already assigned to previous Ci’s and select a new factor Dm,Ncurrent ∈ Dm,N \Dm,N
used

which we will continue to work with.

Let us now outline the assignment within a Km of the current Km-factor. For each

Km ∈ Dm,Ncurrent we consider a resolvable decomposition D `,m = D `,m(Km) of such a Km.

Again some factors in that decomposition might have already been completely used. Among

those which were not completely used yet, we specify σ of such “current” factors D`,mS , each

ready to be used to embed copies of S in the current particular step. Since K` admits

resolvable S-decompositions for every S ∈ S, each D`,mS corresponds to (`−1)v(S)
2e(S)

= t(S) S-

factors of Km which we may denote by DS,`,m1 , . . . ,DS,`,mt(S) . At each step, in every Km we will

only use one of such S-factors, which we denote by DS,`,mcurrent. A set of components of Ci that

are going to be assigned to an S-factor of a Km will be referred to as a chunk.
9



With this structure in mind we are able to describe our greedy assignment procedure.

Assume that in the assignment procedure the graphs C1, . . . , Ci−1 were already processed

and that Ci =
⋃
S∈S νi(S) · S. The assignment of Ci will consist of the following four steps

which we discuss in detail in Section 5.4.1.

i. For every isomorphism type S ∈ S, partition the νi(S) components into as few as possible

chunks of size at most m
v(S)

.

ii. For every S ∈ S, select νi(S)v(S)
m

copies of Km from the current Km-factor Dm,Ncurrent and

match each such Km with a chunk of components isomorphic to S.

iii. For every S ∈ S and for each chunk of type S, assign the components in the chunk to

the S-factor DS,`,mcurrent of Km. The copies of S will cover m e(S)
v(S)

edges of Km.

iv. Prepare for the assignment of the next component graph.

This procedure leads to a packing of {Ci}i∈[n] into KN if we do not run out of Km-factors

during the process, and in the proof we shall verify this. Assuming this for the moment,

the procedure above yields a preliminary packing which can be encoded by functions f =

{fi}i∈[n], with fi : V (Ci)→ V (KN).

5.3. Outline of the balancing phase. In this section we will outline how the preliminary

packing f obtained in the assignment phase is used to realize a (ξn)-balanced packing of

{Ci}i∈[n] into KN . Further detail will be given in Section 5.4.2.

Note that so far we did not consider the boundary degrees of the vertices of KN and, in

fact, f is not guaranteed to be balanced. However, the layered structure of the assignment

will allow us to fix this by using the following degrees of freedom. Firstly, the N
m
Km’s in

any of the N−1
m−1

Km-factors from Dm,N can be permuted independently for each Km-factor.

Since any component graph is assigned to a single Km-factor, the resulting mappings remain

injective and the embedding of the Ci’s stays pairwise edge disjoint. Secondly, each Km can

be embedded into KN in m! possible ways by permuting its vertices. There are((
N

m

)
!× (m!)

N
m

)N−1
m−1

such choices in total and each of them leads to a packing of the component graphs {Ci}i∈[n].

We will pick one of such choices uniformly at random, and show that with positive prob-

ability each vertex of KN is used as a boundary vertex approximately the same number of

times. Since the sum of the boundary degrees is at most ∆δn2 ≤ ξn2/2 (see (1)), this leads

to a (ξn)-balanced packing g of {Ci}i∈[n] into KN .

5.4. Proof of Lemma 10. Given ξ and ∆, set

δ = ξ/2∆ (4)
10



and let G be a (δ, s)-separable family, for some s ∈ N. We apply Theorem 14 with

η = ξ/8 (5)

and fix an integer ` > s2 satisfying that for every S ∈ S there exists an (S, η)-factorization

of K`. Let m ∈ N such that

m > 16σ`/ξ (6)

and there exists a resolvable K`-decomposition of Km (see Theorem 12). Similarly, let

n0 > max{4m2/ξ, 22m} (7)

such that for any n ≥ n0 satisfying the necessary congruence property there exists a resolvable

Km-decomposition of Kn. Having defined n0, we are now given a (G, n,∆)-sequence F =

(F1, . . . , Fn) for some n ≥ n0. We will show that there exists a (ξn)-balanced packing of the

family of component graphs {Ci}i∈[n] into KN , for any N with (1 + ξ
2
)n ≤ N ≤ (1 + ξ)n such

that KN admits a Km-decomposition. Since n ≥ n0 ≥ 4m2

ξ
, such N indeed exist.

5.4.1. The assignment phase. Next we elaborate on the outline given in Sections 5.1 and

5.2. First we describe the auxiliary structure we are going to use followed by the actual

assignment procedure.

The auxiliary structure. For each S ∈ S let DS,` be a fixed (S, η)-factorization of K` (see

Definition 13). Let D `,m be an arbitrarily chosen resolvable K`-decomposition of Km. Sim-

ilarly, for the given N , denote by Dm,N an arbitrarily chosen resolvable Km-decomposition

of KN .

At each point of time in the assignment procedure we will work with one Km-factor which

we refer to as the current Km-factor Dm,Ncurrent ∈ Dm,N . Each Km of the current Km-factor is

decomposed into K`-factors using D `,m. Moreover, in every Km, for every S ∈ S we pick a

K`-factor which we denote by D`,mS . We refer to D`,mS as the current K`-factor for S. We

then apply Theorem 14 to all K`’s in such a K`-factor and obtain (S, η)-factorizations for

every K` in D`,mS . Note that we can arbitrarily fix an S-matching in each K` of D`,mS and

obtain an S-matching of Km of size at least

(1− η)
`

v(S)

m

`
= (1− η)

m

v(S)
. (8)

This way we set up t(S) edge disjoint S-matchings of Km contained in D`,mS , for

(1− η)
(`− 1)v(S)

2e(S)
≤ t(S) ≤ (`− 1)v(S)

2e(S)
,

which we denote by DS,`,m1 , . . . ,DS,`,mt(S) . Note that such S-matchings cover at least (1−η)m
`

(
`
2

)
edges of the K`’s in D`,mS .

11



Every such structure will be used until it is considered full according to the following

definition.

Definition 15. A K`-factor D`,mS is full when all its S-matchings have been used. A Km

is full when there exists an isomorphism type S ∈ S such that D`,mS is full and any other

K`-factor is either full or reserved to another isomorphism type. A Km-factor is full when

one of its Km’s is full.

The assignment procedure. We now give the details of the four steps outlined in Section

5.2.3 for the assignment for the graph Ci =
⋃
S∈S νi(S) · S. We assume that the graphs

C1, . . . , Ci−1 have already been assigned and that the current Km-factor Dm,Ncurrent = Dm,Nk is

not full.

i) For each isomorphism type S ∈ S we group the νi(S) copies of S into as few as possible

chunks of size at most (1− η) m
v(S)

(note that this matches the size of an S-matching of

Km, as given in (8)). The correction factor (1− η) here addresses the fact that we deal

with (S, η)-factorizations and not with resolvable S-decompositions. The number µi(S)

of chunks required for the νi(S) components of type S is hence given by

µi(S) =

⌈
νi(S) · v(S)

(1− η)m

⌉
. (9)

ii) We order the Km’s in the current Km-factor Dm,N
current according to the number of edges

that have already been assigned to it. We start with the one in which the least number

of edges have been used. We then assign the µi(S1) chunks of type S1 to the first µi(S1)

Km’s in that order and continue in the natural way, that is, the µi(S2) chunks of type S2

are assigned to the next µi(S2) Km’s, and so on. Since the members of S are ordered

non-increasingly according to their densities (see 2), this way we will ensure that the

Km’s in the current Km-factor are used in a balanced way, which is essential to leave

only little waste.

iii) Once we have determined which chunk goes to which Km, we have to assign the com-

ponents S of the chunk to their copies in the corresponding Km. In the chosen Km

we assign the components of the chunk to DS,`,mcurrent. Such a matching exists because we

assumed that the current Km-factor Dm,Nk is not full. Note that, independently of the

precise number of components in the chunk, we use an entire S-matching in all the K`’s

of the current K`-factor for S for the assignment of this chunk.

iv) After we have assigned the components of Ci we prepare for the assignment of Ci+1. In

each Km, for every isomorphism type S, we check whether the current K`-factor for S

is full. If it is, two cases may arise. In the first case there exists another K`-factor in

the Km that has not been reserved for any S ∈ S yet. Then, we apply Theorem 14
12



with S and η to all copies of K` in such a K`-factor and this factor becomes the current

K`-factor for S, i.e., D`,mS in that Km. In the second case, all K`-factors are either full

or have been reserved for some S ′ ∈ S with S ′ 6= S, hence we cannot set up a new

K`-factor for S. This implies that the Km and the Km-factor are full (see Definition 15).

Since we assigned the components of Ci to the least used Km’s in the Km-factor, we are

ensured that at this point all the Km’s in Dm,Ncurrent are almost completely used. At this

point we add Dm,Ncurrent to Dm,N
used and set Dm,Ncurrent = Dm,Nk+1 .

The assignment phase yields a packing. We shall verify that the procedure yields a

correct assignment.For that we have to show that any component graph Ci “fits” into KN ,

and that we do not run out of Km-factors while iterating the four steps for all graphs in

{Ci}i∈[n].

We first show that every Ci fits into one Km-factor.Recall that in Step i) the copies iso-

morphic to some S ∈ S are split into chunks of size at most (1 − η) m
v(S)

and each chunk is

assigned to an S-matching of D`,mS . At this point some vertices may not be used for one of

the following two reasons:

V1) We always reserve a whole S-matching DS,`,mcurrent for each chunk, even though some chunks

may contain only a few copies of S. In the worst case where only one copy of S is

contained in the chunk we may waste m− v(S) ≤ m vertices and in principle this could

happen for every isomorphism type S ∈ S. However, since such a “rounding error”

occurs at most once for each isomorphism type, we may waste at most σm vertices for

this reason.

V2) We cannot guarantee that the S-matchings which we are using are perfect S-factors.

However, from Theorem 14 it follows that each matching covers at least (1−η) m
v(S)

v(S) =

(1− η)m vertices of Km. Therefore the number of uncovered vertices in the Km-factor

due to this imperfection is at most ηmN
m

= ηN .

Hence Ci fits into one Km-factor if we ensure that v(Ci) +σm+ ηN ≤ N , which follows from

v(Ci) + σm+ ηN ≤ n+ σm+ ηN ≤ (1 +
ξ

2
)n ≤ N,

due to (5), (6), and (7).

It is left to show that N−1
m−1

Km-factors are sufficient to host all the graphs from {Ci}i∈[n].

For that, we shall bound the number of unused edges in each Km-factor. At the point

when a Km becomes full, all its K`-factors, except for the current K`-factors D`,mS for each

isomorphism type S ∈ S, have been used in the assignment. This leads to the following

cases.
13



E1) The current K`-factor D `,m
S for a given isomorphism type S may not have been used at

all and hence all its
(
`
2

)
m
`

edges are not used in the assignment.

E2) Owing to Theorem 14, in a used K`-factor, up to at most η
(
`
2

)
m
`

edges are not covered

by the S-matchings.

Hence the total number of edges that are not used in a full Km can be bounded by(
σ + η

m− 1

`− 1

)(
`

2

)
m

`
.

It is left to establish a similar estimate for the other Km’s in the Km-factor. Recall that we

declared the whole Km-factor to be full as soon as one Km was full. Since all components

of any Ci ⊆ Fi have bounded maximum degree ∆, in each step up to at most m∆
2

edges are

reserved in any Km of the current Km-factor. Owing to the balanced selection of the Km’s

within the current Km-factor (see Step ii)) we have that the number of used edges over all

Km’s in Dm,N
current differs by at most m∆

2
. Consequently, the number of unused edges in any

Km at the point when the Km-factor is declared full is at most(
σ + η

m− 1

`− 1

)(
`

2

)
m

`
+
m∆

2
.

Using this estimate for all
(
N
2

)
/
(
m
2

)
of the Km in the Km-decomposition of KN leads to a

total of unused edges of at most(
σ
`− 1

m− 1
+ η +

∆

m− 1

)(
N

2

)
< 2η

(
N

2

)
,

where we used (6) and ∆ < σ. Furthermore, since by N ≥ (1 + ξ
2
)n we have(

n

2

)
+ 2η

(
N

2

)
≤
(
N

2

)
,

we have shown that we do not run out of Km-factors and, hence, the assignment procedure

yields a preliminary packing of {Ci}i∈[n].

For the proof of Lemma 10 we have to show not only that there exists such a packing but

also that there is a balanced one. This will be the focus of the next phase.

5.4.2. The balancing phase. In the assignment phase we have constructed a preliminary

packing f of {Ci}i∈[n] into the Km-factors of KN as described in Section 5.1. We now

construct a (ξn)-balanced packing h by the following random process consisting of two parts.

Firstly, we randomly permute the N
m
Km’s in each Km-factor independently,m and we will

denote the resulting packing by g. Secondly, for each Km, we pick a random permutation of

its vertices. As we already noted in Section 5.3, any such permutation yields a packing of

{Ci}i∈[n] into KN .
14



It is left to show that with positive probability each vertex v of KN has boundary degree

with respect to h bounded by ξn. Recall from Definition 9 that the boundary degree with

respect to f of a vertex v is defined by

d∂f (v) = |{i ∈ [n] : f−1
i (v) ∈ ∂Ci}|.

For a Km of the Km-decomposition of KN and a vertex v of Km we consider the relative

boundary degree

d∂f (v,Km) = |{i ∈ [n] : fi assigns some components of Ci to Km and f−1
i (v) ∈ ∂Ci}|

Clearly,
∑
d∂f (v,Km) = d∂f (v), where the sum runs over all Km from the Km-decomposition

of KN that contain v. For each Km we define its label as the monotone sequence of the

boundary degrees of its vertices. Since only one isomorphism type S ∈ S appears in each

K`-factor, we can bound the number of possible labels by σ(m−1)/(`−1) < 2m (see (3) and the

choice of ` > s2). We call such a label common if at least η
2m

N(N−1)
m(m−1)

Km’s have that label

and rare otherwise. Note that the total number of Km’s having a rare label is bounded by

ηN(N−1)
m(m−1)

.

We use these labels to show that each vertex in KN hosts roughly the same amount of

boundary vertices. For that we first prove that an arbitrary vertex is incident to approxi-

mately the expected number of Km’s of a given common label. For a vertex v of KN and

a common label A we denote by Xv,A the number of Km’s incident to v that have label A

Moreover, let αk(A) be the number of Km’s in the Km-factor Dm,N
k that have label A and

define

α(A) =

N−1
m−1∑
k=1

αk(A).

Note that Xv,A is the sum of N−1
m−1

indicator variables Xv,A
k , where Xv,A

k = 1 if the Km from

the Km-factor Dm,N
k adjacent to v has label A. The probability that this happens is then

given by αk(A)
N/m

. By applying Chernoff’s inequality ((2.9) in [9]) we obtain

P
(
|Xv,A − EXv,A| > ηEXv,A

)
< 2 exp

(
−η

2EXv,A

3

)
< 2 exp

(
−η

2

3

m

N
α(A)

)
.

Consequently, the probability that one of the common labels appears too many or too few

times among the Km’s incident to some vertex is bounded by∑
v∈V (KN )

∑
A common

2 exp

(
−η

2

3

m

N
α(A)

)
< N2m+1 exp

(
− η3(N − 1)

2m · 3(m− 1)

)
< 1.
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Therefore, with positive probability, all vertices are balanced in the sense that the occurrences

of every common label among the Km’s incident to each vertex roughly agree in proportion

with the occurrences of that label in the decomposition.

We fix such permutation of the Km’s and the corresponding numbers Xv,A for every

vertex v and every label A. Let g be the corresponding packing of {Ci}i∈[n] into KN . As a

consequence, we get that for every vertex v the number of Km’s with common labels attached

to it satisfies∑
A common

Xv,A ≥
∑

A common

(1− η)
m

N
α(A) = (1− η)

m

N

∑
A common

α(A)

≥ (1− η)
m

N
(1− η)

N(N − 1)

m(m− 1)
= (1− η)2N − 1

m− 1
≥ (1− 2η)

N − 1

m− 1
.

We also obtain an upper bound on the number of Km’s with rare labels for every vertex v:∑
A rare

Xv,A =
N − 1

m− 1
−

∑
A common

Xv,A ≤ 2η
N − 1

m− 1
. (10)

Next we show that randomly permuting the vertices of each Km in the Km-decomposition

of KN for the random packing g ensures that the boundary degrees in each Km are evenly

distributed. Let d∂h(v, A) be the sum of the boundary degrees of the vertex v within the

Km’s labelled by A and containing v. Clearly,

d∂h(v) =
∑
A

d∂h(v,A).

For a moment we ignore the Km’s with rare labels, since owing to (10) their contribution

will be negligible, and consider only those that have a common label. We denote by A(i) the

i-th element of the degree sequence A and set β(A) = 1
m

∑m
i=1A(i) as the average degree in

A.

We first show that for a vertex v of KN and a common label A, d∂h(v, A) is in the range

(1 ± η)β(A)Xv,A with high probability. Let Y v,A
i be the number of Km’s labelled by A in

which v gets boundary degree A(i). By applying Chernoff’s inequality we obtain

P
(∣∣∣∣Y v,A

i − Xv,A

m

∣∣∣∣ > η
Xv,A

m

)
< 2 exp

(
−η

2

3

Xv,A

m

)
for every i ∈ [m]. This implies that with probability 1− 2m exp

(
−η2

3
Xv,A

m

)
we have

d∂h(v,A) =
m∑
i=1

A(i)Y v,A
i =

m∑
i=1

A(i)(1± η)
Xv,A

m
= (1± η)β(A)Xv,A.

By summing over all common labels, we have that with positive probability there exist

permutations for every Km of the Km-decomposition of KN for which all vertices have
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roughly the expected boundary degree. More precisely, the probability that there exists a

misbehaving vertex is bounded by∑
v∈V (KN )

∑
A common

2m exp

(
−η

2

3

Xv,A

m

)
< N2m+1m exp

(
− η3

2m · 3
(1− η)

N − 1

m(m− 1)

)
< 1.

Therefore, the contribution of the Km’s with common labels for each vertex v is at most∑
A common

d∂h(v,A) ≤
∑

A common

(1 + η)β(A)Xv,A ≤
∑

A common

(1 + η)
[
β(A)(1 + η)

m

N
α(A)

]
= (1 + η)2 1

N

∑
A common

(mβ(A)α(A)) ≤ (1 + η)2 1

N

n∑
i=1

|∂Ci|

(1)

≤ (1 + η)2 1

N

ξ

2
n2.

Owing to (10), a vertex can be incident to at most 2ηN−1
m−1

Km’s with rare labels. Since no

component of any Ci consists of a single isolated vertex (see ii. in Definition 5), the largest

relative boundary degree of any vertex in such a Km can be at most m− 1 and we infer that

d∂h(v) ≤ (1 + η)2 1

N

ξ

2
n2 + 2η

N − 1

m− 1
(m− 1) <

(
(1 + η)2

1 + ξ/2

ξ

2
+ 2η(1 + ξ)

)
n < ξn (11)

for every v ∈ V (KN), thus proving Lemma 10. �

6. Packing the separators

In this section we prove Lemma 11. The Lemma asserts that a balanced packing of {Ci}i∈[n]

into K(1+ξ)n can be extended to a packing of {Fi}i∈[n] in K(1+ε). For that we have to show

that we can embed the separators {Ui}i∈[n] in an appropriate way. Roughly speaking, we

will show that a simple greedy strategy will work in here.

6.1. Proof of Lemma 11. Given ε and ∆, set

ξ =
ε

12∆2
and δ =

ε2

72∆2
.

Let s ∈ N and let G be a (δ, s)-separable family. For some sufficiently large n let F =

(F1, . . . , Fn) be a (G, n,∆)-sequence and suppose that there exists a (ξn)-balanced packing

of the component graphs {Ci}i∈[n] into a clique of order (1+ ξ)n. Fix a partition X∪̇Y of the

vertex set of K(1+ε)n, where |X| = (1 + ξ)n, and denote by KX , KY , and KX,Y the complete

subgraphs induced on X and on Y , and the complete bipartite subgraph between X and Y ,

respectively. Let h = {hi}i∈[n] with

hi : V (Fi)→ X
17



be a (ξn)-balanced packing of {Ci}i∈[n] into KX . We shall use KY to embed {Ui}i∈[n], and

KX,Y for the necessary connections. It is easy to see that if the following conditions are

satisfied then the resulting map is a packing of F into K(1+ε)n:

(1) for every i ∈ [n], the vertices of Ui are mapped injectively into Y ;

(2) each edge in KX,Y is used at most once;

(3) each edge in KY is used at most once.

Note that we will embed
∑

i∈[n] |Ui| ≤ δn2 vertices into Y , therefore some vertices in Y will

be used at least
∑

i∈[n] |Ui|
|Y | ≤ δn2

|Y | times. However, we will ensure that each vertex in Y is used

at most 3 δn
2

|Y | times. The packing of F into K(1+ε)n will be expressed by a family of functions

h = {hi}i∈[n] with

hi : V (Fi)→ X∪̇Y

where hi extends hi from V (Ci) to V (Fi). For a vertex v ∈ V (Ci), we set hi(v) = hi(v) ∈ X
for any i ∈ [n]. For the vertices in the separators {Ui}i∈[n] we will fix their image hi(v) in Y

one by one in a greedy way, starting with vertices of U1.

At each step we embed a vertex u ∈ Ui into Y , assuming that all vertices of Uj with j < i

and possibly some (at most |Ui| − 1 < δn) vertices of Ui were already embedded. Let NCi(u)

be the neighbourhood of u in Ci, and NUi
(u) the neighbourhood of u in Ui both of size at

most ∆. Suppose so far we made sure that every vertex in Y was used at most 3 δn
2

|Y | times.

We will embed u in such a way that (1), (2), and (3) are obeyed (see (1*), (2*), and (3*)

below), and afterwards each vertex of Y is still used at most 3 δn
2

|Y | times. This will show that

h can be extended to a packing h of F and conclude the proof. Having this in mind we

note:

(1*) The vertices of Ui have to be embedded injectively into Y and, hence, up to at most

|Ui| − 1 < δn vertices of Y may not be used for the embedding of u.

(2*) Since every edge in KX,Y can be used at most once, we require hi(u) 6= hj(u
′) for every

vertex u′ ∈ Uj with hj(NCj(u
′)) ∩ hi(NCi(u)) 6= ∅. Let x ∈ hi(NCi(u)). Owing to the

(ξn)-balancedness of the packing {hi}i∈[n], x hosts at most ξn vertices from
⋃
k∈[n] ∂Ck

and each of them has at most ∆ neighbours in some Uk for k ∈ [n]. Assuming that all

of them have already been embedded into Y , we obtain at most ∆ξn forbidden vertices

for each of the up to at most ∆ neighbours of u in Ci. Hence, the total number of

forbidden options for hi(u) in Y is at most ∆2ξn.

(3*) Note that KY also hosts the edges contained in the separator Ui and every edge of KY

may be used at most once. Suppose that there exists a vertex u′ from Uj with j < i such

that hi(NUi
(u))∩hj(NUj

(u′)) 6= ∅. Then hi(u) must avoid hj(u
′) for any such u′, because

at least one edge between this vertex and the image of the neighbours of u is already

used. Since by our assumption every vertex in the set hi(NUi
(u)) hosts at most 3 δn

2

|Y |
18



vertices embedded so far, and since ∆(Fj) ≤ ∆, there are at most ∆ · 3 δn2

|Y | |NUi
(u)| ≤

3∆2δn2/|Y | such restrictions.

Since up to now every vertex y ∈ Y was used at most 3 δn
2

|Y | times for the embedding, by

denoting with Yu ⊆ Y the set of candidates for the embedding of u, we obtain

|Yu| ≥ |Y | − (δn+ ∆2ξn+ 3∆2 δn
2

|Y |
) ≥ |Y | − ε

4
n >

|Y |
2
.

Since we have to embed at most
∑

i∈[n] |Ui| ≤ δn2 vertices in total, at any time some vertex

y ∈ Yu was used at most
δn2

|Y |/2
< 3

δn2

|Y |
− 1

times, and this vertex we choose for hi(u). We have thus shown that at each round we can

always pick one vertex in Y such that all the edges needed to connect the vertex we want to

embed to all its neighbour are available and it was used before at most 3 δn
2

|Y | − 1 times. This

completes the proof of the lemma. �
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